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Introduction

0.1 The Goldbach problem

Goldbach stated in 1742 that every even integer can be written as a sum of
two primes. This problem has been studied by many mathematicians such as
Hardy and Littlewood in the 1920’s, Vinogradov in the 1930’s, Montgomery
and Vaughan in the 1970’s, to quote just a few.

In 1923 Hardy and Littlewood [12] studied the size of the exceptional set
for Goldbach’s problem, that is

E(N) = |{n < N even integer : n 6= p1 + p2}| (0.1.1)

where p1, p2 are two primes. They proved that, assuming the Generalized
Riemann Hypothesis (GRH for short, see §0.4), almost all even numbers are
sums of two primes: in other words that E(N) = o(N) as N → +∞ . Then
in 1937 Vinogradov [48] was able to remove the dependence on the GRH
and he gave an unconditional proof of the above conclusion. More precisely,
Hardy and Littlewood [12] proved that:

E(N) ¿ N1/2+ε

for every ε > 0 and large N .
In 1952 Linnik [29] proved that, if the Riemann Hypothesis (RH for short,

see §0.4) is true, then for large N the interval [N,N + log3+ε N ] contains a
sum of two primes.

In 1975 Montgomery and Vaughan [36] unconditionally proved that there
is a positive (effectively computable) constant δ such that, for all large N ,

E(N) ¿ N1−δ.

This result has been improved by Pintz in 2006: in fact, he announced in
[40] that one can take δ = 1/3, but the proof has not been published yet.

Assuming GRH, Goldston [8] obtained in 1992 that

E(N) ¿ N1/2L4
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where L = log2(N) and log2 denotes the base 2 logarithm. Then he improved
it to

E(N) ¿ N1/2L3.

We will also look for exceptions in a so-called short interval, that is, an
interval of the type [N, N + H] with N → +∞ and H = o(N). When we
study this kind of problem, we give conditions on H such that the size of the
exceptional set is o(H). The best unconditional results have been obtained
in 1993 by Perelli and Pintz in [39], where they proved that almost all even
numbers in the interval [N,N + N7/36+ε] are sums of two primes, provided
that 0 < ε < 2/3. Actually, they proved something even stronger.

In the same year Kaczorowski, Perelli and Pintz [17] proved that, as-
suming the Generalized Riemann Hypothesis and supposing that HL−10 →
∞, all even integers in any interval of the form [N,N + H] with at most
O(H1/2L5) exceptions are sums of two primes.

0.2 The Goldbach-Linnik problem

The Goldbach-Linnik problem is a variation of Goldbach’s one: here the goal
is to prove that all even integers can be written as a sum of two primes and
k powers of 2, where k is a fixed positive integer. In some sense this problem
is an approximation of the Goldbach one and is, in fact, simpler.

Assuming GRH, in 1951 Linnik [28] proved that there exists a constant
k > 0 such that every sufficiently large even integer has a representation
as the sum of two primes and k powers of 2. Then in 1953 [30] he proved
the same thing unconditionally and later in 1975 Gallagher [5] simplified his
proofs.

From 1998 many mathematicians studied, both conditionally and uncon-
ditionally, the problem of finding a value k0 such that every sufficiently large
even integer has a representation as a sum of two primes and k0 powers of
2. In 1998 Liu, Liu and Wang [31] found that k0 = 770 is acceptable under
GRH and in the same year they found k0 = 54000 unconditionally. The
subsequent unconditional results are k0 = 25000 due to Li [26], k0 = 2250
due to Wang [49], k0 = 1906 due to Li [27], k0 = 13 due to Heath-Brown and
Puchta [16], k0 = 12 due to Elsholtz (unpublished) and k0 = 8 due to Pintz
and Ruzsa [41]. Assuming GRH, the improvements were k0 = 200 due to
Liu, Liu and Wang [33], k0 = 160 due to Wang [49] and then k0 = 7 proved
independently by Pintz and Ruzsa [41] and Heath-Brown and Puchta [16].

In Chapter 5 we improve conditionally the last result of Pintz and Ruzsa.
To do this we will introduce an appropriate version of the Generalized Mont-
gomery Conjecture (GMC(θ)), described in (0.4.5): in fact we will try and
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find the values of θ ∈ [1/4, 1/2], such that, assuming GRH and GMC(θ), we
can prove that all the even integers larger than N0, where N0 is a computable
constant, are sum of two primes and k powers of 2, with k ∈ {3, 4, 5, 6}.

The idea is to use GMC(θ) to give an estimate for a suitable exponential
sum, see (0.5.11), instead of Vaughan’s one in (10.6) of [41].

Another kind of problem has been studied by Languasco, Pintz and Zac-
cagnini in [24]: they gave an asymptotic formula for the number of repre-
sentation of n as the sum of two primes and k powers of 2, valid for almost
all even integers, that is, that the asymptotic formula fails for at most o(N)
values of n ∈ [N, 2N ].

In Chapter 1 and Chapter 2 we give an estimate for the size of the ex-
ceptional set of Goldbach-Linnik in short intervals. In our case we consider
intervals of the form [N, N + H], where H = Nγ with 0 < γ ≤ 1. To reach
our aim, first we consider the case with a single power of 2 (Ch.1) and then
we extend the result to the case with k powers of 2 (Ch.2). We use together
the technique of Kaczorowski, Perelli and Pintz [17], the technique of Pintz
and Ruzsa [41] and the one of Languasco, Pintz and Zaccagnini [24] to prove
that the size of the exceptional set of Goldbach-Linnik in short intervals is
16c(γ)2k(1 + o(1))/17 times the size of the exceptional set of Goldbach in
short intervals, where c(γ) is a computable constant such that c(γ) → 1 as
γ → 0 and c(1) = 0.7163435444776661.

Furthermore in Chapter 4 we use another technique involving series in-
stead of finite sums to estimate the size of the exceptional set of Goldbach-
Linnik in long intervals and we prove that this is c2k times the size of the
exceptional set of Goldbach in long intervals, where c is defined as above.

0.3 Diophantine problem with powers of two

and two primes

It is of interest to examine what happens if we analyze the real analogous of
Goldbach-Linnik problem, that is concerning the numbers of the form

λ1p1 + λ2p2 + µ12
ν1 + · · ·+ µs2

νs (0.3.1)

with λ1, λ2, µ1, . . . , µs real numbers not all equal to one.
This kind of problem has been studied in 1974-1976 by Vaughan [44],

[45], [46], then in the nineties by Brüdern, Cook and Perelli [1], by Harman
[14], and in 2006 by Cook and Harman [2]. In particular in 2003 Parsell [38]
proved, under certain conditions, that the values of the form (0.3.1) approx-
imate any real number to arbitrary accuracy as s increases, more precisely
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he found an upper bound to the number s of power of two involved. Then
in 2007 Languasco and Zaccagnini [25], under certain conditions, improved
this result and in Chapter 6 of this work we will find a better upper bound
introducing GRH.

0.4 Description of the main hypotheses

Let s = σ + it and σ > 1. Let us define the Riemann zeta-function

ζ(s) =
∞∑

n=1

n−s =
∏

p

(
1− 1

ps

)−1

. (0.4.1)

The ζ function can be continued analytically over C \ {1} and then is mero-
morphic. It has only a simple pole in s = 1 with residue 1; it has also trivial
zeros in −2n with n ≥ 1, n ∈ N and we know that the zeros for σ ≥ 0 are
located in the critical strip σ ∈ (0, 1).

1. Riemann Hypothesis (RH): All the non-trivial zeros of ζ(s) are on
the line σ = 1/2.

For more details we refer to Davenport’s book [3], Chapters 1, 8 and 13.

We recall that a Dirichlet primitive character χ to the modulus q is a
function of the integer variable n, which is periodic with period q and is also
completely multiplicative. For more details we refer to Davenport’s book [3],
Chapters 1, 4 and 5.

Now let q ≥ 3 be an integer, s = σ + it with σ > 1 and χ be a primitive
character modulo q; then we define the Dirichlet L function associated to χ

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏

p

(
1− χ(p)

ps

)−1

. (0.4.2)

The L function can be continued analytically over the whole complex plane
and then is holomorphic. It has trivial zeros in −2n with n ≥ 0, n ∈ N, if
χ(−1) = 1 and in −2n + 1 with n ≥ 1, n ∈ N, if χ(−1) = −1. Furthermore
we know that for σ ≥ 0 the zeros are in the critical strip σ ∈ (0, 1).

2. Generalized Riemann Hypothesis (GRH): All the non-trivial zeros
of L(s, χ) are on the line σ = 1/2, for χ primitive.

Again for more details we refer to Davenport’s book [3], Chapters 4, 5, 9
and 14.
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3. Montgomery’s Conjecture (MC): Assume RH and let

F (N, T ) = 4
∑

0<γ1,γ2≤T

N i(γ1−γ2)

4 + (γ1 − γ2)2

where γ1, γ2 run over the imaginary part of the non-trivial zeros of the Rie-
mann zeta-function ζ(s). This is the so called pair-correlation function
and gives a relationship between zeros on the critical line. Then

F (N, T ) ∼ 1

2π
T log T for N →∞ (0.4.3)

uniformly for N ε ≤ T ≤ N , for every fixed ε > 0.

For a detailed description see Montgomery’s article [35]. He introduced
MC while he was studying the vertical distribution of the zeros of the Rie-
mann zeta function and it is now well known that MC is strongly connected
with the distribution of primes and related problems, see for example Gal-
lagher and Mueller [6], Heath-Brown [15], Goldston and Montgomery [9] and
Goldston [7].

4. Generalized Montgomery’s Conjecture (GMC(θ)): For (a, q) = 1
write

F (N, T ; q, a) = 4
∑

χ1,χ2(q)

χ1(a)χ2(a)τ(χ1)τ(χ2)
∑

|γ1|,|γ2|≤T

N i(γ1−γ2)

4 + (γ1 − γ2)2

(0.4.4)

where τ(χ) denotes the Gauss sum, see (A.3.1), and γ1, γ2 run over the imagi-
nary part of the non-trivial zeros of L(s, χj) with j = 1, 2 and χj is a primitive
character. Now assume GRH and let θ ∈ (0, 1/2] be fixed and V = N1−θ/q.
Then we assume that for every ε > 0

F (N, T ; q, a) ¿ε q2TN ε (0.4.5)

uniformly for V ≤ T ≤ N and q ≤ N θ.

For a detailed description see page 350 of the article of Languasco and
Perelli [23]. They have introduced GMC(θ) in order to study conditionally
the exceptional set in Goldbach’s problem.
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0.5 Global definitions

In this section we will give the definitions that will be useful in all this work.
Let N → +∞, H = H(N) = o(N); first we have to define the functions
related to Goldbach’s problem, that are:

r′′(n) =|{(p1, p2) ∈ P2 : n = p1 + p2}|, (0.5.1)

R′′(n) =
∑

h1+h2=n

Λ(h1)Λ(h2), (0.5.2)

where R′′(n) is strictly linked to r′′(n), P is the set of all prime numbers and
Λ(h) is the von Mangoldt function, see (A.1.1).

The problem here is to study the size of the exceptional set, that is:

E(N, H) = |{N ≤ n ≤ N + H, with n even : n 6= p1 + p2}|, (0.5.3)

where p1, p2 ∈ P. If H = N we will write E(N) instead of E(N,N).
The asymptotic formula that we expect is linked to the singular series,

defined as

S(n) =





2
∏

p>2

(
1− 1

(p−1)2

) ∏
p|n
p>2

(
p−1
p−2

)
if n is even

0 if n is odd.
(0.5.4)

The expected asymptotic formula for even n is

R′′(n) ∼ nS(n). (0.5.5)

A heuristic explanation for this can be found in the article of Hardy and
Littlewood [11].

Now for brevity, let L = log2 N , ν = (ν1, . . . , νk) ∈ [1, L]k and s(ν) =
s(ν1, . . . , νk) = 2ν1 + . . . + 2νk , where k ≥ 1 is fixed. Then we have the
functions related to the Goldbach-Linnik problem:

r′′k(n) =|{(p1, p2,ν) ∈ P2 × [1, L]k : n = p1 + p2 + s(ν)}|, (0.5.6)

R′′
k(n) =R′′

k(n,N) =
∑

ν∈[1,L]k

h1+h2+s(ν)=n

Λ(h1)Λ(h2). (0.5.7)

We want to study the size of the exceptional set, that is:

Ek(N,H) = |{N ≤ n ≤ N + H, with n even : n 6= p1 + p2 + s(ν)}|,
(0.5.8)
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where p1, p2 ∈ P and ν ∈ [1, L]k. If H = N we will write Ek(N) instead of
Ek(N, N).

If we let

Mk(n) =
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))S(n− s(ν)), (0.5.9)

then the asymptotic formula that we expect is

R′′
k(n) ∼ Mk(n), (0.5.10)

as we will see from the main term of (1.2.13) in the case k = 1 and from the
main term of (2.2.6) in the general case.

Furthermore for every real α let

e(α) = e2πiα

and, for brevity, for integer q and for real α let

eq(α) = e

(
α

q

)
.

Now we introduce the relevant exponential sums. Let

S(α) =
∑
n≤N

Λ(n)e(nα) (0.5.11)

and

G(α) =
∑

1≤ν≤L

e(2να). (0.5.12)

Notice that by the orthogonality of the complex exponential functions

R′′
k(n) =

∫ 1

0

S(α)2G(α)ke(−nα)dα, (0.5.13)

which is the starting point of the circle method. The idea is to split the inter-
val [0, 1] by means of Farey’s dissection of order Q, see §A.4. In Goldbach’s
problem we want to study

R′′(n) =

∫ 1

0

S(α)2e(−nα)dα,

and the circle method leads us to write

R′′(n) =

∫

M

S(α)2e(−nα)dα +

∫

m

S(α)2e(−nα)dα, (0.5.14)
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where M and m are called respectively major and minor arcs and are defined
as in (1.2.1) and (1.2.2). Since classically we know that S has peaks near
rationals a/q when q is small, then we expect that, using this method, the
main term arises from a part of the integration on the major arcs; furthermore
we have an error term that collects error terms arising from major and minor
arcs and from the tail of the singular series.

We are going to consider the Goldbach-Linnik problem so we have to
study (0.5.13), but in this case the circle method is not enough because,
while the position of the peaks of the exponential sum S(α) is well known,
the same thing is not true for G. In fact, the sum (0.5.12) is large for those
α for which the first L coefficients in the expansion

α ≡
∞∑

µ=1

aµ2−µ mod 1 (aµ ∈ {0, 1}).

are mostly a few strings of 0 and a few of 1. Linnik [28] proved the following
Lemma (for the general case see Lemma 1 of Gallagher [5]):

Lemma 0.5.1. Let |G(α)| ≥ (1−η)L, then among the coefficients a1, . . . , aL

there are ¿ ηL changes from 0 to 1 or from 1 to 0; here the constant is
uniform for 0 ≤ η ≤ 1, L ≥ 2.

This characterization is not quite useful in practice. Linnik himself proved
that the set where |G(α)| is large has comparatively small measure. This
is the basis for the method developed by Pintz and Ruzsa in [41]. They
consider a set E of small measure such that, for α ∈ E , |G(α)| ≥ (1 − η)L
and |G(α)| ≤ (1 − η)L for α ∈ C(E) = [0, 1]\E , where 1 − η = c. Then we
can split the integral on the minor arcs in the following way

∫

m∩E
S(α)2G(α)ke(−nα)dα +

∫

m∩C(E)

S(α)2G(α)ke(−nα)dα.

Here the integral on m ∩ E will be o(NLk) and the other one will give the
constant c2k that we want.

In Chapter 4 we will use a different method that implies the use of series
instead of finite sums, then we will consider

S̃(α) =
∞∑

n=1

Λ(n)e−n/Ne(nα), (0.5.15)

furthermore we will replace G(α), see (0.5.12), with

G̃(α) =
∑

1≤ν≤L

e−2ν/Ne(2να). (0.5.16)
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Then we want to study

R̃′′
k(n) = e−n/NR′′

k(n) =

∫ 1

0

S̃(α)2G̃(α)ke(−nα)dα (0.5.17)

and the asymptotic formula that we expect is

R̃′′
k(n) ∼ e−n/NMk(n) (0.5.18)

as we will see from the main term of (4.2.9).

0.6 Results

The problem we are interested in is to study the size of the exceptional set
for the Goldbach-Linnik problem in short intervals, so we want to estimate
the quantity in (0.5.8).

In Chapter 1 we study the case with a single power of 2: to do this we start
from the article of Kaczorowski, Perelli and Pintz [17] and we observe that,
using their technique to estimate E1(N,H), we do not have any improvement
with respect to the estimate they have found for the size of the exceptional
set for Goldbach problem unless we also use some others techniques. Then
we introduce the method, used by Languasco, Pintz and Zaccagnini to prove
Lemma 6.2 in [24], to estimate the tail of the singular series; furthermore we
use the one, used by Pintz and Ruzsa to prove Lemma 13 in [41], to give an
estimate on the minor arcs.

We set

Σ0(n,N, H) = |R′′(n)− nS(n) + F0(n,N, H)| , (0.6.1)

where F0(n,N, H) is defined in (1.1.6) and

Σk(n,N, H) = |R′′
k(n)−Mk(n) + Fk(n,N, H)| , (0.6.2)

where Fk(n,N, H) is a function that collects the error terms arising from the
major and the minor arcs and from the tail of the singular series. Furthermore
let M = log H(log log H), then from (1.2.38) and (2.2.14) we will see that

Fk(n, N,H) ¿ H−1/8N(ML2(1+k))1/2 + o(NLk).

