Asymptotic Stability of Solitons.

D. Bambusi ${ }^{1}$
${ }^{1}$ Dipartimento di Matematica "F.Enriques" - Università degli studi di Milano

Ravello, May 23, 2011

Outline

(1) The Problem
(2) A model problem

3 Reduction to a fixed point

4 Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

NLS

- Model problem

$$
\begin{array}{r}
\mathrm{i} \psi_{t}=-\Delta \psi-\beta^{\prime}\left(|\psi|^{2}\right) \psi, \quad x \in \mathbb{R}^{3}, \\
\beta^{\prime}(0)=0, \quad\left|\beta^{(k)}(u)\right| \leq C_{k}\langle u\rangle^{\tilde{p}-k}, \quad \tilde{p} \leq 1+\frac{2}{d-2}, \quad d=3
\end{array}
$$

NLS

- Model problem

$$
\begin{array}{r}
\mathrm{i} \psi_{t}=-\Delta \psi-\beta^{\prime}\left(|\psi|^{2}\right) \psi, \quad x \in \mathbb{R}^{3} \\
\beta^{\prime}(0)=0, \quad\left|\beta^{(k)}(u)\right| \leq C_{k}\langle u\rangle^{\tilde{p}-k}, \quad \tilde{p} \leq 1+\frac{2}{d-2}, \quad d=3
\end{array}
$$

- Symmetries:
- translations $\left(\psi, q_{i}\right) \mapsto \psi\left(.-q_{i} \mathbf{e}^{i}\right)$, generated by $-\mathrm{i} \partial_{x_{j}}$
- Gauge $\left(\psi, q_{4}\right) \mapsto e^{\mathrm{i} q_{4}} \psi, \quad$ generated by i .

NLS

- Model problem

$$
\begin{array}{r}
\mathrm{i} \psi_{t}=-\Delta \psi-\beta^{\prime}\left(|\psi|^{2}\right) \psi, \quad x \in \mathbb{R}^{3} \\
\beta^{\prime}(0)=0, \quad\left|\beta^{(k)}(u)\right| \leq C_{k}\langle u\rangle^{\tilde{p}-k}, \quad \tilde{p} \leq 1+\frac{2}{d-2}, \quad d=3
\end{array}
$$

- Symmetries:
- translations $\left(\psi, q_{i}\right) \mapsto \psi\left(.-q_{i} \mathbf{e}^{i}\right)$, generated by $-\mathrm{i} \partial_{x_{j}}$
- Gauge $\left(\psi, q_{4}\right) \mapsto e^{\mathrm{i} q_{4}} \psi, \quad$ generated by i .
- Conservation laws:

$$
\begin{aligned}
\mathcal{P}^{j}(\psi) & :=\int \frac{\psi \partial_{j} \bar{\psi}-\bar{\psi} \partial_{j} \psi}{2} \\
\mathcal{P}^{4}(\psi) & :=\int|\psi|^{2}
\end{aligned}
$$

Ground States

- Look for special solutions

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)} \eta_{p}(x-\mathbf{y}(t)), \quad y_{j}(t)=\lambda_{j} t+q_{j}, \quad j=1, \ldots, n
$$

- η_{p} is a critical point of

restricted to

$$
\mathcal{S}_{p}:=\left\{\psi: \mathcal{P}^{j}(\psi)=p^{j}, j=1, \ldots, 4\right\}
$$

- Ground state. A ground state is the minimum.

