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Introduction

Economic growth studies the growth of the per-capita GDP observed in modern economies

after the industrial revolution. Such an event marked the end of the so-called Malthusian era,

characterized by stagnation and high population growth, and the start of the Solowian era,

characterized instead by consistent output growth and low demographic change. The explana-

tion and investigation of such a sudden break in recent economic history is not among the goals

of economic growth theory (a new branch of this field, called unified growth theory, has recently

arisen, with the aim of determining the causes and reasons which led to the switch between

these two antithetic eras; see for example Galor and Weil (2000)). Standard growth theory

wonders mainly why two different countries, with similar endowments and initial conditions,

dramatically differ in their later growth performances (see for example Lucas (1993)). Among

possible explanations, economists emphasize the role played by education and innovation, as

the main source of discrepancies among countries. Another explanation, not often analyzed by

growth economists, is the presence of indeterminate equilibria. In fact, we can define as ”inde-

terminate a situation in which there exists a continuum of distinct equilibrium paths sharing a

common initial condition” (Boldrin and Rustichini (1994)). If such a condition is verified, the

economic dynamics is not unique in the sense that multiple paths lead the same economy to

converge towards its long-run equilibrium. In growth theory, the possibility of indeterminacy

has never played a crucial role in describing different developing trajectories, because in stan-

dard models such a situation can be verified only in the presence of increasing returns to scale.

In this work, especially in chapter 3, we will show how even ruling out the strong assumption

of increasing returns to scale, equilibria in multi-sector growth models can be indeterminate

(in chapter 2 we show that this can happen by considering also the dynamics of population,

while in chapter 3 by introducing endogenous technical progress). This is just a first step to

underline the relationship between growth and fluctuations, and to promote the joint analysis

of such issues.

This thesis analyzes economic growth and how this is related to different issues, namely

technical progress, population change and environment. It studies each of these issues in a

separate paper. The choice of these issues has been driven by their growing importance in the
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analysis of the development process of modern economies. Technological progress, jointly with

the accumulation of human capital, is one of the most relevant causes of the consistent growth

showed in the last century by industrialized countries; therefore, it is important to understand

what are its features in order to promote further technical improvements. Demographic growth

has dramatically changed during and after the transition from stagnation to growth (happened

contemporaneously to the industrial revolution): fertility and mortality rates have dropped

and many economies now show a rate of population growth just over the replacement one;

studying the implications of population change for economic growth can be really important in

order to understand whether population policies can be necessary or not for the economy. The

environment is an important source of welfare services to people and just in the last decades

such a fact has been widely recognized: this is due to the fact that as the economy reaches a

certain level of development, its agents feel the importance of some aspects which in a previous

phase they did not care about; human activity is the main source of environment degradation

and an increasing need for the policy makers to understand how regulating it has arisen. As

it may be clear, these topics are crucially interrelated: population growth affects technical

progress (through the number of researchers employed in R&D activity) and the environment

(through the necessity of satisfying the needs of a larger population, in terms of consumption

demand and waste production), while technical progress affects the environment (switching from

polluting to clean technologies such an effect can crucially change). However, such aspects are

not analyzed in the present work, mainly for problems of tractability and time, but these issues

are particularly important and interesting, therefore they are left for further studies.

The first chapter analyzes the relationship between environment, growth and population. It

combines two different issues: that on the linkages between population and economic growth,

and that on linkage between sustainable development and population. The literature on the

relationship between economic performance and population growth has really ancient roots,

but a unique view has not arisen yet. The empirical literature is critical on the existence of

a relationship between population growth and economic (per-capita GDP) growth. The main

conclusion of this theory concerns the presence of a different impact varying from country to

country. Kelly and Schmidt (1995) conclude that the impact of population on the economy de-

pends on the level of economic development: the relationship between population and economic

growth is non-monotonic and if so, it is non-linear. The literature on sustainable development

is based on the recognition that developments of human activity in the last centuries has dra-

matically changed the planet’s climate, the biological mix and the natural resources. The main

reasons of such impacts are related to the economy and population. Economic production uses

energy, which is mainly obtained by fossil fuels, leading to carbon emissions. The emissions

generated in the past century have constantly grown, irreversibly altering the planet climate.
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Population has also constantly grown, leading to higher and higher demand for production (of

food and other goods), waste and space, increasing the use of natural resources. The first defi-

nition of sustainable development is due to the Brundtland Commission (1997), which defines

sustainable development as the ”[development that] satisfies the needs of the present without

compromising the ability of future generations to meet their own needs”. Standard macroeco-

nomic theory adopt discounted total utilitarianism as a welfare criterion, but it attaches less

weight to future generations, therefore it is not useful for the analysis of the sustainable mat-

ter. Different approaches have been proposed in the literature to deal with it: some suggest to

modify the welfare criterion emphasizing the importance of asymptotic behavior (Chichilnisky

et al. (1995); and Chichilnisky (1997)), while others suggest to impose some additional con-

straints to the optimization problem in order to ensure sustainability (Arrow et al. (2004); and

Pezzey (1997)). Which is the most convenient approach in order to deal with sustainability is

still an open question. We look for some minimal requirements for sustainability, combining

these approaches: following Arrow et at. (2004) and Pezzey (1997), we try to impose some

constraints to the standard optimal control problem in order to ensure sustainability, weaken-

ing their definition; following Chichilnisky et al. (1995) and Chichilnisky (1997), we rely on

the importance of asymptotic behavior. We define a path as sustainable if it implies (strictly)

positive values of all the economic variables, both in finite and infinite time.

The paper analyzes a growth model driven by natural resources and without production,

where agents have jointly to determine consumption and fertility, taking into account the effect

of their decisions on the dynamics of natural resources. We look for the existence of sustainable

path, adopting the most optimistic view on natural resources (they ensure endogenous growth)

and the weakest definition of sustainable path (all variables positive). In this framework the

expected outcome is that sustainable paths exist. However, we show that this is not always

true. In fact, even if the renewal capacity of natural resources is unbounded, not always

a sustainable path, where both population and natural resources coexist, can be found: it

depends on the stationary fertility level (whether it is higher of the mortality rate or not). With

respect to the sustainability notions of Arrow et al. (2004) and Pezzey (1997), our definition of

sustainability has the advantage of discriminating among different paths, labeling some of them

as sustainable and some others as not (according to Arrow et al., no path will be sustainable in

our model while according to Pezzey, all paths will be). Moreover, we show that the planner,

through policies oriented to improve public attention to environment protection or to modify

the intensity of the dilution effect, can affect the growth rate of population and of the overall

economy: this is an indirect effect working through the interaction between fertility, population

and economic growth. In particular, if the stationary fertility is lower than the mortality rate,

public intervention can be necessary in order to address the economy along a sustainable path.
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This can be simply done through policies affecting the fertility or the mortality rate.

The second chapter studies the impact of population growth on the economy. In the litera-

ture of optimal growth, most of the papers assume population growth is constant and exponen-

tial, implying that population (and labor force) asymptotically approaches infinity. However,

most populations are constrained by limitations on resources, at least in the short run, and

none is unconstrained forever. Several studies support the idea that human population growth

is decreasing and tending towards zero (as Day (1996)): recently such a result has been used to

claim that population dynamics follows a logistic law. Really recently, some papers try to relax

the assumption of exponential population growth, studying the implications of other popula-

tion growth functions. However, they also relax an important standard assumption of optimal

growth theory, namely the social welfare function is founded on the Benthamite criterion. This

criterion says that total welfare is the sum of per-capita welfare over population (the product

between population size and average welfare). All the papers dealing with non exponential

population growth instead assume the social welfare function is based on the Millian criterion:

total welfare equals average welfare or per-capita utility. Such a criterion has been used in order

to limit population size, but in an optimal growth framework this seems somehow reductive.

The ethical implications of both criteria are discussed in Marsiglio (2010): for example, it is

well known that the Benthamite criterion can lead to what Parfit (1984) defined as a repugnant

conclusion.

This paper studies the impact of different population growth functions on optimal growth

models, in which the social welfare function is based on the Benthamite criterion (or total

utilitarianism) or the Millian one (average utilitarianism), according to the degree of agents’

altruism. We analyze a Uzawa (1965) - Lucas (1988) type model and show that a unique

non-trivial equilibrium exists and the economy converges towards it along a saddle path, in-

dependently of the shape of the population change function. What is affected by its shape

is the dimension of the stable manifold, which can be one or two, and the timing when the

equilibrium is reached, which can happen in finite or infinite time. It shows that if population

growth shows some zeros, as in the logistic case, both the stable and unstable manifolds result

to be two-dimensional loci and the steady state is only asymptotically approached. Notice

that in this case we have equilibrium indeterminacy and multiple converging trajectories exist.

Moreover, if population growth shows some zeros the choice of the Benthamite rather than the

Millian criterion is completely irrelevant for the outcome of the model: even if the transitional

dynamics changes adopting one or the other criterion, this difference completely vanishes as the

equilibrium is approached. The paper also studies the situation in which population is subject

to random shock driven by a geometric Brownian motion and shows that a closed form solution

can be found if the altruism is impure, and in particular if it coincide with the capital share
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and the inverse of the intertemporal elasticity of substitution.

The third chapter analyzes endogenous technical progress in a multi sector growth model.

In the literature, during the last fifty years different variables have been identified as possible

sources of economic growth. Solow (1956) and others after him identified the accumulation of

physical capital as crucial in explaining growing economies. In Lucas’ (1988) view, instead,

the evolution of human capital is the key feature driving growth in the long run. Recently,

a literature stream, led mainly by Romer (1986, 1990), has started considering ideas as the

relevant engine of growth. Ideas-based growth models assume that the creation of new ideas

is the source of endogenous growth and in order to so, some kind of linearities have been

introduced in the technology production function (see Jones (2005) for a survey). For example,

Romer (1990) assumes creation of ideas is linear both in the stock of ideas and human capital

employed in research. However, empirical works suggest there are significant decreasing returns

of ideas at the aggregate level. Therefore, we relax this linearity assumption and consider

that knowledge is created according to neoclassical technology, and we rely on Lucas view that

human capital is force driven long-run growth.

This paper combines these different approaches in a unified model, and the natural can-

didate for this goal seems to be the Uzawa(1965)-Luca(1988) growth model. It presents an

endogenous growth model driven by human capital, where human capital can be allocated

across three sectors: the final one, the educational sector and that devoted to accumulating

technological capital (in the form of knowledge or ideas). In the model, labor augmenting

technical progress is endogenous and this enriches the transitional dynamics of the economy.

With respect to the Uzawa-Lucas model, we introduce an additional sector, that creating new

ideas, and we let human capital to be endogenously allocated across three sectors. With respect

to ideas-based growth models, instead, we assume knowledge is produced according to a neo-

classical technology, combining ideas and human capital. Such an assumption is motivated by

empirical works showing the existence of significant decreasing returns in the creation of ideas

at the aggregate level (as Kortum (1993); and Pessoa (2005)) and of the weak relationship

between some inputs of the knowledge production process (as the number of researchers) and

the total factor productivity growth rate (as Jones (2002)). Under some general conditions,

the economy converges towards its equilibrium along a form of generalized saddle path, along

which both the stable arm and the unstable manifold are multidimensional. This means that

the equilibrium is indeterminate: there exists a continuum of path satisfying the initial condi-

tions and converging to equilibrium. The paper also studies through numerical examples the

resulting optimal allocation of human capital in steady state. Under general parameter values,

the highest share of human capital is devoted to creation of new human capital, and the lowest

share is allocated to knowledge production. Such an outcome is clear: the impact of human
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capital is more important in the educational sector, since it is the growth driven force, and

in the physical one, since it produces the consumable good, which is the argument of agents’

utility function, while it is lower in the technological sector. This ranking is clearly reflected

by the optimal allocation of resources.

As it may seem clear from this quick outlook of this work, the issues tackled in this thesis are

crucially interrelated. Technical progress, demography and environment are different aspects

of the economy which should be jointly analyzed in order to allow us to understand the role of

public intervention. In fact, whether and which policies are needed to promote growth is still

not clear from the separate analysis of these aspects. This gives rise to the necessity of further

investigations of these issues and their mutual implications. This requires time and resources,

but an effort to fully answer the open questions is necessary, given the great importance these

topics have for the development possibilities of modern economies. This is left for future research

and it is currently on top of my personal research agenda.
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Chapter 1

Population Change and Sustainable

Development

This paper1 investigates the relationship between population growth and economic growth, through

the study of fertility choices and their effects on natural resources. It aims at analyzing the interactions

between endogenous fertility choices and the environment and their link to the sustainable matter.

We analyze a growth model driven by natural resources and without production, where agents have

jointly to determine consumption and fertility, taking into account the effects of their decisions on the

dynamics of natural resources. We adopt the most optimistic view on natural capital (it generates

endogenous growth) and the weakest notion of sustainable paths (all variables are positive): in such

a framework we expect that sustainable paths exist. We instead show that this is not always true. In

fact, even if the renewal capacity of natural resources is unbounded, not always a sustainable path can

be found: this depends on the difference between the stationary fertility rate and the mortality rate.

If the stationary fertility is lower than the mortality rate a sustainable path will not be found, and in

such a case public intervention is necessary in order to address the economy along a sustainable path.

This can be simply done through policies affecting public attention to environmental protection or the

intensity of the dilution effect.

Keywords: Economic Growth, Sustainability, Intertemporal Welfare, Natural Resources, Population

Change

JEL Classification: O40, O41, J13, Q20, Q56

1I am grateful to Davide La Torre and Marzio Galeotti for insightful discussions and useful advices. I thank

the participants of the seminar held at the University of Milan (Ph.D. student seminar, November 2009) and

of the conference held in Bali (2nd Annual Conference on Globalization, Sustainability and Development, April

2010) for helpful comments and suggestions
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1.1 Introduction

The issue of the relationship between population and economic growth has really ancient roots

in the economic literature: Adam Smith and Malthus were among the first discussing the

importance of controlling population growth in order to promote economic performance. After

them, several theoretical and empirical studies investigated the relationship between population

change and economic growth both from the economic and the demographic viewpoint, but a

shared view has not arisen yet. In fact, as Bloom et al. (2003) summarize: ”...Though countries

with rapidly growing populations tend to have more slowly growing economies..., this negative

correlation typically disappears (or even reverses direction) once other factors... are taken into

account”. Three approaches have been proposed in order to study the issue: an optimistic,

a pessimistic and a neutral view2 (see Bloom et al., 2003). The most probably spread is the

pessimistic one (Solow (1956), Becker and Barro (1988) and Barro and Becker (1989)) and sees

population as a threat for growth. This can be due to two different reasons: if the economy

shows fixed resources and no sources of technical progress, in the long-run the (food) production

activity will not be able to satisfy the pressure of population growth, leading per-capita resources

to fall below a minimal subsistence level (Malthus, 1798); if the economy instead shows rapid

population growth, then a large share of investment will be devoted to satisfy the needs of the

increasing population (”investment-diversion effect” - Kelley, 1988), rather than to increase

per-capita capital endowments. The proponents of this view base their argument on the idea

that an increase in the population size leads to a dilution of available resources.

The topic of sustainable growth, instead, is a recent and growing issue in the economic

growth literature. The possibility that deterioration of environmental quality, in particular

caused by pollution, could inhibit economic growth was firstly suggested in the report to the

Club of Rome entitled ’Limits to Growth’ by Meadows et al. (Meadows et al., 1972). The first

recognition of the issue at international level was the creation by the UN General Assembly

in 1985 of the Commission for Sustainable Development, chaired by the Prime Minister of

Norway, Mrs Brundtland. The commission’s report ’Our Common Future’ tried to emphasize

that environmental protection is essential for economic development since the environment is

an essential ”factor of production” and source of important welfare services to people, even

more in poor countries than in wealthy countries (World Commission on Environment and

Development, 1987). There is wide agreement on the fact that sustainable development involves

2The optimistic view (Kuznets, 1960 and 1967, and Boserup, 1989; most recent analysis can be found in

Jones, 2001, and Tamura, 2002) considers population as an important input to produce knowledge: the higher

the population, the higher the probability new Isaac Newton were born. The neutral view (Bloom et al., 2003)

instead has empirical foundation: there exists little cross-country evidence that population growth might either

slow down or encourage economic growth
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an integrated approach to economic, social and environmental processes; however, until now, the

attention has been mainly focalized on the environmental and economic dimensions, addressing

the social one (which can be mostly identified in the demographic one) only to a secondary

role. In the current world, facing the uncertainties concerning the future of earth climate and

environment, it is important to understand how finding a sustainable development path, where

production, population and resources coexist without leading to an economic collapse. Such a

situation in fact is not to be considered as unreal, as history can and should teach us. Typical

examples are the collapse of the classical Maya civilization in the ninth century (Demarest,

2004), the dramatic decline of the Easter Island society (Flenley and Bahn, 2003) and the

complete extinction of the Viking’s colonies of Greenland (Diamond, 2005). However, what

sustainable development really means is not clear: several definitions have been proposed and

each of them underline different aspects of the matter; someone is too strong and someone

else is too weak. The introduction of a clear notion of sustainability is still an open question

and we propose an additional definition, which aim is at introducing minimal requirements for

sustainability.

