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RIASSUNTO 

Introduzione 
L'immunità umorale è la principale linea di difesa contro le infezioni a trasmissione mucosale poiché fornisce 
un meccanismo di blocco del patogeno mediato dalle IgA secretorie a livello della superficie mucosale. 
CCL28 è una chemochina che lega CCR3 e CCR10 e attrae le plasmacellule IgA-secernenti (IgA-ASCs) 
nella lamina propria delle mucose. Le Virus-like Particles (VLPs) rappresentano una nuova strategia 
vaccinale basata sull’utilizzo di particelle non patogeniche che mimano la struttura di autentiche particelle 
virali. L’immunogenicità dei vaccini può essere migliorata con l’utilizzo di adiuvanti costituiti da chemochine. 
In questa tesi verranno descritti gli approcci sperimentali per la valutazione degli effetti immunomodulatori di 
CCL28 in tre modelli animali immunizzati con VLPs di HIV-1IIIB, Influenza Virus di tipo A (H7N1) e HPV-16, 
per un futuro utilizzo della chemochina come adiuvante nello sviluppo di vaccini preventivi contro infezioni a 
trasmissione mucosale. 
 
Materiali e Metodi 
VLPs di HIV-1IIIB, H7N1 e HPV-16 sono state sintetizzate in collaborazione con l’Università Ruhr di Bochum, 
l’Università di Montpellier, ed il Centro Tedesco di Ricerca sul Cancro di Heidelberg. Topi femmina Balb/c di 
6-8 settimane sono stati randomizzati in diversi gruppi di trattamento a ricevere le VLPs di HIV-1IIIB, o H7N1 
o HPV-16 in combinazione o meno con il plasmide codificante il CCL28 ai giorni 0 e 14. Il sacrificio degli 
animali è stato compiuto al giorno 28. Le VLPs di HIV-1IIIB e di HPV-16 e i vettori d’espressione delle 
chemochine CCL28 e CCL19 sono stati somministrati per via intramuscolare; le VLPs di H7N1 sono state 
somministrate per via intraperitoneale. I campioni ematici e i lavaggi vaginali sono stati raccolti secondo le 
metodiche standard ai giorni 0, 14 e 28. I campioni di saliva dei topi immunizzati con le VLPs di H7N1 sono 
stati ottenuti ai giorni 0, 14 e 28 in seguito ad iniezione intraperitoneale di carbacolo ed induzione di 
ipersalivazione. I lavaggi broncoalveolari sono stati ottenuti al giorno 28 tramite inserimento in trachea di una 
sonda per alimentazione forzata e ripetuta iniezione ed aspirazione di PBS. In ultimo, la milza e i campioni di 
colon, polmone e cervice uterina sono stati prelevati al giorno 28 per l’isolamento dei linfomonociti tissutali e 
per l’analisi immunoistochimica dell’infiltrato infiammatorio. L’espressione dei recettori CCR3 e CCR10 è 
stata valutata sugli splenociti circolanti mediante citometria a flusso. La produzione di citochine di tipo Th1 e 
Th2 è stata valutata tramite tecnica ELISA in colture di splenociti e di linfociti tissutali re-stimolati ex vivo o 
con la proteina HIV-1IIIB gp120, o con l’emoagglutinina (HA) del virus H7N1 o con la proteina L1 di HPV-16. Il 
dosaggio degli anticorpi IgG e IgA antigene-specifici nel plasma e nei campioni mucosali è stato eseguito 
tramite una tecnica ELISA basata sull’utilizzo delle proteine ricombinanti HIV-1IIIB gp120, H7N1 HA e HPV-16 
L1. Il ruolo protettivo degli anticorpi sierici e mucosali è stato valutato mediante saggi di neutralizzazione in 
vitro. Infine, la migrazione delle IgA-ASCs a livello mucosale indotta da CCL28 è stata valutata mediante 
analisi immunoistochimiche dei tessuti derivanti dal tessuto linfoide associato alle mucose (MALT). 
 
Risultati 
I risultati ottenuti nei tre modelli animali hanno mostrato un incremento statisticamente significativo nella 
percentuale di splenociti CD19

+
 esprimenti CCR3 e/o CCR10 e nell’intensità media di fluorescenza (MFI) dei 

relativi recettori nei topi immunizzati con VLPs in combinazione con CCL28 rispetto ai topi immunizzati 
unicamente con l’immunogeno. La produzione HIV-1IIIB-, H7N1- e HPV-16-specifica di citochine sia di tipo I 
(IFN-γ) che di tipo II (IL-4 e IL-5) è risultata aumentata nei topi immunizzati con VLPs in combinazione con 
CCL28 rispetto ai topi immunizzati con il solo immunogeno. L’analisi delle risposte umorali mucosali ha 
mostrato un marcato incremento, in termini di variazione dal valore basale, dei livelli di IgA totali al giorno 28 
nei lavaggi vaginali dei topi immunizzati con HIV-1IIIB-VLPs e HPV-16-VLPs e nella saliva, nei lavaggi 
broncoalveolari e negli omogenati di tessuto polmonare dei topi immunizzati con H7N1-VLPs in presenza di 
CCL28. Risultati simili sono stati ottenuti nell’analisi dei livelli di anticorpi IgA antigene-specifici nelle 
secrezioni vaginali dei topi immunizzati con HIV-1IIIB-VLPs e HPV-16-VLPs e nel tessuto polmonare dei topi 
immunizzati con H7N1-VLPs in combinazione con CCL28. In ultimo, i livelli sierici di anticorpi IgG e IgA 
antigene-specifici sono risultati aumentati, in tutti e tre i modelli animali, nei topi immunizzati con VLPs in 
combinazione con CCL28 rispetto ai gruppi controllo.  Tali dati sono stati confermati dall’osservazione di un 
aumento dell’attività neutralizzante dei campioni sierici e mucosali, e di un massivo reclutamento di IgA-
ASCs a livello del colon, della mucosa cervicale e del tratto respiratorio nei topi immunizzati con VLPs in 
presenza del plasmide codificante la chemochina. 
 
Conclusioni 
CCL28 è in grado di regolare le risposte immunitarie a livello mucosale; l’effetto è riproducibile utilizzando la 
chemochina come adiuvante in modelli animali immunizzati con VLPs di virus a trasmissione mucosale e 
suggerisce un possibile utilizzo di CCL28 come adiuvante nella preparazione di vaccini finalizzati alla 
prevenzione dell’infezione da HIV-1, Influenza virus A e da HPV. Le prospettive future sono rivolte all’analisi 
dei correlati della risposta immune mucosale alla vaccinazione con VLPs e chemochine. 
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ABSTRACT 

Introduction 
Secretory immunity is the main line of defence against mucosal infections as it can provide pathogen-
blocking secretory IgA at the mucosal surface. CCL28 is a chemokine that binds to CCR3 and CCR10 and 
potently recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. Virus-like particles 
(VLPs) are a novel vaccine approach based on non-pathogenic particles that mimic the structure of authentic 
virus particles. Immunogenicity of vaccines can be improved by the use of chemokine molecular adjuvants. 
Here we propose experimental strategies for evaluating CCL28 immunomodulatory effects in mice after 
vaccination with VLPs of HIV-1IIIB, Influenza A virus (H7N1) and HPV-16 for potential future use of the 
chemokine as an adjuvant in the development of preventive vaccines against mucosal infections. 
 
Materials and Methods 
HIV1IIIB-, H7N1- and HPV16-VLPs were produced in collaboration with the Ruhr-Bochum University, the 
University of Montpellier and the German Research Cancer Centre of Heidelbergh, respectively. Inbred 
female Balb/c mice were randomized to receive HIV1IIIB-VLPs or H7N1-VLPs or HPV16-VLPs in the 
presence or absence of the murine CCL28-expressing plasmid on days 0 and 14. Mice were euthanized on 
day 28. The murine CCL19 expression vector was used as negative control, as this chemokine binds to 
CCR7 receptor. HIV1IIIB-VLPs, HPV16-VLPs and CCL28- and CCL19-expressing plasmids were 
administrated intramuscularly; H7N1-VLPs were administrated intraperitoneally. Blood samples and vaginal 
secretions were collected by standard methods on days 0, 14 and 28. Saliva samples of H7N1-VLPs treated 
mice were collected on days 0, 14 and 28 after intraperitoneal injection of carbachol to induce mice drooling. 
Bronchoalveolar lavages were collected on day 28 by insertion into the trachea of a blunt animal-feeding 
needle and repeated cycles of injection and aspiration of PBS. Tissues obtained from the spleen, colon, 
lungs and the uterine cervix were collected on day 28 to obtain the lymphocyte-enriched cell population for 
cell culture assays and to evaluate IgA-plasma cell distribution at the mucosal level by 
immunohistochemistry analyses. CCR3 and CCR10 surface receptors were evaluated on circulating 
splenocytes by flow cytometry. Th1- and Th2-type cytokine production was evaluated in the supernatants 
from cultivated splenocytes and mucosal T-cells after ex vivo re-stimulation with recombinant HIV-1IIIB gp120 
or hemagglutinin (HA) from Influenza virus A H7N1 or HPV-1 L1 protein. Antigen-specific IgG and IgA were 
measured in sera and mucosal secretions by an ELISA method based on recombinant HIV-1IIIB gp120, HA 
from Influenza A virus H7N1 and HPV-16 L1 protein. Neutralizing activity of both systemic and mucosal 
antibodies was assessed as well. Finally, CCL28-mediated recruitment of IgA-ASCs at mucosal sites was 
evaluated by immunohistochemistry analyses of tissues obtained from the mucosa-associated lymphoid 
tissue (MALT). 
 
Results 
Results presented herein show a significant increase in the percentage and in the mean fluorescence 
intensity (MFI) of CCR3 and CCR10 on CD19

+
 splenocytes in VLP-CCL28 mice compared to VLP-CCL19 or 

VLP alone or CCL28 alone or CCL19 alone or saline mice. Antigen-specific production of Th1-type (IFN-γ) 
and Th2-type (IL-4 and IL-5) cytokines was significantly augmented in splenocytes and mucosal tissues of 
VLP-CCL28 mice compared to VLP-CCL19 or VLP alone mice. Total IgA levels were significantly increased 
compared to baseline values in vaginal secretions of HIV1IIIB-VLP-CCL28 and HPV16-VLP-CCL28 mice, and 
in saliva samples, BALs and lung homogenates of H7N1-VLP-CCL28 mice on day 28. Antigen-specific IgA 
were similarly augmented in vaginal secretions of HIV1IIIB-VLP-CCL28 and HPV16-VLP-CCL28 mice and in 
lungs of H7N1-VLP treated mice. Data were confirmed by the observation that the neutralization ability of 
both immune sera and mucosal secretions was significantly up-regulated in mice receiving CCL28. Finally, 
results presented here indicate that immunization on the presence of the CCL28-expressing plasmid 
significantly increases the quantity of mucosal IgA-ASCs in the rectum of HIV1IIIB-VLP-receiving mice, in the 
lungs of H7N1-VLP-receiving mice and in the uterine cervix of HPV16-VLP-receiving mice. 
 
Conclusion 
CCL28 mediates mucosal immunity; the effect is reproducible using this chemokine as an adjuvant in mice 
immunized with VLPs of mucosally transmitted viruses. CCL28-containing adjuvants should be considered in 
the development of vaccines against HIV-1, Influenza A virus and HPV to prevent infection of mucosal sites 
via modulation of mucosal IgA. Nevertheless, the efficacy evaluation of CCL28 adjuvanticity requires further 
experiments to define immune correlates of mucosal responses to vaccination with VLPs in combination with 
chemokine adjuvants. 
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1. MUCOSAL IMMUNITY 

A large number of mucosal infections continue to represent a challenge for the development of both 
prophylactic and therapeutic vaccines [1]. The vast majority of infections involve the mucosae with regard to 
initial microbial colonization and/or entry into the body.  
Epithelial cells line the insides of the lungs, the gastrointestinal tract, the reproductive and urinary tracts, the 
outer surface of the cornea and make up the exocrine and endocrine glands. Mucosal epithelia comprise an 
extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating 
intimately with adaptive immunity [1,2,3].  
Innate immunological defence mechanisms consist of anti-microbial peptides, complement, 
polymorphonuclear cells and macrophages which ingest and kill invading pathogens.  
The adaptive immune system of mucosal surfaces, together with the local LNs, forms the mucosa-
associated lymphoid tissue (MALT), which is quantitatively the most important organ of adaptive humoral 
immunity.  
The mucosal immune system is highly compartmentalized. Although gut-associated lymphoid tissues 
(GALT), including PPs in the distal ileum, the appendix and numerous isolated lymphoid follicles, constitutes 
the major part of MALT, induction of mucosal immune responses can take place also in the palatine tonsils 
and other lymphoepithelial structures of Waldeyer’s pharyngeal ring, including nasopharynx-associated 
lymphoid tissue (NALT) such as the adenoids and bronchus-associated lymphoid tissue (BALT). However, 
the latter type of MALT is not present in normal lungs of adult humans [4]. 

1.1 Mucosal lymphoid organization 

Mucosae-associated lymphoid tissues (MALTs) are organized lymphoid tissues in close relationship with 
surface and glandular epithelia to constitute both inductive and effector sites of mucosal immune responses 
(Fig. 1) [1].  
 

 
Figure 1: depiction of the human mucosal immune system. 

 
Inductive sites (tonsils, adenoids as NALT, BALT, and PPs and appendix/colonic-rectal solitary follicles as 
GALT) are characterized by several follicles where B-cells are preferentially found and contain, after 
antigenic stimulation, secondary germinal centres. These follicles are surrounded by more diffuse lymphoid 
tissue (extra-follicular area or T-cell zone) and their luminal side (often called "dome") is covered by the so-
called follicle-associated epithelium (FAE), which contains microfold cells (M-cells) sampling the antigenic 
luminal content.  
The FAE expresses certain chemokines (e.g. CCL20) that may explain a dense accumulation of professional 
APCs in the PP domes. Numerous putative APCs also occur immediately underneath the FAE, while the M-
cell pockets are dominated by memory T and B lymphocytes in approximately equal proportions. M-cells 
differentiate from enterocytes under the influence of membrane-bound LTα1β2 that is present on local 
lymphoid cells, mainly B-cells.  
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MALTs lack afferent lymphatics, which are replaced by specialized high endothelial venules, therefore 
microbial stimuli must come directly from the epithelial surfaces, mainly via the M-cells but also aided by DCs 
which may penetrate the surface epithelium with their processes.  
Induction of mucosal immunity hence takes place primarily in MALTs and in the local draining LNs. In 
addition, intra- or subepithelial DCs may capture antigens and migrate via draining LNs to regional LNs 
where they become active APCs, which stimulate T-cells for productive or suppressing immune responses 
depending on associated danger signals.  
Conversely, effector sites are represented by the diffuse lamina propria of the different mucosa and exocrine 
glands, also in striking relationship with the epithelium.  
Although mucosal and systemic immune systems do not appear totally segregated, MALT has some specific 
features such as a large predominance of IgA-producing immunocytes.  
Several characteristics of the MALT were demonstrated in studies mainly related to the gut, although most of 
them probably also apply to the respiratory tract. However, a major difference between the airway and 
digestive mucosa is that MALT and M-cells are virtually absent from the normal respiratory tract [5]. Thus, 
the organization of the MALT, including M-cell epithelial differentiation is probably induced only when airway 
and lung tissues are exposed to an increased antigenic load.  
Although the genital tract is considered to be a component of the mucosal immune system, it displays 
several distinct features not shared by other mucosal tissues or the systemic compartment [6].  
Mucosal lymphoid nodules and M-cells for antigen uptake overlaying organized lymphoid tissue like in the 
intestinal tract are missing in the reproductive tract. There are lymphoid aggregates in the basal layers of the 
uterus but their presence and distribution strongly varies under the hormonal influence. Besides lymphoid 
aggregates, the genital tract mucosa contains APCs such as macrophages and DCs as well as epithelial 
cells. Furthermore, particularly the mucosal immune system of the female genital tract is under strong 
hormonal control that regulates the transport of Igs, the levels of cytokines, the distribution of various cell 
populations and antigen presentation in the genital tissues during the reproductive cycle.  

1.2 Stimulation of mucosal immunity 

Naϊve B-cells enter MALT through high endothelial venules by a multistep process of extravasation into 
inductive sites. There, they are primed in extra-follicular areas by local CD4+ T-cells, which are activated by 
interdigitating APCs that have processed a luminal antigen. In addition, luminal peptides may be taken up 
and presented by B-cells and epithelial cells to subsets of intra- and subepithelial T lymphocytes [7].  
Both professional mucosal APCs, B-cells and epithelial cells, as well as FAE except for the M-cells, express 
MHC class I and II molecules. Interestingly, MHC class II-expressing naϊve and memory B-cells aggregate 
together with T-cells in the M-cell pockets, which thus represent the first contact site between immune cells 
and luminal antigens. Other types of professional APCs are mainly located below the FAE and between the 
follicles.  
Primed B-cells migrate specifically in the germinal centres where they are induced to lead to memory B-cells 
or initiate isotype switching of their heavy chain constant region (CH) gene from Cµ to downstream isotypes. 
This isotype switching constitutes the terminal phase of B-cell maturation into Ig-producing immunocytes. 
CD4+ helper T-cells activated in MALT are known to release cytokines such as TGF-β and IL-10 which drive 
the class switch and differentiation of mucosal B-cells to predominantly IgA-committed plasmablasts, 
although their detailed regulation still remains unclear [8]. However, the precise reason why IgA-producing 
immunocytes represent the predominant mucosal mature plasma cell remains obscure.  
Thus antigen specific B-cells rapidly recirculate from MALT through lymph and blood to become seeded by 
preferential homing mechanisms into distant mucosal effector sites, where they finally differentiate to PCs. 
This terminal differentiation is modulated by “second signals” from local antigen-sampling DCs, CD4+ T-cells 
and available cytokines.  

1.3 Secretory immunity 

The secretory antibody basis for antigen exclusion and/or virus and toxin neutralization within epithelial cells 
is locally provided by the mucosae and associated exocrine glands which harbour most of the body’s 
activated B cells, terminally differentiated to Ig-producing plasmablasts and PCs.  
The molecular heterogeneity of IgA in serum and secretions is mainly related to its polymerization state. 
Serum IgA in humans and primates consists mostly of monomeric IgA (88%), which is produced by bone 
marrow plasma cells, and its concentration in serum is about five-fold lower than that of IgG. By contrast, 
mucosal plasma cells produce mostly pIgA (80%, mainly dimeric), which is the predominant form of IgA in 
secretions.  
SIgA antibodies are remarkable stable hybride molecules, mainly consisting of PC-derived IgA dimers with 
one or more “joining” (J) chain(s) and an epithelial portion called bound secretory component (SC) which is 
disulfide linked to one of the IgA subunits (Fig. 2). 
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Most mucosal PCs (70-90%) do normally produce dimers and some trimers of IgA which, together with J 
chain-containing pentameric IgM, are exported by secretory epithelial cells to provide SIgA and SIgM 
antibodies. The J chain is a 15 KDa peptide that is essential for correct polymerization of pIgA and 
pentameric IgM and their subsequent binding to pIgR.  
 

 
Figure 2: secretory IgA antibody structure. 

 
The pIgR is expressed on the basolateral pole of epithelial cells, mainly of the serous type in the gut, 
whereas mucous and ciliated cells also express this surface receptor in bronchi, although to a lesser extent 
than the serous phenotype [5].  
The human pIgR/SC consists in a 100 kDa protein of 693 amino acids which comprises an N-terminal signal 
peptide, five Ig-like domains D1-D5 and a sixth extracellular domain, followed by a membrane-spanning 
segment and a highly conserved cytoplasmic tail.  
The binding of pIgA to pIgR is initiated by a noncovalent interaction between a loop region of the third 
constant domain of IgA (Cα3) and a conserved sequence in D1 of the pIgR. The pIgR complexed with a pIg 
is endocytosed and delivered to basal early endosomes. The ligand-receptor complexes are transcytosed in 
microtubular structures and trapped in apical vesicles to reach the apical membrane. There, the pIgR is 
released as the SC by a proteolytic cleavage just upstream from the membrane-spanning segment. The 
cleavage releases J-chain-containing pIgA, covalently linked to SC to generate SIgA, whereas IgM is 
noncovalently complexed to SC to form SIgM (Fig. 3).  
Cleaved unoccupied pIgR is released in variable amounts to the secretions as so called free SC. Association 
with SC was shown to protect SIgA from proteolytic degradation, although the latter is much less pronounced 
in the respiratory tract than in the large bowel.  
 

 
Figure 3: transcytosis of pIgA mediated by the pIgR. 
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In addition, nonsecretory Igs such as monomeric IgA, IgG, IgD or IgE can also reach secretions, mostly by 
passive diffusion through the endothelial and epithelial tight junctions from submucosal blood capillaries, or 
from locally infiltrating plasma cells producing these monomeric Igs.  
Moreover, these monomeric Igs might be cotransported via the pIgR, concomitantly with an immune complex 
involving at least one pIg.  
Although the membrane SC/pIgR expression is constitutively regulated, it can be enhanced at the 
transcriptional level by the immunoregulatory cytokines IFN-γ and IL-4, as well as by the proinflammatory 
cytokines TNF-α and IL-1. 

1.4 Function of secretory IgA, IgM and local IgG antibodies 

In cooperation with a variety of innate mucosal defence mechanisms, the function of secretory antibodies is 
to perform immune exclusion of exogenous antigen.  
Because of its remarkable stability, SIgA can retain its antibody activity for prolonged periods in hostile 
environments such as the gut lumen [9] and oral cavity.  
The antibody function of SIgA is most likely enhanced significantly by the high level of cross-reacting activity 
as also detected in human secretions [10]. These natural antibodies are apparently designed for urgent 
protection before an adaptive specific immune response is elicited; they are therefore reminiscent of innate 
immunity.  
In the lumen, SIgA will coat commensal bacteria, apparently without stopping their growth, most likely 
reflecting cross-reactive natural antibodies, although microbial binding via the Fc portion of IgA cannot be 
excluded. Regardless of mechanism, such coating reduces bacterial access to the epithelial surface and 
protect against bacterial overgrowth and invasion, containing the indigenous microbiota in the lumen to 
maintain the host-parasite mutualism.  
It’s been traditionally believed that SIgA can also efficiently inhibit epithelial colonization and invasion of 
pathogens.  
The agglutinating and microbial enzyme- as well as virus-neutralization effect of pIgA and SIgA is superior 
compared with monomeric antibodies and SIgA can effectively block epithelial penetration in experiments 
with HIV [11]. Also individuals negative for HIV who live together with HIV-positive partners for several years 
often appear to be protected by specific IgA antibodies in their genital tract [12].  
SIgA antibodies can enhance the striking of bacteria or other antigens to mucus because of the mucophilic 
properties of its bound SC, thereby promoting clearance of immune complexes by respiratory ciliary 
movement and intestinal peristalsis.  
Animal and culture experiments have suggested that secretory antibodies can perform immune exclusion not 
only on the epithelial surface. During the pIgR-mediated transport of pIgA and pentameric IgM, such 
antibodies may even inactivate viruses (e.g. Influenza virus and HIV) inside of secretory epithelial cells and 
carry the pathogens and their products back to the lumen, thus avoiding cytolytic damage to the epithelium 
[13,14].  
It has also been demonstrated that pIgA antibodies can remove antigens from the lamina propria [15] and 
neutralize bacterial LPS within intestinal epithelial cells [16], suggesting novel anti-inflammatory and non-
cytotoxic roles for this antibody class during its export to the lumen. 
Thus, IgA appears to be able to neutralize infectious agents or antigens at the three levels of the mucosal 
tissues: into the lumen ("exclusion" of bacteria), inside the epithelial cell ("neutralization" of viruses), and in 
the lamina propria ("excretion" of immune complexes) (Fig. 4). 
Potentially important additional defence function is the suggested ability of SIgA antibodies to promote 
biofilm formation [17], induce loss of bacterial plasmids that code for adherence-associated molecules and 
resistance to antibiotics [18], interfere with growth factor (e.g. iron) and enzymes necessary for pathogenic 
bacteria and parasites [19], and promote the bacteriostatic effects of lactoferrin [20] and peroxidase system 
[21]. 
 
Whereas IgA1 represents the predominant isotype, a relative increase of IgA2 expression characterizes 
mucosal (especially in the large bowel, but also in the bronchi) as compared to systemic Ig-producing cells. 
IgA2 lacks most of the hinge region and therefore appears less susceptible to degradation by bacterial IgA-
proteases.  
Therefore, because of the intrinsic resistance of IgA2 to IgA1 proteases of many pathogenic bacteria, the 
increased proportions of IgA2 may provide functional advantage to certain specific antibodies. 
Alternatively, for IgG-producing mucosal cells (representing about 3 and 20% of the Ig-producing cells in the 
gut and bronchi, respectively), the predominant isotype is IgG1.  
Moreover, IgG3+ cells are more frequent than IgG2+ cells in the upper airways, in contrast with the distal gut. 
IgE-producing plasma cells are virtually absent, except in the mucosa from some allergic patients. 
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Figure 4: schematic representation of three levels at which SIgA may provide mucosal immune protection. 
 
Antigen-specific IgA, IgG and IgM antibodies and SCs can be detected in the external secretions of the 
human genital tracts.  
As far as the female genital tract is concerned, IgG levels in the lower genital tract secretions seem to equal 
or even exceed the levels of S-IgA whereas the dominant isotype of other mucosal secretions is S-IgA.  
In contrast to other mucosal secretions in which 80% of IgA is polymeric, cervical mucus contains about 70% 
pIgA and vaginal secretions contain almost equal proportions of polymeric and monomeric IgA, clearly 
demonstrating that the genital tract relies heavily on antibodies derived from serum and systemic immunity. 
Of note, both the rectal and vaginal mucosa are drained by the iliac LNs and there is indirect evidence that 
IgA-ASCs in the vaginal mucosa originate from the solitary lymphoid nodules of the rectum [22], which 
resemble PPs of the small intestine in their cellular structure and phenotype. 
IgG occurring in genital secretions is deemed to be mainly serum-derived, but a significant enrichment of the 
IgG1 subclass suggest also some local influence. However, the mechanisms involved in the appearance of 
IgG in cervical secretions remain unclear [6]. 
 
Although SIgA is the chief effector of immune exclusion, SIgM also contributes, particularly in the newborn 
period and in IgA deficiency.  
In addition, there may be a significant contribution to immune exclusion by serum-derived or locally produced 
IgG antibodies transferred passively to the lumen by paracellular leakage or exported actively by the FcRn 
expressed particularly on the gut epithelium.  
IgG and monomeric IgA antibodies, when cross-linked via antigen with pIgA of the same specificity, might 
contribute to pIgR-mediated epithelial excretion of foreign material from the intestinal LP [1].  
Notably, however, because IgG is complement-activating, its contribution to surface defence is potentially 
proinflammatory, which could jeopardize the epithelial barrier function. Such deterioration of local 
homeostasis is counteracted by competition with anti-inflammatory IgA and by a variety of complement 
regulatory factors produced by mucosal epithelia. 
Studies in mucosally vaccinated wild-type mice challenged with Influenza virus intranasally have suggested 
that while SIgA antibodies are essential to control virus replication locally, serum IgG antibodies protect 
against clinical illness [23]. However, although systemic immunity may be considered a life-saving layer of 
defence, it operates at the risk of causing inflammation and tissue damage.  
Thus it has been experimentally documented that SIgA antibodies prevent virally induced pathology in the 
upper airways, whereas IgG antibodies neutralize newly replicated virus after the initiation of infection [24]. 
Therefore, in the face of most infections, it is important that vaccination induces both secretory and serum 
antibodies. 

