
Reverting the Effects of XQuery Update Expressions

Federico Cavalieri1, Giovanna Guerrini1, and Marco Mesiti2

1 DISI – University of Genova
{cavalieri,guerrini}@disi.unige.it

2 DICo – University of Milano
mesiti@dico.unimi.it

Abstract. The need of reverting the effects of updates on the affected documents
arises in many contexts, ranging from undos in transactional applications to ver-
sioning systems. In this paper, we investigate this issue for XQuery Update ex-
pressions, relying on the Pending Update List (PUL) obtained from the evaluation
of an expression on a document. Specifically, we introduce an inversion opera-
tor, that, given a PUL to be applied on a document, allows to determine a cor-
responding inverted PUL that, applied on the modified document, produces the
original document. Moreover, an alternative approach for enriching a PUL with
additional information, so that it can be inversely applied, is proposed and the
two approaches are experimentally compared.

Keywords: XML, Updates, Dynamic reasoning, Update processing.

1 Introduction

The ability of reverting the effects of an update operation is useful in many situations.
Consider for instance a distributed transactional context, in which transactions can be
aborted and rolled back, and thus the corresponding operations need to be undone. More
flexible update processing approaches based on check-in/check-out policies, such as
those employed in collaborative document editing, may benefit as well of such ability.
It may also become crucial in versioning contexts, if versions are handled by recording
the updates that transformed a version into the following one (edit-based approaches
according to [4]) instead of the various data snapshots. In this context, update reversion
is the basis for moving across different versions.

In this paper, we investigate this problem in the context of updates on XML doc-
uments expressed as XQuery Update (XQU) expressions [15]. The evaluation of an
XQU expression on a document produces a set of atomic update requests, represented
as a Pending Update List (PUL), that is then applied on the document. In [3] we dis-
cussed the relevance of contexts (such as collaborative editing, disconnected execution,
data clouds) in which updates are not necessarily executed right after and on the same
server where the update expression requesting them is evaluated. Thus, the process of
expressing and requesting updates is decoupled from that of making them effective on
documents. PULs can be produced by a machine, sent over a network, saved to disks,
and later applied on the document, possibly by a different machine. Referring to up-
date reverting, this means that the effects of an update expression can be discarded on a
server different from the one on which they have been applied.

A.A.A. Fernandes et al. (Eds.): BNCOD 2011, LNCS 7051, pp. 167–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 F. Cavalieri, G. Guerrini, and M. Mesiti

According to this processing model, there are two alternative approaches to revert
the effects of an update expression. The first one is to invert a PUL through a PUL
inversion operator. This operator, given a PUL Δ on a document D, produces another
PUL Δ−1, that, when executed on the document updated according to Δ, returns the
original document D, thus undoing the updates in Δ. This approach however requires
to access document D for producing the inverse. An important feature of the PUL op-
erators in [3], by contrast, is document independence: operators on PULs should not
require, whenever possible, to access the document. They rely on structural informa-
tion on the document that is incorporated in the PUL itself through a labeling scheme.
Thus, an alternative approach, to be exploited in contexts where the need of reverting
update effects is known to be likely to arise, is to modify the evaluation of XQU expres-
sions so that they produce completed PULs rather than PULs. A completed PUL Δ↔

contains the information for being applied either forward (to actually apply updates) or
backward (to revert their effects), and in both cases it can be applied in streaming.

The paper investigates both approaches, proposing a set of inversion rules and a PUL
inversion algorithm, defining completed PULs, and discussing their forward and back-
ward streaming application. Both approaches have been implemented, by modifying
the Qizx [14] library to produce PULs and completed PULs (both represented as XML
documents) and to accept them as input.

The paper is organised as follows. Section 2 introduces some preliminary notions
on XML documents and PULs. PUL inversion is discussed in Section 3, whereas Sec-
tion 4 introduces completed PULs and their backward and forward application. Sec-
tion 5 experimentally compares the two approaches. Section 6 contrasts our approach
with related work. Some concluding remarks are finally presented.

2 Preliminaries

In this section we introduce the adopted representations of XML documents, define
PULs of operations, their semantics, and discuss their streaming evaluation.

2.1 XML Document Representations

A document can be represented as a labeled tree. A document D is a tuple (V, γ, λ, ν)
where: V is a set of nodes representing elements, attributes or text nodes (for simplicity,
only these types among those in [15] are considered); γ is a function associating with
each node its children; λ and ν are labeling functions associating with each element
and attribute node a name in a set N and with each text and attribute node a value in a
set V , respectively. Auxiliary functions V and R denote the nodes and the root(s) of a
single tree D or of a collection of trees, respectively, and τ assigns to each node v in V
a value in the set {e, a, t} denoting its type. Moreover, auxiliary functions LS, P and
T assign to each node its adjacent left sibling, parent and subtree, respectively, when
they exists (⊥, otherwise). Coherently with the XDM model, the attribute value is seen
as a property of the attribute node, whereas textual contents of elements are modeled by
separate nodes. A unique and immutable identifier is associated with each node in V ,
and, wherever no confusion arises, we do not distinguish nodes from their identifiers.

