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3. Spatial interpolation models in climatology 
 

 

 

 

3.1 From discrete data to continuous climate surfaces 
 

Spatial interpolation is the procedure of estimating the value of quantities at 

unsampled sites within the area covered by existing observations. From a discrete set of 

data, the mathematical spatial models produce continuous climate surfaces (e.g. 

temperature climatologies). To be correct, they produce grids (often called rasters in 

geostatistics) that depend on the resolution of a digital elevation model (the so-called 

DEM), e.g., approximately 30-arc-second for each grid cell for the U.S. Geological Survey 

DEM (USGS website), the DEM used by our research group. 

Geostatistical mapping can be defined as the analytical production of maps by using 

field observations, explanatory information and a computer program, which calculates 

values at locations of interest (i.e. a study area). 

 

         
 

Fig.9 From point data to continuous field based on digital model (Cressie, 1993; Hengl, 2009) 

 

Spatialization models can be classified into: 

- Mechanical Deterministic models: Thiessen polygons, inverse distance interpolation, 

regression on coordinates, natural neighbours, splines and so on. 

- Linear Statistical Probability models: kriging, environmental correlation models, 

Baesyan-based models, hybrid models and so on. 

- Expert-Based models: purely data-driven models, PRISM, neural networks and so on. 

 

The output of such global or moving window models can be smoothed or exact, 

gridded or in polygons, depending on the application of the model itself. 
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Climate spatialization models are usually univariate: a dependent variable (e.g. mean 

temperature, precipitation, air pressure and so on) and a set of independent variables that 

can be studied in subsequent steps or in a single model. The independent variables are 

also known as predictors and it is very important to have a clear idea about connection or 

hierarchy of predictors (Hengl, 2009). Independent variables can be large scale variables 

(latitude, longitude, distance from the coast, land cover classes, slope steepness, aspect, 

solar radiation), vertical parameters (elevation), local variables (proximity to lakes, cold air 

pools, urban heat island) and they contribute, besides data availability and density, to 

choosing the statistical model (Jarvis et al, 2001a; Jarvis et al., 2001b; Daly, 2006).  

It must be underlined that the selection of modelling method is as important as data 

quality and as the choice of independent variables (Jarvis et al., 2001a). 

A spatialization model must be validated using statistical parameters that quantify 

errors (Mean Absolute Error, Root Mean Square Error, Bias, and so on) and statistical 

techniques as cross validation, boot-strapping, and so on. 

 

In this chapter, we describe the most used spatialization models to predict climate 

surfaces, citing some examples where the models were applied in climate research and 

briefly discussing about comparisons between models. In the last section, we list the 

validation methodologies. 

 

 

 

3.2 Kriging  

 
3.2.1 Definitions and assumptions  
 

Based on mathematical calculations of George Matheron (Matheron, 1969), following 

Daniel Krige’s master thesis (Krige, 1951), kriging is a stochastic spatial interpolation 

method which uses locally weighted averages. The weights are derived from variograms 

and kriging treats statistically random variations in space for the regionalized variable 

(Jarvis et al., 2001a; Chapman et al., 2003). Such weights depend on reciprocal distance 

between grid points (Gylfadottir, 2003). 

Kriging is performed under some basic assumptions: data should have stationarity,  

unbiasedness and a normal statistic distribution, global trends must be removed from data 

before kriging and the predictors (i.e. the independent variables) must be known at every 
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grid point of the raster where the predictands (i.e. the dependent variables) are calculated 

(Hengl et al., 2003). If no trend is present in the data, kriging gives a BLUE (Best Linear 

Unbiased Estimation) interpolation (Ashraf et al., 1997).  

 

 

3.2.2 Kriging models: variants, peculiarities, and limits 
 

Here we list the most used variants of kriging (Hengl et al., 2003; Hengl et al. 2009; 

Stein, 1999): 

- Simple Kriging (SK): the expectation value is zero everywhere, the covariance is known  

- Ordinary Kriging (OK): the expectation value is unknown but constant, the variogram is 

known 

- Co-kriging (CK): a multivariate kriging that uses a regionalized variable theory based on 

inter-variable correlations, it uses cross-semi-variograms 

- Universal Kriging (UnK): the expectation value is described with a general linear model 

- IRFk-kriging (IRFK): the expectation value is described with a polynomial model 

- Indicator kriging (IK): it uses indicator functions to estimate transition probabilities 

- Multiple indicator kriging (MIK): an indicator kriging that uses a family of indicators 

- Disjunctive kriging (DJK): a non-linear generalisation of kriging 

- Lognormal kriging (LNK): it interpolates positive data by means of logarithms 

- Kriging with external drift (KED): a deterministic variable is first used to de-trend the 

data, then ordinary kriging is performed 

- Regression Kriging (RK): drift components and residuals are treated separately and then 

summed, the former are studied with regression analysis, the latter with ordinary kriging 

 

Kriging can use only station data, as in simple kriging, block kriging, ordinary 

kriging, or it can use also topographic information, as in universal kriging or co-kriging 

(Vicente-Serrano et al., 2003; Isaaks et al., 1989). 

 

If all the assumptions are verified, OK or SK can be used, but unfortunately climate 

data is usually biased and stationarity is rarely verified.  

To overcome this problem, deterministic components are first de-trended, e.g. with a 

multiple linear regression of temperature versus longitude, latitude, elevation, distance 

from the coast, then kriging is performed over residuals. This technique is called residual 

kriging (ResK) (Tveito, 2002). 
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UK, KED, RK, ResK are “hybrid” non-stationarity geo-statistical methods that are 

called “kriging after de-trending” methods and such methods are formally very similar 

(Wackernagel, 2003; Goovaerts, 2000). They should be used when the auxiliary information is 

available for every grid point and if a trend is present in the data. These three methods 

provide quite identical results if the input parameters are the same. 

KED calculates weights by expanding the covariance matrix with auxiliary variables, 

which ensure that universality is included in the kriging system.  RK solves the drift model 

coefficients with regressions then it uses OK to interpolate residuals and it added them 

back to get final results (Hengl et al., 2003).  ResK is a more general RK method that solves 

the drift components with regressions or other models. UnK is a kriging with a changing 

mean where the trend is modelled as function of coordinates and it should be used only in 

this case (Matheron, 1969; Wackernagel, 2003).  It can be demonstrated that KED and RK are 

based on the same mathematical equations (Hengl et al., 2003). 

 

Furthermore, RK turns into SK or OK if predictors and predictands are significantly 

not correlated, whilst it turns into pure regressions if predictors and predictands are 

significantly correlated. Thus, MLR (Multiple linear regression) models and first order 

kriging models are special cases of RK (Hengl, 2009). 

 

On the other hand, if the kriging variable was not sampled enough, CK or collocated 

co-kriging (CCK) provides better estimations (Ashraf et al. 1997; Knotters et al., 1995) and 

they are based on fewer spatial variables than SK or OK (Goovaerts et al., 2000). 

 

If the datasets are very large, the so-called sequential kriging (SeqK) can be used.  It is 

based on sequentially data selection of subsets where simple or ordinary kriging are 

applied (Vargas-Guzman et al., 1999). SeqK includes local-regression kriging (LRK) models 

or moving window kriging models that were used in recent analysis (Lloyd, 2010; Walter et 

al., 2001). 

 

The kriging technique has some limitations. Kriging relies completely on data 

quality. If the dataset is small, there could be over-fitting and under-sampling.  In KED or 

RK, the covariance and regression calculations are performed simultaneously. 

Extrapolation outside the sampled feature area could produce biased results, predictors 

with uneven relation to the target variable must be avoided, intermediate-scale modelling 

can be difficult and there is still a lack of GIS user-friendly packages dedicated to kriging 
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(Hengl, 2009). Moreover, it should be noticed that kriging variograms are calculated using 

distance as parameter and this can be reductive in areas with a complex orography as 

Italy. 

 

 

3.2.3 Examples of kriging models: OK and RK  

 

• Data with no intrinsic trend: ordinary kriging equations 

 

This paragraph is based on Hengl (2009).  

 

If the trend function is constant, the variogram is constant and the target variable 

follows approximately a normal distribution, the OK method can be used (Hengl, 2009).   