First we recall the Theorem proved by Kaczorowski, Perelli and Pintz in [17],
which is

11



Theorem 0.6.1 (Kaczorowski-Perelli-Pintz). Assume GRH. Then
∑

N≤n≤N+H

Σ0(n, N,H)2 ≤ f(N, H)N2,

where f(N, H) = c0H
1/2L5, c0 is a real positive constant and

F0(n,N,H) ¿ NH−1/8(L2M)1/2.

Then using the methods we quoted above we reach the following results:

Theorem 0.6.2. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
with the same notation as in the statement of Theorem 0.6.1 we have that
there exists an effectively computable constant c(γ) < 1 such that

∑
N≤n≤N+H

Σ1(n,N,H)2 ≤ 16c(γ)2

17
(1 + o(1))L2f(N,H)N2.

In particular c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.

From this we can deduce that E1(N, H) is 16c(γ)2(1+ o(1))/17 times the
size of the exceptional set of Goldbach’s problem in short intervals.

In Chapter 2 we extend the previous results to the case with k powers of
2 and we prove the following Theorem.

Theorem 0.6.3. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
with the same notation as in the statement of Theorem 0.6.1 we have that
there exists an effectively computable constant c(γ) < 1 such that

∑
N≤n≤N+H

Σk(n,N, H)2 ≤ 16c(γ)2k

17
(1 + o(1))L2kf(N, H)N2,

where Σ0(n,N, H) is defined in (0.6.1).
In particular c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.

From this we can prove that Ek(N,H) is 16c(γ)2k(1 + o(1))/17 times the
size of the exceptional set of Goldbach in short intervals.

We recall that Pintz and Ruzsa [41] proved the following Theorem

Theorem 0.6.4. Assume GRH. Let k be a fixed natural number, k ≥ 7.
Then

r′′k(N) > 0 if 2 | N, N > N0(k)

where N0(k) is an explicit constant, depending on k.

12



This result implies that the exceptional set for k ≥ 7 is empty: then in
Chapter 3 we will give a detailed explanation of the method used by Pintz
and Ruzsa to reach this result and we will compare that with the method
that we use in Chapter 1 and Chapter 2.

In Chapter 4 we try to estimate Ek(N), see (0.5.8), using a different
technique involving series instead of finite sums. In this case we call

Σ̃0(n,N) =
∣∣∣R̃′′(n)− e−n/NnS(n) + F̃0(n,N)

∣∣∣ , (0.6.3)

where F̃0(n,N) satisfied (4.1.6) and

Σ̃k(n,N) =
∣∣∣R̃′′

k(n)− e−n/NMk(n) + F̃k(n,N)
∣∣∣ , (0.6.4)

where F̃k(n,N) is a function like Fk(n, N), that satisfies

F̃k(n,N) ¿ N7/8L1/2+k log log N + o(NL).

In this case Theorem 0.6.1 becomes

Theorem 0.6.5 (Kaczorowski-Perelli-Pintz). Assume GRH. Then
∑

N≤n≤2N

Σ̃0(n,N)2 ≤ f̃(N)N2,

where f̃(N) = c2(1 + o(1))N1/2L3 and c2 is a real positive constant.

Then we prove

Theorem 0.6.6. Assume GRH. With the same notation as in the statement
of Theorem 0.6.5 we have:

∑
N≤n≤2N

Σ̃1(n,N)2 ≤ c2kL2kf̃(N)N2,

with c = 0.7163435444776661.

This result allows us to say that the size of the exceptional set is c2k times
the size of the exceptional set in the Goldbach problem in long intervals.

In Chapter 5 we consider the result due to Pintz and Ruzsa [41], that
is, that under GRH, all even integers larger than N0, where N0 > 0 is a
constant, have a representation as a sum of two primes and k powers of 2,
with k ≥ 7. Adding a condition, that is GMC(θ), we prove the following
result:

13



Theorem 0.6.7. Assume GRH. Let k be a fixed natural number k ∈ {3, 4, 5,
6}. Then we can find a θ ∈ [1/4, 1/2] such that, assuming GMC(θ),

r′′k(N) > 0 if 2 | N,N > N0(k)

where N0(k) is an explicit constant depending on k.

Here there are the value of θ that we have found for each 3 ≤ k ≤ 6.

k θ
3 0.47169811315754716981132
4 0.37389380525973451327434
5 0.30357142852142857142857
6 0.25490196073431372549020

We obtain this result after numerical computations made using a program
of Alessandro Languasco, that we thank. The details of this computations
are in §A.7 together with all the results that we obtain by the use of this
program.

Finally in Chapter 6 we study a different kind of problem, concerning the
study of the sum of two primes and s powers of 2, but with real coefficients.
As we have just said, this is the real analogous of Goldbach-Linnik problem.
Then we prove the following Theorem

Theorem 0.6.8. Assume RH. Let λ1, λ2 be real numbers such that λ =
λ1/λ2 is negative and irrational with λ1 > 1, λ2 < −1 and |λ1/λ2| ≥ 1.
Further suppose that µ1, . . . , µs are nonzero real numbers such that λi/µi ∈ Q,
for i = 1, 2, and denote by ai/qi their reduced representations as rational
numbers. Let moreover η be a sufficiently small positive constant such that
η < min(λ1/a1; |λ2/a2|). Finally let

s0 = 2 +

[
log (C(q1, q2)λ1)− log η

− log 0.7163435444776661

]
, (0.6.5)

where

C(q1, q2) = (log 2 + C ·S′(q1))
1/2(log 2 + C ·S′(q2))

1/2,

with C = 10.0219168340 and

S′(n) =
∏

p|n
p>2

p− 1

p− 2
.

14



Then for every real number γ and every s ≥ s0 the inequality

|λ1p1 + λ2p2 + µ12
ν1 + · · ·+ µs2

νs + γ| < η (0.6.6)

has infinitely many solutions in primes p1, p2 and positive integers ν1, . . . , νs.

We notice that the number 0.7163435444776661 has been obtained using
Corollary A.6.4 and the computer program made by Languasco, that we have
already used in Chapter 5.
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Chapter 1

Upper bound for the size of the
exceptional set for the
Goldbach-Linnik problem with
a single power of 2

1.1 Introduction

We consider the Goldbach-Linnik conjecture that asserts that: All even inte-
gers can be written as a sum of two primes and k powers of 2 for every fixed
k ≥ 1.

In order to show some of the characteristic features of this problem, we
begin to treat the case k = 1, so the aim of this first part of our work is
to give, under hypothesis, an estimate for the size of the exceptional set
E1(N,H), as defined in (0.5.8).

We consider N ≤ n ≤ N + H, L = log N, M = log H(log log H), cq(−n)
the Ramanujan sum, see §A.2, R′′

1(n) as in (0.5.7) and S(n) as in (0.5.4).
Now we take M1(n) as defined in (4.2.9) and we write

Σ1(n,N, H) = |R′′
1(n)−M1(n) + F1(n,N, H)| (1.1.1)

where F1(n,N, H) will be a function that collects some of the error terms
arising from major and minor arcs and from the tail of the singular series: in
fact we will see that they are o(NL) and F1(n,N,H) satisfies (1.2.38). Then
we will follow a part of the procedure used by Kaczorowski, Perelli and Pintz
[17] to estimate

∑
N≤n≤N+H

Σ1(n,N, H)2. (1.1.2)
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We set

Σ0(n,N, H) = |R′′(n)− nS(n) + F0(n,N, H)| . (1.1.3)

and

f(N, H) = c0H
1/2L5, (1.1.4)

where c0 is a real positive constant, then we recall that in [17] and in [18]
Kaczorowski, Perelli and Pintz proved the following theorem:

Theorem 1.1.1 (Kaczorowski, Perelli and Pintz). Assume GRH. Then:
∑

N≤n≤N+H

Σ0(n, N,H)2 ≤ f(N, H)N2, (1.1.5)

where f(N,H) is defined by (1.1.4) and F0(n,N,H) is a certain function
that satisfies

F0(n,N,H) ¿ NH−1/8(L2M)1/2. (1.1.6)

From this they obtained:

Corollary 1.1.2. Suppose the truth of GRH and let HL−10 → ∞; then all
even integers in [N, N + H] are sums of two primes with at most O(H1/2L5)
exceptions.

This implies that

E(N, H) = |{n ∈ [N,N + H] : n 6= p1 + p2}| ≤ f(N, H) (1.1.7)

with (p1, p2) ∈ P2.

The first aim of our work is to prove that adding a power of 2 we obtain:

Theorem 1.1.3. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
with the same notation as in the statement of Theorem 1.1.1 we have that
there exists an effectively computable constant c(γ) < 1 such that

∑
N≤n≤N+H

Σ1(n,N,H)2 ≤ 16c(γ)2

17
(1 + o(1))L2f(N,H)N2.

In particular c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.

The constant c(γ) is linked with the constant d(β) in Corollary A.6.4: in
fact c(γ) = d(β), with β = 1− γ/2.

Corollary 1.1.4. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
there exists an effectively computable constant c(γ) < 1 such that

E1(N,H) ≤ 16c(γ)2

17
(1 + o(1))f(N, H) (1.1.8)

where f(N, H) is defined in (1.1.4).
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1.2 Proof of Theorem 1.1.3

In order to estimate (1.1.2), we first have to consider the Farey dissection of
order Q of I = [1/Q, 1+1/Q], as described in §A.4; we will eventually choose
Q = H1/2, see (1.2.28). Call the arc relative to a/q

Iq,a =

{
α =

a

q
+ η : η ∈ ξq,a

}
with ξq,a ⊂

(
− 1

qQ
,

1

qQ

)
.

We observe that, if a1/q1, a/q, a2/q2 ∈ FQ are consecutive, then q, q1, q2 ≤
Q and, by (A.4.1), the arc from Pµ1 = (a + a1)/(q + q1) to a/q and the one
from a/q to Pµ2 = (a + a2)/(q + q2) have length respectively

a

q
− a + a1

q + q1

=
aq1 − a1q

q(q + q1)
=

1

q(q + q1)

and

a + a2

q + q2

− a

q
=

a2q − aq2

q(q + q2)
=

1

q(q + q2)
.

Now we have that q + q1 < 2Q, q + q2 < 2Q so that
(
− 1

2qQ
,

1

2qQ

)
⊂ ξq,a ⊂

(
− 1

qQ
,

1

qQ

)
.

Let

M =
⋃
q≤P

q⋃∗

a=1

Iq,a (1.2.1)

be the set of the so-called major arcs, where
⋃∗

means that we make the

union on the a such that (a, q) = 1, and let

m = I\M (1.2.2)

be the minor arcs.
Moreover consider S(α) as in (0.5.11) and G(α) as in (0.5.12): then we

can write

R′′
1(n) =

∫ 1

0

S(α)2G(α)e(−nα)dα

=

∫

M

S(α)2G(α)e(−nα)dα +

∫

m

S(α)2G(α)e(−nα)dα (1.2.3)
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=R′′
M(n) + R′′

m(n),

say.
Now let α = a/q + η ∈ M and

T (η) =
∑
n≤N

e(nη). (1.2.4)

Then by Prime Number Theorem for Arithmetic Progressions we expect that,
for q small

S(α) ≈ µ(q)

ϕ(q)
T (η).

Hence we write

S

(
a

q
+ η

)
=

µ(q)

ϕ(q)
T (η) + R(η; q, a), (1.2.5)

where R(η; q, a) is the error term arising from the approximation, and we
know from computations in Chapter 26, pages 146-147, of Davenport’s book
[3] that R(η; q, a) is “small”.

Finally we recall that

|T (η)| ¿ min

(
N,

1

‖η‖
)

, (1.2.6)

since T (η) is essentially the sum of a geometric progression.

1.2.1 Estimate on the major arcs

Consider P such that P ·Q ≤ H. Now using (1.2.5) we can do the following
computation on the major arcs:

R′′
M(n) =

∑
q≤P

q∑∗

a=1

∫

ξq,a

S

(
a

q
+ η

)2

G

(
a

q
+ η

)
eq(−na)e(−nη)dη

=
∑

1≤ν≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

T (η)2e (2νη) e(−nη)dη

+
∑

1≤ν≤L

∑
q≤P

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

e (2νη) R(η; q, a)2e(−nη)dη

+ 2
∑

1≤ν≤L

∑
q≤P

µ(q)

ϕ(q)

q∑∗

a=1

eq(−(n− 2ν)a)
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·
∫

ξq,a

T (η)R(η; q, a)e (2νη) e(−nη)dη

=Σ1(n) + Σ2(n) + Σ3(n),

say, where Σ1(n) is the main term, while Σ2(n), Σ3(n) are error terms; we

recall that
∑∗

is a sum on the a such that (a, q) = 1. Now we have:

Σ1(n) =
∑

1≤ν≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

T (η)2e(−(n− 2ν)η)dη.

We can extend the integral to [0, 1] with an error term that is

O

(
QL

∑
q≤P

µ(q)2q

ϕ(q)

)
;

in fact, by (1.2.6), |T (η)| ¿ ‖η‖−1 in the interval [1/2qQ, 1 − 1/2qQ] , so
that

∫ 1−1/2qQ

1/2qQ

|T (η)|2dη ¿ qQ.

Then Σ1(n) becomes

Σ1(n) =
∑

1≤ν≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− 2ν)a)

∫ 1

0

T (η)2e(−(n− 2ν)η)dη

+ O

(
QL

∑
q≤P

µ(q)2q

ϕ(q)

)

=
∑

1≤ν≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− 2ν)a) (1.2.7)

·
∫ 1

0

∑
n1≤N

∑
n2≤N

e(−(n− 2ν − n1 − n2)η)dη + O

(
QL

∑
q≤P

µ(q)2q

ϕ(q)

)

=
∑

1≤ν≤L

(n− 2ν)
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− 2ν)) + O(PQL), (1.2.8)

where we use Lemma 2 of Goldston [8], which is Lemma A.6.2 in §A.6, to
obtain the bound for the error term. Moreover by the triangle inequality

Σ2(n) =

∣∣∣∣∣
∑
q≤P

∑
1≤ν≤L

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

R(η; q, a)2e(−(n− 2ν)η)dη

∣∣∣∣∣
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¿L
∑
q≤P

q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη

and by the Cauchy-Schwarz inequality and the trivial one (1.2.6) it follows
that

Σ3(n) ¿ N1/2L
∑
q≤P

µ(q)2

ϕ(q)1/2

(
q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη

)1/2

.

Now thanks to Lemma 1 of Kaczorowski, Perelli and Pintz [17], see Lemma
A.6.1, we have

q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη ¿ NL4

Q
. (1.2.9)

Furthermore, from Lemma A.6.2, we have that

∑
q≤P

µ(q)2

ϕ(q)1/2
¿ P 1/2,

hence we obtain:

Σ2(n) + Σ3(n) ¿L
∑
q≤P

NL4

Q
+ N1/2L

∑
q≤P

µ(q)2

ϕ(q)1/2

N1/2L2

Q1/2

¿PNL5

Q
+

(
P

Q

)1/2

NL3 ¿
(

P

Q

)1/2

NL3 (1.2.10)

provided that

P ¿ QL−4. (1.2.11)

Collecting (1.2.8) and (1.2.10) we have
∫

M

S(α)2G(α)e(−nα)dα =
∑

1≤ν≤L

(n− 2ν)
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

+ O(PQL) + O

((
P

Q

)1/2

NL3

)
. (1.2.12)

Now we complete the previous sum to obtain the singular series defined in
(0.5.4) so that:

∫

M

S(α)2G(α)e(−nα)dα = M1(n)
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−
∑

1≤ν≤L

(n− 2ν)
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν)) + O

(
PQL +

(
P

Q

)1/2

NL3

)
,

(1.2.13)

where M1(n) is the main term while we are going to prove that the tail of
the singular series is o(NL).

1.2.2 Estimate of the tail of the singular series

Now we have to estimate the tail of the singular series: we want to prove
that it is o(NL). We start with the trivial inequality
∣∣∣∣∣

∑
1≤ν≤L

(n− 2ν)
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

∣∣∣∣∣ ≤ N
∑

1≤ν≤L

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

∣∣∣∣∣,

and then we need the following lemma:

Lemma 1.2.1. If P → +∞ then

∑
1≤ν≤L

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

∣∣∣∣∣ = o(L).

Proof of Lemma 1.2.1. Thanks to Theorem A.2.1 we have:

cq(−(n− 2ν)) = µ (q1)
ϕ(q)

ϕ (q1)
,

where q1 = q/(q, n− 2ν). Now we take d = (q, n− 2ν), q = dl and we observe
that, thanks to the fact that this is a sum on square-free values of q, then q1

and d are also square-free. We also have ϕ(dl) ≥ ϕ(d)ϕ(l) and so:
∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

∣∣∣∣∣ ≤
∑′

d|(n−2ν)

1

ϕ(d)

∑′

l>P/d

1

ϕ(l)2

¿
∑′

d|(n−2ν)
d>P

1

ϕ(d)
+

1

P

∑′

d|(n−2ν)
d≤P

d

ϕ(d)
= A1 + A2,

where
∑′

denotes a sum on square-free values of d. As in (8.10) and (8.13)

of Pintz and Ruzsa [41] and Lemma 6.2 of Languasco, Pintz and Zaccagnini
[24], let

f(d) =
∏

p|d
p>2

1

p− 2
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for all integers d, furthermore let f(1) = 1 and f(d) = 0 if d is even. Then
let

ξ(d) = min{µ ∈ N∗ : 2µ ≡ 1 mod d};
we observe that for odd d

ϕ(d) À 1/f(d)

so that

1/ϕ(d) ¿ f(d). (1.2.14)

Also let

S(n, d) =

{
1 if there exists ν ∈ [1, L] such that n ≡ 2ν mod d

0 otherwise.

