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Introduction

Recent advances in biotechnology and the availability of ever more powerful computers

have led to the formulation of increasingly complex models at all levels of life sciences,

in particular of cardiac electrophysiology. Multiscale modeling of the bioelectric activity

of the heart, taking into account macroscopic (fiber architecture and anisotropy) and mi-

croscopic (cellular) features of the tissue, aim to developpredictive tools for future drug

design and patient-specific therapies, using detailed and efficient three-dimensional solvers

for the governing equations of tissue electrophysiology.

At the microscopic level, models of cellular electrophysiology are built up via an iter-

ative interaction between experiment and theory. The sequential activation of depolarizing

and repolarizing currents carried by ion channels, specified proteins located across the cell

membrane, give rise to cardiac action potentials, which describe the pointwise excitation

of the tissue. Action potential waveforms are distinct in different regions of the hearth

owing to differences in channels’ expression. In the first chapter of this thesis, after a

brief introduction on cellular electrophysiology and the underlying mathematical model-

ing techniques, we will provide a review of the experimentalresults related to the cellular

heterogeneity of the canine left ventricle and, starting from a recently published model of

canine epicardial cell represented by a stiff nonlinear system of 29 ODEs, we will then de-

rive and validate a model of canine LV cellular heterogeneity based on available published

experimental data.

At the macroscopic level, the cardiac tissue can be represented as the superimposition

of two anisotropic continuous media, the intra- (i) and extra- (e) cellular media, coexisting

at every point of the tissue and separated by a distributed continuous cellular membrane; the

cardiac Bidomain model consists of a system of two nonlinearReaction-Diffusion equa-

tions for the intra- and extra-cellular potentialsui andue





∂tv − div(Di∇ui) + Iion(v, w, c) = 0 in Ω × (0, T )

− ∂tv − div(De∇ue) − Iion(v, w, c) = −Ie
app in Ω × (0, T )

nTDi,e∇ui,e = 0 in ∂Ω × (0, T )

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0 in Ω × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω

,

wherev = ui − ue is the transmembrane potential,Iion the ionic current per unit volume,
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Ie
app the applied extracellular stimulus,Di andDe the anisotropic diffusion tensors of the

two media accounting for fiber rotation and tissue anisotropy. This degenerate parabolic

system of PDEs is coupled with the stiff ionic model wherew are the gating variables of

the ionic channels andc the intracellular ionic concentrations. The Monodomain model,

a single parabolic Reaction-Diffusion equation for the transmembrane potential, is usually

derived in literature by assuming equal anisotropy ratio ofthe two media. In this thesis, the

anisotropic Monodomain model will be derived from the Bidomain model by assuming that

the major source of electrical flux is directed along the fibers. Both models are discretized

by the finite element method with Q1 elements in the three dimensional space and a semi-

implicit IMEX method in time; for the Bidomain model shown above, we then obtain the

following iteration matrix

1

δt

[
M −M

−M M

]
+

[
Ai 0

0 Ae

]
,

where Ai and Ae are the stiffness matrices related to the elliptic diffusion part of the PDEs,

M the mass matrix andδt is the time step. In Chapter two, we will thus introduce the

differential formulation of both the models, and we will show how the Monodomain can

be derived from the Bidomain model. The variational formulations at the semidiscrete

level will be also shown and we will describe in details the splitting of the time operator.

Additional details related to the variational formulationof the elliptic stationary problems

will be given in order to provide additional results needed in the following chapters.

For the three-dimensional solvers considered in this thesis, the main computational

costs at each time step are associated with the solution of a large and sparse linear sys-

tem. Since both the Bidomain or the Monodomain iteration matrices are symmetric posi-

tive semidefinite (Monodomain matrix is positive definite),we will use the Preconditioned

