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Introduction

In the mid 1960's, J. Eells and J.H. Sampson extended the notion of harmonic-
ity from real-valued functions to manifold-valued maps, [ES]. The topological
relevance of harmonic maps, already visible in the seminal paper [ES], became
clear in the works by P. Hartman, L. Lemaire, R. Hamilton and others authors.
See e.g. [Har], [EL], [Ham]. Notably, R. Schoen and S.T. Yau developed the
theory and topological consequences of harmonic maps with �nite energy from
a non-compact domain, [SY2], [SY3], [SY1].
A natural extension of the concept of a harmonic map is that of a p-harmonic
map. To this end, a great deal of work has been done by B. White, [Wh], R.
Hardt and F.-H. Lin, [HL], and S.W. Wei, [We2], [We1]. In particular, it is
known that p-harmonic maps give information on the higher homotopy groups,
and on the homotopy class of higher energy maps between Riemannian mani-
folds, [We2]. In view of these topological links we are led to understand which
of the well known results holding in the harmonic case can be extended to the
non-linear setting. In this thesis, I study some problems related to the existence,
uniqueness and triviality of the p-harmonic representative in the homotopy class
of a map.
First, we recall that a C1 map u : (M, 〈, 〉M )→ (N, 〈, 〉N ) between Riemannian
manifolds is said to be p-harmonic, p > 1, if its p-tension �eld τpu vanishes
everywhere, i.e. if u satis�es the non-linear system

(1) τpu = div
(
|du|p−2

du
)

= 0.

Here, du ∈ T ∗M ⊗ u−1TN denotes the di�erential of u and the bundle T ∗M ⊗
u−1TN is endowed with its Hilbert-Schmidt scalar product 〈, 〉HS . Moreover,
−div stands for the formal adjoint of the exterior di�erential d with respect to
the standard L2 inner product on vector-valued 1-forms. Observe that, when
N = R, τp coincides with the standard p-laplace operator ∆p. Clearly, in general
equality (1) has to be considered in the weak sense, i.e.∫

M

〈
|du|p−2du, dη

〉
HS

= 0

for every smooth compactly supported η ∈ Γ(u−1TN). In case p = 2, the
non-linear factor |du|p−2 disappears and the 2-harmonic map is simply called
harmonic.

The starting point of this work are the following celebrated results due to
Schoen and Yau dating to the 1970s, [SY2], [SY3].

Theorem I (Schoen-Yau). Let M be a complete manifold with non-negative
Ricci curvature and N be a compact manifold with non-positive curvature. Let
f be any smooth map from M to N with �nite energy |df |2 ∈ L1(M). Then f
is homotopic to a constant on each compact set.

Theorem II (Schoen-Yau). Let M and N be complete Riemannian manifolds
with VolM <∞.
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i) Let u : M → N be a harmonic map of �nite energy. If N has nega-
tive sectional curvature, there's no other harmonic map of �nite energy
homotopic to u unless u(M) is contained in a geodesic of N .

ii) If N has non-positive sectional curvature and u, v : M → N are homotopic
harmonic maps of �nite energy, then there is a smooth one-parameter
family ut : M → N , of harmonic maps with u0 = u and u1 = v. Moreover,
for each x ∈ M , the curve {ut(x) : t ∈ R} is a constant (independent of
x) speed parametrization of a geodesic.

Recently, S. Pigola, M. Rigoli and A.G. Setti extended both these results.
First, they generalized Theorem I to the case where the domain manifold presents
an amount of negative Ricci curvature, say

(2) M Ric ≥ −k(x),

provided k(x) ≥ 0 is small in a suitable spectral sense, i.e. the Schrödinger
operator L = −∆ − k(x) has non-negative spectral radius λ1 (−∆− k(x)) ≥
0, [PRS2]. The strategy in Schoen-Yau proof, as well as in the subsequent
extension alluded to above, consists of two main steps: (a) an existence result
for a (smooth) harmonic map with �nite energy in the homotopy class of f
and (b) a Liouville type theorem for �nite energy harmonic maps. As shown
by S.W. Wei, [We1], step (a) can be generalized to maps u with �nite p-energy
|du|p ∈ L1(M) up to using C1,α p-harmonic representatives with �nite p-energy.
The �rst main result of the thesis is a Liouville-type theorem for �nite q-energy,
p-harmonic maps under spectral assumptions, which generalizes to the non-
linear case step (b) under spectral assumptions. The p > 2 case of the following
result is contained in [PV].

Theorem A. Let u : M → N be a continuous map from a complete manifold
(M, 〈, 〉) with Ricci curvature satisfying (2) into a compact manifold of non-
positive sectional curvature. Assume that u has �nite p-energy |du|p ∈ L1 (M),
with p ≥ 2. If the Schrödinger operator HL = −∆−Hk (x) satis�es

λ1

(
HL
)
≥ 0,

for some

H >

{
p2/4 (p− 1) if p > 2

(m− 1)/(m) if p = 2,

then u is homotopic to a constant.

With respect to the harmonic case, di�culties arise since, for p 6= 2, standard
tools of harmonic maps theory do not hold (e.g. re�ned Kato inequality, smooth
regularity, properties of composition with convex functions) or do not work so
well (e.g. Bochner-Weitzenböck identity). Then, it is necessary to do weak
computations, combined with some approximation procedures. By the way, as
it is clear by the statement, Theorem A in a sense improves also the linear case,
by permitting values of H lower than 1. This weakens Pigola, Rigoli and Setti's
extension of Theorem I and permits the application to minimal immersions
which are less then stable (in some sense to be speci�ed), slightly extending also
the original work of Schoen and Yau, [SY2]. After a brief introductory Chapter
1, these topics will be dealt with in Chapter 2.
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According to Wei's existence theorem cited above, p-harmonic maps can be
considered as �canonical� representatives of homotopy class of maps with �nite p-
energy. Hence, one is led to investigate such a space, in particular inquiring how
many p-harmonic representatives can be found in a given homotopy class. This
will be the content of Chapter 3. A �rst uniqueness result in this direction was
obtained by Wei, [We2], for smooth p-harmonic maps de�ned on compact M ,
generalizing a previous result for p = 2 due to Hartman, [Har]. An interesting
task is then to detect a similar result for complete non-compact manifolds. In
the harmonic setting, the most important result is represented by Theorem II,
subsequently extended in [PRS3] replacing VolM <∞ with the parabolicity of
M . As a matter of fact, an inspection of Schoen and Yau's proof shows that they
strongly use the property of (2-)harmonic maps to be (2-)subharmonic, once
composed with a convex function. It turns out that, in general, this is not true
if p 6= 2. By assuming some rotational symmetry on manifolds and functions,
we �nd an example of a p-harmonic map between Riemannian manifolds F :
M → N and a convex function H : N → R, whose composition H ◦ F is not
p-subharmonic for some p 6= 2. This is the second main result of the thesis,
contained in [V], which answers in the negative an open question arisen in the
2006 Midwest Geometry Conference paper by Lin and Wei, [LW].

Theorem B. Consider two rotationally symmetric (n+ 1)-dimensional mani-
folds

Mg = ([0,+∞)× Sn, ds2 + g2(s)dθ2)

Nj = ([0,+∞)× Sn, dt2 + j2(t)dθ2).

Suppose that (n + 1) > p > max {2, n} and assume that the warping functions
g, j ∈ C2([0,+∞)) have the form

g(s) = (s+ δ−
1
δ−1 )δ − δ−

δ
δ−1 , j(t) = (t+ σ

1
1−σ )σ − σ

σ
1−σ ,

where δ > (p − n)−1 > 1 and 0 < σ < 1. Then, there exist a C2 rotationally
symmetric p-harmonic map F : Mg → Nj and a sequence {sk}∞k=1 → +∞, such
that

∆p(H ◦ F )(sk, θ) < 0

for every rotationally symmetric convex function H : Nj → R, provided the
corresponding h ∈ C2([0,+∞)) satis�es h′(t) > 0 for t > 0.

Hence, one is led to follow di�erent paths in order to deal with the non-linear
analogous of Schoen and Yau's result.
In this direction, some progresses in the special situation of a single map homo-
topic to a constant has been made in [PRS3], where the authors introduced a
special composed vector �eld which permits to deduce a vanishing result for the
gradient of the distance of the map from a �xed origin in N , without informa-
tions on the p-subharmonicity of the distance function. This is achieved through
the application of a global form of the divergence theorem in non-compact set-
tings due to V. Gol'dshtein and M. Troyanov which goes under the name of
Kelvin-Nevanlinna-Royden criterion, [GT2]. Let us focus our attention on the
case N = Rn. According to [PRS3], if M is p-parabolic, then every p-harmonic
map u : M → Rn with �nite p-energy |du| ∈ Lp (M) must be constant. However,
using the very special structure of Rn, we are able to extend this conclusion,
[HPV].
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Theorem C. Suppose that (M, 〈, 〉) is a p-parabolic manifold, p > 1. Let
u, v : M → Rn be C0 ∩W 1,p

loc (M) maps satisfying{
τpu = τpv, if n > 1,

∆pu ≥ ∆pv if n = 1,

in the sense of distributions on M and

|du| , |dv| ∈ Lp (M) .

Then u− v is constant.

Since Rn is contractible, in this situation all maps are trivially homotopic.
Consequently, Theorem C can be seen as a special case in the comprehension
of general comparison results for homotopic p-harmonic maps. However, the
proof is based on the good special structure of Rn, which permits to compare
in a standard way (i.e. considering their di�erence) vectors with di�erent base
points. Hence, though the procedure is non trivial due to the non linearity of
τp, the problem is somehow reduced to that of a single map. A fundamental
ingredient in the proof of Theorem C is a version for the p-Laplacian of a classical
inequality for the mean-curvature operator. By the way, this permits also to
obtain a similar comparison for real valued functions when M is not necessarily
p-parabolic and u, v and ∇u,∇v satisfy some integral decay assumptions.
In the last part of this thesis, combining the techniques introduced by [PRS3]
with those used in the proof of Theorem II and Theorem C, we �nally manage
to prove the desired general comparison for homotopic p-harmonic maps.

Theorem D. Let M and N be complete Riemannian manifolds and assume
that M is p-parabolic, p ≥ 2.

i) Let u : M → N be a C1,α p-harmonic map of �nite p-energy. If N Sect <
0, there's no other p-harmonic map of �nite p-energy homotopic to u
unless u(M) is contained in a geodesic of N .

ii) If N Sect ≤ 0 and u, v : M → N are homotopic C1,α p-harmonic maps of
�nite p-energy, then there is a continuous one-parameter family of maps
ut : M → N with u0 = u and u1 = v such that the p-energy of ut is
constant (independent of t) and for each q ∈ M the curve t 7→ ut(q),
t ∈ [0, 1], is a constant (independent of q) speed parametrization of a
geodesic. Moreover, if N is compact, ut is a p-harmonic maps for each
t ∈ [0, 1].

All the results stated above require that the domain manifold M is p-
parabolic in order to allow us to apply the global form of the divergence theorem
in non-compact settings given by Kelvin-Nevanlinna-Royden criterion. This fact
suggests that the p-parabolicity assumption could be dropped once we give con-
ditions, on bothM and the maps, which ensure the validity of some Stokes' type
results. To this end, in Appendix A we report a possible approach suggested
in [VV] which links the volume growth of the geodesic spheres on M with the
behaviour at in�nity of the (p-)energy functional.
Finally, in Appendix B we discuss some open problems arisen throughout this
thesis.
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Chapter 1

p-harmonicity and

p-parabolicity

Throughout all this thesis, (M, 〈, 〉M ) and (N, 〈, 〉N ) are smooth Riemannian
manifolds of dimensions m and n respectively, endowed with the Riemannian
metrics 〈, 〉M and 〈, 〉N . We consider local chart {xi}mi=1 on M and {yA}nA=1

on N . Moreover lower cases indexes i, j, k, . . . and capitol indexes A,B,C, . . .
refer to objects on M and N respectively. In particular, 〈, 〉M and 〈, 〉N have
coordinates expression

(〈, 〉M )ij =

〈
∂

∂xi
,
∂

∂xj

〉
M

, (〈, 〉N )AB =

〈
∂

∂yA
,
∂

∂yB

〉
N

,

while (〈, 〉M )ij and (〈, 〉N )AB denote the components of the inverse metric ma-
trices. The metric tensors of M induces a unique Levi-Civita connection M∇ :
TM × TM → TM such that, for each pair of vector �elds X,Y on M

(
M∇XMYM

)k
= Xi

M

∂Y kM
∂xi

+Xi
MY

j
M
MΓkij

where MΓkij are the Christho�el symbols on M . Finally we introduce the

Riemann, sectional and Ricci curvature tensors related to M∇ de�ned for all
X,Y, Z,W ∈ TM as

M Riem(X,Y, Z,W ) =
〈
MR(X,Y )Z,W

〉
M
, where

MR(X,Y )Z = M∇XM∇Y Z −M∇Y M∇XZ −M∇[X,Y ]Z;

M Sect(X ∧ Y ) =
M Riem(X,Y, Y,X)

〈X,X〉M 〈Y, Y 〉M − 〈X,Y 〉
2
M

;

M Ric(X,Y ) = M trM Riem(·, X, Y, ·).

On N , the Levi-Civita connection N∇ and the curvature tensors N Riem, NR,
N Sect and N Ric are de�ned in analogous way.
Suppose we have �xed a reference origin o ∈ M . We set rM (q) = distM (q, o)
and we denote by BMt and ∂BMt the geodesic ball and sphere of radius t > 0
centered at o. Finally, the symbol Vol

(
BMt

)
stands for the volume of BMt in
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the Riemannian volume measure dVM (see Section 1.1 for the de�nition), while
A
(
∂BMt

)
stands for the (m− 1)-dimensional Hausdor� measure Hm−1 of ∂BMt .

We write Bt instead of BMt when it is clear from the contest which manifold we
are dealing with.

1.1 p-harmonic maps

Consider an isometric immersion i : N ↪→ Rq of N into some Euclidean space
Rq, q ≥ n. For p > 1, we denote by W 1,p

loc (M,Rq) (resp. W 1,p(M,Rq)) the
Sobolev space of maps v : M → Rq whose component functions and their �rst
weak derivatives are in Lploc(M) (resp. in Lp(M)). Moreover we de�ne

W 1,p
loc (M,N) := {v ∈W 1,p

loc (M,Rq) : v(x) ∈ N for a.e. x ∈M},
W 1,p(M,N) := {v ∈W 1,p(M,Rq) : v(x) ∈ N for a.e. x ∈M}.

Let u : M → N be a C1 map and �x a point x ∈ M . The p-energy density
ep(u) : M → R is the nonnegative function de�ned on M as

ep(u)(x) =
1

p
|du|pHS(x).

Here the di�erential du is considered as a section of the (1, 1)-tensor bundle
along the map u, i.e. du ∈ Γ(T ∗M × u−1TN) is a vector valued di�erential
1-form. Moreover T ∗M × u−1TN is endowed with its Hilbert-Schmidt scalar
product 〈, 〉HS de�ned, for every W1,W2 ∈ T ∗M × u−1TN as

〈W1,W2〉HS (x) : = M tr [〈W1,W2〉N (u(x))]

= (W1)Ai (x)(W2)Bj (x)(〈, 〉M )ij(x)(〈, 〉N )AB(u(x)).

With standard notation, we denote |W1|2HS := 〈W1,W1〉HS . When the meaning
is clear, we possibly omit the subscript HS on the norms.
If Ω ⊂M is a compact domain, we use the canonical volume measure

dVM :=
√

det (〈, 〉M )
ij
dx1 ∧ · · · ∧ dxm

associated to 〈, 〉M to de�ne the p-energy of u|Ω : (Ω, 〈, 〉M )→ (N, 〈, 〉N ) by

EΩ
p (u) =

∫
Ω

ep(u)dVM .

The map u : (M, 〈, 〉M ) → (N, 〈, 〉N ) is said to be p-harmonic if, for each
compact domain Ω ⊂ M , it is a stationary point of the p-energy functional
EΩ
p : C1(M,N)→ R with respect to the variations which preserve u on ∂Ω.

A vector �eld X along u, i.e., a section of the bundle u−1TN determines a
variation ut of u by setting

ut(x) = N expu(x) tX(x).

Suppose for the moment that u ∈ C2(M,N). If X has support in a compact
domain Ω ⊂M , then

(1.1)
d

dt

∣∣∣∣
t=0

EΩ
p (ut) = −

∫
M

〈τpu(x), X(x)〉N dVM ,

2



where the Euler-Lagrange operator τpu ∈ Γ(u−1TN), called the p-tension �eld
(or simply p-laplacian) of u, is given by

(1.2) τpu = M div(|du|p−2
HS du).

As a consequence, τp(u) ∈ Γ(u−1TN) and u is p-harmonic if and only if it
satis�es the nonlinear system

(1.3) τp(u) = 0 on M.

Here and in what follows, −M div = Mδ is the formal adjoint of the exterior
di�erential d, with respect to the standard L2 inner product on vector-valued
di�erential 1-forms onM . Moreover, for the ease of notation, sometimes we will
denote

Kp (u) := |du|p−2
HS du.

Computing the divergence in (1.2), τpu is given by

τpu = |du|p−2τ2u+ i
(
∇|du|p−2

)
du,

where i denotes the interior product on 1-forms. Omitting the index 2, the
operator τ2 is usually denoted by τ and is called simply tension �eld or Laplace
operator. In local coordinates τ takes the expression

(τu)A = (〈, 〉M )ij
(
∂2uA

∂xi∂xj
−MΓkij

∂uA

∂xk
+ NΓABC

∂uB

∂xi
∂uC

∂xj

)
Clearly, for u ∈ C1(M,N) \ C2(M,N), equality (1.3) has to be understood in
the weak sense, namely ∫

M

〈
|du|p−2du, dη

〉
HS

dVM = 0

for every smooth compactly supported η ∈ Γ
(
u−1TN

)
.

We recall that a 2-harmonic map is usually called a harmonic map. Moreover,
wheneverN = R, τp is denoted by ∆p (or simply ∆ when p = 2) and corresponds
to the classical p-Laplace operator on the underlying manifold. In this case,
given a real function ϕ : M → R, its p-laplacian ∆pϕ takes values in R and it
makes sense to say that ϕ is p-subharmonic (resp. p-superharmonic) provided

(1.4) ∆pϕ ≥ 0 (resp. ≤ 0) on M.

As before, for ϕ ∈ C1(M) \ C2(M), equality (1.4) has to be understood in the
weak sense, namely∫

M

〈
|∇ϕ|p−2∇ϕ,∇ξ

〉
M
dVM ≤ 0 (resp. ≥ 0),

for every smooth compactly supported function ξ ∈ C∞c (M).

3



1.2 p-parabolicity and related properties

A Riemannian manifold (M, 〈, 〉M ) is said to be p-parabolic, p > 1, if for some
(hence every) compact set K ⊂M with non empty interior the p-capacity of K
is null, i.e.

Capp(K) := inf

{∫
M

|∇ϕ|pdVM : ϕ ∈W 1,p
0 (M) ∩ C0

c (M), ϕ|K ≥ 1

}
= 0,

where the Sobolev space W 1,p
0 (M) is the closure of C1

c (M), the space of com-
pactly supported C1 functions, with respect to the Sobolev norm

‖ϕ‖1,p := ‖ϕ‖Lp + ‖∇ϕ‖Lp .

Note that, by standard density argument, we have

Capp(K) = inf

{∫
M

|∇ϕ|pdVM : ϕ ∈ C∞c (M), ϕ|K ≥ 1

}
.

It is well known that this is just one of the several equivalent de�nitions of p-
parabolicity; see [Ho1, Tr, PST]. For instance, and in view of future purposes,
we recall the next

Proposition 1.1. Let (M, 〈, 〉M ) be a complete Riemannian manifold. The
following conditions are equivalent.

(i) M is p-parabolic.

(ii) If ϕ ∈ C0(M) ∩W 1,p
loc (M) is a bounded above weak solution of ∆pϕ ≥ 0,

i.e. ∫
M

|∇ϕ|p−2 〈∇ϕ,∇η〉M ≤ 0, ∀0 ≤ η ∈ C∞c (M),

then ϕ is constant.

(iii) For every domain Ω ⊂ M and for every ψ ∈ C(Ω̄) ∩W 1,p
loc (M) which is

bounded above and satis�es ∆pψ ≥ 0 weakly on Ω, supΩ ψ = sup∂Ω ψ.

(iv) There is no positive Green function for the p-Laplacian ∆p on M .

(v) Every vector �eld X on M such that

(a) |X| ∈ L
p
p−1 (M)

(b) divX ∈ L1
loc (M) and min (divX, 0) =: (divX)− ∈ L1 (M)

satis�es necessarily 0 ≥
∫
M

divXdVM .

Proof. (i)⇔(ii) and (i)⇔(iv) in [Ho1].
(i)⇔(iii) in [PST].
(i)⇔(v) in [GT2]. The (⇒) part is also a consequence of the Proposition 1.2
below.

We focus the attention on item (v). This very useful characterization of
p-parabolicity goes under the name of Kelvin-Nevanlinna-Royden criterion. In
the linear setting p = 2 it was proved in a paper by T. Lyons and D. Sullivan,
[LS]. See also Theorem 7.27 in [PRS4]. It is worth pointing out that, even
if X has low regularity and divX is not a function, we can obtain a similar
conclusion as shown in the next
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Proposition 1.2. Let (M, 〈, 〉) be a p-parabolic Riemannian manifold, p > 1.

Let X be a vector �eld satisfying |X| ∈ L
p
p−1 (M) and

divX ≥ f

in the sense of distributions, for some f ∈ L1
loc

(M) such that f− ∈ L1(M).
Then ∫

M

f ≤ 0.