 

If Z is the “target variable”, z(s1), z(s2),. . . , z(sn) is a set of observations and si = (xi,yi) 

are geographical locations, the predictions are based on the model: 
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Where µ is the constant stationary function (global mean) and ε’(s) is the spatially 

correlated stochastic part  of variation. 

 

Thus, predictions are made as: 
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Where λ0 is the vector of kriging weights, z is the vector of n observations at 

primary locations. 

 

 

In order to estimate weights in an objective way, a variogram is used  A variogram is 

defined as a function describing the degree of spatial dependence of the spatial random 

field or stochastic process Z(s) (Wackernagel, 2003).  
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The squared differences between the neighbouring values are called semi-variances: 
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where z(si) is the value of the target variable at some sampled location, z(si+h) is the value 

of the neighbour at distance si+h.  

 

 

If we plot all semi-variances versus their separation distance and then we average the 

values for a standard distance (“lag”), we get an experimental variogram. 

 

  
 

Fig.10 Left: example of variogram: semi-variances vs. pair distances aggregated to standard lags. 
Right: sill variation and nugget value in semivariograms to find the practical range.  (Hengl, 2009) 

 

The experimental variogram is fitted with a theoretical model, e.g. linear, spherical, 

exponential, circular, Gaussian, Belle, power and so on (Isaaks et al., 1989; Goovaerts, 2000). 

 

The OK weights are solved by multiplying the covariances: 
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where C is the covariance matrix for n x n observations and c0 is the vector of covariances 

at a new location. C is (n+1) x (n+1) matrix if used to derive kriging weights.  
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We have: 
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Where one extra row and column are used to ensure that the sum of weights is 

normalized and ϕ is the Lagrange multiplier. 

 

The OK variance is defined as the weighted average of covariances from the new 

point (s0) to all calibration points (s1, …, sn) plus the Lagrange multiplier (Webster et al., 

2001): 
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• Data with an intrinsic trend: residual kriging equations  
 

This paragraph is based on Hengl (2009). 

 

RK is a kriging model that can be seen as a BLUP (Best Linear Unbiased Prediction) 

model: OK, environmental correlation, ID (Inverse distance), NN (nearest neighbour) 

models are special cases of RK (Hengl, 2009). 

 

If data are not stationary, a value of target variable at some location can be seen as 

the sum of deterministic and stochastic components that can be modelled separately (Jarvis 

et al., 2001a; Matheron, 1969): 
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Thus, we obtain:  
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Where the first term in the sum is the deterministic part and the second is the 

interpolated residual. The regression coefficients kβ̂ can be estimated by fitting methods as 

OLS (Ordinary Least Squares) or GLS (Generalized Least Squares), iλ  are kriging weights 

determined by the spatial dependence structure of the residuals, )( ise  is the residual at si. 

 

When the regression coefficients ( GLSβ̂ ) and thus the deterministic part are 

determined, the residual is interpolated with kriging and added to estimated trend.  

 

We can write, in matrix notation, the prediction values as (Christensen, 2001):  
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Where the predictions are made at location s0, q0 is the (p + 1) vector of predictors 

and 
0

λ  is the vector of n kriging weights used to interpolate the residuals, q is a matrix of 

predictors of the sampling locations, z  is the vector of measured values of the target 

values. 

 

 

This BLUP model has a RK variance of:  
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Where 
10

CC +  is the sill variation, c0 is the vector of covariances of residuals at the 

unvisited location and C is the covariance matrix of the residuals. If the residuals are not 

spatially correlated, the RK converges to MLR because C = I . 

 

 

Further details on OK, RK, UK and KED can be found in Hengl (2009), Hengl et al. 

(2003), Cressie et al. (1993), on SK and SeqK in Vargas-Gùzman et al. (1999), on variograms 

and semi-variograms in Jarvis et al. (2001a), Vicente-Serrano et al. (2003), Ashraf et al. (1997). 
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3.2.4  Spatial interpolation using kriging models in climate studies  
 

Many recent examples of climatologies, or other applications realized using kriging 

methods, can be found in literature. The most used kriging types are OK and ResK, but 

rarely CK. Just to cite some cases, OK was used for rainfall climatologies for Australia by 

Jeffrey et al. (2001), for temperature and precipitation for Lake district (Minnesota, USA) 

area by Holdaway (1996), for temperature and growing season variables for Southern 

Qilian mountains (China) by Chuayan et al. (2005), for daily temperature for southern 

France by Courault et al. (1999); Res-K as MLR plus OK was used for Nordic climate maps 

for Scandinavia by Tveito et al. (2001), Tveito et al. (2005), for winter temperatures for 

Norway by Tveito et al. (2002), for temperature and precipitation for the Mediterranean 

area by Agnew wt al. (2000), for multi-variable climatologies for Poland by Ustrnul et al. 

(2003), Ustrnul et al. (2005), Bialobrzeska et al. (2009), for temperature for Iceland by 

Gylfadòttir, (2003); Res-K as KED or UK was used for temperature for Spain mountainous 

areas by Benavides et al. (2007) and for temperature for Scotland by Hudson et al. (1994). 

Kriging is also used in weather forecasting models, e.g. for Finland by Venalainen et 

al. (2002) or for Hungary (MISH models) by Bihari et al. (2009). 

 

                      
 

Fig.11 Yearly  61-90 mean temperature climatologies for Poland with OK and RK (Bialobrzeska et al., 2009) 

 

 

 

3.2.5 Comparisons between kriging and similar spatialization methods  
 

The kriging method is a widespread spatialization model in climate studies, but 

many authors disagree about its supremacy in constructing climatologies. 

 

Kriging usually leads to better results and lower errors if compared with simpler 

models, such as Thiessen polygons (or NN) (e.g. temperature and precipitation 
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climatologies for the Ecuadorian Andes, KED, Butyaert et al., 2006), IDW (Inverse Distance 

Weighting) or ISDW (Inverse Squared Distance Weighting) (e.g. Ashraf et al., 1997).  

 

If compared with regression methods, the question is open. MLR or stepwise LR 

(Linear Regression) models give better results for temperature and precipitation in 

Spanish mountains (Benavides et al., 2001), for winter precipitation and temperature in 

New Mexico (Brown et al., 2002), for temperature in Qilian area (but in this case OK 

performs better in growing season, (Chuanyan et al., 2005), for monthly rainfall in southern 

Spain (Vicente-Serrano et al., 2003). Whilst KED kriging models show more accurate spatial 

climatologies for climate maps of Arizona (Skirvin et al., 2003) and so on. 

 

TPS (Thin Plate Splines) usually outperform kriging because in real datasets the 

normal distribution and the stationarity requests are not fulfilled and also because they are 

computationally handled and modified more easily (Hartkamp et al., 1999). Another 

example where splines give better results are daily minimum and maximum temperature 

for the United Kingdom (Jarvis et al., 2001b). On the other hand, for Chuayan et al. (2005), 

OK is better than splines. 

 

Res-K models usually perform better than simple kriging models: e.g. UnK is 

statistically better than OK for Benavides et al. (2007), RK is better than OK and CK for 

Ustrnul et al. (2005), RK is better than OK for solar radiation maps for Andalusia 

(Alsamamra et al., 2009). 

 

 

 

3.3 Regression models  

 
3.3.1 Definitions and assumptions 
 

In statistics, regression analysis include any techniques for modelling and analyzing 

several variables, when the focus is on the relationship between a dependent variable and 

one or more independent variables (Lindley, 1987). 

Regression analysis include a family of functions called GLMs (Generalized Linear 

Models), which assume a linear relationship between the inputs and the outputs (Hengl, 

2009). The output from the model fitting is a set of regression coefficients. 
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If, in the area of interest, there are co-variables significantly correlated with the target 

variable and if the point values are not totally auto-correlated, regression models between 

the target variable versus the covariates can be used. Only the deterministic part of 

variation is taken into account (Hengl, 2009). 