Ground States

- Look for special solutions

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)} \eta_{p}(x-\mathbf{y}(t)), \quad y_{j}(t)=\lambda_{j} t+q_{j}, \quad j=1, \ldots, n
$$

- η_{p} is a critical point of

$$
H:=\int|\nabla \psi|^{2}-\beta\left(|\psi|^{2}\right)
$$

restricted to

$$
\mathcal{S}_{p}:=\left\{\psi: \mathcal{P}^{j}(\psi)=p^{j}, j=1, \ldots, 4\right\}
$$

Ground States

- Look for special solutions

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)} \eta_{p}(x-\mathbf{y}(t)), \quad y_{j}(t)=\lambda_{j} t+q_{j}, \quad j=1, \ldots, n
$$

- η_{p} is a critical point of

$$
H:=\int|\nabla \psi|^{2}-\beta\left(|\psi|^{2}\right)
$$

restricted to

$$
\mathcal{S}_{p}:=\left\{\psi: \mathcal{P}^{j}(\psi)=p^{j}, j=1, \ldots, 4\right\}
$$

- Ground state. A ground state is the minimum.

Assumptions

Assumptions

- Linearize: insert

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)}\left[\eta_{p}(x-\mathbf{y}(t))+\chi(x-\mathbf{y}(t))\right]
$$

linearize in χ. Denote by

$$
\dot{\chi}=L \chi
$$

the linearized equations.

- For some large enough r, one has $\omega \cdot k \neq \Omega, \forall k \in \mathbb{Z}^{k},|k| \leq r$
(probably generic: work in progress)

Assumptions

Assumptions

- Linearize: insert

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)}\left[\eta_{p}(x-\mathbf{y}(t))+\chi(x-\mathbf{y}(t))\right]
$$

linearize in χ. Denote by

$$
\dot{\chi}=L \chi
$$

the linearized equations.

- Linear assumptions
- $\sigma(L)=\left\{0, \pm \mathrm{i} \omega_{1}, \ldots, \pm \mathrm{i} \omega_{K}\right\} \bigcup \pm \mathrm{i}[\Omega,+\infty)$. Minimal multilicity of 0 , namely 8 .
$\omega_{1} \leq \omega_{2}, \ldots, \leq \omega_{K}<\Omega$
- For some large enough r, one has $\omega \cdot k \neq \Omega, \forall k \in \mathbb{Z}^{k},|k| \leq r$
- Fermi golden rule (probably generic: work in progress)

Assumptions

Assumptions

- Linearize: insert

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)}\left[\eta_{p}(x-\mathbf{y}(t))+\chi(x-\mathbf{y}(t))\right]
$$

linearize in χ. Denote by

$$
\dot{\chi}=L \chi
$$

the linearized equations.

- Linear assumptions
- $\sigma(L)=\left\{0, \pm \mathrm{i} \omega_{1}, \ldots, \pm \mathrm{i} \omega_{K}\right\} \bigcup \pm \mathrm{i}[\Omega,+\infty)$. Minimal multilicity of 0 , namely 8 .
$\omega_{1} \leq \omega_{2}, \ldots, \leq \omega_{K}<\Omega$
- For some large enough r, one has $\omega \cdot k \neq \Omega, \forall k \in \mathbb{Z}^{K},|k| \leq r$

Assumptions

Assumptions

- Linearize: insert

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)}\left[\eta_{p}(x-\mathbf{y}(t))+\chi(x-\mathbf{y}(t))\right]
$$

linearize in χ. Denote by

$$
\dot{\chi}=L \chi
$$

the linearized equations.

- Linear assumptions
- $\sigma(L)=\left\{0, \pm \mathrm{i} \omega_{1}, \ldots, \pm \mathrm{i} \omega_{K}\right\} \bigcup \pm \mathrm{i}[\Omega,+\infty)$. Minimal multilicity of 0 , namely 8 .

$$
\omega_{1} \leq \omega_{2}, \ldots, \leq \omega_{K}<\Omega
$$

- For some large enough r, one has $\omega \cdot k \neq \Omega, \forall k \in \mathbb{Z}^{K},|k| \leq r$
- Fermi golden rule (probably generic: work in progress)

Assumptions

Assumptions

- Linearize: insert

$$
\psi(x, t)=e^{-\mathrm{i} y_{4}(t)}\left[\eta_{p}(x-\mathbf{y}(t))+\chi(x-\mathbf{y}(t))\right]
$$

linearize in χ. Denote by

$$
\dot{\chi}=L \chi
$$

the linearized equations.

