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Periodic-Graph Approaches in Crystal Structure Prediction
Vladislav A. Blatov and Davide M. Proserpio

1.1
Introduction

The explosive growth in inorganic and organic materials chemistry has seen a
great upsurge in the synthesis of crystalline materials with extended framework
structures (zeolites, coordination polymers/coordination networks, metal–organic
frameworks (MOFs), supramolecular architectures formed by hydrogen bonds
and/or halogen bonds, etc.). There is a concomitant interest in simulating such
materials and in designing new ones. In this respect, the role of new topological
approaches in the modern crystallochemical analysis sharply increases compared
to traditional geometrical methods that have been known for almost a century
[1, 2]. As opposed to the geometrical model that represents the crystal structure as
a set of points allocated in the space, the topological representation focuses on the
main chemical property of crystalline substance – the system of chemical bonds.
Since this system can be naturally described by an infinite periodic graph, the
periodic-graph approaches compose the theoretical basis of the topological part of
modern crystal chemistry. The history of these approaches is rather long, but only
in the last two decades they have come into the limelight. Wells [3] was the first
who thoroughly studied and classified different kinds of infinite periodic graph
(net) and raised the question: what nets are important for crystal chemistry? This
key question for successful prediction of possible topological motifs in crystals was
being answered in two general ways initiated by Wells’ pioneer investigations.

Firstly, mathematical basics for nets were developed in a number of works
concerning quotient graph approach [4–10], special types of nets [11, 12], topological
descriptors [13–16], and other topological properties related to nets, such as tiles and
surfaces [17–19]. Secondly, net abundance and taxonomy were intensively explored
in Refs. [20–26]. To solve the emerging problems, novel computer algorithms
[5, 16, 19, 27, 28], program packages [6, 19, 27], and electronic databases [19,
27, 29] were developed that allowed to comprehensively analyze the topological
motifs through hundred thousands of crystal structures. With these achievements,
materials science and crystal chemistry come up to a new level of their development,
that is, characterized by deeper integration of mathematical methods, computer

Modern Methods of Crystal Structure Prediction. Edited by Artem R. Oganov
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40939-6
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algorithms, and programs into modeling and interpretation of periodic systems of
chemical bonds in crystals on the basis of periodic-graph representation.

The goal of this chapter is to show that the periodic-graph approaches are very
fruitful not only to describe the crystal topologies, but become powerful tools to
foresee possible topological motifs, to select most stable ones, and to design novel
extended architectures. Besides the achievements of this new field of materials
science that we may consider as the theoretical background of the so-called reticular
chemistry [30], we will analyze the crucial problems that emerged after its rapid
development in the last years.

1.2
Terminology

Since the subject of this chapter is not yet familiar to crystal chemists and materials
scientists, we start with a brief summary of the specific terminology used. More
detailed set of relevant definitions and the nomenclature of periodic graphs were
given in Ref. [31].

Graph is a set of vertices (points), on which a topology is given as a set of ordered
pairs of the vertices; each pair determines an edge of the graph. In chemistry, the
graph vertices and edges correspond to atoms and interatomic bonds, respectively.
The concept of topology is often used by chemists too broadly, without putting a
strict sense into it [32]. We emphasize that when treating any molecular structure
(crystal can be considered as an infinite molecule), ‘‘topology’’ or equivalently
‘‘topological structure’’ means nothing but the set of all interatomic bonds.

Net is a special kind of infinite graph, that is, simple (without loops, multiple, or
directed edges) and connected (any pair of vertices in the graph is connected by a
chain of edges); vertices of the graph are called nodes of the net. The coordination
number or degree of a node is the number of edges incident on the node. A
subnet (supernet) of the net A is a net whose sets of nodes and edges are subsets
(supersets) of corresponding sets of A. Two nets are isomorphic if there is one-to-one
mapping between the sets of their nodes and edges. The symmetry of the net is
described by an automorphism group that enumerates all possible permutations of
nodes resulting to isomorphic nets. Net is n-periodic if its automorphism group
contains a subgroup being isomorphic to a group composed by n independent
translations. Embedding of the net is a method of allocating its nodes in the space.
A net embedding has collisions if it contains coinciding nodes and has ‘‘crossings’’
if some edges intersect. Two embeddings of a net that can be deformed into each
other are ambient isotopic. Note that at no point in the deformation may edges
intersect or have zero length. Clearly ambient isotopy implies isomorphism (but
not vice versa). The symmetry of the net embedding can be lower (but not higher)
than the symmetry of the net. For instance, the automorphism group of a net
corresponding to a low-symmetric polymorph describes the high-symmetric phase
as well. Moreover, there are noncrystallographic nets, whose maximal symmetry
cannot be described by a crystallographic space group since any embedding of such
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(48.62)-3D-2-periodic
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Figure 1.1 (a) Three-dimensional two-periodic net corre-
sponding to the sphere packing (4,4)Ia (see [34] for termi-
nology), (b) a single tile, and (c) the tiling for body-centered
lattice (bcu). Hereafter we use RCSR bold three-letter sym-
bols [29] to designate the net topology.

net has a lower symmetry. Coordination figure of the node is the solid formed by
nodes incident to this node. Dimensionality of the net is equal to the dimensionality
of the (Euclidean) space to which the net can be embedded without collisions.
We emphasize that the net dimensionality can be larger than the net periodicity;
for instance, 3D net can be two-periodic (Figure 1.1). The net is uninodal (bi-, tri-,
. . ., polynodal) if all its nodes are equivalent (or there are two, three, . . ., many
inequivalent nodes). If all edges of the net are equivalent, it is called edge-transitive.
The net is n-regular if the degree of all nodes is equal n, even if the nodes are
inequivalent. A cycle (circuit) is a closed path beginning and ending at a node,
characterized by a size equal to the number of edges in the path (three-circuit,
four-circuit, and so on). A ring is an n-membered cycle that represents the shortest
possible path connecting all the (n(n − 1)/2) pairs of nodes belonging to that circuit.
Entangled nets have independent topologies (they have no common edges), but
they cannot be separated in any of their embeddings [33]. If the entangled nets
have the same dimensionalities and the dimensionality of their array coincides
with dimensionality of the separate net, they are called interpenetrating nets. Nodes
of one interpenetrating net occupy the cages of the other net, and the edges of one
net cross-cycles of the other net. Tile is a generalized polyhedron that can contain
vertices of degree 2 and curved faces (that are rings of the net); it corresponds
to a topological cage in the net. Tiles form normal (face-to-face) space partition,
tiling (Figure 1.1). While any tiling carries a net formed by vertices and edges of
tiles, the opposite is in general not true – not any net admits tiling. At the same
time, most of nets admit an infinite number of tilings; there is a set of rules [28]
to choose a unique, so-called natural tiling. Dual net has nodes, edges, rings, and
cages corresponding to cages, rings, edges, and nodes of the initial net; the net
and its dual net interpenetrate; if the net is equal to its dual net it is referred to
as self-dual. If in this case the vertices of the dual net conform to the cages of
the natural tiling, the net is called naturally self-dual. The net with p inequivalent
nodes, q inequivalent edges, r inequivalent rings, and s inequivalent cages has the
transitivity pqrs; often a shortened symbol pq is used especially if the tiling cannot
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be constructed. The transitivity of the tiling of a dual net corresponds to srpq. Edge
net can be constructed by placing new nodes in the middle of the edges of the initial
net, connecting new nodes by new edges and removing old nodes and edges. The
edge net is complete if all the edges in the initial net are centered by new nodes and
all old nodes and edges are removed; otherwise the edge net is partial. Similarly
to edge net, one can construct a ring net by putting nodes in the centers of rings
of the initial net, removing the nodes of the initial net belonging to the centered
rings, and adding new edges between the centers of adjacent rings. Depending on
whether all rings are centered or not, the ring net can be complete or partial.

