
Flexible Interpolated-Binary Search over Sorted
Sets

Biagio Bonasera, Francesco Pagano1, and Alessandro Provetti2

1 Dip. di Scienze dell’Informazione, Università degli Studi di Milano
Via Comelico, 39. I-20135 Milan, Italy

francesco.pagano@unimi.it
2 Dip. di Fisica, Università degli Studi di Messina.
Sal. Sperone 31. S. Agata di Messina, I-98166 Italy

ale@unime.it

Abstract. We revisit the classical algorithms for searching over sorted
sets and introduce an algorithm refinement, called adaptive search, that
combines the good features of Interpolation search and those of Binary
search. W.r.t. Insertion sort, only a constant number of extra compar-
isons is introduced. Yet, under several relevant input data distributions
our algorithm shows average case cost comparable to that of Interpo-
lation Search, i.e., O(log log n) while the worst case cost is always in
O(log n), as with Binary search. This result compares well with the tra-
ditional result of Santoro and Sidney Interpolation-Binary Search and
the recent approach of Demaine et al.[?] on searching non-independent
data.

1 Introduction

We revisit the classical algorithms for searching over sorted sets and introduce a
new algorithm, called adaptive search (AS), that combines the good features of
Interpolation search and those of Binary search [?]. W.r.t. Insertion sort, only a
constant number of extra comparisons is introduced. Yet, under several relevant
input data distributions our algorithm shows average case cost comparable to
that of Interpolation Search, i.e., O(log log n) while the worst case cost is always
in O(log n), as with Binary search. This result compares well with the traditional
result of Santoro and Sidney [?] and the recent approach of Demaine et al.[?] on
searching non-independent data.

Definition 1. The membership problem is defined as follows. instance:

– L = {a1, a2, ..., an}, a set of n distinct, sorted elements,
with ai < ai+1 , 1 ≤ i ≤ n− 1;

– an element key

question: Does key belong to the set represented by L (key ∈ L) ?

In literature there exist two classical algorithms for searching over sorted sets:
binary search (BS) [?] and interpolation search (IS) [?]; both take advantage
of the ordering of the instance to minimize the number of keys that must be
accessed.

In BS, the worst-case computational cost is O(log n); This result is indepen-
dent from data distribution over the instance. Notice that in search the worst-
case is rather important as it corresponds to an unsuccessful membership query.

Vice versa, the IS algorithm is more efficient than BS on quasi-uniform data
distributions3 with average case computational complexity in O(log log n). Un-
fortunately, IS degrades to O(n) when data is not uniformly distributed. This
is particularly inconvenient when searching over indexes of large databases, it is
fundamental to minimize the number of accesses4.

2 The adaptive search algorithm

The crucial variables of this algorithm are described next. First, given S =
{A[bot], ..., A[top]} we define:

key: the element being searched;
A[bot]: the minimum element of the subset (at the beginning, bot = 1);
A[top]: the maximum element of the subset (at the beginning, top = |L|);
A[next]: interpolation element, i.e. what IS would choose, and
A[med]: the el. halfway between bot and top, i.e., what BS would choose.

Our algorithm consist, essentially, of a while cycle. At each iteration, we set:

next =
⌊
key −A[bot]
A[top]−A[bot]

∗ (top− bot) + bot

⌋
Variable next defined above contains the index value that bounds the array
segment on which our AS algorithm will recur on. As with IS, the instance is
now clipped:

S ′ =

{A[bot], ..., A[next]} if A[bot] ≤ key ≤ A[next]

{A[next], ..., A[top]} otherwise

To do so, we set the new boundary of the segment:

3 By quasi-uniform data distribution here the following property is intended: the dis-
tance between two consecutive values in the input set does not vary much wrt.
the considered values. In our benchmark we replicated this behavior by gener-
ating random instances with the following assignment: A[1] = 1; A[i + 1] :=
A[i] + random(16) + 1.

