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Non-Gaussian states produced by close-to-threshold optical parametric oscillators:
Role of classical and quantum fluctuations
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Quantum states with non-Gaussian statistics generated by optical parametric oscillators (OPO) with fluctuating
parameters are studied by means of the kurtosis excess of the external field quadratures. The field generated is
viewed as the response of a nonlinear device to the fluctuations of pump laser amplitude and frequency, crystal
temperature, and cavity detuning, in addition to quantum noise sources. The kurtosis excess has been evaluated
perturbatively up to the third order in the strength of the crystal nonlinear coupling factor and the second order
in the classical fluctuating parameters. Applied to the device described in Opt. Expr. 13, 948 (2005), the model
has given values of the kurtosis excess in good agreement with the measured ones.
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I. INTRODUCTION

Non-Gaussian (NG) resources (i.e., NG states and/or
operations) [1–6] are required for realizing relevant quantum
information protocols as, for example, entanglement distil-
lation and swapping [7–10]. It has been demonstrated that
they may improve the fidelity of teleportation [11–13] and
cloning [14], and NG states are more effective in revealing
nonlocality [15–18]. Thus the reliable generation of NG single-
and two-mode states assumes a relevant role. Recently, a
few schemes to generate NG states based on conditional
de-Gaussification protocols have been proposed [11–13] and
realized [19,20]. Moreover, it has been proven that phase
diffusing a squeezed vacuum state makes it a NG state
[4–6].

Departures from Gaussian statistics have been observed
(see Ref. [21]) in the outcomes for the field quadrature Xθ =
(e−iθa + eiθa†)/2, outing a degenerate optical parametric
oscillator (OPO). These deviations have been quantified by
measuring for different operating conditions the departure
of the fourth moment 〈X4

θ 〉 from its Gaussian value. In
particular, a dependence on the quadrature phase θ has been
observed, with the maximum departure always appearing in
correspondence with the antisqueezed amplitude quadrature
(θ = 0).

No doubt the observed deviations are because of a nonlinear
response of the device to Gaussian quantum and classical
fluctuating parameters such as pump laser amplitude and
phase, cavity length, and OPO crystal temperature. While in
the linear analysis, only the quantum input noise contributes to
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the OPO output signal, by expanding the equation of motion
to higher orders, classical fluctuations contribute to the output
as well. As a result of the multiplicative mixing of several
noise sources, the signal loses its Gaussian character. The
weight of these sources in determining the deviation from
the Gaussian statistics was not clear at the time of publication
of Ref. [21]. This article is meant to present and discuss a
consistent theoretical framework to explain and interpret the
observed experimental evidences.

OPOs rely on parametric down-conversion: A strong pump
beam at frequency ωp interacts in a nonlinear crystal with the
vacuum fields, thus generating two beams, signal and idler, at
frequencies ωs and ωi , respectively [22–24]. This mechanism
is represented in the Hamiltonian by the product of three
field operators, ap (pump), as (signal), and ai (idler), and
is described dynamically by Langevin equations. The model
herein presented starts by including in the Graham and Haken
Langevin equations (GHLE) different classical noise sources.
Then, expanding as,i as a power series in the strengths of the
quantum and classical fluctuations, a hierarchy of Langevin
equations is obtained in which the field at a given order acts as a
source for the next one. This has been done up to the third order,
thus culminating with Fig. 5 showing an adequate agreement
of the computed difference (kurtosis excess) Kθ = (〈X4

θ 〉 −
3〈X2

θ 〉2)/〈X2
θ 〉2 with the measured values Kθ of Ref. [21].

A perturbative analysis of an ideal OPO was already
developed in Ref. [25]: According to this article, nonlinear
contributions become comparable to the linear output only at a
relative distance from the threshold of about ∼10−6, while the
data of Ref. [21] were measured at a distance of ∼5 × 10−2,
signaling the occurrence of more complex mechanisms. Hence
it has been essential to account for contributions from different
fluctuating parameters, each represented as a Gaussian
process weighted by its standard deviations gi . For the sake
of generality, the GHLE [26] model has been developed for a
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nondegenerate OPO, whereas the field moments have been
calculated for a degenerate OPO to allow a direct comparison
with Ref. [21].

Different-order fields have been represented as the con-
volution of the previous-order field with a 2 × 2 matrix G
which becomes singular on approaching the threshold. This
singularity is at the origin of the enhancement of higher-order
effects in the critical region.

The article is organized as follows. In Sec. II, the extended
GHLE model for an OPO with fluctuating parameters is
introduced and discussed. The squeezing of the intracavity
field is discussed in Sec. III. Section IV deals with the statistics
of the quadratures outside the cavity as measured by a finite
bandwidth detector. The deviation from the Gaussian statistics
in terms of Kθ is analyzed by dwelling on the agreement
of the results provided by the model with the experimental
findings. Plots of Kθ versus θ and Kθ for θ = 0 versus E2 are
reported. Section V closes the article with concluding remarks.
Details about the linearization, together with a few analytical
derivations, are reported in the appendixes.