Proof. Let {Ωj}∞j=0 be an increasing sequence of precompact open sets with
smooth boundaries such that Ωj ↗ M . Let ϕj be the p-equilibrium potential
of the condenser C(Ωj ,Ω0), namely

(1.5)

∫
M

|∇ϕj |p = min

∫
M

|∇ϕ|p

where the minimum is taken over all smooth ϕ compactly supported in Ωj and
satisfying ϕ = 1 on Ω0, [GT3]. Then, ϕj solves the Dirichlet problem

∆pϕj = 0 Ωj \ Ω0

ϕj = 1 on Ω0

ϕj = 0 on ∂Ωj

and we have

0 ≤
∫
M

ϕjf ≤ (divX,ϕj)(1.6)

= −
∫
M

〈X,∇ϕj〉

≤
(∫

M

|X|
p
p−1

) p−1
p
(∫

M

|∇ϕj |p
) 1
p

.

Note that, by (1.5) and the p-parabolicity of M ,

(1.7)

∫
M

|∇ϕj |p → 0, as j →∞,

which implies that the RHS of (1.6) vanishes as j → ∞. Moreover, by the
comparison principle on precompact domains it follows that 0 ≤ ϕj ≤ 1 is
a non-decreasing sequence of functions pointwise converging to some ϕ > 0.
Using an Ahlfors type characterization of p-parabolicity in terms of a boundary
maximum principle for p-harmonic functions on generic domains we see that, in
fact, ϕ ≡ 1, [AS], [PST]. Hence, taking limits as j →∞ and applying monotone
and dominated convergence, we have

lim
j→∞

∫
M

ϕjf = lim
j→∞

∫
M

ϕjf+ − lim
j→∞

∫
M

ϕjf− =

∫
M

f+ −
∫
M

f− =

∫
M

f.

Taking limits as j →∞ in inequality (1.6), assumption (1.7) and |X| ∈ L
p
p−1 (M)

�nally give ∫
M

f ≤ 0.
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A �rst application of Proposition 1.1 is the following result due to Gol'dshtein
and Troyanov, [GT1], and Pigola, Rigoli and Setti. We refer to [PRS3] for a
direct proof and to Theorem 3.15 below for a more general formulation.

Corollary 1.3. Let (M, 〈, 〉M ) be a p-parabolic manifold, p > 1. If ϕ ∈
W 1,p
loc (M) ∩ C0(M) satis�es ∆pϕ ≥ 0 and |∇ϕ| ∈ Lp(M), then ϕ is constant.

It is known that p-parabolicity is related to volume growth properties of the
underlying manifold. Accordingly, M is p-parabolic provided, for some origin
o ∈M ,

(1.8)

(
r

Vol(Bt)

) 1
p−1

/∈ L1 (+∞) .

Thus, for instance, the standard Euclidean space Rm is p-parabolic if m ≤ p
and manifolds with �nite volume are p-parabolic for all p > 1. Condition (1.8)
is quite natural in that it shares the quasi-isometry invariance of p-parabolicity.
Moreover, it turns out that there are geometric situations where (1.8) is also
necessary for M to be p-parabolic; see [Ho2], [HK] and references therein. On
the other hand, it was established in [Tr], [RS] and [Ho3] that the most general
volume growth condition ensuring p-parabolicity is that, for some origin o ∈M ,

(1.9)

(
1

A(∂Bt)

) 1
p−1

/∈ L1 (+∞) .

It is important to point out that, in general, condition (1.9) is not a necessary
condition for p-parabolicity, [G2]. Nevertheless, in case M is a model manifold
(see Subsection 3.2.1 for the de�nition) also this reverse condition is veri�ed,
[Tr].
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Chapter 2

Maps with �nite p-energy

It is well known from classical work by R. Schoen and S.T. Yau, [SY2] , that a
smooth map f : M → N from a complete manifold (M, 〈, 〉) with non-negative
Ricci curvature into a compact manifold (N, (, )) with non-positive sectional cur-

vature is homotopic to a constant, provided f has �nite energy |df |2 ∈ L1 (M).
As a matter of fact, Schoen and Yau's original result states that f is homo-
topic to a constant on each compact subset of M . The version reported here
is a consequence of a topological theorem quoted in a paper by F. Burstall and
attributed to V.L. Hansen; see Theorem 2.5 below.
Recently, Schoen and Yau's result has been extended to the case where the
domain manifold presents an amount of negative Ricci curvature, say

(2.1) M Ric ≥ −k (x) ,

with k (x) ≥ 0 a continuous function. In fact, in [PRS2], [PRS4], the authors are
able to deduce that the �nite energy smooth map f is homotopic to a constant
provided k (x) is small in a suitable spectral sense. Namely, they obtain the
following theorem. See also Theorem 2.6 below.

Theorem 2.1 (Corollary 6.23 in [PRS2]). Let (M, 〈, 〉M ) be a complete Rie-
mannian manifolds whose Ricci tensor satis�es (2.1) and

(2.2) 0 ≤ λ1 (−∆− k (x)) := inf

{∫
|∇ϕ|2 − k (x)ϕ2∫

ϕ2
: ϕ ∈ C∞c (M) \ {0}

}
.

Let (N, 〈, 〉N ) be a compact manifold of nonpositive sectional curvature N Sect ≤
0. Then, any smooth map f : M → N of �nite energy |df |2 ∈ L1(M) is
homotopic to a constant on each compact subset of M .

The main achievement of this section is to extend Theorem 2.1 to continuous
maps with �nite p-energy, p > 2. The techniques introduced to this purpose
permit, also in case p = 2, to re�ne Theorem 2.1 by weakening assumption (2.2).
Namely we obtain the following

Theorem 2.2 (Theorem 1 in [PV]). Let f : M → N be a continuous map from
a complete manifold (M, 〈, 〉) with Ricci curvature satisfying (2.1) into a compact
manifold of non-positive sectional curvature. Assume that f has �nite p-energy
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|df |p ∈ L1 (M), with p ≥ 2. If the Schrödinger operator HL = −∆ − Hk (x)
satis�es

(2.3) λ1

(
HL
)
≥ 0,

for some
H > Hp,

with

Hp = p2/4 (p− 1) if p > 2,

H2 = (m− 1)/(m),

then f is homotopic to a constant.

Remark 2.3. We remark that Hp → 1 as p → 2. On the other hand H2 < 1.
This gap in the lower bound for H is due to the di�erent Kato-type inequal-
ities used in the proof. While for a general map f one has a standard Kato
inequality |Ddf |2 ≥ |∇|df ||2, for a harmonic map u and only in case p = 2, the
stronger re�ned Kato inequality |Ddu|2 ≥ m

m−1 |∇|du||
2 permits to improve the

computations; see Lemma 2.8 below.

2.1 Strategy of the proof and previous results

The strategy for the proofs of both Theorem 2.1 and Theorem 2.2 dates back
to [SY2] and consists of two main steps:

(a) An existence result for a (p-)harmonic map u with �nite (p-)energy in the
homotopy class of f .

(b) A Liouville type theorem for �nite (p-)energy (p-)harmonic maps.

With regard to step (a), in case p = 2 the existence of a smooth harmonic
map is guaranteed by Theorem 1 in [SY2]. As shown by S.W. Wei, this can
be generalized to maps f with �nite p-energy |df |p ∈ L1 (M) up to using C1,α

p-harmonic representatives u : M → N with �nite p-energy. Namely we have
the following result. Since the arguments in [We1] are only sketched, and since
the result plays a key role in the development of the thesis, we provide a detailed
proof. To this end, we adapt to the case p ≥ 2 the proof given by Burstall for
p = 2, [Bu].

Theorem 2.4 (Theorem 2.2 and Corollary 2.4 in [We1]). Let M be a complete
Riemannian m-dimensional manifold and N a compact manifold with nonpos-
itive sectional curvature N Sect ≤ 0. Then any continuous (or more generally
W 1,p) map f : M → N of �nite p-energy, 2 ≤ p < ∞, can be deformed to a
C1,α p-harmonic map u minimizing p-energy in the homotopy class.

Proof. For the ease of notation, throughout all the proof we will keep the same
set of indeces each time we will extract a subsequence from a given sequence.
Consider an exhaustion {Mk}∞k=1 of M , i.e. a sequence such that, for each k,
Mk is a compact manifold with boundary, Mk ⊂⊂ Mk+1 and ∪∞k=1Mk = M .
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De�ne Hf as the space of W 1,p
loc (M,N) maps v such that v|Mk

and f |Mk
have

the same 1-homotopy type, i.e.

Hf := {v ∈W 1,p
loc (M,N) : ∀k ≥ 1, (v|Mk

)] is conjugated to (f |Mk
)]}.

First, we point out that Hf is well de�ned since any map g ∈ W 1,p(M ′, N)
de�ned on a compact m-dimensional manifoldM ′ induces a homomorphism g] :
π1(M ′, ∗)→ π1(N, ∗) as follows. Given a generator γ for π1(M ′, ∗), we consider
a tubular neighborhood T ⊂ M ′ of γ in M such that ψ : S1 × Im−1 → T is a
smooth immersion, where Im−1 is the unit (m− 1)-cell, and de�ne γs : S1 → N
as γs(·) := ψ(·, s). Since M ′ is compact and p ≥ 2, by Hölder inequality g ∈
W 1,2(M ′, N) and Proposition 2.3 in [Bu] ensures that there exists Im−1

g ⊆ Im−1

such that Im−1\Im−1
g has measure zero and, for all s, s′ ∈ Im−1

g , g is continuous

on γs and g(γs) is homotopic to g(γs
′
). Consequently, for each γ ∈ π1(M ′, ∗)

and s0 ∈ Im−1
g we can set

g][γ
s0 ] = [g(γs0)]

on the generators, and extend g] so that it is a group homomorphism. By the
above considerations, g] does not depends on the choice of s0 ∈ Im−1

g , while by
Proposition 2.4 in [Bu] g] is also independent of the choice of the generator.
Since f ∈ Hf , Hf is non-empty and

If := inf
v∈Hf

Ep(v) < +∞.

Let {vj}∞j=1 ⊂ Hf be a sequence minimizing p-energy in Hf , i.e. Ep(vj) → If
as j → ∞. Choosing a subsequence if necessary, we can suppose Ep(vj) < 2If
for all j. Fix k ∈ N and consider the sequence {vj |Mk

}∞j=1. Let i : N ↪→ Rq
be an isometric immersion of N into some Euclidean space. Since i(N) ⊂ Rq is
compact and {Ep(vj)}∞j=1 is bounded, {vj |Mk

}∞j=1 is bounded in W 1,p(Mk,Rq)
and, up to choosing a subsequence, vj |Mk

converges to some v(k) ∈W 1,p(Mk, N)
weakly in W 1,p, strongly in Lp and pointwise almost everywhere. This implies
v(k) ∈W 1,p(Mk, N). By the lower semicontinuity of Ep we have

(2.4) Ep(v
(k)) ≤ lim inf

j→∞
Ep(vj |Mk

).

We want to show that the homomorphism on fundamental groups induced by
vj |Mk

is preserved in the limit vj |Mk
→ v(k). As above, choose a generator γ

for some �xed class in π1(Mk, ∗) and consider the relative tubular neighborhood
ψ : S1 × Im−1 → T and set Im−1

vj . For a.e. s ∈ Im−1
vj there exists a number Ks

such that

(2.5)

∫
S1
|dvj(t, s)|2dt ≤ Ks

for in�nitely many j. In fact, if by contradiction we assume there exists a set
I ′ ⊂ Im−1

vj of positive measure such that∫
S1
|dvj(t, s′)|2dt→∞, ∀s′ ∈ I ′,
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then by Hölder inequality, Fubini's theorem and Fatou's lemma we would have

(2If )
2
p
(
Vol

(
S1 × Im−1

)) p−2
p ≥ lim inf

j→∞

∫
S1×Im−1

|dvj(t, s)|2dVS1×Im−1

≥ lim inf
j→∞

∫
I′

∫
S1
|dvj(t, s)|2dtds

≥
∫
I′

(
lim inf
j→∞

∫
S1
|dvj(t, s)|2dt

)
ds = +∞.

So (2.5) is proven. The one dimensional Sobolev and Kondrachov's embed-
ding theorems (e.g. [Au], p.53) states that there is a compact immersion
W 1,2(S1, N) ↪→ C0(S1, N). By (2.5) and the compactness of N , vj(·, s) is uni-
formly bounded in W 1,2(S1, N) so that for a.e. s ∈ Im−1 we get a subsequence
vj converging uniformly on γs. Thus, for a.e. s ∈ Im−1 there is j such that
vj(γ

s) is uniformly close to, and hence homotopic to, v(k)(γs). Hence

(2.6)
(
v(k)

)
]

= (f |Mk
)] .

Using standard diagonal arguments we can choose a subsequence of vj which,
for all k, converges to v(k) ∈ W 1,p(Mk, N) weakly in W 1,p, strongly in Lp and
pointwise almost everywhere. The map v0 : M → N which, onMk, takes values
v0|Mk

= v(k) is well de�ned. Indeed, by pointwise convergence, v(k) and v(k+1)

agree almost everywhere on Mk. Now, v0 ∈ W 1,p
loc (M,N) and by (2.6) we get

v0 ∈ Hf . It follows from (2.4) and the uniform boundedness of Ep(vj |Mk
) that

If ≤ Ep(v0) = lim
k→∞

Ep(v0|Mk
) = lim

k→∞
Ep(v

(k))

≤ lim
k→∞

lim inf
j→∞

Ep(vj |Mk
) ≤ lim inf

j→∞
Ep(vj) = If ,

so that Ep(v0) = If , i.e. v0 minimize the energy in Hf .
We are going to show that v0 ∈ C1,α and, hence, a p-harmonic map. To this end,
we recall some de�nitions. A map v ∈W 1,p(M,N) is said to be p-minimizing on

ε-balls if Ep(v) ≤ Ep(w) for any w ∈ W 1,p(M,N) which agrees with v outside
some ball Br of radius r < ε, that is, if v = w on M \ Br and (v − w)|Br ∈
W 1,2

0 (Br, N). Moreover, a map ψ : Sl → N is said to be a p-minimizing tangent

map of Sl if its homogeneous extension ψ̄ to Rl+1 given by

ψ̄(x) := ψ

(
x

|x|

)
, ∀x 6= 0,

minimizes the p-energy on every compact subset of Rl+1. As observed in [SU] for
p = 2, when restricting to Sl the p-energy of ψ̄ splits in one component tangential
to Sl and one component normal to Sl which vanishes by homogeneity. Then
ψ̄ is p-harmonic in Rl+1 if and only if ψ is p-harmonic on Sl. Since ψ is a
p-harmonic map de�ned on Sl with values in N , which is compact and non-
negatively curved, Theorem 1.7 in [We2] implies ψ is constant, thus proving
that N admits no non-trivial p-minimizing tangent maps of l sphere for every
l ≥ 1. On the other hand, choose ε to be less than half the width of the tubular
neighborhhoods about the generating curves of various π1(M, ∗) (ε may vary
according to the element of π1(M) considered, but this is not important due
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to the local nature of the regularity results). Then, if w ∈ W 1,p(Mk, N) agrees
with v0|Mk

outside some ε-ball, we can extend w to w̄ ∈W 1,p
loc (M,N) by setting

w̄ = v0 on M \Mk, and it is clear that w̄ ∈ Hf . Thus

Ep(v0|Mk
) + Ep(v0|M\Mk

) = Ep(v0) ≤ Ep(w̄) = Ep(w) + Ep(v0|M\Mk
),

giving that v0 is p-minimizing on ε-balls. At this point we can apply a regularity
result by Hardt and Lin (see Theorem 4.5 in [HL]) which gives that v0 is C1,α

on Mk for each k, so v0 ∈ C1,α(M,N) and is therefore p-harmonic since locally
p-minimizing.
It remains to prove that v0 is homotopic to f . Since N has non-positive sectional
curvatures, N is K(π, 1), i.e. each homotopy group πk(N) of N is trivial for
k > 1. A standard result says that, in this case, for every compact manifold M ′

the conjugacy classes of homomorphisms from π1(M ′) to π1(N) are in bijective
correspondence with the homotopy classes of maps from M ′ to N (see e.g. [S]
p.428). Thus, the continuous elements of Hf , and in particular v0, are all
homotopic to f on compacta. Finally, to conclude that v0 and f are homotopic
as maps from M to N , we use the following result attributed to V.L. Hansen.

Theorem 2.5 (Theorem 5.1 in [Bu]). Let M,N be connected C−W complexes
with M countable and N a K(π, 1). Let f, g : M → N be maps that are
homotopic on compacta. Then f, g are homotopic as maps from M to N .

According to Theorem 2.4, Theorem 2.1 follows from a Liouville-type result
for harmonic maps with �nite energy, under the spectral assumption (2.3). This
is an immediate consequence of the next vanishing result, due to [PRS2].

Theorem 2.6 (Theorem 6.1 in [PRS4]). Let (M, 〈, 〉M ) be a complete manifold
whose Ricci tensor satis�es (2.1) for some continuous function k(x). Having
�xed H > m−2

m−1 , assume (2.2) holds. Let (N, 〈, 〉N ) be a manifold of non-positive

sectional curvature N Sect ≤ 0. Then, any harmonic map u : M → N with
energy density satisfying

(2.7) |du|q ∈ L1(M),

for some m−2
m−1 ≤

q
2 ≤ H, is constant.

For completeness, and for comparison with the non-linear case, we report
here the proof of Theorem 2.6 given in [PRS4].

Proof. We begin by recalling the following lemmas, for which we refer respec-
tively to [EL] and [Br],[CGH].

Lemma 2.7 (Bochner-Weitzenböck identity). Let f : (M, 〈, 〉M ) → (N, 〈, 〉N )
be a smooth map. Then

1

2
∆|df |2 = |Ddf |2 − 〈df, dδdf〉HS +

m∑
i=1

〈
df
(
M Ric(ei, ·)]

)
, df(ei)

〉
N

(2.8)

−
m∑

i,j=1

〈
N Riem (df(ei), df(ej)) df(ej), df(ei)

〉
N
,

where {ei}mi=1 is a local ortho-normal frame on M .
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Lemma 2.8 (Re�ned Kato inequality). Let v : M → N be a harmonic map.
Then

|Ddv|2 − |∇|dv||2 ≥ 1

(m− 1)
|∇|dv||2(2.9)

pointwise on the open, dense subset {x ∈M : |dv|(x) 6= 0} and weakly on all of
M .

Applying Lemma 2.7 to the smooth harmonic map u, since δdu ≡ 0 and by the
curvature assumption we get

∆|du|2 ≥ 2|Ddu|2 − 2k(x)|du|2 on M.

Set ψ := |du| ∈ Liploc(M). Computing ∆ψ2 and applying Lemma 2.8, we
obtain that

(2.10) ψ∆ψ + k(x)ψ2 − 1

m− 1
|∇ψ|2 ≥ 0

holds weakly on M . By a result of Moss and Piepenbrink, [MP], and Fisher-
Colbrie and Schoen, [FCS], the spectral assumption (2.2) implies that there
exists a positive function ϕ ∈ C1(M) satisfying

(2.11) ∆ϕ+Hk(x)ϕ = 0

weakly on M . Since ϕ > 0, we can de�ne the nonnegative function

ζ := ϕ−q/(2H)ψq/2 ∈ Liploc.

We proceed by steps. First, we will prove that

(2.12) ζ div
(
ϕq/H∇ζ

)
≥ 0

weakly on M . Then we will show that (2.12) togheter with the integrability
assumption (2.7) implies that ζ is constant. Finally we will deduce the thesis.
Step a. Observe that (2.12) has the weak expression∫

M

[〈
ϕq/Hζ∇ζ,∇ρ

〉
M

+ ρϕq/H |∇ζ|2
]
≤ 0,(2.13)

for every non-negative compactly supported function ρ ∈ L∞(M) ∩W 1,2(M).
Computing ∇ζ, this latter is equivalent to the validity of

0 ≥ q

2

∫
ψq−1 〈∇ψ,∇ρ〉M −

q

2H

∫
ψq
〈
∇ϕ
ϕ
,∇ρ

〉
M

(2.14)

+
q2

4H2

∫
ρψq
|∇ϕ|2

ϕ2
+
q2

4

∫
ρψq−2|∇ψ|2 − 2

q2

4H

∫
ρψq−1

〈
∇ϕ
ϕ
,∇ψ

〉
M

.

We �rst consider the �rst integral on the right-hand side, and assume that q < 2,
the other case being easier. Since ψ satis�es (2.10) and q

2 ≥
m−2
m−1 ≥

m−2
2(m−1) ,
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we can apply the density results of [PRS4], Lemma 4.12 and Lemma 4.13, to
deduce that

(2.15) ψq/2 ∈ L2
loc(M), and ψq/2−1∇ψ ∈ L2

loc(M).

Let ε > 0. By (2.15) and Cauchy-Schwarz inequality, we have

(2.16) |(ψ + ε)q−2ψ∇ψ| ≤ |ψq−1∇ψ| = |ψ|q/2
(
|ψq/2−1∇ψ|

)
∈ L1

loc(M).

According to (2.10), for every non-negative, compactly supported σ ∈W 1,2(M),∫
〈∇ψ,∇(σψ)〉M ≤

∫
(k(x)ψ2 − 1

m− 1
|∇ψ|2)σ.

Applying the above inequality with σ := ρ(ψ + ε)q/2−1, we deduce∫
(ψ + ε)q−2ψ 〈∇ψ,∇ρ〉M +

∫
ρ|∇ψ|2(ψ + ε)q−2

(
(q − 1)ψ + ε

ψ + ε

)
(2.17)

≤
∫
k(x)ρψ2(ψ + ε)q−2 − 1

m− 1

∫
ρ(ψ + ε)q−2|∇ψ|2.