4 In this discussion we do not consider the advanced techniques, viz. the exploitation
of locality, that underlie search over large database indexes.

 top = next if A[bot] ≤ key ≤ A[next]

bot = next otherwise

The computation is now restricted to the segment that would have been con-
sidered by IS; then, the median point is computed over such restricted segment,
rather than on the whole input. Vice versa, if interpolation returns a shorter
interval than BS would have, we eventually carry on with an IS search step:

we verify: if |S ′| > top−bot
2 then next = med = bot+ top−bot

2 ;
if key = A[next] then key is found and we terminate;
if key > A[next] then bot = next+ 1;
if key < A[next] then top = next− 1.

At the end of the iteration, S ′ = {A[bot], ..., A[top]}, and, clearly, |S ′| < |S|
2 .

Finally:

if A[bot] < key < A[top] then we iterate search on S ′;
else key /∈ L, hence the algorithm terminates.

2.1 Computational cost of AS

Standard cost analysis techniques yield the following results:

– Best Case: key is found, within a constant number of comparisons: O(1);
– Average Case: values are uniformly distributed; hence, AS executes exactly

as IS so its cost is in O(log log n);
– Worst Case: The values are unevenly distributed; hence, the interval found

by the BS technique is always the shortest. As a result, AS will execute
essentially the same search as BS, with equal O(log n) time complexity.

3 Relation with literature

Our solution was conceived independently from the earlier work of Santoro and
Sidney [?] who devised a very similar solution for the blending together of IS
and BS. Although the asymptotically complexity is the same, there are some
subtle differences between their solution and ours.

Santoro-Sidney algorithm, let’s call it IBS, is based on the idea that inter-
polation search is useful, from the point of view of costs, only when the array
searched is larger than a given threshold. When the considered search segment
is smaller than a user-defined threshold (S), binary search is applied uncondi-
tionally. Vice-versa, over that threshold, an interpolation search step is applied,
followed eventually by a binary search step.

Unlike IBS, our algorithm makes, at each level of its iteration, a choice about
which dicothomy to apply. Hence, it is possible to show that for any input AS
takes less elementary operations than IBS. We have sought a statistical con-
firmation of this fact by running a set of experiment over random-generated
ordered sets. For the time being we limited the testing to successful queries with
parameter θ set to 0.5, 1, 2 and 4, respectively.

4 Experimental validation and concluding remarks

We have implemented AS in order to test its efficiency (defined as average run-
time) vis-à-vis those in literature. As a benchmark, we considered instances (or-
dered arrays) of Java double data type, double-precision 64-bit IEEE 754 floating
point. The size of each instance was set to 10i with i = {2, . . . 8}. Instances were
randomly generated, with the following distribution types5: uniform sparsity,
increasing sparsity, stepwise sparsity and Paretian.

The results of experiments described in the previous section lead us to draw
the following conclusions:

1. The performances of our AS algorithm vis-à-vis those IS and BS are very
good and improve as n grows;

2. The number of accesses needed by AS is less than those of BS. The cost
analysis of IS suggests that on certain instances, e.g., when sparsity grows
stepwise, our algorithm needs between log n and 2 log n accesses.

3. on all benchmarks our algorithm almost always outperforms both IS and BS.
4. our method for selecting the search interval succeeds in preventing the irregu-

larities of data distribution from affecting performances; indeed, the number
of accesses required remains ∼= log log n.

5. Interestingly, while the asymptotically complexity of our AS algorithm is the
same as Santoro’s IBS, we have found that -on relatively diverse benchmarks-
AS has often needed half or less of the memory accesses than IBS.

Further studies are needed in order to separate this result from a possible positive
bias of the benchmark. An interesting question for us is whether instances that
elicit the worst case (2 log n comparisons) can actually be found. Finally, the
presented results are likely to be confirmed for search dictionaries (e.g., in [?]).

5 The precise definition of the distributions will be in the full version of the article.