Population growth, as firstly Malthus (1798) noticed, is an important factor of environ-

ment depletion: consumption activities deteriorate environment and more people exert higher

pressure on environmental stock. Therefore, since the interaction between natural resources

and population can be really important, the aim of this paper is to build a bridge between

these two different kinds of literature. In fact, economic growth can be considered the main

goal of current economies: however, its link with population dynamics and natural resources

has often been underestimated. Since there is still not a shared view on the relationship be-

tween population and economics (population growth is an important factor of environment

depletion and environmental assets have a fundamental role for economic development), the

interaction between these three factors deserves particular attention. Following Chinchilnisky

et al. (1995), we analyze the problem of sustainability studying an optimal growth model,

where environment is represented by the stock of natural resources. We therefore assume there

exist a one to one correspondence between environment and natural resources. With respect to

Chinchilnisky et al. (1995), we rely on discounted utilitarianism as a welfare criterion and we

introduce population change and its linkage with environment (natural resources). Our paper

is strictly related to Nerlove (1991), who studies the mutual relationship between population

dynamics and the evolution of natural resources. With respect to him, we adopt an optimal

growth framework (and not an OLG model) since sustainability issues have to be dealt with a

long horizon approach; moreover, we explicitly model the population-environment relationship

and we investigate under which conditions the economy is addressed along a sustainable path.

We study the simplest model of endogenous growth, an AK type model, driven by natural
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resources, where economic agents jointly determine their consumption level and their fertil-

ity rate. Agents’ decisions concerning consumption and fertility deplete the natural resources,

which represent a source of utility. Therefore, they have to take into account the pressure their

choices exert on the environment, trying to identify a possible sustainable development path,

along which natural resources, population and growth coexist.

In section 2, we quickly review the issue of sustainability and its main implications for

economic modeling. The attention is especially focused on the definition of sustainable devel-

opment and on the choice of the welfare criterion to adopt in order to deal with such a matter.

In section 3, we introduce the model economy in its general formulation, and derive the optimal

paths for the control variables, consumption and fertility. Section 4 performs steady state anal-

ysis, studying a balanced growth path along which the fertility rate is constant and identifying

the presence of possible sustainable paths (defined as a path along which population, natural

resources and consumption are positive, also asymptotically), and develops a comparative stat-

ics analysis, focalizing on policy implications. We show that even if the renewal capacity of

natural resources is unbounded, not always a sustainable path, where both population and nat-

ural resources coexist, can be found: this depends on the stationary fertility level. In particular,

if it is lower than the mortality rate, the population will asymptotically disappear (implying

that the economy will collapse) and the path followed by the economy is clearly not sustain-

able. We also show that with respect to other notions of sustainability (as Pezzey, 1997; and

Arrow et al., 2004) our definition has the advantage of discriminating among different paths,

labeling some of them as sustainable and some others as not. In section 5 we consider a special

case of the model, that is an economy in which the stock of natural resources does not affect

welfare, and we highlight the main differences. We show that also when utility depends only

on consumption, the growth rate of population determines whether the path followed by the

economy is sustainable or not, and the main results of the previous section still hold. Section

6, as usual, concludes.

1.2 Sustainable Development and Intertemporal Welfare

The developments of human activity in the last two centuries has dramatically changed the

planet’s climate, the biological mix and the natural resources. The main reasons of such impacts

are related to the economy and population. Economic production uses energy, which is mainly

obtained by fossil fuels, leading to carbon emissions. The emissions generated in the past

century have consistently grown, irreversibly altering the climate of the planet. Population

has also constantly grown, leading to higher and higher demand for production (of food and

other consumption goods), waste and space, increasing the use of natural resources. These
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facts have remained without consideration for long time; only during the last decade of the

XXI century the problem of ensuring a certain level of equity, among generations and among

countries, emerged.

Probably the most important definition of sustainable development has been introduced

by the Brundtland Commission, which labels sustainable development as development that

”satisfies the needs of the present without compromising the ability of future generations to

meet their own needs” (World Commission on Environment and Development, 1987). This

notion has been widely accepted, probably because of its weakness: it does not impose any

constraints to growth and neither any particular duties to current generation, and moreover it

is not formal at all. However, it clearly implies that sustainability mostly concerns two different

but interrelated issues: respect of natural resources and intergenerational equity. The respect

of natural resources is crucial to ensure equity among generations, because if each generation

determines its consumption level without taking into account the effect implied on the future

one, all resources will be exhausted soon and probably no future on the earth could be ensured.

The intergenerational equity, instead, plays a central role on the evaluation of intertemporal

welfare3, and therefore on the identification of optimal allocations. Such an issue in standard

macroeconomic (and in particular in growth) theory has generally been dealt with discounted

(total) utilitarianism, which defines the social welfare as:

W =

∫ ∞
0

u(ct)Nte
−ρtdt.

This means that social welfare equals the average utility, u(ct) where ct = Ct
Nt

is per-capita

consumption, multiplied by the population size, Nt, discounted by rate of time preference, e−ρt

where ρ it the pure rate of time preference. Notice that the introduction of discounting is neces-

sary only for mathematical reasons, that is to ensure the bounded-ness of the objective function.

But this mathematical necessity implies economic consequences, that is we are attaching less

weight to future generations. As Ramsey (1928) commented, ”discounting of future utilities is

ethically indefensible and arises purely from a weakness of the imagination”. Of course, such a

criterion cannot be used to deal with intergenerational equity, and therefore with sustainable

issues. In order to avoid this, several attempts have been done in the literature. Some of them

require to adopt a different welfare criterion (as Ramsey, 1928; von Weizcker, 1967; Chichilnisky

et al., 1995; and Chichilnisky, 1997) while some others to impose some additional constraints

to the standard optimal control problem (as Arrow et al., 2004; and Pezzey, 1997).

Ramsey (1928), assuming (other than special assumptions to ensure the sum converge) that

utility levels are bounded above, proposes to minimize the total difference over time between

3See Heal (2005) for a survey of the issue
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maximal utility and actual utility levels:
∫∞

0
[b − u(ct)]dt, where b is a bliss point, the upper

bound of the utility function. von Weizcker (1967) and others after him try to develop the

overtaking approach: ”the overtaking criterion ranks as best the consumption sequence, if any,

whose cumulative utility sum eventually exceeds that on any other path” (Heal, 2005). These

approaches ensure that we assign equal weight to all generations, but they have never been

used, at least to our knowledge, in the literature. Another idea instead suggests that the

sustainability issue has to be somehow linked with steady state and asymptotic behavior. For

example, Chichilnisky et al. (1995) propose the Green Golden Rule as a welfare criterion to

take into account sustainable matters. The Green Golden Rule consists of maximizing:

lim
t→∞

u(ct)Nt,

that is, it represents the allocation maximizing the asymptotic (steady state) utility level, in

order to determine the highest indefinitely maintainable utility level (rather than the high-

est consumption level, as implied by the standard Golden Rule). Again, Chichilnisky (1997)

proposes the objective function to be a weighted average of discounted utility and asymptotic

one:

W = π

∫ ∞
0

u(ct)Nte
−ρtdt+ (1− π) lim

t→∞
u(ct)Nt,

where π ∈ (0, 1) is the weight assigned to discounted integral of utilities and (1− π) it that of

long-run utility level, representing the sustainable utility level. The importance of the introduc-

tion of an asymptotic term is due to the fact that discounted utilitarianism attaches less weight

to future generations in order to ensure the bounded-ness of the objective function and the role

of the asymptotic term is therefore taking into account also long-run generations’ welfare.

A completely different approach has instead been introduced in Arrow et al. (2004), which

defines a path as sustainable if it implies non-decreasing welfare. The authors do not try to

modify the standard welfare criterion, which remains discounted utilitarianism,

W =

∫ ∞
0

u(ct)Nte
−ρtdt,

but just look for the imposition of some constraint in order to ensure sustainability, that is
∂W
∂t
≥ 0. However, a drawback of this definition is that paths satisfying both non-decreasing

welfare and Pontryagin necessary conditions for consumption do not exist. In fact, optimal

paths in neoclassical models do not satisfy this additional constraint. This is probably the

reason why such an approach has never been used in the following literature. A similar approach

can be found in Pezzey’s (1997) survivable criterion, which proposes that the welfare derived

from the standard dynamic maximization problem has to be higher than a minimal welfare
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associated to the survival of current population in order for the economy to be sustainable

(survivable).

As it may be clear from this quick survey on the most important attempts to deal with

sustainability, which is the most convenient approach is still an open question. Following Arrow

et at. (2004) and Pezzey (1997), we try to impose some constraints to the standard optimal

control problem in order to ensure sustainability. With respect to them, we look for some

minimal requirements for sustainability (therefore something much weaker than their notion),

relying on the importance of asymptotic behavior, as suggested by Chichilnisky et al. (1995)

and Chichilnisky (1997). In particular, we define a path as sustainable if it implies (strictly)

positive values of all the economic variables, both in finite and infinite time (see Definition 2).

1.3 The Model

The economy is closed and composed of households that can only consume the unique good

present in the economy (a natural good) and have to choose how much consumption and how

many children to have. Therefore, population grows in accordance to household decisions4.

There is no production and human choices of consumption and fertility decrease the stock of

natural resources.

The representative household wants to maximize its lifetime utility function, which is the

sum of its instantaneous utility function, depending both on per-capita consumption, ct, and

on the stock of natural resources, Et, where ∂u(·)
∂ct

> 0, ∂
2u(·)
∂c2t

< 0 and also ∂u(·)
∂Et

> 0, ∂
2u(·)
∂E2

t
< 0.

In order to get a closed form solution, it is assumed to be iso-elastic:

u(ct, Et) =
(ctE

β
t )1−σ

1− σ
, (1.1)

where σ ∈ (0, 1) and β ≥ 0. The utility function depends on the individual consumption level

(households are not interested in aggregate consumption, but only in per-capita consumption)

and on the stock of natural resources and the term β represents the weight of environment

in agents utility (the green preferences), but does not depend on the fertility rate (having

children or not does not affect the utility level). Notice that β = 0 represents the case in which

environment is not a source of utility (the utility function depends only on consumption) and

such a case will be analyzed in Section 5.

4The analysis of the causes of household choices is out of the goal of this work. In our model, fertility choices

are endogenous as a result of the non-linear relationship between population growth and the environment, while

the trade-off concerning the fertility decision is not tackled for the sake of simplicity. According to distinction

of Nerlove and Raut (1997), our model should be labeled as a model of endogenous population change, rather

than as model of endogenous fertility, since ”no decision-making mechanism is presupposed”
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Population grows over time at a non constant rate, given by the difference between the

endogenously determined birth rate, nt, and the exogenous mortality rate, d:

Ṅt = (nt − d)Nt, (1.2)

where both nt and d are strictly positive.

The dynamics of natural resources depends on their renewal capacity, aggregate consumption

and the dilution effect associated to population growth:

Ėt = R(Et)− Ct − φ(nt)Et (1.3)

where R(Et) is the renewal capacity of the environment and φ(nt) is the dilution function,

related to population variations. We consider for simplicity the case in which renewal capacity

is unbounded, that is R′(Et) > 0, and we assume it is a linear function5 of the stock of natural

resources:

R(Et) = rEt. (1.4)

The dilution effect in natural resources instead represents the pressure wielded by population

growth on natural resources (and therefore economic growth). A diffused view on the relation-

ship between population growth and economic growth sees population growth as detrimental for

growth: in fact, the food production activity, which is mainly derived from natural resources, is

overwhelmed by the pressures of population growth, and this can lead the available diet to fall

below the subsistence level (Malthus, 1798). Therefore, it seems plausible to assume φ′(nt) > 0:

as fertility increases, the pressure on natural resources increases too. Kelly and Schmidt (1995)

shows that the impact of population on the economy depends on the level of economic devel-

opment: the impact of population growth is negative for less developed countries, while it is

positive for developed ones. Therefore, this impact can change over time as the development

proceeds. According to this result, therefore, the relationship between population and economic

growth is non-monotonic. Non-monotonicity implies that such a relationship is non-linear6. We

5The choice of a linear function is reductive, but it permits us to characterize the steady state of our economy

as a balanced growth path, simplifying computational problems. However, choosing another kind of unbounded

function should not lead to different results. Moreover, the linear specification represents the most optimistic

view on environmental regeneration and therefore it is an interesting benchmark for our analysis. Of course, if

we consider a bounded renewal capacity, as in a logistic function, the outcome of the model can dramatically

change
6Since natural capital is the force driving endogenous growth, the φ(·) function represents the pressure

wielded by population change both on the environment and on the economic performance. Because no other

linkage is present in our model between demography and economic growth, according to Kelly and Schmidt

(1995) we assume such a function to be non-linear
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therefore consider a function non-linear in the fertility rate:

φ(nt) = anbt , (1.5)

where a > 0 and b > 0 but b 6= 1. In particular, if 0 < b < 1 (b > 1), an increase in the fertility

rate (population size) decreases less (more) than proportionally the stock of natural resources.

The presence of this non-linear function permits to have endogenous fertility even if fertility

itself is not a source of utility. Notice that the environment is negatively affected by human

choice through two different channels: consumption activity (human needs for life) requires the

use of natural resources and fertility choices determine the size of population, which causes the

weight of the pressure on environment.

The social planner maximizes the social welfare function of the economy under the economy

resource constraint, the law of motion of demography and the initial conditions for natural

resources and population:

max
ct,nt

W =

∫ ∞
0

u(ct, Et)Nte
−ρtdt (1.6)

s.t. Ėt = rEt −Ntct − anbtEt
Ṅt = (nt − d)Nt

E0, N0 given

The planner objective function takes into account the size of current and future generations,

showing inter-temporal altruism, represented by ρ, the rate of time preference (the lower the

rate of time preference, the higher the planner’s altruism towards later generations), and full

intra-temporal altruism (it means that the weight assigned by the planner to each member of

the same generation is the same: the weight of each individual is independent of the size of the

generation).

1.3.1 Optimal Paths

From the social planner maximization problem, we can derive the Hamiltonian function:

Ht(ct, Et) =
(ctE

β
t )1−σ

1− σ
Nte

−ρt + λt
[
rEt −Ntct − anbtEt

]
+ µt(nt − d)Nt

and the first order necessary conditions:

∂Ht(·)
∂ct

= 0 → (ctE
β
t )−σEβ

t Nte
−ρt = λtNt (1.7)

∂Ht(·)
∂nt

= 0 → µtNt = bλtan
b−1
t At (1.8)
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∂Ht(·)
∂Et

= −λ̇t → β(ctE
β
t )−σctE

β−1
t Nte

−ρt + λt
[
r − an2

t

]
= −λ̇t (1.9)

∂Ht(·)
∂Nt

= −µ̇t →
(ctE

β
t )1−σ

1− σ
e−ρt − λtct + µt(nt − d) = −µ̇t (1.10)

together with the initial conditions E0 and N0, the state equations:

Ėt = rEt −Ntct − anbtEt (1.11)

Ṅt = (nt − d)Nt (1.12)

and the transversality conditions:

lim
t→∞

Etλt = 0 (1.13)

lim
t→∞

Ntµt = 0 (1.14)

Solving the system of FOCs, we can obtain the optimal paths of consumption and fertility:

ċt
ct

=
1

σ

[
σβ

ctNt

Et
+ [1 + β(1− σ)](r − anbt)− ρ

]
(1.15)

ṅt
nt

=
1

b− 1

ctNt

Et

[
(1 + β)− σ

b(1− σ)anb−1
t

]
. (1.16)

Equation (1.15) depends positively on the ratio between aggregate consumption and stock

of natural resources and negatively on the fertility rate. In particular, a rise in the fertility

rate leads to a non-proportional reduction in the growth rate of per capita consumption and

this is due to the dilution effect, which is non-linear. Notice that, if b > 1, the growth rate

of consumption is a concave function of the fertility level and the fertility rate maximizing

consumption growth results to be null.

Equation (1.16) instead depends on the ratio between aggregate consumption and environ-

mental stock and on the rate of fertility. The signs of the former relation cannot be determined

a priori: in fact, it crucially depends on b (if it is higher or lower than one) and on the term in

the square brackets; also the sign of the latter one is undetermined, since it depends on b. It is

interesting to notice that the choice of the consumption level, determining the size of the ratio

term, affects the growth rate of fertility.

The TVC (1.13) implies that the growth rate of natural resources is bounded above:

γE < r − anbt + β
ctNt

Et
(1.17)

while the TVC (1.14) implies that the ratio between aggregate consumption and natural re-

sources is positive.
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1.4 Steady State Analysis

The growth rates of the per-capita consumption, natural resources, population and fertility rate

are:

γc =
1

σ

[
σβ

ctNt

Et
+ [1 + β(1− σ)](r − anbt)− ρ

]
(1.18)

γE = r − ctNt

Et
− anbt (1.19)

γN = nt − d (1.20)

γn =
1

b− 1

ctNt

Et

[
(1 + β)− σ

b(1− σ)anb−1
t

]
(1.21)

We now analyze possible equilibrium paths considering a balanced growth path, along which

the growth rate of fertility is null.

Definition 1: (Balanced Growth Path, BGP) a balanced growth path, BGP, or steady state

equilibrium, (c, n, E,N, γc, γn, γE, γN), is a sequence of time paths, {ct, nt, Et, Nt}t≥0, along

which all economic variables grow at constant rates. A BGP is said non-degenerate if ct and

Et grow at non negative rates.