For crystal structure prediction, the most significant nets are one-, two-, and
three-periodic, which describe the topology of chain, layer, and framework crystal
architectures, respectively. The nets of a higher periodicity as well as nets, whose
automorphism group does not contain a subgroup isomorphic to a group of
translations, have not yet been explored in relation to chemical objects, albeit they
could be useful for aperiodic crystals.

Labeled quotient graph (LQG) of the net is a finite graph whose vertices and
edges correspond to infinite sets of translation-equivalent nodes and edges of the
net; it describes the net up to isomorphism. In general, LQG can have multiple
edges and loops (Figure 1.2). Being finite, it is important for computer storage and
processing of nets. The theory of LQGs is intensively being developed by Eon, Klee,
and Thimm [7–9].

Topological index of the net is a set of numbers that characterize the net topology.
The most rigorous topological index is adjacency matrix, that is, a quadratic matrix
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Figure 1.2 (a) A fragment of hcp net
(hexagonal close packing) with the
translation-equivalent nodes of the same
shade of gray. (b) The two nodes in
the primitive cell form the vertices of
the LQG. (c) The links to the same
translation-equivalent nodes (black-to-black,
gray-to-gray) correspond to the loops in
the LQG, while the links between the two
nodes correspond to the sextuple edge of

the quotient graph. The three-integer labels
uvw show which translation-equivalent nodes
are connected with the corresponding node
of the net in the primitive cell. Depending
on the direction chosen on the LQG, there
are always two possible labels uvw or its
centrosymmetric –u-v-w: for example, go-
ing out of the cell along 100 is equivalent
to enter from −100.
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M, whose rows and columns correspond to vertices of the LQG, and each entry
Mij shows the existence of edge between ith and jth vertices. The adjacency matrix
defines the net and its LQG up to isomorphism. Some other kinds of topological
indices are useful to identify and compare net topologies [13–16, 35].

1.3
The Types of Periodic Nets Important for Crystal Structure Prediction

Since there is an infinite number of topologically different periodic nets and an
infinite number of geometrically different embeddings of a particular net, it is
important to determine the types of nets to be most important for predicting
topological features of crystal structures. This work has mainly been done by
O’Keeffe and coworkers during the last two decades [21, 36, 37]; it still proceeds
now. Three-periodic nets were studied in much more details than low-periodic ones
(see Section 1.6); the special types of nets are described below with the example of
three-periodic nets.

The easiest to enumerate are the most symmetrical topologies that have the
smallest number of inequivalent nodes and/or edges of the net. Hence, uninodal
and binodal nets as well as edge-transitive nets are of special interest for crystal
chemistry. Among them, one can separate five regular nets: srs, nbo, dia, pcu, and
bcu (Figure 1.3), where the coordination figures are regular solids (triangle, square,
tetrahedron, octahedron, and cube, respectively), one quasiregular net (fcu) with
two kinds of faces in the coordination figure (cuboctahedron), and 14 semiregular
nets that are both uninodal and edge-transitive. Of other nets, n-regular nets and
minimal nets (for the latter holds that removing any set of equivalent edges gives
rise to decrease of the net periodicity) are important to crystal structure prediction
[12, 37, 38].

In chemical compounds, the atoms tend to keep neighboring atoms at similar
distances; as a rule, the difference in distances for a particular pair of atoms
does not exceed several tenths of angstrom. In this respect, sphere packings are
most important: they describe net embeddings with all equal edges corresponding
to the shortest distances between nodes, only the first neighboring nodes are
connected, all other nodes are placed at larger distances. At present, all uninodal
sphere packings are known for one- and two-periodic nets [34]; the search for
three-periodic uninodal nets is almost finished [39, 40, and references therein]; at
least we know all three-periodic uninodal sphere packings that emerge in crystals.

We also mention a special group of self-dual nets, that is, closely related to
interpenetrating structures; since the nodes of one net occupy the cages of another
net in the interpenetrating array, the net isomorphic to its dual net will be the most
suitable to form such an array. At present, 13 naturally self-dual nets are listed
in the reticular chemistry structure resource (RCSR) database [29]: cds, dia, ete,
ftw, hms, mco, pcu, pyr, qtz-x, sda, srs, tfa, and unj (Figure 1.4). Possible types of
interpenetration of homogeneous sphere packings were derived in Ref. [11]; the
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(103)-srs [1111] (64.82)-nbo [1111] (66)-dia [1111] (412.63)-pcu [1111]

(424.64)-bcu [1111] (324.436.56)-fcu [1112] (33.46.55.6)-sxd
[1331]

(36.418.56.6)-hex [1221]

(66)-Ion [1222] (412.612.84)(46)-flu
[2111]

(42.84)-pts [2132] (412.63)(49.66)-nia
[2122]

(103)-utp [1321] (103)-ths [1211] (65.8)-cds [1221] (42.84)-Ivt [1121]

Figure 1.3 List of some important nets. Each net is char-
acterized by its point symbol, RCSR three-letter name and
transitivity [29].

classes of interpenetration were considered [20, 22] in relation to types of symmetry
operations relating the nets in the array.

An efficient way to find crystallochemically important nets and to generate new
ones is to search for subnets of known nets. Blatov and Proserpio [16, 41] obtained
all uninodal and binodal subnets (totally more than 48 000) for almost all known
nets of the types described above. But not less important is to generate nets ab initio,
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(82.10)-ete [2332] (436.630)(44.62)3-ftw
[2112]

(63)(69.8)-hms
[2222]

(83)2(86)-mco [4334] (612.83)(63)2-pyr
[2112]

(44.510.7)-qtz-x
[1221]

(33.59.62.7)-sda [1221] (83)2(86)-tfa
[2222]

(55.8)-unj
[1221]

Figure 1.4 Nine self-dual nets. For srs, cds, dia, and pcu see Figure 1.3.

independently of peculiarities of crystal structures. Analyzing such nets, one can
see which of their features prevent them from realizing in nature. A very fruitful
method was proposed by Hyde and coworkers [19, 42] to obtain three-periodic nets
(epinets) by projecting 2D hyperbolic tilings.

1.4
The Concept of Topological Crystal Structure Representation

The question ‘‘what net corresponds to a given crystal structure’’ is not so easy
as it likely seems. Any crystal structure can be represented in different ways
depending on which interatomic interactions and structure groups we take into
account. For instance, we can consider the crystal structure of an ice polymorph as
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a packing of water molecules, as a net of water molecules connected by hydrogen
bonds or as a net of oxygen and hydrogen atoms linked by valence and hydrogen
bonds. Of course, some other more or less exotic variants can be considered, for
example, packing of hydrogens, but usually they are chemically meaningless. How
to enumerate all possible topologies and select reasonable ones? Thus, we come
to the concept of topological crystal structure representation [43], that is, defined as
a net generated from the complete net of the crystal structure by some method
of its simplification. By complete net, we mean the net that includes all atoms
of the structure as the nodes and all possible, even weakest, atomic interactions
as the edges; the complete crystal structure representation corresponds to this net.
This hypothetical net describes the structure topology in all details, but in any
particular crystallochemical investigation we have to simplify it somehow to obtain
a partial representation. The following simplification procedures with the complete
net enable us to produce any structure representation: (i) removing some edges;
(ii) removing some nodes together with the incident edges; (iii) contracting some
nodes to other nodes or to some other points (commonly the molecular centers of
mass, the barycenter) keeping the net connectivity.

