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1.The p53 protein family 
The tumor suppressor p53 is the most commonly mutated gene in human 

cancers and is the key regulator of responses to many types of cellular stresses, 

including DNA damage. When activated by the appropriate signals, p53 can 

induce cell cycle arrest and/or apoptosis and loss of p53 activity is considered to 

be ubiquitous to all cancers (Moll et al. 2001). 

 Recently two p53 homologues, p63 and p73, have been identified; the 

three p53 family members share significant similarities within three domains: the 

TransActivation domain (TA), the DNA Binding Domain (DBD) and the 

Oligomerization Domain (OD).  (Fig.1). 

 

       
Fig. 1: Similarities between family members. p53, p63 and p73 have a very 

similar structure. The TransActivation domain (TA), DNA Binding 

Domain (DBD) and Oligomerization domain (Oligo) are present in all 

p53, p63 and p73 isoforms. The α isoforms of p63 and p73 possess an 

additional region which contains the Sterile Alpha Motif (SAM) and Post 

SAM domains (PS). 

 

The high level of sequence similarity between p63, p73 and p53 proteins, 

particularly in the DNA binding domain, allows p63 and p73 to bind to p53-

responsive genes, causing cell cycle arrest and/or apoptosis. Unlike p53, the genes 

encoding for p63 and p73 are rarely mutated in human cancer, and neither of the 

Knock-Out mice models exhibits a propensity for tumor formation, but they 

present severe developmental defects that are absent in the p53 Knock-Out mice. 

This is a clear indication that, while p53 is important for the prevention of cancer, 

both p63 and p73 are crucial for normal development (Harms et al. 2002).  
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2. Structure of the p63 gene 
The p63 gene is localized on 3q27. In p63 two alternative promoters drive 

the transcription of either TAp63 proteins, comprising a p53-related N-terminal 

Trans-Activation (TA1) domain, a DNA-Binding Domain (DBD) and an 

Oligomerization Domain (OD), or ΔNp63 proteins, lacking the TA domain. An 

additional TA domain (TA2) has been identified within exons 11 and 12 of p63, a 

region present only in the α and β isoforms, but not in the γ, that is implicated in 

the transcriptional activities of the ΔNp63 isoforms (Ghioni et al. 2002; 

Laurikkala et al. 2006) (Fig. 2). A Sterile-Alpha-Motif domain (SAM) and a 

post-SAM domain are present only in the α-isoforms (Qiao and Bowie 2005) 

(Fig. 2). Altogether, the p63 gene expresses at least six mRNA variants which 

encode for six different p63 protein isoforms: TAp63α, TAp63β, TAp63γ, 

ΔNp63α, ΔNp63β and ΔNp63γ (Fig. 2). 

 
Fig. 2: Schematic representation of p63 isoforms. 

 

A Transactivation Inhibitory Domain (TID) has been found after the SAM 

domain in the α isoforms of p63. The TID can bind the TA1 at the N-terminus of 

TAp63α by an intra-molecular mechanism, thus inhibiting the transcriptional 

activity of this isoform (Serber et al. 2002) (Fig. 3). 

 

 



6	  
	  

       
Fig. 3: “Intramolecular masking” mechanism.       

 

3. Role of p63 in development 
The p63 gene is conserved throughout evolution, and is found in Xenopus 

Laevis, fish, mice and man.  

To understand the role of p63, in 1999 the Knock-Out (KO) mice for p63 

(p63-/-) were generated. At birth p63-/- mice have striking and visible skin defects. 

Histological analysis of neonatal p63-/- skin revealed the absence of the normal 

epidermal structure and complete lack of hair follicles and teeth. The skin surface 

of p63-/- mice is covered by a single layer of flattened cells and the spinosum, 

granolosum and stratum corneum are missing. The water loss-assay, as in vivo 

measure of the functional permeability of the skin, showed that p63 KO mice lose 

more water than the p63 wt mice, and for this reason, they die few hours after 

birth from dehydration. Furthermore, p63-/- newborns display striking limb 

defects. The fore-limbs are truncated while hind-limbs are completely absent in all 

p63-/- homozygous mutant animals (Mills et al. 1999; Yang et al. 1999). In all p63 

KO mice fore-limbs skeletal preparations analysed phalanges and carpals were 

absent, whereas proximal forelimbs structures were slightly heterogenous in the 

extent of the truncation.  For example, the ulna was present in a subset (37,5%) of 

the limbs, but the radius was not present in any of the mutant limbs analysed. 

Although the humerus was present in each of the mutant limbs, it was truncated, 

deformed and smaller than those of wt. The femur and all distal skeletal elements 

were absent in all of the p63 KO mice limbs examined (Fig. 4).  

The p53-/- mice develop normally but develop multiple types of tumor with 

a higher frequency than their wild-type counterparts at young ages (5-6 months 
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old) (Donehowere et al. 1992). Since p63-/- mice die at birth due to dehydration, it 

was not possible to observe tumors formation in these mice.  

The phenotype of the p63 KO mice suggests an essential role for p63 in 

the development of the skin, ectoderm-derived tissues and limbs. Recent studies 

confirmed that p63 is essential for the epithelial stratification program (Koster 

and Roop 2004; Laurikkala et al. 2006) and to maintain the proliferation 

potential of the epithelial stem cells (Senoo et al. 2007). 

