
Università degli Studi di Milano
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Dottorato di Ricerca in Informatica
XXII ciclo

Threats on Real, Emulated and Virtualized
Intel x86 Machine Code Execution

Tesi di
Giampaolo Fresi Roglia

Relatore
Prof. Danilo Bruschi
Coordinatore del Dottorato
Prof. Ernesto Damiani

Anno Accademico 2009/2010

Abstract

The Internet is very popular nowadays, it is used by a continuously growing
number of users to transfer confidential data representing a big attractive to
cybercriminals. Criminals whose interest is to spread malicious software through
different threat vectors aiming to steal those confidential data and sell it in the
underground market. Cybercriminals have all the interest in not being detected
while perpetrating their intentions. Impeding such threats to spread has become
of valuable importance. This goal can be achieved working on the threat vectors
cybercriminals use or directly on the threat once identified.

Among threat vectors we can cite application software vulnerabilities which
can be abused by malware and malicious users to gain access to systems and con-
fidential data. To be able to impede exploitation of such vulnerabilities, security
specialists need to be aware of attack techniques used by malware and malicious
users for to be able to design and implement effective protection techniques.

For identifying threats, it is of vital importance to use effective analysis tools
which expose no weaknesses to malware authors giving them the chance to evade
detection.

This dissertation presents two approaches for testing CPU emulators and sys-
tem virtual machines which represent a fundamental component of dynamic mal-
ware analysis. These testing methodologies can be used to identify behavioural
differences between real and emulated hardware. Differences exploitable by mal-
ware authors to detect emulation and hide their malicious behaviour.

This dissertation also presents a new exploitation technique against memory
error vulnerabilities able to circumvent widely adopted protection strategies like
W⊕X and ASLR and the related countermeasure to impede exploitation.

i

to Paolo and Anna Maria

Contents

1 Introduction v
1.1 Summary of the contributions . x
1.2 Organisation of the dissertation x

2 Background and Related work 1
2.1 Overview of Intel x86 ISA . 1

2.1.1 Challenges on x86 emulation 2
2.2 Software Testing . 3
2.3 Emulators in malware analysis . 4
2.4 Buffer overflow . 4

2.4.1 Notes on x86 unwanted code 8

3 EmuFuzzer: a testing methodology for CPU emulators 9
3.1 Introduction . 9
3.2 CPU Emulators . 11

3.2.1 Faithful CPU Emulation 11
3.2.2 Fuzzing CPU Emulators 13

3.3 EmuFuzzer . 14
3.3.1 Test-case Generation . 15
3.3.2 Test-case Execution . 21

3.4 Evaluation . 25
3.4.1 Experimental Setup . 26
3.4.2 Evaluation of Test-case Generation 26
3.4.3 Testing of IA-32 Emulators 27

3.5 Discussion . 29

4 KEmuFuzzer: a methodology for testing System Virtual Machines 31
4.1 Introduction . 31
4.2 Overview . 32

4.2.1 Virtualisation . 33
4.2.2 Transparency of Virtual Machines 34
4.2.3 Testing Transparency of Virtual Machines 34

iii

iv

4.3 KEmuFuzzer . 35
4.3.1 Architecture and Methodology 36
4.3.2 Test-cases . 37
4.3.3 Kernel . 40
4.3.4 CPU Emulators and Virtualizers 42
4.3.5 Oracle . 43

4.4 Evaluation . 45
4.4.1 Experimental Setup . 46
4.4.2 Test-cases . 46
4.4.3 Experimental Results . 47

4.5 Discussion . 50

5 Returning to randomised lib(c) 51
5.1 Introduction . 51
5.2 Background . 52
5.3 Attack . 53

5.3.1 Overview of the attack . 53
5.3.2 Details of the attack . 57

5.4 Attack mitigation . 60
5.4.1 Preventing unsafe accesses to GOT 60

5.5 Evaluation . 63
5.5.1 Evaluation of the attack 63
5.5.2 Evaluation of the proposed defence 66

5.6 Discussion . 67

6 Conclusions and future work 69

Bibliography 71

1 Introduction

Operating systems and application software become larger and more complex
with every release. New features require the addition of new code, which typi-
cally contains new bugs. Bugs can be exploited by malicious users and malicious
software to gain unauthorised access to systems and sensitive information. New
vulnerabilities are discovered on a daily basis on a wide variety of application
software. Malicious activities perpetrated through the Internet are becoming
quickly a huge security problem, ranging between large-scale social engineering
attacks and exploiting critical vulnerabilities. Attack techniques are becoming
more sophisticated, malicious software authors are developing an arsenal of of-
fensive techniques ranging from the use of polymorphism, metamorphism and
cryptographically strong algorithms to render the task of identifying the threats
they pose much more difficult. The goal of malicious activities is turning from
disruption of services to the achievement of financial gain.

Figure 1.1 reports malicious code threats detected in 2009 (2,895,802) by
Symantec, accounting for over 50% of the total amount of malicious code threats
detected over time (approximately 5,700,000). This ever growing number of ma-
licious code threats largely justifies the effort done by researchers for trying to
defeat or at least mitigate their diffusion. The methods used by malicious soft-
ware to spread are known with the name Threat vectors. One of the most used
and effective threat vector is represented by remotely exploitable vulnerabilities.
Malicious code employing such threat vector, according to Symantec account for
24% of the total. Even if remotely exploitable vulnerabilities is not the most
used threat vector, it remains one of the most effective for the malware to spread
rapidly and infect the maximum number of hosts possible. A notable example of
malware using such threat vector is represented by the infamous Conficker worm,
which, according to PandaLabs was able to infect almost 6% over a sample of 2
million computer analysed in 2008.

The vast majority of reported threats target the so called Wintel platform. The
reason behind the choice by malware authors resides on the large-scale adoption
of such “architecture” by the world-wide market. The Wintel platform repre-
sents a software monocolture. The large-scale adoption of this platform offers
a large attack surface for malicious software to spread, i.e. exploiting a single
vulnerability can result in compromising and taking control of a huge number of

v

vi

Figure 1.1: New malicious code signatures

systems.

The fight against such threats can be done preventing vulnerabilities to be ex-
ploited or identifying threats after they already started to spread in the Internet.
Prevention can be achieved by users, applying security patches once vulnera-
bilities are discovered or using anti-virus software and by security specialists,
implementing protection techniques able to impede exploitation of vulnerable
software.

From the malicious software analyst’s point of view, it is of vital importance
to recognise as soon as possible such threats as soon as they start to spread for
to be able to develop quickly defence strategies against them. For this purpose
techniques like static and dynamic binary analysis are employed. With these
techniques, the malware analysts aim to recognise malicious behaviours in sus-
picious programs for providing signatures to intrusion prevention systems and
anti-viruses. Unfortunately, malicious software authors are aware of such tech-
niques used against their programs and they develop strategies to evade detection.
Static analysis can be easily fooled with techniques like polymorphism and more
generally by obfuscating the produced programs. Dynamic analysis by the way
has its own limitations: it consists basically of executing the suspicious binary
itself and observe its behaviour. For dynamic analysis to guarantee effectiveness,
it must guarantee complete code coverage. This implies the observation of ev-
ery possible execution path of the binary being analysed, objective which can be

Chapter 1. Introduction vii

reduced to the halting problem hence impossible to achieve in its full generality.
Even with its limits, dynamic analysis is actually employed for run-time detec-
tion of malicious behaviours. Analysis of suspicious software is done in isolated
environments (sandboxes) to prevent the potential malware to damage the anal-
ysis environment. For this purpose malware analysts employ software like system
emulators for safely analyse such threats.

Lack of transparency of an emulator w.r.t. the emulated hardware can lead
to evasion techniques against dynamic behavioural analysis of malware. If the
malicious software were able to detect the presence of an emulator can react by
not exposing it’s malicious behaviour and stay potentially undetected and free
to cause harm for a long time. The in-depth study of Intel x86 ISA (Instruction
Set Architecture) gave us the chance of identifying some possible pitfalls which
could render the task of correctly implementing an emulator very challenging.
The machine-level x86 instruction space is redundant w.r.t. the assembly rep-
resentation, i.e. an assembly representation can lead to differently encoded but
semantically equivalent instructions. Redundancy can be a problem if unlikely
used encodings point to the execution of buggy code in the emulator. Typical
application software hardly covers the entire machine-level instruction space, so
bugs can stay undetected for a long time in absence of the application of specific
testing methodologies. Moreover, Intel manuals are written with the application
software developer’s needs in mind. They do not provide all the details needed
for a completely correct implementation of an emulator, hence some side effects
exposed by the execution of lots of instructions are left undocumented. The
manuals state those effects are to be considered “undefined”. While this could
be sufficient for application software to run correctly, implementing emulators
based on those “specifications” may result in behavioural differences from the
real hardware they are supposed to emulate.

This dissertation provides two specific testing methodologies for spotting differ-
ences (not just bugs) between the emulation software and the hardware it wishes
to emulate. Information that could be used to harden an emulator to the point
it satisfies the requirements for undetectability identified by Dinaburg et al. [15].

This dissertation also aims to show state-of-the-art defence techniques against
exploitation of memory error vulnerabilities like Address Space Layout Randomi-
sation (ASLR) and Data Execution Prevention (DEP a.k.a W⊕X) can be circum-
vented under certain circumstances. We provide a new attack technique which
even though addresses also issues specific to the elf executable format typically
used by Unix-like operating systems, is of a more generic applicability, due to the
fact that exploits specific characteristics belonging to the underlying hardware
architecture, more specifically the Intel x86 ISA, i.e. the ability by the CPU of
jumping in the middle of an instruction placed by the compiler, leading to the

viii

execution of unintended instructions. In our experience on x86 code, intended
instructions (placed intentionally by the compiler) aren’t enough for mounting
our proposed attack technique.

The first contribution consists of a fully automated testing methodology for
CPU emulators, based on fuzzing [41]. The proposed methodology can be used
to discover automatically configurations of the environment (i.e., state of the
CPU registers and content of the memory) that cause different behaviours in the
emulated and in the physical CPUs. To test an emulator we generate a large num-
ber of test-cases (i.e., configurations of the environment) and run these test-cases
on both the emulated and the physical CPU. Then, we compare the configura-
tion of the two environments at the end of the execution of each test-case; any
difference is a symptom of an incorrect behaviour of the emulator. Given the
unmanageable size of the test-case space, we adopt two strategies for generating
test-cases: purely random test-case generation and hybrid algorithmic/random
test-case generation. The latter guarantees that each instruction in the instruc-
tion set is tested at least in some selected execution contexts.

The work led to the implementation of this testing methodology in a proto-
type for IA-32, code-named EmuFuzzer, and the testing of four state-of-the-art
emulators: BOCHS[30], QEMU[4], Pin[34], and Valgrind[44]. Although Pin and
Valgrind are dynamic instrumentation tools, their internal architecture resem-
bles, in all details, the architecture of traditional emulators and therefore they
can suffer the same problems. The work done with testing these emulators led
to the discovery of several deviations in the behaviours of each of them, some
of which represent serious defects that might prevent the proper execution of
the emulated programs. Example are instructions that can freeze QEMU, in-
structions that are not supported by Valgrind and thus generate exceptions, and
instructions that are executed by Pin and BOCHS but that cause exceptions on
the physical CPU. The results obtained witness the difficulty of writing a fully
featured and specification-compliant CPU emulator, but also prove the effective-
ness and importance of this testing methodology.

The second contribution of the dissertation consists of a testing methodol-
ogy specific for system virtual machines. This represents an extension of the
work done with EmuFuzzer which leads to the proposal of a much more pow-
erful methodology independent from the technique used by virtual machines to
execute guest code. More precisely, the testing technique used with EmuFuzzer
is specific for testing CPU emulators (i.e., virtual machines based on CPU em-
ulation) and limited to the testing of emulated user-mode code. The proposed
technique can be used to test both user- and system-mode code and thus can also
be applied to CPU virtualisers (i.e., virtual machines that rely on native code
execution). The proposed methodology is based on the assumption that the CPU

Chapter 1. Introduction ix

of a perfect virtual machine behaves exactly as the physical CPU it simulates.
Therefore, the intent of the testing is to verify whether such assumption holds.
More precisely, this testing technique allows to discover sequences of instructions
that, when executed, cause the CPUs of the virtual and of the physical machines
to behave differently. The methodology is based on protocol-specific fuzzing [59]
and differential analysis [39]. Fuzzing is used to generate automatically input
states for the testing, and differential analysis to detect anomalous behaviours.
Since the expected behaviour corresponds to what can be observed in the CPU of
the physical machine, any difference between the behaviours of the physical and
virtual machines is clearly anomalous, and consequently a symptom of a defect
in the latter.

The second work led to the implementation of a prototype, code-named KEmu-
Fuzzer, for testing virtual machines for the Intel x86 architecture. KEmuFuzzer has
been used to test four popular system virtual machines: BOCHS [30], QEMU [4],
VMWare [63], and VirtualBox [58]. The first two are based on emulation, while
the others are based on direct native execution. In all the virtual machines has
been found defects that led to the corruption of the state of the guest operating
system or of its applications. The experimental evaluation testified the effec-
tiveness of the proposed methodology and justified the significant effort made to
extend it to system-mode code and CPU virtualisers.

The third contribution consists of a new approach to exploit stack-based buffer
overflows in programs protected with both W⊕X and ASLR and the related
defence technique. The attack is an information leakage attack that exploits in-
formation about the random base address at which a library is loaded, available
directly in the address space of the process, and is not avoidable. Contrarily to
currently existing attack techniques consisting in mounting a brute-force attack,
with the proposed technique an attacker can subvert the execution of a vulnerable
program and perform a return-to-lib(c) with surgical precision, i.e., in a single
shot. Furthermore, the technique works independently of the strength of ran-
domisation (i.e., it works on 32 and on 64-bit architecture), and it is applicable
to any position dependent executable. The impact of the proposed attack tech-
nique is not negligible, since the majority of executables found in modern UNIX
distributions belong to this class.

The proposed protection technique is as effective as PIE (the only known pro-
tection scheme able to stop the proposed attack at the time of writing) at stopping
our attack. Unlike PIE does not require recompilation of any executable, and in-
troduces only negligible overhead. The proposed mitigation technique can be
used to protect users of operating systems with ASLR and PIE, but that still
have to adopt PIE on large scale (e.g., all GNU/Linux distributions). More-
over, our protection can be used by users of operating systems with ASLR, but

x

lacking PIE (e.g., OpenBSD), and by users of programs with no possibility of
recompilation.

1.1 Summary of the contributions

To summarise the dissertation makes the following contributions:

(ISSTA 2009) A testing methodology specific for CPU emulators, based on fuzzing
consisting in forcing the emulator to execute specially crafted test-cases to
verify whether the CPU is properly emulated or not. Improper behaviours
of the emulator are detected by running the same test-case concurrently on
the emulated and on the physical CPUs and by comparing the state of the
two after the execution [36].

(ISSTA 2010) A testing methodology specific for system virtual machines based
on protocol-specific fuzzing and differential analysis consisting in forcing a
virtual machine and the corresponding physical machine to execute spe-
cially crafted snippets of user- and system-mode code and comparing their
behaviours [37].

(ACSAC 2009) A new attack to bypass W⊕X and ASLR based on the leakage of
sensitive information about the memory layout of a process and a new pro-
tection strategy against this technique which does not require recompilation
introducing only a minimal overhead [51].

1.2 Organisation of the dissertation

The dissertation is organised as follows. Chapter 2 provides a brief introduction
on some concepts used throughout the dissertation and compares the work pre-
sented in the dissertation with the work done by others. Chapter 3 describes a
fully automated testing methodology implemented in the prototype code-named
EmuFuzzer capable of testing CPU emulators at the user-space level. Chapter 4
describes the extension of the work done with EmuFuzzer for testing both privi-
leged code and user-level code enabling us to test even System Virtual Machines.
Chapter 5 describes an attack technique against widely adopted memory-error
protections like ASLR and W⊕X and proposes also an alternative defence strat-
egy against this kind of threats. The dissertation ends discussing possible im-
provements to the ideas presented and giving concluding remarks in Chapter
6.

2 Background and Related work

This chapter provides a brief introduction on the concepts used throughout the
dissertation, briefly describing some basics on Intel x86 ISA, some challenges
posed by Intel’s architecture on emulation and a brief introduction to techniques
used to exploit stack-based buffer overflows, focusing primarily on Intel x86 archi-
tecture. Since giving a complete overview of such concepts is beyond the scope of
the dissertation, we redirect for this purpose the interested reader to the related
literature.

2.1 Overview of Intel x86 ISA

Today, Intel x86 is the most widely adopted computer architecture. It is a com-
plex CISC architecture, with a huge number of different instructions, of variable
length, and a myriad of subtle and complex details. All that makes the devel-
opment of an instruction decoder for this architecture a very tedious and error
prone task.

Figure 2.1 depicts the format of an Intel x86 instruction. An instruction is
composed of different fields: it starts with up to 4 prefixes, followed by an op-
code, an addressing specifier (i.e., ModR/M and SIB fields), a displacement and an
immediate data field [24]. Opcodes are encoded with one, two, or three bytes,
but three extra bits of the ModR/M field can be used to denote certain opcodes.
In total, the instruction set is composed by more than 700 possible values of
the opcode field. The ModR/M field is used in many instructions to specify non-

Prefixes
(up to 4)

Opcode ModR/M SIB Displacement Immediate

1 byte each 1-3 bytes 1 byte
(optional)

1 byte
(optional)

0,1,2 or 4 bytes 0,1,2 or 4 bytes

Mod Reg/Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Figure 2.1: Intel x86 instruction format

1

2

implicit operands: the Mod and R/M sub-fields are used in combination to specify
either registry operands or to encode addressing modes, while the Reg/Opcode

sub-field can either specify a register number or, as mentioned before, additional
bits of opcode information. The SIB byte is used with certain configurations of
the ModR/M field, to specify base-plus-index or scale-plus-index addressing forms.
The SIB field is in turn partitioned in three sub-fields: Scale, Index, and Base,
specifying respectively the scale factor, the index register, and the base regis-
ter. Finally, the optional addressing displacement and immediate operands are
encoded in the Displacement and Immediate fields respectively. Since the en-
coding of the ModR/M and SIB bytes is not trivial at all, the Intel x86 specification
provides tables describing the semantics of the 256 possible values each of these
two bytes might assume.

2.1.1 Challenges on x86 emulation

In Computer Science, the term “emulator” is typically used to denote a software
that simulates a hardware system [33]. The Church-Turing thesis implies that
any operating environment can be emulated within any other. Consequently,
any hardware system can be emulated via software. Despite the absence of any
theoretical limitation that prevents the development of a correct and complete
emulator, from the practical point of view, the development of such a software
is very challenging. This is particularly true for CPU emulators, emulators that
simulate a physical CPU.

Emulating an x86 CPU means facing the complexity of its instruction set which
is already challenging by itself. It is easy to see that elementary decoding oper-
ations, such as determining the length of an instruction, require to decode the
entire instruction format and to interpret the various fields correctly.

The advent of several instruction extensions (e.g., Multiple Math eXtension
(MMX) and Streaming SIMD Extensions (SSE)) made the instruction decoding
process even more complicated. As an example, consider the byte strings f3 ae

and f3 0f e6, encoding respectively the instructions rep scasb and cvtdq2pd.
The byte f3 is a prefix that is found in both instructions, but it serves two differ-
ent purposes: it represents a rep prefix (to repeat the execution of an instruction)
in the first case and a mandatory prefix for SSE instructions in the second case.
Therefore, an instruction decoder has to consider that the prefix f3 has to be in-
terpreted differently, according to the subsequent sequence of bytes. The decoder
must treat the prefix as a rep only when it is followed by a sequence of bytes
that encodes a string or I/O operation (e.g., scasb), and as a preamble for SSE
instructions otherwise (e.g., cvtdq2pd).

Intel x86 instruction set has some redundancy w.r.t. the assembly represen-

Chapter 2. Background and Related work 3

tation of each instruction. Redundancy exists at the opcode level: consider for
example the assembly code test byte [eax], 0x0. This instruction can be
specified with two different opcodes f6/0 and f6/1, resulting in the encodings:
f6 00 00 and f6 08 00. It is worth noting the latter representation is undocu-
mented in Intel’s manuals while Amd manuals report it.

We can find redundancy also in the memory addressing part: consider for
example the assembly code mov [ecx],eax. Assemblers typically encode such
instruction with the byte sequence 89 01, where 89 is the opcode of the mov

instruction and 01 encodes both the memory reference [ecx] and the register eax.
Playing with the ModR/M and SIB bytes, we can find alternative representations
of the same instruction: (1) 89 04 21, (2) 89 04 61, (3) 89 04 a1 and (4) 89

04 e1.