Consider first the sum on ν of A2:

∑
1≤ν≤L

1

P

∑′

d|(n−2ν)
d≤P

d

ϕ(d)
=

1

P

∑′

d≤P

d

ϕ(d)

∑
1≤ν≤L
n≡2ν(d)

1

¿ 1

P

∑′

d≤P

d

ϕ(d)

(
L

ξ(d)
+ S(n, d)

)
;

now we recall that from Theorem A.6.5

ϕ(d) À d(log log d)−1 (1.2.15)

so that the previous sum becomes

¿ 1

P
log log P

∑′

d≤P

L

log d
+

1

P

∑′

d≤P

d

ϕ(d)
S(n, d)

and by partial summation we have

¿L

P
log log P · P

log P
+

1

P

(
P

∑′

d≤P

f(d)S(n, d)−
∫ P

1

∑′

d≤t

f(d)S(n, d)dt

)
.

Now by the computations in the proof of Lemma 6.2 of [24] the last term
above is

¿L log log P

log P
+ log L = o(L) when P → +∞. (1.2.16)
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Now we evaluate the sum on ν of A1:

∑
1≤ν≤L

∑′

d|(n−2ν)
d>P

1

ϕ(d)
=

∑′

d>P

1

ϕ(d)

∑
1≤ν≤L
n≡2ν(d)

1 ¿
∑′

d>P

1

ϕ(d)

(
L

ξ(d)
+ S(n, d)

)

¿L
∑′

d>P

1

ϕ(d)ξ(d)
+

∑′

d>P

1

ϕ(d)
S(n, d),

by (1.2.14) we have that this is

¿L
∑′

d>P

f(d)

ξ(d)
+

∑′

d>P

1

ϕ(d)
S(n, d).

Again thanks to the computation in the proof of Lemma 6.2 of [24] we have
that for all ε > 0 the previous sum becomes:

¿L
ε

4
+

∑′

d>P

f(d)S(n, d) ¿ L
ε

4
+ log L = o(L) when P → +∞,

(1.2.17)

and Lemma 1.2.1 is proved.

Summing up we have:

∣∣∣∣∣
∑

1≤ν≤L

(n− 2ν)
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

∣∣∣∣∣ = o(NL). (1.2.18)

From (1.2.3), (1.2.13) and (1.2.18) we have

∑
N≤n≤N+H

∣∣∣∣∣R
′′
1(n)−M1(n) + F1(n,N, H)

∣∣∣∣∣

2

¿
∑

N≤n≤N+H

∣∣∣∣∣
∫

m

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

, (1.2.19)

where we recall that F1(n,N, H) collects error terms arising from (1.2.13),
(1.2.18) and then it will collect also a part of the error term arising from the
minor arcs, which is o(NL) as we will prove in §1.2.3.
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1.2.3 Estimate on the minor arcs

First we do an estimate of the minor arcs with the method used in Kac-
zorowski, Perelli and Pintz in [17] and in its corrigendum [18]: we take

t(s) =
1

H
max(H − |s|, 0)

and from the properties of the Fejér kernel

K(α) =
+∞∑

s=−∞
t(s)e(−sα) =

1

H

∣∣∣∣∣
H∑

s=−H

e(−sα)

∣∣∣∣∣

2

¿ 1

H
min

(
H2,

1

‖α‖2

)

(1.2.20)

and we have

∑
N≤n≤N+H

∣∣∣∣∣
∫

m

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

¿
∑

n

t(n−N)

∣∣∣∣∣
∫

m

∑
1≤ν≤L

S(α)2e(2να)e(−nα)dα

∣∣∣∣∣

2

=
∑

n

t(n−N)

(∫

m

∑
1≤ν1≤L

S(ξ)
2
e(−2ν1ξ)e(nξ)dξ

)
·

(∫

m

∑
1≤ν2≤L

S(α)2e(2ν2α)e(−nα)dα

)

=
∑

n

t(n−N)·
∑

1≤ν1≤L

∑
1≤ν2≤L

∫

m

S(ξ)
2
∫

m

S(α)2e(−n(α− ξ))e(−2ν1ξ)e(2ν2α)dξdα

=
∑

1≤ν1≤L

∑
1≤ν2≤L

∫

m

S(ξ)
2
∫

m

S(α)2K(α− ξ)e(−N(α− ξ)− 2ν1ξ + 2ν2α)dξdα

¿ L2

H

∫

m

|S(ξ)|2
∫

m

|S(α)|2 min

{
H2,

1

‖α− ξ‖2

}
dαdξ.

Now we recall that by Prime Number Theorem

∫ 1

0

|S(α)|2dα =
∑
n≤N

Λ2(n) ¿ NL (1.2.21)
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and we use this to give an estimate of
∫

m
|S(ξ)|2dξ.

Now for α ∈ {ξ − 1/H, ξ + 1/H} we have that min {H2, 1/‖ξ − α‖2} =
H2, furthermore we can split the interval [0, 1] into H/2 subintervals so that
we have

α ∈
H⋃

t=−H

(
ξ − t

H
− 1

H
, ξ − t

H
+

1

H

)

that is the union of all the intervals of length 2/H translated toward left
and right from ξ, where ξ ∈ [0, 1]. If α belongs to the t-th interval, then
1/‖ξ − α‖2 ≤ H2/(t2 + 1) and

min
{
H2, 1/‖ξ − α‖2

} ≤ H2

t2 + 1
.

From this and by (1.2.21) we have

L2

H

∫

m

|S(ξ)|2
∫

m

|S(α)|2 min

{
H2,

1

‖α− ξ‖2

}
dαdξ

¿NL3 max
ξ∈[0,1]

H∑
t=−H

H

t2 + 1

∫

(ξ−t/H−(1/H),ξ−t/H+(1/H))∩m

|S(α)|2dα. (1.2.22)

Now we observe that

max
ξ∈[0,1]

∫

(ξ−(1/H),ξ+(1/H))∩m

|S(α)|2dα

= max
ξ∈[0,1]

∫

(ξ−t/H−(1/H),ξ−t/H+(1/H))∩m

|S(α)|2dα

for each value of −H ≤ t ≤ H then, since
∑H

t=−H 1/(t2 + 1) is a convergent
series, (1.2.22) becomes

¿HNL3 max
ξ∈[0,1]

∫

(ξ−(1/H),ξ+(1/H))∩m

|S(α)|2dα

¿HNL3 max
P<q≤Q
(a,q)=1

∫ 1/qQ

−1/qQ

∣∣∣∣S
(

a

q
+ η

)∣∣∣∣
2

dη. (1.2.23)

The fact that α ∈ m allows us to say that 1/H ≤ 1/(qQ) and this gives
the following condition on Q:

Q2 ≤ H. (1.2.24)
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Now from (1.2.9) and for P < q ≤ Q we have:

∫ 1/qQ

−1/qQ

∣∣∣∣S
(

a

q
+ η

)∣∣∣∣
2

dη ¿ 1

ϕ(q)2

∫ 1/qQ

−1/qQ

|T (η)|2dη +

∫ 1/qQ

−1/qQ

|R(η; q, a)|2dη

¿ N

ϕ(q)2
+

NL4

Q
¿ N log2 P

P 2
+

NL4

Q
. (1.2.25)

Then combining (1.2.23) and (1.2.25) we obtain:

∑
N≤n≤N+H

∣∣∣∣∣
∫

m

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

¿ HN2L3 log2 P

P 2
+

HN2L7

Q
. (1.2.26)

Now we write formula (19) of Kaczorowski, Perelli and Pintz [17] calling c1

the implicit constant in the O(.) notation:

∑
N≤n≤N+H

∣∣∣∣∣
∫

m

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

≤ c1

(
HN2L log2 P

P 2
+

HN2L5

Q

)
.

(1.2.27)

We notice that, if we make their choice of M , that is M = log H, and we
choose

Q = H1/2 and P =
H1/4M

L2
, (1.2.28)

then, from (1.2.26), we have

∑
N≤n≤N+H

∣∣∣∣∣
∫

m

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

≤ c0H
1/2N2L7,

with c0, defined in (1.1.4), that is 17c1/16. Then the size of the exceptional
set is E1(N,H) ≤ c0H

1/2L5 and, if we compare this result with that in
Corollary 1.1.2, we see that we have found the same thing and we do not
have any improvement.

We can also observe that if we take M = log H(log log H), as we stated
in the introduction, and parameters P and Q as in (1.2.28), we have that

HN2L log2 P

P 2
= o

(
HN2L5

Q

)
(1.2.29)

and this allows us to say that E1(n,H) ≤ 16(1 + o(1))f(N, H)/17, with H
that has to be chosen a little bit larger according to H À (ML2)4.
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Now we try to gain a small constant applying the technique used by
Pintz and Ruzsa to prove Lemma 13 of [41]. The idea is to consider a
set E , which has small measure, such that, if α ∈ E , G(α) is large and, if
α ∈ C(E) = [0, 1]\E , G(α) is small. Then we can split the integral on minor
arcs in two parts: one on m ∩ E and the other on m ∩ C(E).

We consider Vaughan’s estimate of S(α) under GRH, see Lemma 2 of
Pintz and Ruzsa [41], that is

S(α) ¿
(

N

P
+

√
NQ +

N√
Q

)
L2; (1.2.30)

with our choice of P and Q we have

|S(α)| ≤ C1/2 NL4

H1/4M
, (1.2.31)

where C is a real positive constant such that the inequality is verified. Then
we have

∫

m∩E
|S(α)2G(α)e(−nα)|dα ≤C

∫

m∩E

(
NL4

H1/4M

)2

|G(α)|dα

≤C
N2L9

H1/2M2
|E|. (1.2.32)

We want that
∫

m∩E
|S(α)2G(α)e(−nα)|dα = o(NL), (1.2.33)

then we have to choose the set E such that

|E| = O

(
H1/2M2

NL8

)
. (1.2.34)

By hypothesis H = Nγ, with 0 < γ ≤ 1, then (1.2.34) becomes

|E| = O(N−(1−γ/2)L−4), (1.2.35)

now we can use Corollary A.6.4 taking β = 1− γ/2, that is, that we can find
an effectively computable constant d(1− γ/2) = c(γ) < 1 such that

|G(α)| ≤ c(γ)L (1.2.36)

with α ∈ [0, 1]\E . We can find the constant c(γ) for each value of 0 < γ ≤ 1
using a computer program made by Alessandro Languasco: in particular we
find that c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.
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Remark 1. Collecting (1.2.13), (1.2.18) and (1.2.33) we have

F1(n,N, H) ¿ PQL + (P/Q)1/2NL3 + o(NL) (1.2.37)

when P → +∞. We know that PQL = o(NL), then with our choice of
parameters P and Q in (1.2.28), that is P = H1/4M/L2 and Q = H1/2, we
have

F1(n,N, H) ¿ H−1/8N(ML4)1/2 + o(NL); (1.2.38)

furthermore we see that (1.2.11) is satisfied for

H À (ML2)4 (1.2.39)

and this fits with our choice of H.

Now we consider the integral on m ∩ C(E), that will give the error term:

∑
N≤n≤N+H

∣∣∣∣∣
∫

m∩C(E)

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

=
∑

N≤n≤N+H

(∫

m∩C(E)

S(ξ)2G(ξ)e(−nξ)dξ

)(∫

m∩C(E)

S(α)
2
G(α)e(nα)dα

)

=
∑

N≤n≤N+H

∫

m∩C(E)

S(ξ)2

∫

m∩C(E)

S(α)
2
e(−n(ξ − α))G(ξ)G(α)dξdα

and by (1.2.36) we have

≤c(γ)2L2

∫

m∩C(E)

|S(ξ)|2
∫

m∩C(E)

|S(α)|2|T (ξ − α)|dξdα.

Then we can estimate the integrals as Kaczorowski, Perelli and Pintz do in
§3 of [17] obtaining:

∑
N≤n≤N+H

∣∣∣∣∣
∫

m∩C(E)

S(α)2G(α)e(−nα)dα

∣∣∣∣∣

2

≤c(γ)2L2

∫

m

|S(ξ)|2
∫

m

|S(α)|2|T (ξ − α)|dξdα

≤c(γ)2L2c1

(
HN2L log2 P

P 2
+

HN2L5

Q

)
, (1.2.40)
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where c1 is defined in (1.2.27).

Now from (1.2.40) we obtain :

∑
N≤n≤N+H

∣∣∣∣∣R
′′
1(n)−M1(n) + F1(n,N, H)

∣∣∣∣∣

2

≤ c(γ)2c1HN2L3 log2 P

P 2
+

c(γ)2c1HN2L7

Q
. (1.2.41)

With our choice of P and Q in (1.2.28) are satisfied conditions (1.2.11),
(1.2.24) and (1.2.29), then we can conclude that:

∑
N≤n≤N+H

∣∣∣∣∣R
′′
1(n)−M1(n) + F1(n,N, H)

∣∣∣∣∣

2

≤ c(γ)2 16c0

17
(1 + o(1))H1/2N2L7,

where we noticed that c0, defined in (1.1.4), is 17c1/16.
This proves Theorem 1.1.3.

Proof of Corollary 1.1.4. Let Σ1(n,N, H) be as defined in (0.6.2); we want
to evaluate the size of the exceptional set, that is:

E1(N,H) = |{N ≤ n ≤ N + H : Σ1(n,N, H) À NL}|,
then

∑
N≤n≤N+H

∣∣∣∣∣R
′′
1(n)−M1(n) + F1(n,N, H)

∣∣∣∣∣

2

≥
∑

N≤n≤N+H
Σ1(n,N,H)ÀNL

∣∣∣∣∣R
′′
1(n)−M1(n) + F1(n,N, H)

∣∣∣∣∣

2

≥
∑

N≤n≤N+H
Σ1(n,N,H)ÀNL

N2L2 ≥ N2L2E1(N, H)

and so

E1(N, H) ≤ c(γ)2 16c0

17
(1 + o(1))

H1/2N2L7

N2L2
≤ 16c(γ)2

17
(1 + o(1))f(N,H).

(1.2.42)
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Chapter 2

Estimate of the exceptional set
for the Goldbach-Linnik
problem with k powers of 2

2.1 Introduction

In this Chapter we want to extend Theorem 1.1.3 when k ≥ 1: to do this
we consider N ≤ n ≤ N + H, L = log N , M = log H log log H, cq(−n) the
Ramanujan sum, see §A.2, R′′

k(n) as in (0.5.7), S(n) as in (0.5.4) and Mk(n)
as in (0.5.9).

We recall that we let ν = (ν1, . . . , νk), s(ν) = s(ν1, . . . , νk) = 2ν1+. . .+2νk

for brevity and

Σk(n,N, H) = |R′′
k(n)−Mk(n) + Fk(n,N, H)| , (2.1.1)

where Fk(n,N, H) will be a function that collects some of the error terms
arising from major and minor arcs and from the tail of the singular series: in
fact we will see that all of these are o(NLk) and Fk(n,N, H) satisfies (2.2.14).

To obtain our result we will act as in Chapter 1 extending the computation
of the case with a single power of 2: in fact the most difficult part of the
proof is the case k = 1.

In this chapter we will prove the following theorem

Theorem 2.1.1. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
with the same notation as in the statement of Theorem 1.1.1 we have that
there exists an effectively computable constant c(γ) < 1 such that

∑
N≤n≤N+H

Σk(n,N, H)2 ≤ 16c(γ)2k

17
(1 + o(1))L2kf(N, H)N2,
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where Σ0(n,N, H) is defined in (0.6.1).
In particular c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.

The constant c(γ) is linked with the constant d(β) in Corollary A.6.4: in
fact c(γ) = d(β), with β = 1− γ/2.

Corollary 2.1.2. Assume GRH, let 0 < γ ≤ 1 be fixed and H = Nγ, then
there exists an effectively computable constant c(γ) < 1 such that

E ′
k(N, H) ≤ 16c(γ)2k

17
(1 + o(1))f(N,H) (2.1.2)

where f(N, H) is defined in (1.1.4).

From this Corollary we can deduce that, adding k power of two, we have
a size of the exceptional set that is smaller than Goldbach’s one.

2.2 Proof of Theorem 2.1.1

To prove Theorem 2.1.1 we will use the Farey dissection of order Q described
in § 1.2; we will eventually choose Q = H1/2, see (1.2.28) . From this we can
write:

R′′
k(n) =

∫ 1

0

S(α)2Gk(α)e(−nα)dα

=

∫

M

S(α)2Gk(α)e(−nα)dα +

∫

m

S(α)2Gk(α)e(−nα)dα (2.2.1)

=R′′
M(n) + R′′

m(n),

say.

2.2.1 Estimate on major arcs

Considering P such that P ·Q ≤ H and using (1.2.5) we can do the following
computation on the major arcs:

R′′
M(n) =

∑
q≤P

q∑∗

a=1

∫

ξq,a

S

(
a

q
+ η

)2

Gk

(
a

q
+ η

)
eq(−na)e(−nη)dη

=
∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−na)

∫

ξq,a

T (η)2Gk

(
a

q
+ η

)
e(−nη)dη
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+
∑
q≤P

q∑∗

a=1

eq(−na)

∫

ξq,a

Gk

(
a

q
+ η

)
R(η; q, a)2e(−nη)dη

+2
∑
q≤P

µ(q)

ϕ(q)

q∑∗

a=1

eq(−na)

∫

ξq,a

T (η)R(η; q, a)Gk

(
a

q
+ η

)
e(−nη)dη

=Σ1(n) + Σ2(n) + Σ3(n),

say. Σ1(n) is the main term, while Σ2(n), Σ3(n) are error terms. Now we
have:

Σ1(n) =
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− s(ν))a)·
∫

ξq,a

T (η)2e(−(n− s(ν))η)dη.

We can extend the integral to [0, 1] with an error term that is

O

(
QLk

∑
q≤P

µ(q)2q

ϕ(q)

)
;

in fact, by (1.2.6), |T (η)| ≤ ‖η‖−1 in the interval [1/2qQ, 1− 1/2qQ], so that

∫ 1−1/2qQ

1/2qQ

|T (η)|2dη ¿ qQ.