Reverting the Effects of XQuery Update Expressions 169

sDoc()
sElem(1,"SigmodRecord")
sElem(2,"issue")
attr(9,"vol","33")
attr(10,"num","2")
sElem(3,"articles")
sElem(4,"article")
sElem(5,"name")
text(6,"EDBT04 W...")
eElem(5,"name")
sElem(7,"author")
text(8,"B. Catania")
eElem(7,"author")
eElem(4,"article")
eElem(3,"articles")
eElem(2,"issue")
...
eDoc()

Fig. 1. XML Document representation: tree-based (left), event-based (right)

Alternatively, a document can be represented as a stream of SAX-like events, which
describe the nodes encountered in a depth-first traversal of the document. A document
D is an ordered sequence of events: sDoc() and eDoc(), indicating the start/end of
the document; sElem(v,n) and eElem(v,n), indicating the start/end of element v
tagged n; attr(v,n,s) and text(v,s), indicating the attribute/text node vwith name
n and value s. Fig. 1 contrasts the tree/event-based representations of a fragment of
the SigmodRecord document to be updated. In the former, dotted lines are used to
represent edges leading to attribute nodes.

In handling PULs, we need to check whether some relationships (like parent-child,
element-attribute, left-right sibling) hold among two nodes in both representations. This
information is obtained without directly accessing the document through a labeling
scheme [12] associated with nodes through function l. In this scheme, the introduc-
tion/deletion of nodes does not require node re-labelling. Table 1 reports the predicates
that can be assessed through the adopted labeling scheme.

2.2 Update Operations and PULs

Table 2 reports the primitives defined in [15] that we consider, where v ∈ V is a node,
P = [T1, . . . , Tk], k ≥ 0, is a list (possibly empty in case of the repN or repC op-
eration) of trees, n ∈ N is a name, s ∈ V is a value. Given an operation op, t(op)
denotes its target node, o(op) denotes its name, and p(op) denotes its second parameter

Table 1. Structural relationships

Predicate Description

v1 � v2 v1 precedes v2 in document order
v1 �s v2 v1 is the (adjacent) left sibling of v2
v1 �s v2 v1 is a preceding sibling of v2
v1 /c v2 v1 is a child of v2
v1 /a v2 v1 is an attribute of v2
v1 //d v2 v1 is a descendant of v2
v1 //¬a

d v2 v1 is a descendant of v2 but not an attribute of v1

170 F. Cavalieri, G. Guerrini, and M. Mesiti

Table 2. Update operations

Operation Description Conditions Completed Operation

ins←(v, P)
ins→(v, P)

Insert the trees in P before/after
node v

τ(v) �=a, ∀r∈R(P) τ(r) �=a idem

ins↙(v, P)

ins↘(v, P)
Insert the trees in P as first/last chil-
dren of node v

τ(v) = e, ∀r∈R(P) τ(r) �=a idem

ins↓(v, P) Inserts the trees in P as children of
node v, in an implementation de-
fined position

τ(v) = e, ∀r∈R(P) τ(r) �=a idem

insA(v, P) Inserts the trees in P as attributes of
node v

τ(v) = e, ∀r∈R(P) τ(r) = a idem

del(v) Deletes node v del(v, T (v))
repN(v, P) Replaces node v with the trees in P

(possibly none)
∀r ∈ R(P) (τ(r) = τ(v) = a)
∨(τ(v) �=a∧τ(r) �=a)

repN(v, P, T (v))

repV(v, s) Replaces the value of node v with
s∈V

τ(v)∈{t, a} repV(v, s, ν(v))

repC(v, v′) Replaces the children of node v
with text node v′ or with nothing

τ(v) = e∧ (v′ = [] ∨ τ(v′) = t) repC(v, v′, T (γ(v)))

ren(v, n) Renames node v with n∈N τ(v)∈{e, a} ren(v, n, λ(v))

(undefined if o(op) = del). An operation op is applicable on a document D if its target
belongs to D and the applicability conditions (identified in [3]) of op hold. The meaning
of last column will be discussed in Section 4.

A pending update list (PUL) [15] is an unordered list of operations among those
in Table 2. Since the order of operations is irrelevant, some pairs of operations cannot
occur in the same PUL. Specifically, no pairs of replacement operations of the same
type with the same target (referred to as incompatible operations) can occur. For a PUL
to be applicable on a document (cf. function applyUpdates in [15]) it must contain
no incompatible operations and all its operations must be applicable on the document.

Operation semantics is specified in [1]. The semantics of operation ins↓ is non-
deterministic since the actual position of the inserted nodes group in the target node
is not univocally specified. Thus, the application of an operation op to a document D
produces one document in a set of obtainable documents, denoted as O(op, D).

The semantics of a PUL Δ on a document D is obtained by applying the operations
in Δ in five stages [1]. At each stage, a subset of the operations are applied to enforce
the precedence relation on operation types specified in [15]. The order of application of
operations within each stage is not prescribed by [15]. Thus, when multiple insertion
operations of the same type with the same target appear in the same PUL, the relative
order of the inserted groups of nodes is not fixed as well. Therefore, the cardinality
of O(Δ, D) is greater than one when ins↓ occurs in Δ or Δ contains more than one
insertion operation of the same type on the same target.

Example 1. Let D be the document in Fig. 1. Operation op1 = del(14) is deterministic
and thus O(op1, D) is a singleton. Operation op2 = ins↓(16, <author>G.Guerrini</author>),
by contrast, may lead to inserting the element as first, second, or last author of the sec-
ond paper, thus O(op2, D) contains three documents. Finally, |O(Δ, D)| = 6 for Δ =
{ins↓(16,<author>G.Guerrini</author>),ins↘(4,<initP>132</initP>), ins↘(4, <lastP>134</lastP>)}.