The first simplification procedure is explicitly or implicitly used in any description
of crystal structure. Ordinarily, we consider only strong interactions like valence,
ionic, or metallic bonding and ignore van der Waals or even weaker interactions
(e.g., Coulomb interactions between long-distant ions). We apply the second
simplification procedure when, for instance, interstitial ions or molecules are
omitted in zeolites or MOFs. The last simplification procedure corresponds to the
representation of polyatomic groups as structureless particles, when we analyze
packings of inorganic ions in complex salts or organic molecules in molecular
crystals. Most crystal structure representations are the result of a combination of
the simplification procedures. For example, one can treat the ice VIII polymorph
as an assembly of hydrogen and oxygen atoms connected by valence and hydrogen
bonds applying only the first simplification procedure to omit other weak H···O
and H···H interactions, which results in the SiO2-cristobalite topology of the
corresponding net. Moreover, there are two such equivalent interpenetrating nets
in the structure like in Cu2O. The next way is to consider the structure as a net of
water molecules connected by hydrogen bonds. To provide this representation, one
has to contract/remove hydrogen atoms to oxygens, which gives rise to the diamond
(dia) topology and, hence, to the array of two interpenetrating dia nets (Figure 1.5).
At last, the contraction procedure can be applied with accounting all interactions
H···O and H···H between neighboring molecules to obtain the single net of the
body-centered cubic (bcu-x) topology corresponding to molecular packing, where
each water molecule contacts 14 other molecules (Figure 1.5). More examples of
different crystal structure representations are given in Section 1.7.2.

As a result of simplification, we obtain an underlying net that elucidates the
general topological motif of the crystal structure. It follows from the aforesaid that
several underlying nets can correspond to the same structure depending on the
simplification method.
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(a) (b)

Figure 1.5 The crystal structure of ice VIII polymorph: (a)
as an array of two interpenetrating diamondoid dia nets; (b)
as a single bcu-x net; the environment of a water molecule
with 14 other molecules is shown. Hydrogen and van der
Waals bonds are shown as dash-dotted and dashed lines,
respectively.

(66)-dia [1111]

SiO2 cristobalite

BeCl2 (one from 2-fold)(33.123)-dia-a [1222]

augmentation

expansion

expansion

decoration

Figure 1.6 Examples of decoration, augmentation, and expansion transformations.

The transformations, being inverse to the simplification procedures, are the
decoration of the net nodes (with the special case of augmentation in which the
nodes of the original net are replaced by a group of vertices with the shape of the
original coordination figure of the node) [29] and the expansion of the net edges;
they are the main operations of reticular chemistry [30, 44] (Figure 1.6).
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Thus, the question, what is the single, ‘‘true’’ topology for a particular compound,
is often meaningless, but when predicting the crystal structure we have to foresee
as many structure representations as possible. From topological point of view, a
comprehensive prediction of the crystal structure means finding its complete net
since all other representations can be derived from the complete one. In practice,
we can predict only some partial representations. For example, we can state that
most of molecular packings tend to have topologies of the close packings fcc or hcp;
however, we cannot often predict how the atoms of molecules are allocated in the
space. Even having a comprehensive X-ray information on the molecule geometry
and environment, sometimes we cannot prove if some interactions exist or not.
The concept of crystal structure representation allows us to realize which level of
the structure understanding we have accomplished and what other representations
can be derived from this one.

1.5
Computer Tools and Databases

New tasks emerged in crystal chemistry at the end of the 20th century invoked
new tools for their solution. Since the solution should rely on a great deal
of crystallographic data, the tools had to provide electronic processing of the
information. At that time, just about 10 years ago, there were worldwide electronic
databases that accumulated general crystallographic information on almost all
studied crystal structures, but these databases were used mainly as electronic
handbooks, not as tools to search for crystallochemical regularities or to predict
novel crystal architectures. Principally, new software should be developed to
automate main stages of crystallochemical analysis and to process the databases in
a batch mode. This software naturally uses the periodic net concept to represent
and explore the crystal structure. Now we have the following program packages
that are distributed free of charge:

Gavrog1) includes two programs: Systre (Symmetry, Structure Recognition, and
Refinement) [6] finds the net embedding with maximal symmetry and provides the
topological classification using a built-in archive of more than thousand nets taken
mostly from the RCSR database (see below); 3dt (3D tiler) visualizes three-periodic
tilings [37] and computes their topological parameters.

Olex2) [45] provides, besides some standard procedures of structure determination
and analysis, the tools for topological simplification of the initial periodic net and
computing a number of its topological indices.

TOPOS3) [27] accumulates all topological approaches mentioned in the previous
parts and provides the study of both individual crystal structures and of large
groups of structures stored in electronic databases. Almost all comprehensive
investigations of net occurrence discussed in Section 1.6 were performed with

1) Generation, Analysis, and Visualization of
Reticular Ornaments using Gavrog; http://
www.gavrog.org.

2) http://www.olex2.org.
3) http://www.topos.ssu.samara.ru.
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TOPOS. TOPOS is integrated with databases on topological types TTD and TTO
described below.

Using the topological software we can determine a number of crystal struc-
ture parameters and perform some operations to be important for the structure
classification, rationalization, and prediction: (i) topological type of the underlying
net (including the type of interpenetration, if any) and local topology of complex
group; (ii) maximum-symmetry embedding for new nets; (iii) automatic search
for the net representations; (iv) automatic simplification of the net; (v) search for
supernet–subnet relations; (vi) search for a given finite fragment in the net; (vii)
performing all the operations both for single crystal structure and for large number
of structures via interface with crystallographic databases. The program packages
contain tools to discover general tendencies in formation of topological motifs;
many hypotheses, or models based on the periodic net concept can now be rapidly
and comprehensively checked. Examples will be considered in Sections 1.6 and 1.7.

Gavrog Systre and TOPOS were used to create a new type of electronic databases
that can be called crystallochemical since their main information is related to
the topology of periodic nets of chemical bonds as opposed to crystallographic
databases that are focused on the arrangement of atoms in the space. To create
a record in a crystallochemical database, one has to restore a periodic net from
the crystallographic data, simplify it if required, reduce the resulting infinite net
into an LQG, and store the adjacency matrix of this graph as well as other its
topological indices. This can be done only with the tailored software described
above. Currently, the following free crystallochemical databases are developed:

RCSR4) [29] is the oldest one, but of age less than 10 years. It contains maximum
symmetry embeddings of more than 1700 two- and three-periodic nets considered
important for crystal chemistry and crystal design. Most of the nets were found
in crystal structures, the remaining ones can be considered as suitable templates
for new materials. One of the reasons to decide in favor of a particular crystal
structure representation is if its topology is found among the RCSR nets. RCSR
uses three-letter symbols to denote the net topologies; these symbols are used in
this chapter.

EPINET5) project announced in 2005 [19, 42], strictly speaking, cannot be
considered as a crystallochemical database since it collects the nets generated
ab initio, irrespective of crystal structures. However, it is strongly important to
interpret the results of net occurrence and to develop the methods of net topology
prediction as will be shown in Section 1.6. Now EPINET includes 14 532 epinets,
162 of them coincide with RCSR nets.