Then Σ1(n) becomes

Σ1(n) =
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− s(ν))a)·
∫ 1

0

T (η)2e(−(n− s(ν))η)dη + O

(
QLk

∑
q≤P

µ(q)2q

ϕ(q)

)

=
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O(PQLk), (2.2.2)

where we used Lemma 2 of Goldston [8], see Lemma A.6.2, to obtain

∑
q≤P

µ(q)2q

ϕ(q)
¿ P.
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Moreover by the triangle inequality

Σ2(n) =

∣∣∣∣∣
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∑
q≤P

q∑∗

a=1

eq(−(n− s(ν))a)·
∫

ξq,a

R(η, q, a)2e(−(n− s(ν))η)dη

∣∣∣∣∣

¿Lk
∑
q≤P

q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη

and by the Cauchy-Schwarz inequality and the trivial one (1.2.6) it follows

Σ3(n) ¿ N1/2Lk
∑
q≤P

ϕ(q)−1/2

(
q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη

)1/2

.

Now by (1.2.9), we have:

q∑∗

a=1

∫ 1
qQ

− 1
qQ

|R(η; q, a)|2dη ¿ NL4

Q
;

furthermore, from Lemma 2 of Goldston [8], see Lemma A.6.2, we have that

∑
q≤P

µ(q)2

ϕ(q)1/2
¿ P 1/2,

hence we have

Σ2(n) + Σ3(n) ¿
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∑
q≤P

NL4

Q

+ N1/2
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∑
q≤P

µ(q)2

ϕ(q)1/2

N1/2L2

Q1/2

¿PNL4+k

Q
+

(
P

Q

)1/2

NL2+k ¿
(

P

Q

)1/2

NL2+k (2.2.3)

provided that

P ¿ QL−4. (2.2.4)
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Collecting (2.2.2) and (2.2.3) we have
∫

M

S(α)2Gk(α)e(−nα)dα

=
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O(PQLk) + O

((
P

Q

)1/2

NL2+k

)
. (2.2.5)

Now we complete the previous sum to obtain the singular series defined in
(0.5.4), and we have

∫

M

S(α)2Gk(α)e(−nα)dα = Mk(n)

−
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))

·
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O

(
PQLk +

(
P

Q

)1/2

NL2+k

)
, (2.2.6)

where Mk(n) is the main term while we are going to prove that the tail of
the singular series is o(NLk).

2.2.2 Estimate of the tail of the singular series

We have now to estimate the tail of the singular series: we want to prove
that this is o(NLk). We start with

∣∣∣∣∣
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

∣∣∣∣∣

≤ N
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

∣∣∣∣∣,

then, to reach our aim, we need the following lemma.

Lemma 2.2.1. If P → +∞ then

∑
1≤ν1≤L

· · ·
∑

1≤νk≤L

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

∣∣∣∣∣ = o(Lk).
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Proof of Lemma 2.2.1. Thanks to Theorem A.2.1 we have:

cq(−(n− s(ν))) = µ (q1)
ϕ(q)

ϕ (q1)
,

where q1 = q/(q, n− s(ν)). Now we take d = (q, n− s(ν)) and q = dl and we
observe that, since q is square-free, then q1 and d also are square-free. We
also have ϕ(dl) ≤ ϕ(d)ϕ(l) and so:

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

∣∣∣∣∣ ≤
∑′

d|(n−s(ν))

1

ϕ(d)

∑′

l>P/d

1

ϕ(l)2

¿
∑′

d|(n−s(ν))
d>P

1

ϕ(d)
+

1

P

∑′

d|(n−s(ν))
d≤P

d

ϕ(d)
= A1 + A2.

Consider first the sum on ν1, . . . , νk of A2:

∑
1≤ν1≤L

· · ·
∑

1≤νk≤L

1

P

∑′

d|(n−s(ν))
d≤P

d

ϕ(d)
=

1

P

∑′

d≤P

d

ϕ(d)

∑
1≤ν1,...,νk≤L

n≡s(ν)(d)

1

=
∑

1≤ν1≤L

· · ·
∑

1≤νk−1≤L

1

P

∑′

d≤P

d

ϕ(d)

∑
1≤νk≤L

n−2ν1−...−2νk−1≡2νk (d)

1,

where again
∑′

means the sum on square-free values. Now we consider the

sum on ν1, . . . , νk of A1:

∑
1≤ν1≤L

· · ·
∑

1≤νk≤L

∑′

d|(n−s(ν))
d>P

1

ϕ(d)
=

∑′

d>P

1

ϕ(d)

∑
1≤ν1,...,νk≤L

n≡s(ν)(d)

1

=
∑

1≤ν1≤L

· · ·
∑

1≤νk−1≤L

∑′

d>P

1

ϕ(d)

∑
1≤νk≤L

n−2ν1−...−2νk−1≡2νk (d)

1.

We write m = n− 2ν1 − . . .− 2νk−1 : then we have

∑
1≤ν1≤L

· · ·
∑

1≤νk−1≤L

( ∑′

d>P

1

ϕ(d)

∑
1≤νk≤L

m≡2νk (d)

1 +
1

P

∑′

d≤P

d

ϕ(d)

∑
1≤νk≤L

m≡2νk (d)

1

)

∑
1≤ν1≤L

· · ·
∑

1≤νk−1≤L

( ∑
1≤νk≤L

∣∣∣∣∣
∑
q>P

µ(q)2

ϕ(q)2
cq(−(m− 2νk))

∣∣∣∣∣

)
.

By Lemma 1.2.1, Lemma 2.2.1 is proved.
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Summing up we have:

∣∣∣∣∣
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

∣∣∣∣∣ = o(NLk). (2.2.7)

From (2.2.1), (2.2.6) and (2.2.7) we have

∑
N≤n≤2N

∣∣∣∣∣R
′′
k(n)−Mk(n) + Fk(n,N, H)

∣∣∣∣∣

2

=
∑

N≤n≤2N

∣∣∣∣∣
∫

m

S(α)2G(α)ke(−nα)dα

∣∣∣∣∣

2

, (2.2.8)

where we recall that Fk(n, N,H) collects error terms arising from (2.2.6),
(2.2.7) and it will collect also a part of the error term arising from the minor
arcs, which is o(NL) as we will prove in §2.2.3.

2.2.3 Estimate on minor arcs

In §1.2.3 we have seen that, if we only use the Kaczorowski, Perelli and Pintz
method [17], we do not have any improvement in the estimate of the size
of the exceptional set with respect to the Goldbach case. In fact in this
method we use the trivial estimate |G(α)|k ≤ Lk, then following the same
computations in §1.2.3 we will obtain Ek(N, H) ≤ f(N,H) that is exactly
the same thing found by Kaczorowski, Perelli and Pintz in the Goldbach
case.

Again, as in §1.2.3, we will follow the technique used by Pintz and Ruzsa
to prove Lemma 13 of [41]. Then we choose E and we split the integral on
the minor arcs in two parts: one on m ∩ E and the other on m ∩C(E). First
we consider

∫

m∩E
|S(α)2G(α)ke(−nα)|dα ≤ C

∫

m∩E

(
NL4

H1/4M

)2

|G(α)|kdα

≤ C
N2L8+k

H1/2M2
|E|,

where we use Vaughan’s estimate of S(α) written in (1.2.31). We want that

∫

m∩E
|S(α)2G(α)ke(−nα)|dα = o(NLk), (2.2.9)
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then we choose the set E such that

|E| = O

(
H1/2M2

NL8

)
. (2.2.10)

By hypothesis H = Nγ, with 0 < γ ≤ 1, then (2.2.10) becomes

|E| = O(N−(1−γ/2)L−4), (2.2.11)

now we can use Corollary A.6.4 taking β = 1− γ/2, that is, that we can find
an effectively computable constant d(1− γ/2) = c(γ) < 1 such that

|G(α)| ≤ c(γ)L (2.2.12)

with α ∈ [0, 1] \ E . We can find the constant c(γ) for each value of 0 < γ ≤ 1
using a computer program made by Alessandro Languasco: in particular we
find that c(1) = 0.7163435444776661 and c(γ) → 1 as γ → 0.

Remark 2. Collecting (2.2.6), (2.2.7) and (2.2.9) we have

Fk(n, N,H) ¿ PQLk + (P/Q)1/2NL2+k + o(NLk) (2.2.13)

when P → +∞. We know that PQLk = o(NLk), then with our choice of
parameters P and Q in (1.2.28), that is P = H1/4M/L2 and Q = H1/2, we
have

Fk(n,N, H) ¿ H−1/8N(ML2(k+1))1/2 + o(NLk); (2.2.14)

furthermore we see that (2.2.4) is satisfied for

H À (ML2)4 (2.2.15)

and this fits with our choice of H.

We now consider the integral on m ∩ C(E), then by (2.2.12) and compu-
tations in §1.2.3, we obtain:

∑
N≤n≤N+H

∣∣∣∣∣
∫

m∩C(E)

S(α)2G(α)ke(−nα)dα

∣∣∣∣∣

2

≤ c(γ)2kL2k
∑

N≤n≤N+H

∣∣∣∣∣
∫

m∩C(E)

S(α)2e(−nα)dα

∣∣∣∣∣

2

≤ c(γ)2kL2kc1

(
HN2L log2 P

P 2
+

HN2L5

Q

)
, (2.2.16)
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where c1 is defined in (1.2.27) and we notice that c0, defined in (1.1.4), is
17c1/16.

Now, since our choice of P and Q in (1.2.28) satisfies conditions (2.2.4),
(2.2.15) and (1.2.29), Theorem 2.1.1 is proved by (2.2.8) and (2.2.16).

From Theorem 2.1.1 we deduce Ek(N, H) ≤ 16c(γ)2k(1+o(1))f(N, H)/17
and Corollary 2.1.2 is proved.
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Chapter 3

Pintz-Ruzsa method

As we have seen in the previous chapters, we can not prove that the excep-
tional set is empty for k ≥ 7 as Pintz and Ruzsa proved in their article [41].
Now we want to explain their method in order to show the differences with
the one that we have used.

First we consider r′′k(N), as defined in (0.5.6), for 2 | N and

r′k(N) =|{(p, ν) : N = p + s(ν)}| for 2 - N, (3.0.1)

we recall that Pintz and Ruzsa proved the following Theorem:

Theorem 3.0.2 (Pintz-Ruzsa). Suppose GRH. Let k be a fixed natural num-
ber, k ≥ 7. Then

r′′k(N) > 0 if 2|N, N > N0(k)

where N0(k) is an explicit constant, depending on k.

3.1 Previous results

3.1.1 Farey’s dissection

As in our case they used the circle method although they acted in a different
way.

Let N be a large integer and P , Q parameters satisfying

2 ≤ P < Q ≤ N. (3.1.1)

We denote by

Iq,a =

{
α =

a

q
+ η : η ∈ ξq,a

}
with ξq,a ⊂

(
− 1

qQ
,

1

qQ

)
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and 1 ≤ a ≤ q, (a, q) = 1. Then they had

M =
⋃
q≤P

q⋃∗

a=1

Iq,a and m =

[
1

qQ
, 1 +

1

qQ

]
\M.

Furthermore we recall that also in this case they consider S(α) and G(α),
defined by (0.5.11) and (0.5.12) respectively.

3.1.2 Lemmas

Before explaining the method we need some Lemmas that Pintz and Ruzsa
[41] used in their computation.

Lemma 3.1.1. Assume GRH. Let h 6= 0 be an even number. Choose

P =
√

NL−8 Q =
√

N. (3.1.2)

Then
∫

M

|S2(α)|e(hα)dα = S(h)
max(N − |h|, 0)

log2 N
+ O(NL−3),

where S(h) is defined by (0.5.4).

Lemma 3.1.2 (Vaughan’s estimate). Assume GRH. If P and Q satisfy
(3.1.1) then for α ∈ m we have

S(α) ¿
(

N

Q
+

√
NQ +

N√
Q

)
L2.

With the choice of P and Q in (3.1.2) we obtain

S(α) ¿ N3/4L2.

Lemma 3.1.3 (Chen’s Theorem). Let h 6= 0 be any even integer, and N
sufficiently large. Then the number of solutions of the equation h = p1 − p2

with pj ≤ N is

R(h) = |{h = p1 − p2 : pj ≤ N, j = 1, 2}| < C∗ ·S(h)
N

log2 N
,

where again S(h) is defined by (0.5.4) and C∗ = 3.9171.
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We note that Hardy-Littlewood conjectured that if h is much smaller
than N , then

R(h) ∼ S(h)
N

log2 N
as N → +∞.

Then they give an upper bound for |G(α)| in the following Corollary.

Corollary 3.1.4 (Pintz-Ruzsa). Assume GRH. We have

|G(α)| =
∣∣∣∣∣
L−1∑
ν=0

e(2να)

∣∣∣∣∣ ≤ 0.7163435444776661L = (1− η)L

if α ∈ [0, 1]\E where |E| = O(N−1/2L−100).

3.1.3 On the numbers of the form p + 2ν

The starting point of this method is to consider the numbers of the form
p + 2ν . We consider

r1(n) = |{(p, ν) : n = p + 2ν , p ≤ N, 1 ≤ ν ≤ L}|,

these numbers determine the important function

s(N) = |{(p1, p2, ν1, ν2) : p1 − p2 =2ν2 − 2ν1 ,

pj ≤ N, 1 ≤ νj ≤ L, j = 1, 2}| (3.1.3)

through the relation

s(N) =
∑

n

r2
1(n) =

∫ 1

0

|S(α)G(α)|2dα.

About the function in (3.1.3) they proved the following Lemma.

Lemma 3.1.5 (Lemma 11 of Pintz and Ruzsa [41]). Assume GRH. Then

s2(N) =

∫

m

|S(α)G(α)|2dα ≤ 2

log2 2
C ′

2N

where C ′
2 < 3.9095 and s2(N) is s(N) restricted to the minor arcs.

42



3.1.4 Sum of k powers of 2

Now we consider the following function

rk,k(m) = |{m = 2ν1 + · · ·+ 2νk − 2µ1 − · · · − 2µk : νi, µj ∈ [1, L]}|,

and we observe that the following Lemma holds.

Lemma 3.1.6.

rk,k(0) ≤ 2L2k−2.

A crucial role will be played by the upper estimation of

S1(k,N) =

∫

M

|S2(α)G2k(α)|dα;

by Lemma 3.1.1 we have

S1(k, N) =
∑
m≤N

rk,k(m)S(m)
N − |m|
log2 N

+ O(NL2k−3),

which can be estimated from above by

S1(k, N) ≤ N

log2 N
S(k, L) + O(NL2k−3),

where

S(k, L) =
∑

m∈Z\{0}
rk,k(m)S(m).

We also need the following Theorem of Khalfalah and Pintz [19].

Theorem 3.1.7. For any given k ≥ 1 there exists the limit

A(k) := lim
L→+∞

(
S(k, L)

2L2k
− 1

)
, (3.1.4)

A(k) decreases strictly monotonically with k, A(k) > 2−2k−1 for every k and
limk→+∞ A(k) = 0.
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3.2 Proof of Theorem 3.0.2

The key point, as we will see later in this section, is the following Lemma
proved by Pintz and Ruzsa [41].

Lemma 3.2.1. Assume GRH. Let η = 0.283656. For k ≥ 1 and any δ > 0
there exists Nk,δ, depending on k and δ only, such that for N ≥ Nk,δ we have

∑
m≤N

(r′k(m))2 ≤ 2NL2k

log2 N
{1 + A(k) + C ′

2(1− η)2k−2 + δ},

where A(k) is defined by Theorem 3.1.7, and C ′
2 = 3.9095 by Lemma 3.1.5.

Also they needed the following Lemma, which is Lemma 14 of Gallagher
[5].

Lemma 3.2.2 (Gallagher). For N → +∞,

∑
n≤N

r′k(n) ∼ NLk

log N

Then the idea is to prove that r′′k(N) > 0. Since we use this part of the
method of Pintz and Ruzsa [41], in Chapter 5, here we will recall only the
principal steps of the proof without all the details, that the reader can find
in that Chapter. First they used the dispersion method and Lemma 3.2.2 to
have

E =
∑
n≤N
2-n

(r
′
k(N)− λk)

2

≤
∑
n≤N
2-n

(r
′
k(N))2 − 2NL2k

log2 N
(1 + o(1)), (3.2.1)

where λk is defined by (5.1.9). Then they considered k = i + j, they took
r′i(m), r′j(n), defined by (3.0.1), and wrote:

r
′′
k(N) =

∑
m+n=N
2-m,2-n

r
′
i(m)r

′
j(n)

where r
′
i(m) and r

′
j(n) are written as in (5.1.10) and (5.1.11) respectively.
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Then they had:

r
′′
k(N) =

4Li+j

log2 N

∑
m+n=N
2-m,2-n

1

+ 2

{
Li

log N

∑
m+n=N
2-m,2-n

sj(n) +
Lj

log N

∑
m+n=N
2-m,2-n

si(m)

}

+
∑

m+n=N
2-m,2-n

si(m)sj(n). (3.2.2)

Now the second and the third term of the previous sum are o(NLk−2): in
fact, by Lemma 3.2.2,

∑
m≤N
2-m

sk(m) =
∑
m≤N
2-m

r′k(m)− 2Lk

log N
· N

2
= o(NLk−1).

