
FUZZY METHODS FOR SIMPLIFYING A BOOLEAN FORMULA

INFERRED FROM EXAMPLES

B. Apolloni, D. Malchiodi, C. Orovas, A. M. Zanaboni

Dipartimento di Scienze dell’Informazione – Università degli Studi di Milano-ITALY

ABSTRACT

In order to state a symbolic description of observed data
we learn a minimal monotone DNF (Disjunctive Normal
Form) formula consistent with them. Then, in the idea
that a short formula – i.e. made up of few monomials,
each represented by the product of few literals – is better
understandable by the user than a longer one, we propose
here an algorithm to simplify in this direction the formula
learnt from examples. We obtain concise formulas by
violating their consistency on a part of the observed
examples in some regions of the sample space that we
consider as fuzzy borders of the formulas. Special
membership functions to these regions allow us to
manage the balance between conciseness and description
power of the final formula as an optimisation problem
that is solved via a simulated annealing procedure on a
set of artificially constructed benchmarks.

1. INTRODUCTION

The jump from examples to concepts, for instance
from fire observations to the settlement of the
thermodynamics laws, might be very long, taking a
complex sequence of hierarchical steps, like human kind
did over the course of the centuries. In view of capturing
some features of this abstraction process, we raised up an
agnostic learning procedure [1] that generates a minimal
function consistent with the examples, in the sense that
no formula whose support is included in this function can
maintain the consistency. In turn, consistency means that,
once we have a set of examples labeled by a flag telling
us whether the example must belong to the final formula
(positive example) or not (negative one), the formula we
find must respect the flags. This kind of minimality
however does not guarantee an analogous minimality on
the formula description length [2]. Thus, we propose here
an algorithm to reduce the number of literals in the
formula still preserving its descriptional power.

A shortening may happen for free, when for instance
we discover a new monomial still consistent with the
examples and including two smaller ones belonging to
the formula. However, we accept to sacrifice some
accuracy of the formula to get it shorter. It is the typical
attitude with which we interpolate a set of experimental

points with a line: we don’t assume that a true linear
relation exists between the point coordinates, but such
relation helps us to understand the bulk of the phenomena
underlying the points. In our case we may see a
consistency violation of the concise formula either as a
consequence of a fuzzy definition [3] of its support’s
contour or as denoting a non clear classification of the
missed point flags. Here we prefer the first perspective
and use a special membership function to the fuzzy
support of the formula to characterize a thickness of the
fuzzy border. This allows us to translate the above
problem of balancing complexity versus approximation
of the final formula into the analogous balancing of its
descriptional length and the mean thickness of the
borders of the constituting monomials.

We tested numerically the suitability of this
perspective on a set of artificially constructed
benchmarks, where we drew labeled examples from the
support of an original DNF and its complement to the
assignment space. The value of the DNF we learn is
appreciated through the exact measure of the symmetric
difference between its support and the original formula’s
one.

2. INFERRING A DNF

Given a set L = {x1, …, xn} of literals, a literal being
an affirmed or a negated propositional variable of a
Boolean formula, we denote by Xn={0,1}n the space of
the Boolean vectors x of size n , that can be assigned to
the literals of L.

We denote by C the class of such formulas, called
concepts elsewhere, and, for gŒC, by set(g) the set of all
the literals occurring in the formula g . A formula is
monotone if only affirmed variables appear in it. Given a
set M = {m 1, …, mm} of m monomials, built as a
conjunction of literals in L, a formula g=»i mi is a DNF.

By abuse, we will use the same notation for g and
support(g), i.e. the set of points xŒXn such that g(x)=1.
For a given concept g, E+Ã Xn and E-Ã Xn are the sets of
positive and negative examples respectively, constituted
by assignments belonging the former and not belonging
the latter to g.

Definition 2.1: Let us represent a monomial m by the
vector m = (b1, …, bn) where bi = 1 if xiŒm and bi = 0
otherwise; each binary value bi is the crisp membership
value of xi to m. With a similar notation, we represent a
k-term_DNF U

k

i
ig

1=

= m by a vector B of length nk
obtained by concatenating the representations of the
joined monomials.

We say that g =»i mi is a DNF crisp description of
E= E+ » E- if g is consistent with all the positive and
negative points of E.

Given a set of examples E , we simply compute a
minimal DNF crisp monotone description through the
algorithm of Table 1.

Table 1.Construction of aDNF from examples.