Applying dominated convergence, by (2.16) we have that

lim
ε→0

∫
(ψ + ε)q−2ψ 〈∇ψ,∇ρ〉M =

∫
ψq−1 〈∇ψ,∇ρ〉M ,

while, since 0 ≤ q ≤ 2 implies∣∣∣∣(ψ + ε)q−2

(
(q − 1)ψ + ε

ψ + ε

)∣∣∣∣ ≤ ψq−2,

it holds

lim
ε→0

∫
ρ|∇ψ|2(ψ + ε)q−2

(
(q − 1)ψ + ε

ψ + ε

)
=

∫
(q − 1)ρ|∇ψ|2(ψ)q−2.

Moreover, we can apply monotone convergence to the two integrals at RHS of
(2.17), thus obtaining∫

ψq−1 〈∇ψ,∇ρ〉M ≤
∫
k(x)ρψq(2.18)

− 1

m− 1

∫
ρψq−2|∇ψ2| − (q − 1)

∫
ρψq−2|∇ψ2|

=

∫
k(x)ρψq +

(
m− 2

m− 1
− q
)∫

ρψq−2|∇ψ2|.

Similarly, consider the second integral at RHS of (2.14). According to (2.11),
for every non-negative, compactly supported σ̂ ∈W 1,2(M),∫

〈∇ϕ,∇σ̂〉M ≥
∫
Hk(x)ϕσ̂,
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and choosing σ̂ := ψqϕ−1ρ we get∫
ψq
〈
∇ϕ
ϕ
,∇ρ

〉
M

≥
∫
Hk(x)ρψq − q

∫
ρψq−1ϕ−1 〈∇ϕ,∇ψ〉M(2.19)

+

∫
ρψq
|∇ϕ|2

ϕ2
.

Inserting (2.18) and (2.19), we obtain that (2.14) is implied by the stronger
condition

0 ≥ q

2H2
(
q

2
−H)

∫
ρψq
|∇ϕ|2

ϕ2
+
q

2

[
m− 2

m− 1
− q

2

] ∫
ρψq−2|∇ψ|2,

which is always veri�ed by the choice of parameters. This proves (2.13).
Step b. For �xed δ, t > 0 let θδ be the Lipschitz function de�ned by

θδ(x) :=


1 if r(x) ≤ t,
t+δ−r(x)

δ if t < r(x) < t+ δ,

0 if r(x) ≥ t+ δ.

Let µ be a non-negative compactly supported Lipschitz function. Since 0 ≤
µθδ ∈ L∞(M) ∩W 1,2(M) has compact support, we can set ρ := µθδ in (2.13)
obtaining

−
∫
ϕq/Hζθδ 〈∇ζ,∇µ〉M ≥

∫
µϕq/Hζ 〈∇ζ,∇θδ〉M +

∫
µϕq/Hθδ|∇ζ|2

≥
∫
µϕq/Hθδ|∇ζ|2 −

1

δ

∫
Bt+δ\Bt

µϕq/Hζ|∇ζ|.

Choosing µ in such a way that µ ≡ 1 on Bt+δ the integral on the left-most side
vanishes, and applying the Cauchy-Schwarz inequality to the second integral on
the right-most side we deduce that
(2.20)∫

Bt

ϕq/H |∇ζ|2 ≤

(
1

δ

∫
Bt+δ\Bt

ϕq/Hζ2

)1/2(
1

δ

∫
Bt+δ\Bt

ϕq/H |∇ζ|2
)1/2

.

Setting

W (t) :=

∫
Bt

ϕq/H |∇ζ|2,

it follows by the co-area formula (see Theorem 3.2.12 in [F]) that

W ′(t) = lim
δ→0

1

δ

∫
Bt+δ\Bt

ϕq/H |∇ζ|2 =

∫
∂Bt

ϕq/H |∇ζ|2dHm−1

and

lim
δ→0

1

δ

∫
Bt+δ\Bt

ϕq/Hζ2 =

∫
∂Bt

ϕq/Hζ2dHm−1.

Hence, letting δ → 0 in (2.20), we get

W (t)2 ≤
(∫

∂Bt

ϕq/Hζ2dHm−1

)
W ′(t).
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By contradiction, suppose ζ is not constant. Then, there exists R0 > 0 such
that W (t) ≥ W0 > 0 for all t ≥ R0. Integrating the last inequality on [r,R],
with R > r ≥ R0, and by the de�nition of ζ, we get

W−1
0 ≥W (r)−1 ≥W (r)−1 −W (R)−1 ≥

∫ R

r

(∫
∂Bt

ϕq/Hζ2dHm−1

)−1

(2.21)

=

∫ R

r

(∫
∂Bt

ψqdHm−1

)−1

.

On the other hand, setting U(r) :=
∫
Br
|du|qdVM , by the co-area formula we

have that U has strictly positive derivative U ′(r) =
∫
∂Br
|du|qdHm−1. Hence,

by Cauchy-Schwarz inequality,

R− r =

∫ R

r

1dt =

∫ R

r

(U ′(t))
1/2

(U ′(t))
−1/2

dt ≤ U(R)1/2

(∫ R

r

dt

U ′(t)

)1/2

.

Combining this latter with (2.21), we deduce that

(R− r)2

U(R)
≤W−1

0 < +∞

and we obtain a contradiction letting R → +∞, since, by assumption (2.7),
U(R) ≤

∫
M
|du|q < +∞ for all R > 0.

Step c. So far, we have proven that

(2.22) ζ2/q = ϕ−1/Hψ ≡ c

for some constant c ≥ 0. By contradiction, suppose c > 0. Then, by assumption
(2.7),

(2.23) Vol(M) < +∞.

Moreover, we have 0 < cHϕ = ψH . By (2.11) we get

HψH−2
[
ψ∆ψ + (H − 1)|∇ψ|2 + k(x)ψ2

]
≤ 0

and combining with (2.10) we deduce

H

[
H − m− 2

m− 1

]
ψH−2|∇ψ|2 ≤ 0.

By the assumptions on H, this latter forces ψ to be constant. Then by (2.22)
also ϕ is constant and (2.11) reduces to M Ric ≥ 0 ≡ k(x). A well known
result by Yau, [Y], and E. Calabi, [C], shows that if M has non-negative Ricci
curvature, then it has at least a linear volume growth. This fact contradicts
(2.23), thus concluding the proof.

Remark 2.9. As it is clear from the proof, assumption (2.7) of Theorem 2.6
can be replaced by the sharper condition(∫

∂BR

|du|qdHm−1

)−1

6∈ L1(+∞).

This latter is veri�ed, for instance, if∫
BR

|du|qdVM = o(R).
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2.2 A Caccioppoli-type theorem

In order to prove Theorem 2.2, one is led to investigate the validity of nonlinear
extensions of Theorem 2.6. However, we point out that the technique used in
the proof reported above, cannot be adapted to the present situation. This was
already remarked in [PRS3], where the authors prove an Lq-Liouville theorem
for a smooth p-harmonic map provided the domain supports a global Poincaré-
Sobolev inequality, and k (x) is small (in a suitable integral sense) with respect
to the Poincarè-Sobolev constant.
In fact, as it is clear from the proof of Theorem 2.6, a fundamental tool is the
Bochner-Weitzenbök formula (2.8), which well behaves with harmonic (hence
smooth) maps, while some di�culties arise when dealing with p 6= 2. First,
the term 〈du, dδdu〉HS in general does not vanish for a p-harmonic map u with
p 6= 2. Moreover, the p-harmonic representatives in homotopy class predicted
in Theorem 2.4 are C1,α instead of C∞. We overcome these problems by ap-
proximating the C1,α p-harmonic map u via a sequence of smooth maps uk,
applying (2.8) to uk and �nally manipulating in integal form the terms which
remain due to the non-harmonicity of uk. Note also that, for values of p near
to 2, from the weak formulation of (2.8) negative powers of |du| appear. To
face this further problem, we shall use an approximation procedure introduced
by F. Duzaar and M. Fuchs, [DF], which enables us to extend to all of M the
computations performed on M+ := {x : |du|(x) > 0}.
As observed before, the techniques introduced in this section well adapt also to
the linear case. We thus obtain another proof of Theorem 2.1, with a di�erent
assumption on parameters H and q.

Theorem 2.10 (Theorem 2 in [PV]). Let (M, 〈, 〉M ) be a complete manifold
with Ricci curvature satisfying

(2.24) MRic ≥ −k (x) ,

for some continuous function k (x) ≥ 0, and let (N, 〈, 〉N ) be a manifold of non-
positive sectional curvature N Sect ≤ 0. Let u : M → N be a C1 p-harmonic
map, p ≥ 2, such that

(2.25)

∫
BR(o)

|du|q = o (R) , as R→ +∞,

for some q ≥ p, where BR (o) denotes the geodesic ball centered at some �xed
origin o ∈ M and of radius R > 0. Moreover, assume that the Schrödinger
operator HL = −∆−Hk (x) satis�es condition (2.3) for some

(2.26) H >


q2

4(q−1) if p > 2
q2

4(q−m−2
m−1 )

if p = 2.

Then u is constant.

By direct comparison with our result we recall that, in case MRic ≥ 0,
Liouville-type properties of p-harmonic maps from complete manifolds M into
non-positively curved targets N are well understood. In this respect, we quote
the paper [N] by N. Nakauchi where the author considers p-harmonic maps
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u of class C1 satisfying the energy condition |du| ∈ Lp (M), and [Ta] by K.
Takegoshi, where the Liouville conclusion is reached assuming that u is C∞ and
|du| ∈ Lq for some q > p− 1. Comparing Theorem 2.10 with Takegoshi result,
[Ta], one observes that Theorem 2.10 requires the stronger condition q ≥ p. As
the proof will show, this is crucial in order to deal with C1 maps and to use
the Duzaar-Fuchs approximating procedure, [DF]. Therefore, the request q ≥ p
is technical. We do not know whether our C1 Liouville theorem extends to
values of q below p. However, we emphasize that, even in the smooth situation,
Takegoshi's λ-cut o� argument seems to be not applicable in the Ricci curvature
assumptions of Theorem 2.10.

Proof (of Theorem 2.10). Let p > 2. We will use the Duzaar and Fuchs' ap-
proximation procedure. De�ne

M+ = {x ∈M : |du| (x) > 0} .

From [DF] we know that both |du|p/2−1
du ∈ W 1,2

loc on M and du ∈ W 1,2
loc on

M+. Then we can consider a sequence {uk}∞k=1 of smooth maps such that

• uk → u in C1
loc(M,N);

• uk → u in W 2,2
loc (M+, N).

In particular, since duk → du uniformly on compact sets, we have that |duk| 6= 0
for k large enough on each compact C ⊂ M+. Applying the Weitzenböck
formula to the approximating map uk, we obtain the following

1

2
∆ |duk|2 = |Dduk|2 − 〈duk, (dδ + δd) duk〉HS

+

m∑
i=1

〈
duk

(
M Ric (ei, ·)]

)
, duk (ei)

〉
N

−
m∑

i,j=1

〈
N Riem (duk (ei) , duk (ej)) duk (ej) , duk (ei)

〉
N
,

where D denotes covariant di�erentiation and {ei}mi=1 is a local orthonormal
frame for M . By the curvature assumptions, noting also that dduk = 0, we get

1

2
∆ |duk|2 ≥ |Dduk|2 − 〈duk, dδduk〉 − k (x) |duk|2

pointwise on M . Let φ = ρ2 |duk|q−2
with ρ ∈ C∞c (M+) ⊂ C∞c (M) to be

chosen later. Then, multiplying both sides of the latter by φ and integrating
over M , we obtain

1

2

∫
ρ2 |duk|q−2

∆ |duk|2 +

∫
ρ2 |duk|q−2 〈duk, dδduk〉(2.27)

≥
∫
ρ2 |duk|q−2 |Dduk|2 −

∫
ρ2 |duk|q k (x) .
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Integrating by parts the �rst term, we have

1

2

∫
M+

ρ2 |duk|q−2
∆ |duk|2

(2.28)

= −1

2

∫
M+

ρ2
〈
∇ |duk|q−2

,∇ |duk|2
〉
− 1

2

∫
M+

|duk|q−2
〈
∇ρ2,∇ |duk|2

〉
= − (q − 2)

∫
M+

ρ2 |duk|q−2 |∇ |duk||2 − 2

∫
M+

ρ |duk|q−1 〈∇ρ,∇ |duk|〉

≤ − (q − 2− α)

∫
M+

ρ2 |duk|q−2 |∇ |duk||2 + α−1

∫
M+

|duk|q |∇ρ|2

for any �xed α > 0. As for the second term on the LHS of (2.27) we note that

δ
(
ρ2 |duk|q−2

duk

)
= δ

(
ρ2 |duk|q−p |duk|p−2

duk

)
= ρ2 |duk|q−p δ(|duk|p−2

duk)− |duk|q−2
i
(
∇ρ2

)
duk

− |duk|p−2
ρ2i
(
∇ |duk|q−p

)
duk

and

δduk = δ(|duk|2−p|duk|p−2duk)

= |duk|2−pδ(|duk|p−2duk)− |duk|p−2i
(
∇|duk|2−p

)
duk

= |duk|2−pδ(|duk|p−2duk) + (p− 2)|duk|−1i (∇|duk|) duk,

where i denotes the interior product on 1-forms. Using the last two relations,
together with the inequality |δduk| ≤

√
m |Dduk|, we obtain

∫
M+

ρ2 |duk|q−2 〈duk, dδduk〉 =

∫
M+

〈
ρ2 |duk|q−2

duk, dδduk

〉(2.29)

=

∫
M+

〈
δ
(
ρ2 |duk|q−2

duk

)
, δduk

〉
=

∫
M+

ρ2 |duk|q−p
〈
δ(|duk|p−2

duk), δduk

〉
−
∫
M+

|duk|q−2 〈
i
(
∇ρ2

)
duk, δduk

〉
−
∫
M+

ρ2 |duk|p−2
〈
i
(
∇ |duk|q−p

)
duk, δduk

〉
≤ 2

∫
M+

√
mρ |duk|q−1 |∇ρ| |Dduk|+ F (uk)

− (q − p)
∫
M+

ρ2 |duk|q−3 〈
i (∇ |duk|) duk, (p− 2)|duk|−1i (∇|duk|) duk

〉
≤ β

∫
M+

ρ2 |duk|q−2 |Dduk|2 + β−1m

∫
M+

|duk|q |∇ρ|2

− (q − p)(p− 2)

∫
M+

ρ2 |duk|q−4 |i (∇ |duk|) duk|2 + F (uk)

≤ β
∫
M+

ρ2 |duk|q−2 |Dduk|2 + β−1m

∫
M+

|duk|q |∇ρ|2 + F (uk)
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for any �xed β > 0, where we have set

F (uk) =− (q − p)
∫
M+

ρ2 |duk|q−p−1 〈
i (∇ |duk|) duk, δ(|duk|p−2duk)

〉
+

∫
M+

ρ2 |duk|q−p
〈
δduk, δ(|duk|p−2

duk)
〉
.

Finally, in order to deal with the term containing k(x) in (2.27), we now use
the spectral assumption. In fact, by (2.3), for every ξ ∈ C∞c (M), we have

(2.30)

∫
|∇ξ|2 −Hk (x) ξ2 ≥ 0.

Choose ξ = |duk|q/2 ρ, so that, for any �xed γ > 0,

|∇ξ|2 ≤ (1 + γ)
q2

4
ρ2 |duk|q−2 |∇ |duk||2 +

(
1 + γ−1

)
|duk|q |∇ρ|2 .

Then from (2.30) we deduce∫
M+

k (x) ρ2 |duk|q ≤ (1 + γ)
q2

4
H−1

∫
M+

ρ2 |duk|q−2 |∇ |duk||2(2.31)

+
(
1 + γ−1

)
H−1

∫
M+

|duk|q |∇ρ|2 .

Inserting (2.28), (2.29) and (2.31) into (2.27) we get{
(q − 2− α)− (1 + γ)

q2

4
H−1

}∫
M+

ρ2 |duk|q−2 |∇ |duk||2

+ {1− β}
∫
M+

ρ2 |duk|q−2 |Dduk|2

≤
{
α−1 +mβ−1 +

(
1 + γ−1

)
H−1

}∫
M+

|duk|q |∇ρ|2 + F (uk).

If we choose β ≤ 1, recalling that

(2.32) |∇ |duk|| ≤ |Dduk| ,

we �nally obtain

A

∫
M+

ρ2 |duk|q−2 |∇ |duk||2 ≤ B
∫
M+

|duk|q |∇ρ|2 + F (uk),(2.33)

where

A(q,H, α, γ, β) =

{
q − 1− α− (1 + γ)

q2

4
H−1 − β

}
B(H,α, γ, β,m) =

{
α−1 +mβ−1 +

(
1 + γ−1

)
H−1

}
.

Note that assumption (2.26) ensures that A > 0 for a suitable choice of the
parameters 0 < α, β, γ � 1.
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Note also that, from the convergence properties of {uk}∞k=1 and the p-harmonicity
condition δ(|du|p−2du) = 0 we have, on M+:

|duk|t → |du|t , ∀t ∈ R in C0
loc as k →∞;

|∇|duk||2 → |∇|du||2 in L1
loc as k →∞;

i∇|duk|(duk)→ i∇|du|(du) in L2
loc as k →∞;

δ(|duk|p−2duk)→ 0 in L2
loc as k →∞;

δduk → δdu in L2
loc as k →∞.

Therefore, taking limits as k →∞ in (2.33) we get

A

∫
M+

ρ2 |du|q−2 |∇ |du||2 ≤ B
∫
M+

|du|q |∇ρ|2 , ∀ρ ∈ C∞c (M+).(2.34)

Using a variation of the Duzaar-Fuchs cut-o� trick, we now want to extend
(2.34) to every ρ ∈ C∞c (M). De�ne

ϕε = min

{
|du|q/2

ε
, 1

}
for ε > 0 and set ξ = ϕεη

2 for any η ∈ C∞c (M). Note that ξ ∈ W 1,2
0 (M+).

Indeed ξ is continuous, compactly supported and ξ = 0 on M \M+. Moreover,

since |du|p/2 = ||du|p/2−1du|, by Kato inequality and the fact that |du|p/2−1du ∈
W 1,2
loc on M we have∣∣∣∇ |du|p/2∣∣∣ =

∣∣∣∇||du|p/2−1du|
∣∣∣ ≤ ∣∣∣D(|du|p/2−1du)

∣∣∣ ∈ L2
loc,

proving that |du|p/2 ∈ W 1,2
loc (M). Since |du|q/2 = (|du|p/2)q/p, with q/p ≥ 1,

we conclude that |du|q/2 ∈ W 1,2
loc (M). Hence we can �nd a sequence {ρj}∞j=1 ⊂

C∞c (M+) such that ρj → ξ in W 1,2
0 (M). Substituting ρ = ρj into (2.34), taking

the liminf as j →∞, and using Fatou Lemma on the left hand side, we get

A

∫
M+

(ϕε)
2η4 |du|q−2 |∇ |du||2(2.35)

≤6B

∫
M+

|du|q |∇η|2 η2(ϕε)
2 + 3B

∫
M+

|du|q |∇ϕε|2 η4.

Finally, we let ε→ 0. Note that ϕε → 1 pointwise in M+. Moreover

∫
M+

|du|q |∇ϕε|2 η4 =

∫
M+

|du|q
∣∣∣∇ |du|q/2∣∣∣2

ε2
η4χ{|du|q<ε2}

≤
∫
M+

∣∣∣∇ |du|q/2∣∣∣2 η4χ{|du|q<ε2}

and the last term vanishes by dominated convergence as ε→ 0, because

∇ |du|q/2 ∈ L2
loc(M)
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as observed before. Therefore, letting ε → 0, and applying also Fatou Lemma
to the integral on the left hand side and dominated convergence to the �rst
integral in the right hand side of (2.35), we have the Caccioppoli inequality∫

M+

η4 |du|q−2 |∇ |du||2 ≤ C
∫
M+

|du|q |∇η|2 η2, ∀η ∈ C∞c (M),(2.36)

with C = 6B/A.
Now, by contradiction, suppose u is non-constant. For any �xed R > 0, we
choose η (x) = ηR (x) so to satisfy

(2.37)
(a) 0 ≤ η (x) ≤ 1, (b) η (x) = 1 on BR (o) ,
(c) η (x) = 0 o� B2R (o) , (d) |∇η| ≤ 2/R on M.

Whence, we deduce∫
BR(o)∩M+

|du|q−2 |∇ |du||2 ≤ 4C

R2

∫
B2R(o)∩M+

|du|q ,(2.38)

for some computable positive constant C, and letting R→ +∞ we conclude∫
M+

|du|q−2 |∇ |du||2 = 0,

proving that |du| = const. on every connected component of M+. This easily
implies that M+ = M . Indeed, if M+ ( M , since |du| = 0 on ∂M+, we would
obtain |du| ≡ 0 on every connected component of M+. Therefore |du| ≡ 0 on
M and u is constant. Contradiction. Hence M+ = M and |du| = const. 6= 0.
By assumption (2.25) we deduce that

(2.39) volBR = o (R) as R→ +∞.

Using this information together with the spectral assumption and choosing η =
ηR to be the cut-o� functions de�ned in (2.37), we get

0 ≤ lim
R→+∞

∫
B2R(o)

{
H−1 |∇η|2 − k (x) η2

}
≤ lim
R→+∞

{
4 volB2R (o)

HR2
−
∫
BR(o)

k (x)

}

= −
∫
M

k (x) ≤ 0,

proving that k (x) = 0, i.e., MRic ≥ 0. A well known result by Yau, [Y], and E.
Calabi, [C], now shows thatM has at least a linear volume growth, contradicting
(2.39).
In case p = 2, the proof is simpler. Since u is harmonic (hence smooth), we
don't need to approximate u via smooth maps, i.e. we can choose uk ≡ u. Then,
inequality (2.27) reduces to

1

2

∫
ρ2 |du|q−2

∆ |du|2 ≥
∫
ρ2 |du|q−2 |Ddu|2 −

∫
ρ2 |du|q k (x) ,
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since δdu ≡ 0 by harmonicity. Moreover, by Lemma 2.8, we can replace (2.32)
with the re�ned relation √

m

m− 1
|∇ |duk|| ≤ |Dduk| ,

and (2.34) holds true with

A(q,H, α, γ) =

{
q − m− 2

m− 1
− α− (1 + γ)

q2

4
H−1

}
B(H,α, γ,m) =

{
α−1 +

(
1 + γ−1

)
H−1

}
.