1.5 Evaluation of the protective effect of secretory immunity 

It is difficult to evaluate the protective effect of SIgA and SIgM antibodies during mucosal infection due to 
concurrent induction of systemic immunity.  
As alluded to above, a protective effect of serum antibodies (mainly IgG) may contribute to immune 
exclusion, particularly in the respiratory tract, in addition to the general importance of inhibiting further spread 
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of the infectious agent by performing antibody-dependent neutralization and immune elimination within the 
lamina propria [25]. 
An essential protective role of SIgA has been questioned by observations in IgA knockout (IgA-/-) mice [26]. 
These mice remain healthy under ordinary laboratory conditions and when challenged with Influenza virus, 
they show similar pulmonary virus levels and mortality as wild-type (IgA+/+) mice. In addition, the IgA-/- mice 
usually show a compensatory SIgM response and, compared with wild-type mice, they are less prone to 
inflammation-induced pathology, apparently because of reduced antigen-presenting ability [27]. 
Leakage of serum IgG antibodies through an irritated mucosal surface epithelium may play a significant 
protective role in the airways [28].  
However, the controversy of IgA- versus IgG-mediated protection of the respiratory tract has been recently 
resolved by the observation that both antibodies are important, with plasma IgG serving as the back-up for 
SIgA-mediated protection in the nasal compartment, and IgA being the dominant antibody in protection of the 
lung [29]. 
The fact that humans with selective IgA deficiency do not suffer significantly more than others from intestinal 
virus infections, may largely be ascribed to their consistently enhanced SIgM and IgG1 responses in the gut, 
as well as increased numbers of intraepithelial lymphocytes [30].  
The notion that secretory antibodies are essential for an optimal mucosal barrier function is supported by the 
systemic IgG antibody response against E. coli observed in pIgR-/- mice, reflecting excessive penetration of 
antigens from the gut microbiota [31]. Such knockout mice have also been used to test the role of SIgA 
antibodies in the defence against influenza virus [32]. After intranasal immunization, wild-type mice showed 
complete protection or partial cross-protection when challenged with live A/PR8 Influenza virus. Lack of 
SIgA, and SIgM, in the airways of pIgR-/- mice caused reduced protection and cross-protection, despite 
leakage of IgG and some IgA from serum into nasal secretions. This result emphasizes the importance of 
SIgA antibodies in mucosal virus defence. 
Moreover, induction of SIgA responses has been shown to interfere significantly with mucosal uptake of 
macromolecules in experimental animals without causing immunopathology, in contrast to the adverse 
effects on the barrier function caused by serum IgG antibodies [15].  
In keeping with these early observations, SIgA antibodies are essential in protection against CT, as recently 
demonstrated in knockout mice lacking J chain [33] or pIgR, two central components of the secretory 
immune system. The same is probably true for heat-labile E. coli enterotoxin, which binds with high affinity to 
the same ganglioside receptor as CT.  
The initial epithelial colonization of bacterial pathogens is apparently also largely controlled by SIgA 
antibodies, even in naϊve animals.  
Most importantly, the natural horizontal faecal-oral spread of gut pathogens is significantly diminished by 
secretory antibodies [34], apparently because the SIgA coating of bacteria reduces both their mucosal 
colonization and faecal shedding.  
IgAs have been implied in the neutralization of viruses, as recently demonstrated in HIV-exposed but 
uninfected individuals (ESNs).  
In an important cross-sectional study, made of sex professionals in Kenya, it was observed that 75% of the 
women who were immunologically resistant to HIV had specific SIgA against the virus in the genital tract, 
while only 26% of the women infected by this virus had this antibody [35,36]. It was found, in further studies, 
those in uninfected individuals who are continuously exposed to HIV, that specific secretory IgA not only 
neutralizes the virus in secretions, but also induces transcytosis, in which this antibody blocks the action of 
the virus, interfering with its synthesis, besides neutralizing intracellular viruses [37,38].  
Induction of secretory immunity has been speculated also as a possible correlate of protection against HPV 
infections, in contrast to authors who explain the natural history of HPV infections with the dichotomous 
model (Th1/Th2) of immune response, in which cell-mediated immunity determines the evolution of HPV-
induced lesions [39].  
Furthermore, recent studies have shown that patients with genital HPV presented lower salivary IgAs levels 
than the HPV-negative group [40]. The genital-HPV-positive women were more predisposed to present HPV 
in the oral cavity. In this same study, it was also observed that patients who presented concomitant oral and 
genital HPV, had still lower levels of IgAs than those who had only genital HPV. It appears that these 
individuals had a secretory IgA deficiency, either due to intrinsic causes (systemic or local), or some 
mechanism induced by the virus presence. It must be considered that some immunologically-competent 
women may present specific and transitory immunological deficiencies for particular infectious agents in the 
mucosa. Perhaps higher secretory IgA levels affect the initiation and progress of HPV infection.  
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2. HOMING OF ANTIBODY-SECRETING CELLS (ASCs) 

Tissue-resident PCs derive from antigen stimulation of naїve or memory B-cells in secondary lymphoid 
tissues such as the spleen, LNs or MALT. 
In response to ligation with their surface-immunoglobulin, naїve cells undergo clonal expansion and 
differentiation, developing either into memory cells or APCs.  
The first APCs to arise mainly secrete IgM and initially produce a low affinity humoral response. Other 
activated B-cells receive co-stimulation by specialized CD4+ T helper cells and form germinal centres, in 
which class switching, affinity maturation and somatic hypermutation occur. The result is the generation of 
memory B-cells and ASC precursor (plasmablasts) that express high affinity antibodies for their cognate 
antigen. 
Plasmablasts can differentiate locally into sessile PCs that reside in the secondary lymphoid tissue of origin, 
a fate that seems particularly common for IgM ASCs, or they can traffic back through the efferent lymph to 
the blood to populate distant sites. Furthermore, most ASCs leave lymphoid tissues and travel to the bone 
marrow, where a small fraction becomes long-lived PCs. 
Recent studies indicate that chemoattractant cytokines (chemokines), together with tissue-specific adhesion 
molecules, coordinate the migration of ASCs [41,42,43] from their sites of antigen-driven differentiation in 
lymphoid tissues to target effector sites.  
Developing ASCs downregulate the expression of receptors for lymphoid tissue chemokines and selectively 
up-regulate the expression of chemokine receptors that might target the migration of IgA ASCs to mucosal 
surfaces, IgG ASCs to sites of tissue inflammation and both types of ASCs to the bone marrow, an important 
site for serum antibody production.  
By directing PC homing, chemokines might help to determine the character and efficiency of mucosal, 
inflammatory and systemic antibody responses. 

2.1 Chemokines and plasma-cell homing 

Chemokines are small chemoattractive proteins found in mammals, birds and fish [44].  
Four subtypes have been identified, named after the number and spacing of cysteine residues in the amino-
terminal region as C, CC, CXC or CX3C. All are secreted molecules except the single defined CX3C 
chemokine, fractalkine, which has transmembrane and cytoplasmic domains (Fig. 5). 
 

 
Figure 5: structure of chemokine classes. 

 
Chemokines are highly basic proteins and this property may help mediate stable gradient formation by 
promoting interactions with sulfated proteins and proteoglycans. 
Chemokines signal through transmembrane receptors that cross the cell membrane seven times and couple 
to heterotrimeric GTP-binding proteins (G proteins). Induction of migration up a chemokine gradient 
(chemotaxis) requires activation of PTX-sensitive G proteins, also known as Gi. 
The first chemokines were indentified as molecules induced at sites of inflammation, where they function to 
recruit granulocytes, monocytes, immature DCs and activated T-cells. Some also activate cells for the 
respiratory burst or induce release of inflammatory mediators.  
Different tissues produce different repertoires of inflammatory chemokines and this helps to attract 
appropriate subsets of effector cells into the tissue to respond to the particular pathogen or type of tissue 
damage. 
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More recently, chemokines have been identified that are expressed constitutively within lymphoid organs and 
that attract naїve as well as activated lymphocytes [45]. These “lymphoid chemokines” and their receptors 
appear to be critical for the homeostatic trafficking of leukocytes into subcompartments of lymphoid organs. 
These homeostatic chemokines include CXCL13/BCL, CCL19/ELC, CCL21/SLC and CXCL12/SDF1. 
CXCL13 is made by stromal cells within the B-cell zones (lymphoid organs) in spleen, LNs, PPs and tonsil, 
and both CXCL13 and its receptor, CXCR5, are required for B-cell migration into follicles.  
CXCL13 is also made by cells within the body cavities and it is required for normal accumulation of body 
cavity B-cells. B-cells up-regulate CXCR5 during their development, achieving maximal expression levels as 
mature B-cells. 
In contrast with CXCL13, CCL19 and CCL21 are produced by T zone stromal cells, and CCL21 is also made 
by HEVs, the specialized vessels by which most lymphocytes enter LNs and PPs, and by lymphatic vessels 
within non-lymphoid tissues.  
The CCL19 and CCL21 receptor, CCR7, is required for T-cell and DC migration to lymphoid organ T zones 
[46]. B-cells also express CCR7 and this chemokine contributes to B-cell attachment to HEVs and entry into 
LNs and PPs.  
Within the lymphoid tissue, CXCL13 appears to be the dominant chemokine for naїve B-cell, guiding the 
cells into follicles. However, within a few hours of antigen receptor engagement, B-cells increase their 
expression of CCR7, and the balance of chemokine responsiveness shifts such that the cells localize at the 
boundary of follicles and T-cell zones. It is typically in this location that the first plasmablasts emerge. 
CXCL12 is the unique identified natural ligand of the receptor CXCR4 and participates in ASC homing within 
secondary lymphoid organs and to the bone marrow. CXCL12 is constitutively displayed by epithelial cells in 
the bone marrow and secondary lymphoid organs, where it seems to be produced by nearby osteoblasts, 
stromal cells, or tonsil epithelium.  
Current findings suggest that ASCs may be directed out of the lymphoid areas of spleen and LNs at least in 
part due to the loss of their ability to respond to the lymphoid chemokines CXCL13, CCL19 and CCL21. 
Having reached the perimeter of the lymphoid compartments, the cells enter areas rich in CXCL12 and this 
chemokine then influences their migration.  
In addition, CXCR4 is required for plasmablasts to migrate from the marginal zone bridging or junction zones 
into the red pulp of the spleen during terminal differentiation into PCs.  
Furthermore, CXCL12 plays dual roles in ASC homing to the bone marrow, helping to promote adhesion and 
transmigration of immature APCs across the bone marrow endothelium and subsequently helping to retain 
mature ASCs within the bone marrow, in close contact with stromal cells.  

2.2 Trafficking patterns of IgA and IgG ASCs 

The site of antigen presentation and ASC differentiation, together with the nature of the stimulating antigen, 
determines the main immunoglobulin isotype that is expressed by the induced ASCs, and both the site of 
induction and the isotype expressed correlate with the homing potential and final tissue distribution of the 
resulting ASCs [24]. 
The majority of IgA PCs has a half-life of 5 days, as shown in the mouse gut; therefore a continuous supply 
must be guaranteed by a daily migration and maturation of B-cells into mucosal tissues.  
Repopulation studies have clearly indicated that mucosal effector immunocytes are largely derived from B-
cells initially induced in MALTs. Moreover, a regional specificity characterizes this mucosal homing, since 
primed B-cells migrate preferentially into effector tissues corresponding to the inductive site where they have 
been initially stimulated (Fig. 6a). 
Conversely, IgG ASC precursors, whether from peripheral or gut-associated LNs, or the spleen, are largely 
unable to access mucosal tissues and instead preferentially populate the lymphoid tissues and the non-
mucosal sites of chronic inflammation (Fig. 6b).  
 
Sever studies established that this specific mucosal homing is supported by specific cell-to-cell interactions 
between B-cells and endothelial cells in venules of the parafollicular areas (inductive sites) or of the lamina 
propria (effector sites).  
The interaction between α4β7 integrin expressed by mucosal B- and T-cells and MadCAM-1, constitutively 
expressed by mucosal endothelial cells from HEVs, has been shown to support in the gut both the attraction 
of naϊve B-cells in inductive sites and emigration of primed B-cells in effector tissues.  
More specifically, the former is characterized by the interaction between α4β7 integrin associated with L-
selectin (CD62 ligand) and a MadCAM-1 molecule with a modified O-glycosylation pattern, while the latter 
involves the interaction between α4β7 integrin, without L-selectin, with unmodified MadCAM-1.  
The molecular interactions underlining the specificity of B-cell migration to the airway and lung mucosa 
remain unprecised, since α4β7 is well expressed in the airways, but MadCAM-1 is only very weakly 
expressed by the bronchial endothelium.  
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Figure 6: IgA and IgG distinctive ASC trafficking pattern. 

 
Most post-capillary venules in non-intestinal and non-mucosal sites lack expression of MadCAM-1 and 
instead express the α4β1 ligand VCAM-1, although the mammary glands, the urogenital tract and the 
placenta contain both MadCAM-1 and VCAM-1 expressing vessels.  
IgG ASCs induced systemically can express α4β1, however it is less clear what level of α4β1 is expressed by 
α4β7-positive intestinally derived ASCs. 
The differential interactions of ASCs with VCAM-1 versus MadCAM-1 are likely to be an important 
determinant of selective trafficking of IgA versus IgG ASCs, but there is no clear data on the expression of 
other tissue-specific adhesion molecules such as L-selectin that might also contribute to the dissemination of 
IgA or IgG ASCs.  
However, the shared vascular expression of VCAM-1 by the tissues of the upper aerodigestive tract, in which 
IgA ASCs predominate, and by the systemic tissues that are selectively populated by IgG ASCs indicates the 
existence of additional mechanisms of homing selectivity. 

2.3 IgA ASC trafficking to mucosal tissues 

Although the IgA immune system has historically been considered a “common mucosal immune system” 
[47], more recent data suggest that the IgA immune system has both common and regional characteristics. 
Small intestine-derived IgA plasmablasts appear to be more likely to migrate to both the intestines and non-
intestinal tissues, such as the upper airways, lacrimal, salivary and mammary glands [48], suggesting some 
commonality.  
However, the restricted transfer of antigen-specific IgA to the upper airways, lacrimal gland, nasal cavity, and 
genital tract after nasal immunization, suggests regionalization of the upper aero-digestive and genital tract.  
IgA ASCs in mucosal lymphoid tissues can up-regulate the expression of two chemokine receptors, CCR9 
and CCR10, which are associated with the mucosal tissue trafficking patterns of these cells (Fig. 7). 
CCL25 is a small cytokine belonging to the CC chemokine family that is also known as TECK (Thymus-
Expressed ChemoKine). It is chemotactic for thymocytes, macrophages and DCs, eliciting its effects by 
binding the chemokine receptor CCR9. 
Responsiveness to the CCR9 ligand CCL25 is a characteristic of mouse IgA ASCs in PPs and MLNs, but not 
those in lymphoid tissues of the upper aerodigestive tract [49,50], indicating that the expression of CCR9 is 
induced during the development of IgA ASCs in the lymphoid tissues of the intestinal mucosa. Similarly, in 
humans, CCR9-expressing IgA ASCs are abundant in the appendix, but are rarer in the tonsil [51].  
Moreover, CCR9 expression seems to be associated specifically with cells that are induced by antigens 
presented in the small intestine. Infection with the small intestinal pathogen rotavirus, for example, leads to 
the induction of virus-specific IgA ASCs that migrate in response to CCL25 [31].  
Most IgA ASCs in the LP of the small intestine are CCR9 positive, whereas expression of CCR9 by IgA 
ASCs from other segments of the gut is rare and CCR9 is not expressed by IgA ASCs in the lungs. 
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Consistent with this restricted receptor expression, the CCR9 ligand CCL25 is expressed at high levels by 
crypt epithelial cells [52] and endothelial cells [53] in the small intestine, but shows low levels of or no 
expression at other mucosal sites.  
So, CCR9 and CCL25, which also mediate the homing of a specialized subset of memory T-cells to the small 
intestine [54], seem ideally suited to focus the immune response to antigens in the small intestine. 
 

Figure 7: changes in the expression of chemokine receptors during B-cell differentiation in intestinal and non-
intestinal lymphoid tissues. 

 
By contrast, the CCR10 ligand CCL28 is produced by epithelial cells in various mucosal tissues (the large 
intestine, stomach, trachea and bronchi, mammary glands and salivary glands) [55,56,57], indicating a broad 
role for this chemokine in mucosal immunity (Fig. 8). 
CCL28, also known as mucosae-associated epithelial chemokine (MEC), is a chemokine that regulates the 
chemotaxis of cells that express the chemokine receptors CCR3 and CCR10.  
Human CCL28 is encoded by an RNA transcript of 373 nucleotides and a gene with four exons. The gene 
codes for a 127-amino acid CCL28 protein with a 22-amino acid N-terminal signal peptide. It shares 76% 
nucleic acid identity and 83% amino acid similarity to the equivalent molecule in mouse.  
Almost all IgA ASCs, whether they are from intestinal or non-intestinal lymphoid tissues or mucosal effector 
tissues, express CCR10 and respond to CCL28 (Fig. 7). Surprisingly, even IgA ASCs in the small intestine 
express CCR10.  
In mice, approximately half of the IgA ASCs in the gut wall can be derived from B1 lineage B-cell precursors, 
although the pathway of migration and sites of maturation of these ASCs are uncertain and controversial 
[58,59].  
It is worth noting that the roles of MEC and TECK in IgA ASC biology are well conserved between human 
and mouse: in mice, CCL28 is a highly efficacious chemoattractant for IgA (but not IgG or IgM) ASC from 
multiple mucosal tissues (small and large intestines, lung and mammary gland) and the LNs that drain those 
tissues, while CCL25 responsiveness is relatively limited to IgA ASCs within the small intestine and its 
associated lymphoid tissues.  
The essentially universal expression of CCR10 by IgA ASCs of the lamina propria argues that B1-derived 
IgA-ASCs, as well as the conventional B2-derived IgA-ASCs, express this shared mucosal trafficking 
receptor. By contrast, few IgG or IgM ASCs are CCR10 positive, re-emphasizing the selective association of 
this receptor with IgA ASCs.  
The expression of the CCR10 ligand CCL28 by various mucosal epithelial tissues is probably the missing 
link that allows intestinal IgA ASCs to populate various mucosal sites, a hallmark of the common mucosal 
IgA immune system. 
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Figure 8: model of trafficking of IgA and IgG ASCs mediated by specific adhesion molecules and chemokine 

receptors. 
 
The unique patterns of expression of CCR9 and CCR10 might also help to explain the differences in 
dissemination of antigen-specific IgA after nasal or oral immunization, which is likely to be a result of 
differential migration properties. In fact, CCR9 and CCR10 expression patterns appear to depend on both 
the site of antigen exposure and differentiation state. 
In both humans and mice, oral immunization leads to the presence of antigen-specific IgA in both intestinal 
and non-intestinal mucosal tissues, such as the salivary glands, the respiratory tract and the mammary 
glands [60]. Conversely, nasal immunization leads to a more restricted distribution of antigen-specific IgA in 
the upper aerodigestive tract and the urogenital tract [61].  
The up-regulation of expression of CCR10, but not CCR9, and the expression of α4β1, but not α4β7, by IgA 
ASCs induced in the lymphoid tissues of the upper aerodigestive tract after intranasal immunization would 
allow their trafficking to tissue sites that express VCAM-1 and the CCR10 ligand CCL28. So, nasally induced 
IgA ASCs would traffic efficiently to the salivary glands, respiratory tract and urogenital tract, but not to the 
intestine (especially the small intestine) (Fig. 8).  
By contrast, the induction of expression of CCR9 as well as CCR10, and the expression of α4β7 in addition 
to α4β1 by intestinally derived IgA ASCs after oral immunization should allow trafficking to sites that express 
CCL28 or CCL25 together with either MadCAM-1 or VCAM-1 that is to essentially all mucosal tissues, 
including the small intestine (Fig. 8).  
It is possible that selective antigen challenge in the colon could induce IgA-secreting plasma blasts that 
express CCR10 and α4β7 without expression of CCR9, and these cells would be expected to traffic 
preferentially back to the colon. 
While neither CCR9 nor CCR10 appear to be expressed on resting naїve B cells, we cannot rule out that 
they are expressed at very low levels.  
CCR9 is expressed on approximately 20% of circulating IgA+ B-cells with a memory phenotype. In contrast, 
CCR10 is absent from memory B cells but is expressed on IgA class-switched plasmablasts and PCs. 
Therefore, the expression of both receptors may be regulated by cytokines such as TGF-β that are involved 
in IgA class switching.  
The absence of CCR10 on memory B-cells, however, suggests that CCR10 expression may be more closely 
linked to PC differentiation, particularly in mucosal sites.  
The expression of CCR9 on a subset of memory B cells may mean that these B-cells were originally 
activated in small-intestinal-associated lymphoid tissues, but the specific signals involved in CCR9 induction 
(e.g., TGF-β and/or MAdCAM-1+ DCs) remain to be elucidated.  
Up to 50% of small intestinal PCs express both CCR9 and CCR10. This may mean that these double 
positive cells arose from IgA+ memory B-cells expressing CCR9 or naϊve B-cells activated in small intestinal 
lymphoid tissues and acquired CCR10 upon PC differentiation. Expression of both CCR9 and CCR10, in 
conjunction with α4β7 integrin, would allow these plasmablasts to enter mucosal tissues throughout the 
body.  
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Conversely, IgA+ memory B-cells that do not express CCR9 may therefore represent B-cells that class-
switched in lymphoid tissues outside of the small intestine, for instance in large-intestinal follicles or the 
tonsil, where only 5% of the PCs express CCR9. These CCR9-IgA+ memory cells would become CCR10+ 
upon PC differentiation and traffic into mucosal tissues expressing CCL28, including the small intestine if 
they also co-express α4β7 integrin (a likely scenario for PCs induced in colon follicles but not in the tonsil) 
[34]. 
Up to 15% of circulating IgG ASCs express low levels of CCR10, which might help to mediate their 
localization to mucosal epithelial tissues, in particular to tissues of the upper respiratory tract. However, if 
these same IgG ASCs also lack high levels of α4β7 expression, their relatively low level of expression of 
CCR10 could also help to explain the low frequency of IgG ASCs that are normally present in intestinal 
mucosal tissues.  
At the same time, low levels of CCR10 expression, together with CXCR3 expression and CLA expression, 
could facilitate the recruitment of IgG ASCs to the skin, where the other CCR10 ligand CCL27 is expressed, 
during chronic inflammation. 
 
It is intriguing that the two chemokines that attract IgA ASCs CCL28 and CCL25 have marked homology and 
belong to a subfamily of chemokines that are selectively expressed by epithelial cells.  
Other members of this subfamily include the keratinocyte-expressed chemokine CCL27, also known as 
cutaneous T-cell attracting chemokine (CTACK), which is a second ligand for CCR10. CCL27 is of interest 
because, even though it is a ligand for CCR10, its role seems to be limited to the recruitment of cutaneous 
memory T-cells [62,63]. IgA ASCs respond to CCL27 in vitro, but probably lack expression of CLA, a homing 
receptor for E-selectin, which is required for efficient recruitment of CCR10-expressing T-cells to the skin.  
 
Thus there is an interesting bifurcation in the evolutionary development of tissue-specific T and B cell 
trafficking.  
CCR9 appears to be rather specifically associated with both small-intestinal IgA ASCs and small-intestinal T-
cells, while it is largely absent from both T and PCs in other mucosal sites. On the other hand, even though 
the CCR10 ligand CCL28 is expressed in a variety of mucosal tissues, few if any T-cells in these tissues 
express CCR10. Thus, in contrast to the small intestine where CCR9 appears to be involved in both T and B 
cell biology, CCR10 is associated with mucosal PC trafficking and cutaneous T cell trafficking.   
Additionally, CCL28 is expressed by bone marrow stromal cells, suggesting that the interaction of this 
chemokine with CCR10+/CCR3+ B-cells may contribute to the integration between the mucosal and the 
systemic immune responses [40]. 

2.4 Role of MEC/CCL28 in mucosal immunity 

The ability of the CCL28-CCR3/CCR10 circuit to chemoattract ASCs into multiple mucosal sites has been a 
founding element of the concept of a common mucosal immune system, and very recent results indicate that 
CCL28 has a fundamental role in the modulation of mucosal humoral responses against virus transmitted via 
mucosal surfaces, such as HIV [64]. 
High concentrations of HIV-specific mucosal IgA have been described in both HIV-infected [65] and HIV-
exposed but uninfected individuals (ESNs) [12,66]. HIV-specific IgA seen in these two groups have 
nevertheless shown to be qualitatively different: IgA of ESN recognize epitopes different from those seen in 
HIV-infected individuals [67], are capable of inhibiting virus transcytosis through epithelial layers in vitro and 
have a potent neutralizing activity.  
The CCL28-dependent, but not the CCL25-dependent chemotactic circuit is up-regulated in HIV exposure 
and infection, therefore justifying the augmented mucosal concentrations of IgA seen in these conditions.  
However CCL28 seems to have dual functions in mucosal immunity as a chemokine attracting cells 
expressing CCR10 and/or CCR3 and also as an apically secreted molecule with a potent antimicrobial 
activity against a broad spectrum of microbes [40]. 
Antimicrobial peptides are the evolutionary ancient weapons of multicellular organisms against a wide range 
of microbes, including bacteria, fungi, protozoa, and enveloped viruses.  
Structurally, antimicrobial peptides are grouped roughly into four classes, which comprise anti-parallel-sheet 
peptides stabilized by two to three disulfide bridges, amphipathic-helical peptides, proline-rich coiled 
peptides, and looped or cyclic peptides.  
The fundamental structural principal underlying all classes of antimicrobial peptides seems to be the 
amphipathic design, in which clusters of hydrophobic and cationic amino acids are organized in discrete 
sectors.  
The basis of the selectivity of these peptides against microbes is considered to be due to the relative 
abundance of negative charges in the microbial cell membranes compared with those of the host’s cells. 
Thus these peptides are selectively attracted to the microbial plasma membrane by the mechanism of 
electrostatic interactions, which explains why most antimicrobial peptides are ineffective at high salt 
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concentrations. Subsequently, most peptides are considered to be spontaneously inserted into the 
membrane and to generate physical holes that cause cellular contents to leak out [68]. 
CCL28 is produced by epithelial cells of human and mouse salivary glands and is secreted into human saliva 
and milk at high concentrations.  
However, the very high levels of expression of CCL28 in salivary glands may suggest that CCL28 also has a 
role in salivary glands that is different from cell recruitment. 
Given the particularly strong and selective expression of CCL28 in certain mucosal tissues such as salivary 
glands, mammary glands, trachea and large intestine, which commonly secrete low-salt fluids because of re-
absorption of sodium ions by the epithelial cells expressing the epithelial sodium channel, one important 
function of CCL28 in these tissues may be that it is apically secreted as an antimicrobial protein and protects 
the mucosal surfaces against colonizing microbes. 
Chemokines are well known to bind to heparan sulphate, an abundant component of epithelial cell surface 
and extracellular matrix. This ability is considered to keep chemokines locally concentrated in the vicinity of 
producing cells and to form a gradient within the tissue [69]. The same ability is also likely to help secreted 
CCL28 to be highly concentrated on the mucosal surfaces to form a barrier shield against colonizing 
microbes.  
Thus, even though the concentrations of CCL28 found free in saliva and milk are relatively low compared 
with its IC50 for various microbes, its high surface concentrations on the mucosal surfaces together with 
synergistic effects with other antimicrobial factors rich in mucosal secretions [70] may provide a highly 
effective barrier protection against a wide spectrum of microbes. 
The mature protein of CCL28, which constitutes 127 amino acids with six cysteine residues instead of the 
standard four, has an extended C terminus. The 28-amino acids C-terminal segment after the conserved 4th 
cysteine residue contains as many as eight histidine residues and has 53% sequence similarity with human 
histatin-5, a histidine-rich peptide secreted into saliva that has a potent antimicrobial activity against C. 
albicans [71].  
However CCL28 shows a much broader spectrum of antimicrobial activity than does histatin-5, which is 
mainly effective against Candida species. Like most other antimicrobial peptides, CCL28 apparently exerts 
its antimicrobial activity by spontaneous membrane insertion and pore formation in target microbes. 
Thus, CCL28 may represent the first chemokine that not only attracts cells expressing its receptors CCR10 
and CCR3 into certain mucosal tissues but also is constitutively secreted by epithelial cells in such tissues 
and functions as a potent antimicrobial factor in physiological settings. 
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3. MUCOSAL INFECTIONS 

Mucosal surfaces provide portals of entry for pathogens. Increased sanitation and hygiene, the use of 
antibiotics and childhood vaccination have enormously decreased the death rate from infectious diseases 
over the last century.  
Thus, infectious agents not controlled by antibiotics and improved sanitation and hygiene measures would 
most likely be prevalent under current conditions [72]. Pathogens in this category include respiratory viruses 
(e.g. Influenza virus). Another group includes sexually transmitted disease (STD) pathogens. 
The fact that Influenza virus and HIV infection were listed as the leading causes of death by infectious 
agents in the United States in 1997 confirms this notion [55].  
However, other viral STDs are of major concern. In the United States, it is estimated that approximately 18.9 
million new cases of STD infections occurred in the year 2000, of which 9.1 million (48%) were among young 
persons aged between 15 and 24. Among them, HPV was the most commonly acquired [73]. 
Sexually transmitted diseases (STDs) are caused by a group of infectious microorganisms that are 
transmitted mainly through sexual activity. Bacterial STDs include those caused by Chlamydia trachomatis 
(chlamydia), Neisseria gonorrhoeae (gonorrhea), Treponema pallidum (syphilis), Haemophilus ducreyi 
(chancroid). Trichomonas vaginalis (trichomoniasis) is a common protozoal STD and Candida species 
(candidiasis) are sexually transmitted yeasts. Ultimately, viral STDs include the viral infections caused by 
HIV (HIV infection), Herpes simplex virus type-2 (genital herpes) and Human Papillomavirus (HPV infection).  
Bacterial and protozoan infections are curable with antimicrobial therapy, while viral infections are treatable 
but not curable in the classic sense and appear to be lifelong infections.  
STDs represent an important global health priority because of their devastating impact on women and infants 
and their inter-relationships with HIV/AIDS.  
STDs and HIV are linked by biological interactions and because both infections occur in the same 
populations. Infection with certain STDs can increase the risk of HIV acquisition and transmission as well as 
alter the course of disease progression.  
In addition, STDs can cause long-term health problems, including pelvic inflammatory disease, infertility, 
tubal or ectopic pregnancy, cervical cancer in women, and perinatal or congenital infections in infants born to 
infected mothers.  

3.2 Influenza virus 

Influenza viruses are among the most common causes of human respiratory infections [74], and among the 
most significant because they cause high morbidity and mortality. In addition to annual winter outbreaks, 
pandemic influenza viruses occasionally emerge, as they have every 8 to 41 years for at least several 
centuries.  
Up to 50% of the population can be infected in a single pandemic year, and the number of deaths caused by 
influenza can dramatically exceed what is normally expected [75]. 
Influenza viruses, of the family Orthomyxoviridae, are enveloped negative-strand RNA viruses with 
segmented genomes containing seven to eight gene segments [76] (Fig. 9).  
 

 
Figure 9: structure of the Influenza virion. 

 
One genus includes influenza A and B viruses, and the other comprises influenza C viruses. The three virus 
types differ in host range and pathogenicity.  
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Type B and C influenza viruses are isolated almost exclusively from humans, although influenza B viruses 
have been isolated from seals and influenza C viruses have been isolated from pigs and dogs. Influenza A 
viruses, however, infect a wide variety of warm-blooded animals, including birds, swine, horses, humans, 
and other mammals. Avian influenza viruses in aquatic birds serve as the natural reservoir for all known 
subtypes of influenza A virus. 
Influenza A and B viruses have a similar structure, whereas influenza C is more divergent. The virus particle 
is 80–12 nm in diameter and usually roughly spherical, although filamentous forms can occur. These 
filamentous forms are more common in influenza C, which can form cordlike structures up to 
500 micrometres long on the surfaces of infected cells.  
 