Construction (E+, E-)
BEGIN
 DNF = ∅

 FOR_ALL uŒE+

 m = «i |ui = 1 xi
 DNF = DNF »{m}
 Return DNF
END

It is easy to check that m is the smallest monotone
monomial containing the positive sampled point on
whose basis it has been created.

3. SYMPLIFYING AN INFERRED DNF

In order to reduce the length of the generated DNF
formula g, we work on the single monomials according to
a set of simplifying actions, with a consequent
broadening of their supports. We want to balance a
desirable shortening of the formula with the undesirable
loss of description power (in terms of negative points
included and positive ones excluded) [4]. We account for
this trade-off through a cost function that linearly adds i)
the contributions of the single monomials and ii) a cost of
a dummy monomial that softly accounts for the combined
effect of the single monomials not taken into account in
i). In particular, the individual costs are based on a local
membership function to a fuzzy relaxation of the original
monomials.
The optimization of the single contribution is pursued in
conjunction with the minimization of the dummy
monomial cost through a simulated annealing algorithm
[5].

A first component of the cost of any monomial m is
its length, whose shortening is trivially obtainable
through two actions:
• removal of a literal from set(m)

• removal of the entire monomial
Both actions may corrupt the accuracy of the formula,

since the former annexes new points to the support of the
relaxed monomial (let us call it m’), while the second
may leave some points in support(m) missing a
description in the DNF.

We manage the first draw back via the introduction of
a fuzzy border for the monomial to which annexed points
belong according to a fuzzy membership function based
on the frequency with which sample points appear
therein. On the other hand, points left without a
description are attributed to a dummy monomial with an
analogous cost.

m=x
4
 x

5
 x

6
 x

7
 x

8

x
1
 x

2
x

3
x

4
x

5
 x

6
x

7
 x

8
x

9
x

10
x

11
 x

12

 m’= x
5
 x

6
 x

7

Figure 1. The geometry of simplification of a monomial m into
a monomial m’ on the literals xi, i = 1, ..., 12. The binary tree
representing the assignments is squeezed in correspondence of
the literals in m . Circles and squares denote respectively
positive and negative points. Gray squares denote false positive
points included in m’ after the simplification.

3.1 A fuzzy border for a monomial.

Starting from a crisp monomial m, we fuzzy enlarge
its contour by annexing boundary regions of the formula.
Namely, the removal of a literal from set(m) gives rise to
a new monomial m’ including m (see Figure 1) [6]. We
can start by removing any literal from set(m), thus
obtaining different enlargements.

Whatever the starting point, any subsequent removals
of literals give rise to a monotone enlargement of the
monomial support. We consider this enlargement as a
thick fuzzy border of the monomial that we describe
through a fuzzy membership function that decreases from
1 in the crisp monomial to 0 outside its enlargement (see
Figure 2). All the points belonging to the same
enlargement slice have the same membership value to the
fuzzy border. Therefore we associate this value directly to
the literal whose removal generated that enlargement
slice. In a similar way, by abuse we identify the fuzzy
border with the ordered sequence of literals that have
been removed from set(m) to obtain it.

Our construction of the membership function is based
on the estimation of the probability that a point falls in a

considered enlargement. Since positive and negative
points play different roles in the identification of a
concept, in the construction of the membership function
we will distinguish between E+ and E -. For the same
reason, we want to keep the fuzzy border thikness as
small as possible. The membership function to an
enlarged monomial is given as follows.

Definition 3.1: Given a monomial m , for an ordered
sequence d=(d1,…,ds) of length s of literals from set(m),

let us denote by dk its prefix of length k. Let md0=m, and

mdk denote the monomial obtained by flipping from 1 to

0 the crisp membership value of literal dk in mdk-1. Let us

denote s(Ddk) the cardinality of the E subset belonging to

mdk–m. We define the membership function mmd(dk) of

a literal dk in respect to md as follows:

() ()
()d

dk

D

D
-=

s

s
m 1kd

dm
 (1)

The monotonicity of the membership function,
referred to assignments as points in the unitary
hypercube, induces a dummy metrics where points
annexed by one literal in d are more far from the crisp
monomial than the ones annexed by previous literals. In a
local interpretation of the membership function we can
consider mmd(dk) as a probability estimate [7] of finding

points that belong to the fuzzy border outside the
enlargement induced by dk, and we can define the radius

of the border as the mean value of the distances of points
belonging to each enlargement slice from the crisp
monomial m as follows.