TTD and TTO collections6) [41] form an integrated set; the TTD part contains
the information on topological indices of almost 68 000 topological types of nets
including RCSR and EPINET, and the TTO part collects the links between the
topological types and the crystal structure data stored in crystallographic databases.

4) Reticular Chemistry Structure Resource,
http://rcsr.anu.edu.au/.

5) Euclidean Patterns in Non-Euclidean Tilings,
http://epinet.anu.edu.au/.

6) TOPOS Topological Databases and Topo-
logical Types Observed, http://www.topos.
ssu.samara.ru.
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TOPOS uses this set to determine crystal structure topology and to find other
topologically similar compounds.

What information useful for the prediction of topological motifs can we extract
from the topological databases? Resting upon the topological type of the net, we
can immediately draw some conclusions. (i) If the type is stored in RCSR, this
topology is not occasional; it was already considered due to some of its important
peculiarities. If the net is absent in the databases, there are some special reasons
that have invoked the net and we have to discover them. (ii) Maximum symmetry
embedding including symmetry of nodes and coordination figures is useful to
apply the symmetry criteria discussed in Section 1.7.1. (iii) If the net has some
special features (see Section 1.7), the corresponding topological motif could be
particularly stable. (iv) Knowing other structures with the same topology, we can
find similarities between the compounds and materials of different composition,
chemical nature, and structure details that are inessential in the given topological
representation. But the most important point is that the tools described in this part
allow us to solve currently the crucial problem of crystal chemistry, the nonuniform
abundance of periodic nets in nature.

1.6
Current Results on Nets Abundance

The question why some topological motifs frequently occur in nature while
other nets have been never found is a crucial point in understanding how the
resulting crystal architecture depends on chemical composition and bonding in the
substance. Quantum-mechanical technique can hardly be applied as a universal
tool to properly answer this question since different topological models of the same
structure often lie too close to each other on the energy landscape [46, 47]. Hence,
some empirical regularities based on geometrical and topological properties of the
structures should be discovered. Being less general than the quantum-mechanical
approach, they have the advantage to be drawn and verified with the whole immense
array of experimental crystallographic data. The first step in solving this problem
is to build statistical distribution of the net topologies over all known periodic
structures. This task is very time-consuming, but recent progress in computer
methods of the net analysis allows us to hope that it will be finished quite soon.
Moreover, even current results on nets occurrence can provide some conclusions
to be important for successful topology predictions.

The first extensive investigation of net occurrence was reported in Ref. [20]
for interpenetrating valence-bonded 3D architectures. Using TOPOS, the authors
processed the whole CSD and obtained a comprehensive list of 301 interpenetrating
coordination polymers. It was found that the three most preferred topological motifs
are dia, pcu, and srs. Just after a year, O’Keeffe and coworkers [21] published the
statistics for 774 valence-bonded single nets in MOFs with the same sequence
of the first three leaders. In the next 4 years, the crystal structure topologies in
organic, inorganic, and metal–organic compounds were systematically investigated
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(63)-hcb [111] (6 3)-hcb [121] (6 3)-hcb [121]

(44)-sql [111] (4 4)-sql [121] (4.82)-fes [122]

Figure 1.7 The three most abundant plane nets hcb, sql,
fes with some low symmetry embedding (italicized).

[22–26, 48]; most results of these studies are collected in the TTO databases. Thus, in
valence-bonded interpenetrated inorganic and MOFs as well as in single MOFs, the
leaders are dia–pcu–srs; in organic molecular crystals with hydrogen-bonded single
networks, the results are similar (dia–pcu–sxd–hex) as well as for hydrogen-bonded
coordination compounds (pcu–bcu–hex–dia).

It seems strange, but all published statistics concern only three-periodic struc-
tures of organic, inorganic, and coordination compounds; the low-periodic nets
were not explored. At the same time, in two-periodic motifs the preference of some
topological types is much sharper than in three-periodic structures. Thus, our anal-
ysis of 1711 two-periodic coordination networks shows that the first three places
are occupied by sql (37.2%), hcb (17.3%), and fes (7.0%) plane nets (Figure 1.7).
Moreover, if we consider only the contribution for the nets of the same coordina-
tion, it becomes much more expressed: hcb and fes compose 65.1% and 26.2%
of three-coordinated nets, respectively, and sql covers 88.6% of four-coordinated
nets. Similar results are obtained for interpenetrating two-periodic arrays. Thus,
for 271 coordination networks containing valence-bonded interpenetrating layers,
the most abundant layer topologies (84%) are sql (59.4%), hcb (24.0%), and fes
(4.8%).

As was mentioned above, besides the analysis of crystal structures of chemical
compounds, not less important is the consideration of artificial nets generated by
some tailored methods. This approach allows one to extend the list with the nets
that never occur in nature. The database EPINET mentioned above is the greatest
project in generating ab initio nets. Studying occurrence of epinets, one can realize
how stochastic is the realization of topological motifs in crystals. Therefore, since
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publishing the first EPINET release in 2005, the epinets were considered in any
review mentioned above. Summarizing the results, we see that only 192 out of 14
532 epinets (1.3%) have examples in nature; this fact proves the occurrence of nets
to be strongly nonrandom. One more method for generating nets was developed
by Blatov [16]; it is based on deriving all subnets for a particular net. Using this
method for the RCSR nets, Blatov and Proserpio [16, 41] generated 9988 uninodal
and 38 304 binodal nets that were never described before; only for 92 and 100
of them, the crystal structure examples have so far been known. Resuming, the
probability of a randomly taken topology to be realized in crystals is not larger than
1–2%.

The current results on nets occurrence reveal general tendencies that require
a theoretical interpretation: (i) there are a few nets that are much more frequent
than others; (ii) diversity of single nets is much larger than of interpenetrating
arrays; (iii) although bond type influences the occurrence of nets, some nets, like
two-periodic sql, hcb, and fes or three-periodic srs, dia, and pcu, are most important
for the substances of different nature; and (iv) the variety of nets directly depends
on diversity of coordination centers; topology of nets with one kind of node only is
the easiest to predict.

This analysis raises the questions to be crucial in the crystal structure prediction:
(i) why frequent topologies are frequent and rare topologies are rare? (ii) Can any
net type form an interpenetrating array, or some nets can occur single only? (iii)
Can we predict topology for a given substance, with what probability? And what
parameters should we know? Although these questions are not yet completely
answered, there is an obvious progress in understanding as shown in detail in the
next part.

1.7
Some Properties of Nets Influencing the Crystal Structure

1.7.1
Symmetry of Nets and Embeddings

The symmetry of a crystallographic periodic net can be described in terms of
space groups; therefore, one can expect that the well-elaborated technique of
mathematical crystallography can be used to derive some general properties of
nets. Here we collect the results in this field with respect to prediction of the target
motifs.

Theorem 1.1. The space group of a net is a subgroup of its automorphism group. This
means that the symmetry owned by the net can be higher than the space-group symmetry
of any of its embedding. If it is so, the net is noncrystallographic [7] and can have
embeddings with space groups being not in a group–subgroup relation, for example, both
in cubic and in hexagonal symmetry. Noncrystallographic nets always have symmetry
operations that are inconsistent with a given space group. One can expect that these
operations can appear as a kind of supersymmetry, and the substances built with such
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nets can have some special properties. However, nobody has yet studied the occurrence
of noncrystallographic nets since there are no clear criteria to detect them in crystal
structures.