The fourth term can be transformed applying the Cauchy-Schwarz in-
equality and using (3.2.1) such that they obtained:

∣∣∣∣∣
∑

m+n=N
2-m,2-n

si(m)sj(n)

∣∣∣∣∣ ≤
( ∑

m≤N
2-m

(r
′
i(m))2 − 2NL2i

log2 N

)1/2(∑
n≤N
2-n

(r
′
j(n))2 − 2NL2j

log2 N

)1/2

,

(3.2.3)

where the details of the steps are in (5.1.13). Now by Lemma 3.2.1 the (3.2.3)
is

=
2NLk

log2 N

(
{A(i) + C

′
2(1− η)2i−2 + δ}{A(j) + C

′
2(1− η)2j−2 + δ}

)1/2

,

where the values of A(i) and A(j), defined by (3.1.4), are taken from the
article of Khalfalah and Pintz [19] and δ is a small positive constant. Then
since the first term in (3.2.2) is

2NLk

log2 N

they wanted that

(
{A(i) + C

′
2(1− η)2i−2 + δ}{A(j) + C

′
2(1− η)2j−2 + δ}

)1/2

< 1, (3.2.4)
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such that the error term is not larger than the main term. Now inserting the
numerical values of 1− η and A(i), A(j) they could check that for k ≥ 7 the
Theorem is proved.

The key point of this method is the use of the estimate of r′k(n) made in
Lemma 3.2.1: in fact this estimate allowed them to prove that, for k ≥ 7,

r′′k(N) = (1 + O(1))
2LkN

log2 N

so that the exceptional set is empty.
In the previous Chapters we start our proof using the method of Kac-

zorowski, Perelli and Pintz [17] and then we mixed it with other two methods:
in fact we use the one of Languasco, Pintz and Zaccagnini [24] to estimate
the tail of the singular series and we use a part of the method of Pintz and
Ruzsa [41] to split the integral on the minor arcs. Using this methods we
prove that the exceptional set for the Goldbach-Linnik problem, under GRH,
is smaller than that of Goldbach, but we can not prove that it is empty for
k ≥ 7, as Pintz and Ruzsa do. The only way to reach the same result is to
act exactly in the same way of Pintz and Ruzsa: in fact the key point of their
method, as we have described in this Chapter, is the use of r′k(N).
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Chapter 4

Upper bound for the size of the
exceptional set for the
Goldbach-Linnik problem with
k powers of 2 in long intervals

4.1 Introduction

Here we want to estimate the size of the exceptional set of Goldbach-Linnik
using a different technique involving series instead of finite sums this is a
technique introduced by Hardy and Littlewood in the twenties.

We consider the case of long intervals; we let N → +∞, L = log2 N and
we replace S(α), see (0.5.11), with

S̃(α) =
∞∑

n=1

Λ(n)e−n/Ne(nα). (4.1.1)

Then we use the technique described in the articles of Languasco and Perelli
[22] and of Languasco [21]; in fact using this method they improved the
estimate in Lemma 1 of Kaczorowski, Perelli and Pintz [17], that is Lemma
A.6.1. The idea is that using S̃(α) instead of S(α) they could introduce
Saffari-Vaughan’s [42] technique into the machinery of the circle method and
also they could avoid the use of Parseval’s identity in a critical part of the
unit interval. Then Languasco and Perelli [22] proved

Theorem 4.1.1 (Languasco-Perelli). Assume RH and let z = 1/N − 2πiη.
For N sufficiently large and 0 ≤ ξ ≤ 1/2 we have

∫ ξ

−ξ

∣∣∣∣S̃(η)2 − 1

z

∣∣∣∣ dη ¿ NξL2 + Nξ1/2L.
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And Languasco [21] proved

Lemma 4.1.2 (Languasco). Assume GRH and let α = a/q + η, η ∈ ξq,a and
z = 1/N − 2πiη. Then

∣∣∣∣S̃(α)− µ(q)

ϕ(q)

1

z

∣∣∣∣ ¿ (N(q|η|1/2) + (qN)1/2) log qN.

Lemma 4.1.3 (Languasco). Assume GRH and let z = 1/N − 2πiη. Then

∑
1≤a≤q
(a,q)=1

∫ 1/qQ

−1/qQ

∣∣∣∣S̃
(

a

q
+ η

)
− µ(q)

ϕ(q)

1

z

∣∣∣∣
2

dη ¿ N

Q
(log qN)2.

Using this results Languasco and Perelli in [23] proved the analogue of
Lemma 1 of Kaczorowski, Perelli and Pintz, see Lemma A.6.1, that is

Lemma 4.1.4. Assume GRH. Then we have

∫ 1/qQ

−1/qQ

∣∣∣∣∣
∞∑

n=1

Λ(n)χ(n)en/Ne(nη)− δχ

z

∣∣∣∣∣

2

dη ¿ NL2

qQ
,

uniformly for χ(modq) with q ≤ Q ≤ N .

In our case we need also to replace G(α), see (0.5.12), with

G̃(α) =
∑

1≤ν≤L

e−2ν/Ne(2να); (4.1.2)

here is not necessary to take the series because after computations we see
that for our aim is enough the finite sum. Also we have to observe that

∣∣∣G̃(α)−G(α)
∣∣∣ = O(1); (4.1.3)

in fact we have

∣∣∣G̃(α)−G(α)
∣∣∣ =

∣∣∣∣∣
∑

1≤ν≤L

e−2ν/Ne(2να)−
∑

1≤ν≤L

e(2να)

∣∣∣∣∣
≤

∑
1≤ν≤L

∣∣e−2ν/N − 1
∣∣

≤
∑

1≤ν≤L

2ν

N
≤ 2L+1 − 1

N
¿ 1
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for N → +∞. Now by (0.5.15) and (0.5.16) we have that R′′
1(n) becomes

R̃′′
1(n) = e−n/NR′′

1(n) =

∫ 1

0

S̃(α)2G̃(α)e(−nα)dα. (4.1.4)

Consider

Σ̃0(n,N) =

∣∣∣∣∣R̃
′′(n)− e−n/NnS(n) + F̃0(n,N)

∣∣∣∣∣, (4.1.5)

where

F̃0(n, N) ¿ N7/8L1/2 log log N (4.1.6)

and

Σ̃1(n,N) =

∣∣∣∣∣R̃
′′
1(n)− e−n/NM1(n) + F̃1(n,N)

∣∣∣∣∣, (4.1.7)

where F̃1(n,N) will be a function that collects some of the error terms arising
from major and minor arcs and from the tail of the singular series: in fact
we will see that they are o(NL) and F̃1(n, N) satisfies (4.2.12).

Now let

f̃(N) = c2(1 + o(1))N1/2L3, (4.1.8)

where c2 is a real positive constant that satisfies (4.2.18). Then from Lemma
4.1.4 we have the analogue of Theorem 1.1.1, that is

Theorem 4.1.5. Assume GRH. Then
∑

N≤n≤2N

Σ̃0(n,N)2 ≤ f̃(N)N2,

where f̃(N) is defined by (4.1.8).

And from this we have

Corollary 4.1.6. Assume GRH, then

Ẽ(N) ≤ f̃(N).

Then we will prove the following Theorem in the case of Goldbach-Linnik
problem.
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Theorem 4.1.7. Assume GRH. With the same notation as in the statement
of Theorem 4.1.5 we have

∑
N≤n≤2N

Σ̃1(n,N)2 ≤ c2L2f̃(N)N2,

with c = 0.7163435444776661.

From this Theorem we obtain the following result:

Corollary 4.1.8. Assume GRH, then:

Ẽ1(N) ≤ c2f̃(N), (4.1.9)

where f̃(N) is defined in (4.1.8).

4.2 Proof of Theorem 4.1.7

To prove Theorem 4.1.7, we consider the Farey dissection of order Q of
I = [1/Q, 1+1/Q], as described in §A.4; we will eventually choose Q = N1/2,
see (4.2.11). We call the arc relative to a/q

Iq,a =

{
α =

a

q
+ η : η ∈ ξq,a

}
with ξq,a ⊂

(
− 1

qQ
,

1

qQ

)
.

We recall that (
− 1

2qQ
,

1

2qQ

)
⊂ ξq,a ⊂

(
− 1

qQ
,

1

qQ

)
;

we let

M =
⋃
q≤P

q⋃∗

a=1

Iq,a (4.2.1)

be the so-called major arcs and

m = I\M (4.2.2)

the minor ones.
Now (4.1.4) becomes

∫ 1

0

S̃(α)2G̃(α)e(−nα)dα =

∫

M

S̃(α)2G̃(α)e(−nα)dα

+

∫

m

S̃(α)2G̃(α)e(−nα)dα

=R̃′′
M(n) + R̃′′

m(n),

say.
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4.2.1 Major arcs

Consider P such that P · Q ≤ N , α = a/q + η and z = 1/N − 2πiη, hence
we can write the analogous of (1.2.5), that is

S̃

(
a

q
+ η

)
=

µ(q)

ϕ(q)

1

z
+ R̃(η; q, a), (4.2.3)

where R̃(η; q, a) is the error term arising from the approximation and we
know from Lemma 4.1.2 that it is “small”. Then we can do the following
computations on the major arcs:

R̃′′
M(n) =

∑
q≤P

q∑∗

a=1

∫

ξq,a

S̃

(
a

q
+ η

)2

G̃

(
a

q
+ η

)
eq(−na)e(−nη)dη

=
∑
q≤P

q∑∗

a=1

∑
1≤ν≤L

e−2ν/Neq(−(n− 2ν)a)

·
∫

ξq,a

(
µ(q)

ϕ(q)

1

z
+ R̃(η; q, a)

)2

e(−(n− 2ν)η)dη

=
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

µ(q)2

ϕ(q)2

1

z2
e(−(n− 2ν)η)dη

+ 2
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

eq(−(n− 2ν)a)

·
∫

ξq,a

µ(q)

ϕ(q)

1

z
R̃(η; q, a)e(−(n− 2ν)η)dη

+
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

eq(−(n− 2ν)a)

·
∫

ξq,a

R̃(η; q, a)2e(−(n− 2ν)η)dη

=Σ̃1(n) + Σ̃2(n) + Σ̃3(n);

say. Here Σ̃1(n) is the main term, while Σ̃2(n) and Σ̃3(n) are the error terms.
Now from Lemma 2 of Languasco [21], that is Lemma 4.1.3, and from Section
5 of Languasco and Perelli [23] we have

Σ̃3(n) ¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

∫

ξq,a

|R̃(η; q, a)|2dη
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¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

N

Q
(log qN)2

¿ N

Q
PL3. (4.2.4)

Furthermore by the Cauchy-Schwarz inequality we obtain

Σ̃2(n) ¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

∫

ξq,a

∣∣∣∣
µ(q)

ϕ(q)

1

z

∣∣∣∣ · |R̃(η; q, a)|dη

¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

q∑∗

a=1

(∫

ξq,a

∣∣∣∣
µ(q)

ϕ(q)

1

z

∣∣∣∣
2

dη

)1/2

·
(∫

ξq,a

|R̃(η; q, a)|2dη

)1/2

¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

(
q∑∗

a=1

∫

ξq,a

∣∣∣∣
µ(q)

ϕ(q)

1

z

∣∣∣∣
2

dη

)1/2

·
(

q∑∗

a=1

∫

ξq,a

|R̃(η; q, a)|2dη

)1/2

.

We also know that

|z|−1 ¿ min (N, |η|−1) (4.2.5)

and again by Lemma 4.1.3

Σ̃2(n) ¿
∑

1≤ν≤L

e−2ν/N
∑
q≤P

µ(q)2N1/2

ϕ(q)1/2

(
N

Q
L2

)1/2

¿ NL2

(
P

Q

)1/2

, (4.2.6)

where the last result comes from Lemma A.6.2. Now we consider Σ̃1(n) and
we have

Σ̃1(n) =
∑

1≤ν≤L

e−2ν/N
∑
q≤P

µ(q)2

ϕ(q)2

q∑∗

a=1

eq(−(n− 2ν)a)

∫

ξq,a

1

z2
e(−(n− 2ν)η)dη.

By Lemma 5 of Languasco [21]
∫

ξq,a

1

z2
e(−(n− 2ν)η)dη = e−(n−2ν)/N(n− 2ν) + O(qQ), (4.2.7)
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so that

Σ̃1(n) =
∑

1≤ν≤L

e−2ν/N
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

(
e−(n−2ν)/N(n− 2ν) + O(qQ)

)

=
∑

1≤ν≤L

e−n/N(n− 2ν)
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

+ O

( ∑
1≤ν≤L

e−2ν/N
∑
q≤P

µ(q)2qQ

ϕ(q)

)
,

then from Lemma A.6.2 this becomes

=
∑

1≤ν≤L

e−n/N(n− 2ν)
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− 2ν)) + O(PQL).

Summing up, we have
∫

M

S̃(α)2G̃(α)e(−nα)dα =e−n/NM1(n)

− e−n/N
∑

1≤ν≤L

(n− 2ν)
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

+ O

(
PQL +

(
P

Q

)1/2

NL2 +

(
P

Q

)
NL3

)
.

Now we want that (P/Q)1/2NL2 and (P/Q)NL3 are of the same order, that
happens when

P ¿ QL−2. (4.2.8)

Then we obtain
∫

M

S̃(α)2G̃(α)e(−nα)dα =e−n/NM1(n)

− e−n/N
∑

1≤ν≤L

(n− 2ν)
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− 2ν))

+ O

(
PQL +

(
P

Q

)1/2

NL2

)
(4.2.9)

Now the tail of the singular series can be estimated by means the compu-
tations that we made in Chapter 1, §1.2.2. Then from Lemma 1.2.1 we have
that the tail of the singular series is o(NL).
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4.2.2 Minor arcs

Now we want to estimate the integral on the minor arcs, to do this we try
to use the method that Pintz and Ruzsa used to prove Lemma 13 of [41].
First we need an upper bound for S̃(a/q + η), see (4.2.3), from Lemma 1 of
Languasco [21], see Lemma 4.1.2, we have

|R̃(η; q, a)| ¿ (N(q|η|)1/2 + (qN)1/2) log (qN),

furthermore from (6) of Languasco [21]
∣∣∣∣
µ(q)

ϕ(q)

1

z

∣∣∣∣ ¿ min(N, |η|−1)
log log q

q
¿ N

q
log log q,

then we have
∣∣∣∣S̃

(
a

q
+ η

)∣∣∣∣ ¿
N

q
log log q + (N(q|η|)1/2 + (qN)1/2) log (qN).

Since we are on minor arcs P ≤ q ≤ Q and 1/q ≤ 1/P , furthermore |η| ≤
1/(qQ) then we have

∣∣∣∣S̃
(

a

q
+ η

)∣∣∣∣ ¿
N

P
log log P +

(
N

Q1/2
+ (QN)1/2

)
log (QN)

¿N3/4L (4.2.10)

with

Q = N1/2 and P = Q1/2L−1(log log N)2. (4.2.11)

Now we can use the method of Pintz and Ruzsa [41] then we consider a set
E such that |G(α)| ≤ L, for α ∈ E , and |G(α)| ≤ cL, for α ∈ C(E) = [0, 1]\E
and c = 0.7163435444776661.

First we have

∫

m∩E
|S̃(α)|2|G̃(α)|dα ≤L

∑
P<q≤Q

q∑∗

a=1

∫

[−1/qQ,1/qQ]∩E

∣∣∣∣S̃
(

a

q
+ η

)∣∣∣∣
2

dη

≤CN3/2L3

∫

m∩E
dα

=C|E|N3/2L3,

where C is the real positive constant hidden in (4.2.10). We want that this
is o(NL), then |E| has to be O(N−1/2L−2), this, together with (4.1.3), gives
us the conditions to use Corollary 1 of Pintz and Ruzsa, see Corollary A.6.4.
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Remark 3. Collecting (4.2.9), the estimate of the tail of the singular series
and the estimate of the integral on the minor arcs, where |G(α)| ≤ L, we
have

F̃1(n,N) ¿ PQL +

(
P

Q

)1/2

NL2 + o(NL)

when P → +∞. We know that PQL = o(NL), then with our choice of pa-
rameters P and Q in (4.2.11), that is Q = N1/2 and P = N1/4L−1(log log N)2,
we have

F̃1(n,N) ¿ N7/8L3/2 log log N + o(NL). (4.2.12)

Now consider

t(s) =
1

N
max(N − |s|, 0)

and as in (1.2.20), by the properties of the Fejér kernel

K(α) =
+∞∑

s=−∞
t(s)e(−sα) ¿ 1

N
min

(
N2,

1

‖α‖2

)
. (4.2.13)

Then

2N∑
n=N

∣∣∣∣
∫

m∩C(E)

S̃(α)2G̃(α)e(−nα)dα

∣∣∣∣
2

≤
∑

n

t(n−N)

(∫

m∩C(E)

S̃(ξ)
2

G̃(ξ)e(nξ)dξ

)

·
(∫

m∩C(E)

S̃(α)2G̃(α)e(−nα)dα

)

=

∫

m∩C(E)

S̃(ξ)
2
∫

m∩C(E)

S̃(α)2G̃(ξ)G̃(α)
∑

n

t(n−N)e(−n(α− ξ))dξdα

=

∫

m∩C(E)

S̃(ξ)
2
∫

m∩C(E)

S̃(α)2G̃(ξ)G̃(α)K(α− ξ)dξdα

≤c2L2

∫

m∩C(E)

|S̃(ξ)|2
∫

m∩C(E)

|S̃(α)|2|K(α− ξ)|dαdξ

Now we can compute as in Kaczorowski, Perelli and Pintz [17] to estimate
∫

m∩C(E)

|S̃(ξ)|2
∫

m∩C(E)

|S̃(α)|2|K(α− ξ)|dαdξ. (4.2.14)
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We recall that, by the Prime Number Theorem

∫ 1

0

|S̃(α)|2dα ¿ NL (4.2.15)

and we use this to give an estimate of
∫

m
|S̃(ξ)|2dξ, then (4.2.14) becomes

¿NL max
ξ∈[0,1]

∫

m∩C(E)

|S̃(α)|2|K(α− ξ)|dα. (4.2.16)

Now for α ∈ {ξ − 1/N, ξ + 1/N} we have that min {N2, 1/‖ξ − α‖2} = N2,
furthermore we can split the interval [0, 1] into N/2 subintervals so that we
have

α ∈
N⋃

t=−N

(
ξ − t

N
− 1

N
, ξ − t

N
+

1

N

)

that is the union of all the intervals of length 2/N translated toward left
and right from ξ, where ξ ∈ [0, 1]. If α belongs to the t-th interval, then
1/‖ξ − α‖2 ≤ N2/(t2 + 1) and

min
{
N2, 1/‖ξ − α‖2

} ≤ N2

t2 + 1

and (4.2.16) becomes

¿NL max
ξ∈[0,1]

N∑
t=−N

N

t2 + 1

∫

(ξ−t/N−(1/N),ξ−t/N+(1/N))∩m

|S̃(α)|2dα

¿N2L max
ξ∈[0,1]

∫

(ξ−(1/N),ξ+(1/N))∩m

|S̃(α)|2dα

¿N2L max
P<q≤Q
(a,q)=1

∫ 1/qQ

−1/qQ

∣∣∣∣S̃
(

a

q
+ η

)∣∣∣∣
2

dη.