Concluding, Intel x86 reference documentation sometimes lacks proper specifi-
cations for certain instructions, and states that others may have undefined effects
in certain corner-cases. As an example, the effects on the OF flag belonging to the
status register EFLAGS after the execution of the instruction shl dword [eax],

cl (shift to the left the double-word pointed by eax by the amount specified in
the cl register), when cl is different than 1, must be considered “undefined”.

2.2 Software Testing

Fuzz-testing has been proposed by Miller et al. in 1990 [41], but it is still widely
used for testing different types of applications. However, pure random fuzzing
cannot guarantee a reasonable code coverage in case of applications that require
a particular format of the input (e.g., a XML document or a well formed Java
program). For this reason, several protocol-specific fuzzing techniques have been
developed that leverage domain-specific knowledge [13, 25, 59]. Another approach
consists of building constraints that describe what properties are required for the
input to trigger execution of particular program paths, and then use a constraint
solver to find inputs with these properties [10, 20, 53, 35].

Differential testing The idea of detecting software defects by comparing the
behaviour of two or more software components for the same input is known as
differential testing [39]. Differential testing has previously been used in a variety
of contexts, including computer security [7], flash file systems [22], and grammar-
driven functionality [29]. In [56] a technique based on differential analysis is used
for testing Java Virtual Machines (JVMs). The idea is to feed the same test-case
to different JVM implementations and to compare their output. Similarly to our
test-case templates, they apply random mutators to perturb a meaningful input.

4

2.3 Emulators in malware analysis

CPU emulators are widely used in computer security for various purposes. One
of the most common applications is malware analysis [3, 38]. Emulators allow
fine-grained monitoring of the execution of a suspicious program and to infer
high-level behaviours. Furthermore they allow to isolate execution and to easily
checkpoint and restore the state of the environment. Malware authors, aware of
the techniques used to analyse malware, aim at defeating those techniques for
their software to survive longer. To defeat dynamic behavioural analysis based
on emulators, they typically introduce routines able to detect if a program is run
in an emulated or in a physical environment. As the average user targeted by
the malware does not use emulators, the presence of an emulated environment
likely indicates the program is being analysed. Thus, if the malicious program
detects the presence of an emulator, it starts to behave innocuously such that
the analysis does not detect any malicious behaviour. Several researchers have
analysed state-of-the-art emulators to find unfaithful behaviours that could be
used to write specific detection routines [45, 49, 52]. Unfortunately for them,
their results were obtained through a manual scrutiny of the source code or
rudimentary fuzzers, and thus the results are largely incomplete. The testing
technique presented in the dissertation can be used to find automatically a large
class of unfaithful behaviours a miscreant could use to detect the presence of an
emulated CPU. These information could then be used to harden an emulator, to
the point it satisfies the requirements for undetectability identified by Dinaburg
et al. [15].

2.4 Buffer overflow

In high level languages like C, a buffer is declared as an array of data which can be
of different types and different lengths. At the machine level, buffers loose these
information and can be viewed roughly as a sequence of bytes with unspecified
length. It is on a programmer’s responsibility to keep track of each buffer length
to avoid filling buffers with data beyond their capacity. When a program lacks
this kind of checks, a buffer overflow condition can occur. Buffer overflows can be
classified in many types, depending on where the declared buffer resides. We can
have stack-based, heap-based and static data buffer overflows if the buffer resides
respectively in the stack, heap or static data sections of a binary executable.
Writing data beyond the buffer length leads to data corruption. The ability by
an attacker of corrupting data such as code pointers can lead to arbitrary code
execution if such code pointers are used afterwards.

Chapter 2. Background and Related work 5

Stack-based buffer overflow is probably the most common and well-known
buffer overflow vulnerability. Exploitation happens when a buffer stored in the
stack has been filled beyond it’s limits corrupting code pointers or data pointers
like the saved return address of the calling function or the saved frame pointer.
The first known techniques used for exploiting stack-based buffer overflow vul-
nerabilities involved the injection of executable code in the vulnerable buffer as
long as carefully crafted data to overwrite the saved instruction pointer. The
saved instruction pointer was typically filled with the address of the buffer itself,
leading to execution of injected code, hence giving full control of the vulnerable
program by the attacker. For such a technique to be successful, the attacker
needs to know in advance the address of the overflown buffer (or at least an ap-
proximation) and the process must have the ability to execute code meant to be
data by the application.

W⊕X is a defence strategy meant to prevent execution of injected code [61].
It is implemented marking each memory page meant to contain machine code
as executable and read-only while marking each memory page meant to contain
mutable data as read-write but not executable. Briefly no memory page is allowed
to be both executable and writable at the same time. W⊕X was inspired by the
belief: if a process were unable to execute attacker-supplied code, the attacker can
no more force a vulnerable process to do arbitrary computations. Such belief was
later proven to be false by techniques like return-to-libc and it’s generalisation:
return-oriented programming.

Return-to-libc is an attack technique developed to exploit vulnerabilities like
stack-based buffer overflows and circumvent defence strategies like W⊕X [14].
With W⊕X the attacker can no longer inject it’s own code. The usual exploit
technique involving injection of the so-called shellcode (code meant to spawn a
shell back to the attacker) can no longer be applied. However the attacker can
still reliably corrupt code pointers to point to existing code. More precisely the
attacker can execute useful functions belonging to the ubiquitous libc library, e.g.
system to obtain a shell. Return-to-libc was believed to be limited as an attack
technique for the inability by an attacker to execute arbitrary computations.

Return oriented programming is a generalisation of the return-to-libc tech-
nique. This technique was discovered by Shacham [54] and aims to prove the
feasibility of arbitrary computation with no code injection at all. This tech-
nique consists of reusing small code snippets already present in the vulnerable
process’ address-space and ending with a ret instruction. Each code sequence

6

found accomplishes a single and simple task but glued together by means of care-
fully constructing a particular stack layout, they can be used to accomplish more
complex tasks such as load/store operations, arithmetic operations or operations
affecting the control flow such as direct or indirect jumps. Code sequences glued
together to implement one of the aforementioned tasks are called “gadgets”. The
author has been able to identify enough gadgets sufficient to construct a Turing-
complete machine, hence the possibility of doing arbitrary computations. Initially
this technique was believed to be applicable only on CISC-based CPUs like x86
are, due to the ability to execute unaligned instructions, more precisely the abil-
ity of the CPU to jump in the middle of an instruction, leading to the execution
of unwanted code. Later, Buchanan et al. [9] generalised the same technique to
be applied on RISC architectures as well.

Address Space Layout Randomisation (ASLR) is a technique developed with
the intention of hindering attacks like buffer overflow exploits [60]. For a success-
ful exploitation of a buffer overflow, an attacker needs to know in advance some
details on the layout of the vulnerable process. With the simplest stack-based
buffer overflow technique the attacker needs to know the base address of the stack
section, while for mounting a return-to-libc attack, he needs to know the base
address of the libc library.

ASLR consists of randomising the base address of each section belonging to
a process. In the presence of ASLR an attacker is no more able to know the
base address of those sections since they are randomly chosen and they change
at each execution of the vulnerable process. The only option for an attacker
to successfully exploit these kind of vulnerabilities is by means of brute-force.
However the most widely adopted incarnation of ASLR avoids randomising the
base address of the code section belonging to the executable binaries, thus giving
the attacker a chance to reliably jump to existing code.

Researchers have demonstrated that W⊕X and ASLR can be defeated by pa-
tient attackers [55]. The state-of-the-art approach to exploit stack-based buffer
overflows on systems protected with W⊕X and ASLR involves mounting a return-
to-lib(c) attack [14] repeatedly, in a brute-force fashion. Indeed, on 32-bit archi-
tectures (e.g., Intel x86) ASLR is weak because of low randomisation entropy.
Hence, with a relatively small number of attempts an attacker can guess the base
random address at which a certain library is loaded and then successfully mount
a return-to-lib(c) attack. However, a brute-force attack can easily rise alarms
(e.g., because of a large number of crashes) and automatic mechanisms can be
used to impede the attacker [23].

Chapter 2. Background and Related work 7

Position Independent Executables (PIE) RedHat extended the idea of posi-
tion independent code to executables. Like shared objects, position independent
executables (PIE) can be loaded at arbitrary memory locations [62]. In this dis-
sertation, we present two variants of a new attack technique to exploit stack-based
buffer overflow vulnerabilities. Both variants of the attack explained in chapter 5
exploit the lack of randomisation affecting some elf sections, e.g. .text, .plt
and .got. None of the variants of our attack can be applied to position indepen-
dent executables because, as for randomised libraries, the address of code chunks
varies from one execution to another. Therefore, guessing the absolute address
of a code chunk in an executable becomes as hard as reusing the code of a shared
library. To further complicate the exploitation, position independent executables
can also be used to construct self-randomising executables [6], executables that
rearrange automatically, at each execution, the disposition of their functions.

Code randomisation Bhaktar et al. [5] proposed a randomisation scheme that
uses binary rewriting to periodically re-obfuscate an executable, including the
layout of the code section. The randomisation of the code section could prevent
an attacker from using code chunks available in the executable. However, since
re-obfuscation is periodic, a local attacker accessing the executable on disk can
successfully mount both variants of our attack, within the time window in which
the executable does not change.

GOT-related protections Xu et al. [65] designed a runtime system that ran-
domises the location of the GOT and patches the PLT accordingly. This system
essentially just adds a fake layer of security: the sensitive information we abuse
in our proposed attack technique, (the content of the GOT) is stored at a ran-
dom location, but the address of this location remains accessible in memory (in
the PLT). Through our attack it is possible to dereference the PLT, discover the
address of the GOT, and then overwrite or dereference any GOT entry. However,
to perform GOT overwriting, the code chunks necessary for a dereference must
be available in the executable. Recent versions of binutils include support for
producing executables with a read-only GOT [19]. A similar protection could
also be implemented at runtime, by adopting a system like the one proposed by
Xu et al. Clearly such protection prevents our GOT overwriting attack, but it
cannot mitigate the first variant of the attack. Unfortunately, despite the fact
that this protection has been available in binutils for years, our experimental
analysis demonstrated that this protection is not yet adopted by any distribution.

N-Variant system A completely different approach to detect memory corrup-
tions is the N-Variant system [11]. The idea is to run n different instances of

8

the same program with diverse memory layouts, obtained using ASLR. Any suc-
cessful attack will work only on one of the instances and will cause all the other
instances to crash because the attack must be tailored to a particular process
layout. This idea has been further extended in [8].

2.4.1 Notes on x86 unwanted code

Our proposed attack technique is based return-oriented programming [54]. How-
ever his technique does not take into account ASLR protected binaries and cannot
be applied to the code section of a generic binary executable due to the lack of a
sufficient number of usable code chunks, necessary to construct a Turing-complete
machine. In our attack we look for code chunks in the code section of an elf bi-
nary. Due to the limited amount of code we can abuse w.r.t. code available in the
libc library, more precisely due to the presence of very few code chunks ending
with a ret instruction, we found to have a small chance of being successful in
mounting our attack by looking for wanted code only (code intentionally placed
by the compiler). The chance of success heavily increases if we take into account
unwanted code too.

Unwanted code shows up by the ability of x86 CPUs to jump in the middle of
an instruction, leading to a completely different computation.

8902 mov [edx],eax

83C42C add esp,byte +0x2c

89F0 mov eax,esi

5B pop ebx

5E pop esi

5F pop edi

5D pop ebp

C3 ret

Figure 2.2: function epilogue

0283C42C89F0 add al,[ebx-0xf76d33c]

5B pop ebx

5E pop esi

5F pop edi

5D pop ebp

C3 ret

Figure 2.3: unwanted code

As an example, consider the code sequence in Figure 2.2. If we start disassem-
bling in the middle of the first instruction, we obtain a different code sequence
depicted in Figure 2.3. The former representing a typical function epilogue, the
latter representing the unwanted code we abuse.

Despite the ability of Buchanan et al. [9] to apply return-oriented programming
to RISC architectures like SPARC, which avoids the presence of unwanted code,
we argue unwanted code is essential for our attack technique to be successful.

3 EmuFuzzer: a testing
methodology for CPU emulators

This chapter presents a testing methodology specific for CPU emulators, based
on fuzzing. The emulator is “stressed” with specially crafted test-cases, to verify
whether the CPU is properly emulated or not. Improper behaviours of the emula-
tor are detected by running the same test-case concurrently on the emulated and
on the physical CPUs and by comparing the state of the two after the execution.
Differences in the final state testify defects in the code of the emulator. We imple-
mented this methodology in a prototype (code-named EmuFuzzer), analysed four
state-of-the-art IA-32 emulators (QEMU, Valgrind, Pin and BOCHS), and found
several defects in each of them, some of which can prevent the proper execution
of programs.

3.1 Introduction

Defects in emulators may affect the execution of benign and malicious software.
Emulators started to be used in the field of malware analysis for facilitating
the analysis of suspicious software as they provide an isolated environment to
safely execute potentially harmful programs. Dynamic malware analysis aims
to spot harmful behaviours in software programs for identifying such threats
and be able to react against them. Malicious software writers learnt to use
techniques to fool malware analysis and evade detection. One of the evasion
techniques they employ consists of detecting the presence of an emulator for not
exposing their malicious behaviour to the potential analysis environment. To
avoid this problem, emulators must be transparent w.r.t. the hardware they wish
to emulate. Emulators are complex software, this is especially true if they have
to emulate complex CISC architectures like x86. For their complexity they are
also unlikely free of bugs.

Although several good tools and debugging techniques exist [42], developers of
CPU emulators have no specific technique that can help them to verify whether
their software emulate the CPU by following precisely the specification of the
vendors.

9

10

Instruction IA-32 QEMU Valgrind Pin BOCHS

lock fcos illegal instr. lock prefix ignored no diff. no diff. no diff.

int1 trap no diff. illegal instr. no diff. general protection fault

fld1 fpuip = eip fpuip = 0 fpuip = 0 FPU virtualised no diff.

add $0x1,0x0(%eax) 0x0(%eax) = 0xd0 0x0(%eax) = 0xcf no diff. no diff. no diff.

pop %fs %esp = 0xbfdbb108 no diff. no diff. %esp = 0xbfdbb106 no diff.

pop 0xffffffff %esp = 0xbffffe44 no diff. no diff. no diff. %esp = 0xbffffe48

Table 3.1: Examples of instructions that behave differently when executed in the
physical CPU and when executed in an emulated CPU (that emu-
lates an IA-32 CPU). For each instruction, we report the behaviour
of the physical CPU and the behaviour of the emulators (differences
are highlighted).

Assuming that the physical CPU is correct by definition, the ideal CPU em-
ulator mimics exactly the behaviour of the physical CPU it is emulating. On
the contrary, the behaviour of an approximate emulator deviates, in certain sit-
uations, from the behaviour that one would have on the physical CPU. Some
examples of the deviations we found in state-of-the-art emulators are reported in
Table 3.11. As an example, let us consider the instruction add $0x1,0x0(%eax),
which adds the immediate 0x1 to the byte pointed by the register eax. Assuming
that the original value of the byte is 0xcf, the execution of the instruction on
the physical CPU, and on three of the tested emulators, the value of the byte is
set to 0xd0. In QEMU, instead, the value is not updated correctly for a certain
encoding of the instruction. Many other examples of problematic instructions
are known already [17, 45, 48, 49, 52]. Our goal is to develop an automatic
technique to discover deviations between the behaviour of the emulator and of
the physical CPU it is emulating, caused by defects in the emulation code. We
are not interested in deviations that lead only to internal differences in the state
(e.g., differences in the state of CPU caches), because these differences are not
visible to the programs running inside the emulated environment. Indeed, no
instruction allows to observe such internal state and consequently the execution
of emulated programs cannot be influenced. Apart from spotting semantic dif-
ferences between instructions executed on the real CPU and by an emulated one,
there are other ways to detect the presence of an emulator. Emulating a single
instruction, tipically costs several CPU cycles. A malicious program willing to
detect emulation could measure the time needed for a particular instruction se-
quence to execute. Detection could happen if the measured time is over some
threshold. Such thresholds can be empirically obtained measuring time needed
for direct CPU execution. Clearly, the work presented in the dissertation does
not cover such collateral effects exposed by the emulation, being focused only on

1We use IA-32 assembly and we adopt the AT&T syntax.

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 11

instruction semantics.
This chapter makes the following contributions:

• An automated testing methodology specific for CPU emulators, based on
fuzzing and differential testing. We generate a large number of test-cases
and run these test-cases on both the emulated and the physical CPU. We
compare the configuration of the two environments looking for differences.

• A prototype implementation for IA-32 of the aforementioned testing tech-
nique code-named EmuFuzzer.

• Evaluation results of the prototype applied to four state-of-the-art emula-
tors (BOCHS, QEMU, Pin, and Valgrind), allowed us to find bugs in all of
them.

3.2 CPU Emulators

With the term CPU emulator we refer to a software that simulates the execu-
tion environment offered by a physical CPU. The execution environment consists
of: an address space (the memory), general purposes registers, other classes of
registers (e.g., FPU and management registers), and optionally I/O ports. The
CPU emulator emulates a program by executing each instruction in the emulated
execution environment. Instructions are typically executed using either interpre-
tation or just-in-time translation. Emulated instructions mimic in every detail
the behaviour of instructions executed directly by the physical CPU, with the
exception that the former operates on the resources of the emulated execution
environment, while the latter operates on the resources of the physical execution
environment.

The execution environment can be properly emulated even if some internal
components of the physical CPU are not considered (e.g., the instruction cache):
as these components are used transparently by the physical CPU, no program can
access them. Similarly, emulated execution environments can contain extra, but
transparent, components not found in hardware execution environments (e.g., the
cache used to store translated code).

3.2.1 Faithful CPU Emulation

Given a physical CPU CP , we denote with CE a software CPU emulator that emu-
lates CP . Our ideal goal is to automatically analyse CE to tell whether it faithfully
emulates CP . In other words we would like to tell if CE behaves equivalently to CP ,

12

CPU state (R)

eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)

eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CE

δCE
(s)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CP

δCP
(s)

(a)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 00 00

Exception state (E)
⊥

s′

CE

δCE
(s)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 cc dd

Exception state (E)
⊥

s′

CP

δCP
(s)

(b)

Figure 3.1: An example of our testing methodology with two different test-cases
(s and s): (a) no deviation in the behaviour is observed, (b) the
words at the top of the stack differ (highlighted in gray).

in the sense that any attempt to execute a valid (or invalid) instruction results
in the same behaviour in both CP and CE.

To define how code is executed by a CPU we model the CPU with an ab-
stract machine. A state of the abstract machine, s ∈ S, consists of the program
counter pc, the state of the CPU registers R, the state of the memory M , and
the exception state E. For conciseness, we represent the state of the abstract
machine with the tuple s = (pc, R,M,E). The CPU registers state R is a total
mapping from CPU registers to their value. The memory state M is a total map-
ping M : A → [0 . . . 255] of memory addresses to 1-byte memory values, where
A = [0 . . . 2N − 1] is the set of memory addresses, and N is the number of bits
used by the CPU for memory addressing. The program counter pc ∈ A∪{halt}
can refer any memory address; halt is a special address used to denote the ter-
mination of the execution. We assume no distinction between code and data;
thus any memory location can potentially be executed. Finally, the exception

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 13

state E ∈ {⊥, illegal instruction, division by zero, general protection fault , . . .}
denotes the exception that occurred during the execution of the last instruction;
the special exception state ⊥ indicates that no exception occurred.

The abstract machine that models the CPU is a transition system (S, δ). The
state-transition function δ : S → S maps a CPU state s = (pc, R,M,E) into a
new state s′ = (pc′, R′,M ′, E ′) by executing the current instruction at pc. The
transition function δ is defined as follows:

δ(pc, R,M,E)
def
=

(pc, R,M,E) if pc = halt ∨ E 6=⊥,

(pc, R,M,E ′) if an exception occurs,

(pc′, R′,M ′,⊥) otherwise.

If the program counter points to a valid instruction and the execution of that
instruction does not raise any exception, then δ(pc, R,M,E) = (pc′, R′,M ′,⊥).
The state of the registers R′ and of the memory M ′ are updated according to
the semantics of the executed instruction, the program counter pc′ points to
the next instruction, and E ′ =⊥. On the other side, if an exception occurs,
then δ(pc, R,M,E) = (pc, R,M,E ′), with E ′ 6=⊥. An exception indicates that
the instruction cannot be executed and, consequently, the program counter, the
CPU registers, and the memory remain unvaried. When the last instruction is
executed, the program counter is set to halt, and from that point on the state
of the environment is not updated anymore. The same applies after an exception
has occurred.