- Linear assumptions
- $\sigma(L)=\left\{0, \pm \mathrm{i} \omega_{1}, \ldots, \pm \mathrm{i} \omega_{K}\right\} \bigcup \pm \mathrm{i}[\Omega,+\infty)$. Minimal multilicity of 0 , namely 8 .

$$
\omega_{1} \leq \omega_{2}, \ldots, \leq \omega_{K}<\Omega
$$

- For some large enough r, one has $\omega \cdot k \neq \Omega, \forall k \in \mathbb{Z}^{K},|k| \leq r$
- Fermi golden rule (probably generic: work in progress)
- Initial datum $\inf _{p, q}\left\|\psi_{0}-e^{-i q_{4}} \eta_{p}\left(.-q_{i} \mathbf{e}^{j}\right)\right\|_{H^{1}} \ll 1$

Theorem

Theorem

There exist functions $p(t) q(t) y(t)$ and a state ψ_{∞} such that, one can decompose the solution as

$$
\psi(x, t)=e^{\left.-\mathrm{i} q_{4}(t)\right)} \eta_{p(t)}(x-\mathbf{q}(t))+e^{\left.-\mathrm{i} y_{4}(t)\right)} \chi(x-\mathbf{y}(t), t)
$$

one has

$$
\lim _{t \rightarrow+\infty}\left\|\chi(t)-e^{\mathrm{i} t \Delta} \psi_{\infty}\right\|_{H^{1}}=0
$$

The following limits exist

$$
\lim _{t \rightarrow \infty} \dot{y}(t), \quad \lim _{t \rightarrow \infty} \dot{q}(t)
$$

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
potential), Perelman (no eigenvalues, energy space).
the generators of the symmetries are unbounded.
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Key difficulty: the generators of the symmetries are unbounded.
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Outline

(2) A model problem
(3) Reduction to a fixed point

4 Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

Model probelm

- The equation: $i \psi_{t}=-\Delta \psi+V \psi+\frac{\delta H_{P}}{\delta \psi(x)}$. $\mathcal{H}_{0}:=-\Delta+V$ with one eigenvalue $\mathcal{H}_{0} \mathbf{e}=\omega \mathbf{e}$
- Spectral coordinates $\psi=\xi \mathbf{e}+f$: $H_{0}=\langle\bar{f} ; B f\rangle+\omega|\xi|^{2}$

- Equations

- Further decoupling $g=f+\xi^{\nu} \Psi$: if Ψ is such that
\square

Model probelm

- The equation: $i \psi_{t}=-\Delta \psi+V \psi+\frac{\delta H_{p}}{\delta \psi(x)}$. $\mathcal{H}_{0}:=-\Delta+V$ with one eigenvalue $\mathcal{H}_{0} \mathbf{e}=\omega \mathbf{e}$
- Spectral coordinates $\psi=\xi \mathbf{e}+f$:

$$
H_{0}=\langle\bar{f} ; B f\rangle+\omega|\xi|^{2}
$$

- Model nonlinearity

$$
H_{P}:=\bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle+\xi^{\nu}\langle\Phi ; \bar{f}\rangle
$$

- Equations

$$
\begin{array}{r}
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i} \nu \bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle \\
\dot{f}=-\mathrm{i}\left(B f+\xi^{\nu} \Phi\right)
\end{array}
$$

- Further decoupling $g=f+\xi^{\nu} \Psi$: if ψ is such that

Model probelm

- The equation: $i \psi_{t}=-\Delta \psi+V \psi+\frac{\delta H_{P}}{\delta \psi(x)}$. $\mathcal{H}_{0}:=-\Delta+V$ with one eigenvalue $\mathcal{H}_{0} \mathbf{e}=\omega \mathbf{e}$
- Spectral coordinates $\psi=\xi \mathbf{e}+f$:

$$
H_{0}=\langle\bar{f} ; B f\rangle+\omega|\xi|^{2}
$$

- Model nonlinearity

$$
H_{P}:=\bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle+\xi^{\nu}\langle\Phi ; \bar{f}\rangle
$$