Since assumption (2.26) ensures that A > 0 for a suitable choice of the param-
eters 0 < α, γ � 1, from now on we can repeat the proof of the p > 2 case to
conclude.

2.3 Applications in the harmonic case

In [SY2], Schoen and Yau used harmonic maps techniques to study the funda-
mental group of manifolds with non-negative Ricci curvature and of stable min-
imal hypersurfaces immersed into non-positively curved ambient spaces. First,
given a complete, m-dimensional manifold with M Ric ≥ 0 and any compact
domain D ⊂ M with smooth, simply connected boundary, they obtained that
there is no non-trivial homomorphism of π1(D) into the fundamental group of
a compact manifold with non-positive sectional curvature. Using Theorem 2.1,
their result has been generalized in [PRS2] by replacing assumption M Ric ≥ 0
with the spectral assumption (2.2) on the Ricci curvature. Applying Theorem
2.2 instead of Theorem 2.1, and procceding exactly as in [PRS2], we can slightly
weaken the spectral assumption.

Corollary 2.11. LetM be a complete, m-dimensional manifold satisfying (2.1)
and (2.3) with H > (m − 1)/m. If D ⊂ M is a compact domain in M with
smooth, simply connected boundary, then there is no non-trivial homomorphism
of π1(D) into the fundamental group of a compact manifold with non-positive
sectional curvature.

Now, suppose that (M, 〈, 〉M ) is isometrically immersed as complete, stable,
minimal hypersurface into a space Q with Q Sect ≥ 0. According to Gauss equa-
tions, M Ric ≥ −|II|2, where |II| denotes the length of the second fundamental
tensor of the immersion. Moreover, the stability assumption implies the fact
that the operator L = −∆−|II|2 satis�es λ1(L) ≥ 0. Hence, we are precisely in
the assumption of Theorem 2.1 and information on π1(M) can be deduced. As
above, our improved Theorem 2.2 permits to sharpen the spectral assumption,
which in this case is related to the stability of the hypersurface. Namely, Schoen
and Yau's result holds true provided the hypersurface is �almost stable� in the
following sense. A minimal immersion is said to be δ-stable if∫

M

[
|∇ϕ|2 − (1− δ)|II|2ϕ2

]
≥ 0

for all ϕ ∈ C∞c (M), [CM], [TZ], [CZ], [FL]. As it is clear, setting δ = 1−H, the
δ-stability corresponds to the spectral assumption (2.3) adapted to the contest
of minimal immersion. Hence, we have the following
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Corollary 2.12. Let (M, 〈, 〉M ) be a complete non-compact minimally immersed
hypersurface in a manifold of non-negative sectional curvature. Suppose that
the immersion is (1 − H)-stable, for some H > (m − 1)/m. If D ⊂ M is a
compact domain in M with smooth, simply connected boundary, then there is
no non-trivial homomorphism of π1(D) into the fundamental group of a compact
manifold with non-positive sectional curvature.

As shown in [PRS4], Corollary 7.12, a further application of Theorem 2.1
permits to obtain information on the number of non-parabolic ends of manifolds
with controlled Ricci curvature. We recall that, given a compact set K inM , an
end E(K) with respect to K is an unbounded connected component of M \K.
By a compactness argument, it is readily seen that the number of ends with
respect to K is �nite and increases as the compact K enlarges. We say that
M has a �nite number of ends if there exists a constant C such that for every
compactK the number of ends with respect toK is bounded above by C. In this
case, there exists a compact K0 and a number Ne such that for every compact
K ⊃ K0 the number of ends with respect to K is exactly Ne, and we say thatM
has Ne ends. Moreover, an end E will be said to be parabolic if the Riemannian
double of E (see Section 8.3 in [PRS4]) is a parabolic manifold. In analogy with
Proposition 1.1 (ii), this is equivalent to ask that every positive superharmonic
function u satisfying ∂u/∂ν ≥ 0 on ∂E, ν being the unit outward normal to ∂E,
is constant.
It's well known that the number of non-parabolic ends of a manifold M is
bounded above by the dimension of the space of bounded harmonic functions
with �nite energy, see [LT], [G1]. On the other hand, given a manifold M as
in Theorem 2.2, we easily deduce that any harmonic function on M with �nite
energy is necessarily constant, i.e. the space of (bounded) harmonic functions
with �nite Dirichlet integral is 1-dimensional.

Corollary 2.13. Let M be a Riemannian manifold as in Corollary 2.11. Then
M has at most one non-parabolic hand.

As observed before, Theorem 2.10 with p = 2 recovers the conclusion of The-
orem 2.6, but with a di�erent assumption on the range of parameters. Indeed,
Theorem 2.6 requires

(2.40) H >
m− 2

m− 1
,

m− 2

m− 1
≤ q

2
≤ H

while for Theorem 2.10 we impose

(2.40') q ≥ 2, H >
q2

4
(
q − m−2

m−1

)
Note that, on the one hand, assumption (2.40) is stronger than (2.40') and lower
values of q, i.e. 2m−2

m−1 ≤ q < 2, are allowed. Nevertheless, for q ≥ 2, it holds

q/2 > q2
[
4
(
q − m−2

m−1

)]−1

, and hence the relation between H and q given in

(2.40') is less restrictive. So far we have used this fact to extend previous results
by weakening the spectral assumption (2.3) permitting H < 1 when q = p = 2.
In a di�erent direction, this improvement turns useful under classical assumption
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(2.2) (i.e. with H = 1), since in this case we can choose values of q greater than
2,

2 ≤ q ≤ 2 +

√
4

m− 1
.

As an example of this latter approach, we recall a result by Bérard, [Be], which
states that an m-dimensional oriented stable complete minimal hypersurfaceM
in Rm+1 satisfying |II| ∈ Lm(M) is an a�ne m-plane if m ≤ 5. The proof given
by Bérard is very similar to the p = 2 case of the proof of Theorem 2.10. Namely
he considers the norm of second fundamental form |II| instead of |du|. Then,
Simons' inequality and the re�ned Kato inequality for minimal immersion give
(compare with (2.10))

|II|M∆|II|+ |II|4 ≥ 2

m
|∇|II||2.

which, in turn, implies (compare with (2.27))

1

2

∫
ρ2|II|q−2∆|II|2 ≥ m+ 2

m

∫
ρ2|II|q−2 |∇|II||2 −

∫
ρ2|II|qk (x) ,

where we have set k(x) = |II|2. Moreover, the stability of the immersion implies
that λL1 ≥ 0 for the operator L = −M∆ − |II|2 = −M∆ − k. Hence we can
proceed as in the proof of Theorem 2.10, obtaining Bérard's result for m ≤ 3.
In these assumptions of �nite total curvature an estimate due to M. Anderson
gives VolBMR ≤ CRm for some positive constant C, [An1], [An2]. This permits
to apply Hölder inequality to RHS of (2.38), enlarging the admissible value of
q, i.e. q = m ≤ 5.
For completeness we recall that, using the convergence theory for minimal sur-
faces, Shen and Zhu, [SZ], were able to extend Bérard's theorem to the case of
general dimension m ≥ 2.
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Chapter 3

Homotopic p-harmonic maps

In Chapter 2 we studied the homotopy class of higher energy maps. The fun-
damental ingredient was an existence result for the �nite p-energy p-harmonic
representative in homotopy class, see Theorem 2.4, combined with a Liouville
type theorem for �nite p-energy p-harmonic maps, see Theorem 2.10. No-
tably, we recall that Wei's existence Theorem 2.4 states that, given manifolds
(M, 〈, 〉M ) complete and (N, 〈, 〉N ) compact and a �nite p-energy continuous
map f : M → N , there exists a �nite p-energy C1,α p-harmonic map homo-
topic to f . This implies that, in the above assumptions on the manifolds, the
space of p-harmonic maps from M to N with �nite p-energy homotopic to f is
non-empty. Hence, one is led to investigate such a space, in particular inquiring
how many p-harmonic representatives can be found in a given homotopy class.
First results in this direction were obtained by Wei for general p and smooth
p-harmonic maps de�ned on compact M , see Theorem 3.1 and Theorem 3.2
below. This generalizes a previous work due to Hartman, [Har], holding for
p = 2.

Theorem 3.1 (Theorem 8.1 in [We2]). Every smooth p-harmonic map u de�ned
on a compact Riemannian manifoldM into a manifold N that supports a strictly
convex function is constant.

Theorem 3.2 (Theorem 8.5 in [We2]). Let M and N be compact manifolds
with N Sect ≤ 0. If u0 and u1 are homotopic p-harmonic maps from M into
N , then they are homotopic through p-harmonic maps us(·) and the p-energy
is constant on any arcwise connected set of p-harmonic maps, i.e. Ep(us) =
Ep(u0) = Ep(u1) for all s ∈ [0, 1]. Furthermore, each path s 7→ us(q) is a
geodesic segment with length independent of q ∈M . In particular

i) Every homotopy class of maps from M to N that agree on ∂M 6= ∅ con-
tains a unique p-harmonic map.

ii) Let u0 : M → N be a p-harmonic map with ∂M = ∅. Assume that there
is some point of u0(M) at which N Sect < 0. Then u0 is unique in its
homotopy class unless it is constant or maps M onto a closed geodesic σ
in N . In the latter case, we have uniqueness up to rotations of σ.

As we will report below, Hartman's result for p = 2 has been generalized to
non-compact manifoldsM and N with VolM < +∞ by Schoen and Yau, [SY3].
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Subsequently, it has been proven that in the harmonic setting the assumption
of �nite volume can be replaced by the weaker condition of parabolicity of M ,
[PRS3]. Nevertheless, the case of two non-trivial homotopic p-harmonic maps
between complete manifolds remained an open problem when p 6= 2.
We start this chapter by recalling Schoen and Yau's result for p = 2 and re-
porting their proof. This will permit us to highlight which are the obstructions
to generalize Schoen and Yau's proof to the p-harmonic setting and which dif-
ferent techniques have been so far developed or can be developed to overcome
these di�culties. We thus obtain partial related results of independent interest.
Finally we will prove the following p 6= 2 analogue of Schoen and Yau's result.

Theorem 3.3. Suppose M is p-parabolic, p ≥ 2, and N is complete.

i) Let u : M → N be a C1,α p-harmonic map of �nite p-energy. If N Sect <
0, there's no other p-harmonic map of �nite p-energy homotopic to u
unless u(M) is contained in a geodesic of N .

ii) If u, v : M → N are homotopic C1,α p-harmonic maps of �nite p-energy
and N Sect ≤ 0, then there is a continuous one-parameter family of maps
ut : M → N with u0 = u and u1 = v such that the p-energy of ut is
constant (independent of t) and for each q ∈ M the curve t 7→ ut(q),
t ∈ [0, 1], is a constant (independent of q) speed parametrization of a
geodesic. Moreover, if N is compact, ut is a p-harmonic maps for each
t ∈ [0, 1].

3.1 Uniqueness of harmonic maps in free homo-

topy class

In this section, following Schoen and Yau, we give a description of the space of
(2-)harmonic maps from M to N which are homotopic to a given one.

Theorem 3.4 (Theorem 1 and Theorem 2 in [SY3]). Suppose M is parabolic
and N is complete.

i) Let u : M → N be a harmonic map of �nite energy. If N Sect < 0, there's
no other harmonic map of �nite energy homotopic to u unless u(M) is
contained in a geodesic of N .

ii) If N Sect ≤ 0 and u, v : M → N are homotopic harmonic maps of �nite
energy, then there is a smooth one-parameter family ut : M → N , of
harmonic maps with u0 = u and u1 = v. Moreover, for each q ∈ M ,
the curve t 7→ ut(q), t ∈ [0, 1], is a constant (independent of q) speed
parametrization of a geodesic. Also the map M×R→ N given by (q, t) 7→
ut(q) is harmonic with respect to the product metric on M ×R. Moreover,
x 7→ dut(∂/∂t) is a parallel section of u−1TN , the pullback of the tangent
bundle of N with pulled back connection.

Remark 3.5. Theorem 3.4, as stated in the original paper [SY3], required
Vol(M) < +∞. The improved version reported here is due to [PRS3], Remark
4.
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Here we outline how Schoen and Yau proved Theorem 3.4 (we refer to [SY1]
and to Section 3.4 below for further details). In particular we try to underline
the steps of their proof more signi�cant in view of a p-harmonic generalization.

Proof (of Theorem 3.4).
Step a. Let u and v be two smooth harmonic maps from M to N which
are freely homotopic, and such that |du|, |dv| ∈ L2(M). Let PM : M̃ → M
and PN : Ñ → N be the universal Riemannian covers respectively of M and N .
Then π1(M, ∗) and π1(N, ∗) act as groups of isometries on M̃ and Ñ respectively
so that M = M̃/π1(M, ∗) and N = Ñ/π1(N, ∗). Let distÑ : Ñ × Ñ → R be

the distance function on Ñ . Since Ñ Sect ≤ 0, we know that distÑ is smooth on

Ñ × Ñ \ D̃, where D̃ is the diagonal set {(x̃, x̃) : x̃ ∈ Ñ}, and dist2
Ñ

is smooth

on Ñ × Ñ . Now π1(N, ∗) acts on Ñ × Ñ as a group of isometries by

β(x̃, ỹ) = (β(x̃), β(ỹ)) for β ∈ π1(N, ∗).

Thus dist2
Ñ

induces a smooth function

r̃2 : Ñ×/ → R,

where we have de�ned
Ñ×/ := Ñ × Ñ/π1(N, ∗).

Let U : M × [0, 1] → N be a homotopy of u with v so that U(q, 0) = u(q) and
U(q, 1) = v(q) for all q ∈ M . We choose a lifting Ũ : M̃ × [0, 1] → Ñ , and call
Ũ(q̃, 0) =: ũ(q̃) and Ũ(q̃, 1) =: ṽ(q̃) for all q̃ ∈ M̃ . This de�nes liftings ũ, ṽ of u, v
and, since Riemannian coverings are local isometries, ũ and ṽ are p-harmonic
maps and

|dũ|(q̃) = |du|(PM (q̃)), |dṽ|(q̃) = |dv|(PM (q̃)).

Now, π1(M, ∗) acts as a group of isometries on M̃ and we have
(3.1)

ũ(γ(q̃)) = u](γ)ũ(q̃), ṽ(γ(q̃)) = v](γ)ṽ(q̃), ∀q̃ ∈ M̃, γ ∈ π1(M, ∗),

where u], v] : π1(M, ∗)→ π1(N, ∗) are the induced homomorphism and u] ≡ v]
since u is homotopic to v.
Thus, the map

j̃ : M̃ → Ñ × Ñ de�ned by j̃(x̃) := (ũ(x̃), ṽ(x̃))

induces by (3.1) a map
j : M → Ñ×/.

Using again the fact that Riemannian coverings are local isometries and by the
good behaviour of the tension �eld with respect to the Riemannian product, j
is a harmonic map.
Step b. Using the second variation of arc length, [CE], Schoen and Yau proved
that

Lemma 3.6 (Proposition 1 in [SY3]). Given two points x1, x2 ∈ Q in a simply-
connected Riemannian manifold Q with Q Sect ≤ 0, and given

X = X1 +X2 ∈ Tx1Q⊕ Tx2Q ≡ T(x1,x2)(Q×Q),
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then

Q×Q Hess distQ
∣∣
(x1,x2)

(X,X) ≥ 0, where x1 6= x2,(3.2)

Q×Q Hess dist2
Q

∣∣
(x1,x2)

(X,X) ≥ 0, on Q×Q,(3.3)

and equality holds in (3.3) if and only if there is a parallel vector �eld Z, de�ned
along the unique geodesic γx1,x2

from x1 to x2, such that Z(x1) = X1, Z(x2) =
X2 and

〈
QR(Z, T )T,Z

〉
Q
≡ 0 on γx1,x2 . In particular, if Q Sect < 0, Z is

proportional to T .

We apply Lemma 3.6 with Q = Ñ and, with an abuse of notation, X = dj̃.
Since Ñ × Ñ is the universal cover of Ñ×/ and j̃ projects on j, this in particular
gives

(3.4) Ñ×/ Hess r̃|j(q) (dj, dj) ≥ 0

and

(3.5) Ñ×/ Hess r̃2|j(q) (dj, dj) ≥ 0.

Step c. De�ne the real function ρ : M → R as

ρ := r̃ ◦ j

and observe that ρ2 ∈ C∞(M). By the composition law of tension �elds we see
that the harmonicity of j, (3.4) and (3.5) imply

M∆ρ = M tr Ñ×/ Hess r̃
∣∣∣
j

(dj, dj) + dr̃|j (τj)(3.6)

= M tr Ñ×/ Hess r̃
∣∣∣
j

(dj, dj) ≥ 0

and

M∆ρ2 = M tr Ñ×/ Hess r̃2
∣∣∣
j

(dj, dj) + dr̃2
∣∣
j

(τj)(3.7)

= M tr Ñ×/ Hess r̃2
∣∣∣
j

(dj, dj) ≥ 0.

De�ne the smooth function φ : M → R as φ :=
√
ρ2 + 1. Then φ satis�es

|∇φ| = ρ√
ρ2 + 1

|∇ρ| ≤ |∇ρ| ≤ (|du|+ |dv|) ∈ L2(M)

and, by (3.6),

M∆φ = M div
ρM∇ρ√
ρ2 + 1

=
ρ√
ρ2 + 1

M∆ρ+
|M∇ρ|2

(ρ2 + 1)
3/2
≥ 0.

Hence φ is a �nite-energy subharmonic function on a parabolic manifold, and
applying Corollary 1.3 we obtain that φ is necessarily constant. Thus also ρ
must be constant and (3.7) implies

(3.8) M tr N×N HessN r̃2
∣∣
(u,v)

((du, dv), (du, dv)) = 0.
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Step d. Consider a local orthonormal frame {Ẽj}mj=1 on M̃ and de�ne vector

�elds X̃j , j = 1, . . . ,m, on Ñ × Ñ as

X̃j := (dũ(Ẽj), dṽ(Ẽj)).

Then, when lifted to the universal covers, (3.8) gives

Ñ×Ñ Hess dist2
Ñ

(X̃j , X̃j) = 0,

for all j = 1, . . . ,m. At this point, applying again Lemma 3.6 implies

d (distÑ )
(
dũ(Ẽi), dṽ(Ẽi)

)
= d (distÑ ◦(ũ, ṽ)) (Ẽi) ≡ 0

and, since {Ẽi}mi=1 span all Tq̃M̃ , we get that (distÑ ◦(ũ, ṽ)) is constant on

M̃ . Accordingly, for each q̃ ∈ M̃ the unique geodesic γ̃q̃ from ũ(q̃) to ṽ(q̃)
can be parametrized on [0, 1] proportional (independent of q̃) to arclength. We
de�ne a one-parameter family of maps ũt : M̃ → Ñ by letting ũt(q̃) := γ̃q̃(t).
Then we see that ũ0 = ũ and ũ1 = ṽ. Lemma 3.6 states also that for each
i = 1, . . . ,m there exists a parallel vector �eld Zi, de�ned along γ̃q̃ in Ñ , such

that Zi(ũ(q̃)) = dũ|q̃(Ẽi), Zi(ṽ(q̃)) = dṽ|q̃(Ẽi) and
〈
NR(Zi, ˙̃γq̃) ˙̃γq̃, Zi

〉
N
≡ 0

along γ̃q̃. Actually, one can prove that

(3.9) Zi ≡ dũt(Ẽi).

In the special situation N Sect < 0, for all q̃ ∈ M̃ the parallel vector �eld Z along
γq̃ has to be proportional to γ̇q̃. Hence ũ(M̃) and ṽ(M̃) have to be contained

in a geodesic of Ñ and projecting on M we get the proof of case i) of Theorem
3.4.
In general, by the homotopy between u and v, the family ũt induces maps
ut : M → N for t ∈ [0, 1] such that u0 ≡ u and u1 ≡ v. Let γq(t) be the
geodesic from u(q) to v(q) in M obtained by projection from γ̃q̃. Projecting Zi,
(3.9) implies that dut is a parallel vector �eld along γq. Therefore

e(ut)(q) =

m∑
i=1

|dut(Ei)|2

is constant along γq for each q ∈M and, consequently,

(3.10) E(u) = E(ut) = E(v), ∀t ∈ [0, 1],

that is, every harmonic map of �nite energy homotopic to u has the same energy
as u.
Step e. We prove that ut is harmonic for all t. Assume M is non-compact, the
other case being easier; see [SY1].
By contradiction, suppose ut is not harmonic. Then, by (1.1) and subsequent
considerations we know that there exist a compact set Ω ⊂ M and a smooth
map ût such that

ût ≡ ut on M \ Ω,

E(ût) < E(ut) = E(u),(3.11)

ût and u are homotopic maps.
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Consider an exhaustion {Mk}∞k=1 of M . Up to choose a subsequence of the
exhaustion, we can suppose that Ω ⊂⊂ M1. Following Hamilton, [Ham], for
each k we use the heat �ow to solve the boundary value problem on Mk with
initial value ût|Mk

. Indeed, by the results in [SY1], Section IX.8, the heat �ow
is well de�ned for all time and converges to a harmonic map. Accordingly, we
get a harmonic map ut,k : Mk → N homotopic to ut|Mk

with

ut,k ≡ ût ≡ ut on ∂Mk

and

(3.12) E (ut,k) ≤ E
(
ût|Mk

)
.