Conjugate Gradient method (PCG), which efficiency depends on the choice of the initial

guess and on the preconditioner. Namely, at themth iteration of the method the well known

formula for error reduction holds

||y − ym||A ≤ 2||y − y0||A
(√

κ2(M−1A) − 1√
κ2(M−1A) + 1

)m

,

wherey is the exact solution vector of the linear system,y0 the PCG initial guess,ym the

m-th iterate of the PCG,A the iteration matrix,M the preconditioner andκ2(M
−1A) the

condition number of the preconditioned system. The choice of the PCG initial guess can

thus produce a gain in the iterative solution process lowering the initial residual, though

it will not be as substantial as using an optimal preconditioner. However, the latter can

be designed independently from the choice of the initial guess. In Chapter three, we will

thus analyze different strategies for the choice of the PCG initial guess for the the cardiac

Monodomain and Bidomain models, only using the solutions obtained in the previous time
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steps: namely, we will study the efficiency of lagrangian interpolations in time of the pre-

vious solutions and some projection-based techniques, such the Fischer’s algorithms and

the Proper Ortoghonal Decomposition (POD) combined with a usual Galerkin technique.

Finally, since the most recent models used to reproduce cellular reaction are very sensible

to the initial ionic concentrations, we will introduce and validate a useful technique, based

on an offline simulation of a one-dimensional fiber, to obtainsuitable initial values for the

ionic concentrations in order to reduce the necessary number of heart beats in the three di-

mensional context. Numerical results on the influence of transmural cellular heterogeneity

on repolarization patterns in the tissue will be also provided for the Monodomain model.

In Chapter four of the thesis, we will introduce and analyze non-overlapping Domain

Decomposition preconditioners of Neumann-Neumann (NN) type for the Monodomain and

Bidomain models. After introducing the discrete bilinear forms of their Schur complements

and additional results of upper bounds for finite element functions defined at the interface

of the non-overlapping partition, we will explicitly construct such preconditioners and we

will provide theoretical estimates. In particular, for theMonodomain model, we will con-

struct and analyze the one-level multisubdomain NN preconditioner and we will be able to

prove that the condition number of the preconditioned Monodomain operator will be inde-

pendent of the number of subdomains of the non-overlapping partition and can be bounded

by

κ2(M
−1
NN ŜΓ) ≤ C

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2,

whereŜΓ is the Schur complement matrix of the Monodomain model,h is the discretization

step,H the characteristic size of the non-overlapping partition,σM andσm the continuity

and coercivity parameters of the Monodomain stiffness matrix andδt is the time step. For

the Bidomain model we will consider the two-level hybrid Balancing version of the NN

preconditioner (BNN), since the NN preconditioner itself cannot be directly applicable to

the Bidomain model due to the singularity of the local problems involved in the application

of the preconditioner. We will consider two choices for the balancing coarse space; in par-

ticular, we will be able to prove that the condition number ofthe preconditioned Bidomain

operator using a minimal coarse space, needed to assure balancing, will be independent of

the number of subdomains and bounded from above by

κ2(M
−1
BNN ŜΓ) ≤ C

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2,

where nowσM = max{σi
M , σe

M} andσm = min{σi
m, σ

e
m} whereσi,e

M andσi,e
m are the

continuity and the coercivity parameters of the elliptic part of the Bidomain iteration ma-

trix. Using a suitable enriched coarse space we will prove that the condition number of the

preconditioned Bidomain operator will be independent of the number of subdomains and

bounded from above by
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κ2(M
∗−1

BNN ŜΓ) ≤ C max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2,

where nowσi,e(j)

M andσi,e(j)

m are the maximum and minimum eigenvalues of the diffu-

sion tensors of thejth subdomain. Numerical results will sharply confirm the theoretical

estimates.

In Chapter five, we will introduce and analyze the recent Balancing Domain Decom-

position by Constraints (BDDC) preconditioner for the Bidomain model; BDDC is a two-

level additive preconditioner based on a non-overlapping partition of the spatial domain,

and which is the dual of the FETI-DP preconditioner using thesame set of primal con-

straints. Two BDDC formulations present in the literature will be introduced: a first one

based on Lagrange multipliers and a second one which implements a change of basis of

the underlying finite element space. Theoretical estimatesand parallel results will be pro-

vided, showing the robustness of such a preconditioner for the cardiac Bidomain model

in the presence of jumps in the coefficients of the stiffness matrix. In particular, using a

special change of basis, we will be able to prove that the condition number of the precon-

ditioned Bidomain operator will be independent of the number N of subdomains and can

be bounded from above as

κ2(M
−1
BDDC ŜΓ) ≤ C max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

Experimental results will improve the latter estimate for small values ofδt showing a sig-

moidal dependence of the condition number of the BDDC operator from the time step.

