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Table 1.  BrdU Counts in Adipose Tissue of C57/BL6 Mice. 

Sex Age 
Days 
BrdU  

Total 
Nuclei 

Counted 

Perilipin+ 

Cells 
Labeled 

with 
BrdU 

%Perilipin+ 
Cells 

Labeled with 
BrdU Per 

Day 

Total 
Nuclei 

Counted  

C/EBPα+ 

Cells 
Labeled 

with 
BrdU 

C/EBPα+ 

Cells 
Labeled 

with BrdU 
Per Day 

Female 6 weeks 1 1756 0.5% 0.5% n/d n/d n/d 
Female 6 weeks 1 1512 0.2% 0.2% n/d n/d n/d 
Female 6 weeks 1 2921 0.8% 0.8% n/d n/d n/d 
Female 6 weeks 1 1007 0.2% 0.2% n/d n/d n/d 
Female 6 weeks 1 1190 0.6% 0.6% n/d n/d n/d 
Male 6 weeks 1 2438 0.8% 0.8% n/d n/d n/d 
Male 6 weeks 1 1433 0.7% 0.7% n/d n/d n/d 

Female 6 weeks 3 1862 1.9% 0.6% n/d n/d n/d 
Female 6 weeks 3 1580 1.6% 0.5% n/d n/d n/d 
Female 6 weeks 3 782 1.4% 0.5% n/d n/d n/d 
Female 6 weeks 3 1478 2.0% 0.7% n/d n/d n/d 
Female 6 weeks 3 2283 1.4% 0.5% n/d n/d n/d 
Male 6 weeks 3 1558 1.0% 0.3% n/d n/d n/d 
Male 6 weeks 3 1201 2.0% 0.7% n/d n/d n/d 

Female 6 weeks 5 1073 3.0% 0.6% n/d n/d n/d 
Female 6 weeks 5 2235 2.4% 0.5% n/d n/d n/d 
Female 6 weeks 5 1809 2.0% 0.4% n/d n/d n/d 
Female 6 weeks 5 1709 3.4% 0.7% n/d n/d n/d 
Male 6 weeks 5 2304 2.0% 0.4% n/d n/d n/d 
Male 6 weeks 5 2528 2.3% 0.5% n/d n/d n/d 

Female 6 weeks 7 915 7.5% 1.1% n/d n/d n/d 
Female 6 weeks 7 1379 5.3% 0.8% n/d n/d n/d 
Female 6 weeks 7 2454 4.4% 0.6% n/d n/d n/d 
Female 6 weeks 7 1034 7.0% 1.0% n/d n/d n/d 
Female 6 weeks 7 779 8.2% 1.2% n/d n/d n/d 
Female 6 weeks 7 1489 2.4% 0.3% n/d n/d n/d 
Male 6 weeks 7 1053 3.0% 0.4% n/d n/d n/d 
Male 6 weeks 7 1051 6.0% 0.9% n/d n/d n/d 
Male 6 weeks 7 1502 4.0% 0.6% n/d n/d n/d 

Female 6 weeks 10 2622 8.1% 0.8% n/d n/d n/d 
Female 6 weeks 10 1719 8.0% 0.8% n/d n/d n/d 
Female 6 weeks 10 1160 5.8% 0.6% n/d n/d n/d 
Female 6 weeks 10 1035 6.4% 0.6% n/d n/d n/d 
Female 6 weeks 10 1258 8.8% 0.9% n/d n/d n/d 
Male 6 weeks 10 1238 6.5% 0.7% n/d n/d n/d 
Male 6 weeks 10 1925 8.5% 0.9% n/d n/d n/d 
Male 6 weeks 1 n/d n/d n/d 1388 2.1% 2.1% 
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Male 6 weeks 3 n/d n/d n/d 1100 4.5% 1.5% 
Male 6 weeks 5 n/d n/d n/d 1677 8.0% 1.6% 
Male 6 weeks 7 n/d n/d n/d 1710 14.0% 2.0% 

         
Summary   57272  0.63% 5875  1.78% 
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Table 2.  Ki67 Counts in C/EBPα-Labeled Adipose Tissue of C57/BL6 
Mice. 

Sex Age 
Total Nuclei 

Counted 

C/EBPα+ 
Cells 

Labeled 
with Ki67 

% C/EBPα+ 
Cells of 

Total Nuclei 
Female 6 weeks 1169 4.0% 40.5% 
Female 6 weeks 1792 3.3% 51.5% 
Female 6 weeks 1097 4.0% 54.3% 
Male 6 weeks 737 3.4% 44.0% 
Male 6 weeks 1834 4.2% 68.0% 
Male 6 weeks 1012 6.6% 43.5% 