Along the BGP, the fertility rate, nt, must be constant, nt = n: this means that the growth

rate of fertility is null:

n =

[
σ

b(1 + β)(1− σ)a

] 1
b−1

(1.22)

and the growth rate of population can be positive, negative or null in accordance to the differ-

ence7 between n and d:

γN = n− d. (1.23)

Consequently, the growth rate of per capita consumption is:

γc =
1

σ

[
σβ

cN

E
+ [1 + β(1− σ)](r − anb)− ρ

]
(1.24)

and that of environment is:

γE = r − cN

E
− anb (1.25)

7In fact, no condition a priori imposes restrictions on the gap between the stationary fertility and the

exogenous mortality rate
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since the growth rate of environment must equalize the growth rate of aggregate consumption,

otherwise γE = −∞ or it would violate the TVC (1.13):

γE = γC = γc + γN . (1.26)

This implies that per-capita variables, consumption and natural resources, grow at the same

rate γ = γc.

In order to have endogenous growth, we have a lower bound for r:

r > anb +
ρ

1 + β(1− σ)
− σβ

1 + β(1− σ)

cN

E
, (1.27)

while, in order to ensure bounded objective function instead,we have an upper bound for r:

r < anb +
ρ− σ(n− d)

(1− σ)(1 + β)
. (1.28)

Therefore, along the BGP the stationary fertility rate is positive, the economic growth rate

is positive as well, while that of population can be positive, negative or null:

n =

[
σ

(1 + β)(1− σ)ab

] 1
b−1

(1.29)

γ =
1

σ

[
σβ

cN

E
+ [1 + β(1− σ)](r − anb)− ρ

]
(1.30)

γN = n− d. (1.31)

If the fertility is lower than mortality rate, the population growth is negative and in the

long-run all individuals will disappear: the population will continue to decrease until its com-

plete disappearance but this would lead to have an high rate of growth during the life of the

economy (the lower n, the higher γ). If natality and mortality rate perfectly offset, the popula-

tion will reach a positive stationary equilibrium level. If, instead, the birth rate is higher than

the death rate, the population size will continue to rise, leading to a lower growth rate.

Proposition 1: along the BGP, the following results hold:

(i) if b > 1 (b < 1), the stationary fertility level is a positive (negative) function of the elasticity

of substitution, σ, while it is a negative (positive) function of the green preferences, β, and of

the dilution effect parameter, a;

(ii) the growth rate of the economy depends positively on the consumption-natural resources

ratio, Ct
Et

, and negatively on the stationary fertility rate, n;

(iii) population growth is a positive function of the stationary fertility level, n and a decreasing

function of the mortality rate, d.
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Proof: The result just derives from the partial derivatives of (1.29), (1.30) and (1.31), re-

spect to the main parameters. �

Among all possible paths, we are interested in a sustainable one, along which population,

natural resources and growth coexist. However, as previously discussed, how sustainable path

has to be interpreted is still not clear, even if several definitions have been proposed in the

literature. Following Arrow et at. (2004) and Pezzey (1997), we introduce a definition of sus-

tainable paths, rather than modifying the welfare criterion to adopt. With respect to them,

we try to introduce the weakest notion, which could represent a minimal requirement for sus-

tainability. Following Chinchilnisky et al. (1995) and Chinchilnisky (1997), we rely on the

importance of asymptotic behavior. We define as sustainable every path along which all eco-

nomic variables are strictly positive, requiring that this condition is satisfied also asymptotically.

Definition 2: (Sustainable Development Path) a sustainable development path is a se-

quence of time paths, {ct, nt, Et, Nt}t≥0, along which all economic variables are (strictly) posi-

tive, ct, nt, Et, Nt > 0, and also asymptotically (strictly) positive, limt→∞ ct, limt→∞ nt, limt→∞Et,

limt→∞Nt > 0.

This definition is particularly weak: it does not concern growth rates but requires only

that the variables are not addressed along a collapsing path. We require that population,

consumption and environment (not their growth rate) are positive along the time horizon, but

also at steady state. This looks like a minimal requirement in order to consider a path as

sustainable: paths violating our definition cannot be labeled as sustainable in a stronger sense.

In fact, a path along which consumption, population size and/or natural resources collapses

cannot ensure the ability of future generations of satisfying their own needs, which is the most

diffused (Brundtland Commission) definition of sustainability.

Notice that since the renewal capacity of natural resources is unbounded we can find a sus-

tainable paths, where both population and natural resources coexist and moreover the economy

grows. However, such a path does not always exist: it depends on the difference between the

stationary fertility level and the mortality rate. If the former is lower than the latter, population

will asymptotically disappear and no path can be found where both population and natural

resource coexist: this means that agents endogenously decide the collapse of the society. There-

fore, we have just proved:

Proposition 2: the development path along which the economy is addressed is sustainable

if the stationary fertility rate is at least as high as the mortality rate, that is if n ≥ d, otherwise
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it is not, that is the case in which n < d.

This is quite surprising: the model is really optimistic in terms of natural resources regenera-

tion capacities and really weak in the notion of sustainability. This means that even in the most

optimistic framework, if we consider also the interaction between population and environment,

the existence of a sustainable path does not have to be taken for granted. However, in the case

n < d, the planner can intervene affecting n or d in order to switch the economy to a sustainable

path (see next subsection). Notice that our definition of sustainability leads to a more realistic

result than those we would obtain adopting another notion introducing sustainability as an

additional constraint to the dynamic maximization problem (i.e. Pezzey (1997); Arrow et al.

(2004)). Remember that Arrow et al. (2004) defines as sustainable a path along which welfare

is non-decreasing over time, while Pezzey’s (1997) define as survivable a path characterized by

a welfare level higher than the minimal welfare allowing the survival of the current population.

It is straightforward verifying that along the BGP, the welfare is decreasing over time, because

of the necessity of ensuring bounded-ness of objective function8: this means that according to

Arrow et al. (2004) formulation, no path is sustainable. It is also easy to see that if the min-

imal welfare associated to the survival of population is sufficiently low9, then the steady state

welfare level will always be higher than this: according to Pezzey’s (1997) notion, all paths are

sustainable (survivable). With respect to these notions, our definition of sustainability has the

advantage of discriminating among different paths, labeling some of them as sustainable and

some others as not.

We can notice that along the BGP, where the fertility rate is constant, the dynamic behavior

of the economy is the same as in a standard AK model. Moreover, as in standard AK model,

the model does not show any transitional dynamics: the economy lies along its BGP since time

0 (a similar result is obtained in Palivos and Yip (1993), who show that an AK model with

endogenous fertility does not show transitional dynamics; see Appendix A for more details). In

fact, at time 0 if the fertility rate is chosen equal to n, the growth rate of the economy, given is

8In fact, since the economy lies on the equilibrium path from time 0 (see Appendix A), the derivative of the

(integrand in the) welfare function in steady state is:

[(1− σ)γc + β(1− σ)γE − (ρ− n)]
Ae[(1−σ)γc+β(1−σ)γE−(ρ−n)]t

1− σ
,

where A = c1−σE
β(1−σ)

N . Condition (1.28) which ensures the fact that the welfare function is bounded,

essential for the integral in W to be well defined, also ensures that the term in the square brackets is negative

and therefore the whole time derivative is negative as well
9The value to attribute to the minimal welfare permitting actual population to survive is almost arbitrary.

If this is too high, the welfare level along the BGP will never be higher than this and we will obtain the same

conclusion of Arrow et al. (2004): no path will be sustainable. If this is low instead, all paths will be sustainable
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equation (1.30) is constant (in fact, the consumption-natural resources ratio has to be constant

because of the TVC (1.13)); moreover, if the economy is not along its BGP from time 0, it will

never converge to it.

1.4.1 Comparative Statics

We now perform an exercise of comparative statics in order to better understand the role of

some parameters on the economic and population growth rates and identify the main policy10

implications, underlying especially how policies affecting the stationary fertility level (or the

mortality rate) should be introduced in order to address the economy along a sustainable path.

In particular, we consider changes in the mortality rate, in the dilution effect parameter and in

the green preferences.

Changes in the Mortality Rate

Suppose a new policy (like public expenditures in health or incentives to private health care,

assuming such a policy can be achieved at zero cost) has just been introduced and its effect is

to lower the mortality rate, d, affecting therefore the population growth. If the economy were

initially along the BGP, this shock would have the effect11 of shifting the economy from a BGP

to another one. Along the new BGP the economic growth rate and the stationary fertility rate

would remain unaffected while net population growth changes.

Suppose originally the stationary fertility were lower than the mortality rate12: this means,

according to Proposition 2, that the path along which the economy is evolving is not sustainable.

Then along the new BGP population growth would increase but it could be positive, negative

or null, in accordance to the magnitude of the change. If such a change were strong enough,

then population growth would be positive and as a result the economy is switched from a not

sustainable path to a sustainable one. Therefore the introduction of a new policy aiming at

10Notice that in our model only a natural good is present, and economic activities, as production and public

expenditures, cannot be easily encompassed in such a framework. Therefore, public intervention can be viewed

as a mere exogenous shock affecting some parameters
11Short-run and long-run effects coincide, as in the standard AK model: every shock in the economy translates

in a jump of the (economic and population) growth rates of the stationary fertility level or both. In fact, at any

shock the fertility rate can be adjusted in order to lie directly on the new BGP
12Such a situation is consistent with several industrialized economies (as for example Italy), in which the

growth rate of (domestic) population is lower than its replacement rate. The result that the overall demographic

growth is positive is just due to increasing migration flows (not present in our model since economies are closed).

Other examples of how this situation can be relevant for the economic system are given by the collapse of the

Maya civilization (Demarest, 2004), the decline of the Easter Island society (Brander and Taylor, 1998) and the

complete extinction of the Viking’s colonies of Greenland (Diamond, 2005)
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increase public or private spending in health care, through the effect of lowering the mortality

rate, can be used in order to reach a desired level of population, permitting the planner to

switch the economy to sustainable paths.

Changes in the Intensity of the Dilution Effect

Suppose a new policy, as the introduction of public expenditure to improve environment pro-

tection (assuming that it can be achieved at zero cost), has the effect of decreasing a, that is

it lowers the cost for the natural resources to maintain the same stock of population. If the

economy were initially along the BGP, along the new one the economic growth, population

growth and the steady state fertility level change. If b > 1, a drop in a leads first of all to a

shift from a fertility rate to an higher new one, while the fertility growth rate continues to be

null. This implies an higher population growth and a lower economic growth. If instead b < 1,

the new stationary fertility rate will be lower and also the economic growth rate will be lower.

Suppose, again, that originally the stationary fertility were lower than the mortality rate,

such that the economy do not lie on a sustainable path. The planner, through this kind of

policies, can increase n enough to permit the shift of the economy to a sustainable path: this

can be done by decreasing (increasing) a, if b > 1 (b < 1).

Shifts in the Green Preferences

Suppose a policy oriented to awake households to environmental problem or to change the

priority of agents is introduced. Its effect would be an increase in β. If the economy were

initially along the BGP, this change would have the effect of shifting the economy from a BGP

to another one. The stationary fertility level13 and therefore population growth and economic

growth rates will be different. If b > 1 an increase in β decreases the stationary fertility rate,

leading to a lower population growth and an higher economic growth. If instead b < 1 fertility

will increase and population growth will increase too while the effect of such a shock on economic

growth is ambiguous.

Suppose that originally the stationary fertility were lower than the mortality rate, so that

the dynamic path followed by the economy is not sustainable. Then, the green preferences can

13Notice that, considering the case where b > 1, a really high β could lead to reach the per-capita consumption

growth maximizing null fertility level. In such a case, population will decrease along the BGP (implying that

population asymptotically collapses) while economic growth will be maximal. Moreover, β = 0 represents the

case where environment is not a source of utility. Therefore, β can be interpreted as a crucial policy parameter:

promoting attention to environment, the planner can indirectly affect economic and population growth, through

the direct effect of manipulating the stationary fertility rate
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be influenced by pro-environment policies in such a way to lead the economy on a sustainable

path: this can be done increasing (decreasing) β if b > 1 (b < 1).

1.5 Environment not Source of Utility

If β = 0, the stock of natural resources does not affect welfare and such a situation is an extreme

case of the model. In this case the optimal paths of consumption and fertility simplify in:

ċt
ct

=
1

σ

[
r − anbt − ρ

]
(1.32)

ṅt
nt

=
1

b− 1

ctNt

Et

[
1− σ

b(1− σ)anb−1
t

]
. (1.33)

We can notice that the growth rate of per-capita consumption is constant unless the term

representing the dilution effect. In this framework, along the BGP the stationary fertility rate

is:

n =

[
σ

b(1− σ)a

] 1
b−1

(1.34)

while the economy growth rate is positive and that of population can be positive, negative or

null:

γ =
1

σ

[
r − anb − ρ

]
(1.35)

γN = n− d. (1.36)

We can notice that the stationary fertility level is higher if b > 1 (and lower if b < 1) in this case:

this is due to the fact that agents, since environmental stock does not affect their welfare, do

not take into account the interaction between fertility choices and natural resources dynamics.

In fact, an higher fertility rate decreases more the stock of natural resources, leading to a lower

economic growth and an higher population growth. Notice that also in this case, Proposition

2 holds: the development path is sustainable if the stationary fertility rate is at least as high

as the mortality rate. This means that the introduction of the environment (natural stock) in

the instantaneous utility function is not essential for such a result to hold. However, since in

the case b > 1, the stationary fertility rate is higher, the possibility of the economy to lie on a

non-sustainable path will be less likely. In fact, fixed the other parameter values, the mortality

rate has to be higher for having a negative growth rate of population.

1.6 Conclusion

The Brundtland Commission defined sustainable development as development that ”satisfies

the needs of the present without compromising the ability of future generations to meet their
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own needs”. The goal of our paper is to study the situations under which a sustainable path

can be reached, focalizing our attention also on the interaction between population growth,

environment and economic growth. With respect to previous works, we introduce a formal

definition of sustainable path which permits us to take into account long-run generations’

welfare without modifying the standard welfare criterion (the utilitarian approach). We define

a path as sustainable if it implies strictly positive values of all economic variables, both in finite

and infinite time (see Definition 2). We analyze a growth model driven by natural resources

and without production, where agents have jointly to determine consumption and fertility,

taking into account the effect of their decisions on the dynamics of natural resources. In our

model, even if the renewal capacity of natural resources is unbounded, not always a sustainable

path, where both population and natural resources coexist, can be found: this depends on the

difference between the stationary fertility level and the mortality rate. A sustainable path can

be found only if the stationary fertility is higher or equal to the mortality rate.

Along the BGP, the growth rate of the economy and of population ultimately depends on

the stationary fertility level. Suppose the stationary fertility is lower than the mortality rate;

then public intervention can be necessary in order to address the economy along a sustainable

path. In fact, the planner can directly intervene in the economy determining both population

and economic growth through policies aiming at affecting the stationary fertility rate. This can

be done mainly with two different kind of policies: one affecting the dilution effect parameter

and one affecting green preferences. The outcome of these policies is similar: both changes in

the dilution effect and variations in the green preferences modify the population growth and

affect economic growth therefore they can be adopted in order to reach the desired population

level and in order to alter economic growth. In particular, such policies can be used in order to

reach a sustainable path: suppose the stationary fertility is lower than the mortality rate; the

planner can affect fertility or mortality with the right policy14 in order to cancel the gap and

permit a sustainable path to exist.

For further research, we propose to focalize the attention on a more realistic framework,

where also production and accumulation of physical capital play an active role in the economy.

In particular, a two sector growth model, a-la Uzawa-Lucas, in which natural resources have

to be allocated between physical and natural production can do it. Another interesting line of

research can be represented by the introduction of bounded renewal function, as a logistic one:

in such a case is not obvious that a sustainable path exists at all.

14For example, if b > 1, the fertility rate can be increased augmenting public expenditure to improve envi-

ronmental protection or decreasing public care of environment; if b < 1, the policies have to be of the opposite

sign. The mortality rate, instead, can be reduced through incentives to private health care
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A. On the Transitional Dynamics

We can study the stability of the BGP, introducing the intensive variable χt = ctNt
Et

and studying

the system in (χt, nt). The law of motion of χt and nt are:

χ̇t
χt

= (1 + β)χt +
(1− σ)(1 + β)

σ
(r − anbt)−

ρ

σ
+ nt − d (1.37)

ṅt
nt

=
1

b− 1
χt

[
(1 + β)− σ

b(1− σ)anb−1
t

]
. (1.38)

Therefore, the equilibrium of this system is given by E = (χ, n), where:

χ =
ρ

σ(1 + β)
− 1− σ

σ
(r − anb)− n− d

1 + β
(1.39)

n =

[
σ

b(1 + β)(1− σ)a

] 1
b−1

. (1.40)

Notice that n > 0 if 0 < σ < 1 while χ is if n > b(1−σ)(ρ+σd)−b(1−σ)2(1+β)r
σ2−bσ(1−σ)

.

Linearizing the system, we obtain the Jacobian matrix, J(χt, nt): 2(1 + β)χt + (1−σ)(1+β)
σ

(r − anbt)−
ρ
σ

+ nt − d χt[1− b(1−σ)(1+β)anb−1
t

σ
]

1
b−1

[(1 + β)nt − σ

b(1−σ)anb−2
t

] 1
b−1

χt[(1 + β) + σ(b−2)

b(1−σ)anb−1
t

]

 , (1.41)

which evaluated at steady state is:

J(χ, n) =

[
(1 + β)χ 0

0 (1 + β)χ

]
. (1.42)

Since χ is positive, it is straightforward to notice that both eigenvalues are positive, implying

that the system never reaches the steady state (namely its BGP), unless the initial choice for

nt is such that the fertility rate coincides with its stationary level from time 0.