- Equations

$$
\begin{array}{r}
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i} \nu \bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle \\
\dot{f}=-\mathrm{i}\left(B f+\xi^{\nu} \Phi\right)
\end{array}
$$

- Further decoupling $g=f+\xi^{\nu} \Psi$: if Ψ is such that

$$
(B-\nu \omega) \Psi=\Phi
$$

then $\dot{g}=\mathrm{i} B g+O\left(|\xi|^{\nu}|f|+|\xi|^{2 \nu-1}\right)$

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu}|\langle\Phi ; g\rangle|\right)
$$

- Regularization of the resolvent

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu}|\langle\Phi ; g\rangle|\right)
$$

- Regularization of the resolvent

$$
R_{\nu}^{-} \equiv(B-\nu \omega-i 0)^{-1}=P V(B-\nu \omega)-i \pi \delta(B-\nu \omega) .
$$

implies $\left\langle\bar{\Phi} ; R_{\nu}^{-} \Phi\right\rangle=a-\mathrm{i} b, b \geq 0$

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu}|\langle\Phi ; g\rangle|\right)
$$

- Regularization of the resolvent

$$
R_{\nu}^{-} \equiv(B-\nu \omega-i 0)^{-1}=P V(B-\nu \omega)-i \pi \delta(B-\nu \omega)
$$

implies $\left\langle\bar{\Phi} ; R_{\nu}^{-} \Phi\right\rangle=a-\mathrm{i} b, b \geq 0$

- $\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i} a|\xi|^{2 \nu-1} \xi-b|\xi|^{2 \nu-1} \xi+$ h.o.t.
- $\frac{d}{d t}|\xi|^{2}=-2 b|\xi|^{2 \nu} \quad \Longrightarrow|\xi|^{\nu} \in L_{t}^{2}$
- Use normal form to reduce to the model problem.

Outline

(1) The Problem
(2) A model problem
(3) Reduction to a fixed point

4 Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

- Explicit construction: see the blackboard!

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

- Explicit construction: see the blackboard!
- $\Omega:=i^{*} \omega$, and $H_{r}:=i^{*} H=H \circ i$.
- Ground state, η_{p} : minimum of H_{r} !

Difficulty

Only continuous group actions:
$u(.) \mapsto u(.-q)$, generated by $\partial_{t} u=-\partial_{x} u$.
(1) Does reduction theory holds, and in particular

- Is the reduced manifold a manifold?
- Can one define the reduced system?
(2) Canonical coordinates are needed: is it possible to prove Darboux theorem?
(3) develop transformation theory with unbounded generators
(4) Dispersive estimates: do Strichartz estimates persist under unbounded perturbation?

Outline

(1) The Problem

(2) A model problem
(3) Reduction to a fixed point
(4) Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- J: $H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- $J: H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field
- The system: $H:=\mathcal{P}^{0}(\phi)+H_{P}(u)$;
$\mathcal{P}^{0}(\phi):=\frac{1}{2}\left\langle A^{0} u ; u\right\rangle$,

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- $J: H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field
- The system: $H:=\mathcal{P}^{0}(\phi)+H_{P}(u)$; $\mathcal{P}^{0}(\phi):=\frac{1}{2}\left\langle A^{0} u ; u\right\rangle$,
- Symmetries: $\mathcal{P}^{j}(u):=\frac{1}{2}\left\langle A^{j} u ; u\right\rangle, j=1, \ldots, n$;

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- J: $H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field
- The system: $H:=\mathcal{P}^{0}(\phi)+H_{P}(u)$; $\mathcal{P}^{0}(\phi):=\frac{1}{2}\left\langle A^{0} u ; u\right\rangle$,
- Symmetries: $\mathcal{P}^{j}(u):=\frac{1}{2}\left\langle A^{j} u ; u\right\rangle, j=1, \ldots, n$;
- Linear assumptions $A^{\mu}: H^{k} \rightarrow H^{k-d_{\mu}}, d_{0} \geq d_{j}, j=1, \ldots, n$ $J A^{\mu}$ generate a flow: $e^{t J A^{\mu}}: H^{\infty} \mapsto H^{\infty}, \mu=0, \ldots, n$.