II. LANGEVIN EQUATIONS

Consider the set of the three OPO cavity modes ak (ap =
e−iωpt−iφpa0 pump mode at frequency ωp and phase φp, with
as = e−iωs t−i 1

2 φpa1 and ai = e−iωi t−i 1
2 φpa2 being, respectively,

signal and idler modes with ωp = ωs + ωi) whose mutual
interaction under the action of a driving field e−iωptE is
described by the Hamiltonian

Hint = ih̄
χ

2
(a1a2a

†
0 − a0a

†
1a

†
2) + ih̄(E∗a0 − Ea

†
0), (1)

where χ is the coupling parameter proportional to the
crystal second-order susceptibility χ (2) since real lasers are
characterized by a field E = ε(1 + gµp

µ̂p)e−iφp of constant
amplitude ε modulated by a fluctuating factor 1 + gµp

µp(t)
(〈µp〉 = 0) times a phase factor e−iφp , where φp(t) is a slowly
diffusing phase, that is, 〈[φp(t) − φp(t ′)]〉2 = &'|t − t ′|, with
&' being the laser linewidth [24].

The cavity modes are characterized by damping factors
γk,M, γk,x(γk = γk,M + γk,x) because of the output mirror (M)
and the other loss mechanisms (x, crystal absorption and
scattering, absorption of the two mirrors, etc.), respectively.
The evolution of the cavity-mode operators can be described
by the GHLE [26]:

ȧj = −
(
γj − iνj − i

1
2
φ̇p

)
aj + χ

2
a0a

†
j ′ + e−ig*pφp/2Rj ,

j = 1, 2 and j (= j ′, (2)

ȧ0 = −(γ0 − iν0 − iφ̇p) a0 − χ∗

2
a1a2 + ε

(
1 + gµp

µp

)

+ eig*pφpR0,

where Rk(t) =
√

2γk,Mbk,M +
√

2γk,xbk,x takes into account
the δ-correlated vacuum fluctuations, 〈bk,M,x(t)b†k,M,x(t ′)〉 =
δ(t − t ′), entering the OPO cavity. Modes are assumed to be
slightly detuned by νk = πc/Lk[Lk(ωk/πc)] − ωk , with Lk

being the OPO optical length at frequency ωk and [x] being
the closest integer to x.

In the following, we will indicate by κk = γk − iνk =
|κk|e−iψk (with ψ1 = ψ2) the complex damping coefficients,

by κ = |κ1 + κ2|/2 the mean decay rate, and by τ = κt
the time normalized to the cavity lifetime κ−1. A caret
will mark quantities normalized to κ (e.g., ε̂ = ε/κ) and a
tilde those such that the integral of their correlation func-
tion [e.g., 〈µ̂p(τ )µp(τ ′)〉 = Cµp

(τ − τ ′)] is equal to 1 [e.g.,∫ ∞
−∞ Cµp

(τ )dτ = 1]. In particular, the Gaussian δ-correlated
process dφp/dt will be replaced by dφp/dτ = g*p

*p with
〈*p(τ )*p(τ ′)〉 = δ(τ − τ ′) and g*P

= 4
√

〈&̂2
'〉.

In real devices, beside the fluctuations related to classical
noise of the laser beam, the parameters νk and χ of Eq. (2)
experience also the effects of mechanical vibrations. Residual
fluctuations of the cavity optical length δLk, at frequency ωk,
induce deviations δνk = −(δLk/Lk)ωk of the mode detunings
from their average values 〈νk〉. Usually, an active control
guarantees that the standard deviation of δν0 is a small fraction
of γ0.

The parameter χ is proportional to the crystal susceptibility
χ (2) through the Boyd-Kleinman function HBK(σ, κ, ξ ) [27]
of the phase-matching factor σ, the focusing parameter ξ ,
and the crystal absorption κ. Variable σ (T ) depends on the
crystal temperature T through the refractive indices at the
interaction wavelengths. If the cavity configuration is far from
the concentric one, the dependence of ξ on the cavity geometry
fluctuations can be neglected. Under this assumption, χ will
be replaced in the system (2) by χ̄e−iφχ (1 + gT δT̂ ) with χ̄
depending on the slow variations of T while φχ is a phase
depending on the position of the beam waist with respect to
the crystal center. With an accurate alignment, φχ can be set
equal to 0. Variable gT is defined by

gT =
√

〈δT 2〉d log HBK

dT
.

In conclusion, the OPO analyzed in the following is
characterized by four classical fluctuating parameters gµp

µ̂p,
g*p

*p, gνk
δν̂, and gT δT̂ , where µ̂p, *p, δν̂, and δT̂

are Gaussian processes with unit standard deviations and
gµp

, g*p
, gνk

{= [(δLk/Lk)/(δL0/L0)](ωk/ω0)gν0}, and gT are
the corresponding weights. These four terms, together with
gχ = |χ̄ |/(2|κ0κ|)1/2, describing the nonlinear interaction of
strength χ̄ [25], determine the OPO dynamics. For typical
operating conditions (gχ + 10−6, κ + 10–20 MHz,

√
〈&2

'〉 +
1–1000 Hz,

√
〈δT 2〉 + 1–10 mK, and ∂n/∂T ≈ 10−6–10−4),

gµp
, g*p

, gνk
, and gT range in the intervals 10−2–10−1,

10−4–10−2, 10−5–10−1, and 10−5–10−4, respectively.
The extended GHLE system (2) may now be written as

ȧj = −
(
κ̂j − i

g*p
*p

2
+ igνj

δν̂
)

aj

+
√

|κ̂0|
2

(1 + gT δT̂ )gχa0a
†
j ′ + e−ig*pφp/2R̂j ,

(3)

ȧ0 = −
(
κ̂0 − ig*p

*p + igν0δν̂
)
a0 −

√
|κ̂0|
2

(1 + gT δT̂ )

× gχa1a2 + ε̂(1 + gµp
µ̂p) + eig*pφp R̂0.