A and B type viruses contain eight discrete gene segments, each of them coding for at least one protein, and 
are covered with projections of three proteins: HA, NA and M2 (Fig. 10). For example, the influenza A 
genome contains 11 genes on eight pieces of RNA, encoding for 11 proteins: HA, NA, NP, M1, M2, NS1, 
NS2, PA, PB1, PB1-F2 and PB2. Influenza C viruses have seven segments and only one surface 
glycoprotein (Fig. 10).  
 

 
Figure 10: structure and genome organization of Influenza viruses. 

 
HA and NA are the two large glycoproteins on the outside of the viral particles which are antigens to which 
antibodies can be raised. Furthermore, they are targets for antiviral drugs.  
HA is a homotrimeric integral membrane glycoprotein. It is shaped like a cylinder and is approximately 13.5 
nm long. The three identical monomers that constitute HA are constructed into a central α-helix coil; three 
spherical heads contain the sialic acid binding sites.  
HA monomers are synthesized as precursors that are then glycosylated and cleaved into two smaller 
polypeptides: the HA1 and HA2 subunits. Each HA monomer consists of a long, helical chain anchored in 
the membrane by HA2 and topped by a large HA1 globule.  
HA has two functions. Firstly, it allows the recognition of target vertebrate cells, accomplished through the 
binding of these cells' sialic acid-containing receptors. Secondly, once bound, it facilitates the entry of the 
viral genome into the target cells by causing the fusion of host endosomal membrane with the viral 
membrane [77] (Fig. 11).  
 

 
Figure 11: mechanism of action of Influenza hemagglutinin. 
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NA exists as a mushroom-shape projection on the surface of the influenza virus. It has a head consisting of 
four co-planar and roughly spherical subunits, and a hydrophobic region that is embedded within the interior 
of the virus' membrane. It comprises a single polypeptide chain that is oriented in the opposite direction to 
the HA antigen. The composition of the polypeptide is a single chain of six conserved polar amino acids, 
followed by hydrophilic, variable amino acids.  
NA catalyzes the hydrolysis of terminal sialic acid residues from the newly formed virions and from the host 
cell receptors. 
Viruses can only replicate in living cells. Influenza infection and replication is a multi-step process [78]. 
Influenza viruses bind through HA onto sialic acid sugars on the surfaces of epithelial cells, typically in the 
nose, throat and lungs of mammals and intestines of birds. HA binds to the monosaccharide sialic acid which 
is present on the surface of its target cells, which causes the viral particles to stick to the cell's surface.  
The cell membrane then engulfs the virus and the portion of the membrane that encloses it pinches off to 
form a new membrane-bound compartment within the cell called an endosome, which contains the engulfed 
virus.  
The cell then attempts to begin digesting the contents of the endosome by acidifying its interior and 
transforming it into a lysosome. However, as soon as the pH within the endosome drops to about 6.0, the 
original folded structure of the HA molecule becomes unstable, causing it to partially unfold and releasing a 
hydrophobic portion of its peptide chain that was previously hidden within the protein. This so-called "fusion 
peptide" acts like a molecular grappling hook by inserting itself into the endosomal membrane and locking 
on.  
Then, when the rest of the HA molecule refolds into a new structure, which is more stable at the lower pH, it 
"retracts the grappling hook" and pulls the endosomal membrane right up next to the virus particle's own 
membrane, causing the two to fuse together.  
Finally the M2 ion channel allows protons to move through the viral envelope and acidify the core of the 
virus, which causes the core to dissemble and release the viral RNA molecules, accessory proteins and 
RNA-dependent RNA polymerase into the cytoplasm (Fig. 12). 
 

 
Figure 12: Influenza virus entry into target cells. 

 
These core proteins and viral RNA are transported into the cell nucleus, where the RNA-dependent RNA 
polymerase begins transcribing complementary positive-sense viral RNA. The viral RNA is either exported 
into the cytoplasm, and translated, or remains in the nucleus.  
Newly synthesised viral proteins are either secreted through the Golgi apparatus onto the cell surface or 
transported back into the nucleus to bind viral RNA and form new viral genome particles. Other viral proteins 
have multiple actions in the host cell, including degrading cellular mRNA and using the released nucleotides 
for viral RNA synthesis and also inhibiting translation of host-cell mRNAs.  
Negative-sense viral RNAs that form the genomes of future viruses, RNA-dependent RNA polymerase, and 
other viral proteins are assembled into a virion.  
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HA and NA molecules cluster into a bulge in the cell membrane. The viral RNA and viral core proteins leave 
the nucleus and enter this membrane protrusion. The mature virus buds off from the cell in a sphere of host 
phospholipid membrane, acquiring HA and NA with this membrane coat.  
NA promotes the release of progeny viruses and the spread of the virus from the host cell to uninfected 
surrounding cells. It also cleaves sialic acid residues from viral proteins, preventing aggregation of viruses. 
Thus its activities include assistance in the mobility of virus particles through the respiratory tract mucus and 
in the elution of virion progeny from the infected cells (Fig. 13).  
After the release of new influenza viruses, the host cell dies. 
 

 
Figure 13: mechanism of action of Influenza neuraminidase. 

 
Influenza viruses accumulate point mutations during replication because their RNA polymerase complex has 
no proofreading activity. Their genes have high mutation rates (ranging from approximately 1 × 103 to 8 × 103 
substitutions per site per year). Mutations that change amino acids in the antigenic portions of surface 
glycoproteins may produce selective advantages for viral strains by allowing them to evade pre-existing 
immunity. 
The HA molecule initiates infection by binding to receptors on specific host cells. Antibodies against the HA 
protein prevent receptor binding and are effective at preventing re-infection with the same strain.  
The HA and NA can evade previously acquired immunity by either antigenic drift, in which mutations limit or 
prevent antibody binding, or antigenic shift, in which the virus acquires HA of a new subtype by re-
assortment between two influenza A viruses [56].  
Antigenic drift occurs in all types of influenza including influenza virus A, influenza B and influenza C. 
Antigenic shift, however, occurs only in influenza virus A because it infects more than just humans. Affected 
species include other mammals and birds, giving influenza A the opportunity for a major reorganization of 
surface antigens. Influenza B and C principally infect humans, minimizing the chance that a re-assortment 
will change its phenotype drastically. 
Although an antigenically novel HA subtype is a likely requirement for the emergence of an influenza 
pandemic, human infections with animal-adapted influenza virus of novel HA subtype have been observed in 
which the virus is not transmitted efficiently from person to person, suggesting that stable adaptation to 
humans by re-assortment or whole genome adaptation is required for the emergence of a pandemic strain.  
 
Typically, influenza is transmitted through the air by coughs or sneezes, creating aerosols containing the 
virus. Influenza can also be transmitted by direct contact with bird droppings or nasal secretions, or through 
contact with contaminated surfaces.  
Influenza is an acute respiratory disease characterized in its full form by the sudden onset of high fever, 
nasal congestion, cough, headache, prostration, malaise and inflammation of the upper respiratory tree and 
trachea. In most cases, pneumonic involvement is not clinically prominent. Acute symptoms and fever often 
persist for 7 to 10 days. Weakness and fatigue may linger for weeks. 
People with chronic pulmonary or cardiac disease, or diabetes mellitus, are at high risk of developing severe 
complications from influenza A viruses, which may include hemorrhagic bronchitis, pneumonia (primary viral 
or secondary bacterial) and death. Fulminant fatal influenza viral pneumonia occasionally occurs; dyspnea, 
cyanosis, hemoptysis, pulmonary edema and death may proceed in as little as 48 hours after the onset of 
symptoms. 
 
The mechanisms by which influenza infection causes symptoms in humans have been studied intensively. 
Knowing which genes are carried by a particular strain can help predict how well it will infect humans and 
how severe this infection will be [79]. For instance, part of the process that allows influenza viruses to invade 
cells is the cleavage of the viral HA protein by any one of several human proteases.  
In mild and avirulent viruses, the HA can only be cleaved by proteases found in the throat and lungs, so 
these viruses cannot infect other tissues. However, in highly virulent strains, such as H5N1, the HA can be 
cleaved by a wide variety of proteases, allowing the virus to spread throughout the body.  
The viral HA protein is responsible for determining both which species a strain can infect and where in the 
human respiratory tract a strain of influenza will bind. Strains that are easily transmitted between people 
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have HA proteins that bind to receptors in the upper part of the respiratory tract, such as in the nose, throat 
and mouth. In contrast, the highly lethal H5N1 strain binds to receptors that are mostly found deep in the 
lungs. This difference in the site of infection may be part of the reason why the H5N1 strain causes severe 
viral pneumonia in the lungs, but is not easily transmitted by people coughing and sneezing.  
Common symptoms of influenza such as fever, headaches, and fatigue are the result of the huge amounts of 
proinflammatory cytokines and chemokines (such as IFN-γ and TNF-α) produced from influenza-infected 
cells [80]. Influenza does cause tissue damage, so symptoms are due to either a massive immune response 
that produce a life-threatening cytokine storm or the massive levels of viral replication inside the infected 
cells. 
 
Effective measures against influenza A and B diseases include prevention of infection by either vaccination 
with inactivated or live attenuated vaccines or administration of antiviral drugs prophylactically or 
therapeutically.  
Chemically inactivated influenza vaccines consist of detergent-split virion subunits composed of HA and 
lesser amounts of other virion proteins including NA. This inactivated, split vaccine is not completely 
effective, particularly in the elderly. The efficacy of the vaccine is significantly compromised when circulating 
viruses do not have a good match with vaccine strains due to antigenic drift or inaccurate epidemiological 
predictions. A live, attenuated influenza virus vaccine (FluMist®) is also licensed for seasonal influenza and 
is intended for intranasal administration to people 6 months to 49 years of age. Both types of licensed 
influenza vaccines are produced using fertilized chicken eggs as substrates. 
Current influenza vaccines normally protect only for a matter of months; in any case, continuous viral 
antigenic drift of influenza A viruses makes once effective vaccines ineffective after a few years' time. 
Furthermore, they do not generate broadly neutralizing antibodies to multiple strains of influenza and must 
be re-formulated annually to match the predominant virus strains circulating each year.  
Due to limitations in vaccine supply from the conventional egg-based manufacturing system and its 
susceptibility to a pandemic outbreak that could threaten egg-substrate availability, it is important to develop 
alternative influenza vaccines not relying on egg substrates. Several recent studies have focused on 
developing non-replicating VLPs as alternative influenza vaccines [81]. 
Antiviral drugs can have both therapeutic and prophylactic effects, but to prevent disease they must be 
administered continuously at times of high influenza activity. Matrix 2 ion channel blockers are effective 
against influenza A viruses, but resistant viral strains develop rapidly and have been recognized in 
approximately one-third of treated patients. The more recently developed NA inhibitors are effective against 
both influenza A and B viruses. Both classes of drugs are effective in preventing influenza when 
administered prophylactically [82]. However, the importance of predicting the emergence of new circulating 
influenza strains for subsequent annual vaccine development cannot be underestimated. 

3.1 Human immunodeficiency virus (HIV) 

HIV is a member of the family Lentiviridae. Two closely related types of HIV, designated HIV-1 and HIV-2, 
have been identified. HIV-1 is by far the most common cause of AIDS, but HIV-2, which differs in genomic 
structure and antigenicity, causes a similar clinical syndrome [83]. 
An infectious HIV particle consists of two identical strands of RNA packaged within a core of viral proteins 
and surrounded by a phospholipid bilayer envelope derived from the host cell membrane but including virally 
encoded membrane proteins (Fig. 14).  
 

 
Figure 14: structure of Human Immunodeficiency Virus type-1. 
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The RNA genome of HIV is approximately 9.2 kb long and has the basic arrangement of nucleic acid 
sequences characteristic of all known retroviruses.  
LTRs at each end of the genome regulate viral gene expression, viral integration into the host genome, and 
viral replication. The gag sequences encode core structural proteins. The env sequences encode the 
envelope glycoproteins gp120 and gp41, which are required for infection of cells. The pol sequences encode 
reverse transcriptase, integrase, and viral protease enzymes required for viral replication.  In addition to 
these typical retrovirus genes, HIV-1 also includes six other regulatory genes, namely, the tat, rev, vif, nef, 
vpr, and vpu genes, whose products regulate viral reproduction in various ways (Fig. 15). 
 

Figure 15: HIV genome organization. 
 
HIV infection of cells begins when the envelope glycoprotein (Env) of a viral particle binds to both CD4 and a 
coreceptor that is a member of the chemokine receptor family.  
The viral particles that initiate infection are usually in the blood, semen, or other body fluids of one individual 
and are introduced into another individual by sexual contact, needle stick, or transplacental passage.  
Env is a complex composed of a transmembrane gp41 subunit and an external, noncovalently associated 
gp120 subunit. The Env complex is expressed as a trimeric structure of three gp120/gp41 pairs. This 
complex mediates a multistep process of fusion of the virion envelope with the membrane of the target cell 
(Fig. 16).  
 

 
Figure 16: HIV entry mechanism in the host cell. 

 
The first step of this process is the binding of gp120 subunits to CD4 molecules, which induces a 
conformational change that promotes secondary gp120 binding to a chemokine coreceptor. Coreceptor 
binding induces a conformational change in gp41 that exposes a hydrophobic region, called the fusion 
peptide, which inserts into the cell membrane and enables the viral membrane to fuse with the target cell 
membrane. 
Once an HIV virion enters a cell, the nucleoprotein core of the virus becomes disrupted, the RNA genome of 
HIV is transcribed into a double-stranded DNA form by viral reverse transcriptase and the viral DNA enters 
the nucleus.  
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The viral integrase also enters the nucleus and catalyzes the integration of viral DNA into the host cell 
genome. The integrated HIV DNA is called the provirus and may remain transcriptionally inactive for months 
or years, with little or no production of new viral proteins or virions, and in this way HIV infection of an 
individual cell can be latent. 
Transcription of the genes of the provirus is regulated by the LTRs upstream of the viral structural genes, 
and cytokines or other physiologic stimuli to T-cells and macrophages enhance viral gene transcription. The 
LTRs contain polyadenylation signal sequences, the TATA box promoter sequence and binding sites for two 
host cell transcription factors, NF-κB and SP1. Initiation of HIV gene transcription in T-cells is linked to 
activation of the T-cells by antigen or cytokines. 
The Tat protein is required for HIV gene expression and acts by enhancing the production of complete viral 
mRNA transcripts. In fact, few if any HIV mRNA molecules are actually synthesized because transcription of 
HIV genes by mammalian RNA polymerase is inefficient and the polymerase complex usually stops before 
the mRNA is completed. Tat protein binds to the nascent mRNA and increases the "processivity" of RNA 
polymerase by several hundred-fold, which allows transcription to be completed to produce a functional viral 
mRNA. 
The mRNAs encoding the various HIV proteins are derived from a single full-genome-length transcript by 
differential splicing events.  
The Rev, Tat, and Nef proteins are early gene products encoded by fully spliced mRNAs that are exported 
from the nucleus and translated into proteins in the cytoplasm soon after infection of a cell.  
Late genes include env, gag, and pol, which encode the structural components of the virus and are 
translated from singly spliced or un-spliced RNA. The Rev protein initiates the switch from early to late gene 
expression by promoting the export of these incompletely spliced late gene RNAs out of the nucleus.  
The pol gene product is a precursor protein that is sequentially cleaved to form reverse transcriptase, 
protease, ribonuclease, and integrase enzymes. The gag gene encodes a 55-kD protein that is 
proteolytically cleaved by the viral protease into p24, p17 and p15 polypeptides, which are the core proteins 
required for assembly of infectious viral particles. The primary product of the env gene is a 160-kD 
glycoprotein (gp160) that is cleaved by cellular proteases within the endoplasmic reticulum into the gp120 
and gp41 proteins required for HIV binding to cells. 
Assembly of infectious viral particles then begins by packaging full-length RNA transcripts of the proviral 
genome within a nucleoprotein complex that includes the gag core proteins and the pol-encoded enzymes 
required for the next cycle of integration. This nucleoprotein complex is then enclosed within a membrane 
envelope and released from the cell by a process of budding from the plasma membrane.  
The rate of virus production can reach sufficiently high levels to cause cell death. In addition, gp120 and 
gp41, which are expressed on the plasma membrane of infected cells before virus is released, can mediate 
cell-cell fusion with an uninfected cell that expresses CD4 and coreceptors, and HIV genomes can then be 
passed between the fused cells directly. 
 
HIV is transmitted via mucosal surfaces. Major groups at risk for the development of AIDS include 
homosexual or bisexual persons, intravenous drug abusers, heterosexual partners of members of other risk 
groups and babies born of infected mothers. Health care workers have a small increased risk for infection. 
Different isolates of HIV have distinct tropisms for different cell populations that are related to the specificity 
of gp120 variants for different chemokine receptors. All HIV strains can infect and replicate in freshly isolated 
human CD4+ T-cells that are activated in vitro.  
In contrast, some strains will infect primary cultures of human macrophages but not continuous T-cell lines 
(macrophage-tropic, or M-tropic, virus), whereas other strains will infect T-cell lines but not macrophages (T-
tropic virus). Some virus strains also infect both T-cell lines and macrophages (dual-tropic virus).  
Macrophage-tropic virus isolates express a gp120 that binds to CCR5, which is expressed on macrophages 
(and some memory T-cells), whereas T cell-tropic viruses bind to CXCR4, which is expressed on T-cell lines. 
In many HIV-infected individuals, there is a change from the production of virus that uses CCR5 and is 
predominantly macrophage tropic early in the disease to virus that binds to CXCR4 and is T-cell line tropic 
late in the disease.  
The T-tropic strains tend to be more virulent, presumably because they infect and deplete T-cells more than 
do M-tropic strains. 
 
HIV disease begins with acute infection, which is only partly controlled by the adaptive immune response, 
and advances to chronic progressive infection of peripheral lymphoid tissues (Fig. 17).  
Acute infection is characterized by infection of memory CD4+/CCR5+ T-cells in mucosal lymphoid tissues, 
and death of many infected cells. Because the mucosal tissues are the largest reservoir of T cells in the 
body, and the major site of residence of memory T-cells, this local loss is reflected in considerable depletion 
of lymphocytes.  
The transition from the acute phase to a chronic phase of infection is characterized by dissemination of the 
virus, viremia and the development of host immune responses.  
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DCs in epithelia at sites of virus entry capture the virus and then migrate into the LNs. DCs express a protein 
with a mannose-binding lectin domain that may be particularly important in binding the HIV envelope and 
transporting the virus.  
Once in lymphoid tissues, DCs may pass HIV on to CD4+ T-cells through direct cell-cell contact. Within days 
after the first exposure to HIV, viral replication can be detected in the LNs.  
This replication leads to viremia, during which large numbers of HIV particles are present in the patient's 
blood, accompanied by an acute HIV syndrome that includes a variety of nonspecific signs and symptoms 
typical of many viral diseases. The viremia allows the virus to disseminate throughout the body and to infect 
helper T-cells, macrophages and DCs in peripheral lymphoid tissues.  
As the HIV infection spreads, the adaptive immune system mounts both humoral and cell-mediated immune 
responses directed at viral antigens. These immune responses partially control the infection and viral 
production, and such control is reflected by a drop in viremia to low but detectable levels by approximately 
12 weeks after the primary exposure. 
In the next, chronic phase of the disease, LNs and the spleen are sites of continuous HIV replication and cell 
destruction. Although the majority of peripheral blood T-cells does not harbor the virus, destruction of CD4+ 
T-cells within lymphoid tissues steadily progresses during the latent period, and the number of circulating 
blood CD4+ T-cells steadily declines.  
As the disease progresses, patients become susceptible to other infections, and immune responses to these 
infections may stimulate HIV production and accelerate the destruction of lymphoid tissues. 
HIV disease progresses to the final lethal phase, called AIDS, when the blood CD4+ T-cell count drops below 
200 cells/mm3. HIV viremia may climb dramatically as viral replication in other reservoirs accelerates 
unchecked.  
Patients with AIDS suffer from combinations of opportunistic infections, neoplasms, cachexia (HIV wasting 
syndrome), kidney failure (HIV nephropathy), and CNS degeneration (AIDS encephalopathy). 
 

 
Figure 17: typical course of HIV infection. 

 
Naϊve T-cells are resistant to HIV infection because these cells contain the active form of the enzyme 
APOBEC3G, a cytidine deaminase that introduces cytosine to uracil mutations in the viral DNA produced by 
reverse transcription, inhibiting retroviral replication.  
Activation of T-cells converts cellular APOBEC3G into an inactive complex. HIV has evolved to counteract 
this cellular defence mechanism through the viral protein Vif, which binds to APOBEC3G and promotes its 
degradation by cellular proteases 
Macrophages express much lower levels of CD4 than helper T-cells do, but they do express CCR5 
coreceptors and are susceptible to HIV infection. However, because macrophages can be infected but are 
relatively resistant to the cytopathic effects of HIV, they may become a reservoir for the virus.  
DCs can also be infected by HIV but are not directly injured by HIV infection. However, these cells form 
intimate contact with naϊve T-cells during the course of antigen presentation and may thus be an important 
pathway for T-cell injury. 
FDCs in the germinal centres of LNs and the spleen trap large amounts of HIV on their surfaces, in part by 
Fc receptor-mediated binding of antibody-coated virus, and can infect macrophages and CD4+ T-cells in the 
LNs.  
 



                                                                                                                                                          Introduction 
 

23 
 

HIV infection results in impaired function of both the adaptive and innate immune systems.  
An important cause of the loss of CD4+ T-cells in HIV-infected people is the direct cytopathic effect of 
infection of these cells by HIV. Mechanisms in addition to direct lysis of infected CD4+ T-cells by virus have 
been proposed for the depletion and loss of function of these cells in HIV-infected individuals.  
Chronic activation of the T-cells may predispose the cells to apoptosis and apoptotic death of activated 
lymphocytes may account for the observation that the loss of T-cells greatly exceeds the numbers of HIV-
infected cells.  
HIV-specific CTLs are present in many patients with AIDS, and these cells can kill infected CD4+ T-cells.  
In addition, antibodies against HIV envelope proteins may bind to HIV-infected CD4+ T-cells and target the 
cells for ADCC.  
Binding of gp120 to newly synthesized intracellular CD4 may interfere with normal protein processing in the 
endoplasmic reticulum and block cell surface expression of CD4, making the cells incapable of responding to 
antigenic stimulation.  
 
HIV-specific humoral and cell-mediated immune responses develop following infection but generally provide 
limited protection, primarily because of the depletion and functional inhibition of the CD4+ T-cells. 
The initial adaptive immune response to HIV infection is characterized by expansion of CD8+ T-cells specific 
for HIV peptides, which nevertheless prove ineffective because of the emergence of viral escape mutants 
(variants with mutated antigens).  
Antibody responses to a variety of HIV antigens are detectable within 6 to 9 weeks after infection. The most 
immunogenic HIV molecules that elicit antibody responses appear to be the envelope glycoproteins, and 
high titers of anti-gp120 and anti-gp41 antibodies are present in most HIV-infected individuals. Other anti-
HIV antibodies found frequently in patients' sera include antibodies to p24, reverse transcriptase, and gag 
and pol products. The early antibodies are not neutralizing, and are generally poor inhibitors of viral 
infectivity or cytopathic effects. Neutralizing antibodies against gp120 develop 2 to 3 months after primary 
infection, but even these antibodies cannot cope with a virus that is able to rapidly change the most 
immunodominant epitopes of its envelope glycoproteins. 
The failure of cell-mediated and humoral immune responses to eradicate HIV infection is probably due to 
several factors. Notably HIV has an extremely high mutation rate because of error-prone reverse 
transcription, and in this way it may evade detection by antibodies or T-cells generated in response to viral 
proteins.  
 
Active research efforts have been aimed at developing reagents that interfere with the viral life cycle. 
Treatment of HIV infection and AIDS now includes the administration of three classes of antiviral drugs, used 
in combination, that target viral molecules for which no human homologues exist.  
The first type of drug to be widely used consists of nucleoside analogues that inhibit reverse-transcriptase 
activity. These drugs include deoxythymidine nucleoside analogues such as 3'-azido-3'-deoxythymidine 
(AZT), deoxycytidine nucleoside analogues, and deoxyadenosine analogues. When these drugs are used 
alone, they are often effective in significantly reducing plasma HIV RNA levels for several months to years. 
They usually do not halt progression of HIV-induced disease, largely because of the evolution of virus with 
mutated forms of reverse transcriptase that are resistant to the drugs.  
More recently, viral protease inhibitors have been developed that block the processing of precursor proteins 
into mature viral capsid and core proteins. When these protease inhibitors are used alone, mutant viruses 
resistant to their effects rapidly emerge.  
However, protease inhibitors are now being used in combination with two different reverse-transcriptase 
inhibitors. This new triple-drug therapy, commonly referred to as HAART (highly active antiretroviral therapy), 
has proved to be remarkably effective in reducing plasma viral RNA to undetectable levels in most treated 
patients for up to 3 years. An integrase inhibitor is also now used as part of anti-viral therapy.  
Although anti-retroviral therapy has reduced viral titers to below detection for up to 10 years in some 
patients, it is unlikely that such treatment can eliminate the virus from all reservoirs, especially long-lived 
infected cells, and resistance to the drugs may ultimately develop. Other problems associated with these 
new drug therapies, which will impair their effective use in many parts of the world, include high expense, 
complicated administration schedules and serious side effects. 
 
Although there have been numerous approaches for generating HIV vaccines in the past 20 years, to date 
there is no approved vaccine on the market.  
Several vaccine strategies are currently in various validation stages in clinical trials, including recombinant 
DNA plasmids [84], DNA prime and recombinant modified vaccinia Ankara (MVA) boost vaccines [85], 
recombinant viral vectors such as the canarypox immunogens (ALVAC) [86], replication-incompetent 
adenovirus vectors [87], smaller synthetic peptide-based vaccines [88] and recombinant Tat protein vaccines 
[89].  
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Whole killed virus vaccines (Remune) have been tested with some success in mice [90]. Live-attenuated 
virus candidates have not been considered seriously for human trials because of safety concerns, especially 
for immunocompromised patients.  
Until recently, the most prominent approach has been the introduction of exogenous HIV antigens of the viral 
envelope region to HIV-infected individuals to induce renewed virus-specific effector T-cell and neutralizing 
antibody responses.  
However, the results from phase III trials have been disappointing [91]. Purified recombinant gp12 failed to 
protect against HIV-1 infection and also failed to generate neutralizing antibodies to diverse primary isolates, 
since any antibodies produced were highly isolate-specific. The high rates of viral replications, persistent 
expression and presentation of new HIV-1 antigens to the immune system (high variability of Env protein 
through rapid genetic mutations), T-cell hyperactivation and exhaustion, and clonal T-cell anergy are all 
attributed to these failures.  
Given the overall failure to date of all subunit approaches, presenting the envelope in its native form on a 
virus-like platform appears to be intuitively more sensible.  
There are several advantages of using VLPs as a HIV vaccine. First, the immune system responds well to 
particulate antigens that are the size of viruses. Second, the self-assembling core structures of many 
different viruses can be adapted by recombinant technology to contain or display one or more antigens of 
HIV (or SIV) or other immunostimulatory molecules. Third, these particles neither replicate nor contain the 
HIV genome, they cannot produce progeny viruses and thus avoid the formidable safety concerns 
associated with whole-inactivated and live-attenuated virus vaccines. Finally, less amount of vaccine can be 
administered compared with other subunit vaccines without compromising immune responses, thus reducing 
the cost. The use of VLPs, therefore, is an attractive approach for viral vaccine development. 

3.3 Human papillomavirus (HPV) 

HPVs are a very large family comprising more than 130 genotypes that have been cloned from various 
clinical lesions. These viruses are not classified as serotypes but as genotypes on the basis of DNA 
sequence [92]; because in vitro culture of these viruses is problematic, HPV infection is determined by 
detecting HPV-DNA.  
The viruses have a predilection for either cutaneous or mucosal epithelial surfaces and fall into two groups, 
low-risk types that predominantly cause benign warts or high-risk types associated with malignant disease. 
This risk stratification is shown clearly in the genital tract where about 30 to 40 HPVs regularly or 
sporadically infect the mucosal epithelium of men and women.  
The two most common low-risk viruses that cause warts on the anogenital mucosae are HPV-6 and 11. 
There are about 15 oncogenic or high-risk HPVs that infect the genital tract, but the two major players are 
HPV-16 and 18, which are responsible for 70% of cervical carcinomas worldwide [93]. 
The HPV genome can be divided into a coding and a non-coding region. The non-coding region, the LCR, 
contains the origin of viral DNA replication and the enhancer/promoter elements regulating the viral 
transcription. The coding region consists of ORFs and encodes the early (E) and late (L) proteins (Fig. 18).  
 

 
Figure 18: genomic organization of HPV. 

 
The late genes encode structural proteins, the viral capsid proteins (L1 and L2) which self-assemble into the 
viral capsid interacting with a receptor of the target cell facilitating entry of the viral DNA (Fig. 19).  
The early proteins E1 and E2 are involved in regulation of viral transcription and DNA replication.  
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Figure 19: structure of Human Papillomavirus. 

