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NLS

Model problem

iψt = −∆ψ − β′(|ψ|2)ψ , x ∈ R3 ,

β′(0) = 0 ,
∣∣∣β(k)(u)

∣∣∣ ≤ Ck〈u〉p̃−k , p̃ ≤ 1 +
2

d − 2
, d = 3

Symmetries:

translations (ψ, qi ) 7→ ψ(.− qie
i ), generated by −i∂xj

Gauge (ψ, q4) 7→ eiq4ψ, generated by i.

Conservation laws:

P j(ψ) :=

∫
ψ∂j ψ̄ − ψ̄∂jψ

2

P4(ψ) :=

∫
|ψ|2



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

NLS

Model problem

iψt = −∆ψ − β′(|ψ|2)ψ , x ∈ R3 ,

β′(0) = 0 ,
∣∣∣β(k)(u)

∣∣∣ ≤ Ck〈u〉p̃−k , p̃ ≤ 1 +
2

d − 2
, d = 3

Symmetries:

translations (ψ, qi ) 7→ ψ(.− qie
i ), generated by −i∂xj

Gauge (ψ, q4) 7→ eiq4ψ, generated by i.

Conservation laws:

P j(ψ) :=

∫
ψ∂j ψ̄ − ψ̄∂jψ

2

P4(ψ) :=

∫
|ψ|2



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

NLS

Model problem

iψt = −∆ψ − β′(|ψ|2)ψ , x ∈ R3 ,

β′(0) = 0 ,
∣∣∣β(k)(u)

∣∣∣ ≤ Ck〈u〉p̃−k , p̃ ≤ 1 +
2

d − 2
, d = 3

Symmetries:

translations (ψ, qi ) 7→ ψ(.− qie
i ), generated by −i∂xj

Gauge (ψ, q4) 7→ eiq4ψ, generated by i.

Conservation laws:

P j(ψ) :=

∫
ψ∂j ψ̄ − ψ̄∂jψ

2

P4(ψ) :=

∫
|ψ|2



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Ground States

Look for special solutions

ψ(x , t) = e−iy4(t)ηp(x − y(t)) , yj(t) = λj t + qj , j = 1, ..., n

ηp is a critical point of

H :=

∫
|∇ψ|2 − β(|ψ|2)

restricted to

Sp :=
{
ψ : P j(ψ) = pj , j = 1, ..., 4

}
Ground state. A ground state is the minimum.
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Assumptions

Assumptions

Linearize: insert

ψ(x , t) = e−iy4(t) [ηp(x − y(t)) + χ(x − y(t))]

linearize in χ. Denote by
χ̇ = Lχ

the linearized equations.

Linear assumptions

σ(L) = {0,±iω1, ...,±iωK}
S
±i[Ω,+∞). Minimal multilicity of 0,

namely 8.
ω1 ≤ ω2, ...,≤ ωK < Ω
For some large enough r , one has ω · k 6= Ω, ∀k ∈ ZK , |k| ≤ r

Fermi golden rule (probably generic: work in progress)

Initial datum inf
p,q

∥∥ψ0 − e−iq4ηp(.− qie
j)
∥∥

H1 � 1
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Theorem

Theorem

There exist functions p(t) q(t) y(t) and a state ψ∞ such that, one can
decompose the solution as

ψ(x , t) = e−iq4(t))ηp(t)(x − q(t)) + e−iy4(t))χ(x − y(t), t) ,

one has

lim
t→+∞

∥∥χ(t)− eit∆ψ∞
∥∥

H1 = 0

The following limits exist

lim
t→∞

ẏ(t) , lim
t→∞

q̇(t)
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Comments

What’s new? Old results when the Floquet spectrum has at most 1
eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman,
Cuccagna, Perelman.

Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with
potential), Perelman (no eigenvalues, energy space).

Key difficulty: the generators of the symmetries are unbounded.

Development of reduction theory, Darboux theory and Normal form
theory with only continuous transformations.
Validity of Strichartz estimates for the relevant operators.
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Model probelm

The equation: iψt = −∆ψ + Vψ + δHP

δψ̄(x)
.

H0 := −∆ + V with one eigenvalue H0e = ωe

Spectral coordinates ψ = ξe + f :
H0 = 〈f̄ ; Bf 〉+ ω|ξ|2

Model nonlinearity

HP := ξ̄ν〈Φ̄; f 〉+ ξν〈Φ; f̄ 〉

Equations

ξ̇ = −iωξ − iνξ̄ν〈Φ̄; f 〉
ḟ = −i(Bf + ξνΦ)

Further decoupling g = f + ξνΨ: if Ψ is such that

(B − νω)Ψ = Φ

then ġ = iBg + O(|ξ|ν |f |+ |ξ|2ν−1)



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Model probelm

The equation: iψt = −∆ψ + Vψ + δHP

δψ̄(x)
.