A dot indicates derivatives with respect to τ .
The OPO admits a threshold value for the amplitude ε =

εth = |κ0|
√

|κ1κ2|/(2|χ̄ |). Below threshold, the mode a0 has
a nonzero mean value r0, which is related to the driving field
amplitude ε̂ (ε̂ = κ̂0r0). Therefore, separating the average part
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r0 from the fluctuating one δa0 = r0α0, we put a0 = r0(1 +
α0), where α0 = ρ0 − iϕ0. Conversely the modes aj have zero
mean value and will be expressed in terms of rescaled operators
aj = rjαj , with the rj defined in terms of r0:

|κ̂j |r2
j = |κ̂0|r2

0 . (4)

Passing now from the amplitudes ak to the scaled quantities
αk , the extended GHLE [Eq. (3)] is rewritten as

α̇j + κ̂jαj = E|κ̂j |α†
j ′ + gχ N̂χj

+ |κ̂j |E(gT̂ δT̂ + α0)α†
j ′

+ i(g*p
*p/2 − gνj

δν̂)αj + |κ̂j |EgT̂ δT̂ α0α
†
j ′ ,

α̇0 + κ̂0α0 = −E|κ̂0|α1α2 + gχ N̂χ0 + κ̂0gµp
µ̂p (5)

+ ig*p
*p − igν0δν̂ + ig*p

*pα0

− igν0δν̂α0 − E|κ̂0|gT δT̂ α1α2,

where

E = gχ√
2κ̂0κ̂1κ̂2

ε̂ eiψ0 . (6)

The preceding equations describe the dynamics of the fluctu-
ating fields αk as responses to the classical noise sources µ̂p,
*p, δν̂, and δT̂ and quantum terms

N̂χj
= R̂j e

−ig*pφp/2/(gχ rj ),

N̂χ0 = R̂0e
ig*pφp/(gχ r0).

The system (5) may be solved perturbatively on expanding the
field amplitudes as

αk =
3∑

m=1

α
(m)
k . (7)

The first-order terms (m = 1) correspond to the linearized
system; α(m!2)

k are generated by nonlinear sources s
(m)
k made

of a quantum contribution, proportional to gm
χ , and of mixed

terms involving products of quantum and classical fluctuations
of the type gm−1

χ gi and gm−2
χ gigj . Any s

(m)
k involves fields

calculated up to the (m − 1)th order. By substituting the αk

expansion into Eq. (5) and grouping the terms corresponding
to the same perturbative order, each α

(m)
k can be calculated as

the convolution of the components Gkk′ of the Green’s matrix
[see Eq. (A1)] relative to the linearized system, with s

(m)
k and

s
(m)†
k′ .

For a degenerate (the signal and idler fields collapse into a
single field in this case) and tuned (ν̄k = 0) OPO, the extended
GHLE [Eq. (5)] reduces to

α̇ + κ̂α = Eα† + gχ N̂χ + E(gT̃ δT̃ + α0)α†

+ i

(
1
2
g*p

*p − gνj
δν̂

)
α + EgT̃ δT̂ α0α

†,

α̇0 + κ̂0α0 = gχ N̂χ0 + κ̂0gµp
µ̂p + ig*p

*p − igν0δν̂ (8)

− E

2
|κ̂0|α2 + ig*p

*pα0 − igν0δν̂α0

−E|κ̂0|gT δT̂ α2,

where the parameter

E = 2gχ√
2κ̂0

ε̂ = eiψ0/2 ε̂

ε̂th
= eiψ0/2|E|

now represents the excitation ε̂ normalized to the thresh-
old ε̂th =

√
|κ̂0|/2/gχ while N̂χ (τ ), N̂χ0 (τ ), and *p(τ ) are

δ-correlated processes:

〈N̂χ (τ )N̂ †
χ (τ ′)〉 = 4

|E|2
δ(τ − τ ′),

(9)
〈N̂χ0 (τ )N̂ †

χ0
(τ ′)〉 = 4|κ̂0|2

|E|2
δ(τ − τ ′).

The correlation times for µ̂p are typically of the order of
0.2–1 µs, while those for δν̂ and δT̂ are of the order of
milliseconds and seconds, respectively. Although δν̂ and δT̂
can be treated adiabatically, we have preferred to treat the noise
sources in a unified fashion.