In order to use regression models, we have to fulfil some basic assumptions. The 

sample must be representative of the “population” for the period under investigation. The 

error must be a random variable and it is assumed to be zero if averaged on the 

explanatory variables (i.e. such variables must be error free). The predictors should be 

linearly independent, the errors must be uncorrelated and the variance must be 

approximately constant across the observations. Furthermore, this technique can be used 

only if the explanatory variables are known in every grid point; that is the raster surfaces 

must be available for the given predictors. 

 

 
 

Fig.12 Example of a regression analysis with one independent variable:  
temperature vs. elevation for 1961-90 in Italy, January (left) and July (right) (Spinoni et al., 2009) 

 

 

 

3.3.2  Regression models: variants, limits, and explanatory variables  
 

Regression models belong to “environmental correlation” models. Using factors of 

climate, topography, geology and so on, regression models deal with the deterministic 

part of variation.  

 

The target variable is the dependent variable and the explanatory variables are the 

independent variables. The main advantage of regression models in climate applications is 



 37 

that the strong physical meaning and the explanatory variables can be chosen by a priori 

empirical knowledge about the variation of the target features in the area of interest 

(Hengl, 2009). The most used explanatory variables are geographic variables as longitude, 

latitude, distance from the coast, topographic variables as elevation, slope, aspect, climatic 

proxies as land cover, other physical variables as cloudiness, solar radiation, relative 

humidity, local binary parameters (yes or no conditions) as cold air pools drainage, 

lakeshores, urban heat islands and so on. The recent availability of such environmental 

predictors makes this regression approach very common and accurate (Pebesma, 2006; 

Hengl et al., 2003). 

 

There are many types of regression models in climate research (Hengl, 2009; 

Kurtzman et al., 1999; Stahl et al., 2006; Dodson et al., 1997; Goodale et al, 1998; Srivastava, 

1998; Bolstad, 2007): 

- Multiple Linear Regression (MLR): it models the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to observed data; 

- Stepwise Linear Regression (SLR):  for each step, only one predictor is regressed; there 

are two different methods, i.e. forward selection of predictors (starting with no variables 

in the model, trying out the variables one by one and including them if they improve the 

variance estimation) and backward elimination (or forced entry, starting with all candidate 

variables and testing them one by one for statistical significance, deleting the not 

significant ones); 

- Geographic Weighted Regression (GWR): it fits the regression models by using a moving 

window algorithm, thus producing maps of regression coefficients that help to analyze 

how much the model is dependent on the location; 

- Local Lapse Rate Regression (LLR): based on target variable versus elevation lapse rates;  

- Non Linear Regression (NLR): mixed models that use explanatory variables as 

logarithmic, squared, exponential and so on variables as predictors; 

- Multivariate Regression (MVR): rarely used in climate research, many target variables are 

studied simultaneously versus common explanatory variables, the Baesian multivariate 

linear regression (BMLR) as an example. 

 

Each of these methods produces a regressed fit and the so-called residuals. In many 

cases the residuals, i.e. the stochastic part of the variation, are further interpolated using 

splines, kriging or inverse distance methods (Ninyerola et al., 2007). This following 

interpolation leads to reducing the errors, but if the dataset is not dense enough, it can 
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introduce spatial patterns that are only based on statistical improvement of the explained 

variance and have no physical meaning. If the residuals are plotted considering only 

features that can be explained by physical reasons, the combination of MLR models and 

residual interpolation methods leads to very accurate climatologies. This is one of the 

reasons (see Chapter 4) that convinced us to choose an MLR plus a weighted residual 

interpolation for the temperature 1961-1990 models for Italy. 

The RK (Regression Kriging) model is based on the same assumptions of the MLR 

plus OK of residuals technique (Hengl et al., 2003). 

 

The main limitation of regression models consists in the non-reproducibility in some 

cases of such models. In fact, the regression coefficients are often local or regional and they 

could not be applied to other areas, seasons or scales (Hengl, 2009). 

 

 

 

3.3.3 Example of regression model: general MLR  

 

This paragraph follows Hengl (2009). If all the assumptions in chapter 3.3.1 are 

fulfilled, we can obtain predictions of the target variable just by studying the deterministic 

part of the variation: 
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Where qk are the auxiliary predictors (i.e. the explanatory variables). 

 

In the MLR model (Draper et al., 1998), the predictions are obtained by weighted 

averaging the predictors: 
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Where )(
0

sqk  are the values of the explanatory variables at the target location, p is 

the number of explanatory variables, kβ̂ are the regression coefficients solved, for 

example, using the OLS (Ordinary Least Squares) method, q is the (n x p + 1) matrix of the 

predictors. 
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In a climate MLR model, e.g., we can set Z = mean temperature, q1 = longitude, q2 = 

latitude, q3 = elevation, q4 = distance from the coast, s0 = (longitude, latitude). 

 

The prediction error of a MLR model is (Neter et al., 1996): 
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Where q0 is the vector of predictors at a new and unvisited location and MSE is the 

Mean Squared Error around the regression line, defined as: 
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The prediction error depends on the MSE, on the spreading of points in the feature 

space, on the ‘deviation’ of the new observation from the centre of the feature space. So, if 

the model is linear, we can increase the prediction variance by decreasing the spreading of 

the points in feature space. 

 

The sum of squares of residuals (SSE) can be used to determine the adjusted 

coefficient of multiple determination (R2a), that is an indicator of the goodness of fit: 
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Where p is the number of explanatory variable, n is the number of data 

observations, R2  is the explained variance.  

 

If R2a > 0.85, the regression model is said to be very satisfactory in climate science. 

However, the estimation of R2a or simply R2 is often not enough to validate a regression 

model.  It is better to perform a graphical qualitative and sometimes even a quantitative 

analysis of residuals, in order to see if some areas are uniformly biased and trends were 

not removed (see Chapter 3.8). 
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3.3.4  Spatial interpolation using regression models in climate studies  
 

Many applications of various types of regression models can be found in literature. 

Pure MLR models were used for climate maps for USA by Ollinger et al. (1995), for 

temperature versus longitude, latitude, solar radiation, continentality index and 

cloudiness for Cataluña (Spain) by Ninyerola et al. (2000), for temperature versus longitude, 

latitude, elevation and distance from the coast for Arctic Canada by Atkinson et al. (2002), 

as local lapse rates regressions by Dodson et al. (1997). Polynomial regressions were used 

for temperature and growing season index for Ireland by Goodale et al. (1998), for 

temperature for the UnK by Lennon et al. (1995), for temperature versus longitude, latitude, 

elevation, distance from the coast plus local regressions for GAR (Greater Alpine Area) by 

Hiebl et al. (2009) (see fig. 13), for many climatic variables for Europe by Bissolli et al. (2009). 

Stepwise regression models were used, e.g., for temperature for Israel by Kurtzman et 

al. (1999) and for urban daily temperatures in Goteborg (Sweden) by Eliasson et al. (2003). 

Whilst Multiple Weighted Linear Regression (MWLR) was used for snow cover 

interpolation for Czech Republic by Stepanek et al. (2009) and Geographic Weighted 

Regression (GWR) was used by Szimanovski et al. (2009) for urban temperatures in Wrocaw 

(Poland). More frequently, MLR models are used in combination with kriging of residuals,  

as for temperatures for Iceland by Bjornsson et al. (2003), with IDW and splines of residuals, 

as for temperature for Spain by Ninyerola et al. (2007), with optimal interpolation of 

residuals, as for the Croatian Atlas by Percec-Tadic et al. (2002). 
 

 
 

Fig.13 1961-90 mean July temp. climatology for GAR by MLR plus local improvements (Hiebl et al., 2009) 
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3.3.5  Comparisons between regression models and similar methods  

 

In areas where the orography is very complex and where many water bodies and 

narrow valleys are present, regression models plus local improvement based on local 

climate a-priori knowledge are probably the best choice for the construction of 

temperature or precipitation climatologies. 

As seen in Chapter 3.2, this approach is similar to residual kriging. See Chapter 3.2.2 

for further details and Chapter 3.2.5 for comparisons between kriging and regression 

models. Ninyerola et al. (2002) and Ninyerola et al. (2007) state that MLR models are the most 

accurate models dealing with mountainous regions, and they suggest combining MLR and 

IDW or splines as in Lennon et al. (1995) for residuals interpolations.  

