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@ Model problem

iwt - —A¢ - ﬁ/(|¢|2)¢ ) X € R3 9
FO) =0, |9 < CuuP . p< 1+% d=3

@ Symmetries:
o translations (¢, q;) — (. — gie’), generated by —i0y,
o Gauge (¥, qa) — €%, generated by i.

@ Conservation laws:

/ YO — PO
2

T
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Ground States

@ Look for special solutions

Yix 1) = e Wn(x —y(t) . y(O) =Nt +q . j=1..n

@ 1), is a critical point of

Hi= [ 90" - a(1uP?)
restricted to

={y :Plw)=p,j=1..4}

@ Ground state. A ground state is the minimum.
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Assumptions

Assumptions

@ Linearize: insert

Yx, 1) = e [np(x — y(£)) + x(x — y(1))]

linearize in . Denote by
X = Lx
the linearized equations.
@ Linear assumptions

e o(L) =0, fiws, ..., Hiwk } |J £i[Q, +00). Minimal multilicity of 0,
namely 8.
w1 <wzy ey, <wk <N

o For some large enough r, one has w - k # Q, Yk € Z¥, |k| < r

e Fermi golden rule (probably generic: work in progress)
@ Initial datum inf Hwo — e_iq“np(. - q,-e’l)HH1 <1
P.q
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Theorem

There exist functions p(t) g(t) y(t) and a state 1, such that, one can
decompose the solution as

b(x, ) = e # Dy (x — q(1) + e Dy (x - y(1), 1),

one has
i [x(t) — ] =0

The following limits exist

lim (2) lim 4(t)

t—oo
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The Problem

Comments

@ What's new? Old results when the Floquet spectrum has at most 1
eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman,
Cuccagna, Perelman.

o |deas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with
potential), Perelman (no eigenvalues, energy space).
o Key difficulty: the generators of the symmetries are unbounded.

o Development of reduction theory, Darboux theory and Normal form
theory with only continuous transformations.
e Validity of Strichartz estimates for the relevant operators.
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Model probelm

@ The equation: /¢y = —Ayp + Vi) + 6‘25"(”;).

Ho := —A + V with one eigenvalue Hpe = we
@ Spectral coordinates ¥ = e + f:

Ho = (f; Bf) + w|¢[?

@ Model nonlinearity

Hp = &/(®;f) +£(0; f)
e Equations

£ = —iwE — Wwe(®; f)
f = —i(Bf + £ )

o Further decoupling g = f + £”V: if W is such that
(B—rvw)¥ =9

then & = iBg + O(|¢|"|f| + |¢[*~*)
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A model problem

Dissipation

@ Define
RF:=lim (B—wv=+ie) ', V=R ¢

v
e—0t

@ then W(x) ~ (x)~1. Plug in the equation for &:

€ = —iwé —i[67 (B RED)E+ O(E" (i g)])

@ Regularization of the resolvent
R, =(B—vw—i0)"'=PV(B - ww) — itd(B — vw) .
implies (®; R, ®) = a—ib, b>0
o { = —iwt —ial¢? 1 — B¢ e +hot,
o SIEP=-2beP =l e 12

@ Use normal form to reduce to the model problem.
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Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

e Symplectic manifold: (M,w), J Poisson tensor

e Symmetry group: (g, u) — eAu, generated by
1
P(u) = §<u;Au> ,
e Invariant Hamiltonian: H, s.t. H(u) = H(e%Au),

@ Reduced system: S, :={ue M : P(u) = p} and

My =8,/ =, (u~u = u =e)

Explicit construction: see the blackboard!
Q:=i*w,and H, . =i"H=Ho|.

Ground state, 7, minimum of H,!



Reduction to a fixed point

Difficulty

Only continuous group actions:
u(.) — u(. — q), generated by O;u = —0yu.
(1) Does reduction theory holds, and in particular

o Is the reduced manifold a manifold?
o Can one define the reduced system?

(2) Canonical coordinates are needed: is it possible to prove Darboux
theorem?