Therefore, the economy lies immediately on the BGP, otherwise will never converge to it.

If n0 = n, the model behaves as a standard AK model: there is no transitional dynamics and

from t = 0 the model is in its steady state. If instead n0 6= n, the economy does not converge to

the BGP and the path followed by the economy does not show balanced growth. This means

the economy, in order not to show diverging trajectories, lies on the BGP from time 0, meaning

that the model does not show transitional dynamics.
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Chapter 2

Population Growth and Utilitarian

Criteria in the Lucas-Uzawa Model

This paper1 studies the introduction of population change in an optimal model of endogenous growth,

analyzing the implications of the choice of the welfare criterion on the model’s outcome. Traditional

growth theory assumes population growth is exponential, but this is not a realistic assumption (as

discussed in Brida and Accinelli (2007)). We model exogenous population change by a generic function

of population size, which is later formalized as different cases. We analyze a Uzawa-Lucas type model

and show that a unique non-trivial equilibrium exists and the economy converges towards it along

a saddle path, independently of population dynamics. What is affected by the type of population

dynamics is the dimension of the stable manifold, which can be one or two, and the timing when the

equilibrium is reached, which can happen in finite time or asymptotically. Moreover, we show that

the choice of the utilitarian criterion is irrelevant on the equilibrium of the model if the steady state

growth rate of population is null, as in the case of logistic and bounded population growth. We discuss

how several types of demographic dynamics introduced in the previous literature can be seen as special

cases of our model. We also look for a closed form solution for the model when population is subject

to random shocks, driven by a Brownian motion and show that it can be found for a certain value of

the altruism parameter.

Keywords: Population Change, Endogenous Growth, Utilitarian Criteria, Stochastic Shocks, Closed

Form Solution

JEL Classification: O40, O41, J13

1I wish to thank the participants of the workshop held at Monash University (Melbourne Graduate Student

Conference in Economics 2010, July 2010) for helpful comments and suggestions. This paper is part of a joint

work of La Torre Davide and myself, which is still in progress. With respect to that paper, this version does

not include population (unskilled labor) as a distinct factor of production; this allows us to obtain the complete

dynamics of physical and human capital in the case in which population is hit by random shocks
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2.1 Introduction

In standard economic growth theory, population is assumed to grow at an exogenous and

exponential rate. This assumption has been firstly introduced by the Solow-Swan model (1956)

and it has been applied also to following models with optimizing behavior, as the single-sector

Ramsey-Cass-Koopmans (1965) model and the two-sector Lucas-Uzawa (1988) model. Such an

assumption however is not without consequences for the analysis of growing economies. In fact,

exponential population growth models imply unconstrained growth of population size. However,

most populations are constrained by limitations on resources, at least in the short run, and none

is unconstrained forever. For this reason, firstly Malthus (1798) discusses about the inevitable

dire consequences of exponential growth of the human population of the earth. Recently, Brida

and Accinelli clearly state: ”The simple exponential growth model can provide an adequate

approximation to such growth only for the initial period because, growing exponentially, as t→
∞, labor force will approach infinity, which is clearly unrealistic. As labor force becomes large

enough, crowding, food shortage and environmental effects come into play, so that population

growth is naturally bounded. This limit for the population size is usually called the carrying

capacity of the environment”.

Accinelli and Brida (2005) firstly introduce non-exponential population growth in a growth

model, assuming that population dynamics is described by a logistic2 function. After this work

a growing literature studying how different demographic change functions modify standard

growth models arises. For example, the Solow model has been extensively analyzed assuming

different demographic dynamics. Guerrini (2006) and Brida and Pereyra (2008) introduce

respectively bounded population growth (which represents a generalization of the logistic case)

and a decreasing population growth in the Solow-Swan model; Bucci and Guerrini (2009)

instead study its transitional dynamics in the case of AK technology and logistic population.

Also the Ramsey model has been recently extended to encompass several types of population

change functions. Brida and Accinelli (2007) study the case of logistic population growth while

Guerrini (2010a) looks for a closed form solution to the same model; Guerrini (2009, 2010b)

2Some decades ago, Maynard Smith (1974) concluded that the growth of natural populations is more ac-

curately depicted by a logistic law. This result has been recently used to claim that such a dynamics can be

probably better describe also human population growth. In fact, several studies support the idea that human

population growth is decreasing and tending towards zero (as Day (1996)). The main features of a logistic

dynamics is that the implied growth rate is bounded and it represents a generalization of exponential dynamics.

Even the Belgian mathematician Verhulst in the XIX century studies this idea; using data from the first five U.S.

censuses, he makes a prediction in 1840 of the U.S. population in 1940 and was off by less than 1%. Moreover,

based on the same idea, he predicts the upper limit of Belgian population; more than a century later, but for

the effect of immigration, his prediction looks good (Verhulst (1838))
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instead assumes that population growth is given by a bounded function, analyzing both the

neoclassical and the endogenous case.

However, all these papers also relax an important standard assumption of optimal growth

theory, namely the social welfare function is founded on the Benthamite criterion (total utilitar-

ianism). This criterion says that total welfare is the sum of per-capita welfare across population

(the product between population size and average welfare if no heterogeneity among agents is

present). These papers3 instead assume the social welfare function is based on the Millian

criterion (average utilitarianism): total welfare equals average welfare or per-capita utility (see

Marsiglio (2010) for a discussion of the implications of both criteria). Such a criterion has

been used in order to limit population size and in an optimal theory of growth seems to be

somehow reductive. In fact, the main difference in the model’s outcome is the effect of popu-

lation growth on the per-capita consumption dynamics: the Benthamite criterion implies that

consumption growth is independent of population dynamics, while the opposite is true for the

Millian criterion.

Some papers in the literature discuss how the choice of total rather than average utilitari-

anism affects the outcome of the model. Such an issue has always been studied in a context of

exponential population change, where the general conclusion is that the Benthamite and Mil-

lian criteria lead to different effects of population growth on economic performance. This issue

is quite popular in the framework of endogenous fertility, in which the steady state outcome is

represented by exponential population growth. For example, Nerlove et al. (1982, 1985) and

Barro and Becker (1989) analyze a neoclassical setup while Palivos and Yip (1993) an endoge-

nous growth context. Barro and Becker (1989) show that according to the degree of altruism

towards future generations, the social welfare function results to be a mix of the Benthamite

and Millian criteria. Palivos and Yip (1993) show instead that the Benthamite criterion leads

to an higher economic growth and a smaller population size. Few papers tackle the issue when

population change is exogenous, namely Strulik (2005) and Bucci (2008). They both study the

effect of exogenous population growth on the economic growth rate in an endogenous growth

model driven by R&D activity, as the degree of agents’ altruism towards future generations

changes. They both show that the impact of demographic change on the economy varies as

the magnitude of the altruism parameter does so. All these works assume population growth

is exponential (at least in steady state) and suggest that different utilitarian criteria affect the

economic growth rate.

3An exception is represented by La Torre and Marsiglio (2010). They introduce logistic population growth in

a three sectors Uzawa (1965)-Lucas (1988) type growth model, in which the welfare function is defined according

to the Benthamite criterion. However, since their goal is to focus on endogenous technical progress, they do not

study population dynamics (because population size in steady state is constant, under the logistic assumption)
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The aim of this paper is studying the introduction of not exponential population change

in endogenous growth models, and analyzing the effect of different utilitarian criteria on the

model’s outcome. We formalize demographic growth as a generic function of population size,

discussing how different shapes affect the model. We focalize our analysis on a two-sector model

of endogenous growth, á-la Uzawa (1965) - Lucas (1988), since, it has never been analyzed in

a framework of non-exponential population growth and, as claimed in Boucekkine and Ruiz-

Tamarit (2008), it is one of the most studied and interesting endogenous growth models. We

show that a unique non-trivial equilibrium exists and the economy converges towards it along

a saddle path, independently of the shape of the population growth function. In section 2

we introduce the model in its general form, namely we assume population change depends

on a generic function of population size and the social welfare function results to be of the

Benthamite or Millian type according to the value of a parameter (representing the degree

of altruism). Section 3 performs steady state analysis, which is characterized by a balanced

growth path or an asymptotic balanced growth path, according to the features of the population

growth function. However, we show that independently on the shape of such a function, the

economy converges towards its equilibrium along a saddle path. What is affected by its shape

is the dimension of the stable manifold, which can be one or two. We also show the adopted

utilitarian criterion is irrelevant for the economic growth rate if in steady state population

growth is null, as in the case in which population growth is logistic or is bounded. In section 4,

instead, we show different examples of population growth function which represent particular

cases of our general model. In Section 5 we study the global dynamics of the model under a

particular parametric restriction concerning the altruism parameter; in section 6 instead we

look for a closed form solution of the model, in the case in which population is subject to

random shocks and show that this can be found under the same conditions on the value of the

altruism parameter. Section 6 instead concludes.

2.2 The Model

The economy is closed and composed of households (that receive wages and interest income,

purchase the consumption good and choose how much to save and how much to invest in educa-

tion) and firms (that produce the consumption good). Population coincides with the available

number of workers, so that there is no unemployment and the labor supply is inelastic (no

leisure-work choice), and it grows exogenously in accordance to a generic function of popula-

tion size. The economy is composed of two sectors, where physical and human capital are used

to produce only one homogeneous final good, which can be consumed or invested in physical

capital. Physical capital can be used only for producing the final good, while human capital
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can be allocated to physical production or to the educational sector.

The infinitely-lived representative household wants to maximize its lifetime utility function,

which is the infinite discounted sum of its instantaneous utility function:

U =

∫ ∞
0

u(ct)N
1−ε
t e−ρtdt, (2.1)

where ct ≡ Ct
Nt

is per-capita consumption, ρ > 0 is the rate of time preference and Nt, the

population size, is weighted by the degree of altruism towards future generations, 1− ε, where

ε ∈ [0, 1]. The instantaneous utility function is assumed to be iso-elastic:

u(ct) =
c1−σ
t

1− σ
, (2.2)

where σ > 0 is the inverse of the intertemporal elasticity of substitution.

The final good is produced combining physical capital, Kt, and the share of human capital

allocated to final production, utHt, according to a Cobb-Douglas technology:

Yt = Kα
t (utHt)

1−α, (2.3)

where 0 < α < 1 and ut ∈ (0, 1).

Physical capital accumulates over time in accordance to the difference between output, Yt,

and consumption, Ct:

K̇t = Yt − Ct. (2.4)

Human capital accumulation coincides with the production of new human capital, which

depends only on the effort devoted to education, 1 − ut, and on the existing human capital

stock (the education sector is intensive in human capital), Ht:

Ḣt = (1− ut)Ht, (2.5)

We assume for simplicity that physical and human capital do not depreciate over time4.

Population coincides with the available number of workers so that there is no unemployment

and the labor supply is inelastic (no leisure-work choice), and it grows according to the following

function:

Ṅt = Ntg(Nt), (2.6)

where g(·) is a generic function of population size. The shape of such a function, as we shall

later show, results to be irrelevant for the equilibrium of the model. The transitional dynamics

instead is differently affected by the fact that g(·) shows or not a zero.

4Introducing non zero (but constant) depreciation rates would not affect the main outcome of the model.

The difference would be simply represented by additional constants in the Euler and state equations
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The social planner maximizes the social welfare function, that is it has to choose ct and

ut, in order to maximize agents lifetime utility function subject to physical and human capital

accumulation constraints, the demographic dynamics and the initial conditions:

max
ct,ut

∫ ∞
0

c1−σ
t

1− σ
N1−ε
t e−ρtdt (2.7)

s.t. K̇t = AKα
t (utHt)

1−α −Ntct

Ḣt = B(1− ut)Ht

Ṅt = Ntg(Nt)

K0, H0, N0 given.

Notice that the degree of altruism towards future generations, given by the term 1−ε, determines

the type of social welfare function we are adopting. In fact, if ε = 0 (ε = 1), the social welfare

is defined according to the Benthamite (Millian) criterion. In the former (latter) case, we are

adopting total (average) utilitarianism.

2.2.1 Optimal Paths

Notice that the dynamical equation for population change is an auxiliary equation (not a state

or a control variable), since it is completely exogenous. Therefore, from the maximization

problem we can set the Hamiltonian function (considering population dynamics as auxiliary):

Ht(·) =
c1−σ
t

1− σ
N1−ε
t e−ρt + λt[AK

α
t (utHt)

1−α −Ntct] + µtB(1− ut)Ht, (2.8)

and derive the FOCs:

∂Ht(·)
∂ct

= 0 → c−σt N1−ε
t e−ρt = λtNt (2.9)

∂Ht(·)
∂ut

= 0 → (1− α)AKα
t (utHt)

−αHtλt = BHtµt (2.10)

∂Ht(·)
∂Kt

= −λ̇t → λtAαK
α−1
t (utHt)

1−α = −λ̇t (2.11)

∂Ht(·)
∂Ht

= −µ̇t → (1− α)AKα
t (utHt)

−αutλt + µtB(1− ut) = −µ̇t. (2.12)

together with the initial conditions K0 and H0, the dynamic constraints:

K̇t = AKα
t (utHt)

1−α −Ntct (2.13)

Ḣt = (1− ut)Ht (2.14)

and the transversality conditions:

lim
t→∞

λtKt = 0 (2.15)

lim
t→∞

µtHt = 0. (2.16)
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Solving the resulting system we obtain the Euler equations for per-capita consumption and

share of human capital to be allocated to physical production:

ċt
ct

=
1

σ

[
AαKα−1

t (utHt)
1−α − ρ− εg(Nt)

]
(2.17)

u̇t
ut

=
B(1− α)

α
+But −

Ntct
Kt

. (2.18)

Equations (2.17) and (2.18) are standard, unless for the presence of the term −εg(Nt) in

the Euler equation of per-capita consumption. Population growth does not affect the path of

human capital share allocated in the production sector while whether it does or not per-capita

consumption growth depending on the adopted utilitarian criterion. If ε = 0, we are adopting

a classical or total utilitarianism approach and population change is completely irrelevant for

the dynamics of consumption, as in the standard Ramsey model. If instead ε = 1, welfare is

based on average utilitarianism and population change has a negative impact on the dynamics

of consumption, as for example in Brida and Accinelli (2007); the same is true for impure

altruism values, that is ε ∈ (0, 1).

2.3 Steady State Analysis

The dynamic behavior of the economy is summarized by equations (2.17), (2.18), (2.4), (2.5)

and (2.6). We now analyze the steady state of such an economy. We can study the dynamics

of a simplified system, by introducing the intensive variables χt = Ntct
Kt

and ψt = (ut
Ht
Kt

)1−α,

representing respectively the consumption-capital ratio and the average product of capital:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (2.19)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

g(Nt) (2.20)

u̇t
ut

=
B(1− α)

α
+But − χt (2.21)

Ṅt

Nt

= g(Nt). (2.22)

Depending on the type of demographic dynamics, the equilibrium of the economy derives

from a three-dimensional or a four-dimensional system. In fact, if the g(·) function does not

show any zero5, we have a three-dimensional system, since a stationary population size does

5A benchmark for such a case is represented by constant and exponential population growth. In the following

discussion and analysis we focalize on constant population growth, for a matter of tractability and since it is

probably the most relevant case of growth function not showing any zeros
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not exist and equation (2.22) does not imply any equilibrium value; therefore, it can simply be

deleted from the system of differential equations, which reduces to:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (2.23)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

gN (2.24)

u̇t
ut

=
B(1− α)

α
+But − χt. (2.25)

The equilibrium point of such a system is characterized by strictly positive values for all the

variables if ρ > B(1− σ) + (σ− ε)gN , where gN represents the steady state (therefore constant

and non-negative) growth rate of population. Such a system converges to its steady state

equilibrium through a saddle path, along which the stable arm has dimension one. Moreover,

we can study the implications of the utilitarian criteria on economic growth, simply analyzing

the steady state values of the variables: the steady state of the consumption-capital ratio

and the share of human capital allocated to physical production are affected by ε, while the

average product of capital is not. Therefore, we can conclude that total utilitarianism leads to

higher economic growth than average utilitarianism. We can summarize the main results in the

following proposition:

Proposition 1 Assume ρ > B(1−σ)+(σ−ε)gN ; if the population growth function is constant,

then the following results hold:

(i) the economy converges to its steady state equilibrium, along a saddle path, and the stable

arm is a one-dimensional locus;

(ii) total utilitarianism (ε = 0) implies an higher economic growth rate than average utilitari-

anism (ε = 1) if gN > 0.

Proof: Appendix A proves part (i). To prove part (ii) notice that the growth rate of

per-capita consumption, from equation (2.17), in steady state is γ = 1
σ

[Aαψ∗ − ρ− εgN ]; it is

straightforward to see that its derivative respect to ε is negative: ∂γ
∂ε

= −gN
σ

. Therefore, the

Benthamite criterion implies an higher economic growth than the Millian one. �

If instead the g(·) function shows any zeros, we have a four dimensional system since a

stationary population size exists and therefore equation (2.22) implies an equilibrium value.