MLR usually performs better than NN, IDS or IDW models, but in some cases these 

methods give similar results (Goodale et al., 1998) or GIDS outperforms MLR (Stahl et al., 

2006). 

Splines and MLR models are rarely compared because they are very different 

methods (Kurtzman et al., 1999). 
 

  
 

Fig.14 Left: sample locations and measured values of a target variable. Right: spatialization of the target 
variable with ID, TS (Trend Surface), LR (vs. distance from the river), OK methods (Hengl, 2009) 

 

 

 
3.4 Inverse distance models 

 
3.4.1 Definitions and assumptions 
 

Inverse distance weighting (IDW) is an interpolation method that assigns values to 

unknown points by using values from a dataset of known points. The value at each 
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unknown point is a weighted sum of the values at the known surrounding points (Shepard, 

1968). IDW is based on the assumption that the interpolating surface should be influenced 

most by nearby points and least by the more distant points. Such an interpolating surface 

is a weighted average of the scatter points and the weight assigned to each scatter point 

diminishes as the distance from the interpolation point to the scatter point increases. Thus, 

the weighting factor is the distance between points but, to the resulting error in the 

interpolated estimates, the search parameter (which decides how many points are 

included in the weighting procedure) is less critical than the power function (Hodgson et 

al., 1993).  

 

 

 

3.4.2  IDW models: variants, peculiarities, and limits  
 

Inverse distance weighting models are the evolution of nearest neighbours (NN) 

models. Their principal advantage consists in the fast computational running of this 

technique because of the simplicity in the formalism. The main limit consists in the limited 

possibilities of IDW. It rarely includes explanatory variables other than distance between 

points or, in some cases, elevation or longitude and latitude as external drifts. 

Nevertheless, IDW models are a powerful tool when residuals that must be interpolated 

for weights can be adjusted even following the a-priori knowledge of climate researchers.  

 

We can list many variants of IDW models (Shepard, 1968; Curtis et al., 1999; Nalder et 

al., 1998; Hofstra et al., 2008; Pan et al., 2004; Stahl et al., 2006): 

- Inverse Distance Weighting (IDW): the basic algorithm is the Shepard’s method;  usually 

in literature the acronym IDW means that weights are based on the inverse of the distance, 

i.e. the power is equal to 1; an alternative is the modified Shepard method that calculates 

interpolated value using only the nearest neighbours within R-sphere instead of full 

sample; another choice is the Lukaszyk-Karmowki metric’s modification of the Shepard 

model;  

- Inverse Squared Distance Weighting (ISDW): or simply IDS or ISD weights are based on 

the squared inverse of the distance; 

- Angular Distance Weighted (ADW): distance is weighted with angular functions; 

- Gradient plus Inverse Distance Squared (GIDS): MLR followed by IDS interpolation of 

the residuals; 
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- Smart Distance Searching (SDS): includes latitude, longitude and elevation de-trending 

before IDW interpolation, similar to GIDS but formally not identical. 

 

Our temperature model for Italy is a MLR model, plus local improvements, plus IDW 

with Gaussian weights of the residuals, thus it can be considered a further development of 

the GIDS model, that should be used only if the data density is high (Price et al., 2000). 

 

 

 

3.4.3  Examples of inverse distance models: IDW and GIDS 

 

The general IDW function can be written as (Jarvis et al., 2001b): 
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Where wi are the weights and the various r stand for reciprocal distances between 

the interpolated point and the closest points, m is the number of closest points, p is the 

power parameter that represents the decay in similarity between values over distance. If p 

= 2, for example, IDW turns to be ISDW. 

 

The GIDS model is nothing but an MLR model plus an IDS interpolation of the 

residuals. For a given unmeasured location k and a climatic variable Z, an ordinary least 

squares regression is performed using the n closest neighbouring locations to calculate 

coefficients Cx, Cy and Ce representing x, y and elevation gradients 

 

                                             ( ) ( ) ( ) ε+⋅+⋅+⋅+= ECYCXCaZ eyx                                            (17) 

 

Where a is the intercept, ε the residual, X the x-coordinate and Y the y-coordinate 

for the specified location. 
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Thus, the basic GIDS formula is: 
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Where Zk  is the predicted value at unmeasured location k, Zi is the measured value 

at location i and di is the distance from measured location i to Z (Koch et al., 2010; Nalder et 

al., 1998). 

 

 
 

3.4.4  Spatial interpolation using IDW models in climate studies  
 

The basic IDW model was the most used interpolation model until approximately 

twenty years ago. Afterwards, it was substituted by ISDW and recently by GIDS. 

In literature, IDW was applied, e.g., for temperature for Israel by Kurtzman et al. 

(1999), for maximum temperature and precipitation for Jalisco (Mexico) by Hartkamp et al. 

(1999), and for a gridded daily dataset of temperature and precipitation for Czech 

Republic by Stepanek et al. (2009). ISDW was applied for rainfall in California by Curtis et al 

(1999), for the climate model of Iran by Alijani et al. (2008). ADW was applied for daily 

precipitation for Europe by Hofstra et al. (2008) and for multivariable maps for the Globe 

by New et al. (1999, 2000). 

GIDS was tested for the first time by Nalder et al. (1998) in a study on temperature 

and precipitation for the Boreal forest in Canada, then it was applied by Price et al. (2000) 

for monthly maps for climate variables for Canada. 

IDW was used after MLR for residual interpolation for temperature and precipitation 

in Arizona by Brown et al. (2002). ISDW was used after MLR for the same reason for 

temperature for Spain by Ninyerola et al. (2007). 

 

 

3.4.5 Comparisons between Inverse distance models and similar methods  
 

Basic IDW or IDS usually produce climatologies with higher statistical errors (e.g. 

Ashraf et al., 1997; UnK vs. IDW, Zimmerman et al., 1999), or similar errors (Curtis et al., 1999; 

Jarvis et al., 2001b) than kriging, but in some cases IDW outperforms kriging (IDW vs. CK, 
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Hartkamp et al., 1999). Simple IDW is usually inferior to MLR models with rare exceptions 

where they lead to similar results (Goodale et al., 1998), and they are rarely compared to 

splines (Hartkamp et al., 1999; Jarvis et al., 2001b; Kurtzmann et al., 1999), which are usually 

considered a more accurate technique. Smart distance interpolation is slightly better than 

IDS (Pan et al., 2004). 

 

GIDS or similar MLR plus residual IDS interpolation models are considered the best 

models to realise climatologies. GIDS outperforms ResK, NN, CK, IDS, UnK and OK for 

temperature and precipitation for Nalder et al. (1998).  In particular, authors point out that 

it is better than kriging methods because it is applied more quickly, easily, and it avoids 

the subjectivity in the choice of the variogram type from the experimental variogram. For 

Kurtzmann et al (1999) MLR plus residual IDW is better than splines or trend surfaces, for 

Vicente-Serrano et al. (2003) it is better than trend surfaces, smart distance searching, CK, 

splines and for Stahl et al. (2006) GIDS is better than NN, MLR, IDS. 

 

On the other hand, Price et al. (2000) prefers ANUSPLIN (a splines code) to GIDS. 

 

  
 

Fig.15 Left: rainfall distribution derived from IDSW; right: rainfall distribution derived from kriging. Data 
points indicated with black pins. IDSW method can produce bull’s eyes but it gives more accurate estimates if 

data distribution is dense (Curtis et al., 1999) 
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3.5 Splines models 

 
3.5.1 Definitions and assumptions 
 

In mathematics, a spline is a function defined piecewise by polynomials. In 

interpolating problems, splines are preferred to polynomials because they yield similar 

results avoiding the so-called Runge’s oscillation problems when high degree functions 

are used (Epperson, 1998). Then more parameters can be defined in splines, including the 

amount of “smoothing” (Hengl, 2009), and such smoothing splines prevent over-fitting 

(Wiley website, 2010). 