Results will be also provided combining the BDDC preconditioner and the POD technique

for the choice of the initial guess.

In Chapter six, we will introduce the inexact formulation ofthe BDDC preconditioner

for the Bidomain model in order to deal with the intrinsic computational limitations of all

non-overlapping preconditioners. In particular, since the main limitations of memory con-

sumption are associated with the factorizations of the subdomain Dirichlet and Neumann

problems involved in the application of the preconditioner, we will replace such problems

with the application of Algebraic MultiGrid (AMG) preconditioners in order to exploit their

optimal complexity and their spectral equivalence with theoriginal local problems of the

Bidomain model. After introducing in details the formulation of the inexact BDDC precon-

ditioner, which relies on the original formulation of BDDC based on Lagrange multipliers,

we will provide a theoretical link between the exact and inexact formulations; numerical

results will fully confirm the theoretical results. Finally, we will provide parallel large scale

numerical results regarding the scalability of the inexactBDDC method considered.

The parallel codes have been developed in Fortran90 using the MPI standard for mes-

sage passing and different pre-existing high-performancelibraries like PETSc, LAPACK,

UMFPACK, MUMPS, SLEPc and HYPRE. Code developing has been performed using the
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clusters Ulisse and Nemo located at the Math department; large numerical simulations (up

to 576 computing cores) have been performed with the Linux cluster BCX and IBM ma-

chine SP6 (a power6) of CINECA (see http://hpc.cineca.it),and the Linux cluster MATRIX

of CASPUR (see http://hpc.caspur.it). The BDDC code has been also used to validate a

theoretical study (submitted for publication) on the solution of the three-dimensional linear

elasticity system in the almost compressible case using Gauss-Lobatto-Legendre spectral

elements, in collaboration with Prof. Luca F. Pavarino (University of Milan) and Prof. Olof

B. Widlund (Courant Institute, NY).
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Chapter 1

Cellular models of cardiac

electrophysiology

1.1 Cellular electrophysiology

The mechanical functioning of the mammalian heart depends on its proper electrical func-

tioning, reflected in the sequential activation of cells in specialized pacemakers regions of

the heart and the propagation of activity through the ventricles. Myocardial cellular elec-

trical activity is attributed to the generation, in response to an overthreshold stimulus, of

action potentials (AP). The propagation of activity and thecoordination of the electrome-

chanical functioning of the ventricles also depend on electrical coupling between cells,

mediated by gap junctions. The exciting wave is initiated inspecialized self-depolarizing

cells located in the sinoatrial (SA) node that acts as pacemakers (see figure 1.1). The wave

is then propagated through the atria to the AV node; following a brief pause in the AV

node, excitation spreads in the ventricles through the right and left bundle branches. Ram-

ifications of the bundle branches give rise to the subendocardial network of the Purkinje

fibers, that transmit the electrical impulse into the working myocardium. The heart is then

activated from apex to base, from endocardium to epicardium, and his normal coordinated

electrical functioning is readily detected in surface electrocardiograms (ECG in figure 1.1).

The P wave indicates atrial excitation, the QRS complex ventricular contraction and the

following T wave the subsequent ventricular relaxation.

The generation of myocardial APs reflects the sequential activation and inactivation of

ion channels that conduct depolarizing (inwardNa+ andCa2+) currents, and repolarizing

(outwardK+) currents. The waveforms of APs in different regions of the heart are distinct,

owing to differences in the expression and/or the properties of the underlying ion channels;

moreover, waveforms of cardiac APs are different among the animal species. Regional

differences contribute to the normal unidirectional propagation of excitation through my-

ocardium and to the generation of normal cardiac rhythms. Changes in the properties or the

functional expression of myocardial ion channels can results from inherited mutations in

1
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Figure 1.1:Electrical activity in the myocardium. Top: schematic of a human heart with illustration of typical
action potential waveforms recorded in different regions.Bottom: schematic of a surface electrocardiogram; three
sequential beats are displayed (redrawn from [97]).