 

                     
Fig. 4: a. Comparison of the Wild-Type (WT)  phenotype (+/+) and Knock-Out (-

/-). b. Comparison of the WT skeleton (+/+) and Knock-Out (-/-). c. Fore-

limbs skeleton, is known limb truncation in the mutant. d. Pelvic girdle 

skeleton. It is known absence of the for hind-limbs. Abbreviations: c: 

clavicle, h: humerus, r: radio, s: scapula, u: ulna. 

 

During mouse embryogenesis p63 is expressed within the ectoderm of the 

branchial arches, tail, limbs buds and in the Apical Ectodermal Ridge (AER). The 

AER is required for normal limb development and it is the most distal tip of the 

limb bud (Kuhlman and Niswander 1997) (Fig. 5). 
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Fig. 5: Limb bud at the stage E11. Note the dorsal-ventral symmetry (V and D, 

double red arrow), the plan of growth proximo-distal (P and D, double 

white arrow) and the position of the Apical Ectodermal Ridge (AER, 

white arrows). 

 

The AER is a pluri-stratified epithelial structure rimming the distal edge of 

the limb bud required for limb bud growth and patterning along the Proximal-

Distal (P-D) axis (Yang 2009). Under the AER there is the Progress Zone (PZ) 

that receives a proliferative signals and it is maintained in a state of intense cell 

division activity. These signals sent by the AER induce the growth of the whole 

structure. 

The reduction of limb development in the p63 KO mice could be 

associated to a failure in AER function, where p63 is highly expressed (Fig. 6). 

The lack of p63 expression induces a deregulation of the p63 target genes 

reducing limb development along the Proximal-Distal (P-D) axis, reflecting the 

lack of the maintenance of the AER function. 

 

                                               

Fig. 6: Section of mouse limb at stage E11.5, display in green p63 nuclear 

expression in AER (Lo Iacono et al. 2008). 
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In the mature epidermis, p63 is mainly expressed in the basal layer, while 

its expression is down-regulated in the differentiated layers. The p63 isoform 

predominantly expressed in the basal layer is the ΔNp63α (Koster and Roop 

2004). TAp63α, during mouse epidermal morphogenesis, is the first isoform 

detected in the single-layer ephitelium at stage E7.5, before commitment to 

stratification. ΔNp63α is firstly detected at stage E9.5, before terminal 

differentiation, but after developing epidermis has committed to stratification. The 

expression of TAp63α is down-regulated after this stage, probably because 

TAp63α is the molecular switch that start the epithelial stratification program. 

This program requires a shift in the balance between the p63 isoforms toward 

ΔNp63α expression to allow keratinocytes to respond to signals required for the 

maturation of the epidermis. When the mature epidermis is formed, the basal layer 

of the mature epidermis displays elevated p63 levels that are required for 

maintaining the proliferative potential of keratinocytes (Koster et al. 2004). 

In case of wound of the epidermis and the dermal tissue, the repair 

mechanisms induce the formation of new layers of epidermal cells. In the wound 

region, during tissue repair, it is possible to detect the presence of several p63 

isoforms, TAp63α, TAp63γ, ΔNp63α and ΔNp63γ, demonstrating that an 

interplay between the main isoforms of the p63 family is needed not only during 

development but also for re-epithelization to occur (Bamberger et al. 2005).  
 

4. Human syndromes associated to p63 mutations 
The phenotype of the KO p63 mice displayed many phenotypic similarities 

with that of human patients affected by syndromes associated to altered 

development of the limbs and skull. These similarities induced the search for p63 

mutation in these human syndromes,  for which the disease gene was unknown.  

Mutations of the p63 gene have been found in at least five distinct human 

malformation syndromes (Fig. 7). These syndromes are characterized by limb 

abnormalities that fit the split hand/foot spectrum and ectodermal dysplasias 

affecting hair, teeth, nails and sweat glands, absence of mammary glands and a 

range of other malformations of the facial skeleton and the eyes.  These 

malformations can be largely explained by assuming that the mutations disrupt 
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normal ectoderm formation and limb malformations are likely due to interferences 

with normal formation of the AER. 

                    
 

Fig. 7: Schematic representation of the localization of p63 natural mutations that 
are associated to different human syndromes (Brunner et al. 2002).	  	  	  

	  

 Ectrodactyly, Ectodermal Dysplasia, and Cleft lip/palate (EEC) syndrome  

The EEC syndrome has been linked to two different chromosomes, 

precisely to the 7q21 (Haberlandt et al. 2001; Tackels-Horne et al. 2001) and  

3q27 (Celli et al. 1999), the same chromosome of p63 gene, loci. Indeed p63 

mutations have been demonstrated in 98% of patients with a classical EEC 

phenotype (Celli et al. 1999; van Bokhoven et al. 2001) and EEC syndrome is 

mainly caused by point mutations in the DBD of the p63 gene (Rinne et al. 2007). 

Mutations in p63-derived EEC patients have been reported in 152 cases. 

These comprise 26 families and 60 sporadic cases (Wessagowit et al. 2000; 

Kosaki et al. 2001; van Bokhoven et al. 2001; Ray et al. 2004; Lehmann et al. 

2005).  