The smoothing spline function is based on the assumption that there is a 

measurement error in the data that needs to be smoothed locally (Hengl, 2009); these spline 

functions for interpolation are normally determined as the minimizers of roughness 

subject to interpolation constraints. Smoothing splines are considered as a generalization 

of interpolation splines where the functions are determined to minimize a weighted 

combination of the average squared approximation error over observed data and the 

roughness measure. 

 

     
 

Fig.16 Left: spline of three cubic polynomials; right: mixed linear and cubic spline (Wikipedia, 2010). 

 

 

 

3.5.2  Splines models: variants, peculiarities and limits  
 

When an interpolation of densely sampled heights, data or climatic variables is 

needed, splines perform best. Whilst the main disadvantages are the inability to 

incorporate a large amount of auxiliary maps to model the deterministic part of the 
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variation (usually the maximum number is three, in the trivariate splines models), and the 

fact that smoothing and tension parameters are determined subjectively (Hengl, 2009).  

Furthermore, in any spline model, the analyst must select the degrees of freedom, the 

number of knots and decide where they should be placed along the range of x. 

 

Splines can be divided into uniform and not uniform, natural and interpolating and 

many examples can be found in literature (the name depends on the choice of polynomials 

type) (Epperson, 1998; Hengl, 2009; Hutchinson, 1991; Wahba, 1990): 

- Simple linear regression splines ; 

- Quadratic or cubic splines ; 

- Natural splines ; 

- Bézier splines (Benrstein’s polynoms splines) ; 

- B-splines ; 

- Hermite splines ;  

- Cardinal splines ; 

- Catmull-Rom splines ; 

- Kochanek-Bartels splines ; 

- General smoothing and mixed smoothing splines ; 

- Thin Plate Splines (TPS) ; 

- Multivariate Splines (Bivariate and Trivariate splines) ; 

- Regularized splines with tension (and/or smoothing, RSwT) ; 

 

The most used are regularized splines with tension (Mitasova et al., 1993a) and TPS 

(e.g. Hutchinson et al., 2009).  

 

 
 

Fig.17 Left: cubic B-spline; right: natural spline. They interpolate a challenger vote’s share (from the web) 
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TPS fits a non-linear flexible n-dimensional surface to data points.  The final surface 

is usually chosen by a routine that virtually removes each data in turn and estimates the 

deviation of its real value from the value predicted by surface.  The final surface is the one 

that achieves an optimal compromise between minimizing the mean squared deviation 

summed over all data points and the overall roughness of the estimated surface (Lennon et 

al., 1995). TPS uses a minimal number of co-variables, depending on the smoothing 

parameter. TPS function varies from a surface that exactly interpolates the data to an 

increasingly smooth function (e.g. a plane).  The accuracy of the prediction of the surface 

(or the trend) strictly depends on the smoothness (Hancock et al., 2006). 

 

Nowadays, the most sophisticated software based on splines is ANUSPLIN 

(Hutchinson et al. 2009; Milewska et al., 2009). It consists in a trivariate (longitude, latitude, 

elevation) TPS.  It is a non-parametric generalisation of the multivariate linear regression. 

It optimises the data smoothing in order to minimize predictive errors by GCV (General 

Cross Validation). Its automatic approach easily adapts to varying station density. It 

supports calculation of spatially distributed standard errors. It uses a relative scaling of 

elevation to best represent the elevation impact on surface climate that is more important 

than horizontal position and it makes use of knots to equi-sample data to fit spatially 

varying, but regionally defined, elevation lapse rates.  

 

The ANUSPLIN software is freely available at http://fennerschool.anu.edu.au 

/publications/software/anusplin.php. 

 

 

 

3.5.3 Example of splines model: regularized splines with tension  
 

Following Hengl (2009) and Mitasova et al. (2005), in the case of the regularized 

splines with tension and smoothing, the predictions are obtained by: 
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Where a1 is a constant and R(vi) is the radial basis function determined as in equation 20. 
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Where E1(vi) is the exponential integral function, CE is the Euler constant, ϕ is the 

generalised tension parameter and h0 is the distance between the new and the 

interpolation point. 

 

The coefficient a1 and wi are obtained by solving the system: 
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Where ϖ0/ϖi are positive weighting factors representing a smoothing parameter at 

each given point si. The tension parameter controls the distance over which the given 

points influence the resulting surface; the smoothing parameter controls the vertical 

deviation of the surface from the points. 

 

Regularized spline with tension and smoothing are fairly equivalent to UnK and they 

yield very similar results (Hengl, 2009). 

 

 

 

3.5.4 Spatial interpolation using splines models in climate studies  
 

TPS models are often employed in climate interpolation studies. Hutchinson et al. 

(1998) used TPS for daily rainfall data of Illinois. Steinacker et al. (2000) used TPS to 

interpolate errors from irregularly distributed and noisy datasets. New et al. (1999, 2000, 

2002) used TPS to interpolate global anomalies for many variables.  Hartkamp et al. (1999) 

used TPS to realize maximum temperature and precipitation climatologies for the Mexican 

area near Jalisco.  Hancock et al. (2005) used bivariate splines for temperature for Africa. 
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The ANUSPLIN software was successfully applied to Canadian temperature and 

precipitation climatologies by Hutchinson et al. (2009), Price et al. (2000), Milewska et al. 

(2009), to England and Wales for temperature maps by Jarvis et al. (2001b) and to global 

climate surfaces by Hijmans et al. (2005) in the version ANUSPLIN 4.3. 

 

Splines were also used to interpolate residuals after MLR, e.g. by Lennon et al. (1995) 

for temperature for the United Kingdom and by Ninyerola et al. (2007) for temperature 

maps for Spain. 

 

 
 

Fig.18 Monthly mean daily insolation (MJ/m2) for a sun-tracking orientation for September and December in 
Canada obtained with ANUSPLIN software (McKenney et al., 2008). 

 

 

 
3.5.5 Comparisons between splines models and similar methods  
 

In literature, the use of splines models is quite recent. Splines provide better results if 

compared with trend surfaces, MLR, IDW models for Hijmans et al. (2005), with pure MLR 

models for Jarvis et al. (2001b), with IDW and CK for Hartkamp et al. (1999). In combination 

with MLR they are considered the best choice for Lennon et al. (1995).  On the other hand, 

MLR and OK are preferred to splines by Chuanyan et al. (2005), MLR are preferred to 

splines by Kurtzmann et al. (1999) and Vicente-Serrano et al. (2003) and GIDS is preferred to 
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splines by Price et al. (2000).  However, splines are considered equivalent to IDW or 

triangular surfaces by Robeson (1994).  

 

To summarize, the accuracy of the splines accuracy depends on the application. 

 

 

 

 

3.6 PRISM model 

 
3.6.1 Definitions, assumptions, and state of evolution 
 

PRISM stands for Parameter-elevation Regressions on Independent Slopes Model 

(Daly et al., 1994); it is a combined statistical/human-expert approach to climate mapping 

using KBS (Knowledge-Based System) approach (Daly et al., 1994, Johnson et al., 1997). 

PRISM uses point data, digital elevation models and other weighted rasters in order 

to create gridded estimates of daily, monthly or annual climatic variables (Gibson et al., 

1997). 

 

The PRISM model consists of a local moving-window, climate-elevation regression 

function that interacts with an encoded knowledge base and inference engine. This 

knowledge base is a series of rules, decisions and calculations that sets weights for the 

station data points which enter the regression function. In general, a weighting function 

contains knowledge about important relationships between the climate field and a 

geographic or meteorological factor (Daly et al., 2002). It mixes a-priori knowledge of the 

scientist and a geographical approach. It is GIS-compatible and the system of the 

equations is dynamic, i.e. the model is as open as changeable and developable by users as 

possible (Daly et al., 1994; Daly et al., 1998).  

 

Because of these user-dependent peculiarities, the PRISM model needs an objective 

set of cross validation processes to assess the reliability in every application (Daly et al., 

2002). 
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Fig.19 The PRISM KBS conceptual scheme (Daly et al., 2002) 

 

 

 

3.6.2 PRISM: peculiarities, merits and limits  
 

PRISM was originally created as a spatialization model for precipitations and it is 

uniquely suited with mountain regions. It incorporates a conceptual framework that 

allows for spatial scale and pattern of orographic precipitation to be quantified and 

generalised. However, it was further adapted to temperature, snow fall, growing degree 

days, weather parameters, facet grids and so on (Gibson et al., 1997; Daly et al., 1997; Johnson 

et al., 1997; Taylor et al., 1997). 