Having formalised how the CPU executes code, we can now define what it
means for CE to be a faithful emulator of CP . Intuitively, CE faithfully emulates
CP if the state-transition function δCE that models CE is semantically equivalent
to the function δCP that models CP . That is, for each possible state s ∈ S, δCP and
δCE always transition into the same state. More formally, CE faithfully emulates
CP iff:

∀ s ∈ S : δCP (s) = δCE(s).

3.2.2 Fuzzing CPU Emulators

Obviously, proving that CE faithfully emulates CP is infeasible because of the
unmanageable number of states that would have to be tested. For this reason,
instead of trying to prove that CE faithfully emulates CP , we relax our goal and
try to prove the opposite. That is, we search for an execution state s̄ ∈ S
that demonstrates that CE does not faithfully emulates CP . More formally, CE
unfaithfully emulates CP iff:

∃ s̄ ∈ S : δCP (s̄) 6= δCE(s̄).

14

Because we assume CP to be correct, the existence of such a state testifies the
existence of a defect in CE.

Our approach to detect if CE is not a faithful emulator of CP is based on fuzzing.
We generate a synthetic state (or test-case) s = (pc, R, M , ⊥) and we set the
state of both CP and CE to s. Then we execute the instruction pointed by pc
in both CP and CE. At the end of the execution of the instruction, we compare
the resulting state. If no difference is found, then δCP (s) = δCE(s) holds. On
the other hand, a difference in the final states proves that δCP (s) 6= δCE(s) and
therefore that CE does not faithfully emulate CP .

Figure 3.1 shows an example of our testing methodology in action. We run
two different test-cases, namely s and s. To ease the representation, in the figure
we report only the meaningful state information (three registers and the content
of few memory locations) and we represent the program counter by underlin-
ing the instruction it is pointing to. Furthermore, when the states of the two
environments do not differ, we graphically overlap them. The first test-case s
(Figure 3.1(a)) consists in executing the instruction mov $0x1, %eax. We exe-
cute concurrently this test-case on CP and CE: we set the state of the two en-
vironments to s and we execute in both the instruction pointed by the program
counter. We observe no difference in their final state. Therefore, we conclude
that δCE(s) = δCP (s) and that, for the state s, CP is faithfully emulated by CE.
The second test-case s (Figure 3.1(b)) consists in executing the instruction push

%fs, that saves the segment register fs on the stack. Although the register is 16
bits wide, the IA-32 specification dictates that, when operating in 32-bit mode,
the CPU has to reserve 32 bits of the stack for the store. In the example we
observe that CP leaves the upper 16 bits of the stack untouched, while CE over-
writes them with zero (the different bytes are highlighted in the figure). The final
state of the two environments differs because the content of their memory differs.
Consequently, we have that, for s, δCP (s) 6= δCE(s). That proves that CE does not
faithfully emulate CP . It is worth noting that this example reflects a real defect
we have found in QEMU using our testing methodology.

3.3 EmuFuzzer

The development of the fuzzing-based approach just described requires two major
efforts. First, as the number of states in which the environment has to be tested
is prohibitively large, we have to focus our efforts on a small subset of states.
Consequently, we have to carefully craft those states to avoid redundancy and
to maximise the completeness of the testing. Second, the detection of deviations
in the behaviours of the two environments requires to setup the two and to
inspect their state at the end of the execution of each test-case. Thus, we need

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 15

to develop a mechanism to efficiently initialise and compare the state of the two
environments. This section describes the details of our testing methodology.

Although the methodology we are proposing is architecture independent, our
implementation, codenamed EmuFuzzer, is currently specific for IA-32. This
choice is solely motivated by our limited hardware availability. Nevertheless,
minor changes to the implementation would be sufficient to port it to different
architectures. To ease the development, the current version of the prototype runs
entirely in user-space and thus can only verify the correctness of the emulation of
unprivileged instructions and whether privileged instructions are correctly pro-
hibited. EmuFuzzer deals with two different types of emulators: process emulators
that emulate a single process at a time (e.g., Valgrind, Pin, and QEMU), and
whole-system emulators that emulate an entire system (e.g., BOCHS, Simics, and
QEMU2).

3.3.1 Test-case Generation

In our testing methodology, the test-cases are merely the states of the environ-
ment under testing. For simplicity we consider a test-case as composed by data
and code. If s = (pc, R,M,⊥) is the test case, the code consists in the bytes
loaded in memory, representing the instruction (or the sequence of instructions)
pointed by pc and that will be executed by the CPU. The data of the test-case
are R and the remaining bytes of memory. To generate test-cases we adopt two
strategies: (i) random test-case generation, where both data and code are ran-
dom, and (ii) CPU-assisted test-case generation, where data are random, while
code is generated algorithmically, with the support of the physical and of the em-
ulated CPUs. The advantage of using two different strategies is a better coverage
of the test-case space.

Practically speaking, a test-case consists in a small assembly program, gen-
erated with one of the aforementioned techniques. Figure 3.2 shows a sample
test-case (written in C for clarity). This program initialises the state of the en-
vironment, by loading the data of the test-case in memory (lines 5–9) and in
the CPU (lines 11–13), and subsequently triggers the execution of the code of
the test-case (lines 15–16). The program is compiled with special compiler flags
to generate a tiny self-contained executable (i.e., that does not use any shared
library).

2QEMU supports both whole-system and process emulation.

16

1 void main() {

2 void *p;

3 char code[] = "code of the test-case ";

4

5 // Initialise the memory with random data

6 for (p = 0x0; p < FILE_SIZE; p += FILE_SIZE) {

7 f = open(FILE_WITH_RANDOM_DATA, O_RDWR);

8 mmap(p, PAGE_SIZE, ..., MAP_FIXED, f, 0);

9 }

10

11 // Initialise the registers with random data

12 asm("mov RANDOM, %eax");

13 ...

14

15 // Execute the code of the test-case (pc = code)

16 ((void(*)()) code)();

17 }

Figure 3.2: Sample test-case (in C for clarity).

Random Test-case Generation

In random test-case generation, both data and code of the test-case are generated
randomly. The memory is initialised by mapping a file filled with random data.
For simplicity, the same file is mapped multiple times at consecutive addresses
until the entire user-portion of the address space is allocated. To avoid a useless
waste of memory, the file is lazily mapped in memory, such that physical memory
pages are allocated only if they are accessed. The CPU registers are also initialised
with random values. As we work in user-space, we cannot allocate the entire
address space because a part of it is reserved to the kernel. Therefore, to minimise
page faults when registers are used to dereference memory locations, we make
sure the value of general purpose registers fall around the middle of the allocated
address space. Obviously, code generated with this approach might contain more
than one instruction.

CPU-assisted Test-case Generation

A thorough testing of an emulator requires to verify that each possible instruc-
tion is emulated faithfully. Unfortunately, the pure random test-case generation
approach presented earlier is very unlikely to cover the entire instruction set of

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 17

65 66

05

00

00 ff

............ ff

00 ff

67

00

00 . 02 . . . fd . ff

a
d
d
$
0
x
0
0
,
%
a
x

a
d
d
$
0
x
0
2
,
%
a
x

a
d
d
$
0
x
f
d
,
%
a
x

a
d
d
$
0
x
f
f
,
%
a
x

(a)

65 66

05

00

00 ff

............ ff

00 ff

67

00

00 . 02 . . a0 . . ff

a
d
d

$
0
x
0
0
,
%
a
x

a
d
d

$
0
x
0
2
,
%
a
x

a
d
d

$
0
x
a
0
,
%
a
x

a
d
d

$
0
x
f
f
,
%
a
x

o
p
co

d
e

o
p
e
ra

n
d

(b)

Figure 3.3: Example of CPU-assisted test-case generation for the opcode 66 05

(mov imm16,%ax): (a) näıve and (b) optimised generation (paths in
gray are not explored).

the architecture (the majority of CPU instructions require operands encoded us-
ing specific encoding and others have opcodes of multiple bytes). Ideally, we
would have to enumerate and test all possible instances of instructions (i.e., com-
binations of opcodes and operands). Clearly this is not feasible. To narrow the
problem space, we identify all supported instructions and then we test the em-
ulator using only few peculiar instances of each instruction. That is, for each
opcode we generate test-cases by combining the opcodes with some predefined
operand values. As in random-test case generation, the data of the test-case are
random.

Näıve Exploration of the Instruction Set Our algorithm for generating the
code of a test-case leverages both the physical and the emulated CPUs, in order
to identify byte sequences representing valid instructions. We call our algorithm
CPU-assisted test-case generation. The algorithm enumerates the sequences of
bytes and discards all the sequences that do not represent valid code. The CPU
is the oracle that tells us if a sequence of bytes encodes a valid instruction or
not: sequences that raise illegal instruction exceptions do not represent valid
code. We run our algorithm on the physical and on the emulated CPUs and then
we take the union of the two sets of valid instructions found. The sequences of
bytes that cannot be executed on any of the CPUs are discarded because they
do not represent interesting test-cases: we know in advance that the CPUs will
behave equivalently (i.e., E ′ = illegal instruction). On the other hand, a sequence
of bytes that can be executed on at least one of the two CPUs is considered
interesting because it can lead to one of the following situations: (i) it represents
a valid instruction for one CPU and an invalid instruction for the other; (ii) it

18

encodes a valid instruction for both CPUs but, once executed, causes the CPUs
to transition to two different states.

There are other possible approaches to generate the code of test-cases. For
example, one can generate assembly instructions and then compile them with
an assembler or use a disassembler to detect which sequences of bytes encode a
legal instruction. However, limitations of the assembler or of the disassembler
negatively impact on the completeness of the generated test-cases. Besides our
approach, none of the ones just mentioned can guarantee no false-negative (i.e.,
that a sequence of bytes encoding a valid instruction is considered invalid).

Optimised Exploration of the Instruction Set We can imagine to represent
all valid CPU instructions as a tree, where the root is the empty sequence of
bytes and the nodes on the path from the root to the leaves represent the various
bytes that compose the instruction. Figure 3.3(a) shows an example of such a
tree. Our algorithm exploits a particular property of this tree in order to optimise
the traversal and to avoid the generation of redundant test-cases. The majority
of instructions have one or more operands and thus multiple sequences of bytes
encode the same instruction, but with different operands. All such sequences
share the same prefix.

As an example, let us consider the 216 sequences of bytes starting from 66 05 00 00

to 66 05 FF FF that represent the same instruction, add imm16,%ax, with just dif-
ferent values of the 16-bit immediate operand. Figure 3.3(a) shows the tree
representation of the bytes that encode this instruction. The sub-tree rooted at
node 05 encodes all the valid operands of the instruction. Without any insight
on the format of the instruction, one has to traverse in depth-first ordering the
entire sub-tree and to assume that each path represents a different instruction.
Then, for each traversed path, a test-case must be generated. Our algorithm, by
traversing only few paths of the sub-tree rooted at node 05, is able to infer the
format of the instruction: (i) the existence of the operand, (ii) which bytes of the
instruction encode the opcode and which ones encode the operand, and (iii) the
type of the operand. Once the instruction has been decoded (in the case of the
example the opcode is 66 05 and it is followed by a 16-bit immediate), without
having to traverse the remaining paths, our algorithm generates a minimal set of
test-cases with a very high coverage of all the possible behaviours of the instruc-
tion. These test-cases are generated by fixing the bytes of the opcode and varying
the bytes of the operand. The intent is to select operand values that more likely
generate the larger class of behaviours (e.g., to cause an overflow or to cause an
operation with carry). For example, for the opcode 66 05, our algorithm decodes
the instruction by exploring only 0.5% of the total number of paths and generates
only 56 test-cases. The optimised tree traversal is shown in Figure 3.3(b), where

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 19

paths in gray are those that do not need to be explored. The heuristics on which
our rudimentary, but faithful, instructions decoder is built on is briefly described
later in the next paragraph. It is worth noting that, unlike traditional disassem-
blers, we decode instructions without any prior knowledge of their format. Thus,
we can infer which bytes of an instruction represent the opcode, but we do not
know which high-level instruction (e.g., add) is associated with the opcode.

CPU-assisted Instruction Decoding The optimised traversal algorithm just
described requires the ability to decode an instruction, and to identify its opcode
and operands. Again, for maximum precision, we use the CPU like an oracle:
given a sequence of bytes, the CPU tells us if that sequence encodes a valid
instruction or not. If the instruction is valid, the CPU tells us it’s length. Apart
from length-changing prefixes, given a fixed opcode, the only length-changing part
of an instruction is the memory-addressing part. Once we identify the opcode and,
if present, the memory addressing part, we can infer the operand type knowing it’s
length. The decoding is trial-based: we mutate an executable sequence of bytes,
we query the oracle to see which mutations are valid and which are not, and
from the result of the queries we infer the format of the instruction. Mutations
are generated following specific schemes that reflect the ones used by the CPU
to encode operands [24]. The idea is that, if a sequence of bytes contains an
operand, we expect all the mutations applied to the bytes of the operand and
conforming with its encoding scheme to be valid (i.e., the CPU executes only
valid mutations). If all the mutations conforming with a particular encoding
scheme lead to valid instructions and some mutations generated with the other
schemes do not, we conclude that the mutated bytes of the instruction encode the
operand and the mutation scheme successfully applied represents the type of the
operand. Moreover, the bytes that precede the operand constitute the opcode of
the instruction.

Decoding Instruction Length Given an arbitrary sequence of bytesB = b1 . . . bn,
the first goal is to detect if the bytes represent a valid instruction. Then, for valid
instructions, we have to infer their length. Our decoder exploits the fact that the
CPU fetches from the memory the bytes of the instruction and decodes them
incrementally. The decoder executes the input string B in a specially crafted ex-
ecution environment, such that every fetch of the bytes composing the instruction
can be observed.

The decoder initially partitions B into subsequences of incremental length
(B1 = b1, B2 = b1b2, . . . , Bn = b1 . . . bn) and then executes one subsequence
after another, using single-stepping. Since the goal is to intercept the fetch of the
various bytes of the instruction, the ith subsequence Bi (with i = 1 . . . n) is placed

20

B = 88 b7 53 10 fa ca ... (valid, six bytes long)

B1

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000 → longer

B2

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000 → longer

B6

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (write) at address 0x78378943 → valid

readable and
executable page

non-readable and
non-executable page

Figure 3.4: Computation of the length of instructions using our CPU-assisted
instruction decoder.

in memory such that it overlaps two adjacent memory pages, m and m′. The first
i bytes are located at the end of m, and the remaining bytes at the beginning
of m′. The two pages have special permissions: m allows read and execute ac-
cesses, while m′ prohibits any access. When the instruction is executed, the i
bytes in the first page are fetched incrementally by the CPU. If the instruction
is longer than i bytes, when the (i + 1)th byte is fetched the CPU raises a page
fault exception (where the faulty address corresponds to the base address of m′

and the cause of the fault is an instruction fetch) because the page containing the
byte being read, m′, is not accessible. If the instruction is i bytes long instead,
the CPU executes the instruction without accessing the bytes in m′. In such a
situation the instruction can be both valid and invalid. The instruction is valid,
and i bytes long, if it is executed without causing any exception; it is also valid
if the CPU raises a page fault or a general protection fault exception. A page
fault exception occurs if the instruction tries to read or write data from the mem-
ory (in this case the faulty address does not correspond to the base address of
m′); a general protection fault exception is raised if the instruction has improper
operands (e.g., it expects aligned operands but alignment is not respected). The
instruction is invalid instead, if the CPU raises an illegal instruction exception. If
the instruction is either valid or invalid the decoder returns, otherwise, it repeats
the process with the next subsequence, Bi+1.

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 21

Emulated CPU
(CE)

Physical CPU
(CP)

LE1: create t.c. process

LE2: execute t.c. init code (stop at pcE)LE3: copy initial state sE

LP1: fetch page p1 (p1 = pcE & ∼ 0xFFF)

LE4: page p1

LP2: initialisation (sP = sE)

LP3: execute t.c. code
LP4: fetch missing page p2

LE5: page p2

LP5: execute t.c. code

LP6: allow writes to page p2

LP7: execute t.c. code

LP8: finalisation (save s′P)

LP9: execution completed

LE6: execute t.c. code

LE7: copy final state s′E
LP10: fetch modified page p2

LE8: page p2

LP11: compare s′P with s′E

Figure 3.5: Logic of the execution of a test-case (t.c., for short). denotes the
execution of the test-case and denotes the execution of the code of
the logic.

3.3.2 Test-case Execution

Given a test-case, we have to execute it on both the physical and the emulated
CPUs and then compare their state at the end of the execution. Our test-cases
are small programs that initialise the state of the environment, and transfer
the control to the selected sequence of instructions. For this reason, we start
by executing the test-case program only in one environment and, as soon as the
initialisation of the state is completed, we replicate the status of the registers and
the content of the memory pages to the other environment. Then, we execute the
code of the test-case in the two environments and, at the end of the execution,
we compare the final state. In the current implementation we initially execute

22

the program in the CPU emulator and subsequently replicate the state to the
physical CPU. Nevertheless, the core of analysis is performed by the component
running in the physical environment. In the remaining of this section we describe
the logic of the execution of a test-case and we give details about how we have
extended the tested emulators to embed such logic, and how we have developed
the module to run a test-case on the physical CPU. For simplicity, the details
that follow are specific for the testing of process emulators. Nonetheless, the
implementation for testing whole-system emulators only requires the addition of
introspection capabilities to isolate the execution of the test-case program [18].

Logic of the Execution of a Test-case

The logic of the execution of a test-case is summarised in Figure 3.5 and described
in detail in the following paragraphs. To facilitate the presentation, we refer to
the state of CE prior and posterior to the execution of a test-case respectively as
sE = (pcE, RE, ME, EE) and s′E = (pc′E, R

′
E, M

′
E, E

′
E). Similarly, for CP , we use

respectively sP = (pcP , RP , MP , EP) and s′P = (pc′P , R
′
P , M

′
P , E

′
P).

Setup of the Emulated Execution Environment The CPU emulator is started
and it begins to execute the test-case program (LE1). We let the emulator execute
the test-case program until the state of the environment is completely initialised
(LE2). In other words, the program is executed without interference until the
execution reaches pcE (i.e., the address of the code of the test case).

Setup of the Physical Execution Environment When the state of the emulated
environment has been setup (i.e., when the execution has reached pcE), the initial
state, sE = (pcE, RE, ME, EE), can be replicated into the physical environment.
The emulator notifies the module running on the physical CPU and transfers the
state of the CPU registers to the latter (LE3). Initially, the exception state EE is
always assumed to be ⊥. Note that the memory state of the physical CPU MP

is not synchronised with the emulated CPU. At the beginning, only the memory
page containing the code of the test-case is copied into the physical environment
(LP1 and LE4). The remaining memory pages are instead synchronised on-demand
the first time they are accessed, as it will be explained in detail in the next
paragraph. At this point we have that RE = RP , EE = EP =⊥, but ME 6= MP

(the only page that is synchronised is the one with the code).

Test-case Execution on the Physical CPU The execution of the code of the
test-case on the physical CPU starts, beginning from program address pcP = pcE
(LP3). The execution of the code continues until one of the following situations

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 23

occurs: (i) the execution reaches the last instruction of the test-case; (ii) a page-
fault exception caused by an access to a missing page occurs; (iii) a page-fault
exception caused by a write access to a non-writable page occurs; (iv) any other
exception occurs. Situation (i) indicates that the entire code of the test-case is
executed successfully. That means that all of the instructions of the test-case were
valid and did not generate any fatal CPU exception. The first type of page-fault
exceptions (ii) allows us to synchronise lazily the memory containing the data
of the test-case at the first access. During the initialisation phase (LP2) all the
memory pages of the physical environment, but that containing the code (and few
others containing the code to run the logic), are protected to prevent any access.
Consequently, if an instruction of the test-case tries to access the memory, we
intercept the access through the page fault exception and we retrieve the entire
memory page from the emulated environment (LP4 and LE5). All data pages
retrieved are initially marked as read-only to catch future write accesses. After
that, the execution of the code of the test-case on the physical CPU is resumed
(LP5). The second type of page-fault exceptions (iii) allows us to intercept write
accesses to the memory. Written pages are the only pages that can differ from
an environment to the other. Therefore, after a faulty write operation we flag
the memory page as written. Then, the page is marked as writable and the
execution is resumed (LP6 and LP7). Obviously, depending on the code of the
test-case, situations (ii) and (iii) may occur repeatedly or may not occur at all
during the analysis. Finally, the occurrence of any other exception (iv) indicates
that the execution of the test-case cannot be completed because the CPU is
unable to execute an instruction. When the execution of the code of the test-case
on the physical CPU terminates, because of (i) or (iv), we regain the control
of the execution, we immediately save the state of the environment for future
comparisons (LP8), and we restore the state of the CPU prior to the execution of
the test-case.