H0 := −∆ + V with one eigenvalue H0e = ωe

Spectral coordinates ψ = ξe + f :
H0 = 〈f̄ ; Bf 〉+ ω|ξ|2

Model nonlinearity

HP := ξ̄ν〈Φ̄; f 〉+ ξν〈Φ; f̄ 〉

Equations

ξ̇ = −iωξ − iνξ̄ν〈Φ̄; f 〉
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Dissipation

Define
R∓ν := lim

ε→0+
(B − ων ± iε)−1

, Ψ = R−ν Φ

then Ψ(x) ∼ 〈x〉−1. Plug in the equation for ξ:

ξ̇ = −iωξ − i |ξ|2ν−1 〈Φ̄; R+
ν Φ〉ξ + O(ξν |〈Φ; g〉|)

Regularization of the resolvent

R−ν ≡ (B − νω − i0)−1 = PV (B − νω)− iπδ(B − νω) .

implies 〈Φ̄; R−ν Φ〉 = a− ib, b ≥ 0

ξ̇ = −iωξ − ia|ξ|2ν−1ξ − b|ξ|2ν−1ξ+h.o.t.

d

dt
|ξ|2 = −2b|ξ|2ν =⇒ |ξ|ν ∈ L2

t

Use normal form to reduce to the model problem.
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Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

Symplectic manifold: (M, ω), J Poisson tensor

Symmetry group: (q, u) 7→ eqJAu, generated by

P(u) :=
1

2
〈u; Au〉 ,

Invariant Hamiltonian: H, s.t. H(u) = H(eqJAu),

Reduced system: Sp := {u ∈M : P(u) = p} and

Mp := Sp/ ' ,
(
u ∼ u′ ⇐⇒ u′ = eqJAu

)
Explicit construction: see the blackboard!

Ω := i∗ω, and Hr := i∗H = H ◦ i .

Ground state, ηp: minimum of Hr !
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Difficulty

Only continuous group actions:
u(.) 7→ u(.− q), generated by ∂tu = −∂xu.

(1) Does reduction theory holds, and in particular

Is the reduced manifold a manifold?
Can one define the reduced system?

(2) Canonical coordinates are needed: is it possible to prove Darboux
theorem?

(3) develop transformation theory with unbounded generators

(4) Dispersive estimates: do Strichartz estimates persist under
unbounded perturbation?
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Framework

Phase space:

Hk , k ∈ Z Scale of Hilbert spaces, 〈.; .〉 scalar prod of H0

J : Hk 7→ Hk−d Poisson tensor
E := J−1, ω(U1,U2) := 〈EU1; U2〉
XH := J∇H Hamiltonian vector field

The system: H := P0(φ) + HP(u);

P0(φ) :=
1

2

〈
A0u; u

〉
,

Symmetries: P j(u) :=
1

2

〈
Aju; u

〉
, j = 1, ..., n;

Linear assumptions Aµ : Hk → Hk−dµ , d0 ≥ dj , j = 1, ..., n
JAµ generate a flow: etJAµ

: H∞ 7→ H∞, µ = 0, ..., n.

Nonlinear assumption ∃k0: HP ∈ C∞(Hk0 ,R)
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Ground state and decomposition of the space

Ground states:

A0ηp +∇HP(ηp)−
∑

j

λj(p)Ajηp = 0

Assumptions:

(1) Rn ⊃ I 3 p 7→ ηp ∈ H∞ is smooth.

Normalization condition P j(ηp) = pj .

(2)
S

p∈I {ηp} is isotropic

Soliton manifold: T :=
⋃
q,p

e
P

qjJA
j

ηp,

Natural decomposition: H0 ≡ TηpH
0 ' TηpT ⊕ Tω

ηp
T

with Tω
ηp
T :=

{
U : ω(U; X ) = 0 , ∀X ∈ TηpT

}
Projection: H 3 U 7→ ΠpU ∈ Tω

ηp
T with

ΠpU := U − 〈Ajηp; U〉∂ηp

∂pj
+ 〈E ∂ηp

∂pj
; U〉JAjηp . (1)
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λj(p)Ajηp = 0

Assumptions:

(1) Rn ⊃ I 3 p 7→ ηp ∈ H∞ is smooth.

Normalization condition P j(ηp) = pj .

(2)
S

p∈I {ηp} is isotropic

Soliton manifold: T :=
⋃
q,p

e
P

qjJA
j

ηp,

Natural decomposition: H0 ≡ TηpH
0 ' TηpT ⊕ Tω

ηp
T

with Tω
ηp
T :=

{
U : ω(U; X ) = 0 , ∀X ∈ TηpT

}
Projection: H 3 U 7→ ΠpU ∈ Tω

ηp
T with

ΠpU := U − 〈Ajηp; U〉∂ηp

∂pj
+ 〈E ∂ηp

∂pj
; U〉JAjηp . (1)
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Explicit construction of the reduced system

Fix p0 ∈ I .