 

PRISM is able to extrapolate over large elevation ranges to reproduce gradients 

between different climatic regimes, to understand the terrain induced climate transitions 

(as topographic slopes, barriers, facets and so on), to include coastal effects, a two-layers 

atmosphere representation, the orographic effectiveness of the ground and so on (Daly et 

al., 1997; Daly et al., 2002). It is based on the assumption that, for a localized region, the 

most important factor in the distribution of most climate elements is elevation. Thus, the 

governing equation is a weighted linear elevation regression function and it is necessary to 

place bounds on the regression slope because sparse station data may not accurately 

represent the local climate-elevation relationship, especially if only a narrow range of 

elevation is available. 
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Upon entering the regression function, a weight is assigned to each station. The 

weight is based on several factors, e.g. an aspect weight, a radial distance weight, a coastal 

proximity weight and so on. The weights can be based on a-priori hypothesis and they can 

even be refined with iterative processes that choose the final weight as they minimize the 

mean absolute error and the root mean squared error. The station weights are a product of 

sub-weights and the number and kind of weights vary from one PRISM application to 

another.  PRISM algorithms are in a state of constant development (Daly et al., 2002).   

 

The main advantage of this methodology is the chance to continuously change 

weights during the analysis, adapting them to data or refining them after new analysis. 

Such weights are based on strong physical motivations because they are based on 

expertise knowledge of climatologists.  

On the other hand, the main limit of this technique is the not-so-easy reproducibility 

of the PRISM. It varies from one region to another and it strongly depends on the climate 

variable modelled.  

 

A modified version of the PRISM used by Daly et al. (2002) for the USA is used to 

realise precipitation climatologies for Italy by University of Milan and ISAC-CNR of 

Bologna. 

 

 

 

3.6.3 Example of PRISM: the model used by Daly et al. (2002) for the USA  
 

The governing equation, that is the elevation regression function, is a simple linear 

regression: 

 

                                                    
01
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βββ <<                                                (24) 

 

Where Y is the predicted climate element, β1 and β0 are the regression slope and 

intercept, respectively, X is the DEM elevation at the target grid cell,  β1m  and β1x are the 

minimum and maximum allowable regression slopes. Such an equation is developed from 

x, y pairs of elevation and climate observations supplied by station data.  
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All stations located within a user-specified maximum radius r from the target cell are 

used to get the regression and the r value is set to get a compromise between statistical 

robustness and desire for local detail. 

 

Then, a weight is assigned to each station and the combined weight is given as 

follows: 
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Where W(d) is the distance weight, W(z) is the elevation weight, W(c) is the cluster 

weight, W(l) is the vertical layer weight, W(f) is the topographic facet weight, W(p) is the 

coastal proximity weight, W(e) is the effective terrain weight, Fd and Fx are the distance and 

elevation weighting importance factors.  

 

All the weights and importance factors, individually and combined, are normalized 

to sum to unity. 

 

The distance weight is given as: 
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Where d is the horizontal distance between the station and the target grid cell, a is 

the distance weighting exponent. If a = 2 this weight is equivalent to a IDSW model. 

 

The elevation weight is given as: 
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Where Δz is the absolute elevation difference between the station and the target 

grid cell, b is the elevation weighting exponent, Δzm is the minimum elevation difference, 

Δzx is the maximum elevation difference. 

 

The cluster weight seeks to down-weight stations located in tight clusters, in order 

to minimize over-representation of one location over others in the regression function. 

 

The facet weight (also called aspect weight) is given as: 

 

                                                  
















>

=

>∆

≤∆

+∆

=
0

0

1

1

)(

1

1

)(
B

B

or

and

f

f

Bf

fW
c

                              (28)       

 

Where Δf is the absolute orientation difference between the station and the target 

grid cell, B is the number of intervening barrier cells with an orientation significantly 

different than that of the target grid cell, c is the facet weighting exponent. 

 

The coastal proximity weight is given as: 
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Where Δp is the absolute difference between the station and the target grid cell 

coastal proximity index, v is the coastal proximity weighting exponent, px is the maximum 

proximity difference. Usually v = 1 for regions where coastal effects are significant. 

 

The vertical layer weight is given as 
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Where Δl is the absolute layer difference between the station and the target grid cell 

(1 for adjacent layer, 0 for same layer), y is the vertical layer weighting exponent. 

 

For the effective terrain weight see Daly (2002). 

 
 
 
3.6.4 Spatial interpolation using PRISM models in climate studies  
 

PRISM was conceived by Christopher Daly, together with his research group, in the 

‘90s. Then it was established the “PRISM Group” at the Department of Geosciences and 

College of Oceanographic and Atmospheric Sciences of the Oregon State University (in 

Corvallis). The complete list of reports and papers on PRISM of the PRISM Group can be 

found at http://www.prism.oregonstate.edu/docs/index.phtml. 

The PRISM group applied PRISM to minimum and maximum temperature and 

precipitation climatologies for Oregon, for the conterminous United States, for China, for 

Alaska and Canada, Puerto Rico (Daly et al., 1994; Daly et al., 2001; Daly et al., 2003; Daly et 

al., 2009; Johnson et al., 1997; Kittel et al., 1997; Parzybok et al., 1997).  They used PRISM to 

quality-check data and to create climatic databases that were further used by other 

research groups, e.g. in Wang et al. (2000) and in Hamann et al. (2005). 

The most accurate version of PRISM was used to create physiographically-sensitive 

maps, for 1971-2000, for temperature and precipitation across the conterminous USA (Daly 

et al., 2009).  It uses a hi-res DEM, a topographic facets grid, a moist boundary layer height 

grid, a topographic index grid, an effective terrain height grid, a US boundary high-

resolution grid, a recalculated coastal proximity grid. The model is based on a linear 

elevation regression plus a cluster weight, a distance weight, an elevation weight, a 

topographic facet weight, a coastal proximity weight, a two-layer atmosphere weight, a 

topographic position weight, an effective terrain weight (all of these weights were 

improved from weights used in Daly et al. (2002), see Chapter 3.6.3). 

In Europe, modified and simplified versions of PRISM were used to create 

precipitation climatologies for Switzerland, as in the Hydrologic Swiss Atlas (Frei et al., 

1998; Schwarb et al., 2000; Schwarb et al., 2001), and to realise northern Italian precipitation 

climatologies by (Brunetti et al., 2009c; Brunetti et al., 2010).  Such Italian climatologies were 

completed receiving help in the framework of this PhD project. 

Because of its particular formalism and its recent creation, PRISM was applied in a 

small number of climate spatialization studies, always providing satisfactory results in 
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terms of statistical parameters and in cross validation procedures. Nevertheless, a few 

comparisons with similar models were realised (e.g., ANUSPLIN vs. PRISM for Canada 

and Alaska, Simpson et al., 2005). 

 

 
 

Fig.20 Precipitation January and July maps for Alaska obtained with ANUSPLIN (left) and by PRISM (right). 
PRISM maps are based on a denser dataset, the Oregon State University’s Spatial Climate Analysis Service 

(SCAS) , splines maps are based on the Alaska Geospatial Data Clearinghouse (AGDC) (Simpson et al., 2005). 

 

 

 

 

3.7 Other spatialization models 
 

Besides kriging models, regression models, inverse distance models, splines models 

and PRISM, other spatialization models can be found in literature. 

 
3.7.1   Nearest neighbours models 
 

Nearest neighbours (NN) (also known as point sampling or Thiessen polygons) is the 

simplest interpolation method; it assigns to the target point in space the value of the 

nearest sampled point, without considering any other sampled point (Bremner et al., 2005). 

The only advantage is the very simple algorithm and the fast encoding of the model. 
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The most common variants are k-nearest neighbour algorithm (KNN), approximate 

NN, NN distance ratio, and “all NN” method. 

In climate studies, this technique is rarely used because it provides inaccurate results. 

In recent literature, it is only used in methods comparisons (Nalder et al., 1998). 