A. Nonlinear terms for a degenerate OPO

Expanding Eq. (5) up to the third order, the fields α(m)

(signal idler) and α
(m)
0 (pump) of Eq. (7), represented in the

vector form α(m) = (α(m),α(m)†)T ,α
(m)
0 = (α(m)

0 ,α
(m)†
0 )T , are

given by

α(m) (t) =
∫ t

G (t − τ ) · s(m)(τ )dτ,

α
(m)
0 (t) =

∫ t

G0 (t − τ ) · s(m)
0 (τ )dτ,

with G and G0 defined by Eq. (A2), while the signal s(m) and
pump s(m)

0 sources read, respectively,

s(1)(τ ) = gχNχ (τ ),

s(2)(τ ) = B(1)(τ ) · α(1)(τ ), (10)

s(3)(τ ) = B(2)α(1)†(τ ),∫ τ (
g2
χδB

(2)(τ − τ ′)1 + B(1,1)(τ − τ ′)
)
· α(1)(τ ′)dτ ′,

s(1)
0 (τ ) = gχ N̂χ0 (τ ) + i

[
g*p

*p(τ ) − gν0δν̂(τ )
]

1−
(11)

+ κ̂0gµp
µ̂p(τ ),

s(2)
0 (τ ) = i

[
g*p

*pα0 − igν0δν̂α0
]

1− − 1
2
Eκ̂0α

(1)2,

with 1− = (1,−1)T and

B(1) =
[

i
( 1

2g*p
*p − gνδν̂

)
E

(
α

(1)
0 + gT δT̂

)

E∗(Pα
(1)†
0 + gT δT̂

)
−i

( 1
2g*p

*p − gνδν̂
)

]

,

(12)

with P being the permutation operator. Note that δT̂ and α
(1)
0

appear in the off-diagonal terms while *p and δν̂ are in the
diagonal terms.

For a tuned OPO (ψ = ψ0 = φχ = 0), B(2), δB(2), and
B(1,1), of the third equation of Eq. (10), are given by

B(2) = E
〈
α

(2)
0

〉
= −

g2
χ

2(1 − E2)
− g*p

E

κ̂0
− g2

ν

E

κ̂2
0

,

δB(2)(τ − τ ′) = −E2κ̂0G0(τ − τ ′)σ (1,1)
aα† (τ − τ ′),

B(1,1)(τ − τ ′) = 〈B(1)(τ ) · G(τ − τ ′) · B(1)(τ ′)〉,
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with σ
(1,1)
aα† (τ − τ ′) = 〈α(1)(τ )α(1)†(τ ′)〉. To be consistent with

the preceding hierarchy, all moments 〈s(m)s(m)〉 must sat-
isfy the inequalities 〈s(1)s(1)〉 > 〈s(2)s(2)〉 > 〈s(3)s(3)〉. Close
to the critical point, 〈s(1)s(1)〉, 〈s(2)s(2)〉, and 〈s(3)s(3)〉 are of
the order of O(g2

χ ), O[g2
χg2

i (1 − E)−1], and O[g2
χg4

i (1 −
E)−2], respectively, so that the preceding condition im-
plies that the approximation maintains its validity up to
1 − E > g2

i .
Since the linear source for the down-converted beam [see

Eq. (10a)] contains uniquely the quantum noise term, the
effects of the classical fluctuations can be analyzed only going
beyond the linear approximation.

III. INTRACAVITY FIELD

The nonlinear contribution to the intracavity field is
represented by the averaged tensor product with respect to the
different fluctuating parameters gιNι (gχNχ , gχNχ0 , gµp

µ̂p,
g*P

*P , gνδν̂, and gT δT̂ ):

σ (NL)(τ ) = 〈α(τ )αT (0)〉 − 〈α(1)(τ )α(1)T (0)〉
= σ (2,2)(τ ) + σ (3,1)(τ ) + σ (1,3)(τ )

= g2
χ

∑

ι

g2
ι σ

(NL)
ι (τ ).

Relevant σ (m,n)(τ ) are explicitly given by

σ (2,2)(τ ) =
∫ τ

−∞
dτ ′

∫ 0

−∞
dτ ′′G(τ − τ ′) · 〈B(1)(τ ′) · σ (1,1)(τ ′ − τ ′′) · B(1)T (τ ′′)〉 · G(−τ ′′),

σ (3,1)(τ ) =
∫ 0

−∞
dτG(τ − τ ′) ·

{
B(2)

[
0 1
1 0

]
+

∫ τ

−∞
[δB(2)(τ − τ ′)1 + B(1,1)(τ − τ ′)] · σ (1,1)(τ ′)dτ ′

}
.

Of particular interest is the variance 〈X(NL)2
π/2 〉ι normalized to 〈X2

π/2〉, that is, the weight, normalized to g2
ι , of the nonlinear

correction to the squeezed variance:

λNL
ι =

〈
X

(NL)2
π/2

〉
ι〈

X2
π/2

〉 =
−σ (NL)

ιaa (0) + σ
(NL)
ιaa† (0) + σ

(NL)
ιa†a

(0) − σ
(NL)
ιa†a† (0)

4
〈
X2

π/2

〉 .