Female 14 weeks 964 4.8% 45.6% 
Female 14 weeks 1472 4.4% 44.3% 
Female 14 weeks 1092 3.6% 56.7% 
Male 14 weeks 1282 4.5% 26.0% 
Male 14 weeks 1107 2.0% 48.7% 
Male 14 weeks 580 6.1% 39.5% 
Male 14 weeks 430 4.7% 58.8% 
Male 14 weeks 517 5.8% 56.9% 
Male 14 weeks 436 5.6% 61.4% 
Male 30 weeks 700 11.2% 35.9% 
Male 30 weeks 771 9.3% 60.3% 
Male 30 weeks 648 3.1% 54.2% 

     
Summary  17640 5.0% 49.4% 
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Table 3  Ki67  Counts in Adipose Tissue of C57/BL6 Mice by Confocal 
Microscope 

Sex Age  

 
Total 
%Ki67 

Total 
nuclei 
counted 

%CD31 
cells 
labeled 
with Ki67 

%Ki67+,
CD31- 
within 
Perilipin 
populati
on  

%Ki67+ of 
unknown 
cell type 

Female 6 weeks 4.8% 1311 0.9% 2.3% 1.5% 
Male 6 weeks 4.1% 1390 1.2% 1.4% 1.4% 

Female 
14 

weeks 3.6% 977 0.2% 1.6% 1.8% 
       

Summary  4.2% 3678 0.8% 1.8% 1.5% 
       

Sex Age  

 
Total 
%Ki67 

Total 
nuclei 
counted 

%Mac1 
cells 
labeled 
with Ki67   

Female 6 weeks 3% 856 0.6%   

Female 
14 

weeks 3.4% 960 1.8%   
       

Summary  3.2% 1816 0.7%   
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Table 4.  Ki67 Counts in Perilipin-Labeled Adipose Tissue of C57/BL6 
Mice. 

Sex Age 
Total Nuclei 

Counted 
 Ki67+ cells within 

Perilipin population 
Female 6 weeks 1578 2.2% 
Female 6 weeks 1024 2.3% 
Female 6 weeks 2311 1.3% 
Male 6 weeks 1690 2.5% 
Male 6 weeks 1267 1.1% 
Male 6 weeks 1536 2.4% 

Female 14 weeks 1035 2.0% 
Female 14 weeks 1383 2.5% 
Female 14 weeks 1613 0.8% 
Male 14 weeks 1783 1.9% 
Male 14 weeks 1271 1.8% 
Male 14 weeks 1136 1.0% 
Male 14 weeks 1385 1.8% 
Male 30 weeks 1567 1.9% 
Male 30 weeks 970 1.4% 
Male 30 weeks 1486 1.9% 
Male 30 weeks 1579 1.4% 
Male 30 weeks 384 1.6% 
Male 30 weeks 403 1.7% 

    
Summary  25401 1.8% 
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Table 5.  Statistical Analysis of Wildtype Cell Cycle Counts. 

Source 
of Data Sex Age Days BrdU 

Adipocyte 
Stain 

Cell Cycle 
Stain Average 

Standard 
Deviation 

Table 1 Female 6 weeks n/a Perilipin Ki67 2.0% 0.5% 
Table 1 Female 14 weeks n/a Perilipin Ki67 1.8% 0.9% 
Table 1 Male 6 weeks n/a Perilipin Ki67 2.0% 0.8% 
Table 1 Male 14 weeks n/a Perilipin Ki67 1.6% 0.4% 
Table 1 Male 30 weeks n/a Perilipin Ki67 1.7% 0.2% 
Table 1 Mixed 6 weeks n/a Perilipin Ki67 2.0% 0.7% 
Table 1 Mixed 14 weeks n/a Perilipin Ki67 1.7% 0.6% 

        
Table 2 Female 6 weeks n/a C/EBPα Ki67 3.8% 0.4% 
Table 2 Female 14 weeks n/a C/EBPα Ki67 4.3% 0.6% 
Table 2 Male 6 weeks n/a C/EBPα Ki67 4.7% 1.7% 
Table 2 Male 14 weeks n/a C/EBPα Ki67 4.8% 1.5% 
Table 2 Male 30 weeks n/a C/EBPα Ki67 7.9% 4.2% 
Table 2 Mixed 6 weeks n/a C/EBPα Ki67 4.2% 1.2% 
Table 2 Mixed 14 weeks n/a C/EBPα Ki67 4.6% 1.2% 

        
Table 3 Female 6 weeks 1 Perilipin BrdU 0.5% 0.3% 
Table 3 Female 6 weeks 3 Perilipin BrdU 1.7% 0.3% 
Table 3 Female 6 weeks 5 Perilipin BrdU 2.7% 0.6% 
Table 3 Female 6 weeks 7 Perilipin BrdU 5.8% 2.2% 
Table 3 Female 6 weeks 10 Perilipin BrdU 7.4% 1.3% 
Table 3 Male 6 weeks 1 Perilipin BrdU 0.7% 0.1% 
Table 3 Male 6 weeks 3 Perilipin BrdU 1.5% 0.7% 
Table 3 Male 6 weeks 5 Perilipin BrdU 2.2% 0.2% 
Table 3 Male 6 weeks 7 Perilipin BrdU 4.3% 1.5% 
Table 3 Male 6 weeks 10 Perilipin BrdU 7.5% 1.4% 