The EEC syndrome, the best known human syndrome including 

ectrodactily, is also characterized by ectodermal dysplasia and clefting of the 

lip/palate (Duijf et al. 2003; Rinne at al. 2006; Rinne et al. 2007). EEC patients 

are invariably characterized by one or more features of ectodermal dysplasia, 
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which can present as defects of hair, skin, nails, teeth and glands. The severity and 

type of the ectodermal features is highly variable, and to some extent dependent 

on the exact nature of the mutation. Only few patients show defects in all of the 

described ectodermal structures. EEC patients occasionally also have mammary 

gland/nipple hypoplasia (14 %) and hypohidrosis (11 %). Furthemore two-thirds 

of these patients display frequently ectrodactyly and syndactyly (43 %). Cleft 

lip/palate is present in about 40% of the EEC patients, mostly as cleft/lip with or 

without cleft/palate (Rinne et al. 2006; Rinne et al. 2007). 

 

Limb Mammary Syndrome (LMS) 

Mutations in LMS patients are located in the N- and C-terminus of the p63 

gene (Rinne et al. 2007). 

The LMS phenotype resembles the EEC phenotype, but the ectodermal 

manifestations are milder (van Bokhoven et al. 1999). A consistent feature of 

LMS patients is the mammary gland and/or nipple hypoplasia. Lacrimal duct 

obstruction and dystrophic nails are frequently observed (59 % and 46 % 

respectively), hypohydrosis and teeth defects are detected in about 30 % but other 

ectodermal defects such as hair and skin defects are rarely detected. About 70% of 

LMS patients have similar limb malformations as in EEC syndrome, and about 

30% orofacial clefting, notably always in form of cleft palate (Rinne et al. 2006; 

Rinne et al. 2007).  

 

Acro-Dermato-Ungual-Lacrimal-Tooth (ADULT) syndrome 

Point mutations in ADULT syndrome patients are located in the ΔNp63 

promoter, in the TA domain and in the p63 DBD (Rinne et al. 2006; Rinne et al. 

2007).  

The ADULT syndrome phenotype is similar to the LMS syndrome 

phenotype, although clear differences can be seen. The main difference is the 

absence of orofacial clefting and the presence of hair and skin defects in the 

ADULT syndrome. Teeth (100 %), skin (93 %) and nail (100%) defects are 

constantly present in ADULT syndrome, but only rarely in LMS patients. Hair 

and lacrimal duct defects (respectively 53 % and 67 %) are observed in ADULT 

patients more frequently than in LMS patients. Freckling has been reported, but 
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cannot be considered to be a differentiating feature of this syndrome (Rinne et al. 

2006; Rinne et al. 2007). 

 

Ankyloblepharon-Ectodermal dysplasia-Clefting (AEC) syndrome 

AEC patients have point mutations in the SAM domain or deletions in the 

SAM or TID domains of p63 (Rinne et al. 2006; Rinne et al. 2007).  

The AEC syndrome phenotype differs from the other conditions mainly by 

the severity of the skin phenotype, the absence of limb malformations and the 

occurrence of eyelids fusion at birth. Approximately 80% of the patients have 

severe skin erosion at birth, which usually recover in the first years of life. The 

eyelid fusion, also called ankyloblepharon, is present in about 45% of AEC 

patients, but only rarely in other p63-associated conditions. The patients display  

also nail and teeth defects, present in more than 80 % patients, and hair defects 

and/or alopecia, present in 94 % of the patients. Occasionally, mammary gland 

hypoplasia and hypohydrosis occurs (both 13 %), whereas lacrimal duct 

obstruction is seen in 50% of affected patients.  Limb malformations are almost 

absent. Ectrodactyly has never been reported, but 25% of patients have only mild 

syndactyly. Cleft palate is present in about 80 % , cleft lip in 44 %  and almost 40 

% of patients have hearing impairment and genito-urinary defects (Rinne et al. 

2006; Rinne et al. 2007).	  

 

Split Hand-Foot Malformation type IV (SHFM-IV) 

Up to now, the 3q27 locus is the only SHFM locus for which the causative 

gene has been identified. Mutations underlying SHFM-IV have been found in the 

p63 gene (Ianakiev et al. 2001; van Bokhoven et al. 2001): 

• R58C, a point mutation in the Trans-Activation domain. 

• A splice site mutation that predicts an amino acid insertion in the DNA 

Binding Domain (3’ss intron 4). 

• K193E and K194E, two missense mutations in the DNA Binding Domain. 

• R280C and R280H,	  two other mutations in the DNA Binding Domain that have 

also been encountered many times in patients with EEC syndrome.  

• Q634X and E639X, two nonsense mutations that predict carboxy-terminal 

truncations. 
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Several mutations involved in SHFM-IV are reported to cause alteration in 

p63 protein trans-activation potential and stability: the mutations Q634X and 

E639X are known to disrupt p63 sumoylation site. p63 protein half-life is 

regulated also by sumoylation and the mutations Q634X and E639X have been 

demonstrated to alter the stability and transcriptional activity of the p63α isoforms 

(Ghioni et al. 2005). Amminoacids K193 and K194 are required for ubiquitin 

conjugation by E3-ubiquitin ligase Itch and naturally occurring mutations in these 

aminoacids also cause more stable p63 protein (Rossi et al. 2006). Possibly, 

SHFM is caused by altered p63 protein turnover with consequent dysregulation of 

p63 downstream target genes (Rinne et al. 2007; Lo Iacono et al. 2008). 

         

        

	  

	  

	  

	  

 

 

 

 

 

 
 
 

 

 

 

 

Fig. 8: Split Hand Foot Malformation examples. In B, a radiograph showing the 
absence of the median radius and the syndactyly (Ianakiev et al. 2000).	  
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5. Role of p63 in response to DNA damage 
Induction of cell cycle arrest  and apoptosis in response to cellular stress is 

the key function to ensure genomic integrity and prevent propagation of genetic 

errors that leads to tumor formation. It has been demonstrated that p63 was 

required for p53-dependent apoptosis in response to DNA-damage (Flores et al. 