Now the fact that α ∈ m allows us to say that 1/N ≤ 1/qQ, that is

Q2 ≤ N. (4.2.17)

We proceed with the computation and we have

N2L max
P<q≤Q
(a,q)=1

∫ 1/qQ

−1/qQ

∣∣∣∣S̃
(

a

q
+ η

)∣∣∣∣
2

dη
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¿ N2L max
P<q≤Q
(a,q)=1

(∫ 1/qQ

−1/qQ

∣∣∣∣
µ(q)

ϕ(q)

1

z

∣∣∣∣
2

dη +

∫ 1/qQ

−1/qQ

∣∣∣R̃(η; q, a)
∣∣∣
2

dη

)
,

from Lemma 4.1.3 and estimate in page 156 of Languasco [21], we have

¿ N2L max
P<q≤Q
(a,q)=1

(
(log log q)2

q2

N

π
arctan

2πN

qQ
+

N

Q
(log qQ)2

)

¿ N3L(log log P )2

P 2
+

N3L3

Q
.

Now our choice of Q and P in (4.2.11) satisfies conditions (4.2.8) and (4.2.17),
then calling c2 the implicit constant in the O(.) notation, we have

∫

m∩C(E)

|S̃(ξ)|2
∫

m∩C(E)

|S̃(α)|2|K(α− ξ)|dαdξ ≤ c2(1 + o(1))N5/2L3.

(4.2.18)

Then we have
2N∑

n=N

∣∣∣∣
∫

m∩C(E)

S̃(α)2G̃(α)e(−nα)dα

∣∣∣∣
2

≤ c2L2

2N∑
n=N

∣∣∣∣
∫

m∩C(E)

S̃(α)2e(−nα)dα

∣∣∣∣
2

(4.2.19)

and from this
2N∑

n=N

∣∣∣Σ̃1(n,N)
∣∣∣
2

≤ c2L2f̃(N)N2.

This proves Theorem 4.1.7 and Corollary 4.1.8 follows.

4.3 Extension to the case with k powers of 2.

Now we can extend our result to the case with k powers of 2: we recall that
we call ν = (ν1, . . . , νk) and s(ν) = 2ν1 + · · ·+ 2νk and we consider

Σ̃k(n,N) =

∣∣∣∣∣R̃
′′
k(n)− e−n/NMk(n) + F̃k(n,N)

∣∣∣∣∣, (4.3.1)

where R̃′′
k(n) is defined in (0.5.17) and F̃k(n,N) will be a function that collects

some of the error terms arising from major and minor arcs and from the tail
of the singular series: in fact we will see that they are o(NLk) and F̃k(n,N)
satisfies (4.3.8). Then we prove the following Theorem.

57



Theorem 4.3.1. Assume GRH. With the same notation as in the statement
of Theorem 4.1.5 we have

∑
N≤n≤2N

Σ̃k(n,N)2 ≤ c2kL2kf̃(N)N2,

with c = 0.7163435444776661.

From this Theorem we obtain the following result:

Corollary 4.3.2. Assume GRH, then:

Ẽk(N) ≤ c2kf̃(N), (4.3.2)

where f̃(N) is defined in (4.1.8).

Proof of Theorem 4.3.1. We follow the proof of Theorem 4.1.7, first we con-
sider the Farey dissection of order Q of [1/Q, 1 + 1/Q], as described in §A.4;
we will eventually choose Q = N1/2, see (4.2.11). Then we have

R′′
k(n) =

∫ 1

0

S̃(α)2G̃(α)ke(−nα)dα

=

∫

M

S̃(α)2G̃(α)ke(−nα)dα +

∫

m

S̃(α)2G̃(α)ke(−nα)dα

=R̃′′
M(n) + R̃′′

m(n),

say.
Now we choose P such that P ·Q ≤ N and we consider (4.2.3), then we

can do the following computations on the major arcs

R̃′′
M(n) =

∑
q≤P

q∑∗

a=1

∫

ξq,a

S̃

(
a

q
+ η

)2

G̃

(
a

q
+ η

)k

eq(−na)e(−nη)dη

=
∑
q≤P

q∑∗

a=1

∑
1≤ν1≤L

· · ·
∑

1≤ν1≤L

e−s(ν)/Neq(−(n− s(ν))a)

·
∫

ξq,a

(
µ(q)

ϕ(q)

1

z
+ R̃(η; q, a)

)2

e(−(n− s(ν))η)dη

=
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−s(ν)/N
∑
q≤P

q∑∗

a=1

eq(−(n− s(ν))a)

·
∫

ξq,a

µ(q)2

ϕ(q)2

1

z2
e(−(n− s(ν))η)dη
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+ 2
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−s(ν)/N
∑
q≤P

q∑∗

a=1

eq(−(n− s(ν))a)

·
∫

ξq,a

µ(q)

ϕ(q)

1

z
R̃(η; q, a)e(−(n− s(ν))η)dη

+
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−s(ν)/N
∑
q≤P

q∑∗

a=1

eq(−(n− s(ν))a)

·
∫

ξq,a

R̃(η; q, a)2e(−(n− s(ν))η)dη

=Σ̃1(n) + Σ̃2(n) + Σ̃3(n);

say. Here again Σ̃1(n) is the main term, while Σ̃2(n) and Σ̃3(n) are the error
terms. Now from Lemma 4.1.3 and (4.2.4) we have

Σ̃3(n) ¿ N

Q
PL2+k; (4.3.3)

furthermore from Cauchy-Schwarz inequality and (4.2.6)

Σ̃2(n) ¿ NL1+k

(
P

Q

)1/2

. (4.3.4)

Now from (4.2.7) we have

Σ̃1(n) =
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−s(ν)/N
∑
q≤P

q∑∗

a=1

eq(−(n− s(ν))a)

·
∫

ξq,a

µ(q)2

ϕ(q)2

1

z2
e(−(n− s(ν))η)dη

=
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−n/N(n− s(ν))
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O

( ∑
1≤ν1≤L

· · ·
∑

1≤νk≤L

e−s(ν)/N
∑
q≤P

µ(q)2qQ

ϕ(q)

)
.

From Lemma A.6.2 we obtain

Σ̃1(n) =
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

e−n/N(n− s(ν))
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O(PQLk); (4.3.5)
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collecting (4.3.5), (4.3.4) and (4.3.3) we have

R̃′′
M(n) =

∑
1≤ν1≤L

· · ·
∑

1≤νk≤L

e−n/N(n− s(ν))
∑
q≤P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O

(
PQLk + NL1+k

(
P

Q

)1/2

+
N

Q
PL2+k

)

and provided that

P ¿ QL−2 (4.3.6)

we reach the following result

R̃′′
M(n) =e−n/NMk(n)

+ e−n/N
∑

1≤ν1≤L

· · ·
∑

1≤νk≤L

(n− s(ν))
∑
q>P

µ(q)2

ϕ(q)2
cq(−(n− s(ν)))

+ O

(
PQLk + NL1+k

(
P

Q

)1/2
)

. (4.3.7)

From computations made in Chapter 1, §1.2.2, and from Lemma 2.2.1, we
have that the tail of the singular series is o(NLk).

Now we want to see what happens on the minor arcs using the Pintz and
Ruzsa method, then we consider a set E such that |G(α| ≤ L, for α ∈ E , and
|G(α)| ≤ cL, for α ∈ C(E) = [0, 1]\E and c = 0.7163435444776661. Then we
split the integral on the minor arcs in the following way

∫

m

S̃(α)2G̃(α)ke(−nα)dα

=

∫

m∩E
S̃(α)2G̃(α)ke(−nα)dα +

∫

m∩C(E)

S̃(α)2G̃(α)ke(−nα)dα.

First we consider
∫

m∩E
|S̃(α)|2|G̃(α)|kdα ≤Lk

∑
P<q≤Q

q∑∗

a=1

∫

[−1/qQ,1/qQ]∩E

∣∣∣∣S̃
(

a

q
+ η

)∣∣∣∣
2

dη

≤ |E|N3/2L2+k,

where we use the estimate of |S̃(a/q + η)| given by (4.2.10), with the same
choice of P and Q in (4.2.11), that is Q = N1/2 and P = N1/4L−1(log log N)2.
We want that this is o(NLk), then |E| has to be O(N−1/2L−2). This and
(4.1.3) give us the condition of Corollary 1 of Pintz and Ruzsa, see Corollary
A.6.4.
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Remark 4. Collecting (4.3.7), the estimate of the tail of the singular series
and the estimate of the integral on the minor arcs, where |G(α)| ≤ L, we
have

F̃k(n,N) ¿ PQLk +

(
P

Q

)1/2

NL1+k + o(NLk)

when P → +∞. We know that PQLk = o(NLk), then with our choice of
parameters P and Q in (4.2.11) we have

F̃k(n,N) ¿ N7/8L1/2+k log log N + o(NL). (4.3.8)

Now from the same computations made in §4.2.2 we have

∑
N≤n≤2N

∣∣∣∣
∫

m∩C(E)

S̃(α)2G̃(α)ke(−nα)dα

∣∣∣∣
2

≤ c2kL2k

∫

m∩C(E)

|S̃(ξ)|2
∫

m∩C(E)

|S̃(α)|2|K(α− ξ)|dαdξ. (4.3.9)

Then from (4.2.19) we have that (4.3.9) becomes

2N∑
n=N

∣∣∣∣
∫

m∩C(E)

S̃(α)2G̃(α)ke(−nα)dα

∣∣∣∣
2

(4.3.10)

≤ c2kL2k

2N∑
n=N

∣∣∣∣
∫

m∩C(E)

S̃(α)2e(−nα)dα

∣∣∣∣
2

. (4.3.11)

Now, since P and Q satisfy conditions (4.3.6) and (4.2.17), Theorem 4.3.1 is
proved.

The proof of Corollary 4.3.2 is immediate from Theorem 4.3.1.
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Chapter 5

Conditions for the validity of
the Goldbach-Linnik hypothesis
for small k

5.1 Statement of the problem

In this chapter we want to study another kind of thing about the Goldbach-
Linnik problem; the aim is to find, under suitable conditions, a value k0 such
that for all k ≥ k0 the Goldbach-Linnik hypothesis is true for large N . To
do this we start from Theorem 1 of Pintz and Ruzsa [41] that is:

Theorem 5.1.1 (Pintz and Ruzsa). Assume GRH. Let k be a fixed natural
number with k ≥ 7. Then

r′′k(N) > 0 if 2 | N,N > N0(k)

where N0(k) is an explicit constant, depending on k.

This means that, if GRH is true, all large even numbers can be written
as a sum of two primes and k powers of 2, for all k ≥ 7.

Now the idea is to use an appropriate variant of Montgomery’s hypothesis,
discussed in §0.4, in order to estimate |S(α)| on the minor arcs, to prove the
previous result also for some k < 7. We have:

Theorem 5.1.2. Assume GRH. Let k be a fixed natural number k ∈ {3, 4, 5,
6}. Then we can find a θ ∈ [1/4, 1/2] such that, assuming GMC(θ),

r′′k(N) > 0 if 2 | N,N > N0(k)

where N0(k) is an explicit constant depending on k.
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We write here the value of θ that we have found for each value of
3 ≤ k ≤ 6:

k θ
3 0.47169811315754716981132
4 0.37389380525973451327434
5 0.30357142852142857142857
6 0.25490196073431372549020

Remark 5. We recall that in this Chapter L = loge N instead of log2 N as
in the other Chapters.

Remark 6. We recall that, if θ = 1/4, GMC(θ) is the same of GRH, so that
we are in the same condition of Theorem 5.1.1 of Pintz and Ruzsa. Then the
interesting part is to prove the thesis for 3 ≤ k0 ≤ 6 and to do this, we have
found the specific values of θ that allow us to reach our goal.

Remark 7. We can not prove the same result for k = 2 as we will see in
§5.2.

To reach our aim we will follow the idea of the proof of Lemma 13 of Pintz
and Ruzsa [41]. First we will consider a set E such that |G(α)| ≤ (1 − η)L,
for all α ∈ [0, 1] \ E , where (1− η) is a real positive constant less than 1, and
|G(α)| ≤ L for all α ∈ E . Then we have

∫

m

|S(α)G(α)k|2dα =

∫

m∩E
|S(α)G(α)k|2dα +

∫

m∩C(E)

|S(α)G(α)k|2dα.

Now we can consider the two integrals separately, first we take that on m ∩
C(E):

∫

m∩C(E)

|S(α)G(α)k|2dα =

∫

m∩C(E)

|G(α)k−1|2|S(α)G(α)|2dα. (5.1.1)

From Lemma 11 of [41], see Lemma A.6.3, we have that (5.1.1) is

≤ ((1− η)L)2k−2

∫

m

|S(α)G(α)|2dα ≤ ((1− η)L)2k−2 · 2

log2 2
C ′

2N, (5.1.2)

where C ′
2 = 3.9095.

The second integral is
∫

m∩E
|S(α)G(α)k|2dα ≤ Cε ·N2(1−θ+ε)L2k|E|. (5.1.3)
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where, instead of Vaughan’s estimate, we use the bound |S(α)| ¿ N1−θ+ε,
with θ ∈ (1

4
, 1

2
] and Cε is the implicit constant in our estimate of |S(α)|. This

bound comes from Corollary 2 of Languasco and Perelli [23], which is the
following:

Corollary 5.1.3. Let θ ∈ (0, 1/2] be fixed, Q = 1
2
N θ and assume GMC(θ).

Then for every ε > 0

S

(
a

q
+ η

)
=

µ(q)

ϕ(q)
T (η) + Oε

(
N1+ε

(qQ)1/2

)

uniformly for q ≤ Q, (a, q) = 1 and |η| ≤ 1/qQ.

Now we wish to have that (5.1.3) leads to a negligible error term so that
we need that:

C ·N2(1−θ+ε)L2k|E| = o(NL2k)

and hence

|E| = o(N−1+2θ−ε). (5.1.4)

Now we want to find the values of θ such that this condition is verified;
to do this we will follow the proof of Theorem 5.1.1, see page 192 of [41]. We
recall that by Remark 6 we need to analyze only the cases with k = 3, 4, 5, 6.

First we need the following definitions

r′k(n) =|{(p, ν) ∈ P× [1, L]k : n = p + s(ν)}|, (5.1.5)

rk,k(m) = |{m = 2ν1 + . . . + 2νk − 2µ1 − . . .− 2µk : νi, µj ∈ [1, L]}| (5.1.6)

and

S(k, L) =
∑

m∈Z\{0}
rk,k(m)S(m). (5.1.7)

Then, for every value of k, we need A(k) that is defined in the Theorem of
Khalfalah and Pintz [19], that we quote in Chapter 3, see Theorem 3.1.7.

Now the idea is to prove that r′′k(N) > 0, first we use the dispersion
method and Lemma 14 of Pintz and Ruzsa [41] to have

E =
∑
n≤N
2-n

(r
′
k(N)− λk)

2
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≤
∑
n≤N
2-n

(r
′
k(N))2 − 2NL2k

log2 N
(1 + o(1)), (5.1.8)

where we define

λk =
2Lk

log N
∼ 2Lk−1

log 2
. (5.1.9)

Then we consider k = i + j, furthermore we take r′i(m), r′j(n) defined by
(5.1.5) and we write:

r
′′
k(N) =

∑
m+n=N
2-m,2-n

r
′
i(m)r

′
j(n)

where

r
′
i(m) =λi + si(m) =

2Li

log N
+ si(m) (5.1.10)

r
′
j(n) =λj + sj(n) =

2Lj

log N
+ sj(n). (5.1.11)

Then we have:

r
′′
k(N) =

∑
m+n=N
2-m,2-n

(
2Li

log N
+ si(m)

)(
2Lj

log N
+ sj(n)

)

=
4Li+j

log2 N

∑
m+n=N
2-m,2-n

1

+ 2

{
Li

log N

∑
m+n=N
2-m,2-n

sj(n) +
Lj

log N

∑
m+n=N
2-m,2-n

si(m)

}

+
∑

m+n=N
2-m,2-n

si(m)sj(n). (5.1.12)

Now by Lemma 14 of [41] the second and the third term of the previous sum
are o(NLk−2).

The fourth term can be transformed applying the Cauchy-Schwarz in-
equality and we obtain:

∣∣∣∣∣
∑

m+n=N
2-m,2-n

si(m)sj(n)

∣∣∣∣∣ ≤
( ∑

m≤N
2-m

si(m)2

)1/2(∑
n≤N
2-n

sj(n)2

)1/2
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≤
( ∑

m≤N
2-m

(r
′
i(m)− λi)

2

)1/2(∑
n≤N
2-n

(r
′
j(n)− λj)

2

)1/2

.