Definition 3.2: Given a monomial mi and an ordered
sequence di=(d1,…,ds) of length s of literals from set(mi),
we call md- mi the fuzzy border of mi, and

Â
=

=
s

k
ki d

1

)(
dmmr (2)

its radius.

k

m(dk)

1 2 3=s

Figure 2. The fuzzy border of a monomial.

Taking into account the labels of the annexed points,
we want a positive point close to the crisp region to have
a high membership value, while a negative one in
analogous position a low value.

This requirement can be met by splitting the
membership function as follows

†

m+
md dk() = mmd

dk() =1-
s+ D

d k()
s + Dd()

†

m-
md dk() = mm-

d
dk() =

s- D
d k()

s- Dd()
(3)

where ()kd
D+s and ()kd

D-s are respectively the

total number of positive and negative examples belonging
to mdk–m.

Formulas (3) specify the radius notion depending on
the labels of the involved points. In particular, we
consider also the set m-

d whose membership function

†

mm-
d

increases monotonically from 0 to 1 when moving

from the crisp monomial m (whose support contains only
positive points) to m-, whose support contains only

negative points, and whose radius is

†

ri
- = m

m
d

- (dk)
k =1

s

Â ,

accordingly to the radius definition given in (2).

Remark 3.2 Note that the membership functions we
defined are not univocal for a given expansion of a
monomial from m to m’. They strictly depend on the
history of literal removals we followed. In the next
section we further enrich this history by considering also
some reinsertion of literals whenever this is suggested by
the optimization algorithm. A reinsertion just deletes an
item from d preserving the relative order of the remaining
ones.

Remark 3.3 We could define in a similar way the
border of the dummy monomial whose crisp support is
empty by definition. However, in the following we will
consider directly the support of the border as a cost to be
minimized and we will estimate it through the
intersection of this monomial with E.

3.2 The annealing procedure

The cost function we want to minimize with respect
to the DNF f consisting of the m monomials is:

†

O f ,l() = l1 Li
i=1

m

Â + l2 r+
i

i=1

m

Â + l3 r-
i

i=1

m

Â + l4n 0 (4)

where:

• SiLi is the length of the formula, being Li the number
of literals in the i-th monomial

•

†

r+
i = m+

md (dk)
k =1

s

Â ;

†

r-
i = m-

md (dk)
k=1

s

Â
• n0 is the percentage of positive examples left out from
support(f).
• the free parameter

†

l guarantees a proper balance
between the cost components.

We pursue this goal through a simulated annealing
algorithm that drives the search passing through
neighboring configurations chosen according to a
probability distribution that favors those that involve a
lower cost. This probability is however non null over
higher-cost ones, in the hope of overcoming local
minima. (See Table 2)

Table 2. Pseudo-code for the simulated annealing
algorithm.
SA Algorithm

CurrentState := InitialState
CurrentTemperature := InitialTemperature
Repeat
 GetTemperature(CoolingSchedule)
 ProposedState := SelectNeighborState
 ProposedCost := EvaluateCost(ProposedState)
 If (Accepted(ProposedState, ProposedCost))
 Then CurrentState := ProposedState
Until StoppingRule
Return(CurrentState)

In more detail, we start with a state vector that is the
representation, according to Definition 2.1, of the DNF g
=»imi constructed from the examples as in section 2.

Every move brings the vector in a new state whose
Hamming distance from the previous one is 1; only
changes involving literals belonging to set(mi) for i in
{1,…,k} are allowed. Thus, given a state u, the selection
of a new state u’ consists of selecting one of the allowed
literals and flipping its crisp membership value from 1 to
0 or vice versa. The new state is accepted with probability

˜
¯

ˆ
Á
Ë

Ê D+
=

'u,

u'u,

uO
T

P
1

exp1

1 (5)

where DOu,u’ is the cost variation obtained when

moving from u to u’, and T is a positive real value that
modulates the acceptance probabilities. High values of T
favor the acceptance of any move. As T decreases, the
probability distribution concentrates on states with lower
cost, and, when T reaches zero, only states of minimum
cost are accepted with non null probability. A proper

cooling schedule for T is therefore needed to profitably
exploit these benefits.

The stopping rule we adopted is to stop after a given
number of moves. Our choice of the cooling schedule, of
proper values for the free parameters and of the total
number of exploring moves will be discussed in the next
section in the light of the numerical experiments.