2002). 

Upon DNA damage eukaryotic cells activate signaling networks leading to 

cell cycle arrest or apoptosis with c-Abl, a ubiquitously expressed non receptor 

tyrosine kinase,  mediated p53 and p73 protein stabilization. p53 is due to c-Abl 

phosphorylation of MDM2 on Y394 that prevents p53/MDM2 interaction 

blocking MDM2 ability to ubiquitinate/degrade p53 (Puri et al. 2002). c-Abl 

directly phosphorylates p73 on Y99 (Agami et al. 1999) and stabilizing p73 and 

enhancing activation of pro-apoptotic genes. 

Expression of TAp63 induced apoptosis and cell growth arrest (Gressner 

et al. 2005). In mouse oocytes, cisplatin treatment induces c-Abl mediated TAp63 

phosphorylation on a specific tyrosine residues that stabilizes TAp63 promoting 

p63-dependent activation of pro-apoptotic promoters and consequently a massive 

drug induced oocyte death (Gonfloni et al. 2009), supporting a model in which 

signals initiated by DNA double-strand breaks are detected by c-Abl, which, 

through its kinase activity, modulates TAp63 protein activity in oocytes. 

In epidermal tissue upon DNA-damaging induced by treatment with UV 

radiation, cisplatin or adriamycin ΔNp63α transcript levels decreased (Harmes et 

al. 2003). The increased  phosphorylation of ΔNp63α following cellular stress 

mediated p63 ubiquitination and proteasomal degradation (Westfall et al. 2005). 

After DNA-damage induced by treatment with UV radiation p38 MAP-Kinase 

rapidly mediated ΔNp63α phosphorylation, thus leading to the detachment of 

ΔNp63 proteins from p53-dependent promoters and to the induction of apoptosis 

mediated by p53 (Papoutsaki et al. 2005). 

All these findings suggest that TAp63 is a regulator in response to DNA-

damage similar to p53, while the down-regulation of the dominant negative 

ΔNp63 can promote functions of TAp63 and p53 to induce apoptosis in response 

to DNA-damage. 
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6. Role of p63 in cancer  
Despite the high similarity with the p53 tumor suppressor, the role of p63 

in human tumors is still controversial and p63 mutations were not found in many 

kind of tumors analyzed. Rather, an aberrant over-expression of  ΔNp63 was 

found in many epithelial carcinomas, in squamous cell carcinoma (Hibi et al. 

2000) and in Head and Neck Squamous cell carcinoma (HNSCC) (Rocco et al. 

2006), skin, lung and cervix (Nylander et al. 2002). Further it was shown that 

over-expression of ΔNp63α in human cancers maintains keratinocite proliferation 

under conditions that normally induce growth arrest (King et al. 2003). 

ΔNp63α over-expression in squamous carcinoma cells suppressed TAp63-

dependent pro-aptotic program and promoted cell survival (Rocco et al. 2006) and 

p63 knockdown led to TAp73-mediated apoptosis (DeYoung et al. 2006). 

Furthermore an oncogenic property of p63 was shown in HNSCC cells by 

maintaining cell survival. Over-expression of ΔNp63α in HNSCC cells induced 

expression of the cancer stem cell marker CD44, suggesting a role of p63 in the 

regulation of adhesion, metastasis and the cancer stem cell phenotype (Boldrup et 

al. 2007). Elevated p63 in cancers could cause aberrant activation of cell growth 

progression genes, indicating its contributions to cancer initiation and progression 

(Lefkimmiatis et al. 2009). Interestingly p63 over-expression was associated with 

poor prognosis in HNSCC cells (Lo Muzio et al. 2007) while at the same time 

lower expression of p63 was associated with poor prognosis in esophageal 

squamous cell carcinoma (Takahashi at al. 2006). Loss of ΔNp63α expression 

was found in bladder cancer and was associated with increased metastasis (Koga 

et al. 2003). The role of p63 in different cancer types is controversial and p63 

seems to have multiple functions. It is possible that ΔNp63α acts in two different 

ways, promoting early steps in tumorigenesis by protecting cells from growth 

arrest and apoptosis, and at the same time acting as a metastasis suppressor by 

maintaining the epithelial character of cancer cells (Barbieri and Pietenpol 

2006). 

p53-/- and p53+/- mice are highly tumor-prone with the majority of mice 

developing spontaneous tumors by 10 months and 2 years, respectively 

(Donehower et al. 1992; Jacks et al. 1994). The effect of germ-line deficiency of 

p63 in cancer could not be evaluated since mice lacking p63 die few hours after 

birth (Mills et al. 1999; Yang et al. 1999). p63 heterozygous mice (p63+/-), aged 
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for two years, develop malignant lesions with a frequency that is consistently 

higher than normal mice. In addition to that, p63 heterozygous mice (p63+/-) in 

combination with p53 heterozygous mice (p53+/-) lead to a tumor phenotype which 

is more aggressive than the phenotype of heterozygous p53+/- mice, thus 

demonstrating that p63 can take part in tumor suppression (Flores et al. 2005).  