For a balanced and exactly tuned OPO, we have

λNL
χ0

= E{2E3κ̂0 + 2E2κ̂0(2 + κ̂0) + (2 + κ̂0)2 − 2E[−2 + κ̂0(2 + κ̂0 )]}
2(1 − E2)(1 + E)(2 + κ̂0)(2 + 2E + κ̂0)

,

λNL
φP

+ − κ̂0(2 + κ̂0) − Eκ̂0(6 + κ̂0) + 2E3(8 + 5κ̂0) − 2E2[12 + κ̂0(9 + κ̂0)]
16(1 − E2)κ̂0 (2 + κ̂0)

,

λNL
ν + −E[E3 + 2κ̂0 − E2(3 + κ̂0) − E(6 + κ̂0)]

2(1 − E2)(1 + E)κ̂0
2 , (13)

λNL
T + E2(1 + E)2 − (2 + E)(1 − E)κ̂0

2

2(1 − E2)(1 + E)κ̂0
2 ,

λNL
µP

+ 2 + E2

2(1 + E)2
.

As it is apparent from the preceding formulas, the contribution
of µ̂p remains bounded on approaching the threshold (E → 1),
whereas the other terms diverge as (1 − E)−1 (see Fig. 1).

It it noteworthy that the ratio between λNL
χ0

and the
analogous quantity λPPSE

χ0
calculated in Ref. [25] by means of

the positive P representation (PPSE) goes as (λNL
χ0

/λPPSE
χ0

) +
(κ̂0 + 2)/[3κ̂0 + 2 + O(1 − E)]. In the limiting case of E + 1,
the two approaches differ by a κ̂0-dependent factor bounded
between 1/3 and 1. Such a substantial agreement between the
two results in proximity of the singular point validates the use
made in this article of the extended GHLE.

IV. KURTOSIS EXCESS AND COMPARISON WITH THE
EXPERIMENTAL RESULTS

The field αout,1 outing the OPO is a function of α, the
mirror damping coefficient γ1, and the corresponding input

noise N1 [29]:

αout,1 = gχ

√
2γ1

(
α − 1

2γ̂1
N1

)
. (14)

Accordingly, the generic output quadrature reads

Xθ = 1
g2
χ

√
2γ1

θT αout,1 = X
(1)
θ + X

(2)
θ + · · · ,

where θ = 1/2(e−iθ , eiθ ) and X
(m)
θ corresponds to α(m). While

X
(1)
θ is Gaussian, the terms X

(m>1)
θ deviate from the normal

distribution.
Quadratures are detected by a balanced homodyne, and the

relative current is measured by selecting a frequency 8f and
an integration time 1/γ̂f [21,29]. Accordingly, the detector
output is represented by

Vθ = F̂f Xθ =
∫ 0

−∞
eγ̂f τ

′
cos(8f τ

′)Xθ (τ ′)dτ ′. (15)
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FIG. 1. Nonlinear contributions λNL [see Eq. (13)] to intracavity squeezing, as functions of the normalized pump amplitude E for (left)
κ̂0 = 5 and (right) κ̂0 = 10. The solid line is λNL

χ , the dashed line is λNL
µ , the dotted line is λNL

φ , the shaded line is λNL
L , and the shaded dotted

line is λNL
T .

The deviation of Vθ from a Gaussian distribution can be mea-
sured by the kurtosis-excess parameter Kθ (see Appendix D
for details):

Kθ =
〈
:V 4

θ :
〉
− 3

〈
:V 2

θ :
〉2

3
〈
:V 2

θ :
〉2 +

∑

ι

g2
ι

ϒι (θ )
〈
:V (1)2

θ :
〉2
χ

, (16)

with ϒι(θ ) given in Eq. (D1) and the weight of the different
noise sources indicated generally by Nι.

The spectral density S̃µp
(w) = 〈Ñµp

(−w)Ñµp
(w)〉 extends

generally up to 1–2 MHz. For the sake of simplicity, it has
been approximated by a uniform spectrum extending up to
1 MHz. Variables δν̃ and δT̃ extend on very narrow band-
widths, while Ñχ0 and *̃p are white noise sources.

In Fig. 2, we have plotted the five ϒι(θ ) versus θ for three
excitation strengths E = 0.71, 0.87, and 0.975 of a perfectly
tuned OPO with a pump-cavity mode linewidth twice the signal
one (κ̂0 = 2), a condition similar to that of Ref. [21]. The
graphs show that for Nχ0 , µ̂p, and δT̂ , the maximum deviation
from a Gaussian appears for θ = 0, while for *p and δν̂, it
occurs for θ = ±π/4 [see Eq. (C2)].
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FIG. 2. (Color online) ϒι(θ ) [see Eq. (D1)] vs. θ for different
noise sources: (a) pump quantum noise, (b) amplitude and temper-
ature, (c) cavity length, and (d) pump phase. The plots, referred
to different scaling factors, have been calculated for typical values
of 8f (= 0.3), γf (= 0.15), and E = 0.71 (dashed blue line), 0.87
(purple dotted line), and 0.975 (solid line).

The maxima of ϒι(θ ) for Nχ0 , *p, and δν̂ decrease for
increasing κ̂0 (see Fig. 3). As expected from Eq. (12), the
contribution of δT̂ is independent of κ̂0. The same holds true
approximately for µ̂p too, having considered a technical noise
bandwidth that is small compared to κ̂0.