 

NN is connected to Voronoi diagrams. A Voronoi diagram is a decomposition of 

space into cells, one for each given point, this is equivalent to NN because the Voronoi 

diagram assigns to every point of the cell the value of the sampled point. This method is 

also known as Dirichlet tessellation. 

 

            
 

Fig.21 Examples of Voronoi diagrams (left and right).  

 

 

3.7.2   Trend surface models 
 

Assuming that the values of a target variable at some location are a function of 

coordinates, we can determine its values by finding a function which passes through or 

close to the given set of discrete points (Hengl, 2009). If the function is fitted for the whole 

dataset (trend), this method is called trend surfaces (TS), whilst it is called moving surface 

interpolation if the function is fitted for a local moving neighbourhood (Hardy, 1971).  

 

Trend analysis deals with the measurement of trends, which can be represented by 

lines, surfaces of hyper-surfaces. The technique is designed to separate an observed 

contour map surface into regional and residual components. The regional component is 

obtained by fitting a low order surface to the data using, e.g., least squares techniques, 
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thus the regional part can be reasonably approximated by a smooth continuous surface 

that is usually expressed by polynomials (Wren, 1973). If higher order polynomials are 

introduced, many artefacts and a serious local overshooting of the values can be caused 

(Hengl, 2009).  

 

The main limits of TS models are: the choice of the low order surface equations is 

made by the user, a moving surface often fails to represent discrete changes and TS does 

not rely on empirical analyses of data (Diggle et al., 2007). 

 

Trend surfaces are rarely employed in climate modelling, but they usually produce 

less accurate results than splines, kriging, IDW and regression models (Stahl et al., 2006; 

Kurtzman et al., 1999; Jarvis et al., 2001b). 

 

      
 
Fig.22 A trend surface decomposition: left, the physical surface; centre, the first order trend; right, the first 
order residual. Images are referred to Bouguer gravity, N-W Kansas. (Kansas Geological Survey website) 

 

 
 
3.7.3  Optimal interpolation models 
 

Optimal interpolation (OI) is an old technique for four-dimensional data 

assimilation; it is a statistical approach developed by Lev Gandin (Gandin, 1963) and 

afterwards applied especially in meteorology.  

 

Qualitatively, the Optimal Interpolation works as follows: at each grid point where 

OI wants to estimate a value, a number of surrounding data points is sampled. Based on 

the distance between these points, their distances from the grid point, and their error 

values, each sampled data point is assigned an "alpha" weight. The background field at 

each data point is then subtracted from each data value. These new values are multiplied 

by their alpha weights and then added together (in effect providing a "weighted average" 

of the deviation of each data point from its associated background value). This value plus 
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the background field at the grid point in question is the final value calculated by the OI 

routine. Important parameters in OI are the number of points used in calculations, radius 

of influence, correlation length, and error (Polar Science Center, Washington, website).  

 

OI is a simplified version of ordinary kriging and it was most used in the 1980s and 

1990s. It then fell from grace and was substituted by kriging variants, though in some 

recent papers it is still used and some meteorological institutes still use it (Sen et al., 2001a; 

NOAA website; Hartkamp et al., 1997; Reynolds et al., 1994; Pasini et al., 2006).  

 

 

 
3.7.4  Neural networks models 
 

In climate variables interpolation, when we refer to neural networks, we mean 

artificial neural networks (ANN), i.e. networks composed of artificial neurons or nodes. 

An ANN is a mathematical model that simulates the structure or the functionalities of 

biological neural networks. This method consists of an interconnected group of artificial 

neurons and it processes information using a connectionist approach to computation. 

 

Usually, ANN is an adaptive system that changes its structure based on external or 

internal information, which flows through the network during the learning phase. Modern 

neural networks are non-linear statistical data modelling tools and they are used to model 

complex relationships between inputs and outputs or to find patterns in data (Gurney, 

1997; Smith, 1993). 

Variants of ANN are, for example, feed-forward neural network, radial basis function 

(RBF) network, Kohonen self-organizing network, recurrent network, simple recurrent 

network, Hopfield network, echo state network, long short term memory network, 

stochastic neural networks, Boltzmann machine, modular neural networks, committee of 

machines, associative neural network, physical neural network, instantaneously trained 

networks, spiking neural networks, dynamic neural networks, cascading neural networks, 

neuro-fuzzy networks, compositional pattern-producing networks an so on (Haykin, 1999; 

Bishop, 1995).  

The main disadvantage of this technique is the very complicated software needed to 

perform large dataset interpolations and predictions. 
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One of the most recent applications of neural networks is in climate research where 

ANN are used in function approximation or in regression analysis and even in time series 

prediction or in climate change scenarios (Gardner et al., 1998; Hsieh et al., 1998; Knutti et al., 

2003; Antonic et al., 2001).  
 

 

Fig.23 Common scheme of a neural network: from input layer towards hidden layer to output layer. 

 

 

 

 

3.8 Validation of a spatial interpolation model 
 

Spatial interpolation models produce results that must be validated. Statistical tests 

evaluate the robustness of the output by means of re-sampling techniques and/or 

statistical parameters, thus single and overall errors are quantified and models can be 

considered more or less accurate, depending on the purpose and on the established error 

thresholds. 

 

The vast majority of the climate models base their validation on the evaluation of 

some difference parameters. ME (Mean Error, or SE, Standard Error), RMSE (Root Mean 

Squared Error), MAE (Mean Absolute Error) and related quantities are calculated using 
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the differences between the measured data and the modelled ones. Each predicted value is 

compared with the corresponding station value. The final cited parameters are obtained as 

the overall average of single data error parameters. 

 

Recently, parametric and non-parametric statistical tests were applied in order to 

validate climate models. The most common are cross validation, jack-knife and bootstrap. 

They usually consist of dividing the input dataset in subsets (cross validation) or in 

leaving one data out of the analysis (jack-knife), recalculating statistical parameters 

without using a subset or a single data, and finally comparing measured values and 

predicted values of the data excluded during the realization of the model. Other less-used 

techniques are permutation tests, exact tests and similar tests. 

 

A model can also be validated by comparing outputs (in grids or maps) with other 

published models which have already been validated. However, this process is difficult 

because climate models are not so easily compared because of data formats, different 

digital elevation models, different grid cell sizes, unavailability of models for some areas 

and so on. 

 

Nevertheless, even if statistical parameters and re-sampling techniques are an 

objective way of proving the validity of a climate model, local researchers’ knowledge and 

experience should also be used to get a stronger validation (Daly et al., 2002). Especially 

when datasets are not very dense, problems like local unreasonable anomalies can be 

better solved using a-priori knowledge other than statistical tests. 

 

 

 

3.8.1 Statistical parameters for prediction errors 
 

In literature, a consistent part of climatologies are validated only by means of 

statistical parameters as r, r2, ME, MAE, RMSE, without re-sampling techniques (e.g., 

Vicente Serrano et al., 2003; Goodale et al., 1998; Brown et al., 2002; Stahl et al., 2006; Benavides 

et al., 2007; Atkinson et al., 2002; Alsamamra et al., 2009). These parameters are calculated by 

averaging all the single parameters for each input data versus predicted data. 

 

Co-variation or correlation between an observed data and a model-predicted data are 

usually evaluated by means of Pearson’s product-moment correlation coefficient (r) and of 
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the coefficient of determination (r2), in which is embodied the proportion of the “variance 

explained” (Fox, 1981; Willmott, 1982), especially in regression models. 

It was shown that r and r2 are insufficient in making meaningful distinctions between 

models (Powell, 1980). Statistically significant values of such parameters may be 

misleading because they are often unrelated to the sizes of the differences between O and 

P (Willmott et al., 1985), where the observed value is defined as O and the predicted value 

is defined as P. Thus, r and r2 are parameters statistically insignificant and they have no 

real practical value in the evaluation of a model performance (Willmott, 1982; Wilmott et al., 

1985). 

 

Six types of “difference measures” are worth being listed.  They are all based on the 

difference between observed data and predicted data. 