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- $J: H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field
- The system: $H:=\mathcal{P}^{0}(\phi)+H_{P}(u)$; $\mathcal{P}^{0}(\phi):=\frac{1}{2}\left\langle A^{0} u ; u\right\rangle$,
- Symmetries: $\mathcal{P}^{j}(u):=\frac{1}{2}\left\langle A^{j} u ; u\right\rangle, j=1, \ldots, n$;
- Linear assumptions $A^{\mu}: H^{k} \rightarrow H^{k-d_{\mu}}, d_{0} \geq d_{j}, j=1, \ldots, n$ $J A^{\mu}$ generate a flow: $e^{t J A^{\mu}}: H^{\infty} \mapsto H^{\infty}, \mu=0, \ldots, n$.
- Nonlinear assumption $\exists k_{0}: H_{P} \in C^{\infty}\left(H^{k_{0}}, \mathbb{R}\right)$

Ground state and decomposition of the space

- Ground states:

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j}(p) A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{D}^{n} \supset I \supset p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Natural decomposition: $H^{0} \equiv T_{\eta_{p}} H^{0} \simeq T_{\eta_{p}} \mathcal{T} \oplus T_{\eta_{p}}^{\omega} \mathcal{T}$
with $T_{\eta_{r}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{o}} \mathcal{T}\right\}$
Projection: $H \ni U \mapsto \Pi_{p} U \in T_{\eta_{p}}^{\omega} \mathcal{T}$ with

$$
\begin{equation*}
\Pi_{p} U:=U-\left\langle A_{j} \eta_{p} ; U\right\rangle \frac{\partial \eta_{p}}{\partial p_{j}}+\left\langle E \frac{\partial \eta_{p}}{\partial p_{j}} ; U\right\rangle J A_{j} \eta_{p} \tag{1}
\end{equation*}
$$

Ground state and decomposition of the space

- Ground states:

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j}(p) A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset / \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

Ground state and decomposition of the space

- Ground states:

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j}(p) A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset I \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Soliton manifold: $\mathcal{T}:=\bigcup_{q, p} e^{\sum q_{j} J A^{j}} \eta_{p}$,

Ground state and decomposition of the space

- Ground states:

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j}(p) A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset / \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Soliton manifold: $\mathcal{T}:=\bigcup_{q, p} e^{\sum q_{j} J A^{j}} \eta_{p}$,
- Natural decomposition: $H^{0} \equiv T_{\eta_{p}} H^{0} \simeq T_{\eta_{p}} \mathcal{T} \oplus T_{\eta_{p}}^{\omega} \mathcal{T}$ with $T_{\eta_{p}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{p}} \mathcal{T}\right\}$

Ground state and decomposition of the space

- Ground states:

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j}(p) A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset / \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Soliton manifold: $\mathcal{T}:=\bigcup_{q, p} e^{\sum q_{j} J A^{j}} \eta_{p}$,
- Natural decomposition: $H^{0} \equiv T_{\eta_{p}} H^{0} \simeq T_{\eta_{p}} \mathcal{T} \oplus T_{\eta_{p}}^{\omega} \mathcal{T}$ with $T_{\eta_{p}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{p}} \mathcal{T}\right\}$ Projection: $H \ni U \mapsto \Pi_{p} U \in T_{\eta_{p}}^{\omega} \mathcal{T}$ with

$$
\begin{equation*}
\Pi_{p} U:=U-\left\langle A_{j} \eta_{p} ; U\right\rangle \frac{\partial \eta_{p}}{\partial p_{j}}+\left\langle E \frac{\partial \eta_{p}}{\partial p_{j}} ; U\right\rangle J A_{j} \eta_{p} . \tag{1}
\end{equation*}
$$

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in S_{p_{0}}
$$

- Reduced space: The map $\mathcal{V}^{k} \ni \phi \mapsto i(\phi):=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi$ is a coordinate system for the reduced space.
- Problem Ω does not vary smoothly.