the genes encoding these channels, from myocardial diseaseor from drug administration:

these changes can lead to changes in APs waveforms, synchronization and propagation,

thereby predisposing the hearth to potentially life-threatening arrhythmias.
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Figure 1.2:A ventricular action potential

In the following we will concentrate on canine left ventricular APs; for a review to

whole heart regional and species differences see [97]. AP upstroke (phase 0 in figure 1.2)

is rapid, resulting from the rapidly activation (and inactivation) of voltage-gated sodium

channels underlying the fast inward sodium currentINa. Phase 0 is followed by a transient

repolarization (phase 1 ornotch), reflecting sodium channels inactivation and the activa-

tion of the fast transient voltage-gated outward potassiumcurrentIto1 and the transient

calcium dependent chloride currentIto2. Membrane depolarization also activates voltage-

gated calcium currentICaL through L-type calcium channels during theplateau (phase

2): this current is the main trigger for excitation contraction coupling in the working my-

ocardium. During the plateau phase, the driving force for potassium efflux is high and, as

2



Chapter 1. Cellular models of cardiac electrophysiology

the calcium channels inactivate, the outward potassium currents predominate, resulting in

repolarization (phase 3), bringing the transmembrane voltage back to the resting potential.

Although sodium channels inactivation is rapid, some channels reopen later during phase

3; this late sodium current is calledINaL. In contrast toNa+ andCa2+ channels, there are

multiple types ofK+ channels that contribute to AP repolarization: voltage-gated chan-

nels underlying the delayed rectifier currentsIKs andIKr during phase 3, and non-voltage

gated channels underlying the inward rectifierIK1 current that anchors the transmembrane

potential to its resting value (late phase 3).

1.2 Evidences of left ventricular transmural heterogeneities

100 200 300 400 500 600 700 800

0

50

100

150

200

250

Figure 1.3:Superimposed APs recorded in isolated cells from differentregions of the canine heart at different
BCLs (redrawn from [83])

Until approximately twenty years ago, the cellular composition of the ventricular wall

was thought to be largely homogeneous. Recent advances in our understanding of the

electrophysiology and pharmacology of the ventricular myocardium have revealed at least

three distinct ventricular types of isolated cells: epicardial (Epi), midmyocardial (M) and

endocardial (Endo) cells (see figure 1.3). Differences in the expression patterns of a num-

ber of ion channels and in the pharmacologic profiles of thesethree myocardial cell types

have been described in the dog, guinea pig, rabbit and human ventricles [2]. Recently ion

channels’ gene expression in the non-diseased human heart has been screened, showing sta-

tistical relevant differences among different regions of the heart, confirmed by the analysis

of the protein levels [39].

The principal feature of the M cell is the ability of its action potential to prolong more

than that of epicardium or endocardium with slowing of pacing rate ([82], [83]). In figure

1.4 experimental AP duration (at dynamical steady state) ofisolated cells, measured at 90%

of repolarization (APD90), is plotted versus the basic cycle length of stimulation (BCL): a

transmural gradient is evident with the longest APD90 in M cells and the shortest in Epi

and Endo cells.

A review of canine LV transmural heterogeneities is given inthe following; deeper de-

scriptions with experimental data and related simulationswill be given in the next sections.

Properties of sodium currents expressed in different cell types from the same species, are

3



Chapter 1. Cellular models of cardiac electrophysiology

50

100

150

200

250

300

Figure 1.4:APD90 rate relationship from different regions of the canine heart (redrawn from [82])

similar [97]. Kinetic properties of L-type calcium channels are quite similar in different

cell types too ([23], [76], [7]), even if an experimental study reports a transmural gradi-

ent in channel density [149]. Since this disparate results may be related to differences in

experimental conditions or in cells’ gender [150], we choose to assume the same channel

densities and kinetic parameters forICaL in all types of cells considered. AlsoIK1 current

has been considered the same among the three cell types [82].The ionic currents that are

known to exhibit transmural heterogeneities in the LV include the transient outward potas-

sium currentIto1 ([82], [76], [139]), the two components of the delayed rectifier potassium

currentsIKs andIKr [83], the late sodium currentINaL ([156], [143]), the sodium-calcium

exchanger (NCX) currentINaCa ([155], [151]), the sodium-potassium pump (NaK) current

INaK [41] and the sarcoplasmic reticulum pump currentIup [73].