        
Table 3 Female 6 weeks Per Day Perilipin BrdU 0.6% 0.2% 
Table 3 Male 6 weeks Per Day Perilipin BrdU 0.6% 0.2% 
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Table 6.  Pairwise Statistical Analysis of P-values of Ki67 Counts in 
Adipose Tissue of C57/BL6 Mice of Various Ages. 
Fat Stain Used Age 6 weeks 14 weeks 30 weeks 
Perilipin 6 weeks - 0.4075 0.2669 
Perilipin 14 weeks  - 0.9033 
Perilipin 30 weeks   - 
C/EBPα 6 weeks - 0.5741 0.2712 
C/EBPα 14 weeks  - 0.3108 
C/EBPα 30 weeks   - 
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Table 7.  Ki67 Counts in Adipose Tissue of C57/BL6 OB/OB and DIO  Mice. 

Sex Genotype Age 

Total 
Nuclei 

Counted 
C/EBPα+ Cells 

Labeled with Ki67 

% C/EBPα+ 
Cells of Total 

Nuclei 
Female OB/OB 14 weeks 606 10.9% 34.8% 
Female OB/OB 14 weeks 395 7.0% 32.2% 
Female OB/OB 14 weeks 338 3.7% 39.9% 
Male OB/OB 14 weeks 604 7.5% 43.9% 
Male OB/OB 14 weeks 570 6.9% 50.7% 
Male OB/OB 14 weeks 389 7.8% 39.3% 

      

    

C/EBPα+ Cells 
Labeled with Ki67 

in Perilipin 
population 

 Total  
%Ki67  

Female OB/OB 14weeks 330 10.4% 13.3% 
Female OB/OB 6weeks 565 1.6% 2.3% 
Female OB/OB 6weeks 655 2.6% 3.5% 
Female OB/OB 6weeks 556 3.2% 4.4% 

      
Male DIO 14 weeks 823 2.7% 3.7% 
Male DIO 14 weeks 347 5.7% 6% 
Male DIO 14 weeks 577 2.4% 2.4% 

Summary DIO 14weeks 1747 3.6% 4% 
      
      
      

 



 10 

 

Table 8. BrdU Counts in Adipose Tissue of C57/BL6 OB/OB Mice Following 5 days of BrdU injection. 

Genotype Sex Age 
Total Nuclei 

Counted 
C/EBPα+ Cells 

Labeled with BrdU 
% C/EBPα+ Cells of 

Total Nuclei 
Wildtype Female 14 weeks 628 5.1% 62.9% 
Wildtype Female 14 weeks 742 2.7% 55.8% 
Wildtype Female 14 weeks 1028 2.4% 59.7% 
Wildtype Male 14 weeks 653 1.7% 44.1% 
Wildtype Male 14 weeks 495 2.4% 51.7% 
OB/OB Female 14 weeks 357 6.2% 49.9% 
OB/OB Female 14 weeks 333 6.9% 52.6% 
OB/OB Female 14 weeks 628 9.2% 42.4% 
OB/OB Male 14 weeks 466 12.4% 46.8% 
OB/OB Male 14 weeks 397 11.0% 59.7% 
OB/OB Male 14 weeks 285 12.5% 44.9% 
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Table 9.  Statistical Comparison of Wildtype and OB/OB Cell Cycle Counts. 

Source 
of Data Genotype Sex Age 

Days 
BrdU 

Adipocyte 
Stain 

Cell 
Cycle 
Stain Average 

Standard 
Deviation p-value 

Table 1 Wildtype Female 6 weeks n/a C/EBPα Ki67 3.7% 0.5%  
Table 1 Wildtype Male 6 weeks n/a C/EBPα Ki67 4.7% 1.7% 0.4292 

          
Table 1 Wildtype Female 14 weeks n/a C/EBPα Ki67 4.2% 0.7%  
Table 1 Wildtype Male 14 weeks n/a C/EBPα Ki67 4.8% 1.5% 0.4783 
          
Table 4 Wildtype Female 14 weeks 5 C/EBPα BrdU 3.4% 1.5%  
Table 4 Wildtype Male 14 weeks 5 C/EBPα BrdU 2.1% 0.5% 0.2550 

          
Table 1 Wildtype Mixed 6 weeks n/a C/EBPα Ki67 4.2% 1.2%  
Table 1 Wildtype Mixed 14 weeks n/a C/EBPα Ki67 4.6% 1.2% 0.5746 
          
Table 3 OB/OB Female 14 weeks n/a C/EBPα Ki67 7.2% 3.6%  
Table 3 OB/OB Male 14 weeks n/a C/EBPα Ki67 7.4% 0.5% 0.9325 