Reverting the Effects of XQuery Update Expressions 171

2.3 PUL Streaming Application

Given a document represented as a sequence of events E, a PUL is modeled as an event
transformer, which transforms E in a new sequence of events corresponding to one of
the obtainable documents. An empty PUL corresponds to an identity transformation.
Each operation in a non-empty PUL requires some event transformation. The order in
which transformations must be applied on the events of a node v is the same as in the
staged execution of an XQU expression.

Example 2. Consider the PUL Δ ={repC(2, []), ren(2, "issues")} and the document in Fig.
1. The first operation requires to remove any non-attribute event which occurs between
sElem(2,) and eElem(2,). The second one requires to alter these two events re-
placing the name. The transformed event sequence is: sDoc(), sElem(1, "SigmodRecord"),

sElem(2, "issues"), attr(9, volume, "33"), attr(10, number, "2"), eElem(2, "issues"), ..., eDoc().

3 PUL Inverse

In this section we discuss the inversion of operations and PULs.

3.1 Operation Inversion

The inversion of an operation op applicable on a document D produces one or more
operations that revert the modifications made by op on D. To revert the effects of a
single operation, multiple operations may be required. Consider the case of a list of
subtrees inserted through a single ins: each single subtree must be separatedly deleted.

Definition 1 (Operation Inverse). Let op be an operation applicable on a document
D. An inverse of op on D is a PUL Δ−1

op s.t: ∀D′ ∈ O(op, D) : O(Δ−1
op , D′) = {D}.

Different PULs can be identified to revert the effects of each operation. The following
approach has been devised: ins is reverted by removing all inserted subtrees, repV/ren
by restoring the original value/name of the target node, repC by restoring the origi-
nal node children. For node deletions and replacements the introduced nodes must be
deleted, while removed nodes must be placed back in their original position. Attribute
nodes are inserted by an insA, while other nodes through ins→, if an adjacent left
sibling exists in D, through an ins↙ otherwise. Table 3 defines inverse operations.

Example 3. Consider the document in Fig. 1 and the following operations (the node
identifier is reported as superscript of the node). op1 =ren(5, “title”), op2 =del(7), op3 =
ins(4,<author>X25</author>24,<author>Y27</author>26).The inverses are:Δ−1

op1
={ren(5, “name”)},

Δ−1
op2

={ins→(5, <author>B.Catania8</author>7)}, Δ−1
op3

={del(24), del(26)}, respectively.

Proposition 1 (Correctness of Operation Inversion). For any operation op applica-
ble on a document D, let Δ−1

op be the inverse PUL obtained according to Table 3. Then
Δ−1

op is an inverse of op on D, according to Definition 1.

Proof Sketch. This can be straightforwardly proved by individually considering the
semantics of each operation and of the corresponding inverse as defined in Table 3.

172 F. Cavalieri, G. Guerrini, and M. Mesiti

Table 3. Operation inverses

Operation Inverse Condition

insr(v, [T1, ..., Tn]) {del(R(T1)), ..., del(R(Tn))} r ∈ {←,→, ↓,↙,↘, A}
repV(v, s) {repV(v, ν(v))}
ren(v, l) {ren(v, λ(v))}
repC(v, v′)

{repN(v′, γ(v))}
{ins↓(v, γ(v))}

v′ �= []
v′ = []

del(v)/repN(v, [])
{insA(P (v), T (v))}
{ins→(LS(v), T (v))}
{ins↙(P (v), T (v))}

τ(v) = a
τ(v) �= a ∧ LS(v) �= ⊥
τ(v) �= a ∧ LS(v) = ⊥

repN(v, [T1, ..., Tn]) {repN(R(T1), T (v)), del(R(T2)), ..., del(R(Tn))}

3.2 PUL Inversion

Starting from the operation inverse, we define the PUL inverse.

Definition 2 (PUL Inverse). Let Δ be a PUL applicable on a document D. An inverse
of Δ on D is a PUL Δ−1 s.t. ∀D′ ∈ O(Δ, D) : O(Δ−1, D′) = {D}.

In inverting a PUL Δ, the following properties must be guaranteed: (i) each inverse
operation must be applicable in all the obtainable documents; (ii) in case an operation
in Δ is overridden (that is, it has no effect on the document), its inverse must have no
effect; and, finally, (iii) the relative order of the nodes removed by Δ must be restored by
its inverse. As shown by the following example, simply inverting each single operation
in Δ independently does not allow to guarantee these properties.

Example 4. Consider the PUL Δ = {del(5), repV(6, “VLDB04”), repN(7, <author>X25</author>24}
applicable on the document in Fig. 1. The inverse of Δ, obtained by inverting each sin-
gle operation independently is Δ−1 = {op1, op2, op3, op4} where op1 =ins↙(4, <name>

EDBT04 W...6</name>5), op2 =repV(6, “EDBT04 W...”), op3 =del(24), op4 =ins↙(4, <author>B.Catania8

</author>7)}. Δ−1 exhibits two problems: (i) the overridden operation repV(6, “VLDB04”)

has been inverted as op2, that is both unnecessary (the value of node 6 is restored by
op1) and not applicable, as node 6 does not belong to any document D′ ∈ O(Δ, D);
(ii) the order of the restored nodes 5 and 7 may not be the one in the original document.