 

7. Regulation of p63 protein expression  
p63 activity is regulated by post-translational modification. Post-

translational modifications have an important role in the regulation of the 

biological activity of a protein because they allow both to extend the range of 

functions of a protein and to monitor the activity and determine the activation or 

inactivation of the protein. 

p63 protein stability is regulated by protein modification such as 

acetylation, phosphorylation, ubiquitylation and sumoylation. It has been reported 

that several distinct mechanisms control p63 protein levels. Proteasome and 

lysosomes have both been found to be involved in p63 protein degradation 

(Watson and Irwin 2006). Many protein modifications and different mechanisms 

are involved in the regulation of the p63 protein expression; the following are 

some of the main mechanisms involved in regulation of p63 protein expression 

levels: 

 

1. The Dlx3 homeodomain protein function as a transcriptional activator 

expressed in superbasal layer of stratified epidermis, ectodermal appendage 

such as tooth and hair follicle, bone and placenta (Hassan et al. 2004). 

Targeted deletion of the Dlx3 in mice gene is lethal because of placental 

defects (Morasso et al. 1999). Dlx3 has a role in the post-translational 

regulation of ΔNp63α protein levels during epidermal differentiation. Raf1 

kinase, essential for epidermal differentiation, can directly interact with Dlx3 

inducing Raf1 kinase phosphorylation at serine 338 (S338); subsequently Raf1 

kinase can bind and directly phosphorylate p63 on threonine 397 (T397) 

thereby targeting the p63 protein for degradation by a proteasome-dependent 

pathway. Dlx3 seems to control ΔNp63α protein levels during differentiation 

of stratified epithelia (Di Costanzo et al. 2008). 
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2. ΔNp63α  proteasomal degradation, in response to genotoxic stress has been 

proposed to involve RACK-1, a scaffold protein containing seven WD-40 

repeats, found in proteins that target substrates for degradation through 

multisubunit E3 ligases, and mediate multiprotein interaction (McCahill et al. 

2002). RACK-1 degrades ΔNp63α protein under both normal and DNA-

damaging conditions. In unstressed situations, ΔNp63α protein are kept stable 

by Stxbp-4, which in turn suppresses RACK-1 activity. Upon DNA-damage, 

Stxbp-4 itself is down-regulated, allowing ΔNp63α to be rapidly destabilized 

(Li et al. 2009). 

 

3. The E3 ubiquitin ligase Itch/AIP4 and Nedd4 have both been found to be 

involved in the control of p63 steady state levels. Itch/AIP4, a HECT-type E3-

ubiquitin protein ligase important for the regulation of murine epithelia and 

hematopoietic cell growth, binds to p63 and promotes p63 degradation by both 

proteasomal and lysosomial pathways (Rossi et al. 2006), whereas Nedd4, an 

other HECT-type E3 ubiquitin ligase, is a protein promoting ΔNp63α 

ubiquitination and degradation both in cell culture and in zebrafish embryos.  

 

4. The p63 K637 residue is the the target for SUMO-1 (Small Ubiquitin-like 

MOdifier), a small protein that is covalently attached to substrate proteins via 

an isopeptide bond between a C-terminal glycine and a lysine residue in the 

substrate, to modify their protein function. The E1 activating and the E2 

conjugation enzymes, involved in sumoylation, are highly related to the same 

enzymes involved in ubiquitination, but if in the ubiquitination system have 

been identified many E2 conjugation enzymes, in the SUMO-1 system only 

one E2 conjugation enzymes is known, Ubc9 (Seeler et al. 2003). In contrast to 

ubiquitination, SUMOylation is known to have different effect: regulation of 

cellular localization, trascriptional activation and inhibition, modification of 

histones, modulation of protein involved in DNA repair and protein 

stabilization. The mechanism through which SUMO-1 protects proteins from 

degradation is blocking their ubiquitination by competing for the same lysine 

residues (Gill 2004). SUMO-1 acts as a negative regulator of p63α leading to 

proteasomal degradation of the ΔNp63α isoform. Interestingly, the p63 
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mutation E639X, related to the SHFM-IV, falls within SUMO-1 site, 

disrupting it and affecting the protein stability of p63 (Ghioni et al. 2005).  

 

5. As previously said, up-regulation of ΔNp63α might contribute to 

tumorigenesis by conferring proliferative potential to cancer cells through 

trans-activation of target genes necessary for cell division (Sbisa et al. 2006). 

These observations suggest that ΔNp63α is a positive regulator of genes 

necessary for cell cycle progression like cyclins, and it is a negative regulator 

of genes related to cell cycle inhibition. ΔNp63α and TAp73 have also been 

reported to be involved in the cellular response to DNA-damage induced by 

UV light and gamma radiation. ΔNp63α protein levels decrease after UV 

treatment, with UV treatment inducing a significant alteration in the 

phosphorylation status of the p63 protein (Westfall et al. 2005). The decrease 

of ΔNp63α protein levels is essential for the apoptotic response: in fact 

ΔNp63α has anti-apoptotic activities. On the other hand, TAp73 protein levels 

increase after UV treatment, and the stabilization of p73 is required for 

activation of the p73-dependent apoptotic response to DNA damage. Recently 

it has been shown that stabilization of p73, upon UV-induced DNA damage, is 

dependent on the phosphorylation on tyrosine 99 (Y99) by c-Abl, a 

ubiquitously expressed non receptor tyrosine kinase that is potently activated in 

response to DNA damage (Agami et al 1999; Sanchez-Prieto et al 2002). Also 

p63 seems to be a target of c-Abl: in fact Gleevec, an inhibitor of the tyrosine 

kinase activity of c-Abl used in the treatment of chronic myeloid leukaemia, 

down-regulates the expression of ΔNp63α in a dose dependent-manner under 

both normal and DNA-damaging conditions. This regulation can be explained 

by Gleevec’s inhibition of c-Abl, which in turns could result in ΔNp63α 

destabilization (Ongkeko et al. 2006). 