Ito1 : Channel density ofIto1 varies transmurally in isolated cells from different regions

of the LV whereas the time- and voltage-dependent properties of are similar. Differ-

ences in channel density influence AP shape, causing the observednotchof isolated

cells from epicardium and midmyocardium ([82], [139], [76]).

IKs : As for the transient outward current, the time- and voltage-dependent properties of

IKs in isolated cells from different regions of the LV are similar whereas the channel

density varies transmurally: the lowest density of channels has been measured in M

cells, and this contributes importantly to the longest APD of M cells (see [83])

IKr : The rapidly activating delayed rectifier potassium current IKr is almost the same

with respect to his kinetics parameters, but a minimal difference in channel density

exists ([83]).

INaL : Late sodium current contributes to maintaining the AP plateau in the different cell

types across the wall of the canine LV; the existing regionaldifferences are due to

variations in channel density, with the greatest current reported in M cells, the lowest

in Endo and Epi cells ([156], [143]).
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ICaT : In cells isolated from endocardium is expressed a different class of calcium chan-

nels, together with L-type channels, called T-type channels [149]. These channels

(also known as low voltage calcium channels) are mainly expressed in cells of the

conducting system, in which they play a role in pacemaking. They activate at rel-

atively hyperpolarized potentials and does not contributeto excitation contraction

coupling (maybe because they are located far away from T-tubules).

INaCa : A significant transmural gradient ofINaCa is present in LV ([155],[151]): differ-

ences in protein levels have been measured, with the Epi layer exhibiting the greatest

level compared with M and Endo layers. Yet, transmural differences in the current

produced by the exchanger has been reported, with the greatest measured current in

Epi cells, the lowest in Endo cells [151]. In a different experiment ([155]), the great-

est current was found in M cells but this article alone cannotdistinguishes whether

transmural differences inINaCa result from a smaller density of channels, nonuni-

form sarcoplasmatic reticulum (SR) loading, or some factorlimiting SR calcium

release in the proximity of endocardial exchanger [155].

INaK : Transmural heterogeneities in the sodium-potassium pumphave been published in

[41], reporting a transmural gradient in the correspondingcurrent: the latter larger in

Epi cells than in Endo cells, with M cells being intermediate.

Iup : Transmural differences in canine calcium handling has been observed in wedge

preparations [73] and in isolated cells [23]. Both studies reported a slower (larger

time constant) calcium transient decay and a greater calcium transient duration in

endocardium compared with epicardium. In [73] a reduced expression of the pro-

tein encoding the channels has been measured in the midmyocardial and endocardial

layers compared with the epicardial layer. These facts suggests that the transmu-

ral heterogeneity of calcium handling reported is probablyan intrinsic property of

the cells, because activation sequence (endocardial versus epicardial pacing) did not

influence the results [73].

1.3 Mathematical modeling of isolated cells

The first mathematical model designed to describe accurately AP waveform, the associated

permeability changes of the cellular membrane and tissue conduction was proposed by

Alan Lloyd Hodgkin and Andrew Fielding Huxley in 1952 [48]; for their pioneering and

seminal work they received (sharing it with John C. Eccles for his works on synapsis and

motoneurons) the Nobel Prize in medicine in 1963. Their formalism, developed to describe

the AP of neurons has been used later in many models describing cardiac AP: for review of

published computational models and the relative interaction between experiment and theory

on cardiac cell (roughly speaking, thestate of the art) see [117], [99], [110]. Since in this

section whole cellular models will be introduced together with a sketch of implementation

of experimental techniques, we refer the reader to the next section for a more complete

5



Chapter 1. Cellular models of cardiac electrophysiology

derivation of the Hodgkin-Huxley formalism from the more general statistical point of

view of Markov chains.