          
Table 1 Wildtype Mixed 14 weeks n/a C/EBPα Ki67 4.6% 1.2%  
Table 3 OB/OB Mixed 14 weeks n/a C/EBPα Ki67 7.3% 2.3% 0.0336 

          
Table 4 OB/OB Female 14 weeks 5 C/EBPα BrdU 7.4% 1.6%  
Table 4 OB/OB Male 14 weeks 5 C/EBPα BrdU 12.0% 0.9% 0.0200 
          
Table 4 Wildtype Mixed 14 weeks 5 C/EBPα BrdU 2.9% 1.3%  
Table 4 OB/OB Mixed 14 weeks 5 C/EBPα BrdU 9.7% 2.7% 0.0008 
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Table 10. BrdU Counts in Perilipin-Labeled Adipose Tissue of  6 weeks old pregnant C57/BL6 Mice.  

Day BrdU 
Time point after vaginal 

plug detection  
Total Nuclei Counted  Perilipin+ Cells Labeled with 

BrdU  
1 E0.5  914 0.5%  
1 E0.5  905 0.8%  
1 E0.5  751 3.3%  
1 E0.5  500 2.4%  
3 E2.5 357 0.8%  
3 E2.5 461 1.5%  
3 E2.5  725 5.5%  
3 E2.5 419 2.3%  
5 E4.5 586 3.5%  
5 E4.5 1321 5.6%  
7 E6.5  393 7%  
7 E6.5  904 6%  
1 E8.5 425 3% 
1 E8.5  1170 3%  
1 E8.5  448 7%  

10 E9.5 671 11.9% 
10 E9.5 799 10.5% 
10 E9.5 1067 7% 
 3 E10.5  1726 3%  
 3 E10.5  1095 2%  
 3 E10.5  545 1.1%  
7 E14.5 1002 1% 
7 E14.5 1492 4% 
7 E14.5 1282 2.1% 

Summary   19958  
    
    

 
 
 
 
 
 
 
 
 
 
 
 



 13 

 
 

Table 11. Ki67 Counts in Perilipin-Labeled Adipose Tissue of  6 weeks old pregnant C57/BL6 Mice.  

Female  
Time point after vaginal 

plug detection  
Total Nuclei Counted  Perilipin+ Cells Labeled with 

Ki67  
 E0.5  947  3.3%  
 E0.5  882  6.2%  
 E0.5  788 1.4%  
 E2.5  1340 1.7%  
 E2.5 1189 8%  
 E2.5 911 1.4%  
 E4.5  1359 4.7%  
 E4.5 945 8.8%  
 E6.5 1530 5.3%  
 E6.5 1321 4.2%  
 E8.5  661 3%  
 E8.5  738 5%  
 E8.5 1257 2.5% 
 E9.5  1068 3.9%  
 E9.5  1022 5%  
  E10.5  1687 3.8%  
  E10.5  1436 3.6%  
  E10.5  673 2.8%  

  E12.5  1065 2.1%  
  E12.5  1551 1.1%  
 E14.5 2088 2.2% 
 E14.5 746 2.5% 
    

Summary   24133 3.5%  
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Sex Group 
Days 
BrdU  

Total 
Nuclei 

Counted 

Perilipin
+ Cells 

Labeled 
with 
BrdU 

Operate
d side 

Total nuclei 
counted 

Perilipin+ 

Cells 
Labeled with 

BrdU Not 
Operated 

side 
Female Lipectomy 7 1248 8.1% 1391 2.2% 
Female Lipectomy 7 1083 14% 1267 2.9% 
Female Lipectomy 7 1109 7.4% 1087 2.5% 
Female Lipectomy 7 908 8.3% 1343 8.8% 
Female Lipectomy 7 322 17% 1247 5.9% 
Male Lipectomy 7 1542 10.6% 1339 4.1% 
Male Sham 7 1021 10.9% 982 3.6% 

Female      Sham 7 776 1.9% 834 3.7% 
Female      Sham 7 842 1.6% 734 3.5% 
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Table 13.  Ki67 Counts in Human Adipose Tissue 

Sex 

Total 
Nuclei 

Counted 

 C/EBPα+ 

Cells 
Labeled 

with Ki67 
within 

Perilipin 
population 

 C/EBPα+ of 
Total Nuclei 

within 
Perilipin 

population 
% Ki67+ of 
Total Nuclei 

Female 575 0.4% 50.5% 0.9% 
Female 489 1.0% 45.6% 1.4% 
Female 608 0.9% 52.9% 1.0% 

     
Average  0.8% 49.7% 1.1% 

Standard Deviation  0.3% 3.7% 0.3% 
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Table 14.  Purity of adipocytes in floating fraction of fat 
embedded in collagen. 