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}}
$$

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}} .
$$

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}}
$$

- Reduced space: The map $\mathcal{V}^{k} \ni \phi \mapsto i(\phi):=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi$ is a coordinate system for the reduced space.
- Problem Ω does not vary smoothly.

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}} .
$$

- Reduced space: The map $\mathcal{V}^{k} \ni \phi \mapsto i(\phi):=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi$ is a coordinate system for the reduced space.
- Reduced Hamiltonian

$$
H_{r}:=i^{*} H, \quad \Omega:=i^{*} \omega .
$$

Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Level surface of $\mathcal{P}: \mathcal{S}_{p_{0}}:=\left\{u: \mathcal{P}^{j}(u)=p_{0}^{j}, \forall j\right\} \ni \eta_{p_{0}}$
- Local model: $\mathcal{V}^{k}:=\Pi_{p_{0}} H^{k} \simeq H^{k} \cap T_{\eta_{p_{0}}}^{\omega} \mathcal{T}$.
- Construct $\mathcal{V}^{k} \ni \phi \mapsto p(\phi)$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}}
$$

- Reduced space: The map $\mathcal{V}^{k} \ni \phi \mapsto i(\phi):=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi$ is a coordinate system for the reduced space.
- Reduced Hamiltonian

$$
H_{r}:=i^{*} H, \quad \Omega:=i^{*} \omega
$$

- Problem Ω does not vary smoothly.

Outline

(1) The Problem

(2) A model problem
(3) Reduction to a fixed point
(4) Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

The Darboux theorem

$$
\Omega_{\phi}(\Phi ; \Phi)=\langle\mathcal{E}(\phi) \Phi ; \Phi\rangle, \quad \mathcal{E}(\phi)=E+O\left(\phi^{2}\right) .
$$

Darboux theorem

There exists a man of the form

$$
\begin{equation*}
\mathcal{F}(\phi)=e^{\sum_{j} q_{j}(N, \phi) J A^{j}}(\phi+S(N, \phi)), \quad N^{j}:=\mathcal{P}^{j}\left(\phi^{\prime}\right), \tag{2}
\end{equation*}
$$

with the following properties
\square
2. $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \rightarrow \mathcal{V}^{\infty}$ is smoothing.
3. $\mathcal{F}^{*} \Omega=\Omega_{0}$.

The function $e^{q_{j} \lambda^{\prime i}} \phi$ is only continuous in q. Not differentiable!

The Darboux theorem

$$
\Omega_{\phi}(\Phi ; \Phi)=\langle\mathcal{E}(\phi) \Phi ; \Phi\rangle, \quad \mathcal{E}(\phi)=E+O\left(\phi^{2}\right) .
$$

Darboux theorem

There exists a map of the form

$$
\begin{equation*}
\mathcal{F}(\phi)=e^{\sum_{j} q_{j}(N, \phi) J A^{j}}(\phi+S(N, \phi)), \quad N^{j}:=\mathcal{P}^{j}\left(\phi^{\prime}\right), \tag{2}
\end{equation*}
$$

with the following properties

1. $q_{i}: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \rightarrow \mathbb{R}$
2. $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \rightarrow \mathcal{V}^{\infty}$ is smoothing.
3. $\mathcal{F}^{*} \Omega=\Omega_{0}$.