The system of differential equations is the following:

ψ̇t
ψt

=
B(1− α)

α
− (1− α)Aψt (2.26)

χ̇t
χt

=
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

g(Nt) (2.27)
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u̇t
ut

=
B(1− α)

α
+But − χt (2.28)

Ṅt

Nt

= g(Nt). (2.29)

The equilibrium point of such a system is characterized by strictly positive values for all the

variables if ρ > B(1 − σ). By equation (2.29), the existence of a stationary population size is

ensured if g(Nt) = 0. Moreover, the equilibrium is saddle point stable in a generalized form,

since the stable manifold has dimension one (two) and the unstable one has dimension three

(two) if ∂g(·)
∂Nt
|Nt=N∗ > 0(< 0). This means that equilibrium indeterminacy can arise in the Lucs-

Uzawa model simply because of population dynamics: in such a case, a continuum of paths

converging to equilibrium exists. As before, we can study the implications of average and total

utilitarianism on the outcome of the model, simply analyzing the steady state values of the

variables: the steady state values of all the economic variables are independent of ε. Therefore,

the adopted utilitarian criterion affects only the transitional dynamics of the economy, but in

steady state all the differences vanish. We can summarize this result in the following proposition:

Proposition 2 Assume ρ > B(1−σ); if the population growth function shows any zeros, then:

(i) the economy converges to its steady state equilibrium, along a saddle path. The stable arm

is a two-dimensional locus if ∂g(·)
∂Nt
|Nt=N∗ < 0, while it has dimension one if ∂g(·)

∂Nt
|Nt=N∗ > 0

(ii) Whether the social welfare function is built on the Benthamite (ε = 0) or the Millian (ε = 1)

criterion, the steady state growth rate of the economy does not change.

Proof: Appendix B proves part (i). To prove part (ii) notice that in such a framework,

since population growth is null in equilibrium, the growth rate of per-capita consumption, from

equation (2.17), in steady state is γ = 1
σ

[Aαψ∗ − ρ]. It is straightforward to see that its deriva-

tive respect to ε is null and therefore the Benthamite and the Millian criteria do not imply any

difference for the economic growth rate. �

We can notice that the equilibrium of such a model is only marginally affected by the shape

of the population growth function. In fact, the economic variables (χ, ψ, u) converge to their

equilibrium independently of the behavior of the demographic variable (N). The features of

population dynamics affect mainly the timing where convergence is reached, which can happen

in finite time or asymptotically, characterizing the equilibrium respectively as a balanced growth

path (BGP), as in the growth models with constant exponential population growth, or as an

asymptotically balanced growth path (ABGP), as in the case of logistic population growth.

If the population growth function shows any zeros, then its shape determines the dimension

of the stable arm. In fact, if ∂g(·)
∂Nt
|Nt=N∗ < 0 the stable arm has dimension two (implying

41



equilibrium indeterminacy) while if ∂g(·)
∂Nt
|Nt=N∗ > 0 it has dimension one (implying uniqueness

of the convergence path). We have just proved:

Proposition 3 The economy described by (2.7) converges towards its unique (non-trivial) equi-

librium independently of population dynamics. Demographic dynamics just determines the tim-

ing of convergence and the dimension of the stable arm.

This results derive from the assumption that population growth is exogenous, and therefore

it just represents an auxiliary variable in the optimal control problem (2.7). Under such an

assumption, how we model this dynamics does not affect the main outcome of the model

(clearly the equilibrium values of χ and u can change as we introduce a different law of motion

for demography). What can change according to the features of the g(·) function is the timing

when the equilibrium is reached (finite or infinite) and the dimension of the stable arm (one or

two).

2.4 Some Examples of Demographic Change

In this section we discuss several examples of population dynamics introduced in the previous

literature, showing how they are just particular cases of our general formulation. We consider

the cases in which population is exponential, logistic and follows a von Bertalanffy function.

2.4.1 Exponential Population

The standard assumption of growth theory on demography is that population growth is expo-

nential and constant over time (see Solow (1956)). This in our general formulation represents

the case in which g(·) is simply a constant:

g(Nt) = n, (2.30)

where n can be positive, negative or null. If it is negative, population size constantly decreases

and asymptotically will completely disappear; if it is null, population size is constant and it does

not show any dynamics over time; if it is positive instead population constantly increases and

it will asymptotically approach infinity. This last case gives birth to the critique to exponential

demographic change, since it implies the absence of any natural and environmental limits to

population growth. This specification implies that demographic dynamics is monotonic and

Proposition 1 holds: in such a case the stable arm is a one-dimensional locus and the Benthamite

criterion leads to an higher economic growth rate than the Millian one.
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2.4.2 Logistic Population

A first attempt to avoid the implications of exponential population growth has been the intro-

duction of logistic demography (see Brida and Accinelli (2007)). This represents the case in

which g(·) is:

g(Nt) = n− dNt, (2.31)

where n and d are both positive (if d = 0, we are driven back to exponential growth), and

n represents the trend of population growth. Notice that population dynamics is given by a

Bernoulli-type differential equation which can be explicitly solved obtaining:

Nt =
n

d+ ( n
N0
− d)e−nt

. (2.32)

Population size therefore is increasing over time and it reaches a stationary level only when

t → ∞; in fact, limt→∞Nt = n
d
. This formulation implies that population growth is null in

steady state and therefore Proposition 2 holds: the stable arm is two-dimensional locus since

g′(·) < 0 and the economic growth rate is independent of the adopted utilitarian criterion. If

population growth is logistic, the equilibrium is only asymptotically approached since popula-

tion size converges to its steady state value in the very long-run.

2.4.3 von Bertalanffy Population

The von Bertalanffy population growth has been introduced by Accinelli and Brida (2007) to

describe a population strictly increasing and bounded whose growth rate is strictly decreasing

to zero. This function corresponds to:

g(Nt) =
n(N∞ −Nt)

Nt

, (2.33)

where N∞ is the theoretical maximum population size and n determines the speed at which

demography reaches its maximal level. The equation of population dynamics can be explicitly

solved obtaining:

Nt = N∞ − (N∞ −N0)e−nt. (2.34)

Population size therefore is increasing over time and it reaches a stationary level only when

t → ∞; in fact, limt→∞Nt = N∞. Also in this case Proposition 2 holds: the stable arm has

dimension two since g′(·) < 0, and the utilitarian criteria do not imply any difference for the

economic growth rate since the growth rate of population is null in steady state.
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2.5 Transitional Dynamics in the Case σ = ε = α

We now study the transitional dynamics of the economy. Since population growth is exogenous

its entire dynamics is the following:

N t =

∫ t

0

g(Ns)Nsds. (2.35)

Notice that all the cases discussed in the previous section show a closed form solution for their

dynamic path, given by Nt = N0e
nt for the constant growth case, equations (2.32) for the

logistic case and (2.34) for the von-Bertalanffy one. The dynamics of χ, ψ and u are instead

given by:

ψt =
e
B(1−α)

α
t

ψ−1
0 + αA

B
e
B(1−α)

α
t

(2.36)

χt =
e
∫ t
0 [α−σ

σ
Aψs−

ρ
σ

+σ−ε
σ
g(Ns)]ds

χ−1
0 −

∫ t
0
e
∫ s
0 [α−σ

σ
Aψv−

ρ
σ

+σ−ε
σ
g(Nv)]dvds

(2.37)

ut =
e
∫ t
0 [
B(1−α)

α
−χs]ds

u−1
0 −B

∫ t
0
e
∫ s
0 [
B(1−α)

α
−χv ]dvds

. (2.38)

From these we can obtain the entire dynamics of consumption, physical and human capital:

ct = c0e
∫ t
0 [α
σ
Aψs−

ρ
σ
− ε
σ
g(Ns)]ds (2.39)

Kt = K0e
∫ t
0 (Aψs−χ̄s)s (2.40)

H t = H0e
∫ t
0 (1−us)ds, (2.41)

where χ, ψ, u and N are respectively given by equations (2.35), (2.36), (2.37) and (2.38).

Notice that in the case in which σ = ε = α, we can find a full closed-form solution for the

transitional dynamics of c, u,K,H. In such a case, solving the integrals in equations (2.37) is

straightforward, and the global dynamics of the control and state variables is the following:

ut =
e
B(1−α)

α
t
(

1− αχ0

ρ

)
+ αχ0

ρ
e
B(1−α)−ρ

α
t

u−1
0 − α

[(
1− αχ0

ρ

)(
e
B(1−α)

α
t − 1

)
1

1−α + χ0

ρ

(
e
B(1−α)−ρ

α
t − 1

)
αB

B(1−α)−ρ

]
ct = c0

[
ψ−1

0 + αA
B

(e
B(1−α)

α
t − 1)

ψ−1
0 + αA

B

] α2A2

B2(1−α)

e−
ρ
α
t−

∫ t
0 g(Ns)ds

Kt = K0

[
ψ−1

0 + αA
B

(e
B(1−α)

α
t − 1)

ψ−1
0 + αA

B

] α2A2

B2(1−α) [
1 +

αχ0

ρ
(e−

ρ
α
t − 1)

]

H t = H0

[
1− αu0

[(
1− αχ0

ρ

)(
e
B(1−α)

α
t − 1

) 1

1− α
+
αχ0

ρ

(
e
B(1−α)−ρ

α
t − 1

) B

B(1− α)− ρ

]] 1
B

et.
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If the inverse of the intertemporal elasticity of substitution is equal both to the capital share

and the altruism parameter, we can evaluate the dynamics of the control and state variables

for all t, by solving the integrals in equations (2.38) - (2.41). Notice that these dynamics can

be fully characterized in the case in which the social welfare function is built upon impure

altruism.

2.6 A Closed Form Solution for Stochastic Population

Shocks

Demographic shocks consist of changes in population growth rates or immigration policies, and

their main effect is altering the size of labor force (population), without affecting per-capita

stock of physical or human capital. They are thought to have important effects on macroe-

conomic variables such as growth rates and investment decisions. Robertson (2002) studies

the transitional effects of demographic shocks in an Uzawa-Lucas model; however, he analyzes

such shocks simply through a comparative statics exercise. In this section we instead consider

the case in which population growth is stochastic, namely we assume population is subject to

random shocks and suppose that it follows an exogenous stochastic differential equation driven

by a Brownian motion.

We therefore replace equations (2.6) in our model by a geometric Brownian motion:

dNt = µNtdt+NtθdWt, (2.42)

where µ is the drift and θ ≥ 0 the variance parameter, while dWt is the increment of a Wiener

process such that E[dWt] = 0 and var(dWt) = dt. Since the presence of this random term, the

objective function (2.1) has to rewritten as an expected term:

U = E

[∫ ∞
0

c1−σ
t

1− σ
N1−ε
t e−ρtdt

]
. (2.43)

Notice first of all that the maximization problem is totally equivalent to the following6:

max
Ct,ut

U = E

[∫ ∞
0

C1−σ
t

1− σ
Nσ−ε
t e−ρtdt

]
(2.44)

s.t. K̇t = Kα
t (utHt)

1−α − Ct (2.45)

Ḣt = B(1− ut)Ht (2.46)

dNt = µNtdt+NtθdWt (2.47)

K0, H0, N0 given, (2.48)

6Notice that since there is no technical progress in the model, normalizing to 1 the total factor productivity

is irrelevant
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where Ct = ctNt represents aggregate capital.

Define J(Ht, Kt, Nt) as the maximum expected value associated with the stochastic opti-

mization problem described above. The Hamilton-Jacobi-Bellman (HJB) equation is:

ρJ = max
Ct,ut

{
C1−σ
t

1− σ
Nσ−ε
t + JKK̇t + JHḢt + JNµNt +

JNNθ
2N2

t

2

}
, (2.49)

where the differential equations for Kt and Ht are defined in (2.45) and (2.46) and subscripts

denote partial derivatives of J with respect to the relevant variables of interest. Notice that if

σ = ε, the first term on the RHS of equation (2.49) becomes
C1−σ
t

1−σ since the population term

vanishes (from now onwards we continue as such an assumption holds). Dropping the ts for

clarity, differentiating (2.49) with respect to the control variables gives:

c = JK
− 1
σ , (2.50)

u =
K

H

[
(1− α)JK
BJH

] 1
α

, (2.51)

which substituted back into (2.49) yield:

0 =

(
σ

1− σ

)
JK

1− 1
σ − ρJ + JK

[
K

[
(1− α)JK
BJH

] 1
α
[

BJH
(1− α)JK

]]
+

+JH

[
BH −BK

[
(1− α)JK
BJH

] 1
α

]
+ JNµN +

JNNθ
2N2

2
. (2.52)

We postulate a value function separable in the state variables of the problem:

J(H,K,N) = THH
λ1 + TKK

λ2 + TNN
λ3 , (2.53)

where TH , TK and TN are constant parameters. We have the following result which shows that a

closed form solution to the problem exists under a particular combination of parameter values.

Theorem 1 Assume that σ = ε = α and B = ρ. Then (2.49) has a solution given by:

J(H,K,N) = THH + TKK
1−α + TN , (2.54)

where:

TK =

[(
α

1−α

)
(1− α)

−(1−α)
α

ρ

]α
and

T
α−1
α

H

TN
=

−ρ
−Bα
1−α

[
(1−α)2TK

B

] 1
α

TK
TH

=
1

(1− α)

[
H0ρ

B

]α
, (2.55)
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Proof: See Appendix C. �

Given this expression for J , we obtain the first derivatives with respect to Kt and Ht and

substitute into (2.50) and (2.51), thereby deriving the optimal policy rules for c and u, which

substituted into the constraints, give us the solutions for Kt and Ht.

Proposition 4 Under the assumptions of theorem 1, the optimal rules for the levels of con-

sumption and rate of investment in physical capital are given by:

Ct =
Kt

[(1− α)TK ]
1
α

, ut =
1

Ht

[
(1− α)2TK

BTH

] 1
α

. (2.56)

Moreover, the optimal path of physical capital is:

K̇t = Ω1K
α
t − Ω2Kt,

that is:

Kt = e−Ω2t

[
Ω1

Ω2

[
eΩ2(1−α)t − 1

]
+K1−α

0

] 1
1−α

, (2.57)

where:

Ω1 =

[
(1− α)2TK

B

] 1−α
α

and Ω2 =
1

[(1− α)TK ]
1
α

,

while the optimal path of human capital is:

Ḣt = BHt −BΩ3,

that is:

Ht = eBt
[
H0 + Ω3

(
e−Bt − 1

)]
, (2.58)

where:

Ω3 =

[
(1− α)2TK

BTH

] 1
α

.

(2.56) provides a result similar to that of the AK-model since for all t, there exists a linear

relationship between the optimal level of consumption and capital. Proposition 4 shows that the

optimal levels of the state variables Kt and Ht are independent of Nt. The effects of population
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shocks is instead present in per-capita variables, kt = Kt
Nt

and ht = Ht
Nt

. In fact, using Ito’s

lemma, the law of motion of per-capita physical and human capital are respectively given by:

dkt
kt

=
dKt

Kt

− dNt

Nt

+

(
dNt

Nt

)2

=

[
Kα−1
t (utHt)

1−α − Ct
Kt

− µ+ θ2

]
dt− θdWt (2.59)

dht
ht

=
dHt

Ht

− dNt

Nt

+

(
dNt

Nt

)2

=
[
B(1− ut)− µ+ θ2

]
dt− θdWt. (2.60)

In order to understand the role of population shocks, we need to take expectations of per-capital

physical and human capital. In order to do so, we can first find the distribution of Xt = 1
Nt

:

dXt

Xt

=

(
dNt

Nt

)2

− dNt

Nt

=
[
−µ+ θ2

]
dt− θdWt. (2.61)

It is easy to prove that:

Xt = X0e
(θ2−µ− θ

2

2
)t+θWt , (2.62)

whose expectation is:

E[Xt] = X0e
(θ2−µ− θ

2

2
)tE[eθWt ]

= X0e
(θ2−µ)t. (2.63)

Using such a result and since E[kt] = E[Kt
Nt

] = E[KtXt] it is straightforward finding the expected

value of kt:

E[kt] = E[KtXt]

= KtE[Xt]

= X0e
−Ω2t

[
Ω1

Ω2

[
eΩ2(1−α)t − 1

]
+K1−α

0

] 1
1−α

e(θ2−µ)t. (2.64)

The same reasoning applies fot ht:

E[ht] = E[HtXt]

= HtE[Xt]

= X0e
Bt
[
H0 +BΩ3

(
e−Bt − 1

)]
e(θ2−µ)t. (2.65)

Setting θ = 0 in (2.64) and (2.65) yields the levels of the state per-capita variable in the

deterministic version of the model. We can therefore contrast the results of the deterministic

version of the model, which is indicated with a star ∗, with those of the stochastic version.
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Proposition 5 Under the assumptions of theorem 1, we have for all t = 0, . . . ,∞:

E[kt] ≥ k∗t

E[ht] ≥ h∗t

According to this result, uncertainty of N increases on average the levels of physical and hu-

man capital. Since the evolution of population is highly uncertain, due to the sudden variations

in the migration flows and in fertility and mortality rates, analyzing how demographic shocks

affect the economy is important in order to understand their effects on the optimal policy rules.

In this section we introduced random shocks driven by a geometric Brownian motion to the

level of population in the Uzawa-Lucas model. We showed that if the altruism is impure and

in particular it equals both the inverse of the intertemporal elasticity of substitution and the

physical capital share, a closed-form solution can be found. Moreover, shocks on population

increase both the per-capita human and physical capital stock.

2.7 Conclusion

A standard assumption in growth theory is that population change is constant and exponential.