Fat Stain Used 
Total Nuclei 
Counted 

% C/EBPα-
Positive Cells 
Labeled with 
Mature Fat 
Marker 

BODIPY 132 86.2% 
BODIPY 57 96.3% 
BODIPY 73 89.5% 
Perilipin 112 76.5% 
Perilipin 42 100.0% 
   
Total 416 87.9% 
Standard Deviation  9.2% 
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Table 15.  AP2-CreER;R26R Lineage Analysis of Adipocytes. 

Experiment Genotype Sex 

Average % 
of Tissue 

Pixels 
Labeled 

with LacZ Standard Deviation 
Pulse AP2-CreER;R26R Female 46.7% 13.0% 
Pulse AP2-CreER;R26R Female 31.8% 9.1% 
Pulse AP2-CreER;R26R Female 30.0% 4.2% 
Pulse AP2-CreER;R26R Female 46.3% 8.3% 
Pulse AP2-CreER;R26R Male 45.1% 6.7% 

     
Total Pulse   40.0% 8.3% 

     
Chase AP2-CreER;R26R Female 44.3% 9.0% 
Chase AP2-CreER;R26R Female 44.6% 12.5% 
Chase AP2-CreER;R26R Female 39.1% 14.2% 
Chase AP2-CreER;R26R Male 40.3% 9.2% 
Chase AP2-CreER;R26R Male 43.2% 5.5% 

     
Total Chase   42.3% 2.5% 

     
Positive Rosa-Lacz (Positive) Female 48.4% 9.5% 
Positive Rosa-Lacz (Positive) Female 46.9% 7.7% 
Positive Rosa-Lacz (Positive) Female 48.0% 17.4% 
Positive Rosa-Lacz (Positive) Female 40.0% 5.7% 
Positive Rosa-Lacz (Positive) Female 43.6% 4.3% 

     
Total Positive   45.4% 10.3% 

     
Negative AP2-CreER (Negative) Female 1.9% 0.7% 
Negative AP2-CreER (Negative) Female 2.8% 1.2% 
Negative AP2-CreER (Negative) Female 9.2% 4.5% 
Negative AP2-CreER (Negative) Female 5.1% 1.8% 

     
Total Negative   4.7% 3.6% 
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Table 16.  Pulse-Chase of AP2-CreER;R26R SV fraction in vitro. 

Condition Genotype 

Total  
Nuclei 

Counted 
% LacZ+ of 
Total Nuclei SD 

Pulse Rosa-LacZ (Positive) 482 87.2% 10.1% 

Pulse 
AP2-CreER 
(Negative) 2354 1.2% 1.1% 

Pulse AP2-CreER;R26R 2338 2.1% 1.8% 
Pulse AP2-CreER;R26R 2873 1.9% 1.1% 
Pulse AP2-CreER;R26R 2129 1.7% 1.3% 
Total 
Pulse AP2-CreER;R26R 7340 1.9% 1.4% 

     

Chase Rosa-LacZ (Positive) 1482 81.4% 8.1% 

Chase 
AP2-CreER 
(Negative) 1942 0.3% 0.5% 

Chase AP2-CreER;R26R 2061 3.9% 3.3% 
Chase AP2-CreER;R26R 13072 2.6% 1.3% 
Total 
Chase AP2-CreER;R26R 15133 3.1% 2.2% 
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Table 17.  Pulse-Chase of AP2-CreER;R26R SV fraction embedded in 
collagen. 

Condition Genotype 

Total  
Nuclei 

Counted 
% LacZ+ of 
Total Nuclei SD 

Pulse 
Rosa-LacZ 
(Positive) 263 69.8% 14.4% 

Pulse 
AP2-CreER 
(Negative) 3450 0.4% 0.4% 

Pulse AP2-CreER;R26R 7225 1.6% 0.5% 
     

Chase 
Rosa-LacZ 
(Positive) 1101 42.3% 4.2% 

Chase 
AP2-CreER 
(Negative) 1308 0.9% 1.2% 

Chase AP2-CreER;R26R 1846 5.8% 2.1% 
Chase AP2-CreER;R26R 1308 10.3% 2.6% 
     
Total 
Chase 

AP2-
CreER;R26R 3154 7.1% 3.1% 
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Our experiments were designed to address the mechanism of growth and 

maintenance of the adipose tisssue. To determine whether all the cells in the 

adipose tissue of adult mouse turn over at the same rate, we utilized the 

tetracycline-inducible H2BGFP transgenic system. Here, the tetO-H2BGFP 

transgenic cassette results in labeling of most cells in a given tissue and provides a 

broad view of the population dynamics. Similar to results with pancreatic β-cells 

(Brennand et al. 2007), but unlike the results in skin follicular cells, hematopoietic 

stem cells, muscle satellite cells and intestinal stem cells (Tumber et al. 2004, 

Brennand et al. 2007), no outlying population of LRCs was identified in the murine 

adipose tissue. Instead, we found a uniform loss of the H2BGFP labeling with time 

in adipose tissue, prompting us to suggest homogeneity exists within the adipose 

pool with respect to replicative potential. Stated otherwise, all the cells within the 

adipose tissue appear to turnover similarly. 