Looking at Fig. 3, we see that the maximum for ϒµp,T

is at least 1 order of magnitude larger than the other ones.
Moreover, gµp

. gT so that for pump level up to E2 = 0.95,
the NG behavior is essentially because of the laser amplitude
fluctuations.

In Fig. 4, ϒχ0 (0) (blue dashed line) and ϒµp
(0) (solid

line) are plotted versus 1 − E2 on a double logarithmic scale.
Approaching the threshold, the influence of Nχ0 increases
dramatically, although ϒχ0 (0) does not overcome ϒµp

(0).
Moreover, gχ / gµp

so that the observation of pure quantum
effects, predicted by Drummond et al. [25], is demanded
for future technology when either new materials with huge
nonlinear coefficients (enhanced gχ ) or very quiet lasers
(reduced gµp

) will be available.
The laser amplitude noise being the prominent source

influencing the nonlinear behavior, we have compared some
experimental findings of Ref. [21] with the predictions of the
model discussed in this article. In particular, the experimental
behaviors of Kθ and Kθµp

versus θ ∈ (−π,π ) are reported in
Fig. 5. Moreover, the maximum value of the experimental
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4x104

8x104
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6x105
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ν π 4
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104

p π 4
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FIG. 3. (Color online) Maxima of ϒι(θ ) [see Eq. (D1)] vs. κ0 for
the conditions of Fig. 2 (E → 0.975).
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105
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0

FIG. 4. (Color online) ϒχ0 (0) (pump quantum noise) and ϒµp (0)
(amplitude fluctuations) vs. 1 − E2.

kurtosis, for θ = 0, and g2
µp
ϒµp

(0) [see Eq. (16)] versus
E2 ∈ (0.45, 0.97) are plotted in Fig. 6.

In general, ϒµp
(θ ) can be represented by

ϒµp
(θ ) = ϒ4µp

cos 4θ + ϒ2µp
cos 2θ + ϒ0µp

, (17)

with ϒ4,2,0µp
functions of E, κ̂0, and κ̂ . For very small

deviations from the resonant configuration and |E| close to
1, ϒµp

(θ ) depends critically on |E|:

|E| = E0√(
1 + 4

ν2
p

γ 2
s

) (
1 + ν2

p

γ 2
p

) , (18)

with E0 = ε|χ̄ |/(γpγ
3/2
s ) being the excitation strength at

resonance.
The different heights of the peaks in the experimental data

(see Fig. 5) can be ascribed to the variation of E during a
measurement. The acquisition time for Vθ for each θ lasted
about 2 ms, implying a total θ -scanning acquisition time of
200 ms. The apparatus was equipped with a digital controller
providing a crystal temperature time constant >103 s and a
Drever-Pound system controlling the cavity tuning with a time
constant >10 s. However, during the total acquisition time,
slow drifts of the average cavity detuning νp can occur, thus
inducing a variation of the effective excitation parameter E
during the scan [see Eq. (18)]. The simplest and more direct
way to account for the time dependence of νp is to set in

2 0 π 2

θ

0.1

0.3

0.5

K θ

FIG. 5. Kµp (θ ) [see Eq. (16)] overimposed to the experimental
data of Ref. [21]. Kµp (θ ) has been calculated by assuming E2 = 0.92,
8f = 0.3, γf = 0.15, and gµP

= 0.007. The horizontal error bar
accounts for the detector phase θ stability, while the vertical one
corresponds to the average spread between two neighbor Kθ data.

0.5 0.6 0.7 0.8 0.9 1
E2

2

5

10

15

gµp

2
µp 0

FIG. 6. (Color online) Comparison of g2
µp
ϒµp (0) [Eq. (16)]

vs. E2 (solid curve; 8f = 0.3, γf = 0.15, and gµP
= 0.007) with

experimental data. Each experimental point has been obtained
multiplying the measured kurtosis at θ = 0 for the relative squared
variance. The agreement between data and the theoretical curve within
error bars is evident.

Eq. (18)

νp = α(θ − θ0), (19)

with α and θ0 being two fitting parameters, and to express the
coefficients ϒ4,2,0µp

in Eq. (17) as functions of θ .
The best fit (continuous curve of Fig. 5) of the experimental

data has been computed by assuming a spectral density S̃µp

uniform in the interval 0–1.0 MHz, in agreement with the
laser (Lightwave model 142) technical noise specification and
optimizing E0 [see Eq. (18)], α, and θ0 [see Eq. (19)]. The
best agreement has been obtained for α = 0.013, θ0 = π , and
E0 = 0.932, values corresponding to a drift of the resonance
frequency of ≈4% the pump cavity mode linewidth and a
variation of |E| of 0.006. Finally, normalizing g2

µp
ϒµp

(θ ) to
the squared experimental variance [see Eq. (16)], the best
agreement was obtained for gµp

= 0.007, in agreement with
laser noise specification (<1%).

The NG character depends critically on the distance
from the threshold (see Fig. 4); g2

µp
ϒµp

(0) [see Eq. (16)]
versus E2 is compared to a set of 35 data obtained for
five different values of E2 (0.5, 0.7, 0.8, 0.9, and 0.95)
in Fig. 6. Plotted values have been obtained multiplying
the experimental kurtosis by the relative squared variance.
Error bars have been obtained by standard error propagation.
The good agreement between the expected behavior and the
data confirms, once more, the effectiveness of the model
and the validity of assumptions about the relative noise
strengths.