 

6. Several kinase are known to phosphorylate p53 after UV irradiation including 

p38, member of the MAP-Kinase family (Buschmann et al. 2000). 

ΔNp63 proteins, largely expressed in proliferating keratinocytes, may have an 

antagonistic function toward p53 (Yang et al. 1998). It has been demonstrated 

that upon UV irradiation, the down-regulation and the functional inactivation 

of ΔNp63 proteins is crucial to allow the efficient transcription of p53 
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apoptotic target genes. This mechanism involved the phosphorylation of 

ΔNp63 proteins by p38 MAP-Kinase. ΔNp63 proteins is rapidly 

phopshorylated by p38 MAP-Kinase after apoptotic doses of UV irradiation, 

the consequences of UV-induced ΔNp63 proteins phosphorylation is the 

detachment of ΔNp63 proteins from p53-dependent promoters and the transient 

down-regulation of ΔNp63 (Papoutsaki et al. 2005). 

 

7. It's well accepted that acetylation of p53 is indispensable for its transcriptional 

activation. p300 is a transcriptional co-activator that function as integrator of 

numerous signalling pathways and is utilized by many DNA-binding proteins 

to activate transcription (Barlev et al. 2001).  Indeed, the transcriptional co-

activator p300 is known to mediated acetylation of p53 and p73 and tune their 

apoptotic functions (Mantovani et al. 2004). It has been demonstrated that the 

transcriptional co-activator p300 act also as a regulator of the transcriptional 

factor  p63.  It has been demonstrated that the transcriptional co-activator p300 

acetylates TAp63γ isoform but doesn’t acetylated ΔNp63γ isoform. Similary to 

p73 the transcriptional co-activator p300 binds the N-terminal domain of 

TAp63γ and TAp63γ binds to the N-terminus of the transcriptional co-activator 

p300. Moreover the transcriptional co-activator p300 stimulated the 

transcriptional activity of TAp63γ and subsequently the transcriptional co-

activator p300 stimulates the induction of p21, a cyclin-dependent kinase 

inhibitor, whose function is to regulate the cell cycle progression at G1, by 

TAp63γ isoform and consequently enhancing TAp63γ dependent G1 arrest 

(MacPartlin et al. 2005). The transcriptional co-activator p300 regulates p63 

dependent transcription of p21 suggesting that this regulation may be involved 

in cell differentiation. 

 

8. p53, beside its effects on the modulation of p63 transcription (Harmes et al. 

2003), plays an important role on the control of p63 stability. p53 is able to 

bind p63 in the DBD, in the absence of DNA, and to promote p63 degradation 

through Caspase-1-mediated pathway. The physical interaction between p53 

and p63 is essential for the p63 protein level down-regulation mediated by p53, 

and no further p63 post-translational modifications are needed to observe its 
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caspase-mediated degradation (Ratovitsky et al. 2001). The ability of p53 to 

mediate ΔNp63 degradation may balance the oncogenic and growth stimulating 

activity of p63 in tumorigenesis during apoptosis or cell cycle arrest.  

 

All these distinct mechanisms seem to play a critical role in regulating the 

biological activity of p63 by promoting its stabilization, degradation and 

enhancing p63 transcriptional activity. The regulation of p63 protein expression 

influences the biological activity of p63 in both physiological and pathological 

contexts.  

The aim of this thesis was to analyze different aspects of the regulation of 

p63 protein expression in normal condition through the analysis of the molecular 

mechanisms exerted by different proteins like MDM2, Fbw7, Hipk2 and TRIM8, 

and then to various stimuli, such as DNA-damage induced by UV treatment and 

DNA-damage induced by treatment with genotoxic drugs. 

 

 

 

 

 

 

 



21	  
	  

RESULTS AND 

DISCUSSION 

 

 

 

 

 

 

 

 

 
 



22	  
	  

MDM2 and Fbw7 cooperate to induce p63 protein degradation 

following DNA damage and cell differentiation 
Francesco Galli, Mariangela Rossi, Yuri D’Alessandra, Marco De Simone, 

Teresa Lopardo, Ygal Haupt, Osnat Alseich-Bartok, Shira Anzi, Eitan Shaulian, 

Viola Calabrò, Girolama La Mantia and Luisa Guerrini; (2010) J Cell Science 

123, 2423-2433. 

 
In the first part of my PhD thesis we have identified a new regulatory 

pathway involved in the regulation of the p63 protein expression. We have 

demonstrated that MDM2 and Fbw7 cooperate in regulating ΔNp63 protein 

stability during cellular differentiation and in response to DNA-damage. 

MDM2 (Murine Double Minute clone 2) is one of the most important 

regulators of p53. In normal cells the MDM2 protein binds to the p53 protein and 

maintains p53 at low levels by increasing its susceptibility to degradation by the 

26S proteasome. In fact, MDM2 binds to the N-terminus of p53, thus blocking its 

transactivation potential, and acts as a ubiquitin ligase, triggering p53’s nuclear 

export and ubiquitin-mediated degradation (Momand et al. 2000).  