Recently, the idea that such a specification is unrealistic has been arisen. This is due to an

implication of such a hypothesis: population size goes to infinity as time goes to infinity. This is

clearly unrealistic, since it would deny the presence of an environmental and economic carrying

capacity (Brida and Accinelli (2007)). As a result, several papers study the introduction of

different population growth functions in canonical growth models.

In this paper we introduce a generic population change function in a two-sector endogenous

model of growth, á-la Lucas-Uzawa and we show that the outcome of the model does not

dependent on the choice of such a function. In fact, a unique non-trivial equilibrium exists

and the economy converges towards it along a saddle path, independently of the shape of

the population change function. What can be affected by its shape is the dimension of the

stable transitional path, which can be one (if ∂g(·)
∂Nt
|Nt=N∗ > 0) or two (if ∂g(·)

∂Nt
|Nt=N∗ < 0), and

the timing of convergence, which can happen in finite (the steady state is characterized by a

BGP) or infinite (by an ABGP) time. Moreover, with respect to other works dealing with non

exponential population change we do not relax one of the standard assumptions in economic

growth theory, that is the social welfare function is founded on the Benthamite criterion. In fact,

we consider a generic social welfare function which results to be based on the Benthamite or the

Millian criterion according to the value of the altruism parameter. We show that if population

growth is null in steady state (as in the case of logistic population growth), choosing one or the

other criterion is irrelevant for the outcome of the model. Instead, if population growth is not
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null in equilibrium, the Benthamite criterion leads to higher economic growth than the Millian

criterion.

Then, we formalize the population growth function by different functions which represent

alternative demographic dynamics studied in the previous literature and show how our model

is able to encompass all of them as particular cases. We look for a closed form solution of

the model, showing that this can be fully characterized under a certain condition on the al-

truism parameter, namely when it coincides with the inverse of the intertemporal elasticity of

substitution and the capital share. We also look for a closed form solution of the model when

population is subject to random shocks and follows a geometric Brownian motion. We show

that a closed form solution can be found under the same condition on the altruism parameter.

In such a case, shocks on population increase the human and physical capital stock.

For further research, we suggest to study the dynamics of a two-sector economic growth

model when population change is endogenous. Really few papers introduce endogenous popu-

lation change in optimal models of growth and moreover they just analyze the case of a single

sector economy (a really recent example is Marsiglio (2010)). It can be interesting to see

whether endogenizing fertility can play a crucial role in determining the transitional dynamics

of multi-sector growth models and whether the degree of intertemporal altruism affects the

economic equilibrium.

A. Exponential Population Growth

The steady state of the quasi-linear three dimensional system can be found by setting equation

(2.23), (2.24) and (2.25) equal to zero:

0 =
B(1− α)

α
− (1− α)Aψt (2.66)

0 =
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

gN (2.67)

0 =
B(1− α)

α
+But − χt, (2.68)

where gN is the constant growth rate of population. From equation (2.66) we have:

ψ∗ =
B

αA
, (2.69)

which substituted into equation (2.67) yields:

χ∗ =
ρα−B(α− σ)− α(σ − ε)gN

ασ
. (2.70)

Plugging this into equation (2.68) we have:

u∗ =
ρ−B(1− σ)− (σ − ε)gN

Bσ
. (2.71)
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The steady state value of all variables is strictly positive if ρ > B(1− σ) + (σ − ε)gN , because

we need: {
ρ−B(1− σ)− (σ − ε)gN > 0

ρα−B(α− σ)− α(σ − ε)gN > 0

and since σ
α
> σ, ρ > B(1− σ) + (σ − ε)gN is enough to ensure both inequalities are satisfied.

Notice that if gN is not too big, such a condition generally holds for reasonable values of σ;

in fact, many studies (see Mehra and Prescott (1985); and more recently Obstfeld (1994). For

example, Mullingan and Sala-i-Martin (1993) in their baseline specification set it equal to 2)

find that the inverse of the intertemporal elasticity of substitution is higher than one and in

this case the previous condition is automatically satisfied.

We can study the stability of the system by linearizing around the steady state. The

Jacobian matrix, J(χt, ψt, ut), is:
α−σ
σ
Aψt − ρ

σ
+ 2χt + σ−ε

σ
g(Nt)

α−σ
σ
Aχt 0

0 B(1−α)
α
− 2(1− α)Aψt 0

−u∗ 0 B(1−α)
α

+ 2But − χt

 , (2.72)

which evaluated at steady state, J(χ∗, ψ∗, u∗), becomes:
χ∗ α−σ

σ
Aχ∗ 0

0 −(1− α)ψ∗ 0

−u∗ 0 Bu∗

 . (2.73)

The eigenvalues results to be the elements on the main diagonal: therefore, we have two positive

and one negative eigenvalues: the equilibrium is saddle-point stable. The system therefore

converges to its steady state equilibrium through a saddle path, along which the stable arm is

a one-dimensional locus while the unstable manifold has dimension two.

B. Non-Exponential Population Growth

The steady state of the quasi-linear four dimensional system can be found by setting equation

(2.26), (2.27), (2.28) and (2.29) equal to zero:

0 =
B(1− α)

α
− (1− α)Aψt (2.74)

0 =
α− σ
σ

Aψt −
ρ

σ
+ χt +

σ − ε
σ

g(Nt) (2.75)

0 =
B(1− α)

α
+But − χt (2.76)

0 = g(Nt) (2.77)
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From equation (2.77), we have:

g(Nt) = 0 → N∗; (2.78)

this means that the steady state growth rate of population is null, that is gN = 0. Substituting

this into the results of the previous section we obtain:

ψ∗ =
B

αA
(2.79)

χ∗ =
ρα−B(α− σ)

ασ
(2.80)

u∗ =
ρ−B(1− σ)

Bσ
. (2.81)

The steady state value of all variables is strictly positive if ρ > B(1− σ).

We can study the stability of the system by linearization. The Jacobian matrix, J(χt, ψt, ut, Nt),

is:
α−σ
σ
Aψt − ρ

σ
+ 2χt + σ−ε

σ
g(Nt)

α−σ
σ
Aχt 0 σ−ε

σ
∂g(·)
∂Nt

χt

0 B(1−α)
α
− 2(1− α)Aψt 0 0

−u∗ 0 B(1−α)
α

+ 2But − χt 0

0 0 0 ∂g(·)
∂Nt

Nt + g(Nt)

 ,
which evaluated at steady state, J(χ∗, ψ∗, u∗, N∗), becomes:

χ∗ α−σ
σ
Aχ∗ 0 σ−ε

σ
∂g(·)
∂Nt
|Nt=N∗χ

∗

0 −(1− α)ψ∗ 0 0

−u∗ 0 Bu∗ 0

0 0 0 ∂g(·)
∂Nt
|Nt=N∗N

∗

 , (2.82)

Also in this case, the eigenvalues results to be the elements on the main diagonal: therefore, we

have two positive and one negative eigenvalues, independent of the g(·) function, while the last

one crucially depends on it. However, the equilibrium is saddle-point stable and the system

therefore converges to its steady state equilibrium through a saddle path. The shape of the

g(·) function affects only the dimension of the stable and unstable transitional paths. In fact,

if ∂g(·)
∂Nt
|Nt=N∗ > 0 the stable arm has dimension one, while if ∂g(·)

∂Nt
|Nt=N∗ < 0 it has dimension

two.

C. Proof of theorem 1

From equation (2.54), we have:

JH = λ1THH
λ1−1, JK = λ2TKK

λ2−1, (2.83)

JN = λ3TNN
λ3−1, JNN = λ3(λ3 − 1)TNN

λ3−2, (2.84)
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which substituted into equation (2.49), yield:

0 =

(
σ

1− σ

)[
λ2TKK

λ2−1
]1− 1

σ − ρ
(
THH

λ1 + TKK
λ2 + TNN

λ3
)

+

+

(
B

1− α
−B

)
K

[
(1− α)λ2TKK

λ2−1

λ1BTHHλ1−1

] 1
α

λ1THH
λ1−1 +

+λ1THH
λ1−1BH + λ3N

λ3−1µTNN +
λ3(λ3 − 1)TNN

λ3−2θ2N2

2
, (2.85)

that is:

0 =

(
σ

1− σ

)
[λ2TK ]1−

1
σ K

(λ2−1)(σ−1)
σ − ρ

(
THH

λ1 + TKK
λ2 + TNN

λ3
)

+

+

(
B

1− α
−B

)
λ1TH

[
(1− α)λ2TK
λ1BTH

] 1
α

Hλ1−1KK
λ2−1
α H

1−λ1
α +

+λ1THBH
λ1 + λ3µTNN

λ3 +
λ3(λ3 − 1)θ2

2
TNN

λ3 . (2.86)

Let λ1 = 1, λ2 = 1− α and λ3 = 0. Then we get:

0 =

(
σ

1− σ

)
[(1− α)TK ]1−

1
σ K

−α(σ−1)
σ − ρ

(
THH + TKK

1−α + TN
)

+

+

(
B

1− α
−B

)
TH

[
(1− α)2TK

BTH

] 1
α

+ THBH. (2.87)

If σ = α, then

0 =

[(
α

1− α

)
(1− α)

−(1−α)
α T

− 1
α

K − ρ
]
K1−αTK + (B − ρ)THH +[

−ρTN +

(
B

1− α
−B

)
TH

(
(1− α)2TK

BTH

) 1
α

]
(2.88)

Since B − ρ = 0, the second term in the summation disappears. Since this equation has to be

satisfied for all values of K and N , the square brackets have to be zero. This implies the values

of TK and
T
α−1
α

H

TN
given by (2.55).

The verification theorem requires that the transversality condition is satisfied in order to

have an optimal solution. The TVC implies that limt→∞E[e−ρtJ(H,K,N)] = 0, that is:

lim
t→∞

E[e−ρt(THH + TKK
1−α + TN ] = 0. (2.89)

The third term,

lim
t→∞

TNe
−ρt (2.90)
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to automatically converge to zero. The second term instead,

lim
t→∞

TKE

[
e−ρte−Ω2(1−α)t

[
Ω1

Ω2

(eΩ2(1−α)t − 1) +K1−α
0

]]
automatically converges to zero as well. The first term is given by:

lim
t→∞

THE
[
e−ρteBt

[
H0 + Ω3(e−Bt − 1)

]]
= 0,

which requires:

lim
t→∞

THE
[
H0 + Ω3(e−ρt − 1)

]
= 0;

the term in the square brackets has therefore to be null, leading to the value TK
TH

given by (2.55).
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Chapter 3

Endogenous Technical Progress in a

Three-Sectors Growth Model

This paper1 presents an endogenous growth model driven by human capital, where human capital

can be allocated across three sectors: the production of the final consumption good, the educational

sector and the production of technological capital (in the form of knowledge or ideas). Typical ideas-

based growth models, such as Romer (1990), assume that the production of knowledge is linear in

some variables, usually ideas or human capital. We assume that knowledge is produced according

to a neoclassical technology, combining ideas and human capital. Such an assumption is motivated

by empirical works showing the existence of significant decreasing returns in the creation of ideas at

the aggregate level (as Kortum (1993); and Pessoa (2005)) and of weak relationship between some

inputs of the knowledge production process (as the number of researchers) and the total factor pro-

ductivity growth rate (as Jones (2002)). We show that the economy converges towards its steady state

equilibrium along a form of generalized saddle path, along which the stable arm is multidimensional.

This gives rise to equilibrium indeterminacy, which happens under the (fairly reasonable) conditions

ensuring convergence to steady state.

Keywords: Economic Growth, Capital Accumulation, Technological Progress, Equilibrium Indeter-

minacy

JEL Classification: E32, O33, O40, O41

1The first part of this paper is a simplified version of a joint work of La Torre Davide and myself, recently

published on Economic Modelling: La Torre, D., Marsiglio, S. (2010), Endogenous Technological Progress in a

Multi Sector Growth Model, Economic Modelling 27(5), 1017-1028. With respect to that paper, this version

does not include government expenditure and population change, but also studies a particular case of the model,

in which the human and technical capital share coincide. Such a case allows us to further simplify the model and

therefore to prove that the stable transitional path is multidimensional, under an additional general assumption;

this is used to prove that also a multi-sector model with constant returns to scale in each sector can generate

equilibrium indeterminacy
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3.1 Introduction

During the last century, modern economies have been characterized by growth in many forms:

output, productivity, average human capital and knowledge are all variables which have grown

consistently over the past hundred years. This increased the interest in identifying the un-

derlying causes of such improvements, and different variables have been identified as possible

sources of growth in the literature during the last fifty years. Solow (1956) and others after him

identified the accumulation of physical capital as crucial in explaining growing economies. In

Lucas’ (1988) view, instead, the evolution of human capital is the key feature driving growth

in the long run. Recently, a literature stream, led mainly by Romer (1986, 1990), has started

considering ideas as the relevant engine of growth.

In ideas-based growth models, the dynamics of knowledge is assumed to be the ultimate

determinant of growth. This means that the creation of new ideas is enough to explain the

features of growing economies over the last century. In order to model this, some kind of

linearities have been introduced in the technology production function (see Jones (2005) for a

survey). For example, Romer (1990) assumes creation of ideas is linear both in the stock of

ideas and human capital employed in research. Empirical works suggest there are significant

decreasing returns of ideas at the aggregate level (see for example, Kortum (1993) and Pessoa

(2005)). Moreover, as Pessoa (2005) clearly summarizes: ”The ideas-driven model ... predicts

that expansion in the number of researchers leads to a permanent increase in TFP growth rate.

In contrast, the empirical evidence suggests that most OECD economies have increased the

size of their R&D workforce, while experiencing (at best) constant TFP growth rates. This

weak relationship between the number of researchers and TFP growth rate has led some to

question the viability of ideas-driven growth for the long run”. Therefore, we consider that

the concept of creation of ideas has to be introduced in standard economic growth models,

modeling its interaction with capital (in particular with human capital), in order to deepen

their dynamics. In this paper, we introduce ideas in a multi-sector endogenous growth model.

In particular, ideas affect the production of the consumption good and are used to create new

ideas2. Therefore, our model economy is composed of three main interrelated sectors: the final

2The introduction of ideas in a growth model, as Jones (2005) emphasizes, raises the problem of introducing

non- rivalry. Romer (1993) divides goods into two categories: ideas and objects. Ideas can be represented by

instructions or blueprints, while objects are the standard rival goods, such as capital, labor, output... Ideas are

merely instructions for combining the objects in order to produce utility. Accepting Romer’s (1993) definition

of ideas, we have to recognize that the use of ideas by one person does not diminish others’ use and therefore

ideas are non-rival goods. This of course implies the presence of increasing returns to scale in production

possibilities, and consequently leads to a framework where the first fundamental theorem of welfare economics

does not hold. As a result, the decentralized outcome may not coincide with the planned one, resulting in a
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one, the educational sector and that devoted to accumulating knowledge. The basic model we

use in order to study the linkages among ideas, human and physical capital is an extension of the

Uzawa-Lucas model (see Uzawa (1965) and Lucas (1988)), which is one of the most studied and

celebrated endogenous growth models. As Boucekkine and Ruiz-Tamarit (2008) have recently

emphasized, ”the Lucas-Uzawa model, one of the most celebrated endogenous growth model, [...]

has some interesting properties. [...] being a two- sector model, it gives rise to a sophisticated

dynamic system with two controls, consumption (c) and the fraction of human capital operating

in the final good sector (u), and two state variables, physical capital (K) and human capital

(H)”, and ”because it is mathematically appealing, it has been studied by many authors, using

different approaches, allowing for a stimulating methodological discussion”. In literature, several

extensions of the classical Uzawa-Lucas model can be found (see for example Bucci et al. (2010);

and Robertson (2002)). For instance, Robertson (2002) introduces unskilled labor as a distinct

factor from human capital in the Uzawa-Lucas model, and uses this modified model in order to

study the effects of demographic shocks on the economy. Bucci et al. (2010), instead, extend

the Uzawa-Lucas model by assuming that the level of technology might be subject to random

shocks and suppose that the level of technology follows an exogenous stochastic differential

equation driven by a Brownian motion.

In this paper we extend the Uzawa-Lucas model in two different ways. Ideas affect the

production of the final consumption good (derived from a technology combining ideas, physical

and human capital) and are used to produce new ideas (therefore we have an additional differ-

ential equation, representing the accumulation of knowledge over time). Human capital, which

still represents the engine of growth, is used also in the production of new ideas, and therefore

has to be endogenously allocated across the three sectors. This means that our model economy

is composed of three sectors, where physical, human and technological capital are used to pro-

duce only one homogeneous final good, that can be consumed or invested in physical capital.

Physical capital can be used only for producing the final good, while human capital can be

allocated in the production of the final good, in the education sector or in the production of

ideas. Technological capital instead can be used as an input in the production of the final good

or to create new technical capital. A benevolent social planner in this model has to decide

where to allocate resources. The human capital decision is crucial, since it affects production

of the final good, education, and ideas.