V. CONCLUSIONS

The statistical properties of the fields generated by an
OPO depend on the fluctuations of many classical parameters,
namely, pump amplitude (gµp

µ̂p), pump frequency (g*p
*p),

cavity detuning (gνδν̂), and crystal temperature (gT δT̂ ). In this
article, we have presented a model of the OPO based on an
extension of the GHLE that accounts for the fluctuations of
these parameters. The field generated has been dealt with as

033846-6



NON-GAUSSIAN STATES PRODUCED BY CLOSE-TO- . . . PHYSICAL REVIEW A 81, 033846 (2010)

the response of a nonlinear device to these noise sources.
Then, expanding the extended GHLE system at different
orders in gµp

, g*p
, gν , and gT , a hierarchy of equations has

been obtained, with µ̂p, *p, δν̂, and δT̂ acting as noise
sources, together with the quantum noises (gχ N̂χ , gχ N̂χ0 )
entering the optical cavity. These sources have been modeled
as Gaussian processes with unit standard deviations weighted
by the respective factors gµp

, g*p
, gν , and gT , typically ranging

in the intervals 10−2–10−1, 10−7/2–10−2, 10−5–10−1, and
10−5–10−4, respectively.

The extended GHLE solutions, obtained beyond the linear
approximation, have been used for assessing the non-Gaussian
character of the field outing a degenerate OPO. The departure
of the output quadrature Xθ from the Gaussian statistics has
been estimated by means of the kurtosis-excess figure Kθ =
(〈X4

θ 〉 − 3〈X2
θ 〉2)/〈X2

θ 〉2, that is, the relative deviation of the
Xθ fourth moment from the Gaussian expression of it. The
model furnishes Kθ as a sum of contributions from different
parameters. Sets of plots have been provided, showing the
dependence of Kθ on the OPO operating condition, namely,
the ratio pump-signal bandwidths, the excitation strength E,
and the detection frequency 8f and bandwidth γf . For typical
operating conditions, the pump technical noise emerges as the
most critical factor.

The model has been used for reproducing the experimental
values, reported in Ref. [21], of Kθ versus θ and K0 versus E2.
The good agreement, within the error bars, of the experimental
data with the analytic predictions confirms the validity of the
presented model. By providing a physically insightful and
computationally effective parametrization of the OPO, the
model may help in addressing the generation of NG states
by means of OPO sources.

APPENDIX A: LINEARIZATION BELOW THRESHOLD

The Fourier transform of the Green’s functions G, G0
relative to a degenerate OPO are given by

G̃ = 1
D̃

[
&̃‡ e−iϑ |E|

eiϑ |E| &̃

]
, G̃0 =

[
&̃−1

0 0
0 &̃

‡−1
0

]
,

(A1)

with ϑ = ψ − 1
2ψ0, &̃ = κ̂ − iω, D̃(ω) = &̃&̃‡ − |E|2 =

−(ω + ω+)(ω + ω−), and &̃0 = κ̂0 − iω,ω± = i(cosψ ∓√
|E|2 − sin2 ψ). In particular, for κ̂ = 1 (tuned device), they

correspond in the time domain to

G(τ ) =





e−τ

[
cosh (Eτ ) sinh (Eτ )
sinh (Eτ ) cosh (Eτ )

]
, τ > 0,

0, τ < 0,
(A2)

G0(τ ) =






e−κ̂0τ

[
1 0
0 1

]
, τ > 0,

0, τ < 0.

APPENDIX B: TIME-NORMAL ORDERED CORRELATION
MATRIX : σ̃ (1,1)(ω) :

The Fourier transform : σ̃ (1,1)(ω) : of the time-normal or-
dered matrix : α(τ − τ ′) :=: 〈α(1)(τ )α(1)T (τ ′)〉χ : [: α(τ ′ − τ )

:=: α(τ − τ ′) :] and : αa†a† :=: α∗
aa :, : αaa† :=: αa†a :) is ob-

tained from σ̃ (1,1)(ω) = σ̃ (ω)/[(ω2 − ω2
+)(ω2 − ω2

−)] with

σ̃ (ω) = 4

[
&̃‡

e−iϑ |E|
&̃‡(−ω)&̃(ω)

|E|2

1 &̃
eiϑ |E|

]

by first normally ordering σ̃ (ω),

σ̃ (ω) → σ̃N (ω) = 4

[
&̃‡

e−iϑ |E| 1

1 (&̃‡)∗

eiϑ |E|

]

,

and then symmetrizing with respect to time reversal:

: σ̃ (1,1)(−ω) := − 2ω+

ω2 − ω2
+

σ̃N (−ω+) − 2ω−

ω2 − ω2
−

σ̃N (−ω−)

= σ̃T N (ω)
(ω2 − ω2

+)(ω2 − ω2
−)

. (B1)

In particular, for the tuned case,

σ̃T N (ω) = 4

[
1+E2+ω2

2E
1

1 1+E2+ω2

2E

]

. (B2)