Different ionic concentrations, between outside and inside the cell, build up a poten-

tial difference (an electrochemical gradient) across the cellular membrane and thus the

latter acts as a capacitor. Specified proteins located on thecellular membrane are respon-

sible for the diffusion of ions (ionic currents) between inside and outside the cell: ionic

channels (pores of the membrane), pumps and exchangers. Ions flow through ionic chan-

nels along their electrochemical gradient (passive transport) whereas the trafficking of ions

through pump and exchangers is made against the electrochemical gradient (active trans-

port): pumps use energy derived from the metabolism (ATP hydrolysis), whereas exchang-

ers exploit the diffusion energy of other ions. Different types of ionic channels, pumps and

exchangers exist, each type made up by a population of identical proteins. The contractile

function of the cell is a complex system involving differentsubcellular compartments for

calcium handling. Hence the quantity of interest to reproduce cellular electrophysiology

are the transmembrane potentialv, the gating variables of ionic channels

w = (w1, . . . , wM ),

and the ionic intracellular and subcellular concentrationvariables

c = (c1, . . . , cP ).

Ionic currents acts as built in parallel with the capacitor behavior of the membrane: the

total transmembrane current per unit areaim (measured inµA/cm2) is therefore the sum

between capacity current and ionic current:

im = cm
dv

dt
+ iion, (1.1)

wherecm is the surface capacitance (measured inµF/cm2),
dv

dt
the capacity current and

iion the ionic current per unit area. When an external overthreshold conservative stimulus

iapp is applied (see [64] for a mathematical analysis of the excitation process in the phases

space), theall-or-nonecellular response is the AP and the variation of transmembrane

voltage for isolated cells is described by the equation:

dv

dt
= − 1

cm
(iion + iapp). (1.2)

The right hand side of the latter equation can be viewed as composed by an autonomous

system (represented byiion and the associated system of ODEs) and a forcing termiapp

applied every fixed timeT (referred to in cardiac literature as Basic Cycle Length, BCL);

problems of this type can be classified as impulsive ODEs [4].
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Chapter 1. Cellular models of cardiac electrophysiology

The transmembrane ionic current per unit area has the following general structure:

iion(v, c, w) =

N∑

k=1

Gk(v, c)(

Mk∏

j=1

w
pkj

kj
)Φk(v) + ipumps(v, c), (1.3)

whereN is the number of different types of ionic currents andipumps is the total time

independent (thus algebraic functions) ionic flux through pumps and exchangers. As a

convention, an outward current is considered positive and therefore acts to reduce the trans-

membrane voltage, whereas an inward current is considered negative and thus raise up the

transmembrane voltage. The current through thek-th population of ionic channels is char-

acterized by a specific membrane conductanceGk that account for the whole number of

channels of the population (i.e. channel density, measuredin µA/cm2), an instantaneous

current voltage relationΦk(v) that account for the instantaneous current through a single

channel of the population, andMk dimensionless variablesw
pkj

kj
accounting for different

gating mechanism of thek-th population.pkj is an integer representing the number of iden-

tical and independent subunits of thej-th gate for thek-th current; the opening probability

of each subunit is described by a nonlinear ODE having the following structure





dwkj

dt
= αkj (v)(1 − wkj ) − βkj (v)wkj = Rkj (v, w)

0 ≤ wkj (0) = w0
kj

≤ 1

, (1.4)

whereakj (v) andbkj (v) (measured ins−1) are positive functions representing voltage-

dependent transition rates (from closed to open state and from open to closed state respec-

tively) for each subunit of thej-th gate of thek-th current. All thepkj subunits must be in

the conductive state to open thej-th gate, therefore the probability that thej-th gate is open

isw
pkj

kj
, and

∏Mk

j=1 w
pkj

kj
is the probability that thek-th channel is open (or equivalently the

proportion of open channels ofk-th population as it will be shown in the next section).

Experiments on ionic currents (see [47]) are mainly conducted controlling the trans-

membrane voltage; briefly, involtage clamp(VC) andpatch clamp(PC) conditions the

transmembrane voltage is held fixed (i.e.dv/dt = 0 in (1.1)), whereas involtage ramp(VR)

conditions time derivative of transmembrane voltage is held fixed: ionic currents are mea-

sured as the transmembrane current necessary to maintain the conditioning (or clamped)

potential. VC and PC techniques are principally used analyzing currents through ion chan-

nels, VR studying time independent currents through pumps and exchangers; in any case

it is possible to isolate, with specific pharmacological aid(i.e. channel blockers or ion-free

extracellular and/or intracellular conditions), each component of the ionic current. Differ-

ences between VC and PC exist: VC measures the total deterministic current across the

membrane, PC isolates a little part of the membrane and measures the stochastic current

through a single channel (we refer the interested reader to [47] for a deeper explanation).