 
The E6 and E7 genes of high-risk HPV types encode for oncoproteins that can immortalize human 
keratinocytes [94]. This potential appears to be limited to high-risk types, because E6 and E7 from HPV-6 or 
HPV-11 are non-transforming.  
E6 will bind, inactivate, and degrade the host’s oncosuppressor protein p53, which results in loss of p53-
induced apoptosis and G1 arrest of the cell cycle [95].  
The p53 protein prevents cell growth and stimulates apoptosis in the presence of DNA damage. It causes 
BAX protein up-regulation, which blocks the anti-apoptotic effects of the mitochondrial BCL-2 protein. In 
addition, p53 also up-regulates the p21 protein, which blocks the formation of the Cyclin D/Cdk4 complex, 
thereby preventing the phosphorylation of retinoblastoma gene product (RB) and, in turn, halting cell cycle 
progression by preventing the activation of E2F. In short, p53 is a tumour suppressor gene that arrests the 
cell cycle when there is DNA damage.  
E6 has a close relationship with the cellular protein E6-AP. E6-AP is involved in the ubiquitin ligase pathway, 
a system which acts to degrade proteins. E6-AP binds ubiquitin to the p53 protein, thereby flagging it for 
proteosomal degradation. 
The binding of E7 to RB will lead to the transcriptional deregulation of cell-cycle control and results in 
uncontrolled cell proliferation [96]. When viral DNA integrates into the host genome (malignant 
transformation), it will cause successively the disruption of the E2 ORF, loss of E2 protein expression, the 
overexpression of E6 and E7, uncontrolled cell proliferation and in the end oncogenic transformation of the 
cell [97].  
HPV genome is usually present in an episomal (circular and non-integrated) configuration in CIN, whereas in 
invasive cervical cancer the genome is commonly integrated into the host DNA [98]. HPV DNA integration 
appears to be the critical event in the development of cervical neoplasia, since HPV E6 and E7 are 
conserved intact and show persistent and increased expression in carcinomas. 
 
From the evolutionary biological standpoint, HPVs are very successful infectious agents, as they induce 
chronic infections that have no systemic sequelae and rarely kill the host but periodically shed large amounts 
of infectious virus for transmission to naїve individuals [99]. 
Infection and vegetative HPV growth are absolutely dependent upon a complete program of keratinocyte 
differentiation (Fig. 20).  
HPV penetrates the suprabasal cells in the cervical epithelium and tightly maintains a program of viral 
transcriptional repression of its late genes L1 and L2, which are potentially the most powerful immunogens 
that HPV synthesizes [100]. This repression allows escape from immune surveillance and recognition.  
Viral gene expression is confined to the keratinocyte; there is no evidence that viral genes are expressed in 
any cell other than keratinocytes, and there is a spatial and temporal pattern of HPV gene expression in the 
infected epithelium.  
The virus infects a subset of primitive basal cells, probably stem cells, at low copy number. Sometime after 
infection, there is a round of viral DNA replication that appears to be independent of the cell cycle and 
amplifies the viral copy number to around 50 to 100 copies per cell.  
The infected cell is thought to then leave this primitive stem cell-like compartment and enter the transit 
amplifying, proliferative compartment of the epithelium. As HPV progresses through the layers of the 
epithelium, the replicative program of its genes changes in an orderly fashion.  
When the infected keratinocyte enters the differentiating compartment, exiting the cell cycle, there is a 
massive up-regulation of viral gene expression and viral DNA replication occurs; there is amplification of viral 
copy number to at least 1,000 copies per cell, abundant expression of the early genes E6 and E7, and 
expression of the late genes from the late promoter [101]. 
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Figure 20: life cycle of Human papillomavirus. 

 
It is important to recognize that these events occur in cells that are differentiating and have exited the cell 
cycle.  
Papillomaviruses encode only one DNA replication enzyme, E1, and apart from this and the viral E2 protein, 
replication is totally dependent upon the cellular DNA synthetic machinery.  
The challenge for the virus is that the cellular DNA polymerases and replication factors are only produced in 
mitotically active cells. To solve this problem, the viruses encode proteins that, in the context of the viral life 
cycle, reactivate cellular DNA synthesis in non-cycling cells, inhibit apoptosis, and delay the differentiation 
program of the infected keratinocyte, creating an environment permissive for viral DNA replication.  
The precise details by which this is achieved are imperfectly understood, but the viral genes central to these 
functions are E6 and E7. Unfortunate but rare by-products of this role in high-risk HPV replication are the 
deregulation of growth control in the infected cell and the development of cancer [102]. 
In this infectious cycle, there is a replication strategy in which viral DNA replication and virus assembly occur 
in a cell that will terminally differentiate and die by natural causes. Thus, there is no viral-induced cytolysis or 
necrosis, and therefore no inflammation.  
For most of the duration of the HPV infectious cycle, there is little or no release into the local milieu of 
proinflammatory cytokines, which is important for APC activation and migration. The central signals to kick 
start the immune responses in squamous epithelia are absent [103]. There is no blood-borne or viremic 
phase of the HPV life cycle, and only minimal amounts of replicating virus are exposed to immune defences; 
in effect, the virus is practically invisible to the host who remains ignorant of the pathogen for long periods of 
time. 
 
HPV infections are exclusively intraepithelial. Theoretically, HPV attacks should be detected by the 
professional APCs of squamous epithelia, the LC, which is the intraepithelial DC. The activated LC should 
then migrate to the draining LN, processing HPV antigens and present antigen to naïve T-cells in the node. 
The T-cells should then differentiate into effector cells, migrate back to the infected site and destroy the 
infected keratinocytes.  
Virus capsid entry is usually an activating signal for DCs, but there is evidence that LCs are not activated by 
the uptake of HPV capsids. LCs, when incubated with L1 VLPs of HPV-16, do not initiate epitope-specific 
immune responses against L1 derived antigens and, in effect, are tolerized by VLP uptake [104].  
In contrast, stromal DCs are activated by VLPs and stimulate HPV-specific T-cells [105], but since the virus 
remains in the epithelium the probability of encountering stromal DCs is low, effectively disabling a key 
component of the immune response. 
Even in the absence of viral-induced cytolysis and cell death, HPV infected keratinocytes should activate the 
production of type-1 interferons, a powerful, generic, antiviral and innate immune defence system. High-risk 
HPV infection downregulates IFN-α inducible gene expression and the HPV-16 E6 and E7 oncoproteins 
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directly interact with components of the interferon signalling pathways, therefore altering the expression of 
genes that enable host resistance to infection and immune function. 
 
Despite the best efforts of the virus to evade host defences, most HPV infections resolve with time. 
Anogenital warts and low-grade intraepithelial lesions are cleared as a result of a successful cell-mediated 
immune response [106] directed against early HPV proteins, particularly E2 and E6.  
In animal infections, this cell-mediated response is closely followed by seroconversion and antibodies to the 
major coat protein, L1 [107]. This is probably also true in humans [77]; however, the antibody concentrations 
achieved in animals and humans are low, and many women do not seroconvert [108].  
This observation should be tempered by the recognition that the current methods of measuring antibody 
concentration are relatively insensitive with a low signal to noise ratio.  
There is no viremia in natural infections. Furthermore, free virus particles are shed from the surface of 
squamous epithelia with poor access to vascular and lymphatic channels and to LNs where immune 
responses are initiated (Fig. 21). 
 

 
Figure 21: simplified scheme of immunological responses to HPV infection. 

 
Although 80% to 90% of genital HPV infections resolve with time, about 10% to 20% of individuals do not 
become HPV-DNA negative and develop persistent infection. This group is at high risk for progression to 
high-grade cervical intraepithelial disease, CIN, a condition characterized by the expression of HPV E6 and 
E7 proteins in dividing cells, chromosomal instability and the progressive ability to resist both innate and 
adaptive antiviral immune defences.  
Integration of HPV-DNA into the host chromosome is a well recognized event that has occurred in a high 
proportion of cervical carcinomas [71,72]. T-cell responses to E2 and E6 are lost or reduced in CIN and 
invasive carcinoma [109]. Even if HPV antigen-specific cytotoxic T-cells have been generated, regulatory T-
cells increasingly dominate the lesions and abrogate the killer defence response [110].  
The challenge for therapeutic vaccines for HPV-associated disease is in fact to reverse this immunologically 
suppressive microenvironment and allow the cytotoxic killers to access the infected and neoplastic cells. 
 
Two HPV L1 VLP vaccines have been developed; Cervarix®, a bivalent HPV-16, -18 VLP vaccine from 
GlaxoSmithKline and Gardasil® also known as Silgard, a quadrivalent HPV-16/18/6/11 vaccine from Merck 
Vaccines.  
These products are to be delivered in a 3 shot immunisation schedule and induce, at their peak after the 
third immunisation at 6 months, high concentrations of neutralizing antibodies to L1 and virtually all subjects 
in the vaccine trials have seroconverted [111,112]. These vaccines are delivered intramuscularly, resulting in 
rapid access of antigen to the local LNs, thus circumventing the immune avoidance strategies of the viral 
intraepithelial infectious cycle.  
The currently available vaccines have been shown to be highly efficacious in the various Phase II and Phase 
III randomized control trials achieving over a 5 year period 100 per cent protection against HPV-16/18 
caused high grade CIN in 15-26 year old women naïve for HPV-16 and/or -18 at trial entry [113,114]. 
Currently, the best assumption is that the mechanism of protection elicited by VLPs is serum antibodies. The 
most unequivocal evidence for this notion comes from experiments in rabbits and dogs [115,116] in which it 
was shown that naïve animals passively immunized with purified serum IgG from either VLP immunized or 
naturally infected animals were completely protected against high viral challenge.  
The mechanism by which neutralizing antibodies to HPV prevent viral entry is at present speculative. 
However, new data on virus entry to cells suggest different stages at which neutralizing antibodies could be 
effective.  
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Recent studies have shown that HPV infection requires a micro-abrasion of the squamous epithelium that 
results in epithelial denudation but retention of the epithelial basement membrane [117].  
HPV initially binds by a primary receptor to this exposed basement membrane before entering the 
keratinocyte, presumably as the keratinocyte migrates along the basement membrane to repair the small 
wound. This is a protracted process extending over 24 to 48 h, during which it is speculated the virus capsid 
undergoes conformational changes that expose the secondary receptor by which the virus binds to and 
enters the keratinocyte. Virus neutralizing antibodies could act therefore, by binding to the receptors or by 
binding to the capsid and preventing the conformational distortion essential for successful viral entry. 
Sera from naturally infected individuals or from vaccinated women show no or only a limited response to 
other HPV types. Thus, despite the good performance of the current vaccines, the development of second-
generation products combined with very potent novel adjuvants is mandatory.  
Furthermore available vaccines do not exhibit any therapeutic activity. This means that women with a 
persisting infection are not protected against the development of the resulting lesions, although they may 
benefit in the long term from a possible novel infection with the same or of the other vaccine types. Therefore 
the development of a therapeutic vaccine is a high priority. 
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4. VIRUS-LIKE PARTICLES 

4.1 General characteristic of VLPs 

The structural proteins of many viruses have the ability to assemble into repeated arrays, or VLPs, following 
recombinant DNA expression in a variety of culture systems. Such VLPs fall in the general size range of 
viruses (22–150nm), with their exact size and morphology depending on the particular viral proteins 
incorporated, but VLPs are non-infectious because they assemble without incorporating genetic material 
[118].  
In some cases, VLPs are similar to naturally occurring subviral particles (SVPs). For example, expression of 
the small envelope protein of HBV in yeast or mammalian cells leads to the formation of 22 nm VLPs that are 
essentially identical to the SVPs that are a natural product of HBV infection, found in patient blood at levels 
far greater than the virion itself. Notably, these plasma-derived SVPs provided the first-generation HBV 
vaccines.  
In other cases, VLPs can be exploited as “platforms” for the presentation of foreign epitopes and/or targeting 
molecules on chimeric VLPs. This can be achieved through modification of the VLP gene sequence(s), such 
that fusion proteins of VLP proteins and foreign vaccine proteins are assembled into VLPs during de novo 
synthesis. Fusion of peptide sequences with the core gene (HBcAg) of hepatitis B virus provided an early 
example of this approach.  
Alternatively, foreign vaccine proteins may be chemically conjugated to pre-formed VLPs. As one example, 
this approach has been used in the production of HBcAg VLPs containing the extracellular domain of the M2 
ion channel protein of Influenza A virus. 
Different viruses provide a variety of building blocks for the production of VLPs. For non-enveloped viruses 
(such as HPV), or core particles of enveloped viruses (such as HBcAg, Influenza virus and HIV), one or 
more chimeric capsid proteins are expressed for self-assembly. Multiple capsid proteins may be assembled 
either from expression and subsequent processing of a precursor protein or by co-expression of the capsid 
proteins from bicistronic or multicistronic vectors in the same cell.  
For enveloped viruses, VLPs are assembled from envelope proteins with or without the matrix/capsid 
proteins that form the authentic viral particle. In either case, the envelope proteins bud from the usual cellular 
compartments, ER, plasma membrane or lipid rafts associated with the plasma membrane, and thus contain 
the cellular lipids that make up the viral lipoprotein envelope. In some instances the VLPs may also include 
host cell proteins, for example, CD55, CD59 and CD46 in HIV, which help evade complement lysis [119].  
 
Among non-enveloped VLPs, HPV VLPs are most thoroughly studied, and the expression of the major 
capsid protein L1 leads to assembly of pentameric capsomeres, 72 of which form a VLP indistinguishable 
from authentic viral particles to the immune system [120].  
VLPs produced in yeast or insect cells were highly immunogenic resulting in successful clinical trials for 
preventing HPV infection and FDA approval for human use [121,122,123,124].  
Although clinical trials have demonstrated the potency of HPV VLPs in inducing immunity and in preventing 
persistent infection [38,39], due to the variability of the L1 major capsid protein, current HPV VLP vaccines 
can only offer genotype-specific protection against infection with papillomavirus in animals and humans. 
Nonetheless, the production of chimeric VLPs constructing by fusing HPV16 E7 sequences into the C-
terminus of the viral L1 gene is going to constitute the first generation of both preventive and therapeutic 
vaccines currently under development [125]. 
VLPs from viruses with lipid envelopes represent more difficult challenges because of the complexity of the 
particle budding process for incorporating biologically active glycoproteins.  
The first human vaccine manufactured using recombinant DNA technology was the enveloped HBV vaccine 
produced in yeast, which has been used for over a decade [126]. 
Enveloped influenza VLPs have been developed by several laboratories and were demonstrated to induce 
protective immunity in animal studies [81]. For influenza viruses, VLPs are assembled in producer cells and 
released into culture medium mimicking the viral budding process, which incorporates viral glycoproteins HA 
and NA on their surfaces in a native conformation, unmodified by fixatives or chemicals for inactivation.  
Many recent studies have provided pre-clinical evidence that influenza VLPs can be developed as promising 
vaccines against both seasonal influenza and pandemic influenza viruses. In addition to the desirable safety 
features of non-replicating, non-infectious VLPs, influenza VLPs may provide a broader range of protection 
against antigenic variants of the virus. Also, they are likely to induce cellular immune responses known to 
play a contributing role in broadening protection, which will be especially beneficial in high-risk groups such 
as the elderly population [81]. 
HIV presents another example where substantial efforts have been made to recreate the virion envelope in a 
form that permits the efficient induction of broadly neutralising antibodies [127]. For HIV, VLPs are based on 
Gag precursor polypeptide (Gagpr55) and must contain Gagp24 for particle assembly, budding and release 
from the host cell. Each particle is enveloped by a lipid bilayer derived from the host cell. Multiple 
combinations of viral proteins may be used to generate HIV VLPs. Furthermore, VLPs can contain different 
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forms of the ENV protein, including unprocessed Env (Envgp160), processed Env, truncated Env or cleavage-
defective Env.  
HIV VLPs have been demonstrated to be safe to administer to animals and human patients as well as being 
potent and efficient stimulators of cellular and humoral immune responses [128]. Therefore, VLPs are being 
considered as possible HIV vaccines. Chimeric HIV-1 VLPs constructed with either HIV or SIV capsid protein 
plus HIV immune epitopes and immunostimulatory molecules have further improved on early VLP designs, 
leading to enhanced immune stimulation [118]. 
 
There are many expression systems for the production of VLPs and these include: various mammalian cell 
lines, either transiently or stably transfected or transduced with viral expression vectors, the 
baculovirus/insect cell system, various species of yeast including Saccharomyces cerevisiae and Pichia 
pastoris, and Escherichia coli and other bacteria.  
Ease of expression, ability to scale-up and cost of production have made yeast a popular choice, however 
considerations such as appropriate protein glycosylation and correct folding and assembly as well as codon 
optimisation may dictate alternative production systems.  
E. coli does not allow for glycosylation, while yeast and baculovirus are limited to high mannose glycoprotein 
modification, and this is sometimes inconsistent.  
Baculovirus-driven expression of Influenza VLPs has provided the novel challenge of separating the progeny 
baculovirus vector particles from the Influenza VLPs, with both having a similar size range of 80–120nm. 
Mammalian cell culture systems are favoured for appropriate modifications and authentic assembly, but are 
a less controllable system and more costly for production.  
Retroviruses in particular also tend to include unwanted host cell membrane proteins in their envelope during 
assembly.  
Future directions in manufacturing may include approaches such as in vitro chemical self-assembly of VLPs 
based, in the first instance, on capsid components [129]. 

4.2 VLPs and the innate and adaptive immune responses 

VLPs are commonly more immunogenic than subunit or recombinant protein immunogens, and are able to 
stimulate both the humoral and cellular arms of the immune system. 
VLPs provide the spatial structure for display of conformational epitopes and in doing so are most likely to 
mimic the native virus structure, thereby enhancing the production of neutralizing antibodies. This may be 
especially true for surface proteins of enveloped viruses, where enveloped VLPs allow the vaccine proteins 
to be presented in their natural state as membrane-bound proteins, rather than as the soluble ectodomains 
alone.  
VLPs may therefore offer a safe and effective approach for the induction of antibody to surface proteins 
where soluble forms of the proteins have failed to be effective. 
In some cases, VLPs do not appear to require the use of adjuvants to achieve potent immune stimulation. 
The self-adjuvanting effects of such VLPs are inherent in their tendency to be a suitable size for uptake by 
DCs for processing and presentation by MHC class II and for directly promoting DC maturation and 
migration, essential for stimulation of the innate immune response [130].  
Exogenous VLPs can also be taken up and processed via the MHC class 1 pathway (cross-presentation) for 
activation of CD8+ T-cells, which are essential for the clearance of intracellular pathogens such as viruses. 
The ability of VLPs to target DCs is an important advantage of VLP vaccines, as targeting of this cell type is 
now understood to be essential for activating the innate and adaptive immune responses.  
Some VLPs that resemble infectious viruses and retain their receptor binding regions are able to target and 
enter cells via their normal receptor and are taken up by antigen presenting cells as exogenous antigens for 
class I presentation.  
Stimulation of DCs to produce cytokines, such as IFN-α/β, does not require replication of the virus but rather 
an intact envelope of a VLP, as shown for Influenza virus and HIV [131], or an intact non-enveloped VLP, 
such as HPV [132]. In this context VLPs may have advantages over the cognate live viruses for immune 
activation, because several viruses that replicate in DCs are known to block activation and maturation of the 
cell through expression of particular viral proteins [109]. 

4.3 Tailoring VLPs for vaccine development 

VLPs have been produced from the envelope or capsid components of a wide variety of viruses for the 
purpose of studying viral assembly and for the development of vaccines.  
While HBV- and HPV- VLPs have made successful vaccines, pathogens that directly affect immune cells 
and those that successfully evade the immune system, such as HIV-1 and HCV have proven to be more 
challenging. 
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It is clear that many individuals are exposed to large amounts of these authentic viral particles for years 
during chronic infection without developing a fully effective immune response, which suggests that VLPs may 
also prove to be ineffective even when they closely mimic the native viral structure.  
Some candidates may thus require adaptations in VLP design (such as particle size, envelope structure), 
targeting in the host (DCs, mucosal surfaces) and route of administration to achieve the desired immune 
response. 
Chimeric VLPs provide a means for the incorporation of heterologous antigens into VLPs, including antigens 
that are unable to self-assemble in a particulate form (such as CTL epitopes and fragments of envelope 
proteins), and antigens from viruses where the intact virus particle may not have optimal immunogenicity 
(such as HIV and HCV).  
Chimeric VLPs may consist of a homologous VLP platform assembled with the fusion of epitopes from other 
or multiple strains of the virus or additional epitopes to the core VLP structure, such as fusion of the E6/E7 
non-structural proteins to the L1 capsid protein of HPV [117]. Alternatively, chimeric VLPs may consist of a 
VLP platform for presentation of polyproteins or epitopes of a totally unrelated virus or pathogen (e.g. HBV 
core VLPs with Influenza M2) [133]. 
Tailoring of VLPs may also be influenced by whether the vaccine is to act as a prophylactic or therapeutic 
vaccine, with the latter thought to require the inclusion of specific T-cell epitopes for CTL based clearance or 
as in the case of HPV the oncogenic E6/E7 proteins [134].  
Other ways of utilising VLPs as a delivery platform is through chemical cross-linking of peptide epitopes to 
reactive sites on the platform. This has been done by coupling peptides containing a free cysteine residue 
with lysines situated in the immunodominant exposed region on HBV core particles [135].  
Chimeric VLPs offer enormous potential in selective, multi-epitope presentation but their success will be 
dependent on a clear understanding of the correlates of immune clearance or protection, including the 
selection of the most relevant epitopes for vaccine efficacy. Unfortunately, this knowledge is lacking for many 
diseases.  
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5. VACCINES FOR MUCOSAL IMMUNITY AGAINST INFECTIOUS DISEASES 

5.1 Challenges in mucosal vaccine development 

A large number of mucosal infections continue to represent a challenge for the development of vaccines that 
either can prevent the pathogen from colonizing the surface epithelium (non-invasive bacteria), penetrate the 
surface barrier and replicate within the body (invasive bacteria and viruses), or block the binding of microbial 
toxins and neutralize them. In most cases it would seem desirable to induce specific SIgA antibodies 
associated with immunological memory, in addition to systemic immunity [136].  
Mucosal immune responses are most efficiently induced by the administration of vaccines onto mucosal 
surfaces, whereas injected vaccines are generally poor inducers of mucosal immunity and are therefore less 
effective against infection at mucosal surfaces. 
Nevertheless, clinical vaccine research has been based largely on injection of antigens, and most vaccines 
in use today are administered intramuscularly or subcutaneously. This is understandable because an 
injection delivers a known quantity of antigen into the body and results in the generation of specific 
antibodies and lymphoid cells that are readily measured in blood samples.  
By contrast, our understanding of mucosal immunity and development of mucosal vaccines has lagged 
behind, in part because administration of mucosal vaccines and measurement of mucosal immune 
responses are more complicated. The dose of mucosal vaccine that actually enters the body cannot be 
accurately measured because antibodies in mucosal secretions are difficult to capture and quantitate, and 
recovery and functional testing of mucosal T-cells is labour intensive and technically challenging. 
As a result, only a few mucosal vaccines have been approved for human use in the United States or 
elsewhere. These include oral vaccines against poliovirus, Salmonella typhi, V. cholerae and rotavirus, and a 
nasal vaccine against influenza virus.  
Mucosal vaccines that are given orally or deposited directly on mucosal surfaces face the same gauntlet of 
host defences as do microbial pathogens: they are diluted in mucosal secretions, captured in mucus gels, 
attacked by proteases and nucleases, and excluded by epithelial barriers. So, relatively large doses of 
vaccine are required and it is impossible to determine exactly what dose actually crosses the mucosa. 
Soluble, non-adherent antigens are taken up at low levels, if at all, and in the intestine, such antigens 
generally induce immune tolerance.  
In general, mucosal vaccines are likely to be most effective when they mimic successful mucosal pathogens 
in key respects: they would ideally be multimeric and/or particulate, adhere to mucosal surfaces (or even 
better, adhere selectively to M cells), efficiently stimulate innate responses, and evoke adaptive immune 
responses that are appropriate for the target pathogen. 
The effectiveness of live pathogens as mucosal vaccines and vaccine vectors is partly a result of their 
adaptation to survive in luminal environments and to efficiently invade organized mucosal lymphoid tissues. 
The efficiency of non-living mucosal vaccines is unlikely to be comparable to these successful invaders, but 
uptake into the mucosa need to be significantly increased. 
Particulate vaccines have several theoretical advantages for mucosal delivery. M cells are particularly 
accessible to microparticles and actively transport them into PPs. Particulate vaccines that enter mucosal 
inductive sites have the additional advantage of being readily taken up by mucosal DCs and providing 
antigen depots.  
Virus-like particles and small vesicles derived from bacterial outer-membrane components are particularly 
promising as mucosal vaccines because their size is appropriate for uptake by M cells and DCs, their 
surface structures mimic those of mucosal pathogens, and they can activate an innate immune response. In 
practice, however, large amounts are needed for mucosal immunization because microparticles tend to be 
trapped in mucus and only a small fraction of the administered dose is likely to enter mucosal inductive sites.  
Non-living macromolecules, protein-subunit antigens and non-microbial particles generally evoke weak or 
undetectable adaptive immune responses when applied mucosally.  
To be distinguished from harmless substances and nutrients, mucosal vaccines must raise alarms in the 
mucosa by including substances that activate innate signaling pathways in epithelial cells and/or in the 
underlying APCs. Thus, the superiority of live attenuated pathogens as mucosal vaccines and vaccine 
vectors is due in part to their ability to activate multiple innate responses. Nevertheless, live vaccines present 
safety and acceptability issues that might reflect innate immune responses and inflammation.  
Ideally, vaccination at a single site would provide both humoral and cell-mediated protection, not only at the 
relevant mucosal surface, but also throughout the body.  
In this regard, nasal vaccination has shown particular potential. In mice, monkeys and humans, nasal 
administration of vaccines has induced specific mucosal IgA antibody responses in the salivary glands, 
upper and lower respiratory tracts, male and female genital tracts, and the small and large intestines 
[137,138,139]. The nasal route can also induce CTLs in distant mucosal tissues including the female genital 
tract [140]. In addition, nasal immunization studies in humans and mice produced greater systemic antibody 
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responses than other mucosal immunization routes [136], presumably because antigens or APCs were 
readily trafficked to draining lymph nodes from this site.  
In mice and monkeys, nasal immunization with certain live viral vectors generated systemic antiviral CTLs 
and IgG at concentrations that were comparable to those induced by parenteral vaccination routes [141]. 
However, rectal immunization of mice with a non-living peptide-based vaccine was more effective than nasal 
or oral routes at inducing systemic CTLs [142]. 
Taken together, the evidence suggests that the choice of mucosal vaccination route requires consideration 
of the species, the nature of the vaccine and the expected site of challenge.  
Although nasal immunization might be particularly effective for protection against respiratory pathogens, 
optimal protection of the gastrointestinal tract, the rectum and female genital tract might still require oral, 
rectal or vaginal vaccines. However, the response to vaginal vaccines might be affected by the stage of the 
menstrual cycle during which immunization is carried out. 
For many pathogens, optimal protection is likely to require both mucosal and systemic immune effectors, and 
the most effective mucosal vaccine strategies might be prime–boost combinations that involve both mucosal 
and systemic delivery. In addition, mucosal adjuvants that target specific immune responses are required. 

5.2 Adjuvants 

Adjuvants are molecules, compounds or macromolecular complexes that boost the potency and longevity of 
specific immune response to antigens, but cause minimal toxicity or long lasting immune effects on their own 
[143]. The addition of adjuvants to vaccines enhances, sustains and directs the immunogenicity of antigens, 
effectively modulating appropriate immune responses, reducing the amount of antigen or number of 
immunizations required and improving the efficacy of vaccines in newborns, elderly or immunocompromised 
individuals. Adjuvants have limited or no efficacy unless properly formulated, therefore both adjuvant 
components and formulation are crucial for enhancing vaccine potency. 
Traditional live vaccines based on attenuated pathogens typically do not require the addition of adjuvants. 
Likewise, vaccines based on inactivated viruses or bacteria are often sufficiently immunogenic without added 
adjuvants, although some of these (e.g. HAV or whole cell Pertussis) can be formulated with adjuvants to 
further enhance the immune responses.  
By contrast, protein-based vaccines, although offering considerable advantages over traditional vaccines in 
terms of safety and cost of production, in most cases have limited immunogenicity and require the addition of 
adjuvants to induce a protective and long-lasting immune response. 
Recent advances have begun to shed light on the cellular and molecular nature of innate immunity and 
adjuvant activity. The immune system recognizes PAMPs by means of PRRs, which include the TLRs [4], C-
type lectin-like receptors, cytosolic nucleotide oligomerization domain-like receptors and retinoic acid 
inducible gene-based-I-like receptors. These receptors bind microbial ligands (including cell wall 
components, lipoproteins, proteins, lipopolysaccharides, DNA and RNA of bacteria, viruses, protozoa and 
fungi) to trigger different types of immune responses [144]. These PAMPs, specifically those binding the 
TLRs, are the basis of many adjuvants. In addition, cytokines, bacterial toxins and glycolipids that alter 
antigen processing are being used in adjuvants to elicit immune responses.  
Effective adjuvants and adjuvant formulations utilize multiple compounds and mechanisms to achieve the 
desired immunological enhancement, including generation of long lasting antigen depots, increased 
immunological presentation of vaccine antigens by DCs activated through the engagement of PRR and 
induction of CTL responses and/or CD4+ T-helper lymphocyte responses (Th1 or Th2). 
Two classes of adjuvants commonly found in modern vaccines include, as shown in Figure 22: 

- immunostimulants that directly act on the immune system to increase responses to antigens (TLR 
ligands, cytokines, saponins and bacterial exotoxins); 

- vehicles that present vaccine antigens to the immune system in an optimal manner, including 
controlled release and depot delivery systems to increase the specific immune response to the 
antigen (mineral salts, emulsions, liposomes, virosomes, biodegradable polymer microspheres and 
so-called immune stimulating complexes, such as ISCOM and ISCOMATRIXTM). 