Corollary 1.1. Site symmetry group of the net embedding is a subgroup of the symmetry
group of a node in the net. This corollary restricts possible local topologies of structural
units (i.e., both complex groups in the initial structure and the resulting coordination
figures in the simplified net); for instance, the units with hexagonal symmetry are not
suitable to realize in a cubic symmetry since they are forced to be distorted.

Corollary 1.2. The point group of a structural unit in the crystal must be a common
subgroup of the point group of the corresponding node in the most symmetric embedding
of the net and the point group of the isolated structural unit. A good illustration of this
corollary is the consideration of possible topologies for molecular crystals. In particular,
it follows that a uninodal net of a given topology may be realized in some space-group
symmetry G′ if, and only if, the index of G′ in G is a divisor of the order of the point
group of the node in the most symmetric embedding of the net [49, 50]. This conclusion is
proved by a comprehensive analysis of molecular packings [23, 26].

The theorem provides many useful conclusions to predict topological properties
of the crystal architectures. In general, the specified topology restricts possible
geometrical embeddings of the net, and vice versa. We can now answer the
following crystallochemical questions [23, 26]:

1) Can a given topology be realized in a given space group? For instance, the diamond
(dia) net cannot have hexagonal symmetry. Indeed, the automorphism group
of dia is isomorphic to the space group Fdm, but any hexagonal space group is
not a subgroup of Fd3m that contradicts Corollary 1.1. The same concerns the
lonsdaleite (lon) net (so-called hexagonal diamond) that cannot have Fd3m or
any other cubic symmetry since its most symmetric embedding has the space
group P63/mmc.

2) Which space groups can be realized for low-symmetric embeddings of a given
topology? For this purpose, we have to find the most symmetric embedding
of the net with the space group G; the space group of any other embedding
of the net will be a subgroup of G. For example, both dia and lon can have
embeddings with orthorhombic Pnna symmetry, that is, a common subgroup
of Fd3m and P63/mmc.

3) Can the coordination figure of a given symmetry be realized in a given embedding?
For example, can we obtain dia with square-planar coordination? In the most
symmetric embedding, any node of the diamond net has the symmetry 43m
(Td). According to Corollary 1.1, we cannot obtain the regular square-planar
coordination since the point group of the square (4/mmm or D4h) is not a
subgroup of 43m. The same concerns rectangular coordination with the point
group mmm (D2h). However, we can find some distorted planar coordination
figures without inversion, describing by a subgroup of 43m, say, mm2 (C2v).
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4) Can a given structure unit occupy a particular Wyckoff position in a given net
embedding? If we know the symmetry of the net embedding as well as the
symmetry of a molecular group, we can use Corollary 1.2 to decide if the
symmetries are compatible with each other. For example, molecules with
inversion center prefer not to occupy the positions in the diamondoid nets
because they have to lose the inversion center. The analysis of molecular
packings [23, 26] proves this rule.

5) Will a given molecular packing in a given space symmetry be monomolecular or not?
For instance, a uninodal diamond net is forbidden in the P21 group because
its index in Fd3m, i = 48, is not a divisor of the order of the point group 43m
of the node (i = 24), so at least two inequivalent nodes (molecular centers)
should exist in the unit cell of a P21 diamond [23]; the total order of these nodes
(24 × 2 = 48) is equal to i and, hence, i is its divisor that obeys Corollary 1.2.

In all the applications of the symmetry relations, the crucial is the space-group
symmetry of the net in the most symmetric embedding. Once this symmetry has
been found, the technique of mathematical crystallography can be in full applied
to the net. Unfortunately, no tools were proposed to determine the automorphism
group of the net except the geometrical approach based on the barycentric placement
(Systre). Therefore, the nets that have a barycentric placement with collisions
(including noncrystallographic nets) remain difficult to be considered within this
approach. But in our experience, such nets are extremely rare, so Systre provide the
most symmetric embedding for almost all chemically relevant examples.

Less strict, but not less important assumption concerning significance of
high-symmetric nets for crystal chemistry was proposed in Ref. [21]. The au-
thors revealed that most frequent underlying nets in MOFs are the nets with high
space-group symmetry as well as high site symmetry of the nodes. It is noteworthy
that the symmetry of the crystal can be and usually is low, but the symmetry of
the underlying net itself ordinarily is high. A useful criterion of the high symmetry
is transitivity. According to Ref. [21], the most important nets are regular, with
transitivity 1111, that are srs, dia, nbo, pcu, and bcu. However, all nets with
one kind of node and edge, that is, with transitivity 11rs, are also suitable to be
observed. This assumption explains why the most frequent nets in three-, four-,
and six-coordinated MOFs are srs, dia, and pcu, respectively. The authors [21]
substantiate the high-symmetry criteria by isotropy of the reacting system (melt
or solution) and reaction centers (metal atoms). The reason could also be that the
underlying net corresponds to some ‘‘primary’’ structure motif that determines
the general method of ordering (the main modes in phonon spectra), while the
details of interactions between structural units provide geometrical distortions of
the structure and result in some subgroup of the space group of the underlying
net. In any case, the physical reasons of this phenomenon require a more thorough
consideration.

The role of high symmetry of the most symmetrical embedding of the net invokes
some special classes of nets to be important for structure prediction [37].
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1) Regular (transitivity 1111), quasiregular (transitivity 1112), and semiregular nets
(transitivity 11rs) all have one kind of vertex and edge but differ by coordination
figures that correspond to regular, quasiregular, or arbitrary convex polyhedra,
respectively. All of them occur in crystal structures not occasionally [21, 37].

2) Edge-transitive nets have one kind of edge; in addition to the nets of class (1)
the edge-transitive nets of transitivity 21rs can be important for structures with
two or more kinds of structural groups. Such edge-transitive nets as flu, pts,
nia are frequent in MOFs [21, 51, 52].

1.7.2
Relations Between Nets

Starting from a particular net, we can produce other nets that are unambiguously
related to the initial one. Let us consider the types of such nets to be most important
for materials science.

1) Subnets. One more important application of symmetry properties of periodic
nets is the enumeration of all shortest ways to transform one net to another.
For example, one can be curious of how to transform diamond to lonsdaleite
by breaking and forming the minimum number of bonds. The space group
of the intermediate net, supernet, or subnet must be a common subgroup of
the space groups Fd3m and P63/mmc; moreover this net must be a common
supernet or subnet of dia and lon. A corresponding algorithm was proposed
and realized in Ref. [16]. Using the program package TOPOS, one can construct
a so-called net relation graph that indicates supernet–subnet relations for a
given set of nets. With the net relation graph, we find that the pair dia–lon
has two common three-coordinated uninodal subnets: utp (Pnna) and ths
(I41/amd). Since Pnna is a common subgroup of Fd3m and P63/mmc, utp
can exist in its highest symmetry during the transition, while the possible
symmetry ths is C2/c, that is, the maximal common subgroup of Fd3m,
P63/mmc, and I41/amd that retains ths uninodal. The number of pathways
through a five-coordinated common supernet is much higher: according to
Ref. [16], there are 93 such pathways. This information could be useful to
predict structure transformations during phase transitions.