(5.1.13)

Now by (5.1.8), (5.1.13) becomes:

≤
( ∑

m≤N
2-m

(r
′
i(m))2 − 2NL2i

log2 N

)1/2(∑
n≤N
2-n

(r
′
j(n))2 − 2NL2j

log2 N

)1/2

(5.1.14)

and, by Lemma 13 of Pintz and Ruzsa [41], (5.1.14) is

=
2NLk

log2 N

(
{A(i) + C

′
2(1− η)2i−2 + δ}{A(j) + C

′
2(1− η)2j−2 + δ}

)1/2

,

where the values of A(i) and A(j), defined by (3.1.4), are taken from the
article of Khalfalah and Pintz [19] and δ is a small positive constant. Since
the first term in (5.1.12) is

2NLk

log2 N

then we want that

(
{A(i) + C

′
2(1− η)2i−2 + δ}{A(j) + C

′
2(1− η)2j−2 + δ}

)1/2

< 1. (5.1.15)

Now by (5.1.15) we can compute the value of (1− η) for each 3 ≤ k ≤ 6 and
then the relative values of θ; in this computation we will forget δ because it
can be assimilated in the rounding of numerical values.

Remark 8. We observe that, if k = 2, we need A(1) + C ′
2 < 1 that is a

contradiction: this means that with this method we can not prove the case
k = 2.

5.2 Computation of parameters:

Now we suppose k = 2s and i = j = s then by (5.1.15):

{A(s) + C
′
2(1− η)2s−2} < 1;
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this implies

(1− η)2s−2 <
1− A(s)

C
′
2

hence

(1− η) <

[
1− A(s)

C
′
2

]1/(2s−2)

. (5.2.1)

In the same way, we suppose k = 2s + 1 , i = s + 1 and j = s then by
(5.1.15):

{A(s + 1) + C
′
2(1− η)2s}1/2{A(s) + C

′
2(1− η)2s−2}1/2 < 1,

hence

A(s + 1)A(s) + C
′
2A(s + 1)(1− η)2s−2

+ C
′
2A(s)(1− η)2s + C

′
2

2
(1− η)4s−2 < 1. (5.2.2)

Now from (5.2.1) and (5.2.2) we can deduce the values of (1 − η) for k =
3, 4, 5, 6 and then we use a computer program written by Alessandro Lan-
guasco program to compute the value of |E| for each value of (1− η). After
finding each value of |E|, by (5.1.4) we will be able to find each value of θ
that prove Theorem 5.1.2.

5.2.1 Derivation of the value for θ.

CASE k = 3

Consider k = 3, i = 2, j = 1, then by (5.2.2):

{A(2) + C
′
2(1− η)2}{A(1) + C

′
2} < 1

C
′
2(1− η)2 <

1

A(1) + C
′
2

− A(2)

(1− η) <

√
1

C
′
2

(
1

A(1) + C
′
2

− A(2)

)

< 0.2164995530284642374200028966
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Now we use the Languasco program to find |E|, after few computations, see
§A.7 Table 1, we find that the best value of |E| is |E| < N−3/53−10−10

, then
we obtain:

−1 + 2θ =− 3

53
− 10−10

θ =
1

2

(
1− 3

53
− 10−10

)
< 0.47169811315754716981132. (5.2.3)

Since this value of θ is in the interval (1/4, 1/2), we can conclude that The-
orem 5.1.2 is proved for k = 3.

CASE k = 4

Consider k = 4, i = 2, j = 2 then from (5.2.1):

(1− η) <

√
1− A(2)

C
′
2

< 0.49152211929758836081794763898882.

Also in this case after few computations, see §A.7 Table 2, we obtain |E| <
N−57/226−10−10

and then

θ = 0.37389380525973451327434. (5.2.4)

This value of θ satisfies the condition θ ∈ (1/4, 1/2) so we have the value of
θ that proves Theorem 5.1.2 for k = 4.

CASE k = 5

Consider k = 5, i = 3, j = 2, then from (5.2.2)

{A(3)A(2) + C
′
2A(3)(1− η)2 + C

′
2A(2)(1− η)4 + C

′
2

2
(1− η)6} < 1

(1− η) < 0.6287527895

The computations collected in Table 3 of §A.7 show that |E| < N−11/28−10−10

and

θ = 0.30357142852142857142857. (5.2.5)

This value belongs to (1/4, 1/2) so we have the value of θ that proves Theorem
5.1.2 for k = 5.
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CASE k = 6

Consider k = 6, i = 3, j = 3, then from (5.2.1) we have

(1− η) < 4

√
1− A(3)

C
′
2

< 0.70873388432540316934557100411404

Again for computations in Table 4 of §A.7 we have |E| < N−25/51−10−10
and

θ = 0.25490196073431372549020. (5.2.6)

Also this value lies in (1/4, 1/2) so that this is the θ that proves Theorem
5.1.2 for k = 6.

Now collecting the value in (5.2.3), (5.2.4), (5.2.5) and (5.2.6) we have
the following chart, which contains the values of θ by which Theorem 5.1.2
is proved.

k θ
3 0.47169811315754716981132
4 0.37389380525973451327434
5 0.30357142852142857142857
6 0.25490196073431372549020
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Chapter 6

A Diophantine problem with
two primes and s powers of two

In this Chapter we will study a different kind of problem related to the
numbers written as a sum of two primes and k powers of 2. In this case we
will analyze the number of the following type

λ1p1 + λ2p2 + µ12
ν1 + · · ·+ µs2

νs ,

where λ1, λ1, µ1, . . . , µs are real coefficients which satisfy certain conditions
that we will define later.

In this case the problem is different from the other proposed in this work:
in fact here we can only study if a real number can be approximated as a
sum of two primes and k powers of 2 with suitable coefficients, but we can
not prove equality. To prove our result we will use the circle method but in
a very different way: in fact here we have to consider the real line instead of
S1 such that the method changes.

Theorem 6.0.1. Assume RH. Let λ1, λ2 be real numbers such that λ =
λ1/λ2 is negative and irrational with λ1 > 1, λ2 < −1 and |λ1/λ2| ≥ 1.
Further suppose that µ1, . . . , µs are nonzero real numbers such that λi/µi ∈ Q,
for i = 1, 2, and denote by ai/qi their reduced representations as rational
numbers. Let moreover η be a sufficiently small positive constant such that
η < min(λ1/a1; |λ2/a2|). Finally let

s0 = 2 +

[
log (C(q1, q2)λ1)− log η

− log 0.7163435444776661

]
, (6.0.1)

where

C(q1, q2) = (log 2 + C ·S′(q1))
1/2(log 2 + C ·S′(q2))

1/2,
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with C = 10.0219168340 and

S′(n) =
∏

p|n
p>2

p− 1

p− 2
.

Then for every real number γ and every s ≥ s0 the inequality

|λ1p1 + λ2p2 + µ12
ν1 + · · ·+ µs2

νs + γ| < η (6.0.2)

has infinitely many solutions in primes p1, p2 and positive integers ν1, . . . , νs.

We notice that the constant 0.7163435444776661 comes from the estimate
on the minor arc, see §6.1.3: in particular this constant will be obtained from
the use of Corollary A.6.4.

6.1 Proof of Theorem 6.0.1

Before starting the proof of Theorem 6.0.1 we have to define some of the
functions that we will use in our work.

Let ε be a sufficiently small positive constant, let X be a large parameter,
M = |µ1| + · · · + |µs| and L = log2 (εX/2M). Let N(X) be the number of
solutions of the inequality (6.0.2), with εX ≤ p1, p2 ≤ X and 1 ≤ ν1, . . . , νs ≤
L. Furthermore we take the analogous of (0.5.11), that is

S(α) =
∑

εX≤p≤X

(log p)e(pα) (6.1.1)

and G(α) defined by (0.5.12). Now for α 6= 0 we define

K(α, η) =

(
sin (πηα)

πα

)2

(6.1.2)

and hence we know that

K(α, η) ¿ min (η2; α−2) (6.1.3)

and

K̂(α, η) =

∫

R
K(α, η)e(tα)dα = max (0; η − |t|). (6.1.4)

Now we define

I(X;R) =

∫

R
S(λ1α)S(λ2α)G(µ1α) · · ·G(µsα)e(γα)K(α, η)dα (6.1.5)
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and we observe that by (6.1.4) we have

I(X;R) ¿ η log2 X ·N(X).

Since we will prove that

I(X;R) Às,λ,ε η2X(log X)s, (6.1.6)

where λ = λ1/λ2, then

N(X) Às,λ,ε ηX(log X)s−2

and the Theorem is proved.
Also in this case we use the circle method but we work on R instead of

S1, then the method is quite different. We have to dissect the real line as
follows: let P be a parameter, that we will choose later, then we take

M = {α ∈ R : |α| ≤ P/X} (6.1.7)

for the major arc,

m = {α ∈ R : P/X < |α| ≤ L2} (6.1.8)

for the minor arcs and

t = {α ∈ R : |α| > L2} (6.1.9)

for the trivial ones.
After this dissection (6.1.5) becomes

I(X;R) = I(X; M) + I(X; m) + I(X; t). (6.1.10)

6.1.1 The major arc

Let

θ(x) =
∑
p≤x

log p, ψ(x) =
∑
n≤x

Λ(n);

we observe that

ψ(x)− θ(x) ¿ x1/2+ε.

We consider the Selberg integral

J(X, H) =

∫ X

εX

(θ(x + H)− θ(x)−H)2dx
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and we recall that in 1943 Selberg [43] proved under RH that

J(X, H) =

∫ X

1

(ψ(x + H)− ψ(x)−H)2dx ¿ XHL2. (6.1.11)

Then we write

I(X; M) =

∫

M

S(λ1α)S(λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

=

∫

M

T (λ1α)T (λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

+

∫

M

(S(λ1α)− T (λ1α))T (λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

+

∫

M

(S(λ2α)− T (λ2α))S(λ1α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

= J1 + J2 + J3,

say, where

T (α) =

∫ X

εX

e(tα)dt ¿ε min

(
X,

1

|α|
)

. (6.1.12)

First we want to prove that J3 = o(η2XLs). We let

U(α) =
∑

εX≤n≤X

e(αn)

and we observe that, by the partial summation formula, we have

T (α)− U(α) ¿ (1 + X|α|).

To reach our result we need the following Lemma.

Lemma 6.1.1 (Lemma 1 of Brüdern, Cook and Perelli [1]). For 1/X ≤ Y ≤
1/2 we have

∫ Y

−Y

|S(α)− U(α)|2dα ¿ε
log2 X

Y
+ Y 2X + Y 2J

(
X,

1

Y

)
. (6.1.13)

Furthermore we can see that

∫ P/X

−P/X

|T (λ2α)− U(λ2α)||S(λ1α)|dα ¿ X log X

∫ P/X

−P/X

(1 + X|λ2α|)dα
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¿λ X2 log X · P 2

X2

¿λ P 2 log X. (6.1.14)

Now by (6.1.3) and (6.1.14) we have

J3 =

∫

M

(S(λ2α)− T (λ2α))S(λ1α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

¿ η2Ls

∫

M

|S(λ2α)− U(λ2α)||S(λ1α)|dα

+ η2Ls

∫

M

|T (λ2α)− U(λ2α)||S(λ1α)|dα

¿λ η2Ls

(∫

M

|S(λ2α)− U(λ2α)|2dα

)1/2 (∫

M

|S(λ1α)|2dα

)1/2

+ η2Ls+1P 2;

now taking Y = P/X and by (6.1.13) we have

J3 ¿λ η2Ls

(
log2 X

Y
+ Y 2X + Y 2J

(
X, Y −1

))1/2

(X log X)1/2 + η2Ls+1P 2.

Then using (6.1.11) we have

J3 ¿λ η2Ls

(
log2 X

Y
+ Y 2X + Y 2X

Y
L2

)1/2

X1/2(log X)1/2 + η2Ls+1P 2,

we want that Y 2X ≤ Y XL2, then P ≤ XL2. Now

J3 ¿ η2LsY 1/2XL3/2 + η2Ls+1P 2,

this has to be o(η2LsX) then Y = o(L−3) and P = o(XL−3). Furthermore
η2Ls+1P 2 = o(η2XLs), then P = o(X1/2L−2); finally we can take

P = X1/2L−3 (6.1.15)

then J3 = o(η2LsX) as we want.
Now we observe that under the assumption of RH we choose P as in

(6.1.15) and this leads to a major arc larger than that in the article of Lan-
guasco and Zaccagnini [25]: in fact in our case we have

M = {α ∈ R : |α| ≤ X−1/2L−3}
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instead they have

M = {α ∈ R : |α| ≤ X−2/3}.
Now we have to estimate J2, the computations are quite the same of J3 but
we will use (6.1.12) instead of the Prime Number Theorem.

J2 =

∫

M

(S(λ1α)− T (λ1α))T (λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

¿ η2Ls

∫

M

|S(λ1α)− U(λ1α)||T (λ2α)|dα

+ η2Ls

∫

M

|T (λ1α)− U(λ1α)||T (λ2α)|dα

¿ η2Ls

(∫

M

|S(λ1α)− U(λ1α)|2dα

)1/2 (∫

M

|T (λ2α)|2dα

)1/2

+ η2P 2Ls

¿ η2Ls(Y XL2)1/2

(
X2 · P

X

)1/2

+ η2P 2Ls

¿ η2Ls+1

(
P

X
·X

)1/2

X1/2P 1/2 + η2P 2Ls

¿ η2Ls+1L−3X + η2P 2Ls

¿ η2Ls−2X + η2P 2Ls.

By (6.1.15) this is o(η2LsX) as we want. Finally we have to give an estimate
of J1 then we have

J1 =
∑

1≤ν1≤L

· · ·
∑

1≤νs≤L

J(µ12
ν1 + · · ·+ µs2

νs + γ, η) + η2Ls

∫

R\M
|T (λ1α)T (λ2α)|dα

with

J(u, η) : =

∫

R
T (λ1α)T (λ2α)e(uα)K(α, η)dα

=

∫ X

εX

∫ X

εX

K̂(λ1u1 + λ2u2 + u, η)du1du2.

First we consider

η2L2

∫

R\M
|T (λ1α)T (λ2α)|dα,

since α ∈ R\M we obtain T (λiα) ¿ε 1/|α|, then

η2Ls

∫

R\M
|T (λ1α)T (λ2α)|dα
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¿ε η2Ls

∫

R\M

1

|α|2dα

¿ε η2Ls+3X1/2.

Now the estimate of J(µ12
ν1 + · · ·+µs2

νs +γ, η) is the same made by Langua-
sco and Zaccagnini [25], here we quote their computations for completeness.
For simplicity let

J0(u, η) :=

∫ X

0

∫ X

0

K̂(λ1u1 + λ2u2 + u, η)du1du2,

where λ1 > −λ2 > 1, |u| ≤ εX, 0 < η ≤ εX and ε > 0 is sufficiently small in
terms of λ1 and λ2. Now we make the following change of variables: y1 = λ1u1

and y2 = −λ2u2, then we have

J0(u, η) : = − 1

λ1λ2

∫ λ1X

0

∫ −λ2X

0

K̂(y1 − y2 + u, η)dy1dy2

= − 1

λ1λ2

∫ λ1X

0

dy1

∫ −λ2X

0

max (0; η − |y1 − y2 + u|)dy2.

We can assume that X ≥ (λ1+λ2)
−1(η+|u|), then the lines y2 = y1+u+jη, for

j ∈ {−1, 0, 1}, intersect the boundary of the rectangle [0, λ1X] × [0,−λ2X]
on its upper horizontal side. Since the integrand vanishes outside the set
y1 + u− η ≤ y2 ≤ y1 + u + η, we can replace the condition y1 ∈ [0, λ1X] with
y1 ∈ [0,−λ2X − η − u] ∪ [−λ2X − η − u,−λ2X + η − u] = I1 ∪ I2, say. If
y1 ∈ I1 we have

∫ −λ2X

0

max (0; η − |y1 − y2 + u|)dy2 =

∫ −λ2X−y1−u

−y1−u

max (0; η − |w|)dw = η2,

and the total contribution of I1 to J0 is therefore η2(−λ2X − η − u). The
contribution of I2 is non-negative and it is easily seen that it is O(η3).

Finally

J0(u, η) = − 1

λ1λ2

η2(−λ2X − η − u) + O(η3) ≥ 1

λ1

Xη2 + O(εXη2).

Now we have that J0(u, η)− J(u, η) ¿ εXη2 and then

J1 ≥ 1− c4ε

λ1

η2XLs, (6.1.16)

where c4 is some positive constant.
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6.1.2 The trivial arc

Here we will only quote the result given by Languasco and Zaccagnini in
section 5 of [25]: in fact the computation does not change under GRH, then
is not useful to repeat the same step. The result they obtained is

|I(X; t)| = o(XLs). (6.1.17)

6.1.3 The minor arc

Let

I(X; m) =

∫

m

S(λ1α)S(λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα,

c ∈ (0, 1),m = {α ∈ R : P/X < |α| ≤ L2} = m1 ∪m2, with m1 ∩m2 = ∅ and
m2 = {α ∈ m : |G(α)| > ν(c)L}. Using Corollary A.6.4 |m2| ¿M,ε sL2X−c,
then we have

|I(X; m2)| =
∣∣∣∣
∫

m2

S(λ1α)S(λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

∣∣∣∣

¿ Ls

(∫

m2

|S(λ1α)S(λ2α)|2K(α, η)dα

)1/2 (∫

m2

K(α, η)dα

)1/2

¿ ηLs|m2|1/2

(∫

m2

|S(λ1α)S(λ2α)|2K(α, η)dα

)1/2

¿ s1/2ηLs+1X−c/2

(∫

m2

|S(λ1α)S(λ2α)|2K(α, η)dα

)1/2

.

We observe that
∫

m2

|S(λ1α)S(λ2α)|2K(α, η)dα ¿
∫

m

|S(λ1α)S(λ2α)|2K(α, η)dα.