 

Figure 22: the main types of adjuvants with respect to their depot/carrier and immunostimulatory properties. 
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Adjuvants must be appropriately formulated for stability and maximum effect. Criteria involved in selecting 
the formulation for a given vaccine include the nature of the antigenic components, type of immune response 
desired, preferred route of delivery, avoidance of considerable adverse effects and stability of the vaccine. 
The optimally formulated adjuvant will be safe, stable before administration, readily biodegraded and 
eliminated, able to promote an antigen specific immune response and inexpensive to produce.  
Furthermore, the ideally formulated adjuvant will be well-defined chemically and physically to facilitate quality 
control that will ensure reproducible manufacturing and activity. 
Formulation should also be used to complement the inherent immunogenicity of vaccine antigens. For 
example, small soluble monomeric proteins, such as HIV gp120, tend to be poorly immunogenic compared 
to multimeric proteins that form VLPs. To enhance the immunogenicity of monomeric proteins, a formulation 
that renders it multimeric (e.g. incorporation into virosomes) might be most appropriate. 
For multimeric proteins, virosome formulation might not be appropriate; instead adsorption of the protein to 
mineral salts might enhance its immunogenicity and stability [112]. What seems to be important is the size of 
the particles themselves (20-100 nm range) and the way they interact with and activate DCs. Hence, virus-
sized particles could, by their size alone, act as a form of PAMP to stimulate both cellular and humoral 
immunity [145]. 

5.2.1 Adjuvants approved for human vaccines 

Adjuvants in approved human vaccines include Alum, MF59TM (an oil-in-water emulsion), MPL1 (a 
glycolipid), VLP, Immunopotentiating Reconstituted Influenza Virosomes (IRIV) and CT.  
Aluminum salt based adjuvants, referred to generically as ‘Alum’, are non-crystalline gels based on 
aluminum oxyhydroxide, aluminum hydroxyphosphate or various proprietary salts such as aluminum 
hydroxy-sulfate. These adjuvants are components of several licensed human vaccines, including Diphtheria-
Pertussis-Tetanus, DT, DT combined with HBV, Haemophilus influenza B or inactivated polio virus, HAV, 
Streptococcus pneumonia, meningococcal and HPV. Formulation is achieved through adsorption of antigens 
onto highly charged aluminum particles. The mechanisms of action of the aluminum salts frequently cited 
include: depot formation facilitating continuous antigen release; particulate structure formation promoting 
antigen phagocytosis by APCs such as DCs, macrophages and B-cells and, induction of inflammation 
resulting in recruitment and activation of macrophages, and increased MHC class II expression and antigen 
presentation. The advantages of aluminum adjuvants include their safety record, induction of Th2 cell-
responses, augmentation of antibody responses, antigen stabilization and relatively simple formulation for 
large-scale production. The major limitations of aluminum adjuvants include their inability to elicit cell-
mediated Th1 or CTL responses that that are required to control most intracellular pathogens. 
MF59TM consists of an oil (squalene)-in-water nano-emulsion composed of <250 nm droplets [30] which is 
used in Europe as an adjuvant in influenza vaccines [146]. Overall, MF59TM has an acceptable safety 
profile, and with several antigens it generates higher antibody titers with more balanced IgG1: IgG2a 
responses than those obtained with Alum [147]. In the clinic, strong Th2 cell-responses were also observed 
as a result of vaccination [36]. MF59TM is believed to act through a depot effect and direct stimulation of 
cytokine and chemokine production by monocytes, macrophages and granulocytes. MF59TM does not 
induce increased CD4+ Th1 immune responses, but because of its ability to increase the levels of functional 
haemagglutination inhibiting antibodies and CD8+ T-cell responses, it has the potential for use in pandemic 
influenza vaccines [148].  
MPL1 is a non-toxic derivative of the LPS of Salmonella minnesota and is a potent stimulator of Th1 
responses. LPS consists of two basic structures: a hydrophilic polysaccharide portion and a hydrophobic 
lipid moiety (called lipid A) The lipid A portion is thought to be responsible for most of the endotoxic activity of 
LPS, whereas the polysaccharide portion enhances solubility. Lipid A from S. Minnesota is highly endotoxic 
but this can be reduced by defined structural modifications such as the removal of specific phosphate groups 
or varying the number and length of its acyl chains. AS04 is an aqueous formulation of MPL1 and Alum, 
resulting in higher levels of specific antibody and efficacy with fewer injections. AS04 is being assessed in 
clinical trials evaluating vaccines against HAV and HPV [149]. Furthermore, MPL1 is licensed in Europe for 
allergy treatment because of its ability to down-modulate Th2 responses to allergens. 
IRIVs are proteoliposomes composed of phospholipids, influenza HA and a selected target antigen that are 
delivered to APCs that take up the Virosomes by HA receptor-mediated endocytosis. IRIV is registered as a 
component of the HAV vaccine in Europe, Asia and South America. Both types of particles are taken up by 
APCs by receptor-mediated endocytosis, and have been shown to stimulate cellular and humoral immune 
responses [150]. 
CTB is used to enhance mucosal immune responses of orally delivered vaccines. The naturally occurring CT 
belongs to the AB class of bacterial toxins. It consists of a pentameric B oligomer that binds to GM-1 
receptors (e.g. on the surface of intestinal epithelial cells) and an enzymatically active A subunit that is 
responsible for the toxicity. The recombinant CTB (rCTB) consists only of the non-toxic B component of the 
cholera enterotoxin. The rCTB molecule consists of five identical monomers tightly linked into a trypsin-
resistant pentameric ring-like structure. CTB can act as a mucosal adjuvant and enhance IgA levels to 
coadministered or coupled antigens intranasally [151]. CTB is used to enhance the immune response in a 
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licensed whole-cell orally delivered cholera vaccine. This vaccine has been shown to induce a high level of 
protection against cholera, but was short-lived [152,153]. 

5.2.2 Adjuvants in development 

The development of additional adjuvants has been driven principally by the shortcomings of aluminum 
adjuvants (failure to stimulate T-cell responses, including CTL, loss of potency if frozen and causing 
granulomas at injection sites).  
Montanides (ISA51 and ISA720) are water-in-oil emulsions containing mannide-mono-oleate as an 
emulsifier. Montanides have been developed in response to safety concerns with IFA in animal studies [154]. 
Montanides have been used in malaria, HIV and cancer vaccine trials [155]. They induce a strong immune 
response and are available without requiring a license or contractual agreement. A drawback of Montanides 
is that they are difficult to formulate because an extensive and costly emulsification procedure is required for 
each antigen. In several studies, they have produced unacceptable local reactions. 
Saponins (Quil-A, ISCOM, QS-21) (also included in AS02 and AS01) are triterpene glycosides isolated from 
plants. The most widely used in adjuvant research is Quil-A and its derivatives, extracted from the bark of the 
Quillaja saponaria tree [58]. Quil-A is composed of a heterogeneous mixture of triterpene glycosides that 
vary in their adjuvant activity and toxicity. Saponins have been widely used as an adjuvant in veterinary 
vaccines.  
Partially purified fractions of Quil-A have also been used in immunostimulating complexes (ISCOM) 
composed of antigen, phospholipids, cholesterol and Quil-A fractions. ISCOMs are 40 nm cage-like particles 
trapping the protein antigen through hydrophobic interactions, whereas ISCOMATRIXTM [59], pre-formed 
antigen-free particles, provides for more general applications by later accommodating non-hydrophobic 
antigens. Because of their particulate nature, ISCOMs are directly targeted to and more efficiently taken up 
by APC via endocytosis. Saponin-mediated targeting of DEC-205, a macrophage mannose receptor family of 
c-type lectin endocytic receptors, on the surface of DC might account for higher uptake and more efficient 
presentation of antigens to T-cells [156]. Antigen processing can occur in the endosome for both MHC class 
II and class I presentation, possibly by the recently described cross-presentation pathway [157]. ISCOMs 
have been shown to elicit high titer long-lasting antibodies and strong helper and CTL responses in different 
models [158].  
QS-21 is a purified component of Quil-A that demonstrates low toxicity and maximum adjuvant activity. In a 
variety of animal models, QS-21 has augmented the immunogenicity of protein, glycoprotein and 
polysaccharide antigens [159]. QS-21 has been shown to stimulate both humoral and cell-mediated Th1 and 
CTL responses to subunit antigens [160]. Clinical trials are in progress with QS-21, alone or in combination 
with carriers and other immunostimulants for vaccines against infections including influenza, HSV, HIV, HBV 
and malaria, and cancers including melanoma, colon and B-cell lymphoma. 
MPL1-SE is the result of MPL1 mixed with squalene oil, excipients (inactive substances used as carriers for 
the active ingredient) and water to produce a stable oil-in water emulsion. MPL1-SE is an excellent promoter 
of Th1 responses and is currently being evaluated in several clinical trials to treat and prevent leishmaniasis. 
The adjuvant system (AS) series of adjuvants are proprietary formulations, several of which contain MPL1. 
AS02 is an oil-in-water emulsion containing MPL1 and QS-21 that induces both strong humoral and Th1 
responses. AS02 is being evaluated in vaccine clinical trials for HPV [161], HBV [162] and HIV [163].  
AS01 is a liposomal formulation containing MPL1 and it induces potent humoral and cell-mediated 
responses including CTL responses. AS01 is being evaluated in clinical trials for malaria. 
MDP is the minimal unit of the mycobacterial cell wall complex that generates the adjuvant activity of CFA. 
Several synthetic analogs of MDP, such as muramyl tripeptide phosphatidylethanolamine (MTP-PtdEtn), 
have been generated, and they exhibit a wide range of adjuvant potency and side effects. MTP-PtdEtn 
includes phospholipids that facilitate lipid interactions, whereas the muramyl peptide portion facilitates 
aqueous interactions. Thus, the MTP-PtdEtn itself is able to act as an emulsifying agent to generate stable 
oil-in-water emulsions. 
Synthetic oligodeoxynucleotides, containing unmethylated CpG motifs, act through TLR-9 and induce 
activation of DC and secretion of pro-inflammatory cytokines such as TNF-α, IL-1 and IL-6. TLR-9 activation 
also leads to secretion of the pro-inflammatory cytokines IFN-α, IFN-γ and IL-12. CpGs are extremely 
efficient inducers of Th1 immunity and CTL responses [164] and induce protection against infectious 
disease, allergy and cancer in mice and primate models [165]. Ongoing clinical studies indicate that CpGs 
are relatively safe and well-tolerated in humans [166] but their use has been limited in most cases to therapy 
rather than prophylactic indications. These are being evaluated both in the absence of antigen, for certain 
types of cancer therapy, and with allergens. Because of the biological instability of CpG and their resulting 
short half-life, several approaches have been used to enhance their bioavailability. Stabilizing approaches 
involve complexing to cationic peptides or cationic carriers, conjugating to the vaccine antigen, or 
incorporating the CpG into nucleic acids that form double stranded hairpin loops. 
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Adjuvant activity and safety can be enhanced by combining formulations and immunostimulants [167]. 
However, finding the optimal association between adjuvants is difficult as antagonism or anergy can occur 
rather than synergy [168].  
Co-formulating the antigen and immunostimulant might also be required, as shown by the need for TLRs and 
antigens to be in the same compartment for optimal antigen presentation [169]. Combining antigens in the 
same formulation also allows otherwise non-compatible antigens to be associated in multivalent vaccines 
[91] and can ensure that all antigens will be presented simultaneously. This can reduce the risks of 
immunodominance, should one antigen be presented before the others and take the lead [170]. 
Both antigen(s) and immunostimulant should retain their native conformation and ability to interact with their 
ligands. In this respect, the antigen-adjuvant couple can be crucial, as the antigen itself might increase or 
counteract adjuvant efficacy or affect the induced Th-cell bias. For instance, different antigens can induce 
Th1 cell or mixed Th1/Th2- cell responses even though they are present in identical formulations [171]. 
Finally, formulating immunostimulants in carriers such as liposomes or microparticles targeted to specific 
cells and organs might also increase the safety profile of these molecules, by limiting their distribution in vivo, 
thereby minimizing systemic toxicity. 
Combined formulations have thus been developed, some from before TLRs were identified, and have 
reached clinical trials and market approval. Many are aimed at introducing a cellular Th1 response in 
addition to an antibody response to increase vaccine efficacy against targets such as certain viruses, for 
instance, through TLR4 or TLR9 agonists. For example, a subunit herpes vaccine adjuvanted with AS04 
combining alum and the TLR4 agonist MPL showed partial efficacy in HSV1- and HSV2-seronegative 
women but a similar vaccine adjuvanted with an MF59 emulsion was not protective [172]. 

5.2.3 Cytokines and chemokines as adjuvants 

The activity of several potent adjuvants, including IFA, CpG oligodeoxynucleotides and aluminium salts, has 
been shown to be due at least in part to the induction of a varying array of cytokines, including type I IFNs, 
IFN-γ, IL-2, and IL-12, that play key roles in the innate immune response and the establishment of adaptive 
immunity [173].  
Thus, although the action of adjuvants such as IFA or aluminium salts is complex involving carrier, depot, 
targeting and immunomodulatory functions, studies using mice lacking a functional type I IFN receptor have 
shown that the adjuvant activity of IFA and certain CpG oligodeoxynucleotides is due at least in part to their 
ability to induce the production of type I IFNs. It is not surprising therefore that cytokines should in their own 
exhibit potent adjuvant activity. 
Rather than designing adjuvants that induce production of specific cytokines through activation of Th cells, 
specific cytokines may be used directly as adjuvants either alone or in combination with other 
immunopotentiating adjuvants and/or delivery systems. 
Most cytokines have the ability to modify and redirect the immune response when given directly as protein or 
as DNA encoding a cytokine of interest. However, all of these molecules exhibit dose-related toxicity. The 
stability problems and relatively short half-life of recombinant homologues of cytokines has limited their use 
as vaccine adjuvants. These difficulties have been overcome by encapsulation into liposomes and the use of 
cytokine expression vectors co-administered with DNA vaccines.  
Nevertheless, considerable progress has been made in the use of cytokines for the immunotherapy of 
cancer. Microparticles have been used as a delivery system for encapsulated cytokines, including GM-CSF 
and IL-12, mostly for use in oncology settings [174]. 
Although a number of cytokines including IFN-α, IL-2, IL-12, IL-15, IL-18, IL-21, GM-CSF and Flt-3 ligand 
have been shown to potentiate the immune response to vaccination in various experimental models 
[175,176,177,178], the full potential of cytokines as vaccine adjuvants remains to be established. 
The development of effective vaccines against many targeted infectious diseases will most likely require 
adequate adjuvants that can drive the local and systemic immune responses towards pathogen eradication. 
Mucosal adjuvants will need to be able to survive in the harsh microenvironment of the mucosal tracts and 
break immunological tolerance. Once over the epithelial barrier, the adjuvants will need to act on cellular 
members of the innate and adaptive immune system.  
Modulation of immune responses through the chemokine network is therefore an interesting concept for 
vaccine design, although the ability of mucosally expressed chemokines to act as adjuvants and elicit DNA 
vaccine-specific immune responses has yet to be shown. 
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A large number of mucosal infections continue to represent a challenge for the development of vaccines that 
can prevent the pathogen from colonizing the surface epithelium, penetrate the surface barrier and replicate 
within the body.   
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence 
mechanisms cooperating intimately with adaptive immunity. Local secretion of SIgA constitutes the largest 
humoral immune system of the body. Secretory immunity is needful in the defence against mucosal 
infections because it can inhibit initial pathogen colonization by providing blocking SIgA antibody activity on 
the mucosal surface.  
Migration of IgA-secreting plasma cells into the MLP was recently shown to be correlated with specific 
chemokines and chemokine receptors, including CCR3 and CCR10, that bind a CC chemokine named 
CCL28 (MEC, Mucosae-Associated Epithelial Chemokine). CCL28 is widely expressed in the epithelium of 
various mucosal sites, including the small intestine, colon, bronchi and mammary glands, and potently 
chemoattracts IgA-ASCs originating from diverse mucosal lymphoid organs, as well as from intestinal and 
extra intestinal tissues, in every studied mucosal effector site both in mice and humans. 
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. 
Virus-like particles represent an antigen presenting and delivery system currently under investigation as 
potential vaccine for different human viruses. VLPs are non-replicating particles that are similar in 
conformation to intact virus and are able to stimulate both arms of the immune system by entering both MHC 
class I and II presentation pathways. A wide variety of VLPs has shown promising results in small animal 
models and may offer great potential for the development of vaccines against many mucosal infections. 
One strategy that improves the immunogenicity of vaccines is the use of chemokine molecular adjuvants. 
Chemokines are inflammatory molecules that act primarily as chemoattractants and as activators of 
lymphocytes through the enhancement of TH1 and TH2 phenotypes. However the ability of mucosally 
expressed chemokines to act as adjuvants and elicit vaccine-induced antigen-specific immune responses 
has yet to be shown.  
Furthermore, the aim of vaccines against mucosal infections is to induce specific SIgA antibodies associated 
with immunological memory, in addition to systemic immunity. Therefore the development of effective 
mucosal chemokine vaccine adjuvants has implications for prophylactic and therapeutic immunizations 
strategies that require both peripheral and mucosal physiologically relevant antigen-specific immunity. 
 
The aim of this wide study is to evaluate the suitability of CCL28 as an adjuvant for induction of specific 
humoral immunity at mucosal sites in mouse models immunized with HIV1-VLPs, H7N1-VLPs and HPV16-
VLPs, respectively.  
 
With this intention, the influence of CCL28 upon the following elements has been studied: 

� CCR3 and CCR10 receptor expression on CD3+, CD14+ and CD19+ splenocytes; 
� systemic levels of antigen-specific IgG and IgA antibodies; 
� mucosal levels of total and antigen-specific IgA antibodies; 
� systemic and mucosal production of both Th1-type and Th2-type cytokines 
� IgA-secreting plasma cell migration to the effector sites of the MALT 
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1. CYTOKINE-EXPRESSING PLASMIDS 

The CCL28 murine chemokine gene was digested with AgeI from the pORF-mCCL28 plasmid (InvivoGen, 
San Diego, CA, USA) (Fig. 23) and a blunt end was produced with T4-DNA polymerase. Following digestion 
with NheI, the resulting 410 bp fragment was inserted into pCpGfree expression vector (InvivoGen), which 
had been previously digested with ScaI/NheI.  
The murine CCL19 gene inserted into a pCpGfree expression vector (InvivoGen) (Fig. 24) as described 
above was used as a negative control. CCL19 is a cytokine belonging to the CC chemokine family that is 
also known as MIP-3-β. CCL19 is expressed abundantly in thymus and LNs, with moderate levels in trachea 
and colon and low levels in stomach, small intestine, lung, kidney and spleen. This chemokine elicits its 
effects on its target cells by binding to the chemokine receptor CCR7. It attracts certain cells of the immune 
system, including DCs and antigen-engaged B-cells, CCR7+ effector-memory T-cells and is crucial for 
lymphoid cell trafficking and the structural organization of lymphoid tissues. 
 

 
Figure 23: structure of the pORF-mCCL28 plasmid (Invivogen). 

 

 
Figure 24: structure of the pORF-mCCL19 plasmid (Invivogen). 
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2. HIV-1 VLPs-RECEIVING MICE 

2.1 HIV-1IIIB VLPs production 

HIV-1IIIB VLPs were provided as a part of collaboration with Dr. Klaus Überla, Department of Molecular and 
Medical Virology of the University of Ruhr, Bochum, Germany. 
HIV-1 VLPs were produced by transient transfection of human embryo kidney carcinoma cell-line (293T-
cells) with the plasmids pCD-Hgpsyn and pConBgp160-opt. pCD-Hgpsyn contains the codon-optimized gag-
pol sequence of HIV-1 and was kindly provided by Geneart (Regensburg, Germany). pConBgp160-opt 
encodes a full-length subtype B consensus envelope of HIV-1 and was obtained through the AIDS Research 
and Reference Reagent Program, Division of AIDS, NIH, from Dr. Beatrice Hahn. The cells were plated into 
culture flasks (175 cm2) in DMEM medium supplemented with 10% FCS and Penicillin/Streptomycin. At a 
confluence of 80-90%, cells were transfected with 40 µg of each plasmid in DMEM medium supplemented 
with PEI [10 mg/ml], 5% FCS and Penicillin/Streptomycin. The transfection medium was changed 18 hours 
after transfection with DMEM medium supplemented with 2% FCS and Penicillin/Streptomycin and 
harvested 48 hr later. The harvested medium was centrifuged at 300 x g for 10 min and filtrated through a 
0.45 µm filter to remove the cell debris. VLPs were further purified and concentrated from the conditioned 
medium by ultracentrifugation through a 20% sucrose gradient and a subsequent ultracentrifugation at 
28,000 rpm for 2 hr a SW28 rotor. Supernatants were discarded and the pellets containing viral particles 
were resuspended in PBS. VLP production was confirmed by standard electron microscopy analysis. 
The endotoxin level was measured by QCL-1000® Chromogenic LAL Endpoint Assay (Cambrex, Germany) 
according to the manufacturer’s instructions, resulting in an endotoxin concentration of 1,3 ng/ml.  
The concentration of viral proteins in the final VLP preparation was determined by an in-house ELISA and 
corresponded to 1500 ng/ml of HIV-1 Env and 550 ng/ml of HIV-1 Gag. The calibration curve was set by 
using recombinant HIVIIIB Env gp120 (Baculo) (EVA607 supplied by the NIBSC centralized facility for AIDS 
Reagents supported by EU Programme EVA) and Gagp55 (AIDS Research and Reference Reagent Program, 
Division of AIDS, NIAID, NIH). 

2.3 Immunization procedure 

Adult inbred female Balb/c mice, 6-8 weeks old, were purchased from the Charles River Laboratories (Calco, 
Italy). Mouse colonies were maintained on a 12-h light-dark cycle in cages of 5 animals with water and food 
provided ad libitum.  
Mice were randomized in six groups (5 mice/group) to receive VLPs (HIV-1IIIB VLPs 150 ng Env/mouse) in 
combination with pCCL28 (50 µg/mouse) or VLPs (HIV-1IIIB VLPs 150 ng Env/mouse) in combination with 
pCCL19 (50 µg/mouse) or VLPs alone (HIV-1IIIB VLPs 150 ng Env/mouse) or pCCL28 alone (50 µg/mouse) 
or pCCL19 alone (50 µg/mouse). Control mice were treated with endotoxin-free phosphate-buffered saline 
(PBS, Organon Teknika Corp., Durham, NC). 
HIV1IIIB-VLPs and pCCL28 or pCCL19 were separately administrated intramuscularly in the quadriceps 
muscle. 
Mice were immunized on day 0, boosted on day 14 and sacrificed on day 28. Serum and vaginal secretions 
were collected on week 0, 2, and 4, whereas splenocytes and colon were collected on week 4. 

2.4 Sample collection and processing 

2.4.1 Blood and vaginal secretion 

50 µl of blood was collected by tail vein bleeding and added to 100 µl of phosphate-buffered saline (PBS, 
Organon Teknika Corp., Durham, NC) containing 100 IU of heparin (Hip-PBS). Serum was obtained after 
centrifugation at 800 x g for 10 min and stored at -80°C.  
Vaginal secretions were collected with 50 µl of pre-warmed PBS supplemented with 100X-concentrated 
protease inhibitor cocktail (1%, v/v) (O-complete, Roche Applied Science, Germany) by repeated aspiration 
until turbid. This usually took four to eight cycles of pipetting and required cutting the pipette tip back to a 
diameter of 1-2 mm. Material was collected and centrifuged at 12,000 x g for 10 min to separate the mucus 
from the PBS wash solution shortly after collection. The supernatant was transferred to sterile 
microcentrifuge tubes and frozen at -20°C until use.  

2.4.2 Tissue harvesting 

Mice were euthanized by an overdose of anesthetic (i.p. injection with 150 mg xylazine/kg body weight). 
Spleens were excised under sterile conditions in a laminar flow hood and put through a 100 µm plastic 
strainer (BD Falcon 2350, BD Biosciences, Bedford, MA) for cell recovery. Splenocytes were layered on a 
continuous 40-100% Percoll gradient (Sigma) and washed twice in PBS (Organon Teknika Corp., Durham, 
NC) to obtain the lymphocyte-rich cells. Cell viability was determined using trypan blue staining. Splenocytes 
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were resuspended in cell culture medium (RPMI 1640) (Organon Teknika Corp., Durham, NC) and used in 
cell culture assays.  
PPs/colonic mononuclear cells were recovered from  freshly obtained specimens. Colon specimens were 
first washed in HBSS (BioWhittaker Inc.,Walkersville, MD) and cut into 0.5-cm pieces using scissors and 
tweezers. They were then incubated twice, each time for 15 min in HBSS containing EDTA (0.37 mg/ml) 
(Sigma) and dithiothreitol (DTT) (0.145 mg/ml) (Thermo Fisher Scientific, Rockford, IL) at 37° C. The tissues 
were further digested at 37°C for 10 min in Collagenase D (400 U/ml) and DNase I (0.01 mg/ml) (Sigma) 
supplemented RPMI. Tissue-released cells were resuspended in a continuous 100-40% Percoll gradient to 
obtain the lymphocyte-enriched population for cell culture assays. Mice recta were also analysed by 
immune-histochemistry. 

2.4.3 Cell count 

Cell count was performed with the automated cell counter ADAM-MC (Digital Bio, NanoEnTek Inc, Corea).   
ADAM-MC automatic cell counter measures total cell numbers and cell viabilities by cutting edge detection 
technologies. Instead of tryphan blue staining, which can lead to inaccurate data, ADAM-MC utilizes two 
sensitive fluorescence dye staining solutions, AccuStain Solution T (Propidium Iodide/lysis solution) and 
AccuStain Solution N (Propidium IodideI/PBS). AccuStain Solution T allows plasma membrane disruption 
and nucleus staining for measurement of total cell concentration. AccuStain Solution N allows staining of 
non-viable cells, thus leaving viable cells completely intact. A 532 nm optic laser is automatically focused 
onto the cell solution inserted into a disposable microchip and cell analysis is made by a CCD detection 
technology. 

2.5 Flow cytometry analyses of CCR3 and CCR10 expression 

CCR3 and CCR10 surface receptors were evaluated on splenocytes. Cells were resuspended in PBS 
(Organon Teknika Corp., Durham, NC) and stained for surface mAbs CD3e PE-Cy5 (Armenian Hamster IgG 
isotype, eBioscience, San Diego, USA), anti-mouse CD14 PE-Cy5 (rat IgG2a isotype, eBioscience, San 
Diego, USA), anti-mouse CD19 PE-Cy5 (rat IgG2a isotype, eBioscience, San Diego, USA), anti-mouse 
CCR3 FITC (rat IgG2a isotype, R&D Systems, Minneapolis, MN) and anti-mouse CCR10 PE (rat IgG2b 
isotype, R&D Systems, Minneapolis, MN). After 15 minutes incubation at room temperature in the dark, cells 
were washed in PBS (Organon Teknika Corp., Durham, NC) and fixed in 1% formaldehyde (Sigma).  
All the cytometric analyses were performed using FC500 flow cytometer (Beckman-Coulter, Miami, FL) 
equipped with a double 15-mW argon ion laser operating at 456 and 488 interfaced with an Intercorp 
(Venice, Italy) computer. For each analysis 20,000 events were acquired and gated on CD3 or CD14 or 
CD19 expression and side scatter properties. Green fluorescence from FITC (FL1) was collected through a 
525-nm band-pass filter, orangered fluorescence from R-PE (FL2) was collected through a 575-nm 
bandpass filter and red fluorescence from Cy5PE (FL4) was collected through a 670-nm band-pass filter. 
Data were collected using linear amplifiers for forward and side scatter and logarithmic amplifiers for FL1, 
FL2, FL4, and FL5 (for details, see Appendix). 

2.6 Cell-mediated and humoral immunity 

2.6.1 Cytokine assay 

IFN-γ, IL-4 and IL-5 production was evaluated in the supernatants from cultivated splenocytes as well as in 
PP/colonic T-cells after ex vivo re-stimulation with recombinant HIV-1IIIB Env gp120 (NIBSC) (4 µg/ml) using 
commercial ELISA kits (R&D Systems, Minneapolis, MN) and following the procedures suggested by the 
manufacturers. Cytokine concentration was calculated from a standard curve obtained with the 
corresponding recombinant mouse cytokine. 

2.6.2 Total IgA concentrations 

Total IgA in vaginal secretions were determined by an enzyme-linked immunosorbent assay (ELISA) 
method. A microtiter ELISA plate was coated with 100 µl of a goat anti-mouse IgA antibody (Kamiya 
Biomedical Company, Seattle, WA) in PBS (Organon Teknika Corp., Durham, NC), kept overnight at 4°C 
and washed in PBS-0,05% Tween 20 (Sigma). IgA antibodies in mucosal washings were detected using a 
goat horseradish peroxidase-conjugated α-chain specific anti-mouse IgA antibody (Sigma, St. Louise, MN). 