2) Dual nets. Since the nodes and edges of the dual net correspond to cages and
rings of the initial net, the dual net can be considered as a system of void
centers and channel lines between them. Anurova and Blatov [53] showed that
dual nets can be efficiently used to analyze the migration paths in fast-ion
conductors, to predict the existence and dimensionality of conductivity. In
MOFs, the self-dual nets are of special interest [12] because, being combined
with the initial net, they form strongly catenated network arrays. Thus, the
uninodal self-dual nets srs, dia, cds, and pcu compose the main part (70%) of
interpenetrating MOF arrays [20]. Self-dual two-periodic nets can easily form
a stacking, where nodes of one net are projected to the centers of rings of
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a

H
N

bc

ths dia

Figure 1.8 (a) The crystal structure of
3-(chloroacetamido)pyrazole with the ths
underlying net and (b) corresponding par-
tial edge net of the dia topology with the
four-coordinates nodes on the middle of

the gray edges. Molecular centroids and
H-bonded dimers (R2

2 (8) synthon [24, 25])
are shown in the initial net as black balls
and gray lines.

another net [54]. This feature provides existence of polytype series like the
infinite series of close packings.

3) Edge nets. This type of nets can be useful for the design of molecular crystals.
For instance, the net, whose nodes correspond to dimers, is an edge net with
respect to the net of molecular centroids. Thus, both ths and srs nets have
partial edge nets of the dia topology (Figure 1.8). Some other relations are
given in Ref. [23].

4) Ring nets. A natural application of ring nets is the description of topology
of coordination polymers with synthons. The ring net describing synthons is
partial, as a rule [23]. For instance, an lvt net has partial ring net of the dia
topology (Figure 1.9). This means that the synthons in the lvt net can arrange
in a diamondoid motif. In turn, the lvt topology describes a partial ring net for
the gis atomic net, and so on.

1.7.3
Role of Geometrical and Coordination Parameters

The criteria of high symmetry are not sufficient to explain an important role of
some ‘‘default’’ nets. For example, the net sra has rather low symmetry (Imma), not
minimal transitivity (33), does not belong to the special classes mentioned above,
and its nodes are not allocated in the most symmetrical positions in the space group
(8i with site symmetry m). However, sra occupies the second place after dia in the
list of the most frequent MOF topologies with tetrahedral units [21], while two nets
following after it – sod (Im3m) and qtz (P6222) – have much higher symmetries
and the smallest transitivities (12). Obviously, additional geometrical and chemical
factors should manage the net occurrence.

The geometrical parameters are the property of the net embedding; therefore,
special types of embeddings, like sphere packings, should be specified and explored.
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4 (8)

(a) (b)

Figure 1.9 (a) The crystal structures of 2,3,5,6-tetrachloro-
trans-1,4-diethynylcyclohexa-2,5-diene-1,4-diol (XEHKIE) with
R4

4 (8) synthons; the initial net (gray lines) is formed by the
centroids of molecules, while the partial ring net (black balls
and lines) describes the synthons; (b) initial net lvt (gray)
and partial ring net dia (black).

The importance of sphere packings reflects the importance of edge-transitive nets;
however, in this case the equivalence of edges is not necessarily caused by symmetry
reasons. It is a typical requirement that the links in the structure should be not
the same, but of similar lengths (e.g., inorganic frameworks of oxofluorides or
coordination polymers with chemically equivalent, but conformationally mobile
ligands). It is noteworthy that all the nets mentioned above, including sra, are
sphere packings. So if we have a compound with the ligands similar by length, the
resulting net will be a sphere packing. Otherwise we can obtain a sphere packing
or not; it depends on other reasons.

At present, not all sphere packings are derived even for uninodal nets. The
occurrence of the known sphere packings is quite different; there are some of them
that have no examples in crystal structures. In some cases, it can be explained
by their low symmetry, but, in general, a deeper exploration of their geometrical
properties is required. A more detailed classification of sphere packings accounting
their ability to distortion due to degrees of freedom was proposed in Ref. [12].
However, no comprehensive study has yet been performed to check the occurrence
of nets with respect to this classification.

The next important parameter is the form of coordination figure of the node.
Not only distances (that are crucial for the concept of sphere packing) but also
angles should be taken into account when anticipating the underlying net topology;
moreover, in some cases there is a strong dependence between coordination figure
and the underlying topology. The best correlations are observed for two-periodic
nets. For instance, in the analysis of coordination polymers square-planar coordi-
nation leads to the sql topology almost in all cases, even if the rectangular is not
regular. The same concerns triangular coordination figure that corresponds to the
hcb underlying topology. We emphasize that hcb and sql are not unique topolo-
gies with planar three- or four-coordinated nodes, but they are the only uninodal
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Figure 1.10 Tetrahedral, octahedral, and related complexes,
coordination figures, and corresponding underlying nets in
cyanides. Dashed lines correspond to links with terminal lig-
ands. For some nets see Figure 1.3, for the others refer to
the RCSR web page [29].

nets with triangular and square/rectangular coordination figures. Obviously, the

highest possible plane-group symmetry plays a determinative role in this case. The
required topology and geometry of the coordination figure can be designed by a

proper introduction of terminal ligands into the coordination sphere of metal atom

(Figure 1.10).
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Figure 1.10 (continued.)

In the three-periodic coordination polymers, the correlation is not so strong;
the same coordination figure can result in a diversity of underlying topologies
[21]. However, if all ligands in the structure are similar by size, some special
topologies of underlying net can be anticipated for any type of local coordination
of metal atoms. For example, in cyanides there are the following correlations ([55],
Figure 1.10):

• Four-coordinated nodes with tetrahedral coordination figure in almost all cases
of cyanides result in dia topology; the only exception is lon topology, that is,
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very close to dia but is not edge transitive. One more edge-transitive topol-
ogy with tetrahedral coordination, qtz, is realized only in inorganic cyanides.
In this case, the spacers between tetrahedral centers are not cyanide ions,
but linear groups [Au(CN)2]− that, being more flexible provide less uniform
quartz topology. More voluminous spacers, in particular, complex groups
Cu(3,10-dipropyl-1,3,5,8,10,12-hexa-azacyclotetradecane) [56], lead to the neb
topology, that is, locally very similar to dia [24].

• Four-coordinated nodes with square-planar coordination figure give two topologies,
nbo and cds; the former one looks more preferable since it is edge-transitive
(1111 vs. 1221).

• Four-coordinated nodes with disphenoidal coordination figure, which can be obtained
from trigonal–bipyramidal coordination by removing one equatorial ligand or
from octahedral coordination by removing two neighboring ligands, are realized
in the mercury cyanide and correspond to the lvt topology. Obviously, the
geometrical features of disphenoid (angles of 90◦ and 180◦) provide formation
of four- and eight-rings that are typical for lvt, despite different coordination
figure in lvt (square). We are not aware of the uninodal nets with disphenoidal
coordination in the maximal symmetry embedding.

• Four-coordinated nodes with tetrahedral and square-planar coordination figures give
rise to two topologies – pts or mog – depending on the nodes ratio 1:1 or 2:1,
respectively.

• Four-coordinated nodes with tetrahedral and disphenoidal coordination figures lead
to γ -Si (gsi), CrB4 (crb), SrAl2 (sra), or zeolite gismondine (gis) topologies at
the nodes ratio 1:1. In this series, the number of four-rings meeting at the
node increases from 0 to 3. Probably, different distortion of the disphenoidal
coordination figures could manage the resulting underlying topology. At the
nodes ratio 2:1, only the noq topology is realized.

• Four-coordinated nodes with square-planar and disphenoidal coordination figures
emerge when there are two octahedral centers where two terminal ligands are
allocated in trans- or cis-positions, respectively. At the ratio 1:1 the topologies
nom, nou, ptt, or uni are observed, while the ratio 1:4 gives rise to the nor
underlying net.