APPENDIX C: B(1) EXPANSION

The different noise sources Nι contribute to B̃(1) [Eq. (12)]
through the terms

B̃(1) = gχ Ñχ0 B̃(1)
χ + gχ Ñ ‡

χ0
B̃(1)T

χ +
∑

i

giÑiB̃
(1)
i , (C1)

with

B̃(1)
χ = E

[
0 &̃−1

0

0 0

]

,

B̃(1)
µ

P
=

[
0 e−iϑ |E|κ̂0&̃

−1
0

eiϑ |E|κ̂∗
0 &̃

‡−1
0 0

]

,

B̃(1)
*P

= i

[
1
2 e−iϑ |E|&̃−1

0

−eiϑ |E|&̃‡−1
0 − 1

2

]

, (C2)

B̃(1)
T =

[
0 e−iϑ |E|
eiϑ |E| 0

]
,

B̃(1)
ν = i

[
−1 e−iϑ |E|&̃−1

0

−eiϑ |E|&̃‡−1
0 1

]

.

APPENDIX D: KURTOSIS-EXCESS EXPANSION

From the vanishing of the time-normal ordered correlations
〈:α(1) NT

1 :〉 = 〈:α(2) NT
1 :〉 = 0, it follows that

〈
:X(l)

θ X
(m)
θ :

〉
χ

= θT ·
〈
:α(l)α(m)T :

〉
χ

·θ ,

with l, m = 1, 2. Hence, retaining only the lowest nonlin-
ear orders for 〈:V 4

θ :〉 and 〈:V 2
θ :〉2, ϒι(θ ) [see Eq. (16)]

reads

ϒι(θ ) =
〈(〈

:V (1)
θ V

(2)
θι + V

(2)
θι V

(1)
θ :

〉
χ

)2〉
ι

= 1
2π

∫ ∞

−∞
S̃ι(w)θT · ς̃ι(−w) · θθT ·ς̃ι(w) · θdw

= ϒ4ι cos 4θ + ϒ2ι cos 2θ + ϒ0ι, (D1)
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with S̃ι(w) = 〈Ñi(−w)Ñi(w)〉 and ς̃ι being a 2 × 2 matrix

ς̃ι(w) = (1 + T̂ )〈:(F̂fα
(2)
ι (0))F̂fα

(1)T (0):〉χ

= 1
2π

1
κ̂0 − iw

∫ ∞

−∞
H̃ (w,ω)σ̃ ι(w,ω) dω; (D2)

T̂ being a matrix transposition operator; σ̃ ι(w,ω) being an
entire function of ω and w,

σ̃ ι(w,ω) = (1 + T̂ )(κ̂0 − iw)D̃(w + ω)

× G̃(w + ω) · B̃(1)
ι (w) · σ̃ T N (ω) ,

with σ̃ T N (ω) defined in Eq. (B1) as

H̃ (w,ω) = F̃f (ω + w)F̃f (−ω)
D̃(w + ω)(ω2 − ω2

+)(ω2 − ω2
−)

;

and

F̃f (ω) = i

2

(
1

ω − 8−
+ 1

ω − 8+

)

being the Fourier transform of F̂f [see Eq. (15)], while 8± =
±8f − iγf .

Since lim|ω|→∞ ωH̃ (w,ω)σ̃ ι(w,ω) = 0, the right-hand
side of Eq. (D2) is given by the sum of residues

ς̃ι (w) = i

κ̂0 − iw

4∑

l=1

H (l) (w) σ̃ ι (w,ωl) , (D3)

where H (l)(w) = Resω=ωl
[H (w,ω)] for ωl = ω+, ω−, −8+,

and −8−(l = 1, 2, 3, 4) poles of H̃ (w,ω) in the upper
complex ω plane.

In the limiting case of zero-centered δ-like sources Ñi [see
Eq. (C1)],

ϒi (θ ) = θT · ς̃i(0) · θθT ·ς̃i(0) · θ .
Such an approximation holds true for ÑT , Ñν , and in a lesser
measure for Ñµp

, depending on the laser technical noise
bandwidth normalized to the OPO cavity one. At the other
extreme, Ñχ0 and Ñ*p

represent white noises processes for
which ϒχ0,*p

(θ ) reduce to

ϒχ0,*p
(θ ) = −

4∑

l=1

H (l) (−iκ̂0)

θT · σ χ0,*p
(−iκ̂0,ωl) · θθT · ς̃χ0,*p

(iκ̂0) · θ

−
4∑

l,i=1

1

κ̂0 + iw
(l)
i

Resw=−w
(l)
i

[H (l)(w)]

θT · σ̃ χ0,*p

(
− w

(l)
i ,ωl

)
· θθT · ς̃χ0,*p

(
w

(l)
i

)
· θ ,

with ωl being the frequencies of (D3) and w
(l)
i the poles of

H (l)(w) in the upper complex w plane:

w
(1)
i = {2ω+,ω+ − 8+,ω+ − 8−,ω+ + ω−},

w
(2)
i = {2ω−,ω− − 8−,ω− − 8+,ω− + ω+},

w
(3)
i = {−28+,ω+ − 8+,ω− − 8+,−8+ − 8−},

w
(4)
i = {−28−,ω− − 8−,ω+ − 8−,−8− − 8+}.

[1] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89, 137903
(2002).
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