However, with these experimental techniques the voltage isfixed and therefore it is possible

to analytically solve equation (1.4) and consequently infer the values of the transition rates.

7



Chapter 1. Cellular models of cardiac electrophysiology

Solutions of (1.4) at a given voltagev are characterized by the following two quantities:

wkj ,∞(v) =
αkj (v)

αkj (v) + βkj (v)

τwkj
(v) =

1

αkj (v) + βkj (v)
,

where the dimensionless variablewkj ,∞(v) is calledsteady state availabilityandτwkj
(v)

thetime constant(measured ins) of thej-th gate of thek-th current atv .

Instantaneous current voltage relation can be of two types:

ΦLIN(v) = v − Ec (1.5)

ΦGHK(v) =
z2vF 2

RT

cie
zFv/RT − ce

ezFv/RT − 1
, (1.6)

whereEc is the Nerst potential of the ionc, z is the valence of ionc, F the Faraday

constant,R the gas constant,T the absolute temperature andci andce the internal and

external concentration of ionc. Both formulas are derived for electrodiffusion theories and

are the results of two distinct limits for channel length: equation (1.5) (long-channel limit)

is linear with transmembrane voltage, whereas equation (1.5) (short-channel limit) is the

constant field equation, otherwise referred to as GHK equation; in both cases, the reversal

potential is the so called Nerst potential

Ec =
RT

F
log

ce
ci
,

which can be derived from a statistical mechanics point of view (for mathematical deriva-

tions of these standard formulas, the reader is referred to [64]).

The dynamics of each intracellular concentration variableis tracked considering ionic

and diffusion fluxes. The instantaneous fluxJk of a single ionic currentik(v, w) across the

cellular membrane is described by the formula [28]:

Jk = − ik(v, w)Acap

V zF
, (1.7)

whereV is the intracellular volume,Acap is the capacitive membrane area,z is the valence

of the ion andF is the Faraday constant. The minus sign appear taking into account the

convention on the currents. The diffusion fluxJDIFF between one subcellular compart-

ment with volumeV1 and local concentrationc1 to another compartment with volumeV2

and local concentrationc2 can be linearly approximated as

JDIFF = −c2 − c1
τ12

V1

V2
,

whereτ12 is an experimental diffusion constant (measured ins) betweenV2 andV1. Each

8
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concentration variable thus obeys the ODE:





dcj
dt

= Sj(v, w, c)

cj(0) = c0j

, (1.8)

whereSj(v, w, c) is the sum of all ionic and diffusive fluxes carrying ioncj ; the total flux

of thej-th ion in the time interval[t0, t1] can be computed as:

∫ t1

t0

Sj(v, w, c)dt.

For sake of completeness, the conservative stimulus current is added in the computation of

intracellular concentrations [53]: it is assumed equal to−80µA/cm2, lasting for1 ms and

composed equally by potassium and chloride ions.

The whole nonlinear system of ODEs describing cellular electrophysiology is made up

by equation (1.2) (whereiion is given by equation (1.3)), coupled withM (=
∑

k Mk,

i.e the number of gating variables) equation of type (1.4),P (number of intracellular and

subcellular ionic concentrations) equation of type (1.8).Since different time scales exist

during an AP (see figure 1.2), the cellular model must be solved with implicit methods

designed for stiff problems. For these models, an usual choice in literature is the Matlab

variable-order solverode15s (see also [126]).