2.6.3 Serological assays 

HIV-specific IgG and IgA in sera and vaginal secretions were measured by an ELISA method based on a 
recombinant HIV-1 envelope protein. 96 well ELISA plates were coated overnight at 4°C with 100 µl of 4 
µg/ml recombinant HIV-1IIIB Env gp120 (Baculo) (NIBSC). After washing the plates three times with Tween-
20 0.05 % buffer (in PBS), plates were incubated for 2 hours at 37°C, 5% CO2 with PBS containing 3% of 
bovine serum albumin (BSA) (Sigma, St Louis, MO) to block non-specific protein binding sites. Serum 
dilutions 1/10 to 1/10000 and vaginal wash dilutions 1/2 to 1/1000 were incubated for 2 hours at 37°C, 5% 
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CO2. Plates were then washed three times and a goat HRP-conjugated α-chain specific anti-mouse IgA 
antibody (Sigma, St. Louise, MN) or a goat HRP-conjugated anti-mouse IgG antibody (Jackson Immuno-
Research, West Grove, PA) was added to the plates diluted 1:1000 or 1:30000 in PBS/BSA, respectively. 
Following 1 hour of incubation at 37°C, 5% CO2, the plates were washed and incubated with 
tetramethylbenzidine (TMB, R&D Systems, Minneapolis, MN) substrate solution for 30 min at RT. The colour 
reaction was stopped by adding H2SO4 1.8 M. The optical density was measured at an absorbance of λ = 490 
nm and the concentrations of IgG or sIgA were calculated from the established standard curve. 

2.7 HIV-1 neutralization assay 

HIV-1 neutralization assay was performed in a pooled donor PBMC-based assay. Briefly, pooled sera and 
vaginal secretions from pre-immunized and immunized mice were complement depleted by heat inactivation 
at 56°C for 60 minutes. Serial two-fold dilutions starting from 1/20 were incubated (in a humidified 5% CO2 
incubator at 37°C for 60 minutes) in duplicate in 96-well plates with HIV-1 IIIB and HIV-1 DU174 strains 
(NIBSC) of 40 and 20 TCID50, respectively. One hundred thousand PBMCs pooled from HIV-negative 
donors were stimulated with PHA for 48 h and subsequently added to each well and incubated overnight (18 
h) at 37°C. Cells were extensively washed with RPMI 1640 (Organon Teknika Corp., Durham, NC), 
centrifuged at 400 g for 10 min and fresh medium (RPMI 1640, 200 mM L-glutamine, 20% fetal calf serum, 
10U Interleukin-2, 1% penicillin and 2% streptomycin) was replaced on day 1 and day 3. After 7 days, 
supernatants were harvested and p24 antigen levels were determined by ELISA according to the 
manufacturer’s instructions (Perkin-Elmer, Waltham, MA). 

2.8 Immune-histochemistry analyses 

Tissues obtained from the colon of mice (2-cm specimens from the anus toward the left colon) were fixed in 
buffered-formalin for 24 hr at room temperature and then embedded in paraffin. Haematoxylin-eosin stained 
sections were used for histological evaluation. The evaluation of IgA+ plasma cells was made on 3 µm 
paraffin embedded slides; the sections were dewaxed in xylene, rehydrated in an ascendent ethanol scale 
and pre-treated in a microwave oven (two cycles for 5 minutes each at 780 W, in EDTA buffer, pH 8). 
Endogen biotin and aspecific signals were blocked by using the appropriate reagents. For immune-
histochemistry, a goat anti-mouse IgA (dilution 1:400, AbD Serotec) was used; slides were incubated for 2 hr 
at room temperature in a humid chamber; washed in PBS and then revealed by biotinylated anti-goat IgG 
(dilution 1:50, 1 hr incubation, R&D Systems, MN) followed by HRP-conjugated streptavidin (30 min 
incubation, R&D systems, MN). The chromogen was 3,3'-diaminobenzidine free base (DAB). 
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3. H7N1 VLPs-RECEIVING MICE 

3.1 H7N1 VLPs production 

VLPs that mimic the overall structure of Influenza virus H7N1 particles without containing infectious genetic 
material were provided as a part of a wide collaboration with Dr. Francisco Veas of the Institute for Research 
and Development/UR178, University of Montpellier, France. From a passage of the H7N1 
(A/Chicken/FPV/Rostock/1934) [179] in MDCK cells, viral RNA was isolated from total RNA using the High 
Pure RNA isolation kit (Roche Molecular Biochemicals, Mannheim, Germany). HA, NA and M2 coding 
sequences were then amplified from total viral RNA using Superscript Reverse transcriptase and specific 
primers. PCR products were inserted into the expression plasmid phCMV. H7N1-VLPs were assembled on 
replication-defective core particles derived from murine leukaemia virus (MLV). VLP used in this work 
consisted in an empty core particles generated by the expression of MLV Gag proteins [180]. H7N1-VLPs 
harboring at their surface HA, NA and M2 proteins derived from the H7N1 virus were obtained after a 
transient expression in HEK 293T cells of 3 plasmids encoding for the surface HA (together with Gag), NA, 
M2 proteins. From cell supernatant, VLP were concentrated to 1/100 and purified by ultracentrifugation at 
110,000 x g for 2 hours on a 20% sucrose cushion. VLP production was confirmed by standard electron 
microscopy analysis.  

3.3 Immunization procedure 

Adult inbred female Balb/c mice, 6-8 weeks old, were purchased from the Charles River Laboratories (Calco, 
Italy). Mouse colonies were maintained on a 12-hours light-dark cycle in cages of 5 animals with water and 
food provided ad libitum.  
Mice were randomized in six groups (5 mice/group) to receive VLPs (H7N1 VLPs 100 µl/mouse) in 
combination with pCCL28 (50 µg/mouse) or VLPs (H7N1 VLPs 100 µl/mouse) in combination with pCCL19 
(50 µg/mouse) or VLPs alone (H7N1 VLPs 100 µl/mouse) or pCCL28 alone (50 µg/mouse) or pCCL19 alone 
(50 µg/mouse). Control mice were treated with endotoxin-free phosphate-buffered saline (PBS, Organon 
Teknika Corp., Durham, NC). 
H7N1 VLPs were administrated intraperitoneally; the CCL28- and the CCL19-expressing plasmids were 
administrated intramuscularly in the quadriceps muscle. 
Mice were immunized on day 0, boosted on day 14 and sacrificed on day 28. Serum and saliva samples 
were collected on week 0, 2, and 4, whereas splenocytes, BALs, and lungs were collected on week 4. 

3.4 Sample collection and processing 

3.4.1 Blood, saliva and BALs 

Blood samples were collected by tail bleeding; serum was obtained by standard methods and stored at -
80°C until use. See 2.4.1 paragraph for details about the method. 
Saliva is the most commonly used fluid for measurements of humoral mucosal responses in mice. However, 
because it is not naturally produced in the quantity needed for experimentation, chemical stimulants are 
often used to increase its production. The most used stimuli are carbachol (carbamyl choline chloride) and 
pilocarpine-HCl, which are injected at concentrations of 50-100 µg and 2.5-5.0 mg/kg body weight, 
respectively, depending on the mouse strain. Because carbachol (acetylcholine agonist) rapidly initiates a 
great, but short-lived, increase in saliva flow, it facilitates an easy and quick collection of saliva. Even more 
importantly, it does not require the anesthetization of mice, a considerable advantage because anesthesia, 
at least in rats, has been reported to affect the salivary flow rate.  
In this regard, mice were intraperitoneally injected with 10-30 µg/ml carbachol (Sigma) in PBS to induce mice 
drooling. Saliva samples were gently aspirated with a plastic Pasteur, avoiding any gingival damage, rapidly 
pipetted into tubes placed on ice and centrifuged for 5 minutes at 800 x g to remove potential bacteria and 
food particles. Supernatants were added with 100X-concentrated protease inhibitor cocktail (1%, v/v) (O-
complete, Roche Applied Science, Germany) and subsequently freezed at -70°C. 
BALs generally represent the mucosal samples used to test the immune responses elicited by infections or 
immunization of the respiratory tract.  
Mice were euthanized by an overdose of anesthetic (i.p. injection with 150 mg xylazine/kg body weight) and 
placed on their back. After making an incision from the abdomen to the maxilla, the skin was removed and a 
midline incision over the anterior aspect of the trachea slightly superior to the thoracic inlet was made. 
Trachea was clamped off at the level of thoracic inlet and a blunt animal-feeding needle (Popper & Sons 
Inc., New Hyde Park, NY) attached to a tuberculin syringe was inserted into the tracheal lumen. 500-1000 µl 
of PBS (Organon Teknika Corp., Durham, NC) were repeatedly instilled and aspirate three times. BALs were 
placed in tubes set on ice and centrifuged for 10 minutes at 800 x g to remove potential bacteria. 
Supernatants were added with 100X-concentrated protease inhibitor cocktail (1%, v/v) (O-complete, Roche 
Applied Science, Germany) and freezed at -70°C. 
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3.4.2 Tissue harvesting 

Splenocytes were collected from fresh specimens and used in cell culture assays. See 2.4.2 paragraph for 
details about the method. 
The lungs were crushed into a single cell suspension using a Seward Stomacher 80 (Metrohm Inc. USA, 
Riverview, FL), put through a 40 µm cell strainer (BD Falcon 2350, BD Biosciences, Bedford, MA), washed 
with RPMI 1640 (Organon Teknika Corp., Durham, NC) for 10 minutes at 800 x g, pelleted and incubated for 
5-10 minutes at room temperature in ACK lysing buffer, resulting in the lysis of RBCs. Cells were then 
washed in RPMI 1640 (Organon Teknika Corp., Durham, NC) for 10 minutes at 800 x g, resuspended in 
medium, counted and used in cell culture assays. Furthermore, whole-lung extracts prepared as 
homogenates were centrifuged for 15 minutes at 800 x g to collect supernatants for immunoglobulin assays. 
The lungs were also analysed by immune-histochemistry. 

3.4.3 Cell count 

Cell count was performed with the automated cell counter ADAM-MC (Digital Bio, NanoEnTek Inc, Corea). 
See 2.4.3 paragraph for details about the method. 

3.5 Flow cytometry analyses of CCR3 and CCR10 expression 

CCR3 and CCR10 surface receptors were evaluated on CD3+, CD14+ and CD19+ splenocytes by 
cytofluorimetric analyses. See 2.5 paragraph for details about the method. 

3.6 Cell-mediated and humoral immunity 

3.6.1 Cytokine assay 

IFN-γ, IL-4 and IL-5 production was evaluated in splenic and lung T-cells after ex vivo re-stimulation with 
recombinant Influenza A/Chicken/FPV/Rostock/1934 (H7N1) HA (Sino Biological Inc., Beijing, China) (5 
µg/ml) using commercial ELISA kits (R&D Systems, Minneapolis, MN) and following the procedures 
suggested by the manufacturers. Cytokine concentration was calculated from a standard curve obtained with 
the corresponding recombinant mouse cytokine. 

3.6.2 Total IgA concentrations 

Total IgA in lung homogenates, BALs and saliva samples were determined by an enzyme-linked 
immunosorbent assay (ELISA) method. A microtiter ELISA plate was coated with 100 µl of a goat anti-
mouse IgA antibody (Kamiya Biomedical Company, Seattle, WA) in PBS (Organon Teknika Corp., Durham, 
NC), kept overnight at 4°C and washed in PBS-0,05% Tween 20 (Sigma). IgA antibodies in mucosal 
washings were detected using a goat horseradish peroxidase-conjugated α-chain specific anti-mouse IgA 
antibody (Sigma, St. Louise, MN). 

3.6.3 Serological assays 

Influenza HA-specific IgG and IgA in sera, lung homogenates, BALs and saliva samples were measured by 
an ELISA method based on a recombinant Influenza A hemagglutinin protein. 96 well ELISA plates were 
coated overnight at 4°C with 100 µl of 5 µg/ml Influenza virus (A/Chicken/FPV/Rostock/1934 H7N1) HA 
(Sino Biological Inc., Beijing, China). After washing the plates three times with Tween-20 0.05 % buffer (in 
PBS), plates were incubated for 2 hours at 37°C, 5% CO2 with PBS containing 3% of bovine serum albumin 
(BSA) (Sigma, St Louis, MO) to block non-specific protein binding sites. Serum dilutions 1/10 to 1/10000, 
lung homogenates dilutions 1/10 to 1/1000, BAL dilutions 1/5 to 1/500 and saliva sample dilutions 1/2 to 
1/200 were incubated for 2 hours at 37°C, 5% CO2. Plates were then washed three times and a goat HRP-
conjugated α-chain specific anti-mouse IgA antibody (Sigma, St. Louise, MN) or a goat HRP-conjugated anti-
mouse IgG antibody (Jackson Immuno-Research, West Grove, PA) was added to the plates diluted 1:1000 
or 1:30000 in PBS/BSA, respectively. Following 1 hour of incubation at 37°C, 5% CO2, the plates were 
washed and incubated with tetramethylbenzidine (TMB, R&D Systems, Minneapolis, MN) substrate solution 
for 30 minutes at room temperature. The colour reaction was stopped by adding H2SO4 1.8 M. The optical 
density was measured at an absorbance of λ=490 nm and the concentrations of IgG or sIgA were calculated 
from the established standard curve. 

3.7 Hemagglutination (HA) and hemagglutination inhibition (HAI) test 

HA and HAI tests were performed as described in the WHO manual on Animal Influenza Diagnosis and 
Surveillance using 0.5% turkey RBCs but employing H7N1 VLPs as the agglutinating agent in place of 
infectious virus, as described elsewhere [181]. 
A series of 2-fold dilutions of H7N1-VLPs in PBS (Organon Teknika Corp., Durham, NC) were prepared and 
incubated at 25°C for 2 hours with 50 µl of 0.5% turkey blood cells. The extent of hemagglutination was 
inspected visually, and the highest dilution capable of agglutinating turkey red blood cells was determined. 
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Mouse sera and BALs were heat-inactivated at 56°C for 1 hour and then treated with receptor destroying 
enzyme (RDE) (Denka Seiken, Tokyo, Japan) at 37°C overnight according to the manufacturer’s instruction. 
After treatment, 25 µl of VLPs containing four HA units of Influenza virus A/Chicken/FPV/Rostock/1934 at 
37°C for 1 hour, followed by incubation with 50 µl of 0.5% turkey RBCs (Lampire Biological Laboratories, 
Pipersville, PA) at 25°C for 30-60 minutes. Reference antiserum to A/Chicken/FPV/Rostock/1934 was used 
as a positive control. 
Hemagglutination occurs when the RBCs are in suspension after the RBC control has settled completely as 
a compact button. The HAI titer was defined as the reciprocal of the highest serum or BAL dilution that 
inhibited hemagglutination. Spots indicating H7N1 VLP-neutralizing activity were documented by 
photography. 

3.8 Immune-histochemistry analyses 

The lungs were fixed in buffered-formalin for 24 hours at room temperature and then embedded in paraffin. 
Haematoxylin-eosin stained sections were used for histological evaluation.  
The evaluation of IgA+ plasma cells was made on 3 µm paraffin embedded slides; the sections were 
dewaxed in xylene, rehydrated in an ascendent ethanol scale and pre-treated in a microwave oven (two 
cycles for 5 minutes each at 780 W, in EDTA buffer, pH 8). Endogen biotin and aspecific signals were 
blocked by using the appropriate reagents. For immune-histochemistry, a goat anti-mouse IgA (dilution 
1:400, AbD Serotec) was used; slides were incubated for 2 hours at room temperature in a humid chamber; 
washed in PBS and then revealed by biotinylated anti-goat IgG (dilution 1:50, 1 hr incubation, R&D Systems, 
MN) followed by HRP-conjugated streptavidin (30 min incubation, R&D systems, MN). The chromogen was 
3,3'-diaminobenzidine free base (DAB). 
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4. HPV-16 VLPs-RECEIVING MICE 

4.1 HPV-16 VLPs production 

HPV-16 VLPs were provided as a part of collaboration with Dr. Lutz Gissmann, German Cancer Research 
Center of Heidelbergh, Germany.  
The HPV-16 L1 ORF was excised from plasmid HPV16-114/k-L1/L2-pSynxtVI [120], using BglII and 
subcloned into pUC19 (New England Biolabs, Hitchin, United Kingdom) using the single BamHI site of this 
vector. Spodoptera frugiperda (Sf9) cells were grown in suspension or monolayer cultures at 27°C in 
TNMFH medium (Sigma-Aldrich), supplemented with 10% fetal calf serum and 2 mM glutamine. For HPV 16 
L1-based recombinant baculovirus construction, 10 mg of transfer-plasmid were used to transfect Sf9 cells 
together with 2 mg of linearized Baculo-Gold DNA (Pharmingen). Recombinant viruses were purified by 
standard methods as suggested by the manufacturer. To test for expression of HPV-16 capsid protein, 106 

Sf9 cells were infected with baculovirus recombinants at a MOI of 5 to 10. After incubation, medium was 
removed and cells were washed with PBS. The cells were then lysed in SDS-sample buffer and analyzed by 
SDS-page and immune blotting assay.  
Trichoplusia ni (TN) High Five cells were grown to a density of 1-2 x 106

 cells/ml in Ex-Cell 405 serum-free 
medium (JRH, Biosciences). Approximately 2 x 108

 cells were pelleted at 1000 x g for 15 min, resuspended 
in 20 ml of medium and infected with recombinant baculoviruses at a MOI of 2-5 for 1 hour at room 
temperature. After addition of 200 ml of medium, cells were plated on round dishes and incubated for 3-4 
days. Cells were then harvested, pelleted and resuspended in 10 ml of extraction buffer. The following steps 
were performed at 4°C. After sonication for 45 seconds at 60 watts, the extract was pelleted at 10,000 rpm in 
a Sorvall SS34 rotor. The pellet was resuspended in 6 ml of extraction buffer, sonicated again for 30 
seconds at 60 watts, and centrifuged again. Supernatants were layered onto a two-step gradient with 14 ml 
of 40% sucrose on top of 8 ml of CsCl solution (4.6 g CsCl per 8 ml extraction buffer) and centrifuged in a 
Sorvall AH629 swinging bucket rotor for 2 hours at 27,000 rpm (10°C). The interphase between CsCl and 
sucrose and the complete layer of CsCl were collected and filled into 13.4 ml Quickseal tubes. Extraction 
buffer was added to adjust the volume to 13.4 ml. Samples were centrifuged overnight at 50,000 rpm at 
20°C in a Beckman 70 Ti rotor. Gradients were fractionated (1 ml per fraction) by puncturing tubes on top 
and bottom with a 21-gauge needle. Then 2.5 ml of each fraction were analyzed by a 10% SDS–polyacryl 
amide gel and Western blotting. VLP fraction were dialyzed for 2 hours against 10 mM HEPES (pH 7.5, 300 
mM NaCl). 

4.3 Immunization procedure 

Adult inbred female Balb/c mice, 6-8 weeks old, were purchased from the Charles River Laboratories (Calco, 
Italy). Mouse colonies were maintained on a 12-h light-dark cycle in cages of 5 animals with water and food 
provided ad libitum.  
Mice were randomized in six groups (5 mice/group) to receive VLPs (HPV-16 VLPs 50 µg/mouse) in 
combination with pCCL28 (50 µg/mouse) or VLPs (HPV-16 VLPs 50 µg/mouse) in combination with pCCL19 
(50 µg/mouse) or VLPs alone (HPV-16 VLPs 50 µg/mouse) or pCCL28 alone (50 µg/mouse) or pCCL19 
alone (50 µg/mouse). Control mice were treated with endotoxin-free phosphate-buffered saline (PBS, 
Organon Teknika Corp., Durham, NC). HPV-16 VLPs, the CCL28- and the CCL19-expressing plasmids were 
separately administrated intramuscularly in the quadriceps muscle.  
Mice were immunized on day 0, boosted on day 14 and sacrificed on day 28. Serum and vaginal washes 
were collected on week 0, 2, and 4, whereas splenocytes and genital tract were collected on week 4. 

4.4 Sample collection and processing 

4.4.1 Blood and vaginal secretions 

Blood samples were collected by tail bleeding; serum was obtained by standard methods and stored at -
80°C until use. Vaginal secretions were collected by standard methods and stored at - 20°C until use. See 
2.4.1 paragraph for details about the methods. 

4.4.2 Tissue harvesting 

Splenocytes and cervical lymphocytes were collected from fresh specimens and used in cell culture assays. 
Lymphocyte-rich population from cervical mucosa was isolated following the procedure used for PP/colonic 
cells collection. See 2.4.2 paragraph for details about the method. Furthermore, the cervix was analyzed by 
immune-histochemistry.  

4.4.3 Cell count 

Cell count was performed with the automated cell counter ADAM-MC (Digital Bio, NanoEnTek Inc, Corea). 
See 2.4.3 paragraph for details about the method. 
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4.5 Flow cytometry analyses of CCR3 and CCR10 expression 

CCR3 and CCR10 surface receptors were evaluated on CD3+, CD14+ and CD19+ splenocytes by 
cytofluorimetric analyses. See 2.5 paragraph for details about the method. 

4.6 Cell-mediated and humoral immunity 

4.6.1 Cytokine assay 

IFN-γ, IL-4 and IL-5 production was evaluated in splenic and cervical T-cells after ex vivo re-stimulation with 
recombinant HPV-16 L1 protein (Meridian Life Science Inc., Saco, ME) (4 µg/ml) using commercial ELISA 
kits (R&D Systems, Minneapolis, MN) and following the procedures suggested by the manufacturers. 
Cytokine concentration was calculated from a standard curve obtained with the corresponding recombinant 
mouse cytokine. 

4.6.2 Total IgA concentrations 

Total IgA in vaginal secretions were determined by an enzyme-linked immunosorbent assay (ELISA) 
method. A microtiter ELISA plate was coated with 100 µl of a goat anti-mouse IgA antibody (Kamiya 
Biomedical Company, Seattle, WA) in PBS (Organon Teknika Corp., Durham, NC), kept overnight at 4°C 
and washed in PBS-0,05% Tween 20 (Sigma). IgA antibodies in vaginal washings were detected using a 
goat horseradish peroxidase-conjugated α-chain specific anti-mouse IgA antibody (Sigma, St. Louise, MN). 

4.6.3 Serological assays 

Papillomavirus L1-specific IgG and IgA in sera and vaginal secretions were measured by an ELISA method 
based on a recombinant HPV L1 protein. 96 well ELISA plates were coated overnight at 4°C with 100 µl of 4 
µg/ml HPV-16 L1 protein (Meridian Life Science Inc., Saco, ME). After washing the plates three times with 
Tween-20 0.05 % buffer (in PBS), plates were incubated for 2 hours at 37°C, 5% CO2 with PBS containing 
3% of bovine serum albumin (BSA) (Sigma, St Louis, MO) to block non-specific protein binding sites. Serum 
dilutions 1/10 to 1/10000 and vaginal secretion dilutions 1/2 to 1/1000 were incubated for 2 h at 37°C, 5% 
CO2. Plates were then washed three times and a goat HRP-conjugated α-chain specific anti-mouse IgA 
antibody (Sigma, St. Louise, MN) or a goat HRP-conjugated anti-mouse IgG antibody (Jackson Immuno-
Research, West Grove, PA) was added to the plates diluted 1:1000 or 1:30000 in PBS/BSA, respectively. 
Following 1 hour of incubation at 37°C, 5% CO2, the plates were washed and incubated with 
tetramethylbenzidine (TMB, R&D Systems, Minneapolis, MN) substrate solution for 30 min at room 
temperature. The colour reaction was stopped by adding H2SO4 1.8 M. The optical density was measured at 
an absorbance of λ=490 nm and the concentrations of IgG or sIgA were calculated from the established 
standard curve. 

4.7 Hemagglutination inhibition test (HAI) 

To verify the specificity and neutralizing ability of the antibodies, HAI assays were done [182].  
Mouse blood was collected by tail bleeding in a heparinised tube and the RBCs were separated by 
centrifugation at 800 x g for 5 minutes at 4°C, washed twice with PBS and suspended in dilution buffer (PBS, 
Organon Teknika Corp., Durham, NC) at a concentration of 1% (vol/vol). They were stored at 4°C and used 
for up to 3 days. 
VLPs were incubated with 2-fold dilutions of experimental sera (1/20 to 1/640) and vaginal secretion samples 
(1/10 to 1/320) at room temperature for 2 hours, after which the samples were mixed with an equal volume 
of the 1% RBC suspension. Aliquots (100 µl) of the mixtures were transferred to a round-bottomed, 96 well 
plate and incubated for 3 hours at 4°C.The monoclonal antibody H16.V5, kindly provided by Prof. Neil 
Christensen, Penn State University, Pennsylvania, was used as a positive control [183]. Spots indicating 
HPV-16 VLP-neutralizing activity were documented by photography. 

4.8 Immune-histochemistry analyses 

The genital tract was fixed in buffered-formalin for 24 hours at room temperature and then embedded in 
paraffin. Haematoxylin-eosin stained sections were used for histological evaluation.  
The evaluation of IgA+ plasma cells was made on 3 µm paraffin embedded slides of the cervical mucosa; the 
sections were dewaxed in xylene, rehydrated in an ascendent ethanol scale and pre-treated in a microwave 
oven (two cycles for 5 minutes each at 780 W, in EDTA buffer, pH 8). Endogen biotin and aspecific signals 
were blocked by using the appropriate reagents. For immune-histochemistry, a goat anti-mouse IgA (dilution 
1:400, AbD Serotec) was used; slides were incubated for 2 hours at room temperature in a humid chamber; 
washed in PBS and then revealed by biotinylated anti-goat IgG (dilution 1:50, 1 hr incubation, R&D Systems, 
MN) followed by HRP-conjugated streptavidin (30 min incubation, R&D systems, MN). The chromogen was 
3,3'-diaminobenzidine free base (DAB). 
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5. STATISTICAL ANALYSES 

Comparisons between groups were analyzed to evaluate immunological differences.  
Kruskal & Wallis analysis of variance was performed for each variable; Bonferroni correction was applied to 
the results. Two-sided p-values were considered. Data analysis was performed using the SPSS statistical 
package (SPSS Inc. Chicago, Illinois, USA). 
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1. HIV-1IIIB VLPs-RECEIVING MICE 

1.1 CCR3- and CCR10- expressing CD19+ cells 

The tissue-specific migration of lymphocytes is tightly regulated by a complex network of chemokines [44]. 
CCL28 has been shown to direct homing ASC, and in particular of IgA+ ASCs to the gastro-intestinal, the 
upper aero-digestive and the mammary glands. CCL28 binds to CCR3 and CCR10 receptors; CCR10 in 
particular is considered to be a unifying chemokine receptor playing a pivotal role in homing of plasma blasts 
to extra-intestinal effector sites [57].  
Inbred female Balb/c mice were immunized with a prime-boost regimen using HIV-1IIIB VLPs in the presence 
or in the absence of the CCL28-expressing plasmid. The murine CCL19 chemokine gene inserted into a 
pCpG-free expression vector was used as negative control (for further details about immunization procedure, 
see Materials and Methods, paragraph 2.3). 
To analyze the expression of CCL28 chemokine receptors on circulating lymphocytes, flow cytometry 
assessment of CCR3 and CCR10 was performed in CD3+, CD14+ and CD19+ purified splenocytes.  
Results indicated that the CCR3- and CCR10-expression levels in CD3+ splenocytes as well as CD14+ cells 
were similar in the six analyzed groups (data not shown). In contrast, CD19+/CCR3+ and CD19+/CCR10+ 
splenocytes were significantly augmented in HIV-VLPIIIB-CCL28 treated mice as compared with either HIV-
VLPIIIB-CCL19 (p=0.014 and 0.043, respectively), HIV-VLPIIIB alone (p=0.005 and 0.008, respectively), 
CCL28 alone (p=0.004 and 0.006, respectively), CCL19 alone (p=0.001 and 0.004, respectively) or saline 
controls (p=0.002 and 0.005, respectively) (Fig. 25). 
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Figure 25: expression of CCR3 and CCR10 on CD19

+
 splenocytes; (A) CCR3-expressing, CD19

+
 

splenocytes, (B) CCR10-expressing, CD19
+
 splenocytes. Mean values, standard deviations and statistically 

significant differences are shown (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 

1.2 Surface density of CCR3 and CCR10 on CD19+ cells 

Evaluation of the mean fluorescence intensity (MFI), a relative measure of the surface density on a cellular 
level, showed that the CCR3 MFI on CD19+ splenocytes was significantly augmented in HIV-VLPIIIB-CCL28 
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treated mice as compared with either HIV-VLPIIIB-CCL19 (p=0.029), HIV-VLPIIIB alone (p=0.015), CCL28 
alone (p=0.005), CCL19 alone (p=0.009) or saline controls (p<0.001) (Fig. 26, panel A).  
The CCR10 MFI on CD19+ lymphocytes was similarly up-regulated in HIV-VLPIIIB-CCL28 treated mice as 
compared with either HIV-VLPIIIB-CCL19 (p=0.004), HIV-VLPIIIB alone (p=0.002), CCL28 alone (p=0.001), 
CCL19 alone (p<0.001) or saline controls (p<0.001) (Fig. 26, panel B). 
Results presented herein put in evidence that immunization of mice with Env-expressing VLPs in the 
presence of the CCL28-expressing plasmid results in the modulation of the whole CCL28-CCR3/CCR10 
circuit correlating with a robust up-regulation of chemokine receptor expression on circulating CD19+ cells.  
As CCL28 is expressed by a variety of mucosal sites, the up-regulation of CCR3 and CCR10 observed on 
circulating CD19+ lymphocytes could be dependent on the recirculation of lymphocytes between the mucosal 
and haematic compartments. Nevertheless, intramuscular delivery of the CCL28-expressing plasmid results 
in a massive recruitment of cognate chemokine receptor positive cells [184]; thus the up-regulation of CCR3 
and CCR10 could be also secondary to CD19+/CCR3+ or CD19+/CCR10+ cell recruitment at the site of 
vaccine inoculation, favouring the migration of lymphocytes to mucosal effector sites. It remains to verify 
whether the expression and the surface density of CCR3 and CCR10 is up-regulated as well in CD19+ 
lymphocytes isolated from mucosal secretions. 
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Figure 26: CCR3 and CCR10 mean fluorescence intensity (MFI)  on CD19

+
 splenocytes; (A) CCR3

+
/CD19

+
 

splenocytes, (B) CCR10
+
/CD19

+
 splenocytes. Mean values, standard deviations and statistically significant 

differences are indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 

1.3 Induction of mucosal total and HIV-specific IgA  

IgA are mostly mucosal antibodies that are responsible for the first line of defense of adaptive immunity 
against pathogens [1]. 
HIV-specific mucosal IgA are observed in HIV-infected individuals, and, notably, have been described to be 
present also in HIV-exposed seronegative individuals (HESN). IgA isolated from cervico-vaginal secretions 
of these individuals are capable of inhibiting virus transcytosis through epithelial layers in vitro and have a 
potent neutralizing activity [12,66]. Because IgA in HESN seem to contribute to the prevention of infection it 
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is reasonable to infer that vaccine procedures capable of eliciting a strong IgA response would be beneficial 
by contributing to the containment of HIV infection. 
To assess the CCL28-induced migration of Ig-ASCs at mucosal effector sites, both total and Env-specific 
antibody responses were quantified in vaginal secretions of both immunized and control mice.  
Total IgA levels were significantly augmented, compared to baseline values, in vaginal secretions of HIV-
VLPIIIB-CCL28 mice compared to all the other groups of mice (VLPIIIB-CCL28 vs VLPIIIB-CCL19 p=0.04, 
VLPIIIB-CCL28 vs VLPIIIB alone p=0.008, VLPIIIB-CCL28 vs CCL28 alone p<0.001, VLPIIIB-CCL28 vs CCL19 
alone p<0.001,  VLPIIIB-CCL28 vs saline p<0.001) (Fig. 27).  
More interestingly, Env-specific IgA levels were significantly increased as well in vaginal washes of VLP-
CCL28 mice as compared with either HIV-VLPIIIB-CCL19 or HIV-VLPIIIB alone animals (VLPIIIB-CCL28 vs 
VLPIIIB-CCL19 p=0.045, VLPIIIB-CCL28 vs VLPIIIB alone p=0.005) (Fig. 28). Pre-immunization as well as 
control mice vaginal secretions did not contain specific antibodies against the HIV-1 Env protein. The 
observed specific mucosal anti-HIV IgA responses were normalized on the total IgA content. 
Results presented herein demonstrate that the objective of up-regulating potentially beneficial mucosal 
immune responses is achievable in the mouse model by the use of CCL28 as an adjuvant. 
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Figure 27: mucosal humoral immunity. Total IgA variation from baseline in vaginal washes is shown. 

Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant differences 

are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 
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Figure 28: HIV-specific mucosal humoral immunity. Env-specific IgA levels in vaginal secretions are shown. 
Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant differences 

are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 

1.4 Induction of HIV-specific systemic humoral response 

Sera from immunized and control group mice were collected two weeks after final immunization to measure 
Env-specific antibodies. ELISA tests were performed on microwell plates coated with recombinant HIV-1IIIB 
Env gp120.  
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Results showed that serum anti-Env IgG and IgA levels were significantly increased in HIV-VLPIIIB-CCL28 
mice as compared with either HIV-VLPIIIB-CCL19 (p=0.046 and 0.050, respectively) or HIV-VLPIIIB alone 
(p=0.040 and 0,042, respectively) (Fig. 29-30). Naïve and control mice did not show Env-specific antibodies. 
The observation that CCL28 exerts its adjuvant effects not only in the mucosal system but also systemically 
is important as it is likely that both lines of defense will be necessary to optimally constraint HIV infection 
[185]. 
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Figure 29: HIV-specific systemic humoral responses. Serum Env-specific IgG levels are shown. Absorbance 
was read at 490 nm. Mean values, standard deviations and statistically significant differences are indicated 

(∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 
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Figure 30: HIV-specific systemic humoral responses. Serum Env-specific IgA levels. Absorbance was read 

at 490 nm. Mean values, standard deviations and statistically significant differences are indicated (∗ p<0.05, 

∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 

1.5 Cytokine production by Env-stimulated splenic and colon cells  

To investigate whether CCL28 administration would increase the magnitude of Env-specific cytokine 
production, splenic and colon T-cells were stimulated with recombinant HIV-1IIIB Env gp120 to quantify Env-
specific production of Th1-type (IFN-γ) and Th2-type (IL-4 and IL-5) cytokines.  
Results showed a significant increase of IFN-γ production by both spleen and colon T-cells of HIV-VLPIIIB-
CCL28 mice compared to HIV-VLPIIIB-CCL19 (spleen p=0.026; colon p=0.033) and VLP alone mice (spleen 
p<0.001; colon p=0.002) (Fig. 31).  
In these conditions, similar results were observed when both the IL-4 and IL-5 production from HIV-VLPIIIB-
CCL28 treated mice was compared with either HIV-VLPIIIB-CCL19 (spleen p=0.048 and 0.043, respectively; 
colon p=0.040 and 0.011, respectively) or HIV-VLPIIIB alone (spleen p=0.002 and <0.001, respectively; colon 
p=0.01 and <0.001, respectively) (Fig. 32). Naïve and control mice did not show Env-specific cellular 
responses. 
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Figure 31: HIV-specific cell mediated responses. Env-specific IFN-γ concentration (pg/ml) in the 

supernatants of splenic and colonic T-cells re-stimulated ex vivo with the recombinant HIV-1IIIB Env gp120.  
Splenocytes and cells from Peyer’s patches/colon are represented by the orange bars and the brown bars, 

respectively. Mean values after medium is subtracted, standard deviations and statistically significant 

differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HIV-VLPIIIB-CCL28 mice). 
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Figure 32: HIV-specific cell-mediated responses. Panel A and B represent, respectively, Env-specific IL-4 
and IL-5 concentration (pg/ml) in the supernatants of splenic and colonic T-cells re-stimulated ex vivo with 

the recombinant HIV-1IIIB Env gp120. Splenocytes and cells from Peyer’s patches/colon are represented by 
the orange bars and the brown bars, respectively. Mean values after medium is subtracted, standard 

deviations and statistically significant differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs 
HIV-VLPIIIB-CCL28 mice). 
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In particular, the increase of Env-stimulated IFN-γ production in spleens and colon would suggest the 
possible stimulation of both systemic and mucosal CTL-mediated responses in CCL28-receiving mice; 
preliminary results suggest that this is indeed the case. This is particularly relevant in the design of both 
protective and therapeutic vaccines, as HIV-specific CTLs have been described in several different ESN 
cohorts and many authors claim that these cells make a fundamental contribution to modulating resistance 
to HIV infection [185]. Notably, a correlation between IL-5 production in spleen and colon and both systemic 
and mucosal IgA levels was observed. 

1.6 IgA+ plasma cells in the gastro-intestinal mucosal lamina propria  

Recent studies have shown that the GALT contains the vast majority of T-cells in the body, and that GALT is 
the preferential target for HIV replication during the acute phase of HIV infection. This phenomenon results in 
a massive and systematic destruction of CD4+ T-cells strongly enhancing the pathogenesis of HIV infection. 
These observations have further strengthened the importance and urgency of developing mucosal vaccine 
for the prevention of HIV infection. 
Since the gastro-intestinal mucosal lamina propria (MLP) is the principal site of HIV replication during 
primary infection, induction of adaptive mucosal immunity could obstacle the establishment of HIV infection. 
As the results herein demonstrated that the up-regulation of CCL28-CCR3/CCR10 circuit is correlated with 
increased concentrations of both systemic and mucosal HIV-specific IgA, we further verified these data with 
immune-histochemistry analyses of IgA-ASC distribution in the gastrointestinal (GI) MLP.  
IgA+ plasma cells were clearly identified by immunopositive staining in the cytoplasm of cells with plasma 
cell-like morphology. Results showed the presence of numerous IgA+ cells clustered within the lamina 
propria of the colonic mucosa in HIV-VLPIIIB-CCL28 treated mice (mean number and S.E. of IgA+ plasma 
cells = 98.2 + 6); this increase was statistically significant compared to all the other groups of mice (p<0.001 
in all cases). In HIV-VLPIIIB-CCL19, VLPIIIB alone (54.8 + 3 plasma cells), CCL28 alone (48.2 + 2 plasma 
cells), CCL19 alone or saline alone mice (42.6 + 6 plasma cells), rare and isolated IgA+ cells were identified 
by immune-histochemistry suggesting that the adjuvant role of CCL28 results in a massive chemokine-
directed recruitment of IgA-ASCs at the mucosal level. Representative results are shown in Fig. 33. 

 

  
Figure 33: IgA

+
 plasma cells. Balb/c mice immunized with HIV-VLPIIIB in the presence of CCL28, HIV-VLPIIIB 

in the presence of CCL19, HIV-VLPIIIB alone and saline are shown in panels A, B, C and D, respectively. 
Representative results obtained in the lamina propria of colon mucosa (2-cm specimens from the anus 

toward the left colon) are presented.  
 
Results presented here indicate that immunization in the presence of CCL28 significantly increases the 
quantity of mucosal ASCs in the rectum. Although in this study we did not directly measured rectal IgA, it is 
plausible that increased quantity of tissue IgA-producing ASCs would results in an augmented amount of 
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secreted antibodies, thus the situation of IgA in rectal washes would parallel what is observed in vaginal 
washes of CCL28-receiving mice. This could be extremely useful in the design of protective vaccines.  

1.7 Neutralization activity of sera and mucosal secretions 

To verify whether the adjuvant effect of CCL28 could result in an enhanced neutralizing activity of Env-
specific antibodies, neutralization experiments against HIV-1IIIB and HIV-1DU174 were performed. HIV-1IIIB is a 
subtype B CXCR4-tropic strain; HIV-1DU174 is a subtype C CCR5-tropic strain.  
A marginal neutralizing activity (<20%) was detected in both the pre-immune and immune sera of mice 
treated with either CCL28 alone, CCL19 alone or saline (data not shown). Immune sera from HIV-VLPIIIB-
CCL28 treated mice showed a neutralization activity titer of 200 (50% neutralization activity) against both 
HIV-1IIIB and HIV-1DU174 at a TCID50 of 40 and 20, respectively. Conversely, immune sera from HIV-VLPIIIB-
CCL19 or VLPIIIB alone mice showed a neutralization activity titer of 130 against both HIV-1IIIB and HIV-1DU174 
at the same TCID50 of 40 and 20, previously used (Fig. 34).  
Importantly, immune vaginal secretions from VLP-CCL28-receiving mice showed a neutralization titer of 100 
and 60 against, respectively, HIV-1IIIB and HIV-1DU174 (Fig. 35). Also in this case the neutralization activity 
against both clade B and C strains was lower in mice treated with HIV-VLPIIIB-CCL19 or VLP alone, resulting 
in a neutralizing titer of 60 and 30, respectively (Fig. 35). Lacking of neutralization activity was observed 
when HIV-1IIIB and HIV-1DU174 were used at a double TCID50. 
The observation that the neutralization ability of serum and vaginal washes of immunized mice in the 
presence of CCL28 was increased indicates that the immune modulation induced by this chemokine is 
associated with an augmented capacity to reduce HIV infectivity. 
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Figure 34: neutralization activity against both a HIV-1 lab strain from clade B and a primary isolate from 

clade C. Ex vivo neutralizing activity of immune sera against HIV-1IIIB (A) and HIV-1DU174 (B) is shown. The 
neutralization titer of serum antibodies is represented as percentages of the virus replication compared to 

control samples. The test has been scored positive with a 50% neutralizing activity. Mean titers are 
indicated. 
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Figure 35: neutralization activity against both a HIV-1 lab strain from clade B and a primary isolate from 

clade C. Ex vivo neutralizing activity of immune vaginal secretions against HIV-1IIIB (A) and HIV-1DU174 (B) is 
shown. The neutralization titer of mucosal antibodies is represented as percentages of the virus replication 

compared to control samples. The test has been scored positive with a 50% neutralizing activity. Mean titers 
are indicated. 
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2. H7N1 VLPs-RECEIVING MICE 

2.1 CCR3- and CCR10- expressing CD19+ cells 

Inbred female Balb/c mice were immunized with a prime-boost regimen using H7N1 VLPs in the presence or 
in the absence of CCL28-expressing plasmid. The murine CCL19 chemokine gene inserted into a pCpG-free 
expression vector was used as a negative control (for further details about immunization procedure, see 
Materials and Methods, paragraph 3.3). 
To determine whether intramuscular delivery of the CCL28 expression plasmid would result in a modulation 
of cognate chemokine receptors on circulating lymphocytes, flow cytometry assessment of CCR3 and 
CCR10 was performed in CD3+, CD14+ and CD19+ purified splenocytes.  
Results indicated that the CCR3- and CCR10-expression levels in CD3+ splenocytes as well as CD14+ cells 
were similar in the six analyzed groups (data not shown). In contrast, CD19+/CCR3+ and CD19+/CCR10+ 
splenocytes were significantly augmented in H7N1-VLP-CCL28 treated mice as compared with either H7N1-
VLP-CCL19 (p=0.033 and 0.031, respectively), H7N1-VLP alone (p=0.005 and 0.006, respectively), CCL28 
alone (p=0.003 and <0.001, respectively), CCL19 alone (p=0.002 and <0.001, respectively) or saline 
controls (p=0.003 and <0.001) (Fig. 36).   
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Figure 36: expression of CCR3 and CCR10 on CD19

+
 splenocytes; (A) CCR3

+
/CD19

+
 splenocytes. (B) 

CCR10
+
/CD19

+
 splenocytes. Mean values, standard deviations and statistically significant differences are 

indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice).  

2.2 Surface density of CCR3 and CCR10 on CD19+ cells 

Evaluation of the mean fluorescence intensity (MFI) showed that the CCR3 MFI on CD19+ splenocytes was 
significantly augmented in H7N1-CCL28 treated mice as compared with either H7N1-CCL19 (p=0.041), HIV-
VLPIIIB alone (p=0.049), CCL28 alone (p=0.008), CCL19 (p=0.007) or saline controls (p=0.007) (Fig. 37, 
panel A). 
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The CCR10 MFI on CD19+ lymphocytes was similarly up-regulated in H7N1-VLP-CCL28 treated mice as 
compared with either H7N1-VLP-CCL19 (p=0.044), H7N1-VLP alone (p=0.004), CCL28 alone (p<0.001), 
CCL19 alone (p<0.001) or saline controls (p<0.001) (Fig. 37, panel B). 
We concluded that immunization of mice with HA7-expressing VLPs in the presence of the CCL28-
expressing plasmid results in an up-regulation of the whole CCL28-CCR3/CCR10 circuit. It remains to verify 
whether the expression and the surface density of CCR3 and CCR10 is up-regulated as well in CD19+ 
lymphocytes isolated from mucosal secretions. 
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Figure 37: CCR3 and CCR10 mean fluorescence intensity (MFI) on CD19

+
 splenocytes; (A) CCR3

+
/CD19

+
 

splenocytes, (B) CCR10
+
/CD19

+
 splenocytes. Mean values, standard deviations and statistically significant 

differences are indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice). 

2.3 Induction of mucosal total and HA7-specific IgA  

Since the respiratory mucosal surfaces are the natural route of entry and the primary replication site of 
influenza virus, it is important to determine mucosal immune responses.  
Mucosal samples from the oral cavity and the respiratory tract, including trachea and lungs, of both 
immunized and control mice were collected two weeks after each immunization and at week 4, respectively, 
to determine total and HA7-specific IgA antibodies. Saliva, BALs and lung homogenates are in fact the most 
commonly used fluids for measurements of humoral mucosal responses elicited by infections or 
immunization of the respiratory tract. 
Total IgA levels were significantly augmented, compared to baseline values, in lung homogenates, BALs and 
saliva samples of H7N1-VLP-CCL28 mice compared to all the other groups of mice (lung homogenates: 
p<0.04 in all cases; BALs p<0.04 in all cases; saliva samples: p<0.05 in all cases) (Fig. 38).  
Importantly, HA7-specific IgA levels were significantly increased as well in lung homogenates and BALs of 
H7N1-VLP-CCL28 mice as compared with either H7N1-VLP-CCL19 (p=0.049 and 0.046, respectively) or 
H7N1-VLP alone (p<0.001 and p=0.008, respectively) (Fig. 39). Also IgA levels in saliva samples of H7N1-
VLP-CCL28 mice were augmented compared with either H7N1-VLP-CCL19 or H7N1-VLP alone (p=0.033) 
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(Fig. 39). Naïve and control mice did not show mucosal HA7-specific antibodies. The observed specific 
mucosal anti-HA7 IgA responses were normalized on the total IgA content. 
Results presented herein demonstrate that CCL28 efficiently modulates mucosal immune responses in mice 
immunized with H7N1-VLPs. 
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Figure 38: mucosal humoral immunity. Total IgA variation from baseline in lung homogenates (A), BALs (B) 
and saliva samples (C) is shown. Absorbance was read at 490 nm. Mean values, standard deviations and 

statistically significant differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-
CCL28 mice). 
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Figure 39: H7N1-specific mucosal humoral immunity. HA7-specific IgA levels in lung homogenates (A), 
BALs (B) and saliva samples (C) are shown. Absorbance was read at 490 nm. Mean values, standard 

deviations and statistically significant differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs 
H7N1-VLP-CCL28 mice). 

2.4 Induction of HA7-specific systemic humoral response 

As protection of the respiratory tract has been recently correlated with the presence of both systemic IgG 
and mucosal SIgA antibodies [29], sera from immunized and control group mice were collected two weeks 
after final immunization to measure HA7-specific antibodies in ELISA. Serological tests were performed on 
microwell plates coated with recombinant HA from Influenza A virus H7N1. 
Immunization with H7N1-VLPs in the presence of the CCL28-expressing plasmid resulted in the significant 
enhancement of serum anti-HA7 IgG and IgA levels as compared with either H7N1-VLP-CCL19 (p=0.044 
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and 0.041, respectively) or H7N1-VLP alone mice (p=0.03 and 0.008) (Fig. 40-41). Naïve and control mice 
did not show HA7-specific antibodies. 
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Figure 40: H7N1-specific systemic humoral responses. Serum HA7-specific IgG levels are shown. 

Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant differences 

are indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice). 
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Figure 41: H7N1-specific systemic humoral responses. Serum HA7-specific IgA levels. Absorbance was 

read at 490 nm. Mean values, standard deviations and statistically significant differences are indicated (∗ 

p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice). 
 
It remains to investigate whether CCL28 immunization in combination with H7N1-VLPs maintains long-
lasting protective immune responses, as during the differentiation and development of B-cell memory, a 
fraction of germinal center B-cells migrate to the bone marrow where they develop into long-lived antibody-
secreting PCs. 

2.5 Cytokine production by HA7-stimulated splenic and lung cells  

The ability of the plasmid-encoded CCR3 and CCR10 chemokine ligand to modulate antigen-specific T-cell 
function in a relevant challenge model was examined next, as the rapid induction of cellular immune 
responses is important to control viral replication.  
Splenic and lung T-cells were stimulated with recombinant HA from Influenza A virus H7N1 to quantify HA7-
specific production of Th1-type (IFN-γ) and Th2-type (IL-4 and IL-5) cytokines. Recombinant Influenza HA7 
was used because vaccine-induced HA-specific T-cell and antibody responses have been reported to impact 
Influenza A challenge in the lungs of mice.  
Results showed a significant increase of IFN-γ production by both spleen and lung T-cells of H7N1-VLP-
CCL28 mice compared to H7N1-VLP-CCL19 (spleen p=0.049; lungs p=0.044) and H7N1-VLP alone mice 
(spleen p=0.46; lungs p=0.018) (Fig. 42). In these conditions, similar results were observed when both the 
IL-4 and IL-5 production from H7N1-VLP-CCL28 treated mice was compared with either H7N1-VLP-CCL19 
(spleen IL-5 p=0.041; lungs IL-5 p=0.037) or H7N1-VLP alone (spleen p=0.043 and 0.032, respectively; 
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lungs p=0.039 and <0.01, respectively) (Fig. 43). Naïve and control mice did not show HA7-specific cellular 
responses. 
 

HA7 INF-gamma

H
7N

1V
LP+C

C
L28

H
7N

1V
LP+C

C
L19

H
7N

1V
LP

C
C
L28

C
C
L19

Sal
in

e
0

250

500

750

1000

1250
Spleen

Lung

p
g

/m
l

*

*

*

**

 
Figure 42: H7N1-specific cell mediated responses. HA7-specific IFN-γ concentration (pg/ml) from splenic 

and lung T-cells re-stimulated ex vivo with the recombinant HA protein from Influenza A virus H7N1. 
Splenocytes and cells from the lungs are represented by the orange bars and the brown bars, respectively. 

Mean values after medium is subtracted, standard deviations and statistically significant differences are 

represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice). 
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Figure 43: H7N1-specific cell-mediated responses. Panel A and B represent, respectively, HA7-specific IL-4 
and IL-5 concentration (pg/ml) from splenic and lung T-cells re-stimulated ex vivo with the recombinant HA 
protein from Influenza A H7N1. Splenocytes and cells from lungs are represented by the orange bars and 
the brown bars, respectively. Mean values after medium is subtracted, standard deviations and statistically 

significant differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs H7N1-VLP-CCL28 mice). 
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We can conclude that CCL28 chemokine induces both Th1- and Th2-type cellular immune responses at the 
systemic as well as at the mucosal level. Furthermore, the enhanced HA7-specific IFN-γ production in 
spleen and in lungs would suggest the possible stimulation of CTL-mediated responses in both systemic and 
mucosal compartments of CCL28-receiving mice; preliminary results suggest that this is indeed the case. In 
addition, it has been reported that induction of IFN-γ secreting T-cells responses may correlate with reduced 
viral replication in lungs and host protective immunity [186]. Also, there seems to be a correlation between 
IL-5 production in spleen and lungs and both systemic and mucosal IgA levels. 

2.6 IgA+ plasma cells in lungs 

Since the natural route of entry of influenza virus is represented by the respiratory mucosal surfaces, 
including the nose, the oral cavity, trachea and the lungs, induction of adaptive mucosal immunity could 
prevent the establishment of influenza virus infection.  
As the results herein demonstrated that the up-regulation of CCL28-CCR3/CCR10 circuit is correlated with 
increased concentrations of both systemic and mucosal HA7-specific IgA, we further verified these data with 
immune-histochemistry analyses of IgA-ASC distribution in the lungs.  
IgA+ plasma cells were clearly identified by immunopositive staining in the cytoplasm of cells with plasma 
cell-like morphology. Results showed the presence of BALT structures and numerous IgA+ cells in the lungs 
of H7N1-CCL28 treated mice (mean number and S.E. of IgA+ plasma cells =78.5 + 6); this increase was 
statistically significant compared to all the other groups of mice (p<0.005 in all cases). In H7N1-VLP-CCL19 
(45.1 + 4 plasma cells), H7N1-VLP alone (31.2 + 2 plasma cells), CCL28 alone (28.4 + 4 plasma cells), 
CCL19 alone (14.3 + 2 plasma cells) or saline alone mice (2.1 + 4 plasma cells), the BALT was incompletely 
formed or totally absent and rare IgA+ cells were identified by immune-histochemistry, suggesting that the 
adjuvant role of CCL28 results in a massive chemokine-directed recruitment of IgA-ASCs at the mucosal 
level. Representative results are shown in Fig. 44. 
 

  
Figure 44: IgA

+
 plasma cells. Balb/c mice immunized with H7N1-VLP in the presence of CCL28, H7N1-VLP 

in the presence of CCL19, HIV-VLP alone and saline are shown in panels A, B, C and D, respectively. 
Representative results obtained in the lungs are presented.  

 
Results presented here indicate that immunization in the presence of CCL28 significantly increases the 
quantity of mucosal ASCs in the lungs. This could be extremely useful in the design of protective vaccines.  
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2.7 Neutralization activity of sera and mucosal secretions 

Since neutralization activities against influenza virus are an indicator of induction of functional antibodies 
most likely conferring protective immunity, we performed HAI tests.  
The basis of the HAI test is that influenza viruses will hemagglutinate erythrocytes through the interaction of 
sialic acid and sialic acid receptors on the HA protein. Since the influenza virion can attach to more than one 
erythrocyte at a time, this allows for cross-linking or clumping of erythrocytes by the virus. This 
hemagglutination can be inhibited by antibodies directed against the HA protein. Antibodies to the HA are 
subtype specific, so that antibodies against one subtype will not typically react with another subtype. 
Therefore, the HAI test has been used as the primary and classical method of identifying the HA subtype of 
an unknown virus 
Antibodies elicited by the vaccine in pooled sera and in pooled mucosal secretions collected 4 weeks after 
the first immunization were evaluated for the ability to prevent H7N1 VLPs-induced agglutination of turkey 
RBCs.  
As shown in Fig. 45, panel B, H7N1-VLP-CCL28 mice had serum titer of hemagglutination inhibition 
antibodies against the Influenza A virus H7N1 of 1:480. In contrast, H7N1-VLP-CCL19 and H7N1-VLP alone 
mice had HAI titers of 1:160 and 1:120, respectively, and none of the other groups of mice had any 
detectable HAI antibodies. Interestingly, BALs from H7N1-VLP-CCL28 mice showed an HAI titer of 1:80 that 
were 2-3 fold higher than the HAI titers from either H7N1-CCL19-VLP or H7N1-VLP animals (1:40 and 1:30, 
respectively) (Fig. 45, panel C). Immune BALs from either CCL28 alone, CCL19 alone or saline mice 
showed no HAI antibodies. Naïve mice did not have any detectable HAI antibodies. 
HAI antibody titers in the range of 1:40 are required to confer 50% protection against infection and are 
generally considered an immunological correlate of protection threshold beyond which it is unlikely that 
serious illness will occur [187]. Delivery of the CCL28-expressing plasmid in combination with H7N1-VLPs 
results in HAI antibodies that were well above the level to protect 90% of infected mice against Influenza 
virus A/Chicken/FPV/Rostock/1934.  
It remains to verify whether mice vaccinated with the adjuvanted protocol are protected against a challenge 
with homologous or heterologous viral strains and whether VLP-CCL28-induced responses can lower viral 
load in vivo.  
 

 
 

 
 

 

Figure 45: HAI test. Two negative controls are shown in panel A: 1) RBC control: RBC + PBS; 2) 
Agglutination control: H7N1-VLPs + RBC. The VLPs bind to RBC, forming a spot at the bottom of the culture 
well. When the VLPs were bound to the specific antibodies, the spot disappeared. Panels B and C show HAI 

titers of immune sera and BALs at different 2-fold dilutions, respectively. 
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3. HPV-16 VLPs-RECEIVING MICE 

3.1 CCR3- and CCR10- expressing CD19+ cells 

Inbred female Balb/c mice were immunized with a prime-boost regimen using HPV-16 VLPs in the presence 
or in the absence of the CCL28-expressing plasmid. The murine CCL19 chemokine gene inserted into a 
pCpG-free expression vector was used as a negative control (for further details about immunization 
procedure, see Materials and Methods, paragraph 4.3). 
To analyze the expression of CCL28 chemokine receptors on circulating lymphocytes, flow cytometry 
assessment of CCR3 and CCR10 was performed in CD3+, CD14+ and CD19+ purified splenocytes.  
CCR3- and CCR10-expression levels in CD3+ splenocytes as well as CD14+ cells were similar in the six 
analyzed groups (data not shown). In contrast, CD19+/CCR3+ and CD19+/CCR10+ splenocytes were 
significantly augmented in HPV16-VLP-CCL28 treated mice as compared with either HPV16-VLP-CCL19 
(p=0.005 and 0.036, respectively), HPV16-VLP alone (p=0.009 and 0.018, respectively), CCL28 alone 
(p=0.004 in both cases), CCL19 alone (p<0.001 in both cases) or saline controls (p<0.001 in both cases) 
(Fig. 46). 
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Figure 46: expression of CCR3 and CCR10 on CD19

+
 splenocytes; (A) CCR3

+
/CD19

+
 splenocytes, (B) 

CCR10
+
/CD19

+
 splenocytes. Mean values, standard deviations and statistically significant differences are 

indicated represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 

3.2 Surface density of CCR3 and CCR10 on CD19+ cells 

CCR3 mean fluorescence intensity (MFI) on CD19+ splenocytes was significantly increased in HPV16-VLP-
CCL28 treated mice as compared with either HPV16-VLP-CCL19 (p=0.026), HPV16-VLP alone (p=0.023), 
CCL28 alone (p=0.020), CCL19 alone or saline controls (p=0.001) (Fig. 47, panel A). 
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Similarly, CCR10 MFI on CD19+ lymphocytes was significantly augmented in HPV16-VLP-CCL28 treated 
mice as compared with either HPV16-VLP-CCL19 (p=0.046), HPV16-VLP alone (p=0.035), CCL28 alone 
(p<0.001), CCL19 alone (p<0.001) or saline controls (p<0.001) (Fig. 47, panel B). 
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Figure 47: CCR3 and CCR10 mean fluorescence intensity (MFI) on CD19

+
 splenocytes; (A) CCR3

+
/CD19

+
 

splenocytes, (B) CCR10
+
/CD19

+
 splenocytes. Mean values, standard deviations and statistically significant 

differences are indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
 
Results presented herein demonstrated that immunization of mice with L1-expressing VLPs in the presence 
of the CCL28-expressing plasmid results in the modulation of the whole CCL28-CCR3/CCR10 circuit 
correlating with a relevant up-regulation of chemokine receptor expression on circulating CD19+ cells.  
Nevertheless, the expression and the surface density of CCR3 and CCR10 in CD19+ lymphocytes isolated 
from mucosal secretions need to be further investigated. 