(3) develop transformation theory with unbounded generators

(4) Dispersive estimates: do Strichartz estimates persist under
unbounded perturbation?
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Xy := JV H Hamiltonian vector field
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Marsden-Weinstein reduction

Framework

@ Phase space:

H*, k € Z Scale of Hilbert spaces, (.;.) scalar prod of H°
J: H* — H*=9 Poisson tensor

E:=J7 w(Ui, Us) := (EUs; Un)

Xn := JV H Hamiltonian vector field

o The system: H :=P%(¢) + Hp(u);

PO(¢) = % (A%u; u),

. 1 .
e Symmetries: P/(u) := 5 <Afu; u>, j=1..nm
o Linear assumptions A* : HK — Hk=% dy > d,j=1,...,n
JAH generate a flow: eA" 1 H® — H>™, 1, =0,...,n.

o Nonlinear assumption 3ko: Hp € C®(H* R)
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Marsden-Weinstein reduction

Ground state and decomposition of the space

@ Ground states:

A%, + V Hp (1)) Z)\ )Ain, =0

@ Assumptions:
(1) R" D> 13 p+—mn, € H® is smooth.
Normalization condition P/(,) = p/.
(2) U,es {mp} is isotropic

@ Soliton manifold: 7 := UeijJAjﬁp
a.p
e Natural decomposition: H® = T, HO T, T ® T,‘,‘;T
with T7T = {U : w(U;X) —0 , VX eT,T}
Projection: H> U MyU € T)7T with

0 0
MpU = U — (Anp; U) a”"+< 90 U A - ()
J
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Marsden-Weinstein reduction

Explicit construction of the reduced system

Fix pg € 1.

Level surface of P: Sp, 1= {u - Pi(u) = pf Vj} 3 Npy
Local model: VK := My HE ~ HkN T;]‘;OT.
Construct VK 3 ¢+ p(¢) s.t.

u =) + Npe)¢ € Spy -

Reduced space: The map VXK 3 ¢+ i(¢) := Np(e) + Mp(e)@ is a
coordinate system for the reduced space.

Reduced Hamiltonian

Problem € does not vary smoothly.
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Almost smooth maps and the Darboux theorem

The Darboux theorem

Qy(®;9) = (E(9)®:®) ,  E(¢) = E+ 0(¢7) .

Darboux theorem

There exists a map of the form
F(p) = eZ 9N (64 S(NV,9)), N =Pi(¢)), (2
with the following properties
1. g :R"x V™ =R

2. §:R" x Y=°° — V*° is smoothing.
3. F*Q = Q.

The function equAj¢> is only continuous in g. Not differentiable!
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Almost smooth maps

e Smoothing maps: S:R" x V™ - S(N, ¢) € V> or R.

@ Almost smooth maps: A map of the form
F(p) = e2i 9N (4 1 S(N, $)) with smoothing g; and S is said
to be almost smooth.

@ Recovering smoothness:

If H is symmetric, namely H(e%# u) = H(u), then there exists a

smoothing S: 5
H(F(9)) = H(o + S(N, ¢))
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Almost smooth maps

@ Hamiltonian Flows: Let x be a smoothing Hamiltonian with a zero
of second order at ¢ = 0, then

Xy = S(N,¢) + w;(N, ¢) JA ¢

with smoothing w; and S.

The corresponding time 1 flow is well defined in a neighbourhood of the
origin and is an almost smooth map.
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Almost smooth maps and the Darboux theorem

Linearization of the Hamiltonian

@ [he Hamiltonian H = Hig + Hi1 + Hp,
1 .
Hio(6) = P%(6) + 5 dQHP(npo)(¢ @) — Aj(po) P ()

Hn(¢) = Hp(Mpy—n: ¢+ S(N, ¢))
@ Assumption There exist coordinates such that
K -
Hio =Y wilg? + (F; Bf)
I=1

(In NLS it follows from the assumptions on the spectrum of L)
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Perturbation theo
Normal form.

@ Definition: Normal form A function Z(N, ¢) is in normal form at
order r, if the following holds

lul+ivl 7

{W'(N_V)¢O&|N|+|V|§f}:>w M,0) =0
Q& 1 d LMH_MZ M,0) =0
. — < — — =
(o =) <R il < -1} = o S E (0
lul+lvl 7

{—w~(u—u)>Q&|u\+|u\§r—l}:>d?W(M,O):O
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Normal form.

@ Definition: Normal form A function Z(N, ¢) is in normal form at
order r, if the following holds

0& <r}= LMHIV‘Z M,0)=0

@ (n=w) £ 0 & lul 4] < 1} = G (M,0) =

Q& 1} =d LMHMZ M,0) =0

. — < — = =
@ (n=v) < Q&+ < r = 1) = & G2 (M,0)

Q& 1} = d otz M,0)=0

- * - < - e =
0 (=) > Q& a4 I < r = 1) = & 2 (M,0)

For any r > 2 there exists an almost smooth canonical transformation T,
such that H o Ty is in normal form at order r.




Perturbation thec

THE END

THANK YOU
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