To guarantee the first two properties, overridden operations in Δ should be removed.
For the last property, special treatment should be devoted to operations del and repN
when their targets are adjacent siblings. In this case, insertion operations of the same
kind with the same target might not preserve the insertion order. To obtain the correct
order, repN and del operations on adjacent siblings should be grouped together.

Definition 3 (Removal Group). Given a PUL Δ, we denote as a removal group of Δ
a non-empty ordered sublist S = [op1,..., opn] of Δ s.t.

– o(opi) ∈ {repN, del}, 1 ≤ i ≤ n and t(op1) �s t(op2) �s ... �s t(opn),
– {op1,.., opn} is maximal, that is, �S′⊃{op1,.., opn} s.t. S′ is a removal group of Δ.

Example 5. Consider the PUL Δ ={del(7), ren(5, “title”), repN(5, <a>X), del(11)} on
the document in Fig. 1. The removal groups are [repN(5, <a>X), del(7)] and [del(11)].

Reverting the Effects of XQuery Update Expressions 173

O1)
op1 =op(v,) op2 =op′(v,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op ∈ {ren, repV, repC, del, ins↙, ins↘, ins↓, insA}
op′ ∈ {repN, del}

O2)
op1 =op(v,) op2 =repC(v,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op ∈ {ins↙, ins↓, ins↘}

O3)
op1 =op(v,) op2 =op′(v′,)

Δ ∪ {op1, op2} →1 Δ ∪ {op2}
op′ ∈ {repN, del}, v //d v′

O4)
op1 =op(v,) op2 =repC(v′,)
Δ ∪ {op1, op2} →1 Δ ∪ {op2}

v //¬a
d v′

S5)
op = insr(v, [T1, ..., Tn]) Δ′ = {del(R(T1)), ..., del(R(Tn))}

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪Δ′
r ∈ {←,→, ↓,↙,↘, A}

S6)
op = repC(v, t) op′ =

{
repN(t, γ(v)) if t �= []

ins↓(v, γ(v)) otherwise

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S7)
op = repV(v, s) op′ = repV(v, ν(v))

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S8)
op = ren(v, n) op′ = ren(v, λ(v))

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪ {op′}

S9)
Δ′ = {insA(P (v), T (v))} ∪ {del(R(u))| u ∈ p(op)}

Δ ∪ {op}, Δ−1 →2 Δ, Δ−1 ∪Δ′
t(op) = v, τ(v) = a, o(op) ∈ {repN, del}

G10)

Δ′ = {ins→(LS(v1), [T (v1), ..., T (vn)]}∪
{del(u)| u ∈ ⋃

i=1..nR(p(opi))}
Δ ∪ {op1, ..., opn}, Δ−1 →2 Δ, Δ−1 ∪Δ′

{v1, . . . , vn} are the operation targets,
[op1, . . . , opn] is a removal group,
τ(v1) �= a, LS(v1) �= ⊥

G11)

Δ′ = {ins↙(P (v1), [T (v1), ..., T (vn)]}∪
{del(u)| u ∈ ⋃

i=1..nR(p(opi))}
Δ ∪ {op1, ..., opn}, Δ−1 →2 Δ, Δ−1 ∪Δ′

{v1, ..., vn}are the operation targets,
[op1, ..., opn] is a removal group,
τ(v1) �= a, LS(v1) = ⊥

Fig. 2. Inversion rules

The inversion of a PUL Δ is computed through the set of inversion rules in Fig. 2. Rules
are categorized in the following three classes:

O Rules that remove overridden operations. Specifically, rule O1 and O3 consider the
case in which a repN or a del operation on a node v overrides other operations
in the subtree rooted at v. Rules O2 and O4, are similar in purpose, but consider
the case in which a repC is the overriding operation. In all cases, rules in this class
maintain the repN, repC , or del operation and removes the overridden operation.

S Rules that compute the inverses of ins, repC, repV, ren, as specified in Table 3.
G Rules that compute the inverse of a removal group. Specifically, rules G10 and G11

produce a deletion for each introduced node and a single insertion for all removed
nodes ensuring the restoration of their original order.

A basic algorithm for computing the inversion consists in the application of the rules
in two stages. When rules in the first stage cannot be applied any more, rules of the
second stage are considered. The rules of class O are considered in the first stage to
remove overridden operations from Δ. The rules of classes S and G are considered in
the second stage on a pair of PULs, Δ and Δ−1, the PUL to invert and the inverted
PUL (initially empty). The application of a rule of classes S and G removes one or
more operations from Δ and introduces the corresponding inverse operation(s) in Δ−1.

Example 6. Consider the PUL Δ = {del(5), repV(6, “VLDB04”), repN(7, <author>X25</author>24}
of Example 4. Its inverse, obtained through the application of rules in Fig. 2 is Δ−1 =

174 F. Cavalieri, G. Guerrini, and M. Mesiti

{ins↙(4, <name>EDBT04 W...6</name>5<author>B.Catania8</author>7), del(24)}. In this case, differ-
ently from what happened in Example 4, the overridden operation repV(6, “VLDB04”) has
not been inverted and the order of the restored nodes 5 and 7 is preserved.