• Five-coordinated nodes with square-pyramidal coordination figure are derived from
octahedral complexes with the single terminal ligand. This coordination pro-
duces the noy topology in all cases. If voluminous bridges like Me3Sn in
[(n-Bu4N)0.5(Me3Sn)3.5Fe(CN)6] [57] link the coordination centers, the sqp topol-
ogy is realized.

• Six-coordinated nodes with octahedral coordination figure and short (cyanide) bridges
always correspond to the pcu underlying net. The exceptions arise when the
bridges are long or/and voluminous. Thus, in N(n-Bu)4{Ni[Au(CN)2]3} [58], very
rare bcs topology is realized. Although the net bcs is semiregular, it has strongly
distorted coordination figure in the maximal symmetry embedding, since at the
regular octahedral coordination two additional disconnected nodes are located
nearby the central one (Figure 1.11a). In N(n-Bu)4{Ni[Au(CN)2]3}, this becomes
possible owing to the long [Au(CN)2] bridges; out of eight Ni atoms surrounding
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Figure 1.11 (a) Idealized bcs net with the six coordi-
nates nodes (1–6) and the two close but not directly con-
nected to the central one (7,8 n.c.); (b) a fragment of the
N(n-Bu)4{Ni[Au(CN)2]3} structure. Ni atoms (1–8) form a
cube around the central Ni. The two atoms disconnected to
the central one (7,8) are marked by arrows.

the central Ni at distances 10.1–10.2 Å, only six are connected to it via [Au(CN)2]
groups (Figure 1.11b). In isomorphic pair {(n-Bu)3 Sn}3[M(CN)6](M = Fe, Co)
[59], the three-rings required for emerging the lcy topology are formed of volumi-
nous [(n-Bu)3 Sn] bridges. If the coordination center is extended with a binuclear
cluster like [Cu2(CN)2] in [Cu5(CN)6(DMF)4] [60] or [Cu4Zn(CN)6(DMF)4] [61],
another topology, rob, is realized.

• Six-coordinated nodes with trigonal–prismatic coordination figure occur only in
Eu[Ag(CN)2]3(H2O)3 where three terminal water molecules extend the Eu coor-
dination number up to typical (CN = 9). The underlying topology is acs.

• Six-coordinated nodes with octahedral and trigonal–prismatic coordination figures
occur only in the ratio 1:1 and in all cases give rise to the nia underlying
net.

This list of correspondences can be extended with the nets with different
degrees of nodes (e.g., four-, six-coordinated nets with tetrahedral and octahe-
dral coordination figures in the ratio 1:2 result in the fsh topology), and the
given data lead to similar conclusions as for two-periodic coordination polymers:
the coordination figure strongly determines the underlying topology. Almost in
all the cases, the shape of coordination polyhedron (considered without termi-
nal ligands) coincides with the coordination figure of corresponding node in
the most symmetrical embedding of the underlying net. The correspondences
show that variation of the number and positions of the terminal ligands allows
one to design the required underlying topology with a high probability. The
cases with several possible underlying topologies (like nom, nou, ptt, or uni)
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have to be separately studied. Obviously, the shape, size, and number of ter-
minal ligands as well as solvate molecules should be taken into account. The
structure of the coordination center can also influence the underlying topol-
ogy. Taking together all the factors could allow us to predict the 3D motifs
more rigorously. We see that all these parameters sufficiently expand more
general symmetry criteria. In more complicated structures containing different
bridge ligands of different composition, the correlations could be more subtle,
but they could be somehow catalogued. This is an important task of crystal
design.

Similar regularities control crystal structures of other nature. Thus, Baburin
and Blatov [23] showed that the topology of 3D frameworks of hydrogen-bonded
molecules depends on the local arrangement of the molecule. They showed
that strongly distorted tetrahedral environment of the molecule results in qtz or
dmp topologies, while the square-like coordination leads to cds or lvt underlying
topologies. Baburin [26] analyzed the influence of arrangement of active centers of
hydrogen bonding over the molecule surface on the topology of molecular packings
in coordination compounds. For instance, octahedral complexes with six ligands
containing functional groups involved into hydrogen bonding prefer to form the
pcu motif.

The underlying topology can be predetermined even more precisely if one
extends the coordination figure to some larger part of the structure framework,
that is, inherent to the resulting simplified net. This part can be referred to as
a secondary building unit (SBU) of the net. To predict the net topology with a
particular SBU, one has to know how specific is this SBU, and to what number
of different nets it corresponds. For example, using the adamantane-like units
one can construct the dia underlying net with much greater probability than
starting from tetrahedral complexes. This approach lies in the base of reticular
chemistry and was successfully used to design and synthesize new MOF materials
[21, 30, 62].

In summary, the chemical factors influencing the local geometric and topological
properties of the structure determine the underlying net topology according
to the five-level scheme: coordination number–complex group–coordination figure
– secondary building unit–underlying topology (Figure 1.12). If the ligands are
either monodentate (terminal) or rather short bidentate-bridge, the scheme can be
easily interpreted. The coordination number of the complexing atom or a cluster
predetermines the maximum number of connected ligands in the complex group
and, hence, the maximum number of nodes in the coordination figure; within this
number, the coordination figure can be modified by introducing terminal ligands.
The same coordination figure can correspond to different complex groups where
the ligands vary by composition, shape, and size. At last, the same coordination
figure can be built in different SBUs that provide different underlying topologies,
thanks to various interstitial species or thermodynamic conditions [46, 47]. Thus,
there is some diversity in final topology of the underlying net, but, as was shown
above, this diversity is not so vast.



1.8 Outlook 25

CN=6

coordination
number

coordination
figure

secondary
building unit

underlying
topology

complex
group

octahedron

octahedron

square pyramid

square
trigonal prism

sql
pcu

cds
nbo

Figure 1.12 An example of the five-level hierarchical
scheme of the underlying topology prediction starting from a
complexing atom with coordination number 6, for example,
Fe, Co, or Ni.

1.8
Outlook

The investigations of previous years mainly answered Wells’ question – indeed,
only rather small set of nets frequently occurs in crystal structures and we
know almost all nets from this set. However, a number of new challenges
emerged that will determine the development of periodic-graph approaches in
the near future. We see the following main problems that should be solved at
first: (i) it should become a standard for any structure investigation to provide
the information on the underlying topology of possible structure representations
along with crystallographic data; (ii) crystallographic databases should be integrated
with the crystallochemical databases; (iii) the crystallochemical databases should
be completed with all 2D and 3D representations of all known crystal structures
that will enable the user to find similar topological motifs in different structures
and to foresee possible topologies in new compounds by looking for chemical
and structural prototypes in the databases; (iv) a database should be created that
will collect strict interrelations between different topological representations like
the interrelations ‘‘net–dual net,’’ ‘‘net–edge net,’’ ‘‘net–partial ring net,’’ and so
on. to let the user know in what structure representation he can get the required
net topology; (v) the known parameters that influence the underlying topology
(Section 1.7) should be deeper explored and new ones have to be discovered;
(vi) an expert system should be developed that will use all the above-mentioned
correlations and predict the structural dependencies in the form ‘‘complexing atom
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+ ligands → list of possible complex groups → list of possible SBUs → list of
underlying topologies’’ with occurrence probabilities and allowable space-group
symmetries. Successful solution of these problems will inspire further progress in
materials science and crystal chemistry.
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and H.J. Schneider), Springer-Verlag,
Berlin, pp. 242–254.

11. Koch, E., Fischer, W., and Sowa, H.
(2006) Interpenetration of homogeneous
sphere packings and of two-periodic

layers of spheres. Acta Cryst., A62,
152–167.