3.3 Numerical experiments

A series of reconstruction tests have been performed
with the twofold aim of preliminarily assessing the free
parameters of the procedure and appreciating the
simplification capability of the introduced fuzzy sets.

The general scheme is to create random DNFs from a
generator and then find the closest approximation to the
formulas using a confined set of training examples. In
particular, we generated formulas in the {0,1}12

hypercube constituted of 2 to 4 monomials, having 2 to 4
literals each. For each DNF, the test set is constituted by
all 4096 assignments to the 12 Boolean variables, each
coupled with its membership value to the DNF. The
training set is a subset of the test set with some optional
features that will be detailed later.

The cooling schedule simply consists of a temperature
decrease from T=0.05 to e (e <<1) in 6 steps, each of 30*i
iterations and T/i temperature, where i is the step number.
In each experiment two complete cooling cycles are
executed. From preliminary observations we set l4 to 100
and l3 to 40, and explore l1 and l2 as in the Figure 3. We
distinguish a false positives percentage given by those
negative examples that are annexed to the DNF by a
monomial enlargement and a false negatives percentage
due to exclusion of positive points after the suppression
of a monomial. In the picture we report the mean between
these two values computed on the whole search space
(the mentioned 4096 points) mediated, in turn, over 30
experiments done for each pair of parameters. Similarly,
we evaluated two different ratios of the length of the final
formula: a) with respect to the length of the original one
generating the example, and b) with respect to the length
of the one constructed as in section 2 (which is the
starting point of the search process). In Figure 3.a we
refer to the former. While this ratio obviously decreases
with the increase of the l1/l2 ratio, the error percentage
finds an accentuated minimum in l1=0.2 and l2=1.2 that
is assumed a good compromise point for jointly having a
good compression and approximation.

With this parameter setting we concentrated our
experiments, reconstructing 500 new DNFs. Figure 4
reports the mean course of the mentioned errors and
compression rates over two cooling cycles with three
different compositions of the traininmg set. We either use
50 positive and 50 negative uniformly extracted examples
(same biased composition used in the previous

experiments) or simply extract a given amount of points
in the search space with the label that the original DNF
assignes them (unbiased composition).

Since the support of the original DNFs is generally
quite small, the unbiased composition unfavors the
learning of it. As a consequence we have more false
negatives with this composition, a draw back that is
overcome when we increase the training set size from 100
to 400. A similar behaviour is shown by the compression
rate curves.

These performances are relatively not bad. It should
be noted that in many cases we obtained a more concise
formula than the original one. However, although in 14
cases over 500 we rediscovered exactly the original DNF
in the biased composition (8 in the unbiased one with 100
examples and 56 with 400 examples in the training set),
in some cases these good compression rates are payed by
a higher error percentage. A procedure for learning at run
time the optimal parameters with which to relax a
formula is at moment under assessment.

4. REFERENCES

[1] M. J. Kearns and U. V. Vazirani, An Introduction to
Computational Learning Theory, MIT Press, 1994.

[2] M. Li and P. Vitànyi, An Introduction to Kolmogorov
Complexity and its Applications, Springer, Berlin, 1997.

[3] E. Cox, The Fuzzy Systems Handbook, AP Professionals,
San Diego, 1998.

[4] V. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[5] E. Aarts and J. Korst, Simulated Annealing and Boltzmann
Machines: A Stochastic Approach to Combinatorial
Optimization and Neural Computing, Wiley, 1989.

[6] B. Apolloni and C. Gentile, P-sufficient statistics for PAC
learning k-term-DNF formulas through enumeration,
Theoretical Computer Science 230 (2000), 1 – 37.

[7] V. K. Rohatgi, An Introduction to Probability Theory and
Mathematical Statistics, Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons, New York,
1976.

0,2 0,4
0,6

0,8
1

0,4
0,6

0,8
1

1,2
1,4

0,5
0,7
0,9
1,1

1,3
1,5
1,7
1,9
2,1

2,3
2,5

l1 l2

Compression ratio wrt original

0,2
0,4

0,6
0,8

1

14

15

16

17

18

19

20

21

22

l1 l2

Mean Error

a b
Figure 3. Course of compression ratio (a) and mean error (b) with free parameters

a b
 Figure 4 Compression ratios (a) and accuracy (b) with optimization iterations.