Since τu = τut,k = 0, reasoning as in (3.6) the function distN (ut,k, u) : Mk → R
is subharmonic on Mk. Moreover,

distN (ut,k, u)|∂Mk
= distN (ut, u)|∂Mk

≤ C,

where the constant C = distÑ (ũ, ũq) does not depend on k. By the maximum
principle, we deduce that for each l ≥ 1 there exist a compact set Kl ⊆ N
independent of k (namely, we can choose Kl as a neighborhood of u(Ml)) such
that ut,k(Ml) ⊆ Kl. Let i : N ↪→ Rq be an isometric immersion of N into
some Euclidean space. Since {E(ut,k)}∞k=1 is bounded, i(ut,k(Ml)) ⊂ i(Kl)
and i(Kl) ⊂ Rq is compact, the sequence of harmonic maps {ut,k|Ml

}∞k=l is

bounded in W 1,2(Ml,Rq) and, up to choose a subsequence, ut,k|Ml
converges

to some harmonic map u
(l)
t ∈W 1,2(Ml,Rq) weakly in W 1,2, strongly in L2 and

pointwise almost everywhere, which implies u
(l)
t ∈ W 1,2(Ml, N). Because of

the convergence properties of ut,k|Ml
and the uniform boundedness of ut,k(Ml),

reasoning as in the proof of Theorem 2.4 we know that the 1-homotopy type
of ut,k|Ml

is preserved under the limit procedure. Since N is K(π, 1), also the

homotopy class is preserved and so u
(l)
t is homotopic to ut|Ml

. Now, using
standard diagonal arguments we can choose a subsequence of ut,k, still denoted

ut,k, such that, for all l, ut,k|Ml
converges to u

(l)
t ∈W 1,2(Ml, N) weakly inW 1,2,

strongly in L2 and pointwise almost everywhere. Since by pointwise convergence

u
(l)
t and u

(l+1)
t agree almost everywhere on Ml, the map ut,∞ : M → N which

takes values ut,∞|Ml
= u

(l)
t is well de�ned and harmonic. Moreover, by Theorem

2.5, ut,∞ is homotopic to ut since they are homotopic on compact sets. Applying
(3.10) with v = ut,∞ we have

(3.13) E(ut,∞) = E(u) = E(ut).

On the other hand, (3.12) and the lower semicontinuity of E give

E(ut,∞|Ml
) = E(u

(l)
t ) ≤ lim inf

k→∞
E(ut,k|Ml

) ≤ E(ut,l) ≤ E(ût|Ml
),

which, by (3.11), gives

E(ut,∞) ≤ E(ût) < E(ut) = E(u).

This contradicts (3.13) and concludes the proof.
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As announced in the introduction, the extension of Schoen and Yau's re-
sult to the non-linear setting seems not obvious, since their strategy appar-
ently doesn't work. In particular di�culties arise in adapting steps b, c and e.
Troughout this Chapter 3 we will analyze these problems pointing out, when
possible, how to overcome them in order to prove Theorem 3.3.

3.2 The composition of p-harmonic maps and con-

vex functions

A crucial point in the proof of Theorem 3.4 is the subharmonicity of ρ. If N is
simply connected, hence Cartan-Hadamard, it represents the distance function
on N between the harmonic maps u and v. As it is clear by inequality (3.6), the
subharmonicity of ρ is obtained since ρ is the composition of the harmonic map
(f, g) : M → N ×N with distN , which is convex due to Lemma 3.6. Actually,
it is a general well known fact that the composition H ◦ F of a harmonic map
F : M → N with a convex function H : N → R is subharmonic, regardless
of any curvature assumption on the manifolds. This is easily implied by the
composition law of tension �elds

M∆(H ◦ F )(x) = M tr N HessH
∣∣
F (x)

(dF, dF )(x) + dH|F (x) ◦
MτF (x).

As a matter of fact this property can be used to characterize the harmonicity of
F , see Theorem 3.4 in [I]. Namely, T. Ishihara proved that the map F : M → N
is harmonic if and only if, for any open subset U ⊆ N , it pulls back any convex
function de�ned on U to a subharmonic function on F−1(U). This is extremely
useful since, for example, Liouville type theorems for harmonic maps into targets
supporting a convex function can be obtained directly from results in linear
potential theory of real valued functions. Such Liouville conclusions, in turn,
have topological consequences, as shown in the previous section.
In this respect, one is led to inquire whether the composition of a p-harmonic
map with a convex function is p-subharmonic and, therefore, if the non-linear
potential theory of real-valued functions su�ces to get the desired conclusions.
By the way, this problem was pointed out by Lin and Wei among a list of
open questions in geometry; see Problem 7 in [LW]. In this section we show
a counterexaple, i.e., we describe a p-harmonic map and a convex function
whose composition is not p-subharmonic. It was folklore that, in general, the
subharmonicity of the composition fails, so that one is forced to follow di�erent
paths to obtain the results alluded to above; see e.g. [CL], [Kaw], [PRS3] and
the results in Section 3.3 and Section 3.4. However, to the best of our knowledge,
previous counterexamples are not available in the literature.

3.2.1 A counterexample

Through all this Section 3.2, let Mg and Nj be (n + 1)-dimensional model
manifold in the sense of Greene and Wu, [GW], that is (n + 1)-dimensional
Riemannian manifolds with rotationally symmetric metrics de�ned as

Mg = ([0,+∞)× Sn, ds2 + g2(s)dθ2)

Nj = ([0,+∞)× Sn, dt2 + j2(t)dθ2),
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where g, j ∈ C2([0,+∞)) satisfy

(3.14) g(0) = j(0) = 0, g′(0) = j′(0) = 1, g(s), j(t) > 0 for s, t > 0,

and (Sn, dθ2) is the Euclidean n-sphere with its standard metric. We say that
the C2 map F : Mg → Nj is rotationally symmetric if

F (s, θ) = (f(s), θ) ∀s > 0, θ ∈ Sn,

for some function f ∈ C2([0,∞)). Similarly, by a C2 rotationally symmetric
real valued function on Nj we mean a function H : Nj → R of the form

H(t, θ) = h(t) ∀t > 0, θ ∈ Sn,

for some h ∈ C2([0,∞)).

We shall prove the following

Theorem 3.7 (Theorem 1 in [V]). Consider two rotationally symmetric (n+1)-
dimensional manifolds Mg, Nj. Suppose that (n + 1) > p > max {2, n} and
assume that the warping functions g, j ∈ C2([0,+∞)) have the form

g(s) = (s+ δ−
1
δ−1 )δ − δ−

δ
δ−1 , j(t) = (t+ σ

1
1−σ )σ − σ

σ
1−σ ,

where δ > (p − n)−1 > 1 and 0 < σ < 1. Then, there exist a C2 rotationally
symmetric p-harmonic map F : Mg → Nj and a sequence {sk}∞k=1 → +∞, such
that

∆p(H ◦ F )(sk, θ) < 0

for every rotationally symmetric convex function H : Nj → R, provided the
corresponding h ∈ C2([0,+∞)) satis�es h′(t) > 0 for t > 0.

Remark 3.8. As announced above, the counterexample proposed in Theorem
3.7 shows that, in general, the composition of a p-harmonic map with a convex
function is not p-subharmonic. Hence, the proof of Theorem 3.4 can not be
trivially adapted to the non-linear case. Nevertheless, it has to be pointed out
that

i) According to standard computations, we have that

Nj Sectrad(t) = −j
′′(t)

j(t)
≥ 0.

ii) Since Mg is a model manifold and, by the assumption on the parameters,

A(∂BMg
s )−

1
p−1 ∼ s−

nδ
p−1 ∈ L1(+∞),

we deduce (see Section 1.2) that Mg is not p-parabolic.

In order to proof Theorem 3.3, we should assume that both the domain mani-
fold is p-parabolic and the target manifold has non-positive sectional curvature.
Actually, in this case, so far we have not been able neither to �nd a suitable
counterexample nor to estabilish that the composition well behaves under these
restrictive conditions. See also Appendix B below.
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It should be noted that, in the paper [I] cited above, the author also consid-
ers a special category of harmonic maps, the harmonic morphisms, which pull
back germs of harmonic functions on the target to harmonic functions in the
domain. It is proved that harmonic morphisms are characterized by a weakly
horizontal conformality condition. Recently, [Lo], such a characterization has
been extended to the p-harmonic setting, p > 2. It turns out that the p-tension
�eld of the composition of a p-harmonic morphism with a generic function enjoys
a very special decomposition. Moreover it's proven that C2 convex functions
are p-subharmonic; see [WLW1] and [WLW2]. Accordingly one has that p-
harmonic morphisms pull back p-subharmonic functions (and hence pull-back
convex functions) to p-subharmonic functions. Such a special decomposition,
however, fails to be true in general for a p-harmonic map, and the rotationally
symmetric realm provides concrete examples.

The proof of Theorem 3.7 relies on a number of preliminary facts on rotation-
ally symmetric p-harmonic maps, ranging from explicit formulas up to existence
results and companion asymptotic estimates. In all that follows, notations are
those introduced in Theorem 3.7.

3.2.2 Rotationally symmetric p-harmonic maps

The p-tension �eld of the map F , on the subset of Mg where |dF | 6= 0, writes
as

τp(F ) = div(|dF |p−2
dF )

= |dF |p−2 {
τ(F ) + i(∇(ln |dF |p−2))dF

}
,(3.15)

where i denotes the interior product on 1-forms. Using the rotational symmetry
condition we have

|dF |2 (s) =

{
(f ′(s))2 + n

j2(f(s))

g2(s)

}
.

Furthermore, the energy of F is (up to a constant factor)

E(F ) =

∫ ∞
0

{
(f ′(s))2 + n

j2(f(s))

g2(s)

}
gn(s)ds,

and the tension �eld of F that is involved in the Euler-Lagrange equation of the
energy functional takes the expression

(3.16) τ(F ) =

{
f ′′(s) +

n

g2(s)
[g(s)g′(s)f ′(s)− j(f(s))j′(f(s))]

}
∂

∂t

∣∣∣∣
f(s)

,

Substituting (3.16) into (3.15), we have

τp(F ) = |dF |p−2
(s)

{[
f ′′(s) +

n

g2(s)
(g(s)g′(s)f ′(s)− j(f(s))j′(f(s)))

]
+ (p− 2) |dF |−2

(s)f ′(s)

[
f ′(s)f ′′(s)

+n
j(f(s))

g3(s)
(j′(f(s))f ′(s)g(s)− j(f(s))g′(s))

]}
∂

∂t

∣∣∣∣
f(s)

= 0,(3.17)
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provided F is p-harmonic. Now, we want to compute the p-laplacian of the
composition H ◦ F . Using (3.15) with F replaced by H ◦ F , and setting

K(s) = |d(H ◦ F )|p−2 = |h′(f(s))f ′(s)|p−2

we conclude

∆p(H ◦ F ) = K(s)
{
h′(f(s))f ′′(s) + h′′(f(s))(f ′(s))2

+ng−1(s)g′(s)f ′(s)h′(f(s))

+ (p− 2)
[
h′(f(s))f ′′(s) + h′′(f(s))(f ′(s))2

]}
,(3.18)

on the subset

M+ = {(s, θ) : h′(f(s))f ′(s) > 0} ⊆Mg.

Finally, we recall that for vector �elds V and W on N , (Hess(H)(t, θ))(V,W ) =
(W (V H)− dH(DVW ))(t, θ), and for vertical vector �elds V and W on N , the
projection of DVW onto its horizontal subspace is given by the formula

(DVW )⊥ = −
(
〈V,W 〉
f

)
∇f

where D is the Riemannian connection on N , 〈, 〉 is the warped metric, and f
is the warping function, see p.206, Proposition 35(3) in [O]. Hence

Hess (H) (t, θ) = h′′ (t) dt2 + j′ (t) j (t)h′ (t) dθ2.

Since the function j(t) de�ned in Theorem 3.7 is positive and strictly increasing,
the above expression gives us that the convexity of H is equivalent to the set of
conditions

(3.19)

{
h′′(t) ≥ 0
h′(t) ≥ 0,

∀t > 0.

3.2.3 Existence results and asymptotic estimates

The existence of rotationally symmetric p-harmonic maps has been investigated
by several authors. Here, we recall the following theorem which encloses in a
single statement Lemma 2.5, Theorem 2.11, Proposition 3.1 and Theorem 3.2
in [CLLM](see also Corollary 3.22 in [Le]). From now on, given real functions
g1(s) and g2(s), we say that g1 � g2 for large s if there exists positive constants
k1 and k2 such that k1g2(s) ≤ g1(s) ≤ k2g2(s) for all large s, while we say that

g1(s) ∼ g2(s) if lims→∞
g1(s)
g2(s) = 1.

Theorem 3.9 (Lemma 2.5, Theorem 2.11, Proposition 3.1 and Theorem 3.2 in
[CLLM]). Suppose that p > 2 and assume that there exist constants a > 0 and
δ > 1 with nδ > p− 1 such that g, j ∈ C2(0,∞),

j(t) > 0, 0 ≤ j′(t) ≤ a ∀t > 0,

and
g(s) � sδ, g′(s) > 0 for large s,

where g and j satisfy the conditions in (3.14). Then, for any α > 0, there
is a bounded solution f ∈ C2[0,+∞) to equation (3.17) such that f(0) = 0,
f ′(0) = α and f(s), f ′(s) > 0 for all s > 0.
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Remark 3.10. Note that Theorem 3.9 and the assumption h′(t) > 0 imply that
(s, θ) ∈M+ and K(s) 6= 0 for every s > 0.

We now want to obtain an asymptotic estimate for f ′(s). The following
lemma, which is modeled on Corollary 3.13 in [CLLM], will play a crucial role.

Lemma 3.11 (Lemma 1 in [V]). Suppose that (n + 1) > p > max {2, n} and
assume that there exist constants a > 0 and δ > (p − n)−1 > 1, such that
g, j ∈ C1(0,∞),

j(t) > 0, 0 < j′(t) ≤ a ∀t > 0,

and
g(s) ∼ C1s

δ, g′(s) > 0 for large s, C1 > 0,

where g and j satisfy the conditions in (3.14). Then all positive solutions to
equation (3.17) satisfy

(3.20) f ′(s) ∼ Ds−δ(n−(p−2)), as s→ +∞,

for some positive constant D.

Proof. Let us begin by recalling the following estimate which will be useful later
(see (3.7) in [CLLM])

(3.21) gn(s)|dF |p−2(s)f ′(s) ≤ C̃
(∫ s

s0

r(n−2)δ|dF |p−2(r)f(r)dr + 1

)
,

for s ≥ s0, where s0 is some positive constant. From equations (3.15) and (3.16),
we get

f ′(s)(|dF |p−2(s))′ = |dF |p−2(s)

[
nj(f(s))j′(f(s))

g2(s)
− f ′′(s)− ng′(s)f ′(s)

g(s)

]
,

from which we obtain that

(gn|dF |p−2f ′)′(s) = n|dF |p−2(s)gn−2(s)j(f(s))j′(f(s)) ≥ 0, ∀s > 0.

Hence (gn|dF |p−2f ′) is non-decreasing and the following limit holds

(gn|dF |p−2f ′)(s)→ P ∈ (0,+∞] , for s→ +∞.

We claim that the limit P is �nite. By contradiction suppose P = +∞, then
there exists a sequence {SN}∞N=1 such that

SN → +∞ and (gn|dF |p−2f ′)(SN ) = N,

which implies, for all s ≤ SN ,

gn(s)(f ′(s))p−1 ≤ gn(s)|dF |p−2(s)f ′(s) ≤ N

and
f ′(s) ≤ N

1
p−1 g−

n
p−1 (s) ≤ CN

1
p−1 s−

nδ
p−1 .

Moreover, since p < n+ 1 and δ > (p− n)−1 imply nδ > (p− 1), we can apply
Theorem 3.9 to deduce that f ′(s) > 0 and f(s) is bounded. Thus

(3.22) f(s)→ ĉ > 0 as s→ +∞,
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f(s) ≤ ĉ for all s and f(s) > ĉ/2 for s large enough. Now,

|dF |2(s) ≤ CN
2
p−1 s−

2nδ
p−1 + n

a2f2(s)

g2(s)

≤ C max
{
N

2
p−1 s−

2nδ
p−1 ; s−2δ

}
≤ CN

2
p−1 s−2δ,(3.23)

since n > (p− 1). Hence, from (3.21), (3.22) and (3.23), we get

N = (gn|dF |p−2f ′)(SN ) ≤ C̃

(∫ SN

s0

r(n−2)δ|dF |p−2(r)f(r)dr + 1

)

≤ C

(
N

p−2
p−1

∫ SN

s0

r−δ(p−n)dr + 1

)
= o(N), as s→ +∞,

since p > n and δ(p− n) > 1. Contradiction. Then

(3.24) f ′(s) ∼ P |dF |2−p(s)g−n(s),

as s→∞, for some positive constant P <∞.
Now, we need an asymptotic estimate for |dF |. Note that

0 ≤ (f ′(s))2g2(s)

nj2(f(s))
≤ Cs−

2nδ
p−1 s2δ

nj2( ĉ2 )
= Cs2δ(1− n

p−1 ) → 0, as s→ +∞,

since p− 1 < n. Therefore

lim
s→+∞

|dF |2(s)

n j
2(f(s))
g2(s)

= lim
s→+∞

(f ′(s))2g2(s)

nj2(f(s))
+ 1 = 1,(3.25)

proving that

|dF |2(s) ∼ nj
2(f(s))

g2(s)
∼ nj2(ĉ)

C2
1

s−2δ, as s→ +∞.

Using this information into (3.24) we conclude

f ′(s) ∼ Ds−δ(n−(p−2)), with D := PC−n1

(
C2

1

nj2(ĉ)

) p−2
2

> 0,

where n > p− 1 > p− 2.

3.2.4 Proof of Theorem 3.7

Observe that the warping functions g and j de�ned as in Theorem 3.7 satisfy the
assumptions of Theorem 3.9 and Lemma 3.11. Then, there exists a rotationally
symmetric p-harmonic map F (s, θ) = (f(s), θ) : Mg → Nj where f(s) is a
positive, bounded, increasing function which satis�es (3.17) and the asymptotic
estimates (3.20) and (3.22).

Now, multiplying (3.17) by h′(f(s)), we get

h′(f(s))f ′′(s) + ng−1(s)h′(f(s))g′(s)f ′(s)

= ng−2(s)h′(f(s))j(f(s))j′(f(s))− (p− 2) |dF |−2 [
h′(f(s))f ′′(s)(f ′(s))2

+ng−2(s)j(f(s))j′(f(s))h′(f(s))(f ′(s))2 − ng−3(s)j2(f(s))g′(s)h′(f(s))f ′(s)
]
.

36



and inserting the latter into (3.18) we obtain

∆p(H ◦ F ) = K(s)K̃(s) {A1(s) +A2(s) +A3(s)} ,(3.26)

where we have set

K(s) = |h′(f(s))f ′(s)|p−2 > 0, ∀s > 0;

K̃(s) :=
nj(f(s))h′(f(s))

|dF |2(s)g2(s)
> 0, ∀s > 0;

A1(s) := j′(f(s))

[
(3− p)(f ′(s))2 + n

j2(f(s))

g2(s)

]
;

A2(s) := (p− 2)j(f(s))

[
g′(s)f ′(s)

g(s)
+ f ′′(s)

]
;

A3(s) := (p− 1)(f ′(s))2h′′(f(s))
|dF |2(s)g2(s)

nj(f(s))h′(f(s))
.

Remark 3.12. In the harmonic case p = 2, (3.26) reduces to

∆(H ◦ F ) = (f ′(s))2h′′(f(s)) +
n

g2(s)
j(f(s))j′(f(s))h′(f(s))

which is always nonegative when H is convex, as we observed at the beginning
of this section.

Reasoning as in the proof of (3.25) above, we obtain

A1(s) ∼ nj′(ĉ)j2(ĉ)s−2δ,

and

A3(s) ∼ (p− 1)D2h′′(ĉ)

h′(ĉ)
j(ĉ)s−2δ(n−(p−2)),

as s→ +∞. Moreover, according to l'Hôpital rule we have

1 = lim sup
s→+∞

f ′(s)

Ds−δ(n−(p−2))
≤ lim sup

s→+∞

f ′′(s)

−δ(n− (p− 2))Ds−δ(n−(p−2))−1
.

Thus, for every ε > 0 there exists a sequence {sk}∞k=1 such that sk → +∞ and

f ′′(sk) ≤ −δ(n− (p− 2))Ds
−δ(n−(p−2))−1
k (1− ε).

Since
g′(s)f ′(s)

g(s)
∼ δDs−δ(n−(p−2))−1, as s→ +∞,

we have

A2(sk) ≤ (p− 2)j(ĉ)
{

(1 + ε)δDs
−δ(n−(p−2))−1
k

−(1− ε)δ(n− (p− 2))Ds
−δ(n−(p−2))−1
k

}
.

for k large enough. Now recall that, by the assumptions on n and p, it holds

Dδ(1− (n− (p− 2))) < 0.

37



Therefore, we can choose

0 < ε < (n+ 1− p)/(n+ 3− p)

in order to ensure that, for every k large enough,

A2(sk) < 0.

Finally note that, as sk → +∞, A1(sk) and A3(sk) decay faster than A2(sk)
because, by the assumptions on δ, n and p,

−2δ(n− (p− 2)) < −1− δ(n− (p− 2)), −2δ < −1− δ(n− (p− 2)).

According to (3.26), this shows that, for k large enough, ∆p(H ◦F )(sk) < 0, as
requested.

3.3 Global comparisons

In Section 3.2, we identi�ed the �rst great obstruction to adapt the proof of
Schoen and Yau's Theorem 3.4 to p 6= 2. Namely, we showed in Theorem
3.7 how apparently one can not take advantage of the good properties of the
composition of harmonic maps with convex functions. Thus, one is led to look
for di�erent techniques. Some �rst steps in this direction have been taken.
The �rst result is due to Pigola, Rigoli and Setti, [PRS3] which studied the case
of a single �nite p-energy p-harmonic map u : M → N homotopic to a constant.