In order to determine cellular turnover and whether cells in the adipose tissue 

undergo frequent replication, we next assayed the ability of the cells in the adipose 

tissue to incorporate an artificial nucleotide analog, 5-bromo-2’-deoxyuridine  

(BrdU), via DNA synthesis. By immunohistochemical analysis of BrdU 

incorporation we found that within the Perilipin-expressing cells population, 0.6% 

of the cells had incorporated BrdU per day, and that 1.8% of C/EBPα-positive cells 

were in S-phase per day. It is important to note that BrdU labeling of Perilipin-

expressing adipocytes may result via BrdU incorporation into replicating 

preadipocytes immediately prior to adipocyte differentiation. We next investigated 

the expression of Ki67, a well-established marker of cell division, in adipose tissue 

of C57/BL6 mice at various ages and we found that 4.8% of C/EBPα-positive cells 

were in the cell cycle at any time. FACS analysis of  nuclei from dissociated fat 

tissue of  8 weeks old wild-type mice showed that the total percentage of Ki67-
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positive C/EBPα-positive nuclei in the floating fat sample was 2.36%; of this 

0.45% represented C/EBPα-high Ki67-positive events. FACS plots of the 

stromal/vascular nuclei from dissociated fat tissue of wild-type mice, stained for 

Ki67 and C/EBPα showed that the total percentage of Ki67-positive C/EBPα-

positive nuclei was 3.85%; of this 0.06% represented C/EBPα-high Ki67-positive 

events, and 3.79% represented C/EBPα-low Ki67-positive events. In addition, 

performing confocal analysis on whole-mount adipose tissue we counted a total of 

4.2% of Ki67 positive nuclei, of  this 0.8% represented CD31 Ki67 positive cells, 

1.8% of Ki67 positive cells were negative for CD31 and overlapped with Perilipin 

expressing cells, while for 1.5% of Ki67 positive cells we could not determine the 

nature of the cellular type.  

To directly compare the replicative capacity of cells in the adipose tissue, we 

performed a lineage tracing analysis to obtain evidence that adipocytes may be 

capable of giving rise to new adipocytes. We examined white adipose tissue from 

AP2-CreER;R26R pulse–chased animals and did not observe any loss of lacZ label 

with time. Therefore, though sufficient turnover of the adipose tissue occurs within 

two months as determined by our H2BGFP labeling experiments in vivo, our 

lineage-tracing analysis may suggest that one source of new adipocytes may be 

preexisting adipocytes, as evidenced by the permanent, heritable lacZ labeling 

within fat cells. According to this hypothesis, the adipocyte population would be 

maintained at least in part by adipocyte replication. However, 1.9% of the SV 

fraction positive for LacZ, might represent a population of precursors which 

proliferate to give rise to a substantial proportion of adipocytes.  

 

Our experiments allowed us to estimate the turnover rate of fat cells in adipose 

tissue based on the addition of new cells measured by BrdU incorporation and loss 

of cells measured by the loss of H2B-GFP in the tissue.  

There are several possible explanations for the recorded diminution of H2BGFP 

intensity in adipose tissue:  

∗ GFP dilution due to high replicative rate of preadipocytes and adipocytes. 
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One possibility could be a high replicative rate of cell division, suggesting that all 

fat cells - mature adipocytes and preadipocytes - contribute equally to fat growth 

and maintenance in wild-type mice. The finding that mature adipocyte may undergo 

replication, thereby contributing to the maintenance and expansion of the adipocyte 

population, would challenge the view that adipocytes are incapable of replication 

and that the cellular turnover occurring in this adipose tissue results entirely from 

preadipocyte differentiation. 

However, although our data, including our preliminary lineage-tracing experiments, 

may suggest that mature adipocytes are capable of replication, further experiments 

are required to formally prove this notion. Specifically, direct evidence of 

adipocytes replication would be required. 

It is very important to remember that the analysis of adipose tissue by 

immunohistochemistry is quite challenging experimentally. Adipose tissue is highly 

vascularized and every adipocyte is juxtaposed with multiple capillaries [Crandall 

et al., 1997], making it very difficult to determine if a nuclear antigen such as Ki67 

is a present in the nucleus of an adipocyte or in the nucleus of an adjacent 

endothelial cell. In addition, macrophage infiltration of fat tissue may occur, adding 

further complexity by introducing yet another type of cell that is difficult to 

separate from adipocytes. Moreover, macrophages are known to engulf debris such 

as dying cells by phagocytosis, leading to an additional potential source of error. 