12. Delgado-Friedrichs, O., Foster, M.D.,
O’Keeffe, M., Proserpio, D.M., Treacy,
M.M.J., and Yaghi, O.M. (2005) What do
we know about three-periodic nets? J.
Solid State Chem., 178, 2533–2554.

13. Brunner, G.O. and Laves, F. (1971) Zum
problem der koordinationszahl. Wiss. Z.
Techn. Univ. Dres., 20, 387–390.

14. Goetzke, K. and Klein, J.-H. (1991)
Properties and efficient algorithmic
determination of different classes of
rings in finite and infinite polyhedral
networks. J. Non-Cryst. Solids, 127,
215–220.

15. O’Keeffe, M. and Hyde, S.T. (1997) Ver-
tex symbols for zeolite nets. Zeolites, 19,
370–374.

16. Blatov, V.A. (2007) Topological relations
between three-dimensional periodic
nets. I. Uninodal nets. Acta Cryst., A63,
329–343.

17. Fischer, W. and Koch, E. (1989) Genera
of minimal balance surfaces. Acta Cryst.,
A45, 726–732.

18. Delgado-Friedrichs, O., O’Keeffe, M.,
and Yaghi, O.M. (2003) Three-periodic
nets and tilings: regular and quasiregu-
lar nets. Acta Cryst., A59, 22–27.

19. Hyde, S.T., Delgado Friedrichs, O.,
Ramsden, S.J., and Robins, V. (2006)
Towards enumeration of crystalline
frameworks: The 2D hyperbolic ap-
proach. Solid State Sci., 8, 740–752.

20. Blatov, V.A., Carlucci, L., Ciani, G.,
and Proserpio, D.M. (2004) Interpen-
etrating metal–organic and inorganic
3D networks: a computer-aided sys-
tematic investigation. Part I. Analysis
of the Cambridge structural database.
CrystEngComm., 6, 377–395.

21. Ockwig, N.W., Delgado-Friedrichs, O.,
O’Keeffe, M., and Yaghi, O.M. (2005)
Reticular chemistry: occurrence and
taxonomy of nets and grammar for the



References 27

design of frameworks. Acc. Chem. Res.,
38, 176–182.

22. Baburin, I.A., Blatov, V.A., Carlucci, L.,
Ciani, G., and Proserpio, D.M. (2005)
Interpenetrating metal–organic and in-
organic 3D networks: a computer-aided
systematic investigation. Part II. Anal-
ysis of the inorganic crystal structure
database (ICSD). J. Solid State Chem.,
178, 2452–2474.

23. Baburin, I.A. and Blatov, V.A. (2007)
Three-dimensional hydrogen-bonded
frameworks in organic crystals: a topo-
logical study. Acta Cryst., B63, 791–802.

24. Baburin, I.A., Blatov, V.A., Carlucci,
L., Ciani, G., and Proserpio, D.M.
(2008) Interpenetrated 3D networks
of H-bonded organic species: a sys-
tematic analysis of the Cambridge
structural database. Cryst. Growth Des., 8,
519–539.

25. Baburin, I.A., Blatov, V.A., Carlucci, L.,
Ciani, G., and Proserpio, D.M. (2008)
Interpenetrated three-dimensional
hydrogen-bonded networks from
metal–organic molecular and one- or
two-dimensional polymeric motifs.
CrystEngComm., 10, 1822–1838.

26. Baburin, I.A. (2008) Hydrogen-bonded
frameworks in molecular metal–organic
crystals: the network approach. Z.
Kristallogr., 223, 371–381.

27. Blatov, V.A. (2006) Multipurpose crys-
tallochemical analysis with the program
package TOPOS. IUCr Comp. Commun.
Newsl., 7, 4–38.

28. Blatov, V.A., Delgado-Friedrichs, O.,
O’Keeffe, M., and Proserpio, D.M.
(2007) Three-periodic nets and tilings:
natural tilings for nets. Acta Cryst., A63,
418–425.

29. O’Keeffe, M., Peskov, M.A., Ramsden,
S.J., and Yaghi, O.M. (2008) The reticu-
lar chemistry structure resource (RCSR)
database of, and symbols for, crystal
nets. Acc. Chem. Res., 41, 1782–1789.

30. Yaghi, O.M., O’Keeffe, M., Ockwig,
N.W., Chae, H.K., Eddaoudi, M., and
Kim, J. (2003) Reticular synthesis and
the design of new materials. Nature,
423, 705–714.

31. Delgado-Friedrichs, O. and O’Keeffe, M.
(2005) Crystal nets as graphs: terminol-
ogy and definitions. J. Solid State Chem.,
178, 2480–2485.

32. Francl, M. (2009) Stretching topology.
Nat. Chem., 1, 334–335.

33. Proserpio, D.M. (2010) Polycatena-
tion weaves a 3D web. Nat. Chem., 2,
435–436.

34. Koch, E. and Fischer, W. (1978) Types
of sphere packings for crystallographic
point groups, rod groups and layer
groups. Z. Kristallogr., 148, 107–152.

35. Thimm, G. and Klee, W.E. (1997)
Zeolite cycle sequences. Zeolites, 19,
422–424.

36. O’Keeffe, M. and Hyde, B.G. (1996)
Crystal Structures. I. Patterns and Sym-
metry, Mineralogical Society of America,
Washington, DC.

37. Delgado-Friedrichs, O., O’Keeffe, M.,
and Yaghi, O.M. (2007) Taxonomy of pe-
riodic nets and the design of materials.
Phys. Chem. Chem. Phys., 9, 1035–1043.

38. Bonneau, C., Delgado Friedrichs, O.,
O’Keeffe, M., and Yaghi, O.M. (2004)
Three-periodic nets and tilings: minimal
nets. Acta Cryst., A60, 517–520.

39. Sowa, H., Koch, E., and Fischer, W.
(2007) Orthorhombic sphere packings.
II. Bivariant lattice complexes. Acta
Cryst., A63, 354–364.

40. Sowa, H. (2009) Three new types of
interpenetrating sphere packings. Acta
Cryst., A65, 326–327.

41. Blatov, V.A. and Proserpio, D.M.
(2009) Topological relations between
three-periodic nets. II. Binodal nets.
Acta Cryst., A65, 202–212.

42. Ramsden, S.J., Robins, V., and Hyde,
S.T. (2009) Three-dimensional Euclidean
nets from two-dimensional hyperbolic
tilings: kaleidoscopic examples. Acta
Cryst., A65, 81–108.

43. Blatov, V.A. (2006) A method for hier-
archical comparative analysis of crystal
structures. Acta Cryst., A62, 356–364.

44. O’Keeffe, M., Eddaoudi, M., Li, H.,
Reineke, T., and Yaghi, O.M. (2000)
Frameworks for extended solids: geo-
metrical design principles. J. Solid State
Chem., 152, 3–20.

45. Dolomanov, O.V., Bourhis, L.J., Gildea,
R.J., Howard, J.A.K., and Puschmann,



28 1 Periodic-Graph Approaches in Crystal Structure Prediction

H. (2009) OLEX2: a complete struc-
ture solution, refinement and analysis
program. J. Appl. Cryst., 42, 339–341.

46. Baburin, I.A., Leoni, S., and
Seifert, G. (2008) Enumeration of
not-yet-synthesized zeolitic zinc imi-
dazolate MOF networks: a topological
and DFT approach. J. Phys. Chem. B,
112, 9437–9443.

47. Lewis, D.W., Ruiz-Salvador, A.R.,
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