The Darboux theorem

$$
\Omega_{\phi}(\Phi ; \Phi)=\langle\mathcal{E}(\phi) \Phi ; \Phi\rangle, \quad \mathcal{E}(\phi)=E+O\left(\phi^{2}\right) .
$$

Darboux theorem

There exists a map of the form

$$
\begin{equation*}
\mathcal{F}(\phi)=e^{\sum_{j} q_{j}(N, \phi) J A^{j}}(\phi+S(N, \phi)), \quad N^{j}:=\mathcal{P}^{j}\left(\phi^{\prime}\right) \tag{2}
\end{equation*}
$$

with the following properties

1. $q_{i}: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \rightarrow \mathbb{R}$
2. $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \rightarrow \mathcal{V}^{\infty}$ is smoothing.
3. $\mathcal{F}^{*} \Omega=\Omega_{0}$.

The function $e^{q_{j} J A^{j}} \phi$ is only continuous in q. Not differentiable!

Almost smooth maps

- Smoothing maps: $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \mapsto S(N, \phi) \in \mathcal{V}^{\infty}$ or \mathbb{R}.

```
- Almost smooth maps: A map of the form
    \mathcal{F}(\phi)=\mp@subsup{e}{}{\mp@subsup{\sum}{j}{}\mp@subsup{q}{j}{}(N,\phi)JA}}(\phi+S(N,\phi))\mathrm{ with smoothing }\mp@subsup{q}{j}{}\mathrm{ and }S\mathrm{ is said
    to be almost smooth.
```


Lemma

If H is symmetric, namely $H\left(e^{q_{J} J^{A}} u\right)=H(u)$, then there exists a smoothing \tilde{S} :

$$
H(\mathcal{F}(\phi))=H(\phi+\tilde{S}(N, \phi))
$$

Almost smooth maps

- Smoothing maps: $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \mapsto S(N, \phi) \in \mathcal{V}^{\infty}$ or \mathbb{R}.
- Almost smooth maps: A map of the form $\mathcal{F}(\phi)=e^{\sum_{j} q_{j}(N, \phi) J A^{i}}(\phi+S(N, \phi))$ with smoothing q_{j} and S is said to be almost smooth.

Lemma

If H is symmetric, namely $H\left(e^{q J J A} u\right)=H(u)$, then there exists a smoothing \tilde{S} :

Almost smooth maps

- Smoothing maps: $S: \mathbb{R}^{n} \times \mathcal{V}^{-\infty} \mapsto S(N, \phi) \in \mathcal{V}^{\infty}$ or \mathbb{R}.
- Almost smooth maps: A map of the form
$\mathcal{F}(\phi)=e^{\sum_{j} q_{j}(N, \phi) J A^{i}}(\phi+S(N, \phi))$ with smoothing q_{j} and S is said to be almost smooth.
- Recovering smoothness:

Lemma

If H is symmetric, namely $H\left(e^{q_{j} J A^{j}} u\right)=H(u)$, then there exists a smoothing \tilde{S} :

$$
H(\mathcal{F}(\phi))=H(\phi+\tilde{S}(N, \phi))
$$

Almost smooth maps

- Hamiltonian Flows: Let χ be a smoothing Hamiltonian with a zero of second order at $\phi=0$, then

$$
X_{\chi}=S(N, \phi)+w_{j}(N, \phi) J A^{j} \phi
$$

with smoothing w_{j} and S.
Lemma
The corresponding time 1 flow is well defined in a neighbourhood of the origin and is an almost smooth map.

Almost smooth maps

- Hamiltonian Flows: Let χ be a smoothing Hamiltonian with a zero of second order at $\phi=0$, then

$$
X_{\chi}=S(N, \phi)+w_{j}(N, \phi) J A^{j} \phi
$$

with smoothing w_{j} and S.

Lemma

The corresponding time 1 flow is well defined in a neighbourhood of the origin and is an almost smooth map.