Proposition 2 (Correctness of the Inversion Rules). Let Δ be a PUL applicable on a
document D. The PUL Δ−1 obtained through the application of the inversion rules in
Fig. 2 is an inverse of Δ according to Definition 2. �

Proof Sketch. Consider a PUL Δ applicable on a document D and the inverse Δ−1

generated by the inversion rules. The proof of this proposition requires that: (i) Δ−1 is
applicable on each document in O(Δ, D), (ii) no pairs of incompatible operations are
generated, (iii) no partially overridden operation either in Δ or Δ−1 exists, (iv) nodes
removed by Δ are placed back in the correct positions by Δ−1, (v) Δ−1 is determin-
istic. The proof of (i) is a straightforward consequence of the removal of overridden
operations and of the operations definition. (ii) can be proved considering the algorithm
definition and the applicability of Δ on D, while (iii) considering the operations defini-
tion. The proof of the other points comes directly from the definition of the algorithm,
specifically (iv) is ensured by the class G rules, while (v) follows from the analysis of
the generated operations.

3.3 Inversion Algorithm

Algorithm 1 presents an efficient procedure for computing the inverse of a PUL Δ. The
following functions are exploited in the algorithm: applyLocalOverrideRules(Δ) to
apply the reduction rules O1 and O2 in Fig. 2 on Δ; applySInversionRules(Δ, D)
and applyGInversionRules(Δ, D) to apply the inversion rules of class S and G.

The inversion algorithm works as follows. An empty PUL Δ−1 is first initialized,
then operations in Δ are ordered according to the pre-order traversal of their target
nodes and grouped together. Note that, if an overriding operation op is present in a
group, the groups of the overridden operations immediately follow that of op. Then,
for each group of operations Δvi on a node vi, the algorithm performs the following
steps. (i) It checks whether the operations Δvi are overridden by operations specified
on an ancestor of vi, in this case they are discarded (this corresponds to the application
of rules O3 and O4), otherwise, the applyLocalOverrideRules function is applied on
the operations of vi. (ii) Whenever in Δvi there is an operation op that may override
operations in the subtree rooted at vi, vi is stored along with the relevant information
about op. (iii) The rules of class S are applied on the remaining operations on vi through
applySInversionRules, updating Δvi and adding the computed inverses to Δ−1.

When all the partitions have been processed, the remaining operations in Δ are all
and only those that belong to a removal group and each removal group is composed
of operations that are contiguous in Δ. Function applyGInversionRules can thus be
efficiently applied on Δ, adding the inverses to Δ−1.

Proposition 3 (Complexity). Let Δ be a PUL applicable on a document D, removing
r nodes. The complexity of the Algorithm 1 is O(n log(n)+ sn+ r) where n is the size
of Δ and s the cost of identifying the left sibling/parent of a node in D . �

Reverting the Effects of XQuery Update Expressions 175

Algorithm 1. Inversion
Require: A PUL Δ applicable on a document D
1. Δ−1 = ∅;
2. (o, vo) = (⊥,⊥);
3. let (Δv1 , ..., Δvn) be the partition of Δ according to the preorder of their target node;
4. for i = 1 to n do
5. if not ((o=pAttr∧vi //¬a

d vo) ∨ (o=rAttr∧vi //d vo)) then
6. Δvi = applyLocalOverrideRules(Δvi);
7. delOp = {o|o ∈ Δvi , τ (vi) = e, o(o) ∈ {repC, repN, del}};

8. (o, vo) =

{
(pAttr, vi) if repC ∈ delOp
(rAttr, vi) if repN ∈ delOp ∨ del ∈ delOp

9. Δ−1 = Δ−1 ∪ applySInversionRules(Δvi, D)
10. end if
11. end for
12. Δ−1 = Δ−1 ∪ applyGInversionRules(Δ,D)
Ensure: Δ−1 is an inverse of Δ on D according to Definition 2

Proof Sketch. The algorithm first requires to sort the PUL according to the pre-order
traversal of their target nodes, which can be performed in O(n log n), employing the
labeling information and standard algorithms. Overridden operation removal then re-
quires a single scan of the PUL, thus O(n). The application of inversion rules of class
S requires to consider each remaining operation and might identify up to n + r op-
erations, (O(n + r)). Finally, the application of the inversion rules of class G might
require, for each operation, to determine the left sibling/parent of the operation target
node in D. Assuming this cost s, the cost is O(sn), and, thus, the algorithm complexity
is O(n log(n) + sn + r).

4 Completed PULs

The approach discussed in the previous section, starting from a PUL Δ, identifies an-
other PUL Δ−1 which reverts the effects of Δ. An alternative approach is to extend the
operations presented in Table 2 with auxiliary information to allow their inverse (i.e.,
backward) application. These extended operations are reported in the last column of
Table 2 and are referred to as completed operations. The PUL obtained from Δ by re-
placing its operations with the corresponding completed operations is named completed
PUL and denoted by Δ↔. Completed PULs can be applied either forward (obtaining
the same effect of the original PUL Δ) or backward (obtaining the same effect of one
of its inverses). This approach does not require the explicit identification of an inverse
PUL and avoids to access the document. Indeed, all required data is already contained
in the completed PUL, which can be applied in streaming in both directions.

The forward application of a completed PUL simply consists in the streaming appli-
cation of the corresponding PUL, i.e., ignoring additional information included in com-
pleted operations. The definition of obtainable documents is trivially extended to com-
pleted PULs: O(Δ↔, D) = O(Δ, D). The backward application of a completed PUL
can be performed by applying a different set of transformations on event sequences.