Test-case Execution on the Emulated CPU The execution of the code of the
test-case in the emulated environment, previously stopped at pcE (LE2), can now
be safely resumed. The execution of the code in the emulated environment must
follow the execution in the physical environment. In the physical environment
the state of the memory is synchronised on-demand and thus the initial state of
the memory ME must remain untouched until the physical CPU completes the
execution of the test-case. The execution is resumed and it terminates when all
the code of the test-case is executed or an exception occurs (LE6).

Comparison of the Final State Both the emulator and the physical environ-
ments have completed the execution of the test-case and thus we can compare

24

their state (s′E = (pc′E, R
′
E, M

′
E, E

′
E) and s′P = (pc′P , R

′
P , M

′
P , E

′
P)). The com-

parison is performed by the module running in the physical environment. The
emulator notifies the other party and then transfers the program counter pc′E,
the current state of the CPU registers R′

E, and the exception state E ′
P (LE7). To

compare s′E and s′P it is not necessary to compare the entire address space: the
module running in the physical environment fetches only the content of the pages
that have been marked as written (LP10 and LE8). At this point s′E is compared
with s′P (LP11). If s′E differs from s′P , we record the test-case and the difference(s)
produced.

Embedding the Logic in the CPU Emulator

The test-case program is run directly in the emulator under analysis. The em-
ulator is extended to include the code that implements the logic of the analysis
previously described. We embed the code leveraging the instrumentation API
provided by the majority of the emulators. The embedded code serves the fol-
lowing three purposes. First, it allows to intercept the beginning and the end of
the execution of each basic block (or instruction, depending on the emulator) of
the emulated program. If the code of the test-case contains multiple instructions,
all basic blocks (or instructions) are intercepted and contribute to the testing. We
assume the code used to initialise the environment is always correctly emulated
and thus we do not test it nor we intercept its execution. Second, the embedded
code allows to intercept the exceptions that may occur during the execution of
the test-case program. Third, it provides an interface to access the values of the
registers of the CPU and the content of the memory of the emulator.

Running the Logic on the Physical CPU

On the physical CPU, we do not run directly the test-case program, but we run
it through a small user-space program that implements the various steps of the
analysis described in 3.3.2. An initialisation routine (LP2 in Figure 3.5), is used
to setup the registers of the CPU, to register signal handlers to catch page faults
and the other run-time exceptions that can arise during the execution of the
test-case, and to transfer the control to the code of the test-case. The code of
the test-case is executed as a shellcode [26] and consequently we must be sure it
does not contain any dangerous control transfer instruction that would prevent
us to regain the control of the execution (e.g., jumps, function calls, system calls).
Given the approaches we use to generate the code of the test-cases, we cannot
prevent the generation of such dangerous test-cases. Therefore, we rely on a
traditional disassembler to analyse the code of the test-case, identify dangerous
control transfer instructions, and patch the code to prevent them. At the end of

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 25

the code of the test-case we append a finalisation routine (LP8 in Figure 3.5), that
is used to save the content of the registers for future comparison, to restore their
original content, and to resume the normal execution of the remaining steps of the
logic. Exceptions other than page-faults interrupt the execution of the test-case.
The handlers of these exceptions record the exception occurred and overwrite the
faulty instruction and the following ones with nops, to allow the execution to
reach the finalisation routine to save the final state of the environment.

In the approach just described the program implementing the logic and the
test-case share the same address space. Therefore, the state of the memory in
the physical environment differs slightly from the state of the memory in the
emulated environment: some memory pages are used to store the code and the
data of the user-space program, through which we run the test-case. If the
code of the test-case accesses any of these pages, we would notice a spurious
difference in the state of the two environments. Considering that the occurrence
of such event is highly improbable, we decided to neglect this problem, to avoid
complicating the implementation. To guarantee that at the end of the code of
the test-case we are able to regain the control of the execution, we rely on a
traditional disassembler to analyse and patch the code of the test-case. If the
disassembler failed to detect dangerous control transfer instructions, we could
not be able to regain the control of the execution properly. To prevent endless
loops caused by failures of this analysis, we put a limit on the maximum CPU
time available for the execution of a test-case and we interrupt the execution if
the limit is exceeded.

3.4 Evaluation

This section presents the results of the testing of four IA-32 emulators with
EmuFuzzer: three process emulators (QEMU, Valgrind, and Pin) and a system
emulator (BOCHS). We generated a large number of test-cases, evaluated their
quality, and fed them to the four emulators. None of the emulators tested turned
out to be faithful. In each of them we found different classes of defects: small
deviations in the content of the status register after arithmetical and logical op-
erations, improper exception raising, incorrect decoding of instructions, and even
crash of the emulator. Our experimental results lead to the following conclu-
sions: (i) developing a CPU emulator is actually very challenging, (ii) developers
of these software would highly benefit from specialised testing methodology, and
(iii) EmuFuzzer proved to be a very effective tool for testing CPU emulators.

26

Deviation type
QEMU Valgrind Pin BOCHS

opcodes testc opcodes testc opcodes testc opcodes testc

R

CPU flags 39 1362 13 684 22 2180 2 2686

CPU gp 3 142 8 141 3 18 8 8

FPU 179 41738 157 39473 0 0 71 1631

M mem state 34 1586 10 420 0 0 1 2

E

not supp. 2 1120 334 11513 2 12 0 0

over supp. 97 1859 10 716 0 0 5 8

other 126 6069 41 6184 20 34 45 113

Total 405 53926 529 59135 43 2245 130 4469

Table 3.2: Results of the evaluation: number of distinct mnemonic opcodes and
number of test-cases that triggered deviations in the behaviour between
the tested emulators and the baseline physical CPU.

3.4.1 Experimental Setup

We performed the evaluation of our testing methodology using an Intel Pentium
4 (3.0 GHz), running Debian GNU/Linux with kernel 2.6.26, as baseline physical
CPU. The physical CPU supported the following features: MMX, SSE, SSE2,
and SSE3. We tested the latest stable release of each emulator, namely: QEMU
0.9.1, Valgrind 3.3.1, Pin 2.5-23100, and BOCHS 2.3.7. The features of the
physical machine were compatible with the features of the tested emulators with
few exceptions, which we identified at the end of the testing, using a traditional
disassembler, and ignored (for example, BOCHS also supports SSE4).

3.4.2 Evaluation of Test-case Generation

We generated about 3 million test-cases, 70% of which using our CPU-assisted
algorithm and the remaining 30% randomly. We empirically estimated the com-
pleteness of the set of instructions covered by the generated test-cases by dis-
assembling the code of the test-cases, by counting the number of different in-
structions found (operands were ignored), and by comparing this number with
the total number of mnemonic instructions recognised by the disassembler. The
randomly generated test-cases covered about 75% of the total number of instruc-
tions, while the test-cases generated using our CPU-assisted algorithm covered
about 62%. Overall, about 81% of the instructions supported by the disassembler
were included in the test-cases used for the evaluation. It is worth noting that
in several cases our test-cases contained valid instructions not recognised by the

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 27

disassembler.

The implementation of our CPU-assisted algorithm is not complete and lacks
support for all instructions with prefixes. For example, currently our algorithm
does not generate test-cases involving instructions operating on 16-bits operands.
We have empirically estimated that instructions with prefixes represent more
than 25% of the instructions space. Therefore, a complete implementation of the
algorithm would allow to achieve a nearly total coverage. We speculate that the
high coverage of randomly generated test-cases is due to the fact that the IA-32
instruction set is very dense and consequently a random bytes stream can be
interpreted as a series of valid instructions with high probability. Nevertheless,
during our empirical evaluation we reached a local optimum from which it was
impossible to move away, even after having generated hundreds of thousands of
new test-cases. The CPU-assisted algorithm instead does not suffer this kind of
problem: a complete implementation would allow to generate a finite number of
test-cases exercising all instructions in multiple corner cases.

3.4.3 Testing of IA-32 Emulators

The four CPU emulators were tested using a small subset (∼10%) of the gener-
ated test-cases, selected randomly. The whole testing took about a day, at the
speed of around 15 test-cases per second. Table 3.2 reports the results of our ex-
periments. Behavioural differences found are grouped into three categories: CPU
registers state (R), memory state (M), and exception state (E). Differences in
the state of the registers are further separated according to the type of the reg-
isters: status (CPU flags), general purpose and segment (CPU general), and
floating-point (FPU). Differences in the exception state are separated in: legal
instructions not supported by the emulator (not supported), illegal instructions
valid for the emulator (over supported), and other deviations in the exception
state (other). As an example, the last class includes instructions that expect
aligned operands but execute without any exception even if the constraint is not
satisfied. For each emulator and type of deviation, the table reports the num-
ber of distinct mnemonic opcodes leading to the identification of that particular
type of deviation (opcodes) and the number of test-cases proving the deviation
(test-cases). It is worth pointing out that different combinations of prefixes and
opcodes are considered as different mnemonic opcodes. For each distinct opcode
that produced a particular type of deviation, we verified and confirmed manually
the correctness of at least one of the results found.

The results demonstrate the effectiveness of the proposed testing methodology.
For each emulator we found several mnemonic opcodes not faithfully emulated:
405 in QEMU, 529 in Valgrind, 43 in Pin, and 130 in BOCHS. It is worth noting

28

that some of the deviations found might be caused by too lax specifications of the
physical CPU. For example, the manufacturer documentation of the add instruc-
tion precisely states the effect of the instruction on the status register, while the
documentation of and states the effect of the instructions only on some bits of
the status register, while leaving undefined the value the remaining bits [24]. Our
reference of the specification is the CPU itself and consequently, with respect to
our definition of faithful emulation, any deviation has to be considered a tangible
defect. Indeed, for each deviation discovered by EmuFuzzer it is possible to write
a program that executes correctly in the physical CPU, but crashes in the emu-
lated CPU (or vice versa). We manually transformed some of the problematic
test-cases into such kind of programs and verified the correctness of our claim.
The remarkable number of defects found also witnesses the difficulty of develop-
ing a fully featured and specification-compliant CPU emulator and motivates our
conviction about the need of a proper testing methodology.

The following paragraphs summarise the defects we found in each emulator.
The description is very brief because the intent is not criticise the implementation
of the tested emulators, but just to show the strength of EmuFuzzer at detecting
various classes of defects.

QEMU A number of arithmetical and logical instructions are not properly exe-
cuted by the emulator because of an error in the routine responsible for decoding
certain encoding of memory operands (e.g., or %edi, 0x67(%ebx) encoded as
08 7c e3 67); the instructions reference the wrong memory locations and thus
compute the wrong results. The emulator accepts several illegal combinations
of prefixes and opcodes and executes the instruction ignoring the prefixes (e.g.,
lock fcos). Floating-point instructions that require properly aligned memory
operands are executed without raising any exception even when the operands
are not aligned, because the decoding routine does not perform alignment check-
ing (e.g., fxsave 0x00012345). Segments registers, which are 16 bits wide, are
emulated as 32-bit registers (the unused bits are set to zero), thus producing
deviations when they are stored in other 32-bits registers and in memory (e.g.,
push %fs). Some arithmetic and logical instructions do not faithfully update the
status register. Finally, we found sequences of bytes that freeze and others that
crash the emulator (e.g., xgetbv).

Valgrind Some instructions have multiple equivalent encodings (i.e., two differ-
ent opcodes encode the same instruction) but the emulator does not recognise all
the encodings and thus the instructions are considered illegal (e.g., addb $0x47,

%ah with opcode 82). Several legal privileged instructions, when invoked with
insufficient privileges, do not raise the appropriate exceptions (e.g., mov (%ecx),

Chapter 3. EmuFuzzer: a testing methodology for CPU emulators 29

%cr3 raises an illegal operation exception instead of a general protection fault).
On the physical CPU, each instruction is executed atomically and, consequently,
when an exception occurs the state of the memory and of the registers correspond
to the state preceding the execution of the instruction. On Valgrind instead, in-
structions are not executed atomically because they are translated into several
intermediate instructions. Consequently, if an exception occurs in the middle
of the execution of an instruction, the state of the memory and of the registers
might differ from the state prior to the execution of the instruction (e.g., idiv
(%ecx) when the divisor is zero). As in QEMU, some logical instructions do not
faithfully update the status register.

Pin Not all exceptions are properly handled (i.e., trap and illegal instruction
exceptions); Pin does not notify the emulated program about these exceptions.
Several legal instructions that raise a general protection fault on the physical
CPU are executed without generating any exception on Pin (e.g., add %ah,

%fs:(%ebx)). When segment registers are stored (and removed) in the stack,
the stack pointer is not updated properly: a double-word should be reserved on
the stack for these registers, but Pin reserves a single word (e.g., push %fs). The
FPU appears to be virtualised (i.e., the floating-point code is executed directly
on the physical FPU) and, as expected, no deviation is detected in the execution
of FPU instructions. As in Valgrind and QEMU, some logical instructions do not
faithfully update the status register.

BOCHS Certain floating-point instructions alter the state of some registers of
the FPU and other instructions compute results that differ from those computed
by the FPU of the physical CPU (e.g., fadd %st0, %st7). If an exception occurs
in the middle of the execution of an instruction manipulating the stack, the initial
content of the stack pointer corresponds to that we would have if the instruction
were successfully executed (e.g., pop 0xffffffff). Some instructions do not
raise the proper exception (e.g., int1 raises a general protection fault instead of
a trap exception). As in Valgrind, QEMU, and Pin, some logical instruction do
not faithfully update the status register, although the number of such instruction
is smaller than the number of instructions affected by this problem in the other
emulators.

3.5 Discussion

EmuFuzzer currently works in user-space and thus it can only verify whether
unprivileged code is not emulated faithfully, with few exceptions. For example,

30

some unprivileged instructions that access segment registers might not be tested
because it is not possible to manipulate properly the value of these registers from
user-space. Fortunately, in many cases the values of the segment registers in the
emulated and in the physical environments do not need to be manipulated as they
already match. Another limitation is that, from user-space, we cannot manip-
ulate control registers and thus we cannot enable supplementary CPU-enforced
alignment checking and the other enforcements it offers, which are disabled by
default. We addressed the limits of EmuFuzzer in the next chapter, in which we
propose a different approach able to test also privileged code in different execution
modes.

4 KEmuFuzzer: a methodology for
testing System Virtual Machines

In this chapter we present a methodology specific for testing system virtual ma-
chines. This methodology is an improvement over the one proposed in the pre-
vious chapter. Like in EmuFuzzer the testing methodology is based on protocol-
specific fuzzing and differential analysis, and consists in forcing a virtual machine
and the corresponding physical machine to execute specially crafted snippets of
user- and system-mode code and in comparing their behaviours. We have devel-
oped a prototype, code-named KEmuFuzzer, that implements our methodology
for the Intel x86 architecture and used it to test four state-of-the-art virtual ma-
chines: BOCHS, QEMU, VirtualBox and VMware discovering defects in all of
them.

4.1 Introduction

In the previous chapter we proposed a testing methodology for CPU emulators.
Such methodology can be used to test only user-mode code and can’t be used
for testing privileged code. System virtual machines, especially those relying on
direct binary execution can’t take advantage of such testing methodology for they
execute user-mode code directly using the real CPU so, for the way the testing
works, they must appear correct by definition. However, system virtual machines
not leveraging virtualisation extensions like Intel’s VT-x technology, include some
software emulation in them. Emulation is necessary for to be able to simulate
the execution of privileged code while in user-mode. For example, Virtualbox
includes part of the code of QEMU for such purpose.

Practically speaking, a virtual machine is an isolated environment that executes
software in the same way as the physical system for which the software was
developed. Virtual machines can be classified in two main classes, according to
the type of software they execute: process virtual machines execute an individual
process, while system virtual machines execute full operating systems.

Typical usages of process virtual machines are cross-platform portability, pro-
filing, and dynamic binary optimisation. On the other hand, typical usages of

31

32

system virtual machines are resources consolidation [1], applications provision-
ing, simplification of maintenance, system integration [40], development [21], and
security [2].

Virtual machines are very complex pieces of software. This is particularly true
for system virtual machines, since they have to offer an execution environment
suitable for running a commodity guest operating system and its applications.
Thus, the most important requirement for a system virtual machine is to replicate
in every detail the execution environment found on physical machines. Many
researchers have invested a lot of efforts in the development of new techniques for
building efficient system virtual machines. Traditionally, system virtual machines
were implemented using software emulators that emulated the CPU and I/O
peripherals. Although this approach is still in use for certain applications, modern
virtual machines improve efficiency by executing natively on the physical CPU
part of the code of the guest. Recently, hardware vendors have started to extend
their architectures to introduce new capabilities to facilitate virtualisation and to
maximise the amount of guest code that can be run natively [43]. Unfortunately
only little effort has been invested in developing specific testing methodologies for
this class of software. Since system virtual machines are employed in a variety of
critical applications and since bugs might have very dangerous implications [64],
their thorough testing must be taken very seriously.

This chapter makes the following contributions:

• An automated testing methodology specific for system virtual machines
based on protocol-specific fuzzing and differential testing. We present a
more powerful methodology than the one we used with EmuFuzzer. The
new approach enabled us to test user- and system-mode code thus can be
applied to CPU virtualizers.

• A prototype implementation for IA-32 of the proposed testing methodology
code-named KEmuFuzzer.

• Evaluation results of KEmuFuzzer, applied to four popular system virtual
machines (BOCHS, QEMU, VMWare and VirtualBox), allowed us to find
defects in all of them.

4.2 Overview

We describe the approaches used in system virtual machines to simulate the phys-
ical CPU, we introduce a property of virtual machines we called transparency to
guests, and illustrate how this property can be used for testing virtual machines.

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines33

4.2.1 Virtualisation

The processor of a physical machine, the host, can be programmed to run multi-
ple guests and to give them the illusion that they have dedicated and complete
accesses to the processor. This illusion can be realized in two ways: through CPU
emulation and through CPU virtualisation.

We already introduced CPU emulators in Section 3.2. CPU virtualizers can
be viewed as very efficient emulators. Indeed, when the instruction set of the
guest is identical to the instruction set of the host, most of the code of the guest
can be executed directly as-is on the host1. The trick used to natively run guest
code efficiently is to execute both user and system code of the guest on the host,
in user-mode. Emulation is then used to execute only instructions of the system
code that cannot be executed natively on the host. The complexity and efficiency
of the virtual machine depends on the number of instructions that require emu-
lation and on the complexity of discovering them. Popek and Goldberg formally
described the characteristics an instruction set architecture (ISA) must meet to
be easily and efficiently virtualised [47]. They identified two special classes of
instructions, privileged and sensitive, and derived a sufficient condition under
which an ISA can be efficiently (and easily) virtualised. A privileged instruction
is an instruction that traps (i.e., it raises an exception) when executed in user-
mode and does not trap when executed in system-mode. A sensitive instruction
is instead an instruction that either changes the configuration of the resources
in the system or whose behaviour depends on the configuration of the resources.
The ISA is efficiently virtualisable if the set of sensitive instructions is a subset
of privileged ones. When such a condition is met, all sensitive instructions that
require emulation trap naturally, since they are privileged but are executed in
user mode. Thus, the host can intercept them with no effort. Since the number
of sensitive instructions is typically small, the complexity of the CPU emulator
needed on the host to handle these instructions is much smaller than the com-
plexity of a traditional CPU emulator that must support the whole instruction
set.

Unfortunately, the majority of ISAs do not meet the Popek and Goldberg
requirement for efficient virtualisation. An example is the Intel x86 ISA [50]2.
In order to allow virtualisation in such an architecture all system code of the
guest must be analysed to detect critical instructions, that is, sensitive, but
not privileged, instructions. Any block of code containing a critical instruction

1We are (ab)using the term “CPU virtualisation” to explicitly refer to the virtualisation
technique also known as direct native execution [57].

2Recently the Intel x86 ISA has been extended introducing hardware support for virtualisation
(VT-x). However, in this work we are concerned with the testing of virtualisation techniques
that do not leverage such a support.