The paper proceeds as follow. Section 2 introduces the model and derives the optimal paths

for the three control variables: consumption, share of human capital allocated to physical pro-

sub optimal allocation of resources. In this paper, we do not analyze the problems related to the decentralized

allocation (postponing this issue to future research), but we aim at studying the optimal planned economy and

the linkages between ideas, physical and human capital
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duction and to knowledge creation. Section 3 analyzes the steady state of our model economy,

that is characterized by a balanced growth path, along which the fractions of human capital

allocated in each sector are constant, and its transitional dynamics. We show the economy

converges towards its steady state equilibrium along a saddle path. We moreover present some

numerical examples, in order to underline the role of human capital in the three sectors. In

Section 4 we present a special case of the model, that is when the human and technical cap-

ital share coincide in order to emphasize the features of the stable arm of the model; such a

case allows us to prove that equilibrium indeterminacy can arise also in a growth model with

constant returns to scale in each sector. Section 5 instead concludes.

3.2 The Model

The model is an extension of the Uzawa-Lucas model, in which we consider a three sectors

economy, where physical, human and technological capital are used to produce only one ho-

mogeneous final good, that can be consumed or invested in physical capital. Physical capital

can be used only for producing the final good, while the human capital can be allocated in the

production of the final good, in the education sector or in the production of ideas. Technological

capital or ideas instead can be used as an input in the production of the final good or to create

ideas.

The economy is closed and composed of households (that receive wages and interest income,

purchase the consumption good and choose how much to save and how much to invest both in

education and in ideas) and firms (that produce the consumption good). The infinitely-lived

representative household wants to maximize its lifetime utility function:

U =

∫ ∞
0

u(ct)Nte
−ρtdt, (3.1)

where ct ≡ Ct
Nt

is per-capita consumption and ρ > 0 is the rate of time preference. The

instantaneous utility function is assumed to be iso-elastic:

u(ct) =
c1−σ
t − 1

1− σ
, (3.2)

where σ > 0 represents the inverse of the intertemporal elasticity of substitution in consumption.

The final good is produced, combining physical capital, Kt, the share of human capital

allocated to final production, utHt, and labor in efficiency units (the product of row labor

and its efficiency, given by level of ideas in the economy), AtNt, according to the following

technology:

Yt = Kα
t (utHt)

β(AtNt)
1−α−β, (3.3)
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where 0 < α, β, (α + β) < 1 and ut ∈ (0, 1).

Notice that two inputs of production, human capital and ideas, are allocated across other

sectors: other than the final one, the former is also assigned to production of new human capital

and production of new ideas, while the latter is assigned only to the creation of knowledge.

The main difference between these factors is found in their own nature: human capital is a

rival good, meaning that its usage in a sector lowers its availability in the other ones; ideas

instead are non-rival, meaning that being widespread in the economy, they can be freely and

contemporaneously used in different sectors, without compromising their availability in each

one. This means that human capital used in the production of the final good is only a share,

ut, of the total, while the remaining fraction is split between the production of new ideas (or

blueprints), xt and education, 1 − ut − xt. Instead, all ideas available are independently used

both in physical and knowledge production. Moreover, notice that the production function

combines with constant returns to scale the rival inputs, physical, human capital and labor,

while showing increasing returns to scale jointly to these inputs and ideas.

Population coincides with the available number of workers, Nt, so that there is no unemploy-

ment and the labor supply is inelastic (no leisure-work choice), and it grows at an exogenous

constant rate. For the sake of simplicity we assume this constant rate is zero3. The constant

level of population therefore can be normalized to one, N0 = Nt ≡ 1, ∀t, implying no differ-

ence between aggregate and per-capita variables. Consequently, the production function of the

consumption good can be simplified as:

yt = kαt (utht)
βa1−α−β

t . (3.4)

Physical capital accumulates over time in accordance to the difference between output, yt,

and consumption, ct:

k̇t = yt − ct. (3.5)

Human capital accumulation coincides with the production of new human capital, which

depends only on the effort devoted to the accumulation of human capital, 1− ut − xt, and on

the already attained human capital stock (the education sector is intensive in human capital),

ht:

ḣt = (1− ut − xt)ht, (3.6)

where 0 < ut, xt < 1. Notice that new human capital is produced accordingly to a linear

production function, meaning that human capital, as in the Uzawa-Lucas model, represents the

force driving endogenous growth.

3The outcome of the model would not change if we relax this assumption: the only differences would be

represented by an additional constant in the Euler and state equations
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Also idea accumulation coincides with the production of new ideas, depending on the effort

devoted to the accumulation of new ideas, xtHt, and on already existing stock of the knowledge,

at:

ȧt = (xtht)
φa1−φ

t , (3.7)

where 0 < φ < 1.

Since 1−φ > 0, we rely on what Jones (2005) labels as a ”standing on the shoulders effect”:

the discovery of ideas in the past increases the possibilities of new discoveries4; however, we

assume that this effect vanishes as the stock of ideas is sufficiently large. As in Jones (2005), we

assume that the production of new ideas is Cobb-Douglas, combining ideas and human capital,

but we assume that these factors are combined with constant returns to scale. This means

that the marginal productivity of both inputs is increasing and concave. The specification of

decreasing returns in ideas is suggested also in Romer (1990) and considered by Kortum (1993)

and Jones (1995). Moreover, empirical works suggest there are significant decreasing returns of

ideas at the aggregate level; for example, Kortum (1993) reports elasticity estimates of 1−φ in

the range between 0.1 and 0.6. Our assumption of constant returns to scale implies that φ lies

in the interval of 0.4 to 0.9. Romer (1990) also suggests the specification of decreasing returns

in human capital, considered by Stokey (1995) and Jones (2002).

We consider the possibility of duplication in technology: if we double the stock of ideas and

the share of human capital used for producing new ideas, we will also double the production

of new knowledge. However, in order to do so, we have to allow a decrease in the fraction of

human capital allocated to the educational sector, meaning that the endogenous growth rate

will be lower.

Notice that we have assumed that the depreciation rate of physical, human and technological

capital is common and equal to zero5.

The social planner maximizes the social welfare function, that is it has to choose ct, ut, and

xt in order to maximize agents’ lifetime utility function subject to physical, human capital and

idea accumulation constraints and the initial conditions:

max
{ct,ut,xt}∞0

U =

∫ ∞
0

c1−σ
t

1− σ
e−ρtdt, ρ > 0 (3.8)

s.t. k̇t = kαt (utht)
βa1−α−β

t − ct
ḣt = (1− ut − xt)ht

4The opposite case, where 1− φ < 0, corresponds to what the productivity literature defines as the ”fishing

out effect”, in which the rate of innovation decreases with the level of knowledge
5This is of course a simplifying assumption, but the outcome of the model would not change even if we

introduce non zero depreciation rates
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ȧt = (xtht)
φa1−φ

t

k0, h0, a0 given.

3.2.1 Optimal Paths

The Hamiltonian function, Ht(·), associated to the maximization problem is:

Ht(·) =
c1−σ
t

1− σ
e−ρt + λt[k

α
t (utht)

βa1−α−β
t − ct] + µt[(xtht)

φa1−φ
t ] + νt(1− ut − xt)ht.(3.9)

The first order necessary conditions are:

ct) → c−σt e−ρt = λt (3.10)

ut) → λtβk
α
t (utht)

β−1a1−α−β
t ht = νtht (3.11)

xt) → µtφ(xtht)
φ−1a1−φ

t ht = νtht (3.12)

kt) → −λ̇t = λtαk
α−1
t (utht)

βa1−α−β
t (3.13)

at) → −µ̇t = λt(1− α− β)kαt (utht)
βa−α−βt + µt(1− φ)(xtht)

φa−φt (3.14)

ht) → −ν̇t = λtβk
α
t (utht)

β−1a1−α−β
t ut + µtφ(xtht)

φ−1a1−φ
t xt + νt(1− ut − xt) (3.15)

together with the initial conditions k0, h0 and a0, the dynamic constraints:

K̇t = kαt (utht)
βa1−α−β

t − ct (3.16)

Ḣt = (1− ut − xt)ht (3.17)

Ȧt = (xtht)
φa1−φ

t (3.18)

and the transversality conditions:

lim
t→∞

λtkt = 0 (3.19)

lim
t→∞

νtht = 0 (3.20)

lim
t→∞

µtat = 0. (3.21)

Solving the system, the optimal paths of consumption, share of human capital allocated to

production and to new ideas are:

ċt
ct

=
1

σ

[
αkα−1

t (utht)
βa1−α−β

t − ρ
]

(3.22)

u̇t
ut

=
1

β − 1

[
α
ct
kt
− β − (1− β)(ut + xt)− (1− α− β)(xtht)

φa−φt

]
(3.23)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β
utx

φ−1
t hφt a

−φ
t − φ− (1− φ)(ut + xt)

]
(3.24)
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Equation (3.22) is the standard Keynes-Ramsey rule, showing that the growth rate of con-

sumption is an increasing function of the marginal productivity of physical capital in the final

sector. Notice that, as usual, it is positive if the marginal productivity of physical capital is

higher than the rate of time preference, ρ. Equation (3.23) says that the change of the share

of human capital allocated to the production of the final good is a negative function of the

consumption-capital ratio and a positive function of the average productivity of ideas in the

research sector and of the shares of human capital not allocated to the educational sector.

Equation (3.24) instead relates the share of human capital devoted to the production of ideas

positively with the shares of human capital not allocated to the educational sector and with

the ut
xt

ratio while negatively with the human capital-ideas ratio.

3.3 Steady State Analysis

We now analyze the steady state of our model economy, which is characterized by a balanced

growth path equilibrium, that is a situation where all economic variables grow at constant and

finite rates.

Definition 1: (Balanced Growth Path, BGP) a balanced growth path, BGP, or steady state

equilibrium, (c, h, k, a, u, x, γc, γh, γk, γa, γu, γx), is a sequence of time paths, {ct, ht, kt, at, ut, xt}t≥0,

along which all economic variables grow at constant rates. A BGP is said to be non-degenerate

if ct, ht, kt and at grow at non negative rates.

First of all, notice that the growth rate of consumption must equalize that of physical capital,

in order to have endogenous growth and not to violate TVC (3.19). Moreover, along the BGP,

the share of human capital allocated in the production of the consumption good and in the

creation of new ideas have both to be constant, otherwise the growth rate of human capital

cannot be constant.

Therefore, we can study the dynamics of a simplified system, where the variables do not

asymptotically grow, and the BGP of the original system is represented by the equilibrium

point of such a simplified system. In fact, by introducing the intensive variables: χt ≡ ct
kt

,

ϕt ≡ ht
kt

and ψt ≡ at
kt

, we obtain the following system of five nonlinear differential equations:

χ̇t
χt

=
α− σ
σ

(utϕt)
βψ1−α−β

t − ρ

σ
+ χt (3.25)

ψ̇t
ψt

= (xtϕt)
φψ−φt − (utϕt)

βψ1−α−β
t + χt (3.26)

ϕ̇t
ϕt

= (1− ut − xt)− (utϕt)
βψ1−α−β

t + χt (3.27)
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u̇t
ut

=
1

β − 1

[
αχt − β − (1− β)(ut + xt)− (1− α− β)(xtϕt)

φψ−φt

]
(3.28)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β

ut
xt

(xtϕt)
φψ−φt − φ− (1− φ)(ut + xt)

]
. (3.29)

Moreover, by introducing the variables Zt = (utϕt)
βψ1−α−β

t and Mt = (xtϕt)
φψ−φt , we can

recast the system in a quasi linear form:

χ̇t
χt

=
α− σ
σ

Zt −
ρ

σ
+ χt (3.30)

Żt
Zt

=
α + β − 1

β − 1
χt −

β

β − 1
− (1− α)Zt −

1− α− β
β − 1

Mt (3.31)

Ṁt

Mt

=
φ2(1− α− β)

β(φ− 1)

ut
xt
Mt − φMt −

φ

φ− 1
(3.32)

u̇t
ut

=
1

β − 1

[
αχt − β − (1− β)(ut + xt)− (1− α− β)Mt

]
(3.33)

ẋt
xt

=
1

φ− 1

[
φ(1− α− β)

β

ut
xt
Mt − φ− (1− φ)(ut + xt)

]
. (3.34)

The equilibrium point of this system is represented by a point where equations (3.30), (3.31),

(3.32), (3.33) and (3.34) are null. Such a point is characterized by a strictly positive level of all

variables if σ > 1−ρ > 0. Moreover, under the same assumption, the equilibrium shows a mul-

tidimensional unstable manifold. Notice that such a parametric condition is usually satisfied:

it only requires the inverse of the intertemporal elasticity of substitution to be sufficiently high.

Several empirical works suggest the elasticity of substitution is lower than one, meaning that

its inverse (the relative risk aversion parameter) is higher than one (see for example, Mehra and

Prescott (1985); and Hall (1988)). Therefore, we can summarize these results in the following

propositions.

Proposition 1: if the following parameter restrictions apply:

σ > 1− ρ > 0, (3.35)

then the following results hold:

(i) the BGP equilibrium is characterized by a strictly positive level of consumption, physical,

human and technological capital, shares of human capital allocated to the educational and re-

search sectors;

(ii) the BGP equilibrium shows a multidimensional unstable manifold.

Proof: see Appendixes A and B. Appendix A proves part (i) of the proposition while Ap-

pendix B part (ii). �
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Moreover, under standard parameter values, it is possible to show that the BGP equilibrium

is saddle-point stable. This is shown by the next numerical examples.

Example 3.3.1 Let us do a numerical simulation using the following parameter values: α =

0.3333, β = 0.2, φ = 0.2, σ = 2, ρ = 0.04. The equilibrium is: M∗ = 0.48, χ∗ = 2.52, Z∗ = 3,

u∗ = 0.3813, x∗ = 0.1386. The linearized Jacobian is:

2.520000000 −2.100000000 0 0 0

1.750000000 −2.0 1.750000000 0 0

0 0 −0.2499999999 −0.1938461539 0.5330769228

−0.1588888888 0 0.2224444445 0.3813333333 0.3813333333

0 0 −0.2224444445 −0.1413333333 0.9086666667


The eigenvalues of the linearized model are λ1 = −.8982525480, λ2 = 1.418252548, λ3 =

.5199999998, λ4 = .6952597330, λ5 = −.1752597328 with eigenvectors

v1 =
[
−0.5183670708 −0.8437664579 −0.01284295470 −0.06025831199 −0.006294333392

]
v2 =

[
1.615847878 0.8477410890 0.04003391112 −0.2227207860 0.04429587035

]
v3 =

[
0.000000007300000000 0.000000007700000000 0.000000002097000000 −1.005291378 −0.3655604976

]
v4 =

[
−2.495952980 −2.168793288 −0.8443105758 −2.066326458 −2.248535201

]
v5 =

[
2.687615181 3.449438562 0.9091444981 0.2534170105 0.2196186132

]

The unstable manifold Mu is generated by the vectors 〈v2, v3, v4〉 while the stable manifold Ms

by the vector 〈v1, v5〉.

Example 3.3.2 Let us do a numerical simulation using the following parameter values: α =

0.3333, β = 0.2, φ = 0.8, σ = 2, ρ = 0.04. The equilibrium is: M∗ = 0.48, χ∗ = 2.52, Z∗ = 3,

u∗ = 0.2611555556, x∗ = 0.2588444444. The linearized Jacobian is:

2.520000000 −2.100000000 0 0 0

1.750000000 −2.0 1.750000000 0 0

0 0 −4.000000003 −6.646153850 6.705494512

−0.1088148148 0 0.1523407408 0.2611555556 0.2611555556

0 0 −2.437451853 −4.221155557 4.778844445


The eigenvalues of the linearized model are λ1 = 1.496661179+.6462436692i, λ2 = 1.496661179−
.6462436692i, λ3 = −.9766611807 + .6462436678i, λ4 = −.9766611807 − .6462436678i, λ5 =

.5200000002, with eigenvectors
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v1 =
[
−0.662428e− 1 + .820589i .220243 + .420261i .351114 + .100464i 0.743842e− 1− 0.939052e− 1i .351861 + 0.23117e− 1i

]
v2 =

[
−0.662428e− 1− .820589i .220243− .420261i .351114− .100464i 0.743842e− 1 + 0.939052e− 1i .351861− 0.23117e− 1i

]
v3 =

[
0.54299e− 1− 2.51137i −.682426− 4.19834i 1.09701− .195676i −.105991− .211491i .408421− .19212i

]
v4 =

[
0.54299e− 1 + 2.51137i −.682426 + 4.19834i 1.09701 + .195676i −.105991 + .211491i .408421 + .19212i

]
v5 =

[
0.213000e− 7 0.197000e− 7 0.210000e− 8 .368319 .365059

]

The unstable manifold Mu is generated by the vectors 〈v1, v2, v5〉 while the stable manifold Ms

by the vector 〈v3, v4〉.

The previous two examples have been implemented using MAPLE 13. They show that

the economy converges to its steady state through a saddle path and the unstable transitional

manifold has dimension three while the stable manifold has dimension two.

Along the BGP, the consumption-capital ratio is an increasing function of the inverse of

the elasticity of substitution, σ, and of the rate of time preference, ρ; it, instead, depends

negatively on the capital share, α. Notice that it is independent of the human capital share, β.

The stationary share of human capital allocated to physical and knowledge production instead

are complicated functions of the physical and human capital shares, α and β, of the elasticity of

human capital in the knowledge production process, φ, of the rate of time preference, ρ and of

the inverse of the intertemporal elasticity of substitution in consumption, σ. In particular, the

share of human capital allocated to knowledge (physical) production is a decreasing (increasing)

function of β and an increasing (decreasing) function of φ; the share allocated to the educational

sector instead is independent of both σ and φ.