The Fbw7 protein is an E3 ubiquitin ligase that controls the expression of 

central regulators of cell cycle including cyclin E, Myc, Jun, Aurora A and Notch 

and it has an essential role for preservation of genomic stability and prevention of 

tumor formation. Mutations of the Fbw7 gene are associated to a wide spectrum 

of human cancers suggesting a onco-suppressor role for Fbw7. The existence of 

three Fbw7 isoforms with different subcellular localization and with multiple 

Fbw7 substrates protoncogenes, has made understanding of the mechanism of 

tumor suppression by Fbw7 complex and not completely understood yet. 

We demonstrated that MDM2 binds ΔNp63α in the nucleus promoting its 

translocation to the cytoplasm and that the MDM2 nuclear localization signal is 

required for ΔNp63α nuclear export and subsequent degradation, while the RING-

finger domain of MDM2 is not required to promote ΔNp63α export. We found 

that in the cytoplasm p63 is targeted for degradation by the Fbw7 E3-ubiquitin 

ligase and that an efficient degradation of ΔNp63α by Fbw7 requires the GSK3 

kinase activity.  
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In order to clarify the physiological contexts in which the MDM2-Fbw7 

pathway is regulating ΔNp63α protein levels, we performed silencing of Fbw7 

and MDM2 and demonstrated that degradation of endogenous ΔNp63α in cells 

exposed to UV irradiation, adriamycin or upon keratinocyte differentiation is 

dependent on MDM2 or Fbw7 expression. 

Our data suggest that both MDM2 and Fbw7 cooperate in order to regulate 

ΔNp63α levels during epithelia differentiation. Indeed in epithelia, during 

keratinocytes differentiation down-regulation of ΔNp63α, that supports the 

proliferative potential of basal cells, is required (Koster et al. 2004). 

ΔNp63α has been shown to be degraded upon exposure of cells to UV and 

adriamycin (Papoutasaky et al. 2005). DNA-damaging agents has opposite effect 

on ΔNp63α and p53; down-regulation of ΔNp63α while activating p53 

(Petitijean et al. 2006). It has been proposed that the ΔNp63α oncogenic role is 

based on its ability to counteract the p53 transcriptional response to DNA-

damage, by competing for DNA binding to common target promoters (Murray-

Zmijewski et al. 2006). 

We have demonstrated that indeed the MDM2-Fbw7 pathway contributes 

to reduce the endogenous or transfected ΔNp63α protein levels when cells are 

treated with DNA-damaging agents. 

 The natural mutation of Fbw7 falls within the F-box domain, and we have 

shown that the integrity of this domain is essential to promote 

ΔNp63α  degradation and ubiquitilatyon. The over-expression of ΔNp63α seems 

to be involved in the genesis and progression or tumors and this hypothesis is 

supported by the finding of ΔNp63α  over-expression in many epithelial 

carcinomas, in squamous cell carcinoma (Hibi et al. 2000) and in Head and Neck 

Squamous cell carcinoma (HNSCC) (Rocco et al. 2006), skin, lung and cervix 

(Nylander et al. 2002). Since the molecular mechanisms involved in ΔNp63 over-

expression are still unknown, our data suggest to study in the future the 

correlation between ΔNp63α over-expression with Fbw7 mutations. 
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Induction of cell cycle arrest by the dual activity of TRIM8 on p53 

and ΔNp63 

Mariano Caratozzolo, Lucia Micale, Teresa Lopardo, Francesco Galli, Anna 

Maria D’Erchia, Luisa Guerrini, Graziano Pesole, Elisabetta Sbisà, Giuseppe 

Merla and Apollonia Tullo; Under revision, on Molecular Cell. 

 

In the second part of my PhD thesis we described an unknown function for 

the human TRIM8 gene, a member of TRIpartite Motif protein (TRIM) family, as 

a key node necessary to enhance p53 oncosuppressor activity and, at the same 

time, to down-modulate oncogenic ΔNp63α activity.  

p53 and p63 play a crucial role in controlling cell proliferation and 

apoptosis. In order to avoid malignant transformation,  p53 and p63 stability and 

activities are modulated by post-translational modifications and protein-protein 

interaction (Alsafadi et al. 2009). MDM2 is the main regulator of p53 turn-over 

(Li et al.2003) but other modulators are involved in control of p53 stability and 

functionality (Le Cam et al. 2006; Kruse et al. 2009).  

Our data revealed that TRIM8 over-expression induces MDM2 

degradation, which results in increased p53 protein levels and activity. 

Interestingly Chromatin ImmunoPrecipitation (ChIP) analysis showed that p53 

and p63 bind in vivo TRIM8 in the intron-1 of the TRIM8 gene. Moreover p53 

and p63 over-expression resulted in increased TRIM8 mRNA levels. 

We investigated the effect of TRIM8 over-expression on the oncogenic 

ΔNp63α. TRIM8 over-expression resulted in ΔNp63α degradation while the 

mutants ΔNp63α K494R/K505R was resistant to TRIM8 over-expression 

suggesting that K494 and K505 are involved in ΔNp63α degradation upon 

TRIM8 overesxpression. Interestingly, the data showed that TRIM8 has a new 

dual function, increasing p53 protein levels and activity by MDM2 degradation 

and inducing  ΔNp63α degradation through the proteasome pathway by the E3-

ligase activity of the ring domain of TRIM8.  

All together these data show a new regulatory pathway that control at the 

same time the activities and the expression of both p53 and p63, indicating 
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TRIM8 as an interesting new therapeutic target able to simultaneously impair 

 ΔNp63α oncogenic and enhance p53 oncosuppressor activities. 