Linearization of the Hamiltonian

- The Hamiltonian $H=H_{L 0}+H_{L 1}+H_{N}$,

$$
\begin{gathered}
H_{L 0}(\phi)=\mathcal{P}^{0}(\phi)+\frac{1}{2} d^{2} H_{P}\left(\eta_{p_{0}}\right)(\phi, \phi)-\lambda_{j}\left(p_{0}\right) \mathcal{P}^{j}(\phi) \\
H_{N}(\phi)=H_{P}^{3}\left(\eta_{p_{0}-N} ; \phi+S(N, \phi)\right)
\end{gathered}
$$

- Assumption There exist coordinates such that

Linearization of the Hamiltonian

- The Hamiltonian $H=H_{L 0}+H_{L 1}+H_{N}$,

$$
\begin{gathered}
H_{L 0}(\phi)=\mathcal{P}^{0}(\phi)+\frac{1}{2} d^{2} H_{P}\left(\eta_{P_{0}}\right)(\phi, \phi)-\lambda_{j}\left(p_{0}\right) \mathcal{P}^{j}(\phi) \\
H_{N}(\phi)=H_{P}^{3}\left(\eta_{p_{0}-N} ; \phi+S(N, \phi)\right)
\end{gathered}
$$

- Assumption There exist coordinates such that

$$
H_{L 0}=\sum_{l=1}^{K} \omega_{j}\left|\xi_{j}\right|^{2}+\langle\bar{f} ; B f\rangle
$$

Linearization of the Hamiltonian

- The Hamiltonian $H=H_{L 0}+H_{L 1}+H_{N}$,

$$
\begin{gathered}
H_{L 0}(\phi)=\mathcal{P}^{0}(\phi)+\frac{1}{2} d^{2} H_{P}\left(\eta_{p_{0}}\right)(\phi, \phi)-\lambda_{j}\left(p_{0}\right) \mathcal{P}^{j}(\phi) \\
H_{N}(\phi)=H_{P}^{3}\left(\eta_{p_{0}-N} ; \phi+S(N, \phi)\right)
\end{gathered}
$$

- Assumption There exist coordinates such that

$$
H_{L 0}=\sum_{l=1}^{K} \omega_{j}\left|\xi_{j}\right|^{2}+\langle\bar{f} ; B f\rangle
$$

(In NLS it follows from the assumptions on the spectrum of L)

Outline

(1) The Problem

(2) A model problem
(3) Reduction to a fixed point
(4) Marsden-Weinstein reduction
(5) Almost smooth maps and the Darboux theorem
(6) Perturbation theory

Normal form.

- Definition: Normal form A function $Z(N, \phi)$ is in normal form at order r, if the following holds

$$
\begin{array}{r}
\{\omega \cdot(\mu-\nu) \neq 0 \&|\mu|+|\nu| \leq r\} \Longrightarrow \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{\omega \cdot(\mu-\nu)<\Omega \&|\mu|+|\nu| \leq r-1\} \Longrightarrow d_{f} \frac{\partial^{|\mu|+|\nu|}}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{-\omega \cdot(\mu-\nu)>\Omega \&|\mu|+|\nu| \leq r-1\} \Longrightarrow d_{\bar{f}} \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0
\end{array}
$$

Normal form.

- Definition: Normal form A function $Z(N, \phi)$ is in normal form at order r, if the following holds

$$
\begin{array}{r}
\{\omega \cdot(\mu-\nu) \neq 0 \&|\mu|+|\nu| \leq r\} \Longrightarrow \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{\omega \cdot(\mu-\nu)<\Omega \&|\mu|+|\nu| \leq r-1\} \Longrightarrow d_{f} \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{-\omega \cdot(\mu-\nu)>\Omega \&|\mu|+|\nu| \leq r-1\} \Longrightarrow d_{\bar{f}}^{-} \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0
\end{array}
$$

Theorem

For any $r \geq 2$ there exists an almost smooth canonical transformation T_{r} such that $H \circ T_{N}$ is in normal form at order r.

THE END

THANK YOU