34

must then be either emulated or patched (to allow the host to intercept the
critical instruction). Thus, the identification and handling of critical instructions
requires a complex software component that resembles, in terms of characteristics,
complexity, and proneness to defects, a traditional CPU emulator.

4.2.2 Transparency of Virtual Machines

The ideal CPU emulator and the ideal CPU virtualiser behave exactly as the
physical CPU. Therefore, any program should produce the same output when
executed on the physical CPU and when executed in a virtual machine. Our goal
is to analyse system virtual machines to tell how close they resemble the ideal
one. To do that we define a property called transparency to guests. Transparency
to guests means that guests must not be able to tell if they are executed in a
virtual machine or not. Recalling the formalism introduced in section 3.2.1, we
say CE is transparent if δCE is semantically equivalent to δCP .

Clearly, transparency is strictly related to correctness and transparency implies
the absence of defects. Our goal is to use the transparency property just defined
to analyse CPU emulators and virtualizers to find defects in their implementation.
It is worth noting that in the case of a traditional emulator, the causes of lack
of transparency are imputable totally to software defects. On the other hand,
in the case of a CPU virtualiser, lack of transparency could also be caused by
intentional design and implementation decisions, made to facilitate virtualisation.
For example, a CPU virtualiser could make assumptions about the internals of the
guest, or could force the guest into certain configurations that allow to minimise
the complexity of the virtualiser and to minimise performance overhead. In any
case, the lack of transparency can produce unexpected behaviours in guests.

4.2.3 Testing Transparency of Virtual Machines

CPU emulators and CPU virtualizers, on virtualisation unfriendly ISAs (i.e., ISAs
with critical instructions), are very complex pieces of software. Consequently, it
is not that easy to guarantee complete transparency. Indeed, our experience has
taught us that even CPU virtualizers on virtualisation friendly ISAs sometimes
fail to satisfy this property. Thus, we propose a methodology to test automatically
whether such a property is satisfied or not.

The methodology we adopt for testing transparency of Virtual Machines, is
very similar to the methodology we adopted in EmuFuzzer. We introduced such
methodology in section 3.2.2.

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines35

Our approach to test if an emulator CE, for the CPU CP , is transparent or not is
based on fuzzing [41] and differential analysis [39]. We use fuzzing to generate an
input state s. Since the state space S is prohibitively large and since many states
are equivalent for the purpose of testing, the fuzzing is protocol-specific [59]: we
start from a small set of meaningful states, and we mutate them to generate
new ones that try to exercise the largest class of corner-case behaviours of the
CPU. Compared to traditional fuzzing, the protocol-specific approach we are
using allows to concentrate the efforts mostly on meaningful states.

The problem we address in this work is by far more challenging than the one
we considered in Chapter 3. In fact, with EmuFuzzer we focused the testing only
on the behaviour of CPU emulators in user-mode. In this work we are extending
the testing to system-mode as well. As discussed in the next section, this type of
testing is much more complicated from a practical point of view.

4.3 KEmuFuzzer

To implement the testing methodology, three major challenges must be addressed.
First, in order to test the transparency of a virtual machine, we need to execute
some code in the virtual and in the physical system, and then compare the state
resulting from the execution. Unfortunately, since our approach is based on
fuzzing and since we want to test transparency in both user- and system-mode,
we might lead the physical machine into an unusable state, from which it would
be impossible to regain the control without a reboot. To be able to inspect the
state of the machine at any time, we need to hold complete control of the ma-
chine, even when fatal exceptions occur. Second, in our previous work, we had
access only to user-mode resources and thus we assumed that the behaviour of an
instruction depended only on the value of its operands. By taking into account
also system-mode resources, this assumption does not hold anymore. For exam-
ple, the behaviour of an instruction that accesses the memory now also depends
on the configuration of paging, segmentation, and protection rings. As the num-
ber of configurations that affect the behaviour of an instruction is significantly
larger, a new technique for test-cases generation is necessary. Third, our defini-
tion of transparency assumes that the state-transition function that models the
behaviour of the CPU is deterministic. Nevertheless, asynchronous events (e.g.,
interrupts) make the execution on real CPUs non-deterministic. Consequently, we
have to setup a proper execution environment that guarantees deterministic exe-
cution in all possible CPU modes. In other words, all the effect of asynchronous
events must be nullified.

The details of the implementation we are going to present are specific for Intel
x86 and for testing system virtual machines. However, the implementation can

36

Test-cases

Kernel
+

Test-case
compiler

Virtual
machine

Oracle

?
=

s

s′

s′

Figure 4.1: Overview of KEmuFuzzer

be adapted to test virtual machines for other architectures and process virtual
machines as well (e.g., by recreating the environment of the host in which the
process is run).

4.3.1 Architecture and Methodology

Figure 4.1 depicts the architecture of KEmuFuzzer, the system we developed for
testing the transparency of CPU emulators and virtualizers for the Intel x86
architecture. KEmuFuzzer is composed of the following modules: (i) a compiler
to generate test-cases from manually written templates; (ii) a kernel to bootstrap
the CPU of the virtual machine and to execute a test-case; (iii) an oracle that
executes a test-case on the physical CPU; (iv) a coordinator (not shown in the
figure) to automate the process of validating the transparency of the virtual
machine for a given test-case.

Given a test-case template, we use the compiler to translate the template into
a stream of machine instructions. For each compiled test-case, we generate a
floppy image containing a boot-loader, the kernel, and the compiled test-case.
The floppy image is bootable and can be used to boot any Intel x86 compatible
machine, including CPU emulators and CPU virtualizers for this architecture.
We use this floppy image to boot the virtual machine under testing. The boot
loader executes the kernel and the kernel initialises the environment for executing
the test-case. When the environment is fully initialised, we take a snapshot of
the state of the virtual machine (s). The snapshot includes the content of all
the registers of the CPU and the content of the physical memory. Subsequently,
we start the execution of the test-case and wait until it terminates, or a timeout
occurs. At this point we take a new snapshot of the state of the virtual machine
(s′E). We start the oracle and force its initial state to s. Thus, the oracle executes
immediately the test-case, in the same exact configuration in which we previously
executed the test-case in the virtual machine. When the execution terminates we

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines37

take a snapshot of the state of the machine (s′P). Finally, we compare s′E with
s′P . Any difference is a symptom that the virtual machine is not transparent and
consequently buggy.

4.3.2 Test-cases

Test-case generation is a key issue. The state space is prohibitively large; it is
essential to select test-cases that are able to exercise the largest class of behaviours
of the CPU and thus to increase the completeness of the testing. Moreover, when
testing CPU virtualizers, test-cases must be generated taking into account the
fact that emulation is used only for certain machine states and that it would be
completely worthless to test the behaviour of the virtualiser with test-cases that
are executed natively on the physical CPU. However, it is very difficult to predict
precisely which states are handled using emulation and which are not, since that
highly depends on the implementation of the virtual machine. The approach we
use to generate states for the testing is based on protocol-specific fuzzing: we
start with a state we believe significant for the testing and then we generate
automatically new states by varying some parameters of the initial state.

A test-case consists of a sequence of one or more instructions executed starting
from a well defined state s. A test-case can contain up to four blocks of in-
structions, each of which is executed in a different privilege level, or ring. Thus,
a block of instructions can be executed in system-mode (ring 0), in user-mode
(ring 3), or in any of the remaining two intermediate rings available on the Intel
x86 architecture. The test-case additionally defines which of these four blocks will
be executed as first by the kernel. If necessary, a block can include instructions
to switch to another ring and to execute the instructions of the corresponding
block.

Test-cases are not written manually but generated automatically from tem-
plates. Templates are manually written in assembly but can contain symbolic
operators that refer to symbols of the kernel or to generator functions that re-
turn a set of concrete values. In our test-case templates, symbolic operators are
written in uppercase and prefixed with the keyword KEF . Table 4.1 briefly sum-
marises some of the operators we currently support. Templates are compiled with
a special compiler we developed. The compiler pre-processes the assembly code
to replace symbolic operators with concrete ones and then assembles the result
(using the GNU Assembler [19]). When test-cases are compiled, the code located
in each execution ring is always extended to include an instruction to invoke a
particular software interrupt. As discussed in Section 4.3.3, this instruction is
used to notify that the execution of the test-case has been completed without
any exception. A single template can be compiled into multiple test-cases, each

38

Symbolic operator Description

KEF INTEGER(n) Generate a set of n-bit inte-
gers

KEF ITERATE(i1,...,in) Iterate over i1,. . . ,in

KEF BITMASK(n) Generate a n-bit bitmask

KEF PREFIX Generate different combina-
tions of certain instruction
prefixes

KEF RAND STR(n) Generate n random strings

KEF JUMP RING(n) Switch to ring n

KEF PT BASE Page table base address

KEF RING BASE(n) Base address of ring n

KEF RING CS(n) CS selector for ring n

Table 4.1: Examples of symbolic operators used in test-case templates

of which differs in the concrete values returned by the generator functions. Thus,
using templates and generator functions we can automatically test the behaviour
of the CPU in many different situations.

Figure 4.2 presents three sample test-case templates. Strictly speaking, each
template is an XML document. XML has been chosen to ease the writing. The
root of the document has a child node for each of the four privilege levels sup-
ported by the architecture. However, child nodes with no code can be omitted.
An attribute of the root node (start ring) controls in which privilege level the
execution begins. Figure 4.2(a) shows a template of a test-case to test whether
the emulated CPU is correctly decoding the sysenter instruction and correctly
interpreting its semantics. The KEF PREFIX symbolic operator refers to a genera-
tor function that returns different combination of instruction prefixes (e.g., rep,
lock). The template is compiled into multiple test-cases, each of which obfus-
cates the sysenter instruction by prepending a different combination of prefixes.
Indeed, according to the Intel x86 specification, certain combinations of prefixes
and sysenter are not allowed (e.g., lock sysenter). Since the sysenter in-
struction is a user-mode instruction, but its successful execution depends on the
existence of the appropriate syscall handler, we start with executing system-mode
(ring 0) code to register the handler, and then transfer the execution to user-mode
(ring 3). The KEF JUMP RING(3) symbolic operator is replaced with a code snip-
pet that transfers the execution to user-mode. Figure 4.2(b) shows a template
of a test-case to corrupt the page table and to observe how the CPU behaves
in such a situation. The KEF INTEGER(n) symbolic operator refers to a gener-
ator function that returns different n-bit integer values. Hence, each test-case
generated starting from this template will corrupt the page table in a different

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines39

<testcase start_ring="0">
<ring0>
// Register syscall handler
...
// Jump to ring3 code
KEF_JUMP_RING(3);

</ring0>

<ring3>
// Invoke syscall
mov $0x25, %eax;
KEF_PREFIX sysenter;

</ring3>
</testcase>

(a)

<testcase start_ring="0">
<ring0>
// Load flat data segment
...
// Calculate PTE address
movl KEF_RING_BASE(3), %eax;
...do some math on %eax...
addl KEF_PT_BASE, %eax;
// Flip some bits in the PTE
movl (%eax), %ebx;
btc KEF_INTEGER(5), %ebx;
movl %ebx, (%eax);
...
// Jump to ring3 code
KEF_JUMP_RING(3);
</ring0>

<ring3>
movb $0x0, 0x0;
</ring3>

</testcase>

(b)

<testcase randomize_ring="3" start_ring="0">
<ring0>
// Set AM bit in CR0
mov %cr0, %eax;
orl $0x40000, %eax;
mov %eax, %cr0;
// Jump to ring3 code
KEF_JUMP_RING(3);

</ring0>

<ring3>
// Enable AC bit in EFLAGS
...
// Perform unaligned memory acceses
jmp KEF_ITERATE(lab1, lab2, ...);
lab1: KEF_PREFIX movb $0x0, 0x1;
lab2: KEF_PREFIX fld 0x423;
...

</ring3>
</testcase>

(c)

Figure 4.2: Sample test-case templates: (a) sysenter with different prefixes; (b)
fuzzing of a page table entry; (c) non-aligned memory access with
alignment checks enabled.

way. The symbolic operators KEF RING BASE(3) and KEF PT BASE instead refer
respectively to the base address of the user-mode data segment and the base ad-
dress of the page table. The use of such operators renders templates completely
independent from changes in the KEmuFuzzer’s kernel. Finally, Figure 4.2(c)
shows a template of a test-case used to check whether the emulated CPU prop-
erly enforces alignment checking. Execution starts in system-mode, to enable
hardware-assisted alignment checks, and then switches to user-mode to perform
different types of non-aligned memory accesses. The KEF ITERATE symbolic op-
erator generates test-cases that perform different types of memory accesses (by
jumping to different instructions). Since Intel x86 specification says that align-
ment checking should be enforced only in ring 3 and only for a subset of the
instructions of the instruction set, the intent of the test-case is to test whether
the emulated CPU enforces alignment checking correctly (i.e., for the correct set
of instructions and only in user-mode). To this aim, we use the randomise ring

attribute of the root node to specify that an execution ring must be randomised
(i.e., different test-cases are generated, each of which executes the current ring
3 code in a different ring). In summary, this sample template will be compiled
in multiple test-cases: some of them will perform different types of non-aligned
memory accesses in ring 3, some others in 1, and so on.

It is worth pointing out that KEmuFuzzer’s kernel initialises the environment
always in the same way. Although all test-cases are executed starting from the
same initial state s, it is theoretically feasible to test the behaviour of the CPU
in any possible state. Indeed, it is possible to set the CPU in the desired state
by embedding the appropriate code directly into the test-case. That is exactly

40

GDT

..
.

TSS Desc. Ring 0

TSS Desc. Ring 3

TSS selector

TSS Ring 0

SS sel.
DS sel.
CS sel.

Test-case

Code seg.

Data seg.

Stack seg.

Task Ring 0 IDT

..
.

..
.

E
x
c
e
p
t
io

n
s

I
n
t
e
r
r
u
p
t
s

#DE

#DB

Int. gate #31

Int. gate #32

notify #DE exception

notify #DB exception

notify end of exec. with no except.

iret

Virtual Address Space

Page x, Offset y

Page Directory Page Table

Physical Address Space

Frame x, Offset y

Figure 4.3: Memory layout of the environment used to execute test-cases

what happens with the three test-case templates of Figure 4.2. The first one
registers a custom syscall handler, the second one alters the page table entry
that corresponds to the base address of the user-mode data segment, and the
third one enables alignment checking.

4.3.3 Kernel

KEmuFuzzer uses a custom kernel we developed, to bootstrap the environment
in which test-cases are executed. More precisely, the kernel is responsible for
initialising the CPU in the execution mode target of the testing (e.g., 32-bit
protected mode with paging enabled), for starting the execution of the test-case,
and for notifying the virtual machine when bootstrap is completed and when the
execution of the test-case is terminated. The kernel is optimised to minimise
bootstrap time and to minimise memory usage. Currently our kernel boots in
less than half a second and requires less than 4Mb of physical memory to run.

The kernel communicates with the virtual machine and with the oracle through
a specific hardware I/O port; we call this port the notification port. We use this
trick to request the virtual machine and the oracle to dump the current machine
state to a file. Further details about how this is done are given in Section 4.3.4
and 4.3.5.

Figure 4.3 shows the memory layout at the end of bootstrap and just before
the execution of a test-case. The following details about the kernel are specific
for initialising the Intel x86 CPU in 32-bit protected mode with paging enabled.
However, with minimal modifications the kernel can initialise the environment in
other modes of operation (e.g., virtual mode, long mode, protected mode with
physical address extension). The kernel starts by enabling protected mode and
configuring the Programmable Interrupt Controller (PIC). Subsequently, the ker-

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines41

nel initialises the Global Descriptor Table (GDT). For each of the four protection
rings we create a task, and for each task we create a segment, of 4Kb, to hold
simultaneously the code, the data, and the stack of the task. The stack occu-
pies the second half of the segment. The kernel uses segmentation to prevent a
test-case from accidentally corrupting its main memory. The kernel subsequently
configures and enables paging. The page directories and the page tables are ini-
tialised such that memory address translation is an identity function: the virtual
address a is translated to the physical address a. The reason for such a config-
uration is to simplify the analysis of the machine state. The dumps of the state
we produce include the content of the entire physical memory. Therefore, such a
page mapping allows us to inspect the virtual memory with no effort. After pag-
ing has been enabled, the kernel initialises the Interrupt Descriptor Table (IDT)
by registering special exception and interrupt handlers. Exception handlers write
a command to the notification port to signal the occurrence of an exception and
to request dump of the state; after the notification they halt the CPU. Interrupt
handlers instead immediately resume normal execution, by executing the iret

instruction. This approach guarantees a deterministic execution, because unpre-
dictable asynchronous interrupts do not alter the state of the machine. The kernel
also configures a special interrupt handler (interrupt 31) that is used to notify
the end of the execution of the test-case without any exception. Like exception
handlers, this interrupt handler writes a command to the notification port to
request a dump of the state and then halts the CPU. This handler is invoked
directly by test-cases. When test-cases are compiled, the compiler appends at
the end of the sequence of instructions of each ring an extra instruction to trigger
a software interrupt and invoke this special handler (see Section 4.3.2). After the
IDT has been configured, the kernel enables interrupts. After that, the kernel
writes a command to the notification port, to notify the end of the bootstrap and
to request a dump of the machine state. Finally, the kernel starts the execution
of the test-case, through a task switch.

As mentioned before, the test-case is executed into a separate task. It is worth
pointing out that, since the test-case can also contain additional initialisation
code, the memory layout of the environment can be further modified directly from
the test-case, thus allowing to test the virtual machine in virtually any possible
state. Even though segmentation is used to prevent access to sensitive memory
locations from within the test-case, system-mode instructions of the test-cases can
be used to remove segment limits, to grant access to all memory locations, and
subsequently to configure the CPU in the desired state. Our test-case compiler
provides a special symbolic operator for facilitating this operation.

The test-cases are embedded directly into the kernel: we create multiple copies
of the kernel and in each copy we embed a different test-case. The kernel’s

42

executable contains four placeholder sections, corresponding to the code segments
of the four rings (see Figure 4.3). We overwrite the content of these sections with
the code of the test-case. Moreover, we patch the instruction used to start the
execution of the test-case, to start executing in the desired ring.

4.3.4 CPU Emulators and Virtualizers

To execute a test-case in a virtual machine we simply boot it using the floppy
image containing the boot loader, the kernel and the test-case. This approach
works very well since all virtual machines we are aware of support booting from
a floppy. When bootstrap is completed and after test-case execution terminates,
the kernel alerts the virtual machine through the notification port. The virtual
machine must intercept the request and dump the current state to a file.

If the source code of the virtual machine is available, the addition of such a
functionality is quite simple. The approach we use, and suggest, is to register a
new virtual hardware device and to associate it with the I/O port used by the
kernel for notification. Typically, virtual machines provide an API to create new
virtual devices. When the kernel writes a command on the notification port, the
virtual machine suspends the execution of the guest and delivers the command
to the device. The device has direct, or indirect, access to the internal state of
the machine and can dump the state to a file. Obviously the complexity of this
task varies from one virtual machine to another. For example, BOCHS offers a
rich instrumentation API to intercept events (e.g., exceptions, interrupts, I/O)
and to inspect the state of the guest. On the other hand, QEMU and VirtualBox
do not provide an instrumentation API. Nevertheless, it is still quite easy to add
a new device driver and to dump the state of the CPU. The only precaution is
to ensure that the state of the guest visible from the device is in sync with the
effective state.

If the source code of the virtual machine is not available, the use of the debug-
ging interface of the virtual machine is the only viable alternative. We used this
approach with VMware. Kernel notification can be detected using breakpoints,
set on I/O instructions used for the notifications. The state of the guest can
instead be inspected and dumped using the appropriate commands of the debug-
ger. The drawback of this approach is that the debugging interface is typically
interactive and very slow. Moreover, the debugger might not expose completely
the internal state of the guest. In such a situation, the kernel must be modified
to store in memory the state of the registers that are not accessible from the
debugger.

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines43

4.3.5 Oracle

The ideal oracle is the physical CPU. We should perform the testing by either
booting and running the test-case on a real machine using a floppy or the network.
Unfortunately, this approach is not practical for two reasons. First, we need to
dump the state s′ resulting from the execution of the test-case to compare it with
the state obtained in the virtual machine. Practically speaking, that means that
the kernel used to bootstrap the environment and to execute the test-case must
be able to interact with a device (e.g., a disk or a network card) to dump the state
of the CPU. To do that, the kernel must include the appropriate device driver.
Second, test-cases are specifically crafted to exercise a large class of behaviours of
the CPU, including bringing it into invalid states to see how it reacts. Therefore,
some test-cases might render the CPU completely unusable. For example, the
processor might enter an infinite loop that prevents the kernel from regaining
the control of the execution, or the kernel might get corrupted and unable to
dump the state of the machine. In conclusion, the oracle based on the näıve
use of the physical CPU, besides requiring a much more complex kernel, is also
not suited for automatic testing with tens of thousands of test-cases: there exist
certain situations in which it is not possible to dump the state of the machine or
in which manual intervention is needed (e.g., to reset physically the CPU).