176 F. Cavalieri, G. Guerrini, and M. Mesiti

Specifically: remove a node and its subtree from the sequence (for removing any in-
serted node); restore a subtree in its original position in the sequence (for restoring any
removed subtree); rename a node (for inverting ren operations); change value to a node
(for inverting repV operations). Consider a completed PUL Δ↔ applicable on a docu-
ment D, and a document D′ ∈ O(Δ↔, D). The algorithm for the backward application
of Δ↔ on D′ identifies a set of transformations for Δ↔ and applies them on the event
sequence corresponding to D′, obtaining the sequence of events corresponding to D.
Note that no transformation must be applied on a restored subtree, since it is already
restored as in the original document.

Example 7. Consider the completed PUL Δ↔ = {del(5, <name>EDBT04 W...6</name>5), repV(6,

”VLDB04”, ”EDBT04 W...”), repN(7, <author>X25</author>24, <author>B.Catania8</author>7} applicable
to the document in Fig. 1. To backward apply Δ↔, the inserted subtree (rooted at node
24) must be removed, while the removed subtrees (rooted at node 5 and 7) must be rein-
troduced. The inverse application of an overridden operation poses no problem, since
the corresponding transformation has no effect. For instance, the inversion repV re-
quires to change back the value of node 6, but node 6 will not be considered, as it is
restored by another transformation.

Algorithm 2 realize the backward application of a completed PUL Δ↔, applicable on
a document D, on a document D′ ∈ O(Δ↔, D), identifying the sequence of events
corresponding to D. Given Δ↔ and the sequence of events E′ corresponding to D′, the
algorithm produces the sequence of events E corresponding to D. The emit e1, ..., en

directive is employed to indicate that the events e1, ..., en are generated. For the sake of
conciseness, we denote the node, name, and value components of an event e, as e.v, e.n,
and e.s, respectively. Function Events is used to associate a set of subtrees, considered
according to the pre-order traversal of their roots in D, with the corresponding sequence
of events. The algorithm works as follows. First, the sets I and R of the nodes inserted
(that must be removed) and removed (that must be restored) by Δ↔ are identified. Then,
the algorithm processes the document. The sDoc event is simply emitted back when
encountered, while the other events are distinguished and the transformation applied.
When the eDoc event is encountered, in case the root of D is present in R (denoted
Rroot), it is restored before emitting back eDoc. For each other event e ∈ E′, the
original name and value of node e.v are determined (undefined if e.v does not have
a name/value property), then one of the following steps is performed: (i) In case e is
sElem or text: if the parent of e.v is not being removed, any removed preceding
siblings of e.v in R (denoted R←) is emitted. Afterwards, if node e.v should not be
removed e is emitted with the original name and value of e.v, (followed by the attributes
of e.v in R, denoted Rattr, if e is a sElem). (ii) In case e is eElem: if e.v should not
be removed, the children of node e.v in R (denoted R↘) are emitted, followed by e with
the original name and value of e.v. (iii) In case e is attr: e is emitted with the original
name and value of e.v, unless e.v has to be removed. To avoid restoring multiple times
the same subtree, subtrees are removed from R when restored.

Proposition 4 (Correctness). Let Δ↔ be a completed PUL applicable on a document
D, and let D′ be a document in O(Δ↔, D). The application of Algorithm 2 on Δ↔

and D′ produces D.

Reverting the Effects of XQuery Update Expressions 177

Algorithm 2. Completed PUL streaming backward application
Require: A completed PUL Δ↔ applicable on a document D, the sequence of events [e1, ..., en]

for a document D′ ∈ O(Δ↔, D)
1. I = {V (p(op))|o(op) ∈ {ins, repN, repC} ∧ op ∈ Δ↔} be the nodes inserted by Δ↔

2. R = {T (t(op))|o(op) ∈ {del, repN} ∧ op ∈ Δ↔} ∪ {T (γ(t(op))|o(op) = repC, op ∈
Δ↔} be the subtrees removed by Δ↔

3. for i = 1 to n do
4. if ei = sDoc() then
5. emit ei

6. else if ei = eDoc() then

7. Rroot =

{
T if ∃ T ∈ R s.t. T is the document root
∅ otherwise

8. emit Events(Rroot), ei

9. else

10. n̄ =

{
n′ if ∃ ren(ei.v, n, n′) ∈ Δ↔

ei.n otherwise
s̄ =

{
s′ if ∃ repV(ei.v, s, s′) ∈ Δ↔

ei.s otherwise
11. if ei = sElem(v, n) then

12. R← =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) �s v
∅ otherwise

13. if �v′ ∈ I s.t. v /c v′ then emit Events(R←) end-if
14. Rattr = {T1, ..., Tn|∀i, 1 ≤ i ≤ n, Ti ∈ R,R(Ti) /a v}
15. if v /∈ I then emit sElem(v, l, n̄), Events(Rattr) end-if
16. R = R \ (R← ∪ Rattr)
17. else if ei = eElem(v, n) then

18. R↘ =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) /c v
∅ otherwise

19. if v /∈ I then emit Events(R↘), eElem(v, n̄) end-if
20. R = R \ R↘
21. else if ei = attr(v, n, s) then
22. if v /∈ I then emit attr(v, n̄, s̄) end if
23. else if ei = text(v, s) then

24. R← =

{ {T1, ..., Tn} if ∃ [T1, ..., Tn] removal group in R s.t. R(Tn) �s v
∅ otherwise

25. if �v′ ∈ I s.t. v /c v′ then emit Events(R←) end-if
26. R = R \ R←
27. if v /∈ I then emit text(v, s̄) end if
28. end if
29. end if
30. end for
Ensure: The sequence of events emitted models the document D.