Theorem 3.13 (Theorem 1 in [PRS3]). Let M and N be complete Riemannian
manifolds. Assume that M is p-parabolic and that N Sect ≤ 0. If u : M → N
is a p-harmonic map homotopic to a constant and with �nite p-energy |du|p ∈
L1(M), then u is a constant map.

To prove Theorem 3.13, the authors, reasoning in a way similar to the proof
of Theorem 3.4, step a, introduced a special π1(M)-equivariant vector �eld

(3.27) X̃ := [dh|ũ ◦ (|dũ|p−2dũ)]]

on M̃ , where ] denotes the isomorphism de�ned, by using the Riemannian met-
ric, as 〈ω], V 〉 = ω(V ) for all di�erential 1-forms ω and vector �elds V . Here,
ũ it the lifting of u to the universal covers M̃ and Ñ . Furthermore, having
�xed q̃0 ∈ M̃ , h : Ñ → R is a C2 function, strictly convex in a neighborhood
Ω of ũ(q̃0) and weakly convex on all of Ñ , de�ned by h(·) = k(distÑ (ũ (q̃0) , ·)),
where k ∈ C2([0,+∞)) is such that k′ ≥ 0, k′′ ≥ 0 and

k(t) :=

{
At2 +B, t ≤ 1,

t, t > 1,

for suitable constants A,B > 0. Due to the equivariant property, X̃ projects to
a well de�ned vector �eld X on M . Then

M divX = |dũ|p−2 trM̃
Ñ Hessh(dũ, dũ) + dh ◦ τp (ũ) ≥ 0.
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Since |X| ∈ Lp/(p−1), Proposition 1.2 can be applied, and they got divM X = 0.
By curvature assumptions, the Hessian comparison theorem thus gives

0 = trM̃
Ñ Hessh(dũ, dũ) ≥ 2A|dũ|2 ≥ 0,

i.e., |dũ| ≡ 0 on ũ−1(Ω). Since

|dũ|(q̃0) = |du|(PM (q̃0)),

letting q0 vary in M , they could conclude.
In this section, we focus our attention on the case N = Rn. According to

Theorem 3.13, it is clear that, if M is p-parabolic, then every p-harmonic map
u : M → Rn with �nite p-energy |du| ∈ Lp (M) must be constant. However,
using the very special structure of Rn and some special vector �elds inspired
to Theorem 3.13, we are able to extend this conclusion, thus establishing a
comparison principle for maps u, v : M → Rn having the same p-Laplacian.

Theorem 3.14 (Theorem 3 in [HPV] and Theorem 15 in [VV]). Suppose that
(M, 〈, 〉) is a complete non-compact Riemannian manifold. For p > 1, let u, v :
M → Rn be C0 ∩W 1,p

loc (M,Rn) maps satisfying

(3.28) τpu = τpv on M,

in the sense of distributions on M and

|du| , |dv| ∈ Lp (M) .

Suppose M is p-parabolic. Then u− v is constant.

In case n = 1, in the assumption (3.28) the real valued laplacians τpu = ∆pu
and τpv = ∆pv have sign and so (3.28) can be relaxed by assuming ∆pu ≥ ∆pv.

Theorem 3.15 (Theorem 1 [HPV]). Let (M, 〈, 〉) be a connected, possibly in-
complete, p-parabolic Riemannian manifold, with p > 1. Assume that u, v ∈
W 1,p

loc
(M) ∩ C0(M) satisfy

∆pu ≥ ∆pv weakly on M,

and
|∇u| , |∇v| ∈ Lp (M) .

Then, u− v is constant.

Simple examples show that both the p-parabolicity ofM and the Lp integra-
bility of |∇u| or |∇v| are needed above. Indeed, letM be, for instance, the open
unit ball in Rm, u a constant function, and v a non-constant p-harmonic function
in M (i.e. a continuous weak solution to ∆pv = 0), with |∇v| ∈ Lp(M). Then
M is non-p-parabolic for all p > 1 and the conclusion of Theorem 3.15 clearly
fails. On the other hand, letM be the in�nite cylinder R×Sm−1 equipped with
the product metric ds2 = dr2 + dϑ2, where dϑ2 is the standard metric of the
sphere Sm−1. Furthermore, let u be a constant function and v(t, ϑ) = t. Now
M is p-parabolic for all p > 1, u and v are p-harmonic in M , but the conclusion
of Theorem 3.15 again fails.
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3.3.1 A key inequality

In the proofs of Theorems 3.14 and 3.15 we will use two main ingredients. The
�rst is the weak version of the Kelvin-Nevanlinna-Royden criterion stated in
Proposition 1.2. The second one is a version for the p-Laplacian of a classical
inequality for the mean-curvature operator. By the way this inequality will be
also used in Subsection 3.3.3 to prove a further comparison whithout the p-
parabolicity assumption; see Theorem 3.20.
The following basic inequality was discovered by Lindqvist, [Li].

Lemma 3.16 (Lemma 4.2 in [Li]). Let (V, 〈, 〉) be a �nite dimensional, real
vector space endowed with a positive de�nite scalar product and let p > 1. Then,
for every x, y ∈ V it holds

|x|p + (p− 1) |y|p − p |y|p−2 〈x, y〉 ≥ C(p)Ψ(x, y),

where

Ψ(x, y) :=

{
|x− y|p p ≥ 2
|x−y|2

(|x|+|y|)2−p 1 < p < 2,

and C(p) is a positive constant depending only on p.

As a consequence, we deduce the validity of the next

Corollary 3.17. In the above assumptions, for every x, y ∈ V , it holds

(3.29)
〈
|x|p−2

x− |y|p−2
y, x− y

〉
≥ 2C(p)Ψ(x, y).

Proof. We start computing〈
|x|p−2

x− |y|p−2
y, x− y

〉
= |x|p + |y|p − 〈x, y〉

(
|x|p−2

+ |y|p−2
)
.

On the other hand, applying twice Lindqvist inequality with the role of x and
y interchanged we get

p (|x|p + |y|p) ≥ p
(
|x|p−2

+ |y|p−2
)
〈x, y〉+ 2C(p)Ψ(x, y).

Inserting into the above completes the proof.

Remark 3.18. Inequality (3.29) can be considered as a version for the p-
Laplacian of the classical Miklyukov-Hwang-Collin-Krust inequality; [Mi], [Hw],
[CK]. This latter states that, for every x, y ∈ V ,〈

x√
1+|x|2

− y√
1+|y|2

, x− y
〉
≥
√

1+|x|2+
√

1+|y|2
2

∣∣∣∣ x√
1+|x|2

− y√
1+|y|2

∣∣∣∣2 ,
equality holding if and only if x = y. This analogy suggests the validity of
global comparison results, without any p-parabolicity asssumption, in the spirit
of [PRS1], as exempli�ed in Subsection 3.3.3.
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3.3.2 Proofs of the �nite-energy comparison principles

We are now in the position to prove the main results.

Proof (of Theorem 3.15). Fix any x0 ∈ M , let A = u (x0) − v (x0) and de�ne
ΩA to be the connected component of the open set

{x ∈M : A− 1 < u (x)− v (x) < A+ 1}

which contains x0. By standard topological arguments, ΩA 6= ∅ is a (connected)
open set. Let α : R→ [0,+∞) be the piece-wise linear function de�ned by

α (t) =

 0 t ≤ A− 1
(t−A+ 1) /2 A− 1 ≤ t ≤ A+ 1
1 t ≥ A+ 1.

Consider the vector �eld

X = α ◦ (u− v)
{
|∇u|p−2∇u− |∇v|p−2∇v

}
,

and note that, for a suitable constant C > 0,

|X|
p
p−1 ≤ C (|∇u|p + |∇v|p) ∈ L1 (M) .

From now on we abbreviate α(u − v) = α ◦ (u − v), α′(u − v) = α′ ◦ (u − v),
etc. Since α(u − v) ∈ W 1,p

loc
(M) then, by assumption, for all functions 0 ≤ ϕ ∈

C∞c (M) we have

0 ≥
∫ 〈
∇(ϕα(u− v)), |∇u|p−2∇u− |∇v|p−2∇v

〉
=

∫ 〈
∇ϕ, α (u− v)

{
|∇u|p−2∇u− |∇v|p−2∇v

}〉
+

∫
ϕα′ (u− v)

〈
∇u−∇v, |∇u|p−2∇u− |∇v|p−2∇v

〉
≥ −(divX,ϕ) + 2C(p)

∫
ϕα′ (u− v) Ψ(x, y)

where in the last inequality we have used Corollary 3.17 and the fact that α′ ≥ 0.
Then

divX ≥ 2C(p)α′ (u− v) Ψ(x, y) ≥ 0

in the sense of distributions and Proposition 1.2 yields

α′ (u− v) |∇u−∇v| = 0.

Since α′ (u− v) 6= 0 on ΩA, we deduce

u− v ≡ A, on ΩA.

It follows that the open set ΩA is also closed. Since M is connected we must
conclude that ΩA = M and u− v = A on M .
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Remark 3.19. In the above proof, inequality (3.29) is not used in its full
strength. What we really need is that〈

|∇u|p−2∇u− |∇v|p−2∇v,∇u−∇v
〉
> 0

whenever ∇u 6= ∇v. According to this observation, the same proof works with
minor changes for more general operators such as the A-Laplacian of [HKM] or
the ϕ-Laplacian of [RS]. In this latter case, ϕ(t) is required to be increasing.

Proof (of Theorem 3.14). We suppose that either u or v is non-constant, for
otherwise there's nothing to prove. Fix q0 ∈M and set C := u(q0)−v(q0) ∈ Rn.
Up to replace v with ṽ := v + C, we can suppose C = 0. Introduce the radial
function r : Rn → R de�ned as r(x) = |x|. For A > 1, consider the weakly
di�erentiable vector �eld XA de�ned as

XA(x) :=
[
dhA|(u−v)(x) ◦

(
|du(x)|p−2du(x)− |dv(x)|p−2dv(x)

)]]
, x ∈M,

where hA ∈ C∞(Rn,R) is the function

hA(y) :=
√
A+ r2(y).

We observe that XA is well de�ned since there exists a canonical identi�cation

T(u−v)(q)Rn ∼= Tu(q)Rn ∼= Tv(q)Rn ∼= Rn.

Compute

dhA =
dr2

2
√
A+ r2

and observe that, because of the special structure of Rn, for each vector �eld Y
on Rn it holds

(dr2)|(u−v)(x)(Y ) = 2 〈(u− v)(x), Y 〉Rn .

By de�nition of weak divergence, for each test function 0 ≤ φ ∈ C∞c (M), we
have

− (divXA, φ) =

∫
M

〈XA,∇φ〉M

=

∫
M

〈[
dhA|(u−v)(x) ◦

(
|du(x)|p−2du(x)− |dv(x)|p−2dv(x)

)]]
,∇φ

〉
M

=

∫
M

dr2

2
√
A+ r2

∣∣∣∣
(u−v)(x)

◦
(
|du(x)|p−2du|x − |dv(x)|p−2dv|x

)
(∇φ)

=

∫
M

〈
(u− v)(x),

(
|du(x)|p−2du|x − |dv(x)|p−2dv|x

)
(∇φ(x))

〉
Rn√

A+ r2(u− v)(x)
.

Since u, v ∈W 1,p
loc (M), assumption (3.28) implies that
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0 =

∫
M

〈
d

(
(u− v)φ√

A+ r2(u− v)

)
, |du|p−2du− |dv|p−2dv

〉
HS

(3.30)

=

∫
M

1√
A+ r2(u− v)

〈
dφ⊗ (u− v), |du|p−2du− |dv|p−2dv

〉
HS

+

∫
M

φ√
A+ r2(u− v)

〈
du− dv, |du|p−2du− |dv|p−2dv

〉
HS

−
∫
M

φ
〈
dr2|(u−v) ◦ (du− dv)⊗ (u− v), |du|p−2du− |dv|p−2dv

〉
HS

2 (A+ r2(u− v))
3/2

≥ −(divXA, φ)

+

∫
M

2C(p)φ√
A+ r2(u− v)

Ψ(du, dv)

−
∫
M

φr2(u− v)

(A+ r2(u− v))3/2
(|du|+ |dv|)(|du|p−1 + |dv|p−1),

where we have used Lemma 3.17 for the second term and Cauchy-Schwarz in-
equality for the third one. Setting

fA :=
2C(p)√

A+ r2(u− v)
Ψ− 2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p),

by Young's inequality, (3.30) gives

(3.31) divXA ≥ fA

in the sense of distributions. Let us now compute the L
p
p−1 -norm of XA. Since∣∣|du|p−2du− |dv|p−2dv

∣∣ p
p−1 ≤

(
|du|p−1 + |dv|p−1

) p
p−1 ≤ 2

1
p−1 (|du|p + |dv|p) ,

we have

|XA|
p
p−1 =

∣∣∣∣∣
√

r2(u− v)

A+ r2(u− v)

∣∣∣∣∣
p
p−1 ∣∣|du|p−2du− |dv|p−2dv

∣∣ p
p−1

≤ 2
1
p−1 (|du|p + |dv|p) ∈ L1(M).

Hence XA is a weakly di�erentiable vector �eld with |XA| ∈ L
p
p−1 (M). To apply

Proposition 1.2, it remains to show that (fA)− ∈ L1(M). To this purpose, we
note that

(fA)− ≤
2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p)(3.32)

≤ r2(u− v)

A+ r2(u− v)

2√
A+ r2(u− v)

(|du|p + |dv|p)

≤ 2√
A

(|du|p + |dv|p) ∈ L1(M).
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Then, the assumptions of Proposition 1.2 are satis�ed and we get, for every
A > 1,

0 ≥
∫
M

fA(3.33)

=

∫
M

[
2C(p)√

A+ r2(u− v)
Ψ− 2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p)

]
.

Fix T > 0 and de�ne

MT := {x ∈M : r(u− v)(x) ≤ T} and MT := M \MT .

Then, we can write (3.33) as

0 ≥
∫
MT

fA +

∫
MT

2C(p)√
A+ r2(u− v)

Ψ−
∫
MT

2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p).

(3.34)

Note that

∫
MT

fA ≥ −
∫
MT

2√
A+ T 2

(|du|p + |dv|p) = − 2√
A+ T 2

∫
MT

(|du|p + |dv|p).

(3.35)

On the other hand, to deal with
∫
MT

fA, observe that

∫
MT

2C(p)√
A+ r2(u− v)

Ψ ≥ 2C(p)√
A+ T 2

∫
MT

Ψ.(3.36)

Furthermore, the real function t 7→ 2t
(A+t)3/2

has a global maximum at t = 2A

and is increasing in (0, 2A). Hence, up to choosing A > T 2/2, we have also

∫
MT

2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p) ≤ 2T 2

(A+ T 2)3/2

∫
MT

(|du|p + |dv|p).

(3.37)

Inserting (3.35), (3.36) and (3.37) in (3.34), we get

2C(p)√
A+ T 2

∫
MT

Ψ ≤ 2T 2

(A+ T 2)3/2

∫
MT

(|du|p + |dv|p)

+
2√

A+ T 2

∫
MT

(|du|p + |dv|p),

which gives

C(p)

∫
MT

Ψ ≤
∫
MT

(|du|p + |dv|p) +
T 2

√
A+ T 2

∫
MT

(|du|p + |dv|p),
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for all A > max{1;T 2/2}. Letting A→ +∞, this latter yields

C(p)

∫
MT

Ψ ≤
∫
MT

(|du|p + |dv|p).(3.38)

Since (|du|p + |dv|p) ∈ L1(M), for T →∞ we can apply respectively dominated
convergence on the RHS and monotone convergence on the LHS of (3.38), thus
getting

C(p)

∫
M

Ψ = 0,

which in turn gives |d(u− v)| ≡ 0 on M , that is, u− v ≡ u(q0)− v(q0) = C on
M .

3.3.3 Further comparison results without parabolicity

A basic use of Corollary 3.17 enables us to get also the next result in the spirit of
[PRS1]. Note that the techniques developed in [PRS1] can be used to conclude
further (e.g. L∞) comparison results.

Theorem 3.20 (Theorem 2 in [HPV]). Let (M, 〈, 〉) be a complete Riemannian
manifold. Let u, v ∈ C∞(M) be such that

∆pu ≥ ∆pv on M

for some p ≥ 2. Suppose there exist q ≥ 1 and s > p such that

(3.39)

∫ +∞
fp,q,s(r)dr = +∞,

where we have set

(3.40) fp,q,s(r) =

(∫
∂Br(o)

|u− v|q+
1
s−1 (|∇u|+ |∇v|)p−

s
s−1

)1−s

,

for some o ∈M . Then either u− v is constant or u ≤ v on M .

Remark 3.21. Condition (3.39) could appear a little bit hard to decode due the
presence of many parameters. Here we try to make it more transparent. First,
note that the assumptions of Theorem 3.20 are trivially met if either (u − v)
or (|∇u| + |∇v|) has compact support. More importantly, applying Hölder and
reverse Hölder inequalities, we can see that condition (3.39) is implied by the
stronger assumption

(∫ R ∥∥∥|u− v|q+ 1
s−1

∥∥∥− s−1
z

t,∂Br
dr

)z (∫ R ∥∥(|∇u|+ |∇v|)p−
s
s−1

∥∥ s−1
z−1
t
t−1 ,∂Br

dr

)1−z

↗∞,

as R → ∞, for some t ∈ [1,+∞] and z ∈ (−∞, 0) ∪ (1,+∞). Here ‖f‖t,Ω
denotes the Lt norm of f on Ω. In particular we obtain that Theorem 3.20
holds if we replace (3.39) with either of the following set of assumptions:
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i) |∇u|, |∇v| ∈ L∞(M) and
[∫
∂Br
|u− v|q+

1
s−1

]1−s
/∈ L1(+∞) for some q ≥

1 and s > p;

ii) |u − v| ∈ L∞(M) and
[∫
∂Br

(|∇u|+ |∇v|)p−
s
s−1

]1−s
/∈ L1(+∞) for some

s > p;

iii) |∇u|, |∇v| ∈ L(p− s
s−1 )t(M), for some s > p and t > 1, and[∫
∂Br

|u− v|(q+
1
s−1 ) t

t−1

] (1−s)(t−1)
s+t−1

/∈ L1(+∞)

for some q ≥ 1;

iv) |u− v| ∈ L(q+ 1
s−1 )t(M), for some s > p, q ≥ 1 and t > 1, and[∫

∂Br

(|∇u|+ |∇v|)(p−
s
s−1 ) t

t−1

] (1−s)(t−1)
s+t−1

/∈ L1(+∞).

To prove Theorem 3.20 we shall need the following lemma

Lemma 3.22. Let p ≥ 2. Then, for every x, y ∈ Rn, it holds

||x|p−2x− |y|p−2y| ≤ (p− 1)(|x|+ |y|)p−2|x− y|.

Proof. Set kp(x) := |x|p−2x. We start by computing

∣∣∣∣ ddtkp(tx+ (1− t)y)

∣∣∣∣ ≤ (p− 1)|tx+ (1− t)y|p−2|x− y|

≤ (p− 1)(|x|+ |y|)p−2|x− y|,

from which we obtain

|kp(x)− kp(y)| =
∣∣∣∣∫ 1

0

d

dt
kp(tx+ (1− t)y)dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ddtkp(tx+ (1− t)y)

∣∣∣∣ dt
≤ (p− 1)(|x|+ |y|)p−2|x− y|.

Proof (of Theorem 3.20). As above, for the ease of notation, we set

kp(ξ) := |ξ|p−2ξ, ξ ∈ TM.

Suppose that u − v is not constant and, by contradiction, assume that there
exists a point x0 ∈ M such that u(x0) > v(x0). Fix a real number 0 < ε <
(u(x0) − v(x0))/2 and de�ne Ωε to be the connected component of the open
set {x ∈M : u(x)− v(x) > ε} which contains x0. Note that, necessarily, u − v
is not constant on Ωε. Indeed, otherwise, by standard topological arguments
we would have Ωε = M and u − v would be constant on all of M . We choose
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a smooth, non-decreasing function λ such that λ(t) = 0 for every t < 2ε and
0 < λ(t) ≤ 1 for every t > 2ε and we de�ne the vector �eld

X := λ(u− v)(u− v)q (kp(∇u)− kp(∇v)) .

We write BR for BR(o) and ∂/∂r for the radial vector �eld centered at o.
Applying the divergence theorem, Lemma 3.22 and Hölder inequality, we get∫

BR∩Ωε

divX

=

∫
∂BR∩Ωε

〈
X,

∂

∂r

〉
≤
∫
∂BR∩Ωε

|kp(∇u)−kp(∇v)|λ(u−v)(u−v)q

≤ (p− 1)

∫
∂BR∩Ωε

λ(u−v)(|∇u|+|∇v|)p−2|∇u−∇v|(u−v)q

≤ (p− 1)

(∫
∂BR∩Ωε

F (u, v)

) 1
s

×
(∫

∂BR∩Ωε

λ(u−v)(|∇u|+|∇v|)
(p−2)s
s−1 |∇u−∇v|(1− p

s ) s
s−1 (u−v)

sq−q+1
s−1

) s−1
s

≤ (p− 1)

(∫
∂BR∩Ωε

F (u, v)

) 1
s
(∫

∂BR

|u−v|q+
1
s−1 (|∇u|+|∇v|)p−

s
s−1

) s−1
s

,

where
F (u, v) = λ(u− v)|∇u−∇v|p(u− v)q−1

and, we recall, s > p. On the other hand, computing the divergence of X we
obtain∫

BR∩Ωε

divX =

∫
BR∩Ωε

λ′(u− v)(u− v)q 〈kp(∇u)− kp(∇v),∇u−∇v〉

+ q

∫
BR∩Ωε

(u− v)q−1λ(u− v) 〈kp(∇u)− kp(∇v),∇u−∇v〉

+

∫
BR∩Ωε

(∆pu−∆pv)λ(u− v)(u− v)q

≥ 2qC(p)

∫
BR∩Ωε

F (u, v),

where, in the last inequality, we have used Corollary 3.17. It follows that

(3.41) H(R)s ≤ C ′ξ(R)H ′(R),

where we have de�ned

H(R) :=

∫
BR∩Ωε

F (u, v) ≥ 0;

ξ(R) :=

(∫
∂BR

|u−v|q+
1
s−1 (|∇u|+|∇v|)p−

s
s−1

)s−1

C ′ := (p− 1)s [2qC(p)]
−s
.
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Choose r1 � 1 such that F (u, v) does not vanish identically on Br1 ∩ Ωε. Ac-
cording to (3.41) we have ξ(R), H(R) > 0, for every R ≥ r1. Therefore, we can
integrate (3.41) on [r1, r2] to obtain(

C ′

s− 1

)
1

H(r1)s−1
≥
(

C ′

s− 1

)(
−H(r2)1−s +H(r1)1−s)(3.42)

≥
∫ r2

r1

dt

ξ(t)
.