3.3.1 The Allocation of Human Capital

We now illustrate the behavior of the allocation of human capital among the three sectors

implied by the model, under a given set of parameter values. In choosing such values we rely

on existing empirical estimates or on baseline specifications coming from previous works.

The physical capital share has been traditionally considered to be around one third (see

Denison (1962); Maddison (1982); Jorgenson et al. (1987); and Mankiw et al. (1992)) while

the human capital share has been estimated by Mankiw et al. (1992) to vary in the range (0.333,

0.5). The elasticity of ideas in the production function of technology has been estimated by

Kortum (1993) in the range (0.1, 0.6), implying that φ ∈ (0.4, 0.9). We set α = 0.33, and

following Mulligan and Sala-i-Martin (1993), ρ = 0.04 and σ = 2. Firstly, we fix β = 0.42 (the

median value of the interval estimated by Mankiw et al. (1992)) and let φ vary in the interval

(0.4,0.9); then we fix φ = 0.65 (the median value of the interval estimated by Kortum (1993))

and let β vary in the range (0.333,0.5).
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This set of parameters implies that in steady state the highest share of human capital

is devoted to creation of new human capital, and the lowest share is allocated to knowledge

production. Such an outcome is clear: the impact of human capital is more important in the

educational sector, since it is the growth driven force, and in the physical one, since it produces

the consumable good, which is the argument of agents’ utility function, while it is lower in the

technological sector. This ranking is clearly reflected by the optimal allocation of resources.

In fact, the share of human capital in the technological sector is always particularly low, while

that in physical production can reach a value close to that in education.

Figure 3.1: Optimal allocation of human capital in steady state. The figure shows the values

of u, x and 1− u− x, as β changes

Notice that even if we let β and φ be in the ranges empirically estimated, the same result

holds. Of course, as one of these parameters changes, the steady state values of u and x changes,

while that of 1− u− x does not. If we increase β, u increases (and x decreases) but its steady

state value is always lower than the share allocated to the educational sector; in fact, when

β = 0.5, that is the upper bound of its estimated range, the optimal allocation of human capital

is the following: u = 0.46, x = 0.06 and 1 − u − x = 0.48. Only if the human capital share

gets particularly large (higher than 0.56), the fraction of human capital allocated to physical

production will be higher than that in education.

If we increase φ, instead, x increases (and u decreases) but, again, the steady state value of

u and x are always lower than the share allocated to educational sector; in fact, when φ = 0.4,

the lower bound of its estimated range, the optimal allocation of human capital is: u = 0.44,

x = 0.07 and 1− u− x = 0.48. If φ gets particularly small (lower than 0.2), then the fraction

of human capital allocated to physical production will be higher than that in education.
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Figure 3.2: Optimal allocation of human capital in steady state. The figure shows the values

of u, x and 1− u− x, as φ changes

3.4 A Special Case of the Model: β = φ. Transitional

Dynamics and Equilibrium Indeterminacy

In the previous section, we show that the steady state equilibrium of the model is characterized

by a balanced growth path and, under a general condition, the unstable manifold has at least

dimension one while we cannot determine the properties of the stable arm. We can just show

through general numerical examples that the stable arm is a multi-dimensional locus. Therefore,

in order to shed some light on the transitional dynamics of the economy, it can be convenient

to study a particular case of the model.

In fact, in order to simplify the system of equations (3.30) - (3.34) and be able to prove

the properties of the stable and unstable transitional paths, we concentrate on the case β = φ.

We suppose that human capital share, β, and the technical share, φ coincide. Such a case is

consistent with empirical studies discussed in the previous section (see Mankiw et al. (1992)

and Kortum (1993)), which estimate the following parameter ranges: β ∈ (0.333, 0.5) and

φ ∈ (0.4, 0.9). Under the assumption φ = β, by introducing the variable ηt = ut
xt

, the system of

differential equations (3.30) - (3.34) can be simplified into a four dimensional system:

χ̇t
χt

=
α− σ
σ

Zt −
ρ

σ
+ χt (3.36)

Żt
Zt

=
α + β − 1

β − 1
χt −

β

β − 1
− (1− α)Zt −

1− α− β
β − 1

Mt (3.37)

Ṁt

Mt

=
β(1− α− β)

β − 1
ηtMt − βMt −

β

β − 1
(3.38)

η̇t
ηt

=
α

β − 1
χt −

1− α− β
β − 1

(1 + ηt)Mt. (3.39)

The equilibrium point of such a system is characterized by a strictly positive level of all vari-
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ables if σ > 1− ρ > 0, as before. Moreover, under a general assumption, that is if σ < 2(1− ρ),

the equilibrium is stable. This means that, considering the standard empirical value of ρ, about

0.04, σ has to be higher than 0.96 and lower than 1.92. This does not represent a unreasonable

range for the inverse of the elasticity of substitution in consumption. So we can summarize this

result in the following proposition:

Proposition 2: suppose the following parameter restrictions hold, β = φ and 1− ρ < σ <

2(1− ρ); then the BGP equilibrium is stable and the stable arm is a multi-dimensional locus.

Proof: see Appendix C. �

Notice that the stability property in such a framework has to be interpreted in a generalized

sense. In fact, the stable manifold is multi-dimensional: it can have dimension two or four,

meaning that the unstable manifold has respectively dimension two or zero. Therefore, in

this case stability does not imply uniqueness of the stable arm: it means that there exists

a multiplicity of paths converging to the equilibrium: such a situation is called equilibrium

indeterminacy.

Equilibria (in)determinacy in macroeconomics models is a well-known and debated prob-

lem. We can define ”indeterminate a situation in which there exists a continuum of distinct

equilibrium paths sharing a common initial condition” (Boldrin and Rustichini, 1994). If such

a condition is verified, the economic dynamics is not unique in the sense that multiple paths

lead the same economy to converge towards its long-run equilibrium. This would explain why

pretty similar economies choose different developing trajectories, but would also make diffi-

cult determining the effects of alternative policies for the future developments of the economy.

Such an issue is particularly relevant for growth economists, whose main goal is understand-

ing how promoting improvements in (per-capita) output across countries. As Palivos et al.

(2003) clearly underline, indeterminacy ”can potentially explain an important question posed

by, among others, Lucas (1993): Why would two different countries, such as South Korea and

the Philippines, whose initial conditions were so close, differ so much in their later growth per-

formance?”. Several papers (Benhabib and Perli (1994); Xie (1994); Boldrin and Rustichini

(1994); and Palivos et al. (2003)) analyze the issue in optimal growth models. They all show

that indeterminacy can quite easily arise in the Uzawa (1965) - Lucas (1988) model, if the

production function generates some external effects on capital accumulation. In such a frame-

work, equilibrium indeterminacy is not only a theoretical possibility, but a concrete result of

the model, since it will be the outcome for reasonable parameter values. However, as Boldrin

and Rustichini (1994) clearly underline: ”Quite naturally an issue of ’realism’ can be made with
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regard to the parameter values at which these more complicated phenomena arise. While they do

not appear as far away from reality as those previously encountered in the optimal growth brand

of the chaotic dynamics literature, they do rely on particularly strong externalities. For this

reason and for the lack of reliable empirical evidence about the external effects consistent with

this type of technology, we refrain from speculating on the positive implications of our findings”.

What we have just shown is that in a multi-sector model of endogenous growth, without

any external effect (the production functions in each sector show constant returns to scale),

indeterminacy can arise. Proposition 2 tells us that there exists a continuum of balanced

growth paths satisfying the same initial conditions and converging to the same equilibrium. This

happens for really plausible values of the intertemporal elasticity of substitution. Moreover, such

a feature of the economy is ensured by the same conditions characterizing the convergence to

equilibrium: stability implies indeterminacy. This can be reinterpreted as follows. In order for

the economy to converge to its steady state, the equilibrium to which the economy is converging

has to be indeterminate.

3.5 Conclusion

During the last century, knowledge (technology) has increased consistently in most of the in-

dustrialized countries. Economic growth theory introduces endogenous technical change in

order to describe this fact. As a result, a new literature stream has recently arisen, leading to

ideas-based growth models. Our goal is to introduce ideas in a standard multi-sector endoge-

nous growth model and the natural candidate for such an aim seems to be the Uzawa-Lucas

model. Therefore, we extend it along different lines: we formally introduce ideas, which are

used for producing the final physical good and are created in a particular separate sector, and

we emphasize the importance of education in the process generating ideas, also considering

the endogenous allocation of human capital in this technical sector. The interaction between

human capital and ideas rules the economy. Since human capital is a rival good, while ideas

are not, the allocation of human capital across sectors is crucial. The stock of ideas can be

contemporaneously exploited in the final and technical sectors, while human capital stock has

to be shared across the three sectors. Therefore, the planner has to determine how to optimize

the trade-off arising from the allocation of resources.

We show that the economy converges towards its steady state equilibrium, along which

the consumption-capital ratio is independent of the human capital share. The convergence

paths take the form of a generalized saddle path, along which both the stable arm and the

unstable manifold are multidimensional, meaning equilibrium indeterminacy. We show that

under the (fairly plausible) conditions ensuring convergence to steady state, the equilibrium
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is indeterminate, namely a continuum of different and converging trajectories exist. The fact

that distinct, identically endowed economies choose different converging paths is not only a

possibility, but an outcome of the model. It remains an open problem if it is possible to obtain,

maybe for a certain combination of parameters, a closed-form solution to this model.

For further research, we suggest to focus on the decentralized outcome, investigating how

and whether this allocation differs from the optimal planned one and how it can be possible

to decentralize the optimal allocation of resources. Another aspect which could deserve some

attention is the production function of ideas: we assume it is neoclassical; however, it could be

interesting to analyze the case in which it is somehow linear, meaning that ideas represent an

additional source of endogenous growth.

A. Steady State

The steady state of the five dynamical equations system is characterized by setting equations

(3.25), (3.26), (3.27), (3.28) and (3.29) equal to zero:

0 =
α− σ
σ

Z − ρ

σ
+ χ (3.40)

0 = M − Z + χ (3.41)

0 = 1− u− x− Z + χ (3.42)

0 =
1

β − 1

[
αχ− β − (1− β)(u+ x)− (1− α− β)M

]
(3.43)

0 =
1

φ− 1

[
φ(1− α− β)

β

u

x
M − φ− (1− φ)(u+ x)

]
. (3.44)

Plugging equation (3.42) into (3.41) we get:

1− u− x = M ; (3.45)

substituting equation (3.45) into equation (3.43), we obtain:

χ =
1

α
−M. (3.46)

Substituting equation (3.46) into (3.40) instead:

Z =
σ

α
M +

ρ

α
. (3.47)

Then, from equations (3.41) and (3.47) we obtain the steady state value of M :

M =
1− ρ
σ

. (3.48)
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Therefore those of χ and Z are:

χ =
σ − α(1− ρ)

ασ
(3.49)

Z =
1

α
. (3.50)

From equation (3.44), we have:

u =
βφ(1− ρ) + β(σ + ρ− 1)

φ(1− α− β)(1− ρ)
x, (3.51)

which substituted in equation (3.45) yields:

x =
φ(1− α− β)(1− ρ)(σ + ρ− 1)

σ[φ(1− α)(1− ρ) + β(σ + ρ− 1)]
(3.52)

and therefore:

u =
(σ + ρ− 1)[βφ(1− ρ) + β(σ + ρ− 1)]

σ[φ(1− α)(1− ρ) + β(σ + ρ− 1)]
(3.53)

Notice that the steady state values of the five variables, given by expressions (3.48), (3.49),

(3.50), (3.52) and (3.53), are positive if the following conditions hold:

1− ρ > 0→ ρ < 1 (3.54)

σ − α(1− ρ) > 0

σ + ρ− 1 > 0

}
→ σ > (1− ρ) > α(1− ρ) (3.55)

B. Local Stability

We can study the stability of the steady state, by linearizing the system of differential equations.

The Jacobian matrix, J(χt, Zt,Mt, ut, xt), is:

α−σ
σ
Zt − ρ

σ
+ 2χt

α−σ
σ
χt

α+β−1
β−1

Zt
α+β−1
β−1

χt − β
β−1
− 2(1− α)Zt − 1−α−β

β−1
Mt

0 0
α
β−1

ut 0

0 0




0 0

−1−α−β
β−1

Zt 0
2φ2(1−α−β)
β(φ−1)

ut
xt
Mt − 2φMt − φ

φ−1
φ2(1−α−β)
β(φ−1)

M2
t

xt

−1−α−β
β−1

ut
1

β−1
[χt − β − (1− β)(2ut + xt)− (1− α− β)Mt]

φ(1−α−β)
β(φ−1)

ut
φ(1−α−β)
β(φ−1)

Mt + xt


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

0

0

−φ2(1−α−β)
β(φ−1)

ut
x2t
M2

t

ut
1

φ−1
[−φ− (1− φ)(ut + 2xt)]


,

and, evaluated at the steady state, J(χ,Z,M, u, x), it can also be written as:

χ α−σ
σ
χ 0 0 0

α+β−1
β−1

Z −(1− α)Z −1−α−β
β−1

Z 0 0

0 0 φ2(1−α−β)
β(φ−1)

u
x
M − φM φ2(1−α−β)

β(φ−1)
M

2

x
−φ2(1−α−β)

β(φ−1)
u
x2
M

2

α
β−1

u 0 −1−α−β
β−1

u u u

0 0 φ(1−α−β)
β(φ−1)

u φ(1−α−β)
β(φ−1)

M + x x− φ(1−α−β)
β(φ−1)

u
x
M


Remembering that the sum of the eigenvalues of a matrix is equal to the trace of the matrix,

we can study the sign of the trace of the Jacobian evaluated at steady state: if it is positive,

this would mean that at least one eigenvalue is positive. The trace of J(χ,Z,M, u, x) is:

tr(J(χ,Z,M, u, x)) =
3(σ + ρ− 1)

σ
, (3.56)

which is positive if:

σ > (1− ρ). (3.57)

Notice that the same condition ensures that the steady state values of the variables are positive.

This means that, considering the standard empirical value of ρ, about 0.04, σ has to be higher

than 0.96. This does not represent an unreasonable value for the inverse of the elasticity of

substitution in consumption, as empirical works suggest (see for example, Mehra and Prescott

(1985); Hall (1988)). If condition (3.57) holds, there exists at least one positive eigenvalue.

Moreover, it is possible to show that the determinant of the Jacobian, det(J(χ,Z,M, u, x)),

which equals the product of the eigenvalues, is:

det(J(χ,Z,M, u, x)) =
(1− α)(1− α− β)αφ2M

2
uχZ(x+ u)

(φ− 1)(β − 1)βx
. (3.58)

Under the condition σ > (1−ρ), which ensures all the variables are positive in steady state, it is

easy to show that this determinant is positive. Since the product of the eigenvalues is positive

and their sum is positive (under the condition σ > 1 − ρ), if the eigenvalues are real numbers

then the number of positive eigenvalues has to be odd, that is there can be one or three or five

positive eigenvalues (and consequently, four or two or zero negative eigenvalues). Therefore an

unstable transitional manifold of at least dimension one exists.
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C. Transitional Dynamics in the Case β = φ

The steady state values of the system (3.36) - (3.39) are given in Appendix A, by equations

(3.48), (3.49), (3.50) and (3.51). These respectively represent M , χ, Z and η. In fact, equation

(3.51) implies that:

η =
β(1− ρ) + σ + ρ− 1

(1− α− β)(1− ρ)
. (3.59)

These values are positive if σ > 1−ρ, as discussed in Appendix A. The stability properties of the

steady state can be studied evaluating the Jacobian matrix at the steady state, J(χ,Z,M, η):
χ α−σ

σ
χ 0 0

−1−α−β
β−1

Z −(1− α)Z −1−α−β
β−1

Z 0

0 0 β(1−α−β)
(β−1)

ηM − βM β(1−α−β)
(β−1)

M
2

α
β−1

η 0 −1−α−β
β−1

(1 + η)η −1−α−β
β−1

ηM


Remembering that the sum of the eigenvalues of a matrix is equal to the trace of the

matrix, and their product is equal to its determinant, we can show the stability properties of

the equilibrium. In fact, the trace of J(χ,Z,M, η) results to be:

tr(J(χ,Z,M, η)) =
σ − 2 + 2ρ

σ
, (3.60)

which is negative if the following condition holds:

σ < 2(1− ρ). (3.61)

Notice that such a condition, jointly with that ensuring the positivity of the steady state values

of the variables, implies:

1− ρ < σ < 2(1− ρ). (3.62)

This means that, considering the standard empirical value of ρ, about 0.04, σ has to be higher

than 0.96 and lower than 1.92. This does not represent a unreasonable range for the inverse of

the elasticity of substitution in consumption.

Moreover, it is possible to show that the determinant corresponds to the following expression:

det(J(χ,Z,M, η)) =
(1− α)(1− α− β)αβM

2
χηZ

(β − 1)2
, (3.63)

which is clearly positive.

These two results jointly mean that there exists at least one negative eigenvalue and the

number of negative eigenvalues has to be even. Since the number of eigenvalues is four, and
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we need their product to be positive and their sum to be negative, they also mean that the

Jacobian matrix is characterized by two or four negative eigenvalues and (two or zero) positive

eigenvalues. Therefore, the stable manifold is multidimensional and the steady state equilibrium

results to be stable. Notice that in the case both the positive and negative eigenvalues are two,

the equilibrium is characterized by saddle-point stability.
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