 

Hipk2 phosphorylates ΔNp63α  and promotes its degradation in 

response to DNA damage 
Chiara Lazzari, Andrea Prodosmo, Francesca Siepi, Cinzia Rinaldo, Francesco 

Galli, Mariapia Gentileschi, Antonio Costanzo, Ada Sacchi, Luisa Guerrini and 

Silvia Soddu; Under revision, on Oncogene. 

 

During the last part of my PhD thesis we have clarified the mechanisms 

regulating p63 protein stability involved in the response to several genotoxic 

drugs. 

Hipk2 (Homeodomain-Interacting Protein Kinase 2), a Ser/Thr kinase 

identified as co-repressor for homeodomain transcription factor (Kim et al. 1998), 

play a role in cell response to genotoxic agents and to DNA damage, and 

contributes to induce cell cycle arrest and apoptosis. In response to lethal doses of 

UV, ionizing radiation, or different anticancer drugs, such as cisplatin, roscovitine 

and doxorubicin the most characterized function of Hipk2 is to phosphorylate p53 

at Serine 46, an apoptosis-specific p53 post-translational modification. 

The Hipk2 activity on ΔNp63α promotes its degradation in response to 

DNA damage. A phsophorylation-dependent pro-degradation Hipk2 function has 

been reported for c-Myb (Kanei-Ishii et al. 2004) suggesting that it could be a 

normal mechanism to destabilize pro-survival factors. The Hipk2 destabilizing 

activity on ΔNp63α we have described upon treatment with different anticancer 

drugs, independently from the TP53 gene status, further support the concept that 

Hipk2 contribute to DNA-damage response in p53 dependent and independent 

manners. We demonstrated that Hipk2, in response to genotoxic drugs, 

phosphorylate ΔNp63α on a specific residue, threonine 397, and this specific 

modification contributes to Hipk2-induced degradation of ΔNp63α and that the 

ΔNp63αT397A mutant, which it is not phosphorylated, is not degraded in the face 

either of Hipk2 over-expression or doxorubicin treatment.  

All together these data suggest a dual role for Hipk2, activator for pro-

apoptotic factors, like p53, and inhibitor for anti-apoptotic factor, like ΔNp63α. 
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Furthermore all these consideration suggest a key role for Hipk2 in tumorigenicity 

and allow to suppose that tumor-associated inhibition of Hipk2 activity might 

strongly contribute to chemoresistance in addition to much better characterized 

events, such as p53 mutation/inactivation or ΔNp63 over-expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27	  
	  

GENERAL 

DISCUSSION 

 

 

 

 

 

 

 

 

 
 



28	  
	  

One way to regulate protein functions is by post-translational modification. 

Post-translational modifications have an important role in the regulation of 

biological activity of the protein because they allow both to extend the range of 

functions of a protein and to monitor the activity and determine the activation or 

inactivation of a protein. The most common protein post-translational 

modifications include ubiquitylation, phosphorylation and acetylation play an 

essential role in cellular functions such as cellular differentiation, apoptosis, DNA 

repair, antigen processing, and stress response.	   Under particular conditions 

abnormal post-translational modifications were found in many diseases like: 

Alzheimer’s disease, Parkinson’s disease, induction of different cancer and others. 

These abnormal post-translational modifications are permanent and can cause loss 

or alteration of protein function by changing enzyme activities or capacity 

aggregation (Stadtman and Levine 2000; Shacter 2000). 

p63 protein stability is regulated by different protein modifications such  

phosphorylation, ubiquitylation and sumoylation. p63 is known to be degraded by 

ubiquitin-mediated proteasomal degradation, the E3 ubiquitin ligase NEDD4-like, 

ubiquitin protein ligase Itch and ubiquitin-like protein SUMO-1 have been shown 

to directly interact with p63 and regulate p63 protein stability (Ghioni et al. 2005; 

Rossi at al. 2006; Rossi et al. 2006) suggest the importance of regulating p63 to 

tune its biological activity. 

During my PhD thesis we found three novel and distinct mechanisms that 

are involved in the regulation of the p63 protein levels; all these mechanisms 

induce p63 degradation. We demonstrated that these mechanisms are relevant in 

different physiological contexts and that they are involved in the regulation of p63 

biological function.  

1. MDM2-Fbw7 pathway contribute to reduce ΔNp63α protein levels during 

keratinocytes differentiation and upon DNA-damage  induced by UV exposure 

and adriamycin treatment.  

2. TRIM8 plays a role in enhancing p53 anti-oncogenic activity and at the same 

time down-modulate oncogenic ΔNp63α activity.  

3. Hipk2 phosphorylates and promotes proteasomal degradation of ΔNp63α to 

enable an effective DNA-damage response induced by genotoxic drugs. 
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All these evidences indicate that regulation of p63 protein stability is a key 

mechanism to control p63 activities, in particular during epithelia differentiation 

and in response to genotoxic agents. 

The knowledge and the identification of the molecular mechanisms 

governing p63 regulation under physiological context might be fundamental for 

understanding the pathogenesis of human syndromes associated to p63 mutations 

and the mechanism by which p63 promotes disease development.   

We hope that future studies focusing on the mechanisms involved in p63 

protein regulation might increase our knowledge on the p63 role in tumorigenicity 

and in response to anti-cancer therapy to improve anti-cancer therapies.  
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