Now let α ∈ m, let Q = X1/4L−2. Then there exist ai and qi with
1 ≤ qi ≤ XQ−1 and (ai, qi) = 1 such that

|λiαqi − ai| ≤ QX−1.

Suppose that q1 ≤ Q and q2 ≤ Q then

∣∣∣∣a2q1
λ1

λ2

− a1q2

∣∣∣∣ ≤ 2

(
1 +

∣∣∣∣
λ1

λ2

∣∣∣∣
)

Q2X <
1

2q
(6.1.18)
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for X sufficiently large. Then, as in the article of Parsell [38], from (6.1.8) and
Legendre’s law of best approximation we arrive to the following contradiction

X1/2 = q1/2 ≤ |a2q1| ¿ q1q2L
2 ≤ X1/2L−2.

Then we have that either q1 ≥ Q or q2 ≥ Q. Now we need the Vaughan
estimate of S(α) under GRH that is

S(α) ¿
(

X

Q
+
√

XP +
X√
P

)
L2.

We recall that P = X1/2L−3, as defined in (6.1.15), and we have

S(λiα) ¿ (
X3/4L2 + X3/4L−3/2 + X3/4L3/2

)
L2 ¿ X3/4L7/2.

Then
∫

m

|S(λ1α)S(λ2α)|2K(α, η)dα

¿ X3/2L7
∑

εX≤p,p′≤X

log p log p′
∫ +∞

−∞
e((p− p′)λα)K(α, η)dα

¿ X3/2L7
∑

εX≤p,p′≤X

K̂(α, λ(p− p′)) log p log p′

¿ X3/2L7η
∑

εX≤p≤X

log2 p

¿ ηX5/2L8. (6.1.19)

Now we have

|I(X, m2)| ¿ s1/2ηLs+1X−c/2η1/2X5/4L4

¿ s1/2η3/2Ls+5X−c/2+5/4,

and we want that this is o(ηX) then c ≥ 1/2. We want to take c as small as
possible according to Corollary A.6.4, then we take c = 1/2.

Finally we have to consider

|I(X; m1)| =
∣∣∣∣
∫

m1

S(λ1α)S(λ2α)G(µ1α) . . . G(µsα)e(γα)K(α, η)dα

∣∣∣∣

≤ (νL)s−2

(∫

m

|S(λ1α)G(µ1α)|2K(α, η)

)1/2

·
(∫

m

|S(λ2α)G(µ2α)|2K(α, η)

)1/2

,
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now by Lemma 4 of Languasco and Zaccagnini [25] and using Corollary A.6.4
with β = c = 1/2 we have

|I(X; m1)| ≤ (νL)s−2
[
ηXL2((1− ε) log 2 + C ·S′(q1)) + OM,ε(ηXL)

]1/2

· [ηXL2((1− ε) log 2 + C ·S′(q2)) + OM,ε(ηXL)
]1/2

≤ νs−2LsηX(log 2 + C ·S′(q1))
1/2(log 2 + C ·S′(q2))

1/2

≤ νs−2LsηXC(q1, q2)

≤ (0.7163435444776661)s−2LsηXC(q1, q2). (6.1.20)

Then we have

I(X; M) ≥ c1η
2LsX

I(X; t) = o(LsX)

I(X; m) ≤ c2(s)L
sηX,

where c2(s) > 0 depends on s, c2(s) → 0 as s → +∞, and c1 = c1(ε, λ) > 0
is a constant such that

c1η − c2(s) ≥ c3η (6.1.21)

for some absolute constant c3 and s ≥ s0. We can find the value of s0 from
(6.1.21): in fact by (6.1.16) and (6.1.20) we have:

1− c4ε

λ1

η − (0.7163435444776661)s−2C(q1, q2) ≥ c3η

(0.7163435444776661)s−2 ≤
(

1− c4ε

λ1

− c3

)
η

C(q1, q2)

s ≥ 2 +

(
log (C(q1, q2)λ1)− log η

− log (0.7163435444776661)

)
:= s0,

say. Now Theorem 6.0.1 is proved.
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Appendix A

A.1 The von Mangoldt function

The von Mangoldt function is defined in the following way

Λ(n) =

{
log p if n is a power of a prime p

0 otherwise.
(A.1.1)

A.2 The Ramanujan sum

Theorem A.2.1. (Ramanujan) Ramanujan’s sum defined as

cq(−n) =

q∑∗

a=1

eq(an) (A.2.1)

is multiplicative and we have

cq(−n) = µ

(
q

(q, n)

)
ϕ(q)

ϕ (q/(q, n))
. (A.2.2)

This is Theorem 272 of Hardy and Wright [13].

A.3 The Gaussian sum

For any character χ(n) to the modulus q, the Gaussian sum τ(χ) is defined
by

τ(χ) =

q∑
m=1

χ(m)eq(m), (A.3.1)

furthermore, for a primitive character χ to the modulus q we have

|τ(χ)| = q1/2. (A.3.2)

This is formula (5) of Chapter 9 of Davenport’s book [3].
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A.4 The Farey dissection

We define the Farey dissection of the unit circle and we recall some theorems
of Hardy and Wright [13] using our notation.

Definition A.4.1. The Farey dissection Fn of order n is the ascending series
of the irreducible fractions between 0 and 1 whose denominators do not exceed
n. Thus a/q belongs to Fn if

0 ≤ a ≤ q ≤ n, (a, q) = 1

where the numbers 0 and 1 are included in the form 0/1, 1/1.

This series has some important properties.

Theorem A.4.2. If a/q, a1/q1 are two successive terms of Fn, then

qa1 − aq1 = 1 (A.4.1)

Theorem A.4.3. If a/q, a2/q2 and a1/q1 are three successive terms of Fn

then

a2

q2

=
a + a1

q + q1

(A.4.2)

Moreover there are some simpler properties of Fn that will be useful in
the definition of our Farey dissection of the unit circle.

Theorem A.4.4. If a/q, a1/q1 are two successive terms of Fn, then

q + q1 > n (A.4.3)

Theorem A.4.5. If n > 1, then no two successive terms of Fn have the
same denominator.

Now the idea is to represent the real numbers on a circle instead of on a
straight line, via the map x 7→ e(x). We consider a circle C of unit circum-
ference and a point O of the circumference as the representative of 0. Then
we represent x by the point Px whose distance from O, measured round the
circumference in the counter-clockwise direction, is x. Moreover all the inte-
gers are represented by the same point O, and numbers which differ by an
integer have the same representative point.

We can dissect the circumference of C in the following way: consider the
mediants

µ =
a + a1

q + q1
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of successive pairs a/q, a1/q1 of number of the Farey series. We recall that
the mediants naturally do not belong themselves to Fn; we represent each of
them with a point Pµ. Now the circle is divided up into arcs which we call
Farey arcs, each bounded by two points Fn and containing one Farey point,
the representative of a term of Fn. The aggregate of the Farey arcs is called
the Farey dissection of the circle.

A.5 Continued fractions

Definition A.5.1. Let a0, a1, . . . , aN be N + 1 variables, then we call finite
continued fraction the following function

a0 +
1

a1 + 1
a2+ 1

a3+...

(A.5.1)

Usually we will use the following two forms to write (A.5.1):

a0 +
1

a1+

1

a2+
· · · 1

aN

or

[a0, a1, a2, . . . , aN ].

We call a0, a1, . . . , aN the partial quotient of the continued fraction.

A.5.1 Convergents of a continued fraction

Definition A.5.2. We call

[a0, a1, . . . , an] (0 ≤ n ≤ N)

the n-th convergent to [a0, a1, . . . , aN ].

We can calculate the convergents by means of the following Theorem.

Theorem A.5.3. If pn and qn are defined by

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (2 ≤ n ≤ N) (A.5.2)

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 (2 ≤ n ≤ N) (A.5.3)

then

[a0, a1, . . . , an] =
pn

qn

. (A.5.4)
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Now we recall some Theorem on the convergents, for details we refer to
the book of Hardy and Wright [13].

Theorem A.5.4. The functions pn and qn satisfy

pnqn−1 − pn−1qn = (−1)n−1

or

pn

qn

− pn−1

qn−1

=
(−1)n−1

qn−1qn

.

We consider continued fractions with positive convergents, then the fol-
lowing Theorems hold

Theorem A.5.5. The even convergents x2n increase strictly with n, while
the odd ones x2n+1 decrease strictly.

Theorem A.5.6. The value of the continued fraction is greater than that of
any of its even convergents and less than that of any of its odd convergents
(except that it is equal to the last convergent, whether this be even or odd).

A.5.2 Infinite simple continued fractions

Suppose that a0, a1, a2, . . . is a sequence of integers such that ai > 0 for i ≥ 1
and

xn = [a0, a1, . . . , an]

is, for every n, a simple continued fraction representing a rational number x.

Theorem A.5.7. If a0, a1, a2, . . . is a sequence of integers such that ai > 0
for i ≥ 1, then xn = [a0, a1, . . . , an] tends to a limit x when n →∞.

Theorem A.5.8. All infinite simple continued fractions are convergent. We
write the convergents

xn =
pn

qn

= [a0, a1, . . . , an]

for n ≥ 1.

Now let

a′n = [an, an+1, . . . ]

be the n-th complete quotient of the continued fraction x = [a0, a1, . . . ].
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Theorem A.5.9. Every irrational number can be expressed in just one way
as an infinite simple continued fraction.

Theorem A.5.10. For every infinite continued fraction
∣∣∣∣x−

pn

qn

∣∣∣∣ <
1

qnqn+1

<
1

q2
n

.

Theorem A.5.11. If

x =
Pζ + R

Qζ + S

where ζ > 1 and P, Q,R, S are integers such that

Q > S > 0, PS −QR = ±1,

then R/S and P/Q are two consecutive convergents to the simple continued
fraction whose value is x. If R/S is the (n− 1)-th convergent, and P/Q the
n-th, then ζ is the (n + 1)-th complete quotient.

A.6 Lemmas and Theorems

Lemma A.6.1 (Kaczorowski-Perelli-Pintz). Assume GRH. Let

ψ′(2N, χ, η) =
∑

n≤2N

Λ(n)χ(n)e(nη)− δχT (η), δχ =

{
1 if χ = χ0

0 if χ 6= χ0

where T (η) is defined in (1.2.4). Then for any χ(modq)

∫ 1/qQ

−1/qQ

|ψ′(2N,χ, η)|2dη ¿ NL4

qQ
.

For the proof of this Lemma see the article of Kaczorowski, Perelli and
Pintz [17] and its corrigendum [18].

Lemma A.6.2 (Goldston). Let

G(x; a, b) =
∑
r≤x

µ(r)2ra

ϕ(q)b

for real numbers a, b with a− b > −1, then we have

G(x; a, b) =
g(a− b + 1; a, b)

a− b + 1
xa−b+1 + oa,b(x

a−b+1)
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where

g(s; a, b) =
∏

p

(
1− 1− ps−a+b(1− (1− 1/p)b)

(p− 1)bp2(s−a)+b

)
.

For more details see §2, p.125 of [8].

Lemma A.6.3 (Pintz-Ruzsa). Assume GRH. Then
∫

m

|S(α)G(α)|2dα ≤ 2

(log 2)2
C ′

2N

where C ′
2 < 3.9095.

For more details see Lemma 13 of Pintz and Ruzsa [41].

Corollary A.6.4 (Pintz-Ruzsa). Assume GRH. Let 1/2 ≤ β < 1 fixed, then
there exists an effectively computable constant d = d(β) < 1 such that

|GL(α)| = |
L−1∑
j=0

e(2jα)| ≤ d(β)L

if α ∈ [0, 1]\E, where µ(E) = |E| = O(N−βL−100). In particular, if β → 1
then d(β) → 1 and d(1/2) = 0.7163435444776661.

Theorem A.6.5. We have

lim inf
ϕ(n) log log n

n
= eγ

for n → +∞.

For more details see §18.4 of Hardy and Wright [13].

A.7 Results of computations

In this section we will collect the results of computations that we do to find
the value of |E| that we need in Chapter 5 and we describe the method that
we use to find them. Let k be the number of powers of 2 in the Goldbach-
Linnik problem, (1 − η) the value found with the computations in §5.2 and
|E| = N−s, then we want to find the value of s for each value of 3 ≤ k ≤ 6. To
do this we use a program, created by Alessandro Languasco, which takes as
entry the value s and returns the value (1−η); for brevity we call the program
Lang(s). Furthermore we need a list of values given again by Languasco, that
collects some values of s and their values of (1 − η). We give a name to all
this values of s, that is si for i ∈ N and we call ri the respective value of
(1− η). Then we act in the following way:
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1. We choose from the list a value si such that ri is near (1− η);

2. We take from the list the value si−1 and we compute the average of si and
si−1, that is sj = (si + si−1)/2, then rj =Lang(sj);

3. If rj < (1− η) then compute sj+1 = (sj + si−1)/2 and rj+1 =Lang(sj+1)

otherwise compute sj+1 = (sj+si)/2 and rj+1 =Lang(sj+1)

4. We repeat step 3 until we reach a value of r that is very close to (1− η),
then the value of s related to it is the value that we were looking for.

We can observe that, since si = ai/bi, if we proceed considering the
average between two value of si, we reach very quickly values of ai and bi

that are large, then we decide to use the same steps described over here but
using mediants instead of averages. If we have si = ai/bi and si−1 = ai−1/bi−1

the mediants is sj = (ai + ai−1)/(bi − bi−1).
In the following tables we collect our computations for each value of k

using both averages and mediants.

Table 1

k = 3 (1− η) < 0.2164995530284642374200028966
Average Mediants

Entry Result Entry Result
1/18 + 10−10 0.214307436510237 2/35 + 10−10 0.217586745040090

35/612 + 10−10 0.217682591709440 3/53 + 10−10 0.216477511405988
23/408 + 10−10 0.216000330782897 4/71 + 10−10 0.215929016789708
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Table 2

k = 4 (1− η) < 0.49152211929758836081794763898882
Average Mediants

Entry Result Entry Result
1/4 + 10−10 0.489108914786800 2/7 + 10−10 0.526732775198028

13/48 + 10−10 0.511330238556573 3/11 + 10−10 0.513311530593329
25/96 + 10−10 0.500319422060185 4/15 + 10−10 0.506949226922104
49/192 + 10−10 0.494739780354024 5/19 + 10−10 0.503235949176656
97/384 + 10−10 0.491930835559473 6/23 + 10−10 0.500802231320754
193/768 + 10−10 0.490521508038745 7/27 + 10−10 0.499083859917304
193/768 + 10−5 0.490532343981749 8/31 + 10−10 0.497805841127635

387/1536 + 10−10 0.491226578645889 9/35 + 10−10 0.496818126534589
10/39 + 10−10 0.496031887414767
11/43 + 10−10 0.495391181942612
12/47 + 10−10 0.494859024686886
13/51 + 10−10 0.494409984141755
14/55 + 10−10 0.494025997812252
15/59 + 10−10 0.493693883420393
16/63 + 10−10 0.493403794971336
17/67 + 10−10 0.493148230082613
18/71 + 10−10 0.492921371838357
19/75 + 10−10 0.492718640639646
20/79 + 10−10 0.492536381826326
21/83 + 10−10 0.492371643387747
22/87 + 10−10 0.492222014840801
23/91 + 10−10 0.492085508499601
24/95 + 10−10 0.491960470671118
25/99 + 10−10 0.491845514331525
26/103 + 10−10 0.491739467456229
27/107 + 10−10 0.491641332915682
28/111 + 10−10 0.491550257025206
29/115 + 10−10 0.491465504645818
57/226 + 10−10 0.491507132284718
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Table 3

k = 5 (1− η) < 0.6287527895
Average Mediants

Entry Result Entry Result
1/3 + 10−10 0.573691564239119 2/5 + 10−10 0.634352120490386
5/12 + 10−10 0.648713782020717 3/8 + 10−10 0.612231635749988
9/24 + 10−10 0.612231635749988 5/13 + 10−10 0.620824041974019
17/48 + 10−10 0.593235539687793 7/18 + 10−10 0.624608617077183
35/96 + 10−10 0.602799786521891 9/23 + 10−10 0.626738540141600
19/48 + 10−10 0.630714453778923 11/28 + 10−10 0.628104300619421
37/96 + 10−10 0.621535240230047
75/192 + 10−10 0.626140165951504
151/384 + 10−10 0.628431111772854
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Table 4

k = 6 (1− η) < 0.70873388432540316934557100411404
Average Mediants

Entry Result Entry Result
1/2 + 10−10 0.716343544554577 2/5 + 10−10 0.634352120490386
5/12 + 10−10 0.648713782020717 3/7 + 10−10 0.658792099220323
11/24 + 10−10 0.683361656536514 4/9 + 10−10 0.672004833737808
23/48 + 10−10 0.700052052803369 5/11 + 10−10 0.680282894012563
47/96 + 10−10 0.708246690420190 6/13 + 10−10 0.685956026260663

7/15 + 10−10 0.690086716822662
8/17 + 10−10 0.693228761000133
9/19 + 10−10 0.695699169573014
10/21 + 10−10 0.697692503806505
11/23 + 10−10 0.699334792730406
12/25 + 10−10 0.700711266346573
13/27 + 10−10 0.701881629465817
14/29 + 10−10 0.702888951770892
15/31 + 10−10 0.703765084253517
16/33 + 10−10 0.704534088694507
17/35 + 10−10 0.705214481573457
18/37 + 10−10 0.705820744522825
19/39 + 10−10 0.706364366576179
20/41 + 10−10 0.706854579215513
21/43 + 10−10 0.707298884909854
22/45 + 10−10 0.707703443805272
23/47 + 10−10 0.708073361078919
24/49 + 10−10 0.708412903506130
25/51 + 10−10 0.708725664782302
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