For these reasons, the oracle we use is based on a hardware-assisted virtual
machine. At first sight this choice might appear to contradict our initial claims
and our goal. After all, we are proposing to find bugs in a virtual machine using
another type of virtual machine. In the next paragraphs we will show that this ap-
proach is instead very easy to implement, and that specific assumptions about the
peculiar type of guest we need to execute allow us to develop a hardware-assisted
virtual machine which is functionally equivalent to the ideal oracle previously
described.

Our oracle leverages Intel technology for hardware assisted virtualisation, namely
VT-x [43]. By using hardware-assisted virtualisation, we can observe the execu-
tion of the test-case on the physical CPU without losing the ability to interrupt
the execution and to inspect the state of the CPU at any time, even when it en-
ters invalid states. Intel VT-x technology transforms Intel x86 (and x86-64) ISA
into something much more virtualisation-friendly than a ISA that meets Popek
and Goldberg minimal requirement for efficient virtualisation. Besides not having
any critical instruction, VT-x allows to configure dynamically which instructions
must trap and in which conditions. Furthermore, VT-x includes a new mode of
operation (VMX), that essentially adds new higher privilege rings for running
the virtual machine monitor, that is, the software component the host uses to
manage guests. The introduction of these new rings allows a clear separation
between host and guests, which is not invasive for guests. Indeed, system code

44

of the guest is executed natively on the CPU, in system-mode. Nevertheless, the
host still needs to assume the control of the guest in certain situations (e.g., to
redirect I/O operations to devices emulated via software). Clearly, the challenge
is to develop a minimalistic software component for the host, that is sufficiently
sophisticated to execute a test-case and to hold complete control of the execution,
but that is also simple enough to be verifiable.

The aim of the oracle is solely to execute a particular test-case in a particular
state of the CPU. In light of that, the virtual machine monitor can be drastically
simplified. Instead of booting the kernel in the oracle, we can initialise manually
the state of the oracle by loading s, the state of the virtual machine at the end
of the bootstrap and that precedes the execution of the test-case. This approach
has two major benefits. First, by initialising the state of the oracle to s we have
the guarantee that the state obtained at the end of the execution of the test-
case is not polluted by some differences introduced during bootstrap. Second,
the bootstrap requires to execute real-mode instructions (that require emulation
even with VT-x) and to communicate with I/O devices (e.g., to initialise them
and to load the kernel). By avoiding to bootstrap the execution environment in
the oracle, the complexity of the virtual machine monitor reduces drastically. In
fact, the virtual machine monitor does not need to emulate real-mode instructions
and does not need to emulate any I/O device.

Our oracle is based on a stripped down version of KVM (Kernel-based Virtual
Machine) [28], a virtual machine monitor (VMM) for GNU/Linux. KVM archi-
tecture is very simple because it runs only on processors with hardware support
for virtualisation. We have further simplified its architecture making specific as-
sumptions about the peculiar type of guest we need to run. KVM exposes to
the programmer an interface (/dev/kvm) to create and manage virtual machines.
More precisely, this interface allows to read and write the values of all the reg-
isters of the CPU, including FPU and control registers, and to read and write
the physical memory of the guest. Using this interface we can create a virtual
machine that is already initialised and ready to execute a test-case. Roughly
speaking, we can create a virtual machine and initialise it to the state (s) preced-
ing the execution of the test-case. Thus, when we start the virtual machine, the
test-case is immediately executed. KVM also allows to intercept and emulate I/O
operations. Our stripped down version of KVM simply terminates the execution
of the guest at the first I/O operation. This approach has two advantages. First,
we can easily identify and ignore test-cases whose final state might be polluted
by the interaction with devices external to the CPU. Second, the component for
I/O emulation is by far the most complex component of the virtual machine mon-
itor. By interrupting a test-case at the first I/O operation we have the guarantee
that a potential defect in the component for I/O emulation will not influence the

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines45

Oracle VMVMM controller

GNU/Linux

/dev/kvm

KEmuFuzzer
Kernel

Ring 3

Ring 2

Ring 1

Ring 0

Test-case

Minimalistic
KVM-based VMM

Non-root mode

Root mode

User mode

System mode

Figure 4.4: Oracle based on VT-x

results of our oracle.

Figure 4.4 shows the architecture of our oracle based on hardware-assisted
virtualisation. The core of the oracle is a small virtual machine monitor (VMM),
based on KVM, that runs in root-mode, the new mode introduced in VT-x to run
virtual machines without segregating guests to user-mode. This component is
responsible for running and controlling the guest and can intercept certain guest’s
operations. As described in the previous paragraph, our virtual machine monitor
minimises the number of guest’s operations that are intercepted. The oracle also
consists in a user-space controller that is run on the host and that communicates
with the virtual machine monitor. The controller is used to instantiate virtual
machines and to dump the state of the guest. Clearly, we cannot formally prove
that our oracle is equivalent to the ideal one. However, we have thoroughly
inspected the code of our minimalistic virtual machine monitor, and we have
verified that the defects we found during the evaluation are not imputable to
defects in the oracle.

4.4 Evaluation

We used KEmuFuzzer to test four virtual machines: two CPU emulators (BOCHS
and QEMU) and two CPU virtualizers (VMware and VirtualBox). None of the
virtual machines was found to be completely transparent to guests.

46

Category BOCHS QEMU VirtualBox VMware

Description Templ. Test-cases Templ. Test-cases Templ. Test-cases Templ. Test-cases Templ. Test-cases

Privileged instructions 9 161 1 1 5 45 1 1 1 1

Control registers 7 181 1 2 6 85 5 75 1 1

Memory management 25 418 7 17 12 67 10 44 13 45

Interrupts/exceptions 9 39 2 2 7 17 5 5 0 0

Control transfer 4 45 1 6 3 35 3 35 3 35

FPU 3 3 0 0 0 0 0 0 0 0

Others 9 44 2 2 3 14 2 2 0 0

Random 1 1024 1 45 1 505 1 437 1 59

CPU-assisted 2703 2703 7 7 302 302 291 291 51 51

Total 2770 4618 22 82 339 1070 318 890 70 192

Table 4.2: Results of the evaluation

4.4.1 Experimental Setup

The evaluation of our testing methodology was performed using an Intel Core2
Duo (3.00GHz) machine, running Debian GNU/Linux, with kernel 2.6.31 (64-
bit version). The physical processor supported the following features: MMX,
SSE, SSE2, SSE3, SMX, and VT-x. We tested the following versions of the
virtual machines: BOCHS CVS (7th October 2009), QEMU 0.11.0, VirtualBox
OSE 3.0.8, and VMware Workstation 7.0. For the two CPU virtualizers, we
disabled the support for hardware-assisted virtualisation since our goal was to
test traditional CPU virtualizers that do not leverage such technology.

4.4.2 Test-cases

We manually wrote 67 test-case templates, that were compiled into 1915 test-
cases. The number of test-cases generated from each template depended on the
type and number of symbolic operators used in the template. We roughly clas-
sified the test-case templates in the categories shown in Table 4.2. Templates
in the “privileged instructions” category consist in privileged instructions that
are executed in multiple privilege levels, usually with different combinations of
prefixes. The intent of this class of test-cases was to test whether the CPU of the
virtual machine implements instruction decoding and privilege checks correctly.
The test-case templates belonging to the “control registers” category manipulate
CPU control registers (e.g., cr0 and cr4) to alter the execution mode of the CPU
and some reserved bits. A significant percentage of the hand-written test-case
templates instead belong to the “memory management” category. These test-
cases alter the configuration of several memory-management structures (e.g., page
tables, segment descriptors) to test how the CPU of the virtual machine responds
to abnormal configuration of the memory management unit. The “control trans-
fers” category includes test-cases that modify the execution flow through control

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines47

transfer instructions or privilege switches. The “FPU ” category encompasses
test-cases that affect the operating mode of the floating-point unit (e.g., wait

and emms). We intentionally did not test general-purpose floating-point instruc-
tions, as CPU virtualizers typically execute them natively. The category called
“random” includes a template to generate sequences of random instructions and
to execute them in system-mode. We also wrote other types of test-cases that do
not fit any of the aforementioned categories. These test-cases are included in the
category called “others”.

We extended the set of manually-written templates with other automatically
generated templates. We re-used the same test-cases generated with the method
introduced in Chapter 3 called “CPU-assisted test-case generation” that covers
the large majority of the instruction set, while minimising redundancy. Each of
the templates generated with this approach executed a different instruction, in
system-mode.

4.4.3 Experimental Results

Table 4.2 shows the results of our evaluation. Table 4.3 instead shows the av-
erage test-case execution time and the timeout on test-case execution time. For
each virtual machine, Table 4.2 reports the number of test-case templates and
the number of compiled test-cases for which we observed a non-transparent be-
haviour. The numbers in the table witness that our initial claim, that complete
transparency to guests is difficult to achieve, was correct. Indeed, no virtual ma-
chine was found to be completely transparent and thus free of defects. Moreover,
as described later, the results of the evaluation show that, by extending the test-
ing to system-mode, we are able to detect a broader class of defects that would
have not been detected with sole user-mode testing. The numbers in the table
also show the effectiveness of the protocol-specific fuzzing approach we used to
generate test-cases. In many cases, only few of the test-cases generated from the
same template triggered a defect. It is worth pointing out that the gravity of
the defects we found varies from case to case. Some of the defects we found are
very serious. Others instead should not negatively affect the execution of popular
guests (e.g., GNU/Linux and Microsoft Windows); however, less popular guests
might fail to work properly. Few differences we found are instead not directly
imputable to bugs in the virtual machine, but rather to “undefined” corner-case
behaviours (e.g., the Intel x86 specification does not define the value of some
status flags for certain arithmetical and logical operations). Nevertheless, guests
could still rely on such undefined, but deterministic, behaviours to detect if they
are executed in a real or in a virtual machine [46, 52].

48

In the following paragraphs we briefly describe the defects we found in the
tested software. In several situations we noticed non-transparent behaviours,
regardless of the instructions being executed. As an example, some virtual ma-
chines never update GDT entries when accessed; others, always present some
discrepancies in the state of the FPU. We decided to manually exclude these
omnipresent differences from the tally to have more significant results. We are
currently in touch with the developers; some of the defects we have found have
already been acknowledged and patched.

BOCHS

The emulator is fairly perfect. Indeed, the authors stated that each release is
preceded by a testing cycle using a methodology very similar to the one we pro-
posed. Nevertheless, we were able to found some unknown defects. For example,
we found that the instructions used for fast system call invocation (e.g., sysenter
and sysexit) corrupt an attribute (i.e., the type) of the code segment. Accord-
ing to the Intel x86 manual, when one of these instructions is executed, the type
of the code segment should be set to “read/write” and “accessed”. BOCHS er-
roneously marked the segment as non accessed. The defect was confirmed by the
authors, and corrected in the latest versions of the emulator. The behaviour of
the bswap instruction, when it references a 16-bit register, is also non transparent.
The Intel reference states the behaviour of the instruction is undefined when it
is executed with 16-bit operands. This is an artifact of our testing methodology
and cannot be properly considered a real defect of the emulator.

QEMU

We found several defects in QEMU. The most serious one causes a crash of the
emulator. More precisely, we found that the emulator is not able to handle
hardware breakpoints set on instructions in a memory segments with non-null
base address. When such a breakpoint is hit, the emulator crashes. Another
debug-related defect we found is that the emulator never sets the “resume flag”
on exception. Since this flag is used to temporarily disable debug exceptions from
being generated for instruction breakpoints, the emulator could enter an infinite
loop. We also found that the emulator never marks GDT entries as accessed,
raises the wrong exception for memory accesses beyond segment limits, and it
does not support hardware-assisted alignment checking. Finally, we found that
some general purpose instructions are not properly decoded and that several
illegal combinations of prefixes and system-mode opcodes are considered valid
and executed.

Chapter 4. KEmuFuzzer: a methodology for testing System Virtual Machines49

BOCHS1 QEMU1 VirtualBox1 VMware2 Oracle1

3.01s 0.74s 2.47s 25.78s 0.83s

Table 4.3: Average test-case execution time (timeout on test-case execution time
was: 10s1 and 40s2)

VirtualBox

VirtualBox handles critical instructions using both emulation and scanning and
patching. Scanning and patching is used to virtualise the execution of code frag-
ments that are frequently emulated. VirtualBox’s emulation module is based on
QEMU. During the testing, VirtualBox never entered native execution mode. We
inspected the source code and found that native execution mode was inhibited by
the configuration of our execution environment. We modified our kernel to meet
this requirement and came across another and more serious problem: VirtualBox
crashed on any attempt to enter native execution mode. The crash is obviously
a symptom of lack of transparency. We speculate that VirtualBox makes specific
assumptions about the guest and that our guest violates them. We decided to
use the original kernel for the testing. In conclusion all the defects we found
in VirtualBox are real and a subset of the defects we found in QEMU. However,
some of them might not be reproducible with guests that do not trigger the earlier
described bug.

VMware

Like BOCHS, VMware presented just few defects. In multiple test-cases we
observed that the ret and retn instructions, used to return from function calls,
are not properly emulated. Indeed, the virtual machine corrupts the state of
the guest if an exception is raised during the return from a function. This may
seem a very serious defect, however, exceptions must be thrown by the execution
of ret or retn instruction for this bug to be exposed. This can happen if the
stack is invalid or the instruction pointer taken from the stack points to an
invalid location. Fact is real programs hardly behave so bad. We also found that
accessed entries of the GDT and accessed entries of the page table are not marked
as such.

50

4.5 Discussion

As we described in Section 4.3.5, the oracle we use in KEmuFuzzer is based on a
stripped down version of KVM. During the development, we manually inspected
the code of KVM to verify its transparency to guests. Quite surprisingly, we
found several defects. As an example, if the execution an I/O instruction raises
an exception, KVM still updates the EIP register, while this register is left un-
changed by the physical processor. Even if hardware-assisted virtualisation ease
the development of CPU virtualizers, the tasks left to the virtual machine moni-
tor are not trivial. All the defects we found in KVM have been confirmed by the
developers, and many of them have now been patched in the upstream version.

In the future, we will replace the oracle based on KVM with a minimalistic
virtual machine monitor developed from scratch. In this way, we will minimise
the possibility of undetected defects in the oracle.

5 Returning to randomised lib(c)

In this chapter we present a new attack to bypass W⊕X and ASLR. The state-
of-the-art attack against this combination of protections is based on brute-force,
while ours is based on the leakage of sensitive information about the memory
layout of the process. Using our attack an attacker can exploit the majority of
programs vulnerable to stack-based buffer overflows surgically, i.e., in a single
attempt. We also propose a new effective protection scheme which does not
require recompilation, and introduces only a minimal overhead.

5.1 Introduction

ASLR and W⊕X are two widely adopted protection schemes against threats like
memory error exploits, aiming to prevent arbitrary code execution. These pro-
tection schemes, combined together, are believed to be effective for avoiding such
threats to happen. With W⊕X, code injection isn’t possible anymore for data is
flagged as not executable. With ASLR, malicious users are deprived of essential
information they need to successfully exploit memory error vulnerabilities.

These premises together with the wide adoption of the aforementioned pro-
tection techniques by most modern Operating Systems, suggest those schemes
provide a good level of security.

It is well-known that randomization is an all-or-nothing solution. If we leave
even a single segment unrandomized, then attacks can be easily mounted; little
is gained by randomizing some sections and not others [32]. In this chapter we
convert theoretical knowledge that such attacks are feasible into a practical one.
We show those protection schemes provide only a false-sense-of-security. More
precisely, ASLR, if applied partially, can enable exploitation of stack-based buffer
overflow vulnerabilities whenever the non-randomised portion of the binary under
attack leaks some information on the memory layout of the attacked process.

Current implementation of ASLR in Unix-like systems, leave some sections of
elf binary executables not randomised, in particular the code section and the
Global Offset Table (GOT) are loaded at a fixed address.

Data present in those sections can be abused to exploit reliably, i.e. in a single
shot, programs vulnerable to stack-based buffer overflows. The code section can

51

52

1 void sanitize(char *str, int len) {

2 char newstr[128];

3 int newlen = 0;

4

5 for (int i = 0; i < len; i++) {

6 if (str[i] != ...)

7 newstr[newlen++] = str[i];

8 }

9 ...

10 }

Figure 5.1: Sample vulnerable program

be abused by recycling existing code through the adoption of techniques like
return-oriented programming.

Data present in the GOT, can be used for computing the address of useful
functions belonging to the libc, thus enabling an attacker to mount a return-to-
libc attack.

This chapter makes the following contributions:

• A new approach to exploit stack-based buffer overflows in programs pro-
tected with both W⊕X and ASLR. Our attack is an information leakage
attack that exploits information about the random base address at which
a library is loaded and can subvert the execution of a vulnerable program
and perform a return-to-lib(c) with surgical precision, i.e., in a single shot.

• A new protection that is effective at stopping our attack, does not require
recompilation of any executable, and introduces only negligible overhead.

5.2 Background

Figure 5.1 shows a sample program vulnerable to a traditional stack-based over-
flow. An attacker can exploit the buffer overflow to overwrite the stack with
arbitrary data, thus forcing the program to execute arbitrary code. Modern op-
erating systems mitigate this class of attacks with W⊕X, a policy that prevents
memory pages containing executable data from being writable and vice versa.
With such a policy in place, the only way for an attacker to execute arbitrary
code is to mount a return-to-lib(c) attack [14], which consists of overwriting the
return address of the vulnerable function and the following words of the stack

Chapter 5. Returning to randomised lib(c) 53

deadbeef

address of "sh"
deadbeef

address of system()

deadbeef
deadbeef
deadbeef

S
tack

g
row

th
→

Saved EIP →
Saved EBP →

Local variable 1 →
Local variable 2 →

Figure 5.2: Stack of the vulnerable process during a return-to-libc attack

with the address of a lib(c) function (e.g., system) and the arguments to pass to
this function (e.g., the address of the string "sh"). Figure 5.2 shows the stack of
the vulnerable process after the overflow, prepared to mount the return-to-lib(c)
attack.

When address-space layout randomisation (ASLR) is used in tandem with
W⊕X, the attack becomes much more difficult. At every execution, the stack, the
heap, and shared libraries (such as libc), are loaded at different random addresses.
Consequently the attacker does not know the address of the function to return
to. Nevertheless, Shacham et al. demonstrated that return-to-lib(c) attacks are
still feasible in systems protected with address- space layout randomisation using
brute force [55]. The expected number of attempts for the brute force attack to
succeed is 2n, where n is the number of bits of randomness in the address-space.
As an example, on GNU/Linux on IA-32 (where n is at most 16) 65,536 attempts
are sufficient to successfully mount the attack.

5.3 Attack

5.3.1 Overview of the attack

Our attack against address-space layout randomisation successfully returns to
lib(c) in a single attempt, while Shacham et al.’s attack instead requires 2n at-
tempts (where n is the number of bits of the address-space subject to randomisa-
tion). We propose an information leakage attack. Contrarily to the information
leakage attack suggested by Durden [16], ours requires neither information about
the current layout of the process, nor the ability to access arbitrary stack elements
(e.g., to retrieve the address of main()). Instead, our attack exploits information
about the base address of the lib(c), which is directly available in the memory
of the process. The attack is built on an exploit technique [27, 54], that was
previously thought to be inapplicable with ASLR. Our idea is to combine few

54

Text

RX

PLTRX

GOTRW

0x8048000

0x8070000

V
u
ln
er
ab
le

p
ro
ce
ss

Text

RXli
b
c

0xb7f50000

0xb7f80000

805b127 call 0x805f7d8

805c028 call 0x805f7e8

Text

<open>:

80600a4 0xb7f53204

<opendir>:

80600a8 0xb753408

GOT (Global Offset Table)

<open>:

805f7d8 jmp *0x80600a4

<opendir>:

805f7e8 jmp *0x80600a8

PLT (Procedure Linkage Table)

<open>:

b7f53204 push %ebp

<opendir>:

b7f53408 push %ebp

Text (libc)

1

2

3

Figure 5.3: Layout of a sample process and overview of the mechanism used to
invoke functions residing in shared libraries

code fragments that, despite ASLR, are available at absolute fixed addresses in
the memory of the vulnerable process and to use these fragments to discover the
base address of a dynamic library. Once the library has been de-randomised, we
can return to any of its functions.