Letting r2 → ∞, the RHS of (3.42) goes to in�nity by assumption, and this
force H(r1) = 0 for all r1. Hence

∇(u− v) ≡ 0 on Ωε

proving that u− v is constant on Ωε. Contradiction.

3.4 Proof of the main result

At the beginning of Section 3.3 we have presented the possible strategy proposed
in [PRS3] to overcome the bad behaviour of the composition of p-harmonic
maps and convex functions. Namely, to prove Theorem 3.13 they introduced
the special composed vector �eld X shown in (3.27) which permits, through the
application of Kelvin-Nevanlinna-Royden criterion, to deduce a vanishing result
for Hess r2 ≥ 0, without information on the p-subharmonicity of the distance
function. Afterward, in Theorem 3.14 we showed how to adapt this technique to
the case of two di�erent vector-valued maps with the same p-tension �eld. Since
Rn is contractible, this can be seen as a special case in the comprehension of
Theorem 3.3. However, the proof of Theorem 3.14 is based on the good special
structure of Rn, which permits to compare in a standard way (i.e. considering
their di�erence) tangent vectors with di�erent base points. Hence, though the
procedure is non trivial due to the non linearity of τp, the problem is somehow
reduced to that of a single map. Nevertheless, it is worth noting that in this
case the Kelvin-Nevanlinna-Royden criterion has to be used in his full power in
the sense that the the vector �eld X introduced has a non-trivial negative part.
This leads to employ a new limit procedure which turns out to be useful in the
future investigation.
In order to prove Theorem 3.3, we try to combine the strategies adopted for the
theorems presented so far in Chapter 3. Since we are dealing with two di�erent
maps which are non-trivially comparable, as in step a of the proof of Theorem
3.4 we introduce the map j : M → N × N . We recall that j = (u, v) when
N is simply connected. In this contest (u, v) is not p-harmonic for p 6= 2, but
considering J = (|du|p−2du, |dv|p−2dv) ∈ T ∗M ⊗ j−1T(u,v)N ×N instead of dj,
it turns out that div J = 0 due to the p-harmonicity of u and v. Hence we
can proceed in a way similar to that we followed for Theorem 3.14. A further
di�culty arises since, unlike step b in the harmonic case, we have to compute
the hessian of the distance function in N evaluated along two di�erent vector
�eld, i.e. N×N Hess distN ((du, dv), (|du|p−2du, |dv|p−2dv)). This will be done in
Theorem 3.24.

Proof (of Theorem 3.3). Let u and v be two C1,α p-harmonic maps from M to
N which are freely homotopic, and such that |du|, |dv| ∈ Lp(M). Proceeding
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exactly as in step a of the proof of Theorem 3.4, we de�ne the manifold Ñ×/
and the function ũ, ṽ, j̃, r̃ and j. Furthermore, we can construct a vector valued
1-form J ∈ T ∗M ⊗ j−1TÑ×/ along j by projecting via (3.1) the vector valued

1-form J̃ ∈ T ∗M̃ ⊗ j̃−1T
(
Ñ × Ñ

)
along j̃ de�ned as

J̃ := (Kp (ũ) ,Kp (ṽ)),

where, we recall, the symbol Kp (ũ) stands for

Kp (ũ) := |dũ|p−2dũ.

Set ĥA : [0,+∞) → R as ĥA(t) :=
√
A+ t2 for every A > 1 and de�ne hA :=

ĥA(r̃) ∈ C∞(Ñ×/,R). Consider the vector �eld on M given by

(3.43) XA|q :=
[
dhA|j(q) ◦ J |q

]]
.

Note that

(3.44) XA|q := dPM |q̃ ◦ X̃A

∣∣∣
q̃
,

where

X̃A

∣∣∣
q̃

:=

[
dh̃A

∣∣∣
j̃(q̃)
◦ J̃
∣∣∣
q̃

]]
, h̃A := ĥA ◦

(
dist2

Ñ

)
: Ñ × Ñ → R.

We claim that (3.44) is well de�ned. To this end, let Sq̃ ∈ Tq̃M̃ be an arbitrary

vector and let q̃′ ∈ P−1
M (q) ⊂ TM̃ . If q̃′ 6= q̃, there exists γ ∈ π1(M, ∗) such that

q′ = γq. Then,

J̃ |γq̃(dγ (Sq̃)) = (d [u](γ)] (Kp (ũ) (Sq̃)) , d [v](γ)] (Kp (ṽ) (Sq̃))) .

Since u is homotopic to v, u] = v]. Moreover distÑ is equivariant with respect

to the action of π1(N) on Ñ × Ñ , i.e.

distÑ (βx̃1, βx̃2) = distÑ (x̃1, x̃2), ∀β ∈ π1(N), x1, x2 ∈ Ñ .

Then,

dPM |q̃ ◦
[
d
(
dist2

Ñ

)∣∣
j̃(q̃)
◦ J̃
∣∣∣
q̃

]]
is well de�ned, and consequently the same holds for dPM |q̃ ◦ X̃A|q̃.
Now, we want to compute (in the weak sense) divXA on M . We start with the
following result, obtained with minor changes from a lemma of Kawai, [Kaw].

Lemma 3.23. Consider C1,α p-harmonic maps u, v : M → N and a smooth
function h : N ×N → R. Then the identity

M trN×N Hessh|(u,v) ((du, dv) , (Kp (u) ,Kp (v)))(3.45)

= M div
[
dh|(u,v) ◦ (Kp (u) ,Kp (v))

]]
,

holds weakly on M .
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Proof. Consider (u, v) : M → N × N . Let η ∈ C∞(M,R) be a compactly
supported function and de�ne a vector valued 1-form ψ ∈ T ∗M⊗(u, v)−1T (N×
N) along (u, v) as ψ := D(η∇h|(u,v)), that is

ψ(V ) = (dη(V )) N×N∇h|(u,v) + η N×N∇d(u,v)(V )
N×N∇h|(u,v)

for all vector �elds V on M . Since u, v are p-harmonic, by the structure of
Riemannian products we have that div (Kp (u) ,Kp (v)) = 0 weakly on M , that
is ∫

M

〈ξ, (Kp (u) ,Kp (v))〉HS× = 0, ∀ξ ∈ T ∗M ⊗ (u, v)−1T (N ×N) ,

where 〈, 〉HS× is the Hilbert-Schmidt scalar product on T ∗M⊗(u, v)−1T (N ×N).
Hence, choosing ξ = ψ in this latter, we obtain

0 =

∫
M

〈ψ, (Kp (u) ,Kp (v))〉HS×

=

∫
M

〈
dη(·)⊗ N×N∇h|(u,v), (Kp (u) ,Kp (v))

〉
HS×

+

∫
M

〈
η N×N∇d(u,v)(·)

N×N∇h|(u,v), (Kp (u) ,Kp (v))
〉
HS×

=

∫
M

[
dh|(u,v) ◦ (Kp (u) ,Kp (v))

]
(M∇η)

+

∫
M

η M tr
〈
N×N∇(du,dv)

N×N∇h|(u,v), (Kp (u) ,Kp (v))
〉
N×N ,

which turns to be the weak formulation of (3.45).

According to Lemma 3.23, because of (3.43) and since π1(M, ∗) acts on M̃
as a group of isometries, we have that for all q ∈ M and for any choice of
q̃ ∈ P−1

M (q)

M divXA|q = M̃ div X̃A|q̃ = M̃ div
[
dh̃A|j̃(q̃) ◦ J̃

]](3.46)

= M̃ tr Ñ×Ñ Hess h̃A|j̃(q̃)
(
dj̃, J̃

)
= M tr Ñ×/ HesshA|j(q) (dj, J)

holds weakly on M . Observe that

(3.47) dhA =
d r̃

2

2√
A+ r̃2

=
r̃dr̃√
A+ r̃2

and

Ñ×/ HesshA =
Ñ×/ Hess r̃2

2
√
A+ r̃2

− r̃2

(A+ r̃2)3/2
dr̃ ⊗ dr̃.

Then, in order to deal with divXA, we want to compute

(3.48) Ñ×/ Hess r̃2|j(q) (dj, J) = Ñ×Ñ Hess dist2
Ñ
|j̃(q̃)

(
dj̃, J̃

)
, q̃ ∈ P−1

M (q).
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Theorem 3.24. Suppose N is a simply connected Riemannian manifolds such
that N Sect ≤ 0 and �x points u, v in N . Let Nr : N × N → R be de�ned by
Nr(u, v) := N dist(u, v) and let X = X1 + X2 ∈ T(u,v)N × N , with X1 ∈ TuN
and X2 ∈ TvN . Then , for every p ≥ 2,

N×N HessNr2
∣∣
(u,v)

(X, (|X1|p−2X1, |X2|p−2X2)) ≥ 0

and the equality holds if and only if there is a parallel vector �eld Z, de�ned
along the unique geodesic γuv joining u and v, such that Z(u) = X1, Z(v) = X2

and
〈
NR(Z, T )T,Z

〉
N
≡ 0 along γuv. Moreover, d(Nr)(X) = 0.

In particular, if N Sect < 0, Z is proportional to T .

We begin with the following lemma

Lemma 3.25. Consider a Riemannian manifold Q and a function f ∈ C2(Q,R).
Let q ∈ Q and X,Y ∈ TqQ. Let ηX : [−ε, ε]→ Q be the constant speed geodesic
s.t. ηX(0) = q and η̇X(0) = X. Moreover, de�ne Ys ∈ TηX(s)Q as the vectors

obtained by parallel translating Y = Y0 along ηX , and let η
(s)
Y : [−δ, δ] → Q be

the constant speed geodesic s.t. η
(s)
Y (0) = ηX(s) and η̇

(s)
Y (0) = Ys. Then

Q Hess f |q(X,Y ) =
∂2

∂s∂t

∣∣∣∣
s=t=0

f(η
(s)
Y (t)).

Proof. We have

∂2

∂s∂t

∣∣∣∣
s=t=0

f(η
(s)
Y (t)) =

∂

∂s

∣∣∣∣
s=0

〈
∇f, η̇(s)

Y

〉∣∣∣
t=0

=
∂

∂s

∣∣∣∣
s=0

〈
∇f |ηX(s), Ys

〉
=
〈
∇η̇X(s)∇f, Ys

〉∣∣
s=0

+
〈
∇f,∇η̇X(s)Ys

〉∣∣
s=0

= 〈∇X∇f, Y 〉 = Q Hess f |q(X,Y ),

since ∇η̇X(s)Ys ≡ 0 by construction.

Proof (of Theorem 3.24). As above, for the ease of notation, for each vector
�eld ξ we set kp(ξ) := |ξ|p−2ξ. De�ne the vector �eld Y ∈ T(u,v)N × N as
Y = (Y1, Y2) = (kp(X1), kp(X2)). Let D be the diagonal set

D := {(u1, u1) : u1 ∈ N} ⊂ N ×N

so that Nr is smooth on N ×N \D, Nr2 is smooth on N ×N and for every pair
(u, v) ∈ N ×N \D there is a unique shortest geodesic from u to v. We call γu,v
such a geodesic parametrized by arc length.
Let σX : [−ε, ε]→ N ×N , be the constant speed geodesic on N ×N satisfying
σX(0) = (u, v) and σ̇X(0) = X = (X1, X2). We then have σX = (σX1 , σ

X
2 )

where σX1 and σX2 are geodesic on N satisfying σX1 (0) = u, σX2 (0) = v and
˙σXi (0) = Xi, i = 1, 2. As in Lemma 3.25, let Ys be the vector �eld along σX

obtained by parallel transport of Y and let σ(s),Y : [−δ, δ] → N × N be the
constant speed geodesic s.t. σ(s),Y (0) = σX(s) and σ̇(s),Y (0) = Ys. As above

we can split σ(s),Y in two geodesic of N , i.e. σ(s),Y = (σ
(s),Y
1 , σ

(s),Y
2 ).

Set R̄ := Nr(u, v) and, for each couple of points y1, y2 ∈ N let γy1,y2 : [0, R̄]→ N
be the (unique) constant speed geodesic joining y1 and y2.
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At this point, we can consider a two parameters geodesic variation of γu,v de�n-
ing α : [0, R̄]× [−ε, ε]× [−δ, δ]→ N as

α(t, z, w) := γ
σ
(z),Y
1 (w),σ

(z),Y
2 (w)

(t).

We now de�ne the variational vector �elds

Ẑ(t, z, w) :=
∂

∂z
α(t, z, w), Ŵ (t, z, w) :=

∂

∂w
α(t, z, w),

Z(t) := Ẑ(t, 0, 0), W (t) := Ŵ (t, 0, 0), T (t) :=
∂

∂t
α(t, 0, 0) = γ̇u,v(t).

Here, we are using the notation

∂

∂z
α(t, z, w) := dα|(t,z,w)

(
∂

∂z

)
,

with ∂
∂z =

(
0, ∂∂z , 0

)
∈ T

(
[0, R̄]× [−ε, ε]× [−δ, δ]

)
. Since both the one param-

eter variations α(t, z, 0) and α(t, 0, w) are geodesic variations, we have that Z
and W are the corresponding Jacobi �elds along γu,v. Then they satisfy

Z(0) = X1, W (0) = Y1 = kp (X1) = kp (Z(0)) ,
Z(R̄) = X2, W (R̄) = Y2 = kp (X2) = kp

(
Z(R̄)

)
,

and the Jacobi equations

∇T∇TZ + NR(Z, T )T = 0 = ∇T∇TW + NR(W,T )T.

For each z ∈ [−ε, ε] and w ∈ [−δ, δ], let

Lα(z, w) :=

∫ R̄

0

∣∣∣∣ ∂∂tα(t, z, w)

∣∣∣∣ dt
be the length of the geodesic curve t 7→ α(t, z, w). By Lemma 3.25 we have

N×N HessNr|(u,v)(X,Y ) =
∂2

∂z∂w

∣∣∣∣
z=w=0

Nr(σ(z),Y (w))

=
∂2

∂z∂w

∣∣∣∣
z=w=0

Nr(σ
(z),Y
1 (w), σ

(z),Y
2 (w))

=
∂2

∂z∂w

∣∣∣∣
z=w=0

Lα(z, w).

On the other hand, by the second variation of arc length (see [CE], page 20) we
have

∂2

∂z∂w

∣∣∣∣
z=w=0

Lα(z, w) =
〈
∇ẐŴ (t, 0, 0), T (t)

〉
N

∣∣∣t=R̄
t=0

+

∫ R̄

0

〈∇TZ,∇TW 〉N

(3.49)

−
∫ R̄

0

〈
NR(W,T )T,Z

〉
N
−
∫ R̄

0

T 〈Z, T 〉N T 〈W,T 〉N .
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We note that the vector �elds Ẑ and Ŵ are de�ned along the map α. Ac-
cordingly, the covariant derivative at the �rst term on RHS of (3.49) has the
meaning

∇ẐŴ (t, 0, 0) = ∇Ẑ
∣∣
α(t,0,0)

(
∂

∂w
α(t, z, 0)

)
.

First, observe that, by construction of α and due to the choice of the geodesics

σ
(z),Y
1 (w) and σ

(z),Y
2 (w), we have

∇ẐŴ (0, 0, 0) = ∇ẐŴ (R̄, 0, 0) = 0,

which implies that the �rst term on RHS of (3.49) vanishes. Moreover, using
the Jacobi equation for Z and the values of W at t = 0 and t = R̄ we can
compute

∫ R̄

0

{
〈∇TZ,∇TW 〉N −

〈
NR(W,T )T,Z

〉
N

}(3.50)

=

∫ R̄

0

{〈∇TZ,∇TW 〉N + 〈∇T∇TZ,W 〉N}

=

∫ R̄

0

T 〈∇TZ,W 〉N

= 〈∇TZ,W 〉N |
t=R̄
t=0

= 〈∇TZ, kp (Z)〉N
∣∣t=R̄
t=0

=

∫ R̄

0

T 〈∇TZ, kp (Z)〉N

=

∫ R̄

0

{
〈∇T∇TZ, kp (Z)〉N + T

(
|Z|p−2

)
〈∇TZ,Z〉N + |Z|p−2|∇TZ|2

}
=

∫ R̄

0

{
−|Z|p−2

〈
NR(Z, T )T,Z

〉
N

+
1

2
T
(
|Z|2

)
T
(
|Z|p−2

)
+ |Z|p−2|∇TZ|2

}
.

Since T is parallel, the Jacobi equation implies

TT 〈Z, T 〉N = T 〈∇TZ, T 〉N(3.51)

= 〈∇T∇TZ, T 〉N
=
〈
NR(T,Z)T, T

〉
N

= 0.
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Then ∫ R̄

0

T 〈Z, T 〉N T 〈W,T 〉N(3.52)

=

∫ R̄

0

{T (〈W,T 〉N T 〈Z, T 〉N )− 〈W,T 〉N TT 〈Z, T 〉N}

= (〈W,T 〉N T 〈Z, T 〉N )|t=R̄
t=0

=
(
〈kp (Z) , T 〉N T 〈Z, T 〉N

)∣∣t=R̄
t=0

=

∫ R̄

0

T
(
〈kp (Z) , T 〉N T 〈Z, T 〉N

)
=

∫ R̄

0

{
T
(
|Z|p−2

)
〈Z, T 〉N T 〈Z, T 〉N + |Z|p−2 (T 〈Z, T 〉N )

2
}
.

Inserting (3.50) and (3.52) in (3.49) we get

N×N HessNr|(u,v)(X,Y )(3.53)

=

∫ R̄

0

|Z|p−2
{
−
〈
NR(Z, T )T,Z

〉
N

+ |∇TZ|2 − (T 〈Z, T 〉N )
2
}

+

∫ R̄

0

1

2
T
(
|Z|p−2

)
T
(
|Z|2

)
−
∫ R̄

0

T
(
|Z|p−2

)
〈Z, T 〉N T 〈Z, T 〉N .

We consider the three integrals separately. First, since |T 〈Z, T 〉N | =
∣∣∇TZT ∣∣,

we have that the �rst integral at RHS of (3.53) is equal to∫ R̄

0

|Z|p−2
{
|∇TZ⊥|2 −

〈
NR(Z, T )T,Z

〉
N

}
,(3.54)

where ZT and Z⊥ denote the components of Z respectively parallel and normal
to T , and the integral is positive by the curvature assumptions on N .
As for the second integral, assume 2 < p < 4, the other cases being easier. We
have

T
(
|Z|p−2

)
T
(
|Z|2

)
=

2

p− 2
|Z|4−p

[
T
(
|Z|p−2

)]2 ≥ 0.(3.55)

Finally, recall (3.51) and note that this implies that T 〈Z, T 〉N is constant along
γu,v and takes value

T 〈Z, T 〉N ≡
1

R̄

(
〈Z, T 〉N |t=R̄ − 〈Z, T 〉N |t=0

)
.(3.56)

On the other hand, we have that

dNr
∣∣
(u,v)

(X) = dNr
∣∣
(u,v)

((X1, X2))(3.57)

= drv|u (X1) + dru|v (X2)

= −〈X1, γ̇u,v(0)〉N +
〈
X2, γ̇u,v(R̄)

〉
N
,
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where ru, rv : N → R are de�ned as ru(·) := Nr(u, ·) and rv(·) := Nr(·, v).
Combining (3.56) and (3.57) we get

T 〈Z, T 〉N ≡
dNr(X)

R̄
,(3.58)

which in turn implies∫ R̄

0

T
(
|Z|p−2

)
〈Z, T 〉N T 〈Z, T 〉N(3.59)

=

∫ R̄

0

T
(
|Z|p−2 〈Z, T 〉N T 〈Z, T 〉N

)
−
∫ R̄

0

|Z|p−2 (T 〈Z, T 〉N )
2

=
dNr(X)

R̄

[
|Z|p−2 〈Z, T 〉N

]t=R̄
t=0
−
(
dNr(X)

R̄

)2 ∫ R̄

0

|Z|p−2.

Moreover, reasoning as for (3.58), we compute

dNr(X)

R̄

[
|Z|p−2 〈Z, T 〉N

]t=R̄
t=0

(3.60)

=
dNr(X)

R̄

[〈
kp (X2) , γ̇u,v(R̄)

〉
N
− 〈kp (X1) , γ̇u,v(0)〉N

]
=
dNr(X)dNr(Y )

R̄
.

Combining (3.53), (3.54), (3.59) and (3.60), we obtain

N×N HessNr|(u,v)(X,Y )

=

∫ R̄

0

|Z|p−2
{
|∇TZ⊥|2 −

〈
NR(Z, T )T,Z

〉
N

}
+

1

2

∫ R̄

0

T
(
|Z|p−2

)
T
(
|Z|2

)
− dNr(X)dNr(Y )

R̄
+

(
dNr(X)

R̄

)2 ∫ R̄

0

|Z|p−2.