Proof Sketch. The inverse application of a completed PUL Δ↔ must (i) remove all
inserted nodes; (ii) restore the original value and name of nodes, and (iii) insert back in
the document any removed node in its original position. When the updated document
is processed any node that has been inserted by Δ↔ (the nodes in I) is not emitted
(removed). Otherwise the node is emitted back with its original value and name, which
is retrieved considering the ren and repV operations in Δ↔. In this process, the node
labels and the set of removed subtrees R are used to determine if any node must be

178 F. Cavalieri, G. Guerrini, and M. Mesiti

restored between two encountered nodes, ensuring that the original document nodes
are restored in their original position. Therefore, since the three properties are met by
Algorithm 2, we are guaranteed that the original document is produced.

Proposition 5 (Complexity). Let Δ↔ be a completed PUL of size n applicable on a
document D, let D′ be a document in O(Δ↔, D) composed of d nodes, and let i and
r be the number of nodes inserted and removed by Δ↔, respectively. The complexity of
Algorithm 2 is O(n log n + d + i + r).

Proof Sketch. The identification of the nodes to be removed and the original name
and value of updated nodes can rely on a hash-table, which requires O(n) for its ini-
tialization and O(1) for retrievals. For what concerns the restoration of nodes, a more
efficient representation of R is a list ordered according to the pre-order traversal of the
subtrees roots, with cost O(n log n). Moreover, since events are generated according to
a pre-order visit of the tree, identifying whether there is a subtree to restore, requires to
check only the first element in the list, with cost O(1), assuming that subtrees removed
multiple times are pruned during the inverse application. Assessing whether the parent
of a node has been removed requires constant time, provided that this information is
stored in a state variable. Thus, since all nodes in the updated document need to be
processed and up to r nodes need to be restored, the complexity of the algorithm is
O(n log n + d + i + r).

5 Evaluation

In this section we discuss some experiments we have conducted by means of the ex-
tended Qizx library that is able to generate and process both PULs and completed
PULs represented as XML documents containing the serialization of each operation
along with the identifiers and labels of the target nodes. Our test machine uses an Intel
I5 760 processor, 16GB of RAM, and runs the Sun JDK v.1.6.20.

To assess the computational costs of the inversion operator and contrast the pecu-
liar advantages of PULs and completed PULs, we exploit documents of various sizes,
ranging from 16MB to 256MB, produced by means of the XMark data generator. Node
identifiers and labeling have been stored within the corresponding documents through
an encoding of their XDM structure. On such documents, synthetic XQU expressions
and their corresponding PULs/completed PULs have been generated with a varying
number of operations that are equally distributed among the operation types.

Starting from an XQU expression the generation of a PUL Δ/completed PUL Δ↔

requires to load the whole document in memory before the actual evaluation of the
XQuery Update expression. When the expression is evaluated, generating a completed
PUL has the additional cost of retrieving and storing within the PUL itself all the mod-
ified values and removed nodes. Analogously, the generation of PUL inversion requires
to load the whole document in memory. The application of the so generated PULs, by
contrast, requires to load the whole PUL in memory and then update the corresponding
document through a single scan identifying a new document. While Δ and Δ−1 seri-
alizations contain only the strictly required information for their application, the serial-
ization of Δ↔ contains extra information that is discarded depending on the direction
(forward or backward) of application.

Reverting the Effects of XQuery Update Expressions 179

Fig. 3. Experiments

Given a synthetic XQU expression, we first investigated the correlation between the
size of the document and the time required for: (i) generating the corresponding PUL
Δ/completed PUL Δ↔; (ii) computing the inverse Δ−1 of Δ; (iii) applying Δ, Δ↔,
Δ−1 and backward applying Δ↔. In all cases, the portion of the document being in-
serted or removed is approximately 1MB. Results for this experiment are reported on
the left side of Fig. 3. Moreover, we consider a 64MB document and we vary the amount
of information removed or replaced (ranging from 0% to 50%). Results of the second
experiment are reported in the right side of Fig. 3. The experiments indicate that the
cost of generating or applying a PUL Δ∗ (either Δ, Δ↔, or Δ−1) is dominated by the
number of nodes analysed. Specifically, when a PUL Δ or Δ↔ is applied, the number of
nodes in the original document, those in the updated document and those in the PUL it-
self contribute to the running time of PUL application. Analogously, for the application
of Δ−1, the number of nodes in the original document and those in Δ and Δ−1 affect
the running time. Thus, when the portion of the document being inserted or deleted is
not relevant, PULs generation and application time are not influenced by Δ∗, while ap-
plications require almost twice the time of generations. By contrast, when the size of the
deleted portions of the document increases, completed PULs become less efficient, as
the forward application time is unchanged and its generation time increases. Similarly,
when the number of nodes inserted by a PUL is high, PUL backward application time
remains unchanged, and its generation time increases, even if to a lesser extent.

6 Related Work

The paper relies on the approach to update execution proposed in [3] which proposes
the decoupling of PUL production from PUL evaluation as an execution model for
XML updates expressed through XQU expressions in distributed contexts. The need
of more flexible mechanisms for update handling entails the development of suitable
mechanisms for reasoning on updates before actually apply them, and specifically for
composing as well as reverting them. In [3], PUL operators for composing updates (in-
tegration and aggregation) as well as for devising a compact representation (reduction)
are investigated, but inversion is not addressed.