Let us also define the number of observations as N, the mean of observed values as 

O , the mean of model-predicted values as P , '

ii POP =−  and '

ii OOO =−  (Vicente-Serrano 

et al., 2003). 

 

Mean Bias Error (MBE) (alternatively called Mean Error or ME) quantify bias (Fox, 

1981) and can be written as: 
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Mean Absolute Error (MAE) (alternatively called Standard Error, SE (Fox, 1981)) 

describes the average difference and it can be written as: 
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Root Mean Squared Error (RMSE) quantifies the average difference in a different 

way (Fox, 1981) and can it be written as: 
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RMSE and MAE are among the best overall measures of model performance, but 

MAE is less sensitive to extreme values and it avoids the physically artificial 

exponentiation. Such parameters are similar and they should be reported together. 

 

The variance of the distribution of differences (sd2) can be seen as the unbiased 

difference or the average “noise” (Fox, 1981) and it can be written as: 
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The index of agreement (d) is a descriptive parameter, useful to cross compare 

models (Willmott, 1982) and it can be written as: 
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The Model Efficiency (EF) (Greenwood et al., 1985) is an indicator of model intrinsic 

limitations and it can be written as: 
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If EF is close to zero, the mean value of the observations is more reliable than the 

predictions and it suggests that model should be improved. 

 

Other two indices ought to be listed (Willmott, 1982), i.e. the systematic mean 

squared error (MSEs) can be written as: 
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Where P̂  is defined as the average of the predicted values. 
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The unsystematic mean squared error (MSEu) can be written as: 

 

                                                        ( ) 







−⋅= ∑

=

N

i

iiu PP
N

MSE
1

2
ˆ1

                                                    (38) 

 

The system is conservative, consequently: 

 

                                                       MSEMSEMSE us =+                                                              (39) 

 

Where MSE is the Mean Squared Error. 

 

Difference parameters for multivariable cases can be found in (Willmott et al., 1985). 

 

Willmott (1982) suggests that the interpretation of statistical parameters should be 

descriptive, based on scientific grounds and physically reasonable, they should not rely 

only on the basis of the statistical significance of the measurements. Furthermore, 

summary statistics and graphics can also help in understanding the accuracy of a model. 

 

 

 

3.8.2 Bootstrap  
 

The bootstrapping (or bootstrap) is a re-sampling technique that estimates the 

precision of sample statistics as medians, variances, and percentiles by drawing randomly 

with replacement from a set of data points. 

The properties of an estimator (e.g. its variance) are estimated by measuring those 

properties when sampling from a “population” distribution. If the dataset is made of 

independent and identically distributed data, this can be implemented by creating a 

number of re-samples of the dataset; each of them is obtained by random sampling with 

replacement from the original dataset.  

The bootstrapping should be used when the theoretical distribution of a statistic is 

unknown, when the sample size is insufficient for straightforward statistical inference or 

when power calculations have to be performed and only a small pilot sample is available 

(Adèr et al., 2008). The bootstrapping can also be used for constructing hypothesis tests. 

The main advantage consists in its simplicity to derive error estimates, the main 

disadvantage is that it does not provide general finite-sample results (Efron, 1979). 



 66 

The bootstrap is similar to jack-knife and to cross validation, but jack-knife is 

commonly used to estimate biases and variances of sample statistics and cross validation 

applies to a subsample the parameters calculated from another subsample. 

There are many bootstrapping schemes: case re-sampling, smooth, parametric, wild 

and so on (Davison et al., 1997). 

 

Let us consider a dataset made of a random sample of size n from an unknown 

probability distribution F on the real line (Efron et al., 1983): 
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Having observed X1 = x1, X2 = x2, …, Xn = xn, we compute the sample average: 
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And we use it as an estimate of the average of F. 

 

The dataset provides also the RMSE of estimated average, i.e. the standard error of 

xX = : 
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The bootstrap generalises equation (42) within the next steps: let F̂  be the empirical 

probability distribution of the data, we extract a random sample from F̂ : 
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Each iX
*  is drawn independently with a replacement and with equal probability 

from the set x1, x2, …, xn , then we have an average: 
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And a variance of: 
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The boostrap estimate of standard error for an estimator ( )nXXX ,...,,ˆ
21

θ  is: 
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It is evident that: 
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In recent published climate maps, the bootstrapping validation is rarely used. An 

example can be found in Mullan et al. (2006) for New Zealand’s temperature and 

precipitation anomalies. 

 

 

 

3.8.3  Jack-knife  
 

The jack-knifing process is similar to the bootstrapping. The basic idea of the jack-

knife is the systematically re-computing of the statistic estimates (e.g. MAE, ME, RMSE) by 

leaving out one data at a time from the input dataset, thus the statistic parameters are 

calculated for the new n datasets, then globally averaged. 

Jack-knife is a less general technique than bootstrap and it is applied more easily to 

complex sampling schemes, but the computation of jack-knife requires more time. If we 

apply the bootstrap repeatedly on the same dataset, it yields slightly different results from 

time to time, as opposed to the jack-knife, which yields every time the same results if the 

subsets to be removed are the same (Efron, 1981). 

 

Let us go back to the example given in Chapter 3.8.1 and let us recalculate equation 

(42) using a jack-knife point of view (Efron et al., 1983). 
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We can write the sample average of the dataset, deleting the nth point as: 
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And the average of the deleted averages as: 
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Thus, the jack-knife estimate of standard error is: 

 

                                                 ( ) 2

1

1

2

)()(

1
ˆ 








−⋅

−
= ∑

=

⋅

n

i

iJACKKNIFE xx
n

n
σ                                              (50) 

 

It can be verified that equation (50) and equation (42) are identical, but equation (50) 

can be applied to any estimator ( )nXXX ,...,,ˆˆ
21θθ = , provided that we replace )(ix  with 
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Jack-knife is used more than bootstrap but far less than cross validation in order to 

validate climate models. An example is provided by Jarvis et al (2001b) for the comparison 

between different interpolation methods for temperature climatologies of the United 

Kingdom. 

 

 

 

3.8.4  Cross Validation  
 

Cross validation is also called rotation estimation and is a technique used for 

assessing how the results of a statistical analysis can be generalised to an independent 

dataset and it is used to estimate how accurately a predictive model will perform in 

practice. 
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Cross validation consists in partitioning a sample of data into complementary 

subsets, performing the analysis on one subset (the training set) and then validating the 

analysis on the other subset (the testing set). Many rounds of cross validation, with 

different partitions, are usually performed and then the statistical parameters calculated 

from single rounds are globally averaged (Kohavi, 1995). Cross validation should be used 

only if the validation set and the test set are drawn from the same population. Cross 

validation is also used to select and remove predictors in climate models because it is a 

valuable tool against over-fitting and over-sampling problems (Picard et al., 1984). 

There are many different variants of cross validation: repeated random sampling, k-

fold (the original dataset is partitioned in k subsets), double k-fold, leave one out (that is 

jack-knife). 

 

Let us go back once again to the example given in Chapter 3.8.1 and let us recalculate 

equation (42) using a cross validation point of view (Efron et al., 1983). 

Suppose we decide to predict a new observation from F, see equation (41), and we 

call it X0, using the estimator X  as a predictor.  

 

The expected squared error of the prediction is  
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Where 
2µ  is the variance of the distribution F. 
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Cross validation is a way to obtain nearly unbiased estimators of prediction errors in 

more complicated situations. First, we delete xi data from the dataset, one a time. Second, 

we recalculate the prediction rule on the basis of the n-1 points. Third, we evaluate if the 

recalculated rule satisfactorily predicts the deleted point by means of statistical parameters 

(such as ME, MAE, RMSE and so on). Fourth, we average predictions over all deletions of 

and xi. Usually, to form a subset, many data are taken apart from the calculations. 
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In the simple case showed above, the cross-validation estimate of prediction error is: 
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Cross validation and its variants are probably the most used techniques in validation 

of temperature, precipitation and other climate interpolated variables (Lennon et al., 1995; 

Daly et al., 2003; Gyalistras, 2003; Agnew et al., 2000; Holdaway, 1996; Hancock, 2005; 

Kurtzman et al., 1999; Daly et al., 2009). 

 

 

 

 