Thus our results cannot be considered definitive proof of mature adipocyte 

replication due to the absence of a nuclear marker for mature adipocyte. High-

resolution histological evidence demonstrating fat cells with mitotic figures is 

critical direct evidence that adipocytes divide. This could be done by digesting 

adipose tissue to obtain single cells, and thereafter stain adipocytes with established 

markers of mitosis such as phospho-histone 3 (PH3). Another important experiment 

that would allow us to determine whether mature adipocytes are capable of 

replication would be to repeat our lineage-tracing analysis with AP2-Cre mice 

using mice where Cre recombinase is driven by a gene specifically expressed in 

mature fat cells, such as Leptin. Unfortunately, to our knowledge, there are no such 

mice available today. 
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In addition, a critical experiment would be to use our inducible Cre system to 

knockout a protein required for replication in mature adipocytes. This would allow 

us to confirm the validity of our assay but more importantly assess the importance 

of adipocyte replication for maintenance of adipose tissue mass under normal and 

obesogenic condition.  

 

Stem cells are defined by the ability to self-renew and differentiate into a variety of 

cell types. While some adult organs, including the intestine (Cheng and Leblond, 

1974), skin (Oshima et al., 2001), blood (Spangrude et al., 1988), and parts of the 

brain (Doetsch et al., 1999; Reynolds and Weiss, 1992), are maintained by stem 

cells, others, such as the pancreas (Dor et al., 2004), are not. Pancreatic β-cells are 

not the only differentiated cell type capable of growth and maintenance without the 

support of an adult stem cell population. Hepatocytes are highly replicative and not 

thought to be supported by a facultative stem cell under normal conditions (Alison 

et al., 2001). Pulse–chase analysis with the tetracycline-inducible H2BGFP label 

shows that all hepatocytes lose their label at the same rate. Therefore, like the β-cell 

population (Brennand et al 2007), the hepatocyte population seems to be 

homogeneous with respect to replicative potential. 

 

We do not know of an example of a mature differentiated cell type that has two 

populations (one replicative and the other not). We can speculate that when tissues 

are without an adult stem cell, they are replenished by equal replication of all 

differentiated cells.  

If adipocytes divide, the adipose tissue would represent the first example of a tissue 

that has both stem cells (or progenitor cells) and mature cells that divide, both 

thereby contributing to the maintenance of the tissue.  

 

∗ Dilution of GFP due to apoptosis, necrosis or macrophage engulfment. 

However, until definitive proof that mature adipocytes can undergo cell division is 

obtained, other interpretations of the diminution of fluorescence intensity have to be 

considered. One such alternative explanation for our findings could be that 
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adipocytes are lost due to apoptosis, or macrophage engulfment or necrosis. This 

supports the idea that adipocytes are postmitotic and that adipose tissue is 

maintained by stem cell/progenitor cell populations. Numerous data show that 

adipocyte precursors are capable of both maintaining the progenitor pool and 

producing adipocytes, and indeed, we found evidence of replication in the SV 

fraction of adipose tissue in all of our experiments. 

 

 

An important experiment that would allow us to further elucidate the turnover of 

adipose tissue would be to measure the percentage of adipose cells undergoing 

apoptosis. This could be done by fluorescent detection of apoptotic cells by the 

widely used TUNEL assay or by staining sections of adipose tissue with antibodies 

specific for Caspase 3, a protein expressed in apoptotic cells. 

 

Two recent publications have provided elegant experimental evidence supporting 

the long-believed notion that stem/progenitor cells in adipose tissue as a source of 

newly generated adipocytes. Friedman’s and Graff’s groups (Rodeheffer et al. 

2008, Tang et al. 2008) utilized a range of new in vivo tools to elucidate the 

molecular signature of white adipose stem cells and the niche from which they 

derive. By using cell surface markers and lineage tracing to identify and isolate 

stem cells, they demonstrated the capability of these cells to self-renew and, 

following transplantation, to give rise to functional adipose depots. Furthermore, 

through in vivo experiments they proposed that white adipose progenitors reside 

within the mural cell compartment of vascular vessels that supply adipose depots. 

(Zeve et al. 2009, Rodeheffer et al. 2008, Tang et al. 2008). It is believed that the 

general behavior of stem cells, including phenomena such as quiescence, 

proliferation, and differentiation, are controlled by the specific environment in 

which they reside; their niche. Thus the vasculature may provide important cues for 

adipose stem cells, and antiangiogenic factors, that may be believed to counteract 

angiogenesis in adipose tissue and inhibit signals from existing vasculature 

providing trophic support for preadipocytes, might be a possible approach for 
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treating obesity (Rupnick et al. 2002, Kolonin et al. 2004, Nishimura et al. 2007, 

Zeve et al. 2009).  