Figure 5.3 shows the layout in memory of our sample vulnerable program1.
To ease the presentation, the layout is simplified: the stack and the heap are
omitted and we assume that dynamic binding between the executable and the
shared library has already been performed. The vulnerable program is loaded at
address 0x8048000. We assume the vulnerable program is compiled to be position
dependent (that is the default compiler configuration) and consequently that its
base address is fixed. This assumption is well-grounded because supported by
empirical evidence: the large majority of executables found in modern UNIX
distributions are not position independent (about 92.9%), only shared libraries
are. The lib(c) instead is loaded at address 0xb7f50000, but the address varies
from execution to execution. The figure also shows the mechanism used to invoke
the functions exported by the shared library, which is essentially an indirect
jump table [31]. When the executable is loaded in memory, the linker transfers
in memory all the requested libraries and then performs the relocation. The
executable contains two special data structures (or sections) used specifically for
the purpose of linking the executable with shared objects: the Global Offset
Table (GOT) and the Procedure Linkage Table (PLT). The former is an array
containing the address of the various library functions used by the program. The
latter is an array of jump stubs. The ith PLT entry contains a jump instruction

1All the examples are specific for the x86 architecture, GNU/Linux (2.6.x), and ELF-32 exe-
cutables. We use the AT&T assembly syntax.

Chapter 5. Returning to randomised lib(c) 55

08050948

08051946

080491a1

08049167

08055453

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

Chunk 2 →
Chunk 3 →

eax →
edx →

8050948 . . .

8051946 mov 0x64(%eax),%edx
805194b mov %ebx,%eax
805194d ret

8055453 pop %eax

8055454 pop %edx
8055455 ret

C
h
u
n
k
1

C
h
u
n
k
2

3

1

2

S
tack

g
ro
w
th

→

Text

Figure 5.4: Sample stack configuration with three gadgets, to chain the code
chunks available in the vulnerable process

that jumps to the address stored in the ith GOT entry. The linker, at load time
(assuming preemptive binding), fills the GOT with the addresses of the imported
functions, updated to be consistent with the current base address of the library.
The separation between PLT and GOT is for improved security: the former
is executable but not writable, the latter is writable but not executable, thus
preventing an attacker from writing and executing arbitrary code. For example,
to invoke the libc function open our sample program performs a function call
(instruction 0x805b127), but instead of invoking a normal function, it invokes
the stub for open in the PLT (located at address 0x805f7d8). In turn, the stub
of the PLT jumps to the code of the function inside the libc. The jump is indirect
and the target of the jump is the address stored in the GOT entry of the open

function (at address 0x80600a4). In summary, through the call and the indirect
jump the execution flows to open in the libc (in our sample process, the absolute
address of open is 0xb7f53204).

The knowledge of the absolute address of a single function exported by the
lib(c) is sufficient to mount a successful attack, enabling any function in the
library (including those not exported) to be invoked. Our attack exploits the
information found in the GOT of the process to calculate the base address of
the library, calculate the absolute address of an arbitrary function of the library,
and subsequently invoke that function. Let offset(s) be a function that computes
the virtual offset, relative to the base address of the library, of the symbol s. It
is worth noting that the virtual offset can be computed off-line from the library
file and that the offset is constant. To ease the presentation, we use open to
denote any function used by the attacker to de-randomise the library, and system

to denote any function whose absolute address the attacker wants to compute.
Given the absolute address of a library function, the base address of the library
(libc) can be computed as follows:

libc = open− offset(open)

56

Similarly, the absolute address of any function of the library can be computed as
follows:

system = open− offset(open) + offset(system)

Even though the math is trivial, it is very complex to perform in our context.
Indeed, despite the stack overflow vulnerability, we cannot inject and execute
our own code because the stack and all other data pages are not executable.
A solution to overcome this limitation is to borrow code chunks, that is, to use
code already available in the executable section of the process [27, 54]. Prac-
tically speaking, a code chunk is a sequence of bytes representing a sequence
of one or more valid instructions that is terminated by a ret instruction. Al-
though code chunks available are typically very simple and short, they can be
combined, using return-oriented programming, by constructing powerful gadgets,
i.e., short blocks placed on the stack that chain several code chunks together
and that perform a predetermined computation [54]. An example of a code
chunk is the string 8b 50 64 c3, corresponding to the sequence of instructions
mov 0x64(%eax),%edx; ret. The ret instruction ending each code chunk allows
the construction of gadgets that link multiple chunks together. Figure 5.4 shows
a sample stack configuration containing two gadgets that combine a 3-byte code
chunk (the sequence of instructions pop %eax; pop %edx; ret) with another
one, to read the content of arbitrary memory locations. During the overflow,
the stack frames of the vulnerable function and the callers are overwritten with
gadgets (see Figure 5.4). The first gadget starts exactly where the return address
of the vulnerable function was stored before the overflow. It is composed of three
double-words: the address of the first code chunk (0x08055453), and two integers
(0x8049167 and 0x80491a1) that will be consumed during the execution of the
code chunk. When the vulnerable function returns, the first code chunk is exe-
cuted, and its execution results in the initialisation of the two registers (i.e., eax
and edx) with the values specified in the gadget (the second and third double-
words of the gadget). The second gadget, being stored adjacently to the first one,
causes the execution to flow from the first to the second code chunk. Indeed the
ret instruction terminating the first code chunk references the double-word be-
longing to the subsequent gadget and representing the start address of the second
chunk (0x08051946). The second code chunk reads the content of the memory
location pointed by eax and stores the result in edx. Additional operations could
be chained to perform more complex computations by writing other gadgets to
the stack during the overflow.

The x86 architecture has a very dense and rich instruction set, instructions
have variable length and do not need to be aligned. Therefore, code chunks are
typically very frequent. However, those usable by an attacker are just a few. The
numerous code chunks available in libc and other libraries cannot be used because

Chapter 5. Returning to randomised lib(c) 57

08051173

deadbeef

08051240

deadbeef

0805a2e0

08052341

deadbeef

08053873

deadbeef

00005124

08054126

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

offset(system) − offset(open) →

got(open)− 0x5dc4 →

Chunk 2 →

Chunk 3 →

Chunk 4 →

Chunk 5 →
8051173 jmp *%eax

8051240 add 0x5dc4(%ebx),%eax

8051246 pop %edi
8051247 ret

8052341 pop %ebx

8052342 pop %ebp
8052343 ret

8053873 mov %edi,%eax

8053875 pop %esi
8053876 ret

8054126 pop %edi

8054127 pop %ebp
8054128 ret

C
h
u
n
k
1

C
h
u
n
k
2

C
h
u
n
k
3

C
h
u
n
k
4

C
h
u
n
k
5

1

2

3

4

5

S
tack

g
ro
w
th

→

Text

Figure 5.5: Sample stack configuration for the GOT dereferencing attack, where
the address of system is assumed to be 0xb7f58328 (instructions
and elements of the stack irrelevant for the attack are shaded).

of ASLR. As the executable is position dependent, only a few constant-address
chunks in the code section can be used.

5.3.2 Details of the attack

Our attack uses the code chunks available in the code section of the vulnerable
process to determine the base address of the lib(c), and uses this information to
execute any function of the library. More precisely, our attack works as follows.

1. Identify the code chunks available in the vulnerable process.

2. Combine these code chunks to retrieve from the GOT of the vulnerable
process the absolute address of a function of the lib(c).

3. Compute, again using the available code chunks, the absolute address of
the function of the library we want to invoke.

4. Transfer the control of the execution to the latter function.

We present two variants of the attack. The first one is a straightforward appli-
cation of the four steps described above. The second one has been developed to
operate in situations where the first variant cannot, because the required code
chunks are not available. The second variant indeed uses more common code
chunks that allow to modify any entry of the GOT, without reading it explicitly.

58

Attack 1 – GOT dereferencing

The first attack combines gadgets to read the absolute address of any lib(c)
function (e.g., open) from the GOT of the process, uses this address to compute
the absolute address of another function of the library (e.g., system), and jumps
to the address just computed. To do that we need the following gadgets: a
load, an addition, and an indirect control transfer. Each of these gadgets can be
obtained by combining one or more code chunks available in the code section of
the vulnerable program. The x86 architecture facilitates the attack because it
can perform complex tasks, such as a load and an arithmetic operation, with a
single instruction. Therefore, the number of code chunks required to mount the
attack is very small.

An example of a code chunk that constitutes one of the building blocks of our
attack is the sequence of bytes 03 83 c4 5d 00 00 5f c3, encoding the instructions
add 0x5dc4(%ebx),%eax; pop %edi; ret. To turn such a code chunk into a
dangerous gadget, it is sufficient to properly initialise the registers eax and ebx.
Indeed, a proper configuration of the two registers enables to load the absolute
address of open, and to compute the address of system. Let got(s) be the address
of the GOT entry of the symbol s. Like for the virtual offset of a symbol, the
addresses of the various GOT entries of the program are constant, and can be
computed off-line from the program file. The assignment to the two registers
necessary to compute the absolute address of system is:

eax = offset(system)− offset(open)
ebx = got(open)− 0x5dc4

With this register configuration the instruction loads from the GOT the absolute
address of open (the −0x5dc4 delta is necessary because the instruction loads the
data at address ebx + 0x5dc4) and sums it to the offset stored in eax. The result
is saved in eax, and corresponds to the absolute address of system. To complete
the attack, the attacker just needs a code chunk that transfers the execution to
the address in eax. For example, the instruction jmp *%eax can be used for this
purpose.

Figure 5.5 shows the stack of the sample vulnerable process during the attack
and illustrates how the various code chunks are combined in gadgets by the
attacker to perform the exploit. Overall, during the attack, the stack contains
five different gadgets. The number can vary slightly, depending on the type
of code chunks available in the vulnerable program2. The first code chunk (at
address 0x8054126) pops two double-words from the stack and stores them in

2The gadgets used to illustrate the attack resembles the ones more common on GNU/Linux
(x86) systems.

Chapter 5. Returning to randomised lib(c) 59

0805f7d8

08052313

deadbeef

deadbeef

08057ccc

08053123

deadbeef

00005124

08054341

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

Chunk 2 →

Chunk 3 →
PLT of open() →

got(open)− 0x83d8 →

offset(system) − offset(open) →

8052313 add %eax,0x83d8(%ebx)
8052319 ret

8053123 mov %ebx,%eax

8053125 pop %ebx

8053126 pop %esi

8053127 pop %ebp
8053128 ret

8054341 pop %ebx

8054342 pop %ebp
8052343 ret

C
h
u
n
k
1

C
h
u
n
k
2

C
h
u
n
k
3

1

2

3

S
tack

g
ro
w
th

→

Text

Figure 5.6: Sample stack configuration for the GOT overwriting attack

edi and ebp respectively. The attacker uses the first gadget to initialize edi with
the distance between system and open. The register ebp is irrelevant for the
attack and its initialisation is just a side effect of the code chunk. Indeed, the
code chunk resembles a standard function epilogue, which restores callee saved
registers. The ret instruction terminating the first code chunk triggers the second
gadget, stored in the stack right above the element previously popped into ebp.
The gadget uses the second code chunk (at address 0x8053873) to copy the value
of edi to eax. This operation is needed because we are assuming that no code
chunks exists to directly initialise eax. Again, the pop instruction found in the
chunk is a side effect. The third chunk (at address 0x8052341) is used by the
attacker to initialise ebx with the address of the GOT entry of open. The code
fragment pops the value from the stack and saves in ebx. After the execution of
the first three gadgets both eax and ebx are initialised as described earlier and
the attacker has completed the preparation of the context for the execution of
the gadget that computes the desired absolute address of system. The fourth
gadget is used for the computation and to store the address in eax, and the fifth
gadget is used to jump at the beginning of the system function, completing the
attack.

Attack 2 – GOT overwriting

The second attack overwrites an entry of the GOT (e.g., the entry of open) with
the address of another library function (e.g., the address of system), and transfers
control to the selected function through the modified GOT entry. The attack is
possible because, in the default setup, binding is performed lazily, and the GOT
must be filled on demand. Hence, it must be writable.

The attacker needs the following gadgets: a load, an addition, a store, and an
indirect control transfer (with a memory operand). Although apparently more
gadgets are needed to perform this variant of the attack than to perform the

60

previous one, in practice the first three operations can be performed using a
single machine instruction; that is, an arithmetic operation with a destination
memory operand, such as add %eax,0x83d8(%ebx). This kind of code chunk is
increasingly frequent in executables, relative to the type of chunk on which the
GOT dereferencing attack is based. Furthermore, no particular control transfer
instruction is requested to invoke the chosen library function as the PLT stub of
the function whose GOT entry has been modified can be used for the attacker’s
purpose.

Figure 5.6 shows the stack of the sample vulnerable process during the attack,
and illustrates how the various code chunks are combined in gadgets by the
attacker to exploit the vulnerability. In total the attacker combines three gadgets,
two of which perform two operations instead of a single one. The return address
of the vulnerable function is overwritten with the address of the first gadget and
the previous double-word in the stack contains the distance between system and
open. The first gadget (using the code chunk at address 0x8054341) initialises
the value of ebx with the distance stored in the stack. The second gadget (using
the chunk at 0x8053123) copies the value from ebx to eax and then initialises
ebx with the address of the GOT entry of open that will be overwritten. The
third gadget (using the chunk at 0x8052313) computes the absolute address of
system, as in the first attack, but with the operands in the inverse order, such
that the computed address is stored directly in the dereferenced entry of the
GOT. Finally, the ret instruction of the gadget is used to return directly to the
PLT entry of open, in order to use its jump stub to invoke the function through
the GOT.

5.4 Attack mitigation

This section presents various protections mechanisms proposed in literature, and
discusses their effectiveness at preventing our attack, when used in combination
with W⊕X and ASLR. Furthermore, this section presents a new protection that
can be used to block both variants of our attack.

5.4.1 Preventing unsafe accesses to GOT

Our attack is not possible on position independent executables (i.e. PIE). How-
ever, this feature is not yet widely adopted by modern UNIX distribution, but the
motivations for such a choice are not clear (numbers are given in Section 5.5).
We speculate that vendors are afraid of the performance penalties PIE could
introduce and are also not aware of its real importance. Although we strongly
encourage vendors to move to position independent executables, we propose a new

Chapter 5. Returning to randomised lib(c) 61

GOT deref. GOT overw. Requires recomp.

W⊕X and ASLR − − No
Periodic re-randomization [5] − − Yes
GOT randomisation [65] − − No
GOT read-only [19] − X No
PIE [62] X X Yes
Self-randomisation [6] X X Yes
Encrypted GOT X X No

Table 5.1: Comparison of existing protections with respect to our attack and to
the new proposed protection (X denotes that the defence technique
prevents the attack)

runtime solution that, being applicable without recompilation, can be used dur-
ing the transition to PIE-enabled distributions and on operating systems where
PIE is not yet available, but ASLR is (e.g., OpenBSD).

Our solution is inspired by the randomised GOT protection proposed by Xu
et al. [65], and relies on encrypting the content of the GOT. The idea is to en-
crypt GOT entries, to prevent all but legitimate accesses. With the exception
of the accesses performed by the dynamic linker to bind the executable with the
shared libraries, all further accesses to the GOT are reads and occur only from
the PLT (see Figure 5.3). Therefore, besides the linker, only the accesses origi-
nating from the PLT should be considered legitimate and authorised to access to
unencrypted content of the GOT and to transfer the execution to the functions
in shared libraries. To ease the presentation we assume preemptive binding (i.e.,
LD BIND NOW is set). In such a situation all legitimate accesses to the GOT orig-
inate from the PLT. However, the approach we are proposing could be extended
to work also with lazy binding, by customising the dynamic linker.

In more detail, our scheme operates as follows. We encrypt all the entries of the
GOT such that attacker’s attempts to read the content of the GOT to guess the
random base address of the library fail; without the decryption key, the retrieved
content of the GOT is meaningless. Similarly, attempts to modify the GOT fail as
well. Obviously, encryption interferes with the correct execution of the program.
For this reason, we rewrite the program to make it able to decrypt the protected
data when it legitimately accesses the GOT. As all legitimate accesses go through
the PLT, it is sufficient to patch each stub of the PLT to dereference and decrypt
the corresponding GOT entry, and then to transfer the execution to the decrypted
address. The weakness of the randomised GOT protection proposed by Xu et al.
is that the PLT leaks the address of the GOT, and consequently an attacker can
mount both a GOT dereferencing and GOT overwriting attacks. As we adopt a

62

Text

RX

PLTRX

GOTRO

PLT ENCRX

0x8048000

0x8080000

V
u
ln
er
ab
le

p
ro
ce
ss

<open>:

80497d8 jmp 0x8078177

<opendir>:

80497e8 jmp 0x807838d

PLT

<open>:

80600a4 0xf3b67045

<opendir>:

80600a8 0x87489732

GOT

<open>:

8078177 push %eax

8078378 mov 0x4443,%ax

807837c shl $0x10,%eax

807837f mov $0x4241,%ax

8078383 xor 0x80600a4,%eax

8078389 xchg %eax,(%esp)

807838c ret

PLT ENC

Text

RX

li
b
c

0xb7f50000

0xb7f80000

1

2

3

4

Figure 5.7: Layout of the sample vulnerable process with our of GOT encryption
protection enabled

similar strategy, we are exposed to the same risk. Therefore, we have to protect
the patched PLT to avoid any information leak that can be exploited by the
attacker.

Each PLT entry is patched to perform the following operations: (i) to read the
corresponding GOT entry, (ii) to decrypt the address read, (iii) and to jump to
the decrypted address. Because of the aforementioned problem, the decryption
key cannot be stored directly in the code of the patched jump stub, nor can it
be referenced explicitly from the code. The solution we adopt inlines in the ith

jump stub a key generation function that computes dynamically the decryption
key to use for the decryption of the ith entry of the GOT. Encryption keys and
key generation functions are generated at runtime and differ from one GOT/PLT
entry to another. The rationale behind this choice is that, although an attacker
could read (using our GOT dereferencing attack) the code of the patched jump
stub that performs the decryption, and try to “borrow” the decryption code, he
does not know how to use this code. Indeed, this code is generated randomly at
each execution, and to construct useful gadgets from it the attacker would have
to analyse (i.e., disassemble) the code, and the only way to do that is to use
other gadgets. Although that is theoretically possible, such a complex analysis
requires an arsenal of gadgets that are practically impossible to construct even
from a large executable.

We have developed a prototype implementation of the proposed protection, for
GNU/Linux (x86). For simplicity the prototype requires preemptive binding of
shared libraries and does not support dynamic loading of shared objects (e.g.,
dlopen). However, the dynamic linker could be extended to support our protec-
tion also with lazy binding and dynamic library loading. Lazy binding typically

Chapter 5. Returning to randomised lib(c) 63

introduces less overhead and reduces startup costs, and consequently the over-
head introduced by our protection could be reduced by completing the prototype.
Our prototype consists of a shared library that is injected in the address space of
the program to protect (using LD PRELOAD). The library encrypts all the entries
of the GOT and then patches the jump stubs of the PLT as described above.
Since the size of PLT entries is insufficient to hold our patched code and can-
not be enlarged without breaking the functionality of the program, we allocate
a new executable section, and store in it the new patched entries. Additionally,
we update PLT entries to redirect the execution to the corresponding entries in
PLT ENC. Keys generation functions are constituted of a random number (up to
a dozen) of different assembly instructions, and are crafted to be unpredictable.
Figure 5.7 shows the memory layout of our sample process with the randomised
GOT protection in action. The extra section called PLT ENC is the section cre-
ated to hold the new encryption-aware jump stubs. When the program calls the
open function, the execution flows, through the patched PLT, to the jump stub
of open in the PLT ENC section (at address 0x08078177). The code we use to
decrypt the GOT entry of open and then to invoke the function looks like the
code in the figure, but it is different in each entry and execution. The code per-
forms the three operations necessary to invoke the function (load, decryption, and
control transfer) and takes the precaution of preserving all registers. Decryption
keys are reconstructed on-the-fly from data embedded in the PLT ENC stub.

5.5 Evaluation

We evaluated the proposed attack and solution. Overall, the evaluation demon-
strated the wide-scale applicability of our attack, and the effectiveness of the
proposed protection. Details of the evaluation are reported separately in the
following sections.