3.3 Induction of mucosal total and L1-specific IgA and IgG antibodies  

Studies of HPV-16-specific antibody responses at the genital mucosa have confirmed that type-specific IgA 
antibodies are detectable at the cervix and are associated with the presence of viral DNA. Cervical IgA from 
women with active HPV-16 infections have been shown to have virus neutralizing capabilities but do not 
seem to correlate with viral clearance in healthy women or patients with CIN [188]. Nevertheless, a 
protective role of IgA antibodies in HPV-16 exposure or early infection cannot be excluded. 
Thus, to assess the CCL28-induced enhancement of mucosal humoral responses, total and L1-specific 
antibody responses were quantified in vaginal secretions of both immunized and control mice.  
Total IgA levels were significantly augmented, compared to baseline values, in vaginal secretions of HPV16-
VLP-CCL28 mice compared to all the other groups of mice (p<0.04 in all cases) (Fig. 48).  
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Figure 48: mucosal humoral immunity. Total IgA variation from baseline in vaginal secretions is shown. 

Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant differences 

are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
 
Importantly, L1-specific IgA levels were detectable and significantly increased as well in vaginal secretions of 
HPV16-VLP-CCL28 mice as compared with either HPV16-VLP-CCL19 (p=0.040) or HPV16-VLP alone mice 
(p=0.002) (Fig. 49). Vaginal secretions from pre-immunized as well as control mice did not have specific 
antibodies against the HPV-16 L1 protein. The observed specific mucosal anti-L1 IgA responses were 
normalized on the total IgA content. Also L1- specific IgG levels were significantly augmented in vaginal 
secretions of HPV16-VLP-CCL28-receiving mice compared with the all other groups, most likely reflecting 
serum IgG levels (data not shown). 
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Figure 49: HPV-16-specific mucosal humoral immunity. L1-specific IgA levels in vaginal secretions are 
shown. Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant 

differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
 
Results presented herein demonstrate that immunization of mice with L1-expressing VLPs in the presence of 
CCL28 up-regulate potentially beneficial mucosal immune responses against HPV-16 infection. 

3.4 Induction of L1-specific systemic humoral response 

Sera from immunized and control group mice were collected two weeks after final immunization to measure 
L1-specific antibodies. ELISA tests were performed on microwell plates coated with recombinant L1 protein 
from HPV-16.  
Serum anti-L1 IgG and IgA levels were significantly increased in HPV16-VLP-CCL28 mice as compared with 
either HPV16-VLP-CCL19 (p=0.042 and 0.05, respectively) or HPV16-VLP alone animals (p=0.002 and 
0.004, respectively) (Fig. 50-51). Pre-immunized and control mice did not have serum L1-specific antibodies. 
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Figure 50: HPV-16-specific systemic humoral responses. Serum L1-specific IgG levels are shown. 

Absorbance was read at 490 nm. Mean values, standard deviations and statistically significant differences 

are indicated (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
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Figure 51: HPV-16-specific systemic humoral responses. Serum L1-specific IgA levels. Absorbance was 

read at 490 nm. Mean values, standard deviations and statistically significant differences are indicated (∗ 

p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
 
The high levels of systemic antibodies detected in sera of immunized mice is in contrast to the situation after 
natural infection that leads only 50-70% of infected individuals to detectable antibodies of low titers. This 
difference may be explained by the much higher dose of antigen that is administered during vaccination. 
More importantly, it is based upon the exposure of the viral particles to the immune system in the non-natural 
compartment as happens after intramuscular immunization.  
The observation that CCL28 exerts its adjuvant effects not only in the mucosal system but also systemically 
is important as it is likely that both lines of defense will be necessary to optimally constraint HPV-16 infection 
[189]. Furthermore, circulating antibodies induced in the vaccination, particularly IgG, reach the mucosal 
surface most likely by diffusion (“transudation”) into the cervical mucosa, thus preventing infection [190]. 

3.5 Cytokine production by L1-stimulated splenic and cervical cells  

To investigate whether CCL28 administration would affect L1-specific cytokine production, splenic and 
cervical T-cells were stimulated with recombinant HPV-16 L1 protein to quantify L1-specific production of 
Th1-type (IFN-γ) and Th2-type (IL-4 and IL-5) cytokines.  
Results showed a significant increase of IFN-γ production by both spleen and cervical cells of HPV16-VLP-
CCL28 mice compared to HPV16-VLP-CCL19 (spleen p=0.040; cervix p=0.028) and VLP alone mice 
(spleen p=0.026; cervix p=0.01) (Fig. 52). The IL-4 and IL-5 production was also augmented in HPV16-VLP-
CCL28 treated mice as compared with either HPV16-VLP-CCL19 (spleen IL-5 p=0.048; cervix p=0.039 and 
0.045, respectively) or HPV16-VLP alone (spleen p=0.041 and 0.008, respectively; cervix p=0.032 and 
0.005, respectively) (Fig. 53). Naïve and control mice did not show L1-specific cell-mediate responses. 
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Figure 52: HPV-16-specific cell mediated responses. L1-specific IFN-γ concentration (pg/ml) in the 

supernatants of splenic and cervical T-cells re-stimulated ex vivo with the recombinant L1 protein from HPV-
16. Splenocytes and cells from the uterine cervix are represented by the orange bars and the brown bars, 

respectively. Mean values after medium is subtracted, standard deviations and statistically significant 

differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
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Figure 53: HPV-16-specific cell-mediated responses. Panels A and B represent, respectively, L1-specific IL-
4 and IL-5 concentration (pg/ml) from splenic and cervical T-cells re-stimulated ex vivo with the recombinant 
L1 protein from HPV-16. Splenocytes and cells from the uterine cervix are represented by the bars and the 
bars, respectively. Mean values after medium is subtracted, standard deviations and statistically significant 

differences are represented (∗ p<0.05, ∗∗ p<0.01 and ∗∗∗ p<0.001 vs HPV16-VLP-CCL28 mice). 
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Preliminary results suggest that the increase of L1-stimulated IFN-γ production in the spleen and in the 
uterine cervix also depends on the stimulation of CTL-mediated responses in CCL28-receiving mice. HPV-
16 L1-specific Th1-type T-cell immunity is induced in human subjects by either natural exposure to transient 
HPV-16 infections, the persistence of this virus in low- or high-grade cervical lesions or by L1-VLP 
vaccinations. Studies on the rate of genital wart clearance have shown that persisting warts are 
characterized by the absence of immune infiltration, whereas wart regression is associated with both CD4+ 
and CD8+ T-cell infiltration into the wart stroma and epithelium [191]. The presence of L1-specific Th1 T-cell 
responses may therefore assist in protective immunity, although the detection of these T-cells, unlike that of 
Th1 T-cell immunity against E2 and/or E6, is not indicative of successful control of this virus [192]. 
Importantly, the increased production of IL-5 correlates with the higher levels of IgA detected in the 
peripheral blood and in vaginal secretions of HPV16-VLP-CCL28 treated mice. 

3.6 IgA+ plasma cells in the cervical mucosa 

HPV type 16 is the most prevalent HPV type associated with cervical intraepithelial neoplasia and cervical 
cancer worldwide, with >50% of women with cervical disease being infected with HPV-16. Since the cervical 
tract is the site of HPV-16 infection and replication, induction of adaptive mucosal immunity could therefore 
serve a major role in protection against HPV.  
As the results herein demonstrated that the up-regulation of CCL28-CCR3/CCR10 circuit is correlated with 
increased concentrations of both systemic and mucosal L1-specific IgA, we further verified these data with 
immune-histochemistry analyses of IgA-ASC distribution in the cervical mucosa.  
IgA+ plasma cells were clearly identified by immunopositive staining in the cytoplasm of cells with plasma 
cell-like morphology. The number of IgA+ cells in the stroma of the uterine cervix of HPV16-VLP-CCL28 
treated mice (mean number and S.E. of IgA+ plasma cells = 25.6 + 3) was higher than that of all the other 
groups (p<0.05 in all cases). In HPV16-VLP-CCL19 (18.4 + 3 plasma cells), HPV16-VLP alone (2.8 + 2 
plasma cells), CCL28 alone (16 + 1 plasma cells), CCL19 alone (8.8 + 3 plasma cells) or saline alone mice 
(10 + 2 plasma cells), rare or none IgA+ cells were identified by immune-histochemistry suggesting that the 
adjuvant role of CCL28 results in an enhanced chemokine-directed recruitment of IgA-ASCs at the mucosal 
level. Representative results are shown in Fig. 54. 
Results presented herein indicate that immunization in the presence of CCL28 increases the quantity of 
mucosal ASCs in the genital tract.  
 

  
Figure 54: IgA

+
 plasma cells. Balb/c mice immunized with HPV-16-VLP in the presence of CCL28, HPV-16-

VLP in the presence of CCL19, , HIV-VLP alone and saline are shown in panels A, B, C and D, respectively. 
Representative results obtained in the uterine cervix are presented. 

A B 

C D 
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3.7 Neutralization activity of sera and mucosal secretions 

Protection against virally infections is typically conferred by neutralizing antibodies. There are several 
arguments that this is also true for papillomaviruses.  
Antibodies against mucosal HPVs protect in some cases against reinfection by the same type, the efficacy 
towards protection probably depends upon the titer [193]. The original definition of HPV types made on the 
basis of the nucleotide sequence of their DNA (genotypes) seems to correlate with the antigenic properties 
of the respective virus particles (serotypes). Sera from naturally infected individuals of from vaccinated 
women show no or only a limited response to other HPV types, suggesting that during evolution different 
HPV types have developed as a consequence of the selection pressure by the humoral immune system. 
Furthermore, direct proof for a protective role of antibodies stems from experiments with animal HPVs in 
their natural host. The lesions induced by these viruses that closely resemble the HPV-related diseases 
were shown to be preventable by previous immunization with virus particles [194]. 
Thus, in order to assess neutralizing activity of the detected L1-specific antibodies of immunized mice, 
pooled sera and pooled vaginal secretions were tested in a hemagglutination inhibition assay as previously 
described [182].  
Sera from HPV16-VLP-CCL28 mice showed a neutralization activity at a dilution of 1:320, that was 4-5 fold 
higher than the HAI titers from either HPV16-VLP-CCL19 or HPV16-VLP alone mice (1:80 and 1:60, 
respectively) (Fig. 55, panel B). Importantly, vaginal secretions showed a neutralizing activity at a dilution of 
1:40, that was 2-fold higher that the HAI titers from either HPV16-VLP-CCL19 or HPV16-VLP alone mice 
(1:20) (Fig. 55, panel C). Pre-immune samples as well as immune sera and vaginal washes from either 
CCL28 alone, CCL19 alone or saline mice showed no HAI antibodies.  
 

 
 

 
 

 
Figure 55: HAI test. Two negative controls are shown in panel A: 1) RBC control: RBC + PBS; 2) 

Agglutination control: HPV16-VLPs + RBC. The VLPs bind to RBC, forming a circle at the bottom of the 
culture well. When the VLPs were bound to the specific antibodies, the circles disappeared. Panels B and C  

show HAI titers of immune sera and vaginal secretions at different 2-fold dilutions, respectively. 
 
Neutralizing activity of vaginal secretions from HPV16-VLP-CCL28 mice might be referred not only to IgG 
[193] but also to IgA antibodies specific for HPV-16 L1 protein, suggesting that CCL28 delivery as an 
expression plasmid in combination with HPV-16 VLPs could prevent HPV-16 infection of epithelial cells and 
induction of HPV-related diseases. These data provide the basis for further investigations on the induction of 
mucosal immune responses against sexually transmitted diseases. 

1) HPV16-VLPs + RBCs 

2) RBCs + PBS 
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Mucosal surfaces provide portals of entry for pathogens. A large number of mucosal infections continue to 
represent a challenge for the development of both prophylactic and therapeutic vaccines. Pathogens in this 
category include respiratory viruses, such as Influenza virus, and sexually transmitted disease (STD) 
pathogens, particularly HIV and HPV. 
Influenza A is one of the major threats to human and animal health due to its high transmissibility and the 
potentially severe morbidity and mortality among susceptible hosts. Early vaccination is one of the most 
effective means to mitigate a future influenza pandemic. Nowadays, the two types of licensed influenza 
vaccines provide incomplete protection, due in part to the limited mucosal immunity and cytotoxic T-cell 
response, and the short duration of the protective immunity elicited by the vaccines. 
The vast majority of newly acquired HIV infections are sexually transmitted. In this modality of infection the 
virus initially targets the vaginal or rectal mucosa, thus preventative vaccines or microbicides should be 
designed to protect such mucosae. With the exception of moderately promising results of the RV144 trial 
(the so called “Thai trial”), no candidate vaccine for HIV infection has been successful. Preventive 
approaches based on the prevention of HIV infection through the use of topical microbicides have also been 
unsuccessful, even if possible, breakthrough results were recently shown (Vienna AIDS conference). 
Notably, the necessity to protect mucosal tissues notwithstanding, as most of vaccine strategies are 
designed to play a therapeutic role via the elicitation of systemic immune responses.  
Cervical cancer is the second leading cause of cancer mortality in women worldwide. The causal role of a 
subset of HPVs in cervical carcinogenesis has now been clearly established, since high-risk HPV DNA has 
been found in virtually all cervical cancer samples, HPV-16 being the most prevalent. A prophylactic vaccine 
that targets these HPV types might therefore reduce the incidence of this cancer and precursor lesions. The 
leading candidate is a subunit HPV VLP vaccine that has proven to be very efficient in preventing both 
persistent genital HPV infection and associated lesions. However, although VLP vaccination induces readily 
detectable IgG at the cervix, the level of antibody decreases several fold during ovulation, which might impair 
the long term protective effects of the vaccine. Indeed, induction of locally produced specific SIgA in mucosal 
secretions, in addition to serum-derived Igs, could represent a potential approach to overcome these 
difficulties. 
In the design of effective prophylactic strategies against the viral infections mentioned above, VLPs 
represent an antigen delivery system currently under investigation as potential vaccine for different human 
viruses. VLPs are non-replicating particles that are similar in conformation to intact virus and are able to 
stimulate both arms of the immune system by entering both MHC class I and II presentation pathways.  
Furthermore, one strategy that could improve immunogenicity of mucosal vaccines is the use of chemokine 
adjuvants. Genetic adjuvants encoding cytokines or chemokines represent a means of modifying the 
magnitude, duration and nature of the immune response generated in vivo. Few studies have measured the 
effects of genetic adjuvants encoding chemokines on induction of systemic and local immunity, and 
specifically of the CCR3 and CCR10 receptor ligand, CCL28 (also known as MEC, Mucosae-associated 
Epithelial Chemokine). Expression of CCR10 and its ligand within mucosal and epithelial tissue at the 
gastrointestinal and lung bronchial sites has been reported to have an important role in the trafficking of 
specific immune cells to these sites of pathogen exposure. In particular, CCR10, in response to signals 
delivered by CCL28, contributes to the broader localization of IgA-ASCs to the small intestine, colon and 
bronchi. It is well established that activation or differentiation of T-cells can alter the expression of specific 
chemokine receptors and thereby increase their sensitivity or responsiveness to cognate chemokine ligands. 
In addition, chemokines and their receptors can be up-regulated during inflammatory stimulation, leading to 
preferential recruitment of effector lymphocytes to specific tissue microenvironments.  
We analyzed therefore a systemically administered vaccination strategy characterized by intramuscular 
vaccination with CCL28 plasmid adjuvant in three mouse models receiving HIV-1IIIB VLPs, H7N1 VLPs and 
HPV-16 VLPs, respectively.  
Results presented herein demonstrate that immunization of mice with either HIV-1IIIB Env-, Influenza A HA7- 
or HPV-16 L1-expressing VLPs in the presence of CCL28 results in the modulation of the whole CCL28-
CCR3/CCR10 circuit correlating with a robust up-regulation of the immunization-induced antigen-specific 
immune response.  
Thus, cytokine secretion by spleen and colon or lung or uterine cervix, depending on the primary site of viral 
replication, as well as total and antigen-specific IgA and IgA+ plasma cells were significantly augmented in 
the presence of CCL28. Notably, antigen-specific IgA and IgG levels were significantly increased in serum 
as well, suggesting that, systemic as well as mucosal immune responses are efficiently modulated by 
CCL28. Finally, the observation that the neutralization ability of serum and vaginal secretions of immunized 
mice in the presence of CCL28 was significantly increased indicates that the immune modulation induced by 
this chemokine is associated with an augmented capacity to reduce HIV or Influenza A virus H7N1 or HPV-
16 infectivity. 
The observation that CCL28 exerts its adjuvant effects not only in the mucosal system but also systemically 
is important as it is likely that both lines of defense will be necessary to optimally constraint viral infection. 
Thus, both the level of antigen-specific IgA and the neutralization ability of immune sera were significantly 
up-regulated in mice receiving CCL28. In addition, antigen-specific cytokine responses were increased in 
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spleen and mucosal tissues of these mice, indicating that this vaccine protocol might be able to elicit both 
types of immune responses. In particular, the increase of antigen-specific IFN-γ production would suggest 
the possible stimulation of CTL-mediated responses both in the peripheral blood and in MALT structures of 
CCL28-receiving mice; preliminary results suggest that this is indeed the case. 
Recent studies have shown that the GALT contains the vast majority of T-cells in the body and represents 
the preferential target for HIV replication during the acute phase of HIV infection. This phenomenon results in 
a massive and systematic destruction of CD4+ T-cells strongly enhancing the pathogenesis of HIV infection.  
The respiratory tract, including trachea and lungs, is the natural route of entry of Influenza viruses and is at 
high risk of developing severe complications especially from Influenza A viruses, which may include 
hemorrhagic bronchitis, pneumonia and death in people with chronic pulmonary or cardiac disease, or 
diabetes mellitus. Finally, the cervical tract, which represents the preferential replication site of HPV-16, is 
susceptible to the development of cervical intraepithelial neoplasia and cervical cancer worldwide, with >50% 
of women with cervical disease being infected with HPV-16. These observations have further strengthened 
the importance and urgency of developing mucosal vaccine for the prevention of HIV or Influenza A virus or 
HPV-16 infection.  
Results presented here indicate that immunization on the presence of CCL28 significantly increases the 
quantity of mucosal ASCs in the rectum of HIV-1IIIB-VLP-receiving mice, in the lungs of H7N1-VLP-receiving 
mice and in the uterine cervix of HPV16-VLP-receiving mice. This could be extremely useful in the design of 
protective vaccines.  
As IgA are mostly mucosal antibodies that are responsible for the first line of defense of adaptive immunity 
against pathogens, it is reasonable to infer that vaccine procedures capable of eliciting a strong IgA 
response would be beneficial by contributing to the containment of viral infection.  
Our results show that the objective of up-regulating potentially beneficial mucosal immune responses is 
achievable in the mouse model by the use of CCL28 as an adjuvant. The increased neutralization ability 
toward at least two different HIV-1 clades detected in immune sera and in vaginal secretions of HIV-1IIIB-
VLP-receiving mice indicates that the reduction of HIV infectivity in vivo could be achieved by such adjuvant. 
This is also desirable for Influenza A virus and HPV infection, as vaccination in the presence of CCL28 
results in an enhanced neutralizing activity of sera and mucosal secretions against the homologous H7N1 
clade A strain and HPV type 16, respectively. 
The cell-mediated and humoral responses were not detected with the suboptimal vaccine doses used to 
critically evaluate adjuvant effect on B-cell responses. However, in vivo effects on B-cell proliferation and 
isotype switching consistent with the high dose in vitro results might well occur at levels of T-cell activity too 
low to be measured by the insensitive in vitro assays.  
 
In conclusion, results presented herein indicate that CCL28 used as an adjuvant has a robust 
immunomodulatory effect on potentially beneficial mucosal and systemic immune responses. Therefore, the 
development of effective mucosal chemokine DNA vaccine adjuvants that can be delivered parenterally has 
implications for prophylactic immunization strategies that require both peripheral and mucosal physiologically 
relevant antigen-specific immunity.  
Nevertheless, the efficacy evaluation of CCL28 adjuvanticity requires further experiments to define immune 
correlates of mucosal responses to vaccination with VLPs in combination with chemokine adjuvants. 
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PRINCIPLES OF CYTOMETRY 

The flow cytometry allows automatic analysis of monodisperse cell suspensions, by measuring the physical 
and/or biochemical in a laminar flow that is hit by a beam of monochromatic light. By cytometry you can 
capture and store multiple parameters for each measured cell, such as volume, granularity and 
fluorescence, using different windows electronic analysis on specific populations, discriminated according to 
different parameters brands.  
The principle underlying the cytometry is the possibility to analyze each individual event of the test sample, 
thanks to a fluidic system that generates a single line of cells. While proceeding, the individual cells through 
a measuring point where interacting with the beam of excitation. The fluorescent emission signal generated 
(due to the phenomena of diffraction, refraction and reflection), is collected by a system of lenses, dichroic 
mirrors and optical filters and sent to the sensors (photomultiplier) that measures the amplitude of signal. 
The signals from each sensor are digitized, combined with each other and sent to a computer that provides 
the presentation of data and their statistical definition.  
 

 
Figure 1: schematic representation of a cytometer: laser, dicroic filters, band pass filter  

and photomultiplier are in evidence. 
 

The cytometer consists of four main components (Figure 1), detailed explaining in the following paragraphs: 
- fluidics system, that allows to obtain a monodisperse flux of cells; 
- optics and detectors, that allow the excitation of the fluorochrome and the detection of fluorescent signal 
and of the physical and/or biochemical characteristic of cells; 
- signal processing, that allows the conversion of light in analogical signals, that can be received by a 
computer; 
- data analysis, that allows to display data acquired in different graphic representations. 
 
Another special component of the flow cytometer (not described here) permits to separate cells according to 
subtype or epitope expression for further biological studies. This process is called cell sorting or FACS™ 
analysis. After the sample is hydrodynamically focused by fluidic system, each particle is probed with a 
beam of light: the scatter and fluorescence signal is compared to the sort criteria set on the instrument. If the 
particle matches the selection criteria, the fluid stream is charged as it exits the nozzle of the fluidics system. 
In the following paragraphs, explanations of the single part of the flow cytometer are presented. 
 
Fluidic System 
When a sample in solution is injected into a flow cytometer, the particles are randomly distributed in three-
dimensional space. The sample must therefore be ordered into a stream of single particles that can be 
interrogated by the machine’s detection system. This process is managed by the fluidics system. 
Essentially, the fluidics system consists of a central channel/core through which the sample is injected, 
enclosed by an outer sheath that contains faster flowing fluid. As the sheath fluid moves, it creates a 
massive drag effect on the narrowing central chamber. This alters the velocity of the central fluid whose flow 
front becomes parabolic with greatest velocity at its centre and zero velocity at the wall (Figure 2). The effect 
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creates a single line of particles and is called hydrodynamic focusing. Under optimal conditions (laminar 
flow) the fluid in the central chamber will not mix with the sheath fluid. 
Without hydrodynamic focusing the nozzle of the instrument (typically 70 µM) would become blocked, and it 
would not be possible to analyze one cell at a time. 

 
Figure 2: hydrodynamic focusing produces a single stream of particles 

 
Optics and detection 
After hydrodynamic focusing, each particle passes through one or more beams of light. Light scattering or 
fluorescence emission (if the particle is labelled with a fluorochrome) provides information about the 
particle’s properties. The laser and the arc lamp are the most commonly used light sources in modern flow 
citometry (in particular, argon is the most used because its wavelength of 488 nm, that can excite the 
fluorochromes most common currently in use). 
However, this produces unstable incoherent light of a mixture of wavelengths, which needs subsequent 
optical filtering. Light that is scattered in the forward direction, typically up to 20° offset from the laser beam’s 
axis, is collected by a lens known as the forward scatter channel (FSC). The FSC intensity roughly equates 
to the particle’s size and can also be used to distinguish between cellular debris and living cells. 
Light measured approximately at a 90° angle to the excitation line is called side scatter. The side scatter 
channel (SSC) provides information about the granular content within a particle. Both FSC and SSC are 
unique for every particle, and a combination of the two may be used to differentiate different cell populations 
in an heterogeneous sample. 
Fluorescence measurements taken at different wavelengths can provide quantitative and qualitative data 
about fluorochrome-labelled cell surface receptors or intracellular molecules such as DNA and cytokines. 
Flow cytometers use separate fluorescence (FL-) channels to detect light emitted. The number of detectors 
will vary according to the machine and its manufacturer. Detectors are either silicon photodiodes or 
photomultiplier tubes (PMTs). Silicon photodiodes are usually used to measure forward scatter when the 
signal is strong. PMTs are more sensitive instruments and are ideal for scatter and fluorescence readings. 
The specificity of detection is controlled by optical filters, which block certain wavelengths while transmitting 
(passing) others. There are three major filter types. ‘Long pass’ filters allow through light above a cut-off 
wavelength, ‘short pass’ permit light below a cut-off wavelength and ‘band pass’ transmit light within a 
specified narrow range of wavelengths (termed a band width). All these filters block light by absorption 
(Figure 3). 

 
Figure 3: different type of optical filters 

 
When a filter is placed at a 45 degrees angle to the oncoming light it becomes a dichroic filter/mirror. As the 
name suggests, this type of filter performs two functions, first, to pass specified wavelengths in the forward 
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direction and, second, to deflect blocked light at a 90 degrees angle. To detect multiple signals 
simultaneously, the precise choice and order of optical filters will be an important consideration (Figure 4) 
 

 
Figure 4: schematic representation of how work a dichroic mirror 

 
Signal processing 
When light hits a photodetector a small current (a few microamperes) is generated. Its associated voltage 
has an amplitude proportional to the total number of light photons received by the detector. This voltage is 
then amplified by a series of linear or logarithmic amplifiers, and by analog to digital convertors (ADCs), into 
electrical signals large enough (5–10 volts) to be plotted graphically. 
Log amplification is normally used for fluorescence studies because it expands weak signals and 
compresses strong signals, resulting in a distribution that is easy to display on a histogram. Linear scaling is 
preferable where there is not such a broad range of signals e.g. in DNA analysis. 
The measurement from each detector is referred to as a ‘parameter’ e.g. forward scatter, side scatter or 
fluorescence. The data acquired in each parameter are known as the ‘events’ and refer to the number of 
cells displaying the physical feature or marker of interest. 
 
Data analysis 
The data analysis software permits to analyse the data acquired also in presence of different colour 
(multicolour) of fluorescence and to represent the data themselves in different graphic formats. See now in 
details both of this important function of the software system. 
One consideration to be aware of when performing multicolor fluorescence studies is the possibility of 
spectral overlap (Figure 5).  
 

 
Figure 5: spectral overlap and fluorescent compensation (dark blue shade represents the proportion of B that 

overlaps into the FL1 channel. Red shade represents the proportion of A that interfere in channel FL2; 
compensation is able to eliminate these interferences) 

 
When two or more fluorochromes are used during a single experiment there is a chance that their emission 
profiles will coincide, making measurement of the true fluorescence emitted by each difficult. Instead, a 
process called fluorescence compensation is applied during data analysis, which calculates how much 
interference (as a %) a fluorochrome will have in a channel that was not assigned specifically to measure it 
(Figure 5; in this examples, the spill-over fluorescent of A in FL2 is 17%, whereas of B in FL1 is about 5%). 
So, this mean that when the two fluorochromes are used for a dual colour experiment, the true reading for 
fluorochrome A is (total fluorescence measured in FL1) minus (5% of fluorochrome B’s total fluorescence). 
Similarly, for B, the true signal is (total fluorescence measured in FL2) minus (17% of fluorochrome A’s total 
fluorescence). Fortunately, modern flow cytometry analytical software applies fluorescence compensation 
mathematics automatically, which simplifies matters considerably. 
 
An important principle of flow cytometry data analysis is to selectively visualize the cells of interest while 
eliminating results from unwanted particles e.g. dead cells and debris. This procedure is called gating. Cells 
have traditionally been gated according to physical characteristics. For instance, subcellular debris and 
clumps can be distinguished from single cells by size, estimated by forward scatter. Also, dead cells have 
lower forward scatter and higher side scatter than living cells. Lysed whole blood cell analysis is the most 
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common application of gating, and Figure 6 depicts typical graphs for SSC versus FSC when using large cell 
numbers. The different physical properties of granulocytes, monocytes and lymphocytes allow them to be 
distinguished from each other and from cellular contaminants. 
 

 
Figure 6: analysis of lysed whole blood using FSC/SSC 

 
On the density plot, each dot or point represents an individual cell that has passed through the instrument. 
Yellow/green hotspots indicate large numbers of events resulting from discreet populations of cells. The 
colours give the graph a three-dimensional feel. 
To represent data deriving from fluorochrome labelling, two different ways are used: the single-parameters 
histograms and two-parameters histograms. 
The first type display a single measurement parameter (relative fluorescence or light scatter intensity) on the 
x-axis and the number of events (cell count) on the y-axis: the histogram is a very basic representation but is 
useful for evaluating the total number of cells in a sample that possess the physical proprieties selected for 
or which express the marker of interest. Cells with the desired characteristics are known as the positive 
dataset. Ideally, flow cytometry will produce a single distinct peak that can be interpreted as the positive 
dataset. However, in many situations, flow analysis is performed on a mixed population of cells resulting in 
several peaks on the histogram. In order to identify the positive dataset, flow citometry acquisition should be 
repeated in the presence of an appropriate negative control. 
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Figure 7: schematic representation of a single parameter histogram 

 
The two-parameter histograms are graphs that display two measurement parameters, one on the x-axis and 
one on the y-axis (Figure 8), and the cell count as a density (dot) plot or contour map. The parameters could 
be SSC, FSC or fluorescence. This graph permits to evaluate the correlation between two data set acquired. 
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Figure 8: schematic representation of two-parameters graph
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