 

The molecular and cellular processes that regulate fat mass remain almost entirely 

unknown. White adipose tissue is the only tissue in the body that can markedly 

change its mass after adult size is reached.  Indeed, fat mass can range from 2-3% 

of body weight to as much as 60-70% of body weight in humans. (Hausman, D. B. 

et al. 2001). This expansion could involve several mechanisms, most widely 

believed to be due to adipocyte hyperplasia and hypertrophy. The existence of a 

hyperplastic response suggests the involvement of the stem cell compartment but 

this statement does not imply that adipose stem cells are the driving force for 

adipose tissue expansion. It is known that obesity is characterized by an increase in 

adipocyte size. Our data show that in the Ob/Ob mice model of obesity there is an 

increase of adipocyte size and adipose tissue replication. Though we cannot assure 

whether the increased replication is due to mature fat cell division, a progenitor-

mediated expansion of the tissue, or macrophages “contaminating” the 

immunohistochemical analysis, we can speculate that once a stimulus (such as 

caloric intake greater then expenditure) is prolonged, the hypertrophic response 

may contribute to metabolic dysregulation which might result in recruitment of new 

cells from stem cells/precursors. 

 

Given the recent enormous increase in the incidence of obesity, adipocytes and fat 

is today most often considered a harmful tissue that for therapeutic reasons 

commonly should be reduced. However, there are clinical instances when increase 

of fat tissue, through transplantation or stimulation of the endogenous adipogenic 

machinery, would be expected to be beneficial. In this regard, adipose tissue has 

been stated useful for various regenerative approaches (Zeve et al. 2009, Hansson et 

al. 2009). For instance, it has been proposed that the capability of inducing stem 

cells to form adipose tissue would be beneficial for the treatment of lipodystrophy 

(Zeve et al. 2009). Another possible application might be in the reconstructive 

surgery to ameliorate anatomical defect such as wound healing, as several reports 
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have suggested (Tang et al. 2008, Lu et al. 2008, Rodeheffer et al. 2008). Adipose 

stem cells have also been proposed in the treatment of women after lumpectomy 

due to breast cancer (Zeve et al. 2009). In addition to regenerative applications, fat 

stem cells have been proposed to be used as a cellular source for some diseases 

such as metabolic dysfunction. Subcutaneous white adipose tissue is thought to 

play a role in reducing metabolic disorder, so the possibility to isolate, expand and 

reimplant subcutaneous stem cells has been seen as a useful way to reduce blood 

glucose, cholesterol levels and cancer risk. In this regard, humans have 

considerable amount of adipose tissue, it should not be difficult to obtain adipose 

cells for therapeutic use.     

Several studies suggested that brown adipose tissue activity could impact daily 

energy expenditure (Seale P., Lazar M.A., 2009). Another interesting strategy that 

has been proposed may be the coaxing white adipose stem cells to adopt a brown 

fat-like phenotype, in order to enhance energy dissipation after reimplantation 

(Zeve et al 2009, Seale et al. 2009). 
 

 

Although obesity is a metabolic disorder ultimately caused by energy imbalance, a 

greater understanding of adipose tissue growth and maintenance may one day aid in 

the treatment of obesity. Our data support the notion of a dynamic turnover of 

adipose tissue, and we also show that in one of the most clinically relevant models 

of obesity in mice, the rate of adipose tissue replication is significantly increased.  It 

seems reasonable to extrapolate this finding to the human population. We can 

imagine two timepoints of therapeutic intervention against adipose tissue 

replication in cases of human obesity. First, it is widely accepted that there is a 

substantial increase in fat cell number during adolescence and it is believed that an 

elevated number of adipocytes at the end of this period is a strong predictor of adult 

obesity (Lloyd et al. 1961, Freedman et al. 2001).  The ability to slow the rate of 

adipose tissue replication during this critical period of adolescent and early adult 

development may therefore prevent both juvenile and adult obesity.  Second, it may 

be that adult obesity itself is caused, or exacerbated, by elevated rates of precursor 
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and/or adipocyte replication.  If this is true, targeted intervention to reduce adipose 

tissue replication in adults may facilitate weight loss in obese patients.  

 

Our data should both refocus attention to established questions as well as provide 

novel and stimulating ideas for the fields of adipocyte biology and obesity. For 

example, how is turnover of fat issue regulated? Are new adipocytes generated 

solely from preadipocytes or also from mature adipocytes? When, why, and how do 

cells in adipose tissue decide to divide? Does replication play a fundamental role in 

particular conditions such as obesity, regernation following lipectomy, fasting, 

extreme exercise, or pregnancy? Are the kinetics of adipose tissue turnover 

different during different stages of life? If so, how is such a phenomenon regulated? 

When does adipose tissue use stem cell recruitment for the growth and maintenance 

of the tissue and when is replication used instead? Do adipose stem cells arise in 

situ in the vessel or do they form elsewhere and migrate to the vessel wall? What 

are the signals that control adipose stem cells biology? Do fat stem cells play an 

important role in homeostasis and maintenance of the tissue or only in response to 

particular conditions such as high fat diet? How is the turnover of adipose tissue 

regulated in terms of the genetic programs for adipogenesis, differentiation, 

replication and apoptosis? 

Answers to these questions has the potential to expand our knowledge of the 

pathogenesis of obesity, and may open up possibilities for novel therapeutic 

approaches that may prove to be of great importance in the treatment of obesity and 

diseases associated with obesity.  
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