180 F. Cavalieri, G. Guerrini, and M. Mesiti

The notion of completed PULs is inspired by completed deltas proposed by [11] in
the context of XML versioning. The goal of the two notions is the same, in that they both
aim at having a compact representation of changes that can be applied either forward (to
actually apply them) or backward (to revert their effects). However, completed deltas
are obtained by comparing two document versions (through diff algorithms) and do not
represent the effects of XQU expressions. As a consequence, both the set of primitive
operations and the associated semantics are different. A peculiar aspect in inverting
updates expressed as PUL is indeed related to the XQU snapshot semantics by which a
PUL is a unordered list of operations, that have to be applied on documents according
to some precedence among operators prescribed by [15] and formalized in a five stage
semantics in [1]. The inversion mechanism proposed in the paper is designed according
to that semantics. By contrast, completed deltas refer to sequences of non-conflicting
operations.

Though our approach is not specifically targeted to a transactional context, the ability
of reverting the effects of XML updates could also be useful in that setting. The no-
tion of compensating transaction as a transaction that semantically undoes the partial
effects of a transaction without performing cascading aborts of dependent transactions,
restoring the system to a consistent state, has been proposed in the context of long-lived
transaction [6,7,10] and is particularly relevant in the context of workflows and web ser-
vices [13]. These types of compensation range from traditional undo, at one extreme, to
application-dependent, special-purpose compensating transactions, at the other extreme.
XML transactions have been investigated in [5,8,9] but the focus was on isolation levels
and lock mechanisms. An approach to atomicity for XML transactions relying on state-
ment undos is proposed in [2]. They consider the update operations in a PUL as separate
transactions and discuss how individual operations can be undone. However, interactions
among different operations in a PUL, e.g., overriding, neither on the same node nor on
nodes bound by hierarchical relationships in the tree, are considered.

7 Concluding Remarks

In this paper we considered updates on XML documents expressed through XQU ex-
pressions and the corresponding dynamic model of updates based on PULs. We in-
vestigated the issue of reverting the effects of an update expression, referring to the
case in which PUL production is decoupled from their application. Two alternative
approaches have been considered: the first one is the inversion of a PUL through an in-
version operator. The second one is the extension of the PUL model (completed PULs)
so that the required information for both a forward and a backward (inverse) applica-
tion are included. We presented, discussed, and implemented in the Qizx library the
algorithms for both inverting a PUL and for the streaming backward application of a
completed PUL. Finally, we contrasted the two proposed approaches through an exper-
imental evaluation. As future work we plan to investigate the correlation between the
inversion operators presented in this paper with the operations proposed in [3] in order
to identify an algebra on PULs. Moreover, we wish to tailor the developed operator in
specific contexts like versioning, transaction, and cloud. Finally, in the current setting,
labeling information is stored within the document. This has the effect of increasing

Reverting the Effects of XQuery Update Expressions 181

the document size of three times. This issue could be solved by considering a shredded
representation of the document and, as future work, we wish to explore this possibility.

References

1. Benedikt, M., Cheney, J.: Semantics, Types and Effects for XML Updates. In: Gardner, P.,
Geerts, F. (eds.) DBPL 2009. LNCS, vol. 5708, pp. 1–17. Springer, Heidelberg (2009)

2. Biswas, D., Jiwane, A., Genest, B.: Atomicity for XML Databases. In: Bellahsène, Z., Hunt,
E., Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 180–187. Springer, Hei-
delberg (2009)

3. Cavalieri, F., Guerrini, G., Mesiti, M.: Dynamic Reasoning on XML Updates. In: EDBT, pp.
165–176. ACM Digital Library (2011)

4. Chien, S.-Y., Tsotras, V.J., Zaniolo, C.: Efficient Schemes for Managing Multiversion XML
Documents. VLDB J. 11(4), 332–353 (2002)

5. Dekeyser, S., Hidders, J., Paredaens, J.: A Transaction Model for XML Databases. World
Wide Web 7(1), 29–57 (2004)

6. Elmagarmid, A.K. (ed.): Database Transactional Models for Advanced Applications. Morgan
Kaufmann, San Francisco (1992)

7. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD Conference, pp. 249–259. ACM Press,
New York (1987)

8. Grabs, T., Böhm, K., Schek, H.-J.: XMLTM: Efficient Transaction Management for XML
Documents. In: CIKM, pp. 142–152 (2002)

9. Helmer, S., Kanne, C.-C., Moerkotte, G.: Evaluating Lock-based Protocols for Cooperation
on XML Documents. SIGMOD Record 33(1), 58–63 (2004)

10. Korth, H.F., Levy, E., Silberschatz, A.: A Formal Approach to Recovery by Compensating
Transactions. In: VLDB, pp. 95–106 (1990)

11. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-Centric Management of Versions
in an XML Warehouse. In: VLDB, pp. 581–590 (2001)

12. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms. In:
Updates in XML EDBT/ICDT Workshop (2010)

13. Peltz, C.: Web Services Orchestration and Choreography. Computer 3(10), 46–52 (2003)
14. PIXwere Ltd. QIZX. An Open-source XQuery Processor (2010)
15. W3C. XQuery Update Facility 1.0 (June 2009)

	Reverting the Effects of XQuery Update Expressions

	Introduction
	Preliminaries
	XML Document Representations
	Update Operations and PULs
	PUL Streaming Application

	PUL Inverse
	Operation Inversion
	PUL Inversion
	Inversion Algorithm

	Completed PULs
	Evaluation
	Related Work
	Concluding Remarks
	References