Finally, since
Hess r2 = 2rHess r + 2dr ⊗ dr,

recalling also (3.55), we get

N×N HessNr2|(u,v)(X,Y )(3.61)

= 2R̄

∫ R̄

0

|Z|p−2
{
|∇TZ⊥|2 −

〈
NR(Z, T )T,Z

〉
N

}
+ R̄

∫ R̄

0

T
(
|Z|p−2

)
T
(
|Z|2

)
+ 2

(
dNr(X)

)2
R̄

∫ R̄

0

|Z|p−2 ≥ 0.

This conclude the �rst part of the proof. Now, assume

N×N HessNr2|(u,v)(X,Y ) = 0.

From (3.61) we get that dNr(X) = 0,
〈
NR(Z, T )T,Z

〉
N
≡ 0 along γu,v and,

using also (3.51),

|∇TZ|2 = |∇TZ⊥|2 + |∇TZT |2 ≡ 0,

that is Z is parallel along γu,v.
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Recalling (3.48) and applying Theorem 3.24 with N = Ñ and X = dj̃ we
get

Corollary 3.26. With the de�nitions introduced above, for all q ∈ M , Eq ∈
TqM and for any choice of q̃ ∈ P−1

M (q) and Ẽq = [d(PM )|q̃]−1
(Eq) we have

Ñ×/ Hess r̃2
∣∣∣
j(q)

(dj|q(Eq), J |q (Eq)) ≥ 0

and the equality holds if and only if there is a parallel vector �eld Z, de�ned
along the unique geodesic γ̃q̃ in Ñ joining ũ(q̃) and ṽ(q̃), such that Z(ũ(q̃)) =

dũ|q̃(Ẽq), Z(ṽ(q̃)) = dṽ|q̃(Ẽq) and
〈
NR(Z, ˙̃γq̃) ˙̃γq̃, Z

〉
N
≡ 0 along γ̃q̃. Moreover,

d(distÑ )(dj̃(Ẽq)) = 0.

In particular, if N Sect < 0, Z is proportional to ˙̃γq̃.

We go back to the proof of Theorem 3.3. From (3.46), (3.48), applying
Corollary 3.26 and observing that

t2

(A+ t2)3/2
≤ 1√

A+ t2
≤ A−1/2, ∀t > 0,

we get

M divXA|q =
M tr Ñ×/ Hess r̃2|j(q) (djq, J |q)

2
√
A+ r̃2(j(q))

(3.62)

− r̃2(j(q))

(A+ r̃2(j(q)))3/2
M tr

[
dr̃|j(q) (dj|q) dr̃|j(q) (J |q)

]
≥ −A−1/2 (|du|(q) + |dv|(q))

(
|du|p−1(q) + |dv|p−1(q)

)
≥ −2A−1/2 (|du|p(q) + |dv|p(q)) ,

from which

(divXA|q)− ≤ 2A−1/2 (|du|p(q) + |dv|p(q)) ∈ L1(M).(3.63)

Moreover, since t/
√
A+ t2 < 1, (3.47) implies

|XA|
p
p−1 (q) = ≤

(
|du|p−1(q) + |dv|p−1(q)

) p
p−1(3.64)

≤ 2
1
p−1 (|du|p(q) + |dv|p(q)) ∈ L1(M).

For every T > 0, set

MT = {q ∈M : r̃(j(q)) ≤ T} and MT := M \MT .

From (3.63) and (3.64), we can apply Proposition 1.2 to deduce that∫
M

M divXA ≤ 0,
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which by (3.62) gives∫
M

r̃2(j(q))

(A+ r̃2(j(q)))3/2
M tr

[
dr̃|j(q) (dj|q) dr̃|j(q) (J |q)

]
(3.65)

≥
∫
M

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q)
2
√
A+ r̃2(j(q))

≥
∫
MT

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q)
2
√
A+ r̃2(j(q))

≥ 1

2
√
A+ T

∫
MT

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q) ≥ 0.

The real valued function t 7→ t
(A+t)3/2

has a global maximum at t = 2A, is

increasing in (0, 2A) and satis�es

t

(A+ t)3/2
<

1

(A+ t)1/2
.

Hence, up to choosing A > T 2/2, we have∫
M

r̃2(j(q))

(A+ r̃2(j(q)))3/2
M tr

[
dr̃|j(q) (dj|q) dr̃|j(q) (J |q)

]
(3.66)

≤ T 2

(A+ T 2)3/2

∫
MT

2 (|du|p + |dv|p) +
1√

A+ T 2

∫
MT

2 (|du|p + |dv|p) .

Inserting (3.66) in (3.65) we get∫
MT

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q) ≤
4T 2

A+ T 2

∫
MT

(|du|p + |dv|p)

+ 4

∫
MT

(|du|p + |dv|p) ,

and letting A→ +∞ this latter gives∫
MT

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q) ≤ 4

∫
MT

(|du|p + |dv|p) .

Since |du|, |dv| ∈ Lp(M) we can let T → +∞, applying respectively monotone
and dominated convergence to LHS and RHS integrals, thus obtaining

(3.67)

∫
M

M tr Ñ×/ Hess r̃2|j(q) (dj|q, J |q) = 0.

Fix an orthonormal frame {Ei}mi=1 for M . Then (3.67) gives

Ñ×/ Hess r̃2|j(q) (dj(Ei), J(Ei)) = 0,

for all i = 1, . . . ,m and q̃ ∈ M . At this point, applying again Corollary 3.26
implies

d (distÑ )
(
dũ(Ẽi), dṽ(Ẽi)

)
= d (distÑ ◦(ũ, ṽ)) (Ẽi) ≡ 0
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and, since {Ẽi}mi=1 span all Tq̃M̃ , we get that (distÑ ◦(ũ, ṽ)) is constant on

M̃ . Accordingly, for each q̃ ∈ M̃ the unique geodesic γ̃q̃ from ũ(q̃) to ṽ(q̃)
can be parametrized on [0, 1] proportional (independent of q̃) to arclength. We
de�ne a one-parameter family of maps ũt : M̃ → Ñ by letting ũt(q̃) := γ̃q̃(t).
Then we see that ũ0 = ũ and ũ1 = ṽ. Corollary 3.26 states also that for each
i = 1, . . . ,m there exists a parallel vector �eld Zi, de�ned along γ̃q̃ in Ñ , such

that Zi(0) = dũ|q̃(Ẽi), Zi(1) = dṽ|q̃(Ẽi) and
〈
NR(Zi, ˙̃γq̃) ˙̃γq̃, Zi

〉
N
≡ 0 along γ̃q̃.

In particular Z is a Jacobi �eld along γ̃q̃. By the proof of Theorem 3.24 it turns
out that

(3.68) Zi(t) ≡ dũt|q̃ (Ẽi).

In fact, let ζi : (−ε, ε)→ M̃ , ε > 0, be a smooth curve such that ζ̇(0) = Ẽi. By
de�nition of di�erential we have that

dũt(Ẽi) =
∂

∂s

∣∣∣∣
s=0

(ũt ◦ ζ) (s).

On the other hand, since (ũt ◦ ζ) (s) = γζ(s)(t), we get that dũt(Ẽi) is the
variational �eld of the geodesic variation

(t, s) 7→ γζ(s)(t),

then dũt(Ẽi) is a Jacobi �eld along γ̃q̃ and, by the uniqueness of the Jacobi
�elds with given boundary values, (3.68) is proved.
In the special situation N Sect < 0, for all q̃ ∈ M̃ and i = 1, . . . ,m, the parallel
vector �eld Zi along γq̃ has to be proportional to γ̇q̃. Hence ũ(M̃) and ṽ(M̃)

have to be contained in a geodesic of Ñ and projecting on M we get the proof
of case i) of Theorem 3.3.
In general, because of the equivariance property (3.1) and by the uniqueness of
the construction above, for all γ ∈ π1(M, ∗) and t ∈ [0, 1] we have that

ũt ◦ γ = β ◦ ũt,(3.69)

where β = u](γ) = v](γ) ∈ π1(N, ∗). Thus we have induced maps ut : M → N
for t ∈ [0, 1] such that u0 ≡ u and u1 ≡ v.
Let γq(t) be the geodesic from u(q) to v(q) in M obtained by projection from
γ̃q̃. Projecting Zi, which is equivariant by (3.68) and (3.69), the identity (3.68)
implies dut is a parallel vector �eld along γq. Therefore, the p-energy density of
ut

ep(ut)(q) =

(
m∑
i=1

|dut(Ei)|2
) p

2

is constant along γq for each q ∈ M and, consequently, the p-energies of ut
satisfy

(3.70) Ep(u) = Ep(ut) = Ep(v), ∀t ∈ [0, 1],

that is, every p-harmonic map of �nite p-energy homotopic to u has the same
p-energy as u.
Now, suppose N is compact. In case also M is compact, Corollary 7.2 in [We2]
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immediately implies ut is p-harmonic for all t ∈ [0, 1]. Otherwise, by Theorem
2.4 we know that there exists a p-harmonic map ut,∞ ∈ Hut which minimizes p-
energy in the homotopy class of ut, which, by construction, is the same homotopy
class of u. Applying (3.70) with v = ut,∞ we have

Ep(ut,∞) = Ep(u) = Ep(ut).

On the other hand, if we assume that ut is not p-harmonic, for each ε > 0 there
exists an ε-ball Bε such that ut does not minimize energy on Bε. Namely, there
exist a map ût,ε such that

EBεp (ût,ε|Bε) < EBεp (ut|Bε),

so that extending ût,ε to all of M as

ut,ε :=

{
ût,ε in Bε,

ut in M \Bε,

it turn out that
Ep(ut,ε) < Ep(ut).

Moreover, for ε small enough ut,ε ∈ Hut = Hu and, as it is clear from the proof
of Theorem 2.4, it must be

Ep(ut,∞) ≤ Ep(ut,ε) < Ep(ut) = Ep(u).

This contradicts (3.4) and concludes the proof.

To conclude, we note that the p-harmonic general comparison theorem we
have just proved do not recover completely the previous harmonic result due
to Schoen and Yau. Notably, Theorem 3.4 hold also for a non-compact target
manifold N . This is achieved taking advantage of the solution to the Dirichlet
problem proposed by Hamilton. Indeed, in [Ham], using the heat �ow method
the author was able to give solution to the Dirichlet problem for maps from
compact manifolds with boundary to manifolds with Sect ≤ 0 non necessarily
compact. To the best of our knowledge, a p-harmonic analogous of Hamilton's
result has not been obtained yet. This problem will be treated more extensively
in Appendix B.
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Appendix A

Volume growth vs

parabolicity

Throughout Chapter 3, the domain manifold M was assumed to be p-parabolic
in order to allow us to apply a global form of the divergence theorem in non-
compact settings, see Proposition 1.1 and Proposition 1.2. This fact suggests
that the p-parabolicity assumption could be dropped in most results once we
give conditions, on both M and the maps, which ensure the validity of some
Stokes' type result. To this end, the following approach has been suggested in
[VV].
Karp, [Kar], extended the famous Stokes' theorem to complete m-dimensional
Riemannian manifoldsM by proving that, given a vector �eld X onM , we have∫
M

divX = 0 provided divX ∈ L1(M) (but in fact

(divX)− = max{− divX; 0} ∈ L1(M)

is enough) and

lim inf
R→+∞

1

R

∫
B2R\BR

|X|dVM = 0.

On the other hand, the Kelvin-Nevanlinna-Royden criterion implies that if
M is p-parabolic and X is a vector �eld on M such that |X| ∈ L

p
p−1 (M),

divX ∈ L1
loc (M) and (divX)− ∈ L1 (M)), then

∫
M

divX = 0. Hence, it is
natural to ask whether there exists a p-parabolic analogue of Karp theorem, i.e.
if it is possible to weaken the �nite p

p−1 -energy assumptions on the vector �eld

X and still conclude that
∫
M

divXdVM = 0.
This goal is ful�lled, in case p = 2 or M is a model manifolds, by constructing
special cut-o� functions related to the Evans' potentials on the manifold. Fur-
thermore, the explicit form these cut-o�s assume on models can be used in the
setting of generic manifolds.

Proposition A.1. Let (M, 〈, 〉) be a non-compact Riemannian manifold. Let X
be a vector �eld onM such that divX ≥ f in the sense of distributions, for some
f ∈ L1

loc
(M) with f− ∈ L1(M). If there exists a function g : (0,+∞)→ (0,+∞)
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such that ϕ = |X|
p
p−1 satis�es condition AM,p, i.e.

(AM,p) lim inf
R→∞

(∫
B(R+g(R))\BR

ϕ dVM

)(∫ R+g(G)

R

A(∂Bs)
− 1
p−1 ds

)−1

= 0.

for some p > 1, then
∫
M
f ≤ 0.

Remark A.2. It has to be noted that condition (AM,p) is �radially� sharp in
the following sense (see Remark 9 in [VV]). Given any other function Φ such
that assumption

lim inf
R→∞

(∫
B(R+g(R))\BR

|X|
p
p−1 dVM

)(∫ R+g(G)

R

Φ(s)ds

)−1

= 0

implies
∫
M
f ≤ 0, then∫ R+g(G)

R

Φ(s)ds ≤
∫ R+g(G)

R

A(∂Bs)
− 1
p−1 ds.

As announced above, Theorem A.1 permits to generalize, replacing the p-
parabolicity assumption on M with a condition similar to AM,p, most theorems
presented above. For instance, in [VV] the following results are deduced (com-
pare respectively Theorem 3.15, Corollary 1.3, Theorem 3.4, Theorem 3.13,
Theorem 3.14 and Theorem 3.3).

Theorem A.3. Let (M, 〈, 〉) be a connected, non compact Riemannian mani-
fold. Assume that u, v ∈W 1,p

loc
(M) ∩ C0(M), p > 1, satisfy

∆pu ≥ ∆pv weakly on M,

and that |∇u|p and |∇v|p satisfy condition AM,p on M . Then, u = v + A on
M , for some constant A ∈ R.

Corollary A.4. Let (M, 〈, 〉) be a connected, non compact Riemannian man-
ifold. Assume that u ∈ W 1,p

loc
(M) ∩ C0(M), p > 1, is a weak p-subharmonic

function on M such that |∇u|p satis�es condition AM,p on M . Then u is con-
stant.

Theorem A.5. Let M and N be complete manifolds.

1) Suppose N Sect < 0. Let u : M → N be a harmonic map such that |∇u|2
satis�es condition AM,2 on M . Then there is no other harmonic map
homotopic to u satisfying condition AM,2 unless u(M) is contained in a
geodesic of N .

2) Suppose N Sect ≤ 0. Let u, v : M → N be homotopic harmonic maps such
that |∇u|2, |∇v|2 satisfy condition AM,2 onM . Then there is a smooth one
parameter family ut : M → N for t ∈ [0, 1] of harmonic maps with u0 = u
and u1 = v. Moreover, for each x ∈ M , the curve {ut(x) : t ∈ [0, 1]} is a
constant (independent of x) speed parametrization of a geodesic.
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Theorem A.6. Let (M, 〈, 〉M ) and (N, 〈, 〉N ) be complete Riemannian mani-
folds. Assume that M is non-compact and that N has non-positive sectional
curvatures. If u : M → N is a p-harmonic map homotopic to a constant and
with energy density |du|p satisfying condition AM,p, then u is a constant map.

Theorem A.7. Suppose that (M, 〈, 〉) is a complete non-compact Riemannian
manifold. For p > 1, let u, v : M → Rn be C0 ∩W 1,p

loc (M) maps satisfying

τpu = τpv on M,

in the sense of distributions on M and

|du| , |dv| ∈ Lp (M) .

Suppose |du|p and |dv|p satisfy condition AM,p on M . Then u = v + C, for
some constant C ∈ Rn.

Theorem A.8. Let M and N be complete manifolds.

1) Suppose N Sect < 0. Let u : M → N be a C1,α p-harmonic map such that
|∇u|p ∈ L1(M) satis�es condition AM,p on M . Then there is no other
p-harmonic map homotopic to u satisfying condition AM,p unless u(M) is
contained in a geodesic of N .

2) Suppose N Sect ≤ 0. Let u, v : M → N be homotopic p-harmonic maps
such that |∇u|p, |∇v|p ∈ L1(M) satisfy condition AM,p on M . Then there
is a smooth one parameter family ut : M → N for t ∈ [0, 1] of harmonic
maps with u0 = u and u1 = v. Moreover, for each x ∈ M , the curve
{ut(x) : t ∈ [0, 1]} is a constant (independent of x) speed parametrization
of a geodesic.

Remark A.9. In case of Theorem A.7 and Theorem A.8 the �niteness of the
p-energy of the maps is used also to guarantee that the divergence of the vector
�elds involved has negative part L1. Thus, apparently this assumption can not be
dropped. Nevertheless these results are relevent when dealing with manifolds �less
than parabolic�, i.e. with area of the geodesic spheres large enough at in�nity,
and maps with p-energy decaying su�ciently fast.
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Appendix B

Open problems

In Chapter 3 we presented a strategy which permits to extend to the p-harmonic
setting the general comparison results for homotopic harmonic maps due to
Schoen and Yau; see Theorem 3.3. Throughout the discussion we pointed out
the crucial points which can not be trivially generalized to p 6= 2 and how to
overcome, when possible, the problems thus arising.

As observed in Section 3.2, step c in the proof by Schoen and Yau of The-
orem 3.4 makes a strong use of the good properties of harmonic maps whose
compositions with convex functions give subharmonic functions. It was folklore
that, in general, this fact was not true for p-harmonic maps, p 6= 2, and indeed
Theorem 3.7 gives a counterexample. This leads to follow di�erent paths, such
as the construction of special composed vector �elds proposed in [PRS3], sub-
sequently developed in Section 3.3 and �nally used in Section 3.4. Theorem 3.7
answers in the negative a general open question, which by the way arose in the
2006 Midwest Geometry Conference paper by Lin and Wei, [LW]. However, in
Remark 3.8 we pointed out that in the counterexemple both the domain mani-
fold M is not p-parabolic and the target manifold N has non-negative sectional
curvatures. On the other hand, in Theorem 3.4 we are exactly in the opposite
situation, i.e.

i) the domain manifold M is p-parabolic and

ii) the target manifold N has non-positive sectional curvature,

thus Theorem 3.7 does not provide a counterexample in the speci�c situation
we are interested in. In fact, in this case, so far we have not been able neither
to �nd a suitable counterexample nor to estabilish that the composition well
behaves under these restrictive conditions.

Problem 1. Consider a p-harmonic map F : M → N and a convex function
H : N → R. Assuming that either condition i) or condition ii) or both of them
hold, is the composition H ◦ F p-subharmonic?

Actually, unlike the p = 2 case, it is not clear whether a positive answer to
Problem 1 would trivially lead to a direct sempli�cation of the proof of Theorem
3.3. Because of the behaiour of τp on Riemannian products, assuming that
u, v : M → N are p-harmonic does not imply that also (u, v) : M → N ×N is a
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p-harmonic map. Anyway, it would be interesting to �nd an answer to Problem
1 since Liouville type theorems for harmonic maps into targets supporting a
convex function could be obtained directly from results in linear potential theory
of real valued functions, see e.g. [PRS3] and [Kaw].

Schoen and Yau's Theorem 3.4 extends a previous result by Hartman, [Har],
by permitting both the domain manifold M and the target manifold N to be
non-compact. In particular, one of the conclusions of Theorem 3.4, case ii), is
that, given two �nite energy homotopic harmonic maps u and v, there exists
a homotopy via harmonic maps ut. Analogously, in Theorem 3.3 we extended
the previous result due to Wei holding for compact manifolds, see Theorem 3.2.
However, in order to prove the p-harmonicity of ut, for p 6= 2 we have to assume
that N is compact. As it is clear by the proof, this is necessary to apply Ascoli
type convergence results. In fact, when p = 2 and N is non-compact, the proof
is more complicated. Namely, step e of the proof of Theorem 3.4 is based on
two fundamental ingredients.

i) First, given a compact manifold with boundaryMk ⊂M , following Hamil-
ton, [Ham], Schoen and Yau use the heat �ow to solve the boundary value
problem on Mk, thus getting a harmonic map ut,k : Mk → N homotopic
to ut with ut,k ≡ ut on ∂Mk.

ii) Then, since τu = τut,k = 0 and the distance function is locally convex,
they obtain that the function distN (ut,k, u) : Mk → R is subharmonic on
Mk. This permits to apply the maximum principle, thus deducing that
for each l ≥ 1 there exist a compact set Kl ⊆ N independent of k such
that ut,k(BMl ) ⊆ Kl.

Hence, the situation is somehow reduced to that of a compact target and the
proof follows.
In [We2], Theorem 7.1, Wei proves that there exists a solution to the p-harmonic
Dirichlet problem when N is compact with contractible universal cover and with
no non-trivial p-minimizing tangent maps of Sl for l < n. As observed in the
proof of Theorem 2.4, this is the case if N Sect ≤ 0. By the way, in analogy
with Schoen and Yau's strategy, Wei's result could be used to give a partially
di�erent proof of the p-harmonicity of ut in Theorem 3.3. However, to the best
of our knowledge, a p-harmonic analogue of Hamilton's result when N is non
compact has not been obtained yet.

Problem 2. LetM and N be Riemannian manifold. AssumeM is compact with
boundary ∂M and N satis�es N Sect ≤ 0. Let f ∈ Lip(∂M,N)∩C0(M,N) (or
at least f ∈ C1(M,N)) be a map with �nite p-energy. Does exist a p-harmonic
map u ∈ C1,α(M \∂M,N)∩Cα(M,N) with u|∂M = f |∂M minimizing p-energy
in the homotopy class of f?

According to Problem 1, also ii) seems to admit no trivial generalizations
to p 6= 2. Hence, a solution to Problem 2 would not lead directly to extend
Theorem 3.3 to non compact targets N . Therefore, this can be seen as a further
interesting independent problem.

Problem 3. In the assumptions of Theorem 3.3 with N non-compact, are the
maps ut p-harmonic?
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Ñ , 27
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