Level surface of P: Sp0 :=
{

u : P j(u) = pj
0 , ∀j

}
3 ηp0

Local model: Vk := Πp0H
k ' Hk ∩ Tω

ηp0
T .

Construct Vk 3 φ 7→ p(φ) s.t.

u := ηp(φ) + Πp(φ)φ ∈ Sp0 .

Reduced space: The map Vk 3 φ 7→ i(φ) := ηp(φ) + Πp(φ)φ is a
coordinate system for the reduced space.

Reduced Hamiltonian

Hr := i∗H , Ω := i∗ω .

Problem Ω does not vary smoothly.
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The Darboux theorem

Ωφ(Φ; Φ) = 〈E(φ)Φ; Φ〉 , E(φ) = E + O(φ2) .

Darboux theorem

There exists a map of the form

F(φ) = e
P

j qj (N,φ)JAj

(φ+ S(N, φ)) , N j := P j(φ′) , (2)

with the following properties

1. qi : Rn × V−∞ → R
2. S : Rn × V−∞ → V∞ is smoothing.

3. F∗Ω = Ω0.

The function eqjJA
j

φ is only continuous in q. Not differentiable!
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Almost smooth maps

Smoothing maps: S : Rn × V−∞ 7→ S(N, φ) ∈ V∞ or R.

Almost smooth maps: A map of the form

F(φ) = e
P

j qj (N,φ)JAj

(φ+ S(N, φ)) with smoothing qj and S is said
to be almost smooth.

Recovering smoothness:

Lemma

If H is symmetric, namely H(eqjJA
j

u) = H(u), then there exists a
smoothing S̃ :

H(F(φ)) = H(φ+ S̃(N, φ))
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Almost smooth maps

Hamiltonian Flows: Let χ be a smoothing Hamiltonian with a zero
of second order at φ = 0, then

Xχ = S(N, φ) + wj(N, φ)JAjφ

with smoothing wj and S .

Lemma

The corresponding time 1 flow is well defined in a neighbourhood of the
origin and is an almost smooth map.
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Linearization of the Hamiltonian

The Hamiltonian H = HL0 + HL1 + HN ,

HL0(φ) = P0(φ) +
1

2
d2HP(ηp0 )(φ, φ)− λj(p0)P j(φ)

HN(φ) = H3
P(ηp0−N ;φ+ S(N, φ))

Assumption There exist coordinates such that

HL0 =
K∑

l=1

ωj |ξj |2 +
〈
f̄ ; Bf

〉
(In NLS it follows from the assumptions on the spectrum of L)



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Linearization of the Hamiltonian

The Hamiltonian H = HL0 + HL1 + HN ,

HL0(φ) = P0(φ) +
1

2
d2HP(ηp0 )(φ, φ)− λj(p0)P j(φ)

HN(φ) = H3
P(ηp0−N ;φ+ S(N, φ))

Assumption There exist coordinates such that

HL0 =
K∑

l=1

ωj |ξj |2 +
〈
f̄ ; Bf

〉
(In NLS it follows from the assumptions on the spectrum of L)



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Linearization of the Hamiltonian

The Hamiltonian H = HL0 + HL1 + HN ,

HL0(φ) = P0(φ) +
1

2
d2HP(ηp0 )(φ, φ)− λj(p0)P j(φ)

HN(φ) = H3
P(ηp0−N ;φ+ S(N, φ))

Assumption There exist coordinates such that

HL0 =
K∑

l=1

ωj |ξj |2 +
〈
f̄ ; Bf

〉
(In NLS it follows from the assumptions on the spectrum of L)



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Outline

1 The Problem

2 A model problem

3 Reduction to a fixed point

4 Marsden-Weinstein reduction

5 Almost smooth maps and the Darboux theorem

6 Perturbation theory



The Problem A model problem Reduction to a fixed point Marsden-Weinstein reduction Almost smooth maps and the Darboux theorem Perturbation theory

Normal form.

Definition: Normal form A function Z (N, φ) is in normal form at
order r , if the following holds

{ω · (µ− ν) 6= 0 & |µ|+ |ν| ≤ r} =⇒ ∂|µ|+|ν|Z

∂ξµ∂ν ξ̄
(M, 0) = 0

{ω · (µ− ν) < Ω & |µ|+ |ν| ≤ r − 1} =⇒ df
∂|µ|+|ν|Z

∂ξµ∂ν ξ̄
(M, 0) = 0

{−ω · (µ− ν) > Ω & |µ|+ |ν| ≤ r − 1} =⇒ df̄

∂|µ|+|ν|Z

∂ξµ∂ν ξ̄
(M, 0) = 0

Theorem

For any r ≥ 2 there exists an almost smooth canonical transformation Tr

such that H ◦ TN is in normal form at order r .
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THE END

THANK YOU
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