5.5.1 Evaluation of the attack

We performed two independent evaluations for our attack. First, we tested our
attack against a version of Ghostscript vulnerable to a stack-based overflow. We
successfully exploited the vulnerable program with both variations of our attack.
Second, we tested a large corpus of programs, collected from different UNIX
distributions for the x86 and x86-64 architectures and supporting both W⊕X
and ASLR, to measure how many of them were predisposed to the attack (i.e.,
whether the attack would be possible if the programs were vulnerable to a stack-
based buffer overflow). For the x86 architecture, the majority of the programs
tested, about 95.6%, were found to be predisposed to the attack. For the x86-64

64

architecture we found less predisposed programs, only about 61.8%. This is due
to the fact that on x86-64 instructions with 64-bit operands requires a special
prefix, and consequently the code chunks needed for the attack are less frequent.

Automation of the attack

For the evaluation we have implemented a prototype tool, called Saratoga, that
automatically analyses a ELF-32 or ELF-64 executable (for x86 and x86-64 archi-
tectures respectively), detects whether the program is predisposed to any of the
two variations of the attack, and generates a stack configuration that can be used
to exploit a vulnerability in the program. To find code chunks in an executable,
Saratoga uses the algorithm presented by Shacham et al. [54]. Saratoga
combines available code chunks using a custom algorithm we have developed.
Our algorithm is goal-oriented and rule-based. Given a code chunk that either
allows to dereference or to overwrite a GOT entry, the algorithm assigns a prede-
termined value to each possible use of the code chunk (e.g., the source operands of
the instructions in the chunk). The algorithm uses a set of combination rules and
tries to apply them recursively, to combine the available code chunks to perform
the requested assignments. If multiple combinations are possible, the algorithm
selects the one consuming less stack space. For output, Saratoga produces a
stack configuration containing the gadgets for the exploitation.

Exploiting a real vulnerability

We tested our attack against a vulnerable version of Ghostscript [12]. We initially
developed a conventional exploit and tested it against the program with W⊕X
and ASLR disabled. The exploit worked correctly and gave us a shell. Subse-
quently, we enabled the two protections and verified that the exploit stopped
working. We run Saratoga on the image of the program under attack and,
in few seconds, obtained two stack configurations for the two variants of the at-
tack. We constructed two exploits using the results provided by Saratoga, and
successfully exploited the vulnerability and obtained a shell with both.

Wide-scale applicability of the attack

The evaluation targeted the executables found in the directories /bin, /sbin,
/usr/bin, and /usr/sbin of the following distributions: GNU/Debian “Squeeze”
(x86), GNU/Debian “Lenny” (x86-64), Fedora “Cambridge” (x86), OpenBSD
4.5 (x86-64). For the total set of executables found in each distributions we
selected for the evaluation only those whose code size was greater than 20Kb. The
rationale was that excessively small executables have a limited functionality and

Chapter 5. Returning to randomised lib(c) 65

Deb. (x86) Deb. (x86-64) Fedora (x86) O.BSD (x86-64)

Executables 509 333 590 174
non-PIE 95.7% 97.3% 85.8% 100%
Writable GOT 99.8% 100% 99.0% 100%
Attack 1 64.0% 17.8% 49.5% 58.6%
Attack 2 96.1% 57.4% 95.0% 68.4%
Any attack 96.3% 58.3% 95.0% 68.4%

Table 5.2: Experimental evaluation of the effectiveness of the attack on x86 and
x86-64 executables

bc bogof. bzip2 clamscan

PIE 10.55% 3.46% 0% .12%
Enc.GOT .21% 15.49% .63% .11%

convert grep oggenc tar Avg.
PIE 0% 1.41% .16% .12% 1.98%
Enc.GOT .32% 4.54% .02% .20% 2.69%

Table 5.3: Overhead introduced by PIE and by our protection (the baseline for
comparison are the non-PIE executables)

very seldom attract attackers. On the contrary, commonly-attacked executables
(e.g., Ghostscript, Samba, Apache) are bigger, of the order of tens or hundreds
of kilobytes.

The results of our evaluation are reported in Table 5.2. For each distribution,
the table reports the total number of executables analysed, the percentage of po-
sition dependent executables, the percentage of executables with writable GOT,
the percentage of executables vulnerable to the GOT dereferencing attack, the
percentage of executables vulnerable to the GOT overwriting attack, and the
percentage of executables vulnerable to any of the two attacks. All three tested
Linux distributions support PIE and non-writable GOT. Unfortunately, our re-
sults testify that these mitigation techniques are not yet widely used. As the
table shows, the large majority of the executables for x86 are predisposed to at
least one of the two variants of the attack. The second variant has much larger
applicability, because the requested code chunks are more common. The attack
is not as effective on x86-64 executables, but still, more than half of the tested
executables are predisposed to it. With the exception of OpenBSD executables
(where PIE is not available), all the executables found in the other distribution
would not be predisposed to the attack if they were PIE. Furthermore, consider-
ing that the number of programs predisposed to the GOT dereferencing attack is
much smaller that the percentage of programs predisposed to at least one of the
two attacks, the read-only GOT protection would give non-negligible benefits.

66

It is worth noting that the a vulnerability found in an executable predisposed
to our attack might not be exploitable. For example, the vulnerability might not
expose a large enough portion of the stack, or it might not provide the needed
stack manipulation operations (e.g., to inject null bytes). These situations are not
considered a limitation of our attack but rather a limitation of the vulnerability
itself.

5.5.2 Evaluation of the proposed defence

We evaluated the efficacy our encrypted GOT protection, as well as the overhead
it imposes. Our results demonstrate the effectiveness of our solution at stopping
both attack variations, as with a small runtime overhead (about 2.69%).

To evaluate the effectiveness of the proposed mitigation strategy we tested the
two exploits constructed with the help of our tool against the vulnerable version of
Ghostscript, with our GOT protection, W⊕X, and ASLR enabled. Both exploits
failed to work. The vulnerable process terminated with a page fault exception
caused by an access to an invalid memory page.

We evaluated the overhead introduced by our protection and compared with
the overhead introduced by PIE. For the evaluation we used the following appli-
cations: bc, bogofilter, bzip2, clamscan , convert, grep, oggenc, and tar.
These applications are CPU-bound and make frequent use of functions in shared
libraries. Experiments were performed on an x86 system running GNU/Linux
2.6.27. As our protection works entirely in user-space, for each application we
measured the user-time requested to complete a batch job, averaged over multiple
runs, in three different configurations: (i) with a version of the executable com-
piled with default options (position dependent executables), (ii) with a version
of the executable complied with the default options as PIE, and (iii) with the
first version of the executable but with our runtime protection enabled. Table 5.3
reports the overhead measured with each application and the average. The per-
centages in the table represent the relative increment of user-time, with respect
to configuration (i). From these results we can draw two main conclusions. First,
the average overhead introduced by PIE is very small, 1.98%, and a maximum
of 10.55% with bc, and can be further reduced with more aggressive compilers
optimisations (e.g., by omitting the frame pointer). Second, the overhead intro-
duced by our encrypted GOT protection is also very small and comparable to
that introduced by PIE. The average overhead observed was 2.69% and a max-
imum of 15.49% with bogofilter, which invokes library functions with a very
high frequency. The small overhead implies practical adoption of our protection
on both end-users and production systems.

Chapter 5. Returning to randomised lib(c) 67

5.6 Discussion

The proposed protection scheme is clearly focused only on information leakage lo-
cated in the GOT. We insist saying PIE should be considered the correct solution
to attack techniques presented in this dissertation. Our attack techniques allow
an attacker to compute and jump to a particular libc function not originally used
by the binary itself. The defense scheme we proposed prevents such computation
but cannot do anything against the re-use of an already linked function. Practi-
cally speaking, there is no point in computing system’s address if the vulnerable
binary already uses it. An attacker could simply jump to system’s PLT stub to
gain control of the vulnerable process. Moreover, our protection scheme does not
prevent code-reuse, so attacks are still possible, provided the vulnerable binary
has enough gadgets.

6 Conclusions and future work

Emulators are designed without transparency in mind, having the goal of being
able to execute as best as they can typical application software. Application
software which does not rely on effects declared undefined by hardware vendors.
Emulators are actively used for dynamic behavioural analysis of suspicious pro-
grams by researchers. Besides, malware writers, assuming the presence of an
emulator likely means their software probably is under analysis, do rely on those
undefined effects. More generally they rely on behavioural differences between
real and emulated hardware for hiding their malicious behaviour and stay unde-
tected for a longer time. This is true even for system virtual machines based on
native code execution, as they have to trap and emulate a subset of the instruction
set (sensitive instructions). This dissertation provided ways to detect behavioural
differences between the real hardware and the emulated one. The results from
the proposed testing methodologies can then be used to harden emulators and
system virtual machines to the point they can be considered transparent, i.e. the
transition function implemented by the real hardware and by the emulator or the
virtual machine are exactly the same.

Advances in defensive technologies are constantly raising the bar against the
exploitation of vulnerabilities, which are one of the most effective threat vec-
tors used by malware for their large-scale diffusion. As defensive technologies
are improving, attack techniques become more sophisticated finding new paths
to reach the same goal: obtaining complete control of the vulnerable software.
This dissertation provided evidences of the exploitability of software vulnerable
to stack-based buffer overflows even if they are “protected” by state-of-the-art
defence techniques, thus exposing their defects and providing also some improve-
ments to them (where the PIE solution is not an option).

In the following we briefly suggest some direction for future research in each
involved topic.

Chapters 3 and 4 Some enhancements are possible on the proposed testing
methodologies. More precisely, the proposed technique is based on the assump-
tion made on the virtual machine monitor used as an oracle for the implementa-
tion of KEmuFuzzer: the oracle behaves exactly like the real hardware. During
the experiments, some bugs were found on the KVM code, bugs affecting the

69

70

virtualised environment. This means there is room for guest-detectable misbe-
haviours even with hardware-assisted virtualisation. The ideal oracle would be
the real hardware running in its native execution modes.

Chapter 5 ASLR applied to the entire process space seems to solve the prob-
lem posed by memory error vulnerabilities leading to arbitrary computations by
attackers. With PIE enabled binaries, attackers can no more build a stack layout
with code pointers pointing to attacker-supplied code. Neither they can point to
code already present in the process’ address-space. At least they cannot do that
in a reliable way. With a 32-bit address-space they can successfully exploit such
vulnerabilities by means of brute-force. In a 64-bit address space this is nearly
impossible. Nevertheless, talking about stack-based buffer overflows, it is still
possible to partially overwrite the first encountered return address and be able
to reliably jump to already present code in a relative fashion. Taking control of
a vulnerable process by overwriting one single code pointer seems unlikely to be
possible, anyway we think this can be a research direction worth to be taken.

Bibliography

[1] Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/

ec2/.

[2] Anubis. http://anubis.iseclab.org/.

[3] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A Tool
for Analyzing Malware. In 15th European Institute for Computer Antivirus
Research Annual Conference (EICAR 2006), 2006.

[4] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the annual conference on USENIX Annual Technical Conference
(ATEC), Berkeley, CA, USA, 2005. USENIX Association.

[5] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation:
an Efficient Approach to Combat a Broad Range of Memory Error Exploits.
In Proceedings of the 12th USENIX Security Symposium, pages 105–120,
2003.

[6] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proceedings
of the 14th USENIX Security Symposium, August 2005.

[7] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn
Song. Towards automatic discovery of deviations in binary implementations
with applications to error detection and fingerprint generation. In Proceed-
ings of the 16th USENIX Security Symposium, 2007.

[8] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Diversified Process
Replicae for Defeating Memory Error Exploits. In Proceedings of the 3rd
International Workshop on Information Assurance, pages 434–441, 2007.

[9] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When
good instructions go bad: generalizing return-oriented programming to risc.
In CCS ’08: Proceedings of the 15th ACM conference on Computer and
communications security, pages 27–38, New York, NY, USA, 2008. ACM.

71

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://anubis.iseclab.org/

72

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: Automatically Generating Inputs of Death. In Proceed-
ings of the 13th ACM conference on Computer and communications security,
2006.

[11] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu,
Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-
Variant Systems: A Secretless Framework for Security through Diversity.
In Proceedings of the 15th USENIX Security Symposium, pages 105–120,
2006.

[12] CVE-2008-0411. Ghostscript zseticcspace() Function Buffer Overflow Vul-
nerability.

[13] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated test-
ing of refactoring engines. In Proceedings of the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, September
2007.

[14] Solar Designer. ”return-to-libc” attack. Bugtraq, 1997.

[15] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Mal-
ware Analysis via Hardware Virtualization Extensions. In Proceedings of the
15th ACM conference on Computer and communications security, 2008.

[16] Tyler Durden. Bypassing PaX ASLR protection, July 2002.

[17] Peter Ferrie. Attacks on Virtual Machine Emulators. Technical report,
Symantec Advanced Threat Research, 2006.

[18] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of Network
and Distributed Systems Security Symposium, NDSS, San Diego, Califor-
nia, USA. The Internet Society, February 2003.

[19] GNU binutils. http://www.gnu.org/software/binutils/.

[20] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz
Testing. In Proceedings of the Network and Distributed System Security
Symposium, 2008.

[21] Google Inc. Android emulator. http://code.google.com/android/

reference/emulator.html.

http://code.google.com/android/reference/emulator.html
http://code.google.com/android/reference/emulator.html

Bibliography 73

[22] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential
testing as a prelude to formal verification. In Proceedings of the 29th Inter-
national Conference on Software Engineering (ICSE), pages 621–631, 2007.

[23] grsecurity.

[24] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Novem-
ber 2008. Instruction Set Reference.

[25] Rauli Kaksonen. A Functional Method for Assessing Protocol Implementa-
tion Security. Technical report, VTT Electronics, 2001.

[26] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel
Mehta, and Riles Hassell. The Shellcoder’s Handbook: Discovering and Ex-
ploiting Security Holes. John Wiley & Sons, 2004.

[27] Sebastian Krahmer. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique, 2005.

[28] Kernel-based Virtual Machine (KVM). http://linux-kvm.org/.

[29] Ralf Lämmel and Wolfram Schulte. Controllable combinatorial coverage in
grammar-based testing. In 18th IFIP International Conference on Testing
Communicating Systems (TestCom 2006), 2006.

[30] Kevin P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux
Journal, September 1996.

[31] John Levine. Linkers and Loaders. Morgan Kaufmann, 2000.

[32] Lixin Li, James E. Just, and R. Sekar. Address-space randomization for
windows systems. In Proceedings of the 22nd Annual Computer Security
Applications Conference, pages 329–338, Washington, DC, USA, 2006. IEEE
Computer Society.

[33] Henry A. Lichstein. When Should You Emulate? Datamation, 1969.

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumenta-
tion. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation (PLDI), 2005.

http://linux-kvm.org/

74

[35] Rupak Majumdar and Koushik Sen. Hybrid Concolic Testing. In Proceed-
ings of the 29th international conference on Software Engineering (ICSE’07),
2007.

[36] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo
Bruschi. Testing CPU emulators. In Proceedings of the 2009 International
Conference on Software Testing and Analysis (ISSTA). ACM, July 2009.

[37] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo
Bruschi. Testing system virtual machines. In ISSTA ’10: Proceedings of
the 19th international symposium on Software testing and analysis, pages
171–182, New York, NY, USA, 2010. ACM.

[38] Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson, Somesh Jha, and
John C. Mitchell. A Layered Architecture for Detecting Malicious Behav-
iors. In Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID), Lecture Notes in Computer Science. Springer,
September 2008.

[39] William M. McKeeman. Differential Testing for Software. Digital Technical
Journal, 10(1), 1998.

[40] Windows XP Mode Homepage. http://www.microsoft.com/windows/

virtual-pc/.

[41] Barton P. Miller, L. Fredrikson, and B. So. An Empirical Study of the Re-
liability of UNIX Utilities. Communications of the ACM, 33(12), December
1990.

[42] G. J. Myers. The Art of Software Testing. John Wiley & Sons, 1978.

[43] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel
Virtualization Technology: Hardware support for efficient processor virtual-
ization. Intel Technology Journal, 10(3):167–177, August 2006.

[44] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, Computer Laboratory, University of Cambridge, United Kingdom,
November 2004.

[45] Tavis Ormandy. An Empirical Study into the Security Exposure to Host
of Hostile Virtualized Environments. In Proceedings of CanSecWest Applied
Security Conference, 2007.

http://www.microsoft.com/windows/virtual-pc/
http://www.microsoft.com/windows/virtual-pc/

Bibliography 75

[46] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo
Bruschi. A fistful of red-pills: How to automatically generate procedures
to detect CPU emulators. In Proceedings of the 3rd USENIX Workshop on
Offensive Technologies (WOOT). ACM, August 2009.

[47] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualiz-
able third generation architectures. Communications of the ACM, 17(7):412–
421, 1974.

[48] Danny Quist and Val Smith. Detecting the Presence of Virtual Machines Us-
ing the Local Data Table. http://www.offensivecomputing.net/files/

active/0/vm.pdf.

[49] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. Detecting Sys-
tem Emulators. In Proceedings of Information Security Conference (ISC
2007). Springer-Verlag, 2007.

[50] John Scott Robin and Cynthia E. Irvine. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. In Proceedings of the
9th conference on USENIX Security Symposium (SSYMM’00), Berkeley, CA,
USA, 2000. USENIX Association.

[51] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo
Bruschi. Surgically returning to randomized lib(c). In ACSAC ’09: Proceed-
ings of the 2009 Annual Computer Security Applications Conference, pages
60–69, Washington, DC, USA, 2009. IEEE Computer Society.

[52] Joanna Rutkowska. Red Pill. . . or how to detect VMM using (almost) one
CPU instruction. http://invisiblethings.org/papers/redpill.html.

[53] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit test-
ing engine for c. In Proceedings of the 10th European software engineering
conference, 2005.

[54] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS), pages
552–561, October 2007.

[55] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the Effectiveness of Address-Space Ran-
domization. In Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS), pages 298–307, 2004.

http://www.offensivecomputing.net/files/active/0/vm.pdf
http://www.offensivecomputing.net/files/active/0/vm.pdf
http://invisiblethings.org/papers/redpill.html

76

[56] Emin Gün Sirer and Brian N. Bershad. Testing java virtual machines. In
Proceedings of the International Conference on Software Testing And Review,
nov 1999.

[57] Jim E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, June 2005.

[58] Sun Microsystem. VirtualBox. http://www.virtualbox.org.

[59] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.

[60] The PaX Team. Address space layout randomization.

[61] The PaX Team. PaX non-executable pages.

[62] Arjan van de Ven. New Security Enhancements in Red Hat Enterprise Linux
v.3, update 3, August 2004.

[63] VMware, Inc. http://vmware.com/.

[64] VMware security advisor. http://www.vmware.com/security/

advisories/VMSA-2009-0015.html.

[65] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent Runtime Randomization
for Security. Technical Report UILU-ENG-03-2207, University of Illinois at
Urbana-Champaign, May 2003.

http://www.virtualbox.org
http://vmware.com/
http://www.vmware.com/security/advisories/VMSA-2009-0015.html
http://www.vmware.com/security/advisories/VMSA-2009-0015.html

	Introduction
	Summary of the contributions
	Organisation of the dissertation

	Background and Related work
	Overview of Intel x86 ISA
	Challenges on x86 emulation

	Software Testing
	Emulators in malware analysis
	Buffer overflow
	Notes on x86 unwanted code

	EmuFuzzer: a testing methodology for CPU emulators
	Introduction
	CPU Emulators
	Faithful CPU Emulation
	Fuzzing CPU Emulators

	EmuFuzzer
	Test-case Generation
	Test-case Execution

	Evaluation
	Experimental Setup
	Evaluation of Test-case Generation
	Testing of IA-32 Emulators

	Discussion

	KEmuFuzzer: a methodology for testing System Virtual Machines
	Introduction
	Overview
	Virtualisation
	Transparency of Virtual Machines
	Testing Transparency of Virtual Machines

	KEmuFuzzer
	Architecture and Methodology
	Test-cases
	Kernel
	CPU Emulators and Virtualizers
	Oracle

	Evaluation
	Experimental Setup
	Test-cases
	Experimental Results

	Discussion

	Returning to randomised lib(c)
	Introduction
	Background
	Attack
	Overview of the attack
	Details of the attack

	Attack mitigation
	Preventing unsafe accesses to GOT

	Evaluation
	Evaluation of the attack
	Evaluation of the proposed defence

	Discussion

	Conclusions and future work
	Bibliography