50 100 150 200 250 300 350 400 450

50

100

150

200

250

Figure 1.5:Schematic diagram of HRd2007 (redrawn from [81])

In the following we will consider the most recent published version [81] of the Hund-

Rudy model [54] (HRd2007), designed for LV epicardial canine cells; see figure 1.5 for

a schematic diagram of the model. Hrd2007’s nonlinear system of ODEs has dimension

twenty-eight: ionic currents considered areINa, INaL, ICaL, Ito1, Ito2, IKs, IKr, IKp

andIK1, pumps and exchangers currents areINaK , INaCa andIpCa. The latter current

is the calcium sarcolemmatic pump that extrudes calcium ions from the cell. We elimi-

9



Chapter 1. Cellular models of cardiac electrophysiology

nate the plateau potassium currentIKp from the original formulation because there is no

evidence confirming its presence in canine ventricular cells ([97]). Dynamical intracel-

lular ionic concentrations are sodium, potassium, calciumand chloride; subcellular cal-

cium concentrations have been considered in the network sarcoplasmatic reticulum (NSR),

in the junctional sarcoplasmatic reticulum (JSR) and in thedyadic space (subspace) with

the associated diffusion fluxes. Since chloride concentrations are taken into account, the

sodium-chloride cotransporterCTNaCl and the potassium chloride cotransporterCTKCl

are included into the model. In the dyadic space, the calciuminward current through L-

type channels interact in a phenomenological way with the ryanodine receptors (RyRs) to

account for the excitation contraction coupling andIRel is resulting the calcium release

current from JSR. Calcium buffers modeled in the intracellular volume are calmodulin and

troponin, whereas in the JSR the calsequestrin is considered; each of these buffer mecha-

nisms is assumed to be instantaneous. A protein kinase (CaMKII) is also taken into account

and it interacts with calcium influx via L-type channels, calcium release trough RyRs and

calcium uptake through SERCA2a pump. The interested readeris referred to [81] and

references therein for a deeper description of the featuresand limitations of the HRd2007

model together with the complete set of model’s equations.

1.4 Hodgkin-Huxley formalism and continuous time

Markov chains

Although the current through the entire population of ionicchannels of a species can be

assumed deterministic, the current through a single channel is stochastic: deterministic

models are useful tools to account for the whole species behavior but, since most properties

of ion channels are best studied with single channel data [96], these models fail to reproduce

physiological states of the constitutive proteins of ion channels. Proteins are typically

composed of one or more pore-formingα-subunits that can be modulated by accessory

subunits [97]. Each subunit contains sensors that can undergo conformational changes and

must be in the activated position to open the channel. Markovstate models are the natural

framework to deal with this kind of complexity and they were applied after the stochastic

nature of the single channel current was revealed in 1976 by Neher and Sakmann ([95],

Nobel Prize in 1991), more than twenty years before Hodgkin and Huxley’s work, further

emphasizing the quality of their formalism.

The gating behavior of a single channel is assumed to be described by a semi-Markov

process, i.e. a collection of random variables{X(t)|t ∈ R
+}, with values in a finitestate

spaceS = {1, . . . , N} in which states are visited according to an (homogeneus) continuous

timeMarkov chain, i.e. ∀s, t ≥ 0, ∀0 ≤ u ≤ s andi, j, x(u) ∈ S holds that [115]

Pij(t) = Prob{X(t+s) = j|X(s) = i} = Prob{X(t+s) = j|X(s) = i,X(u) = x(u)},
(1.9)

where the line brackets denote the conditioning probability. In other words, a continuous
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time Markov chain is a process with no memory of the past: in fact, indicating withTi the

time spent by the system in statei (dwell time), from (1.9) follows that

Prob{Ti > s+ t|Ti > s} = Prob{Ti > t}

∀s, t ≥ 0. Therefore the random variableTi is memoryless and it must be necessarily

exponentially distributed, i.e.

Prob{Ti ≤ t} = 1 − e−λit,

for someλi ∈ R
+. Noting that< Ti >= λ−1

i , where< · > denote the mean of a random

variable, the parameterλi can be interpreted as theexit rate from statei. Let us define,

∀i 6= j

qij = λiPij (1.10)

the transition ratefrom statei to statej; note thatqij = 0 if statesi andj are unlinked.

Markov chains generally have several loops in the model thatmust satisfymicroscopic

reversibility. Microscopic reversibility is derived from the law of conservation of energy

and states that the product of transition rate when traversing a loop clockwise must be equal

to the product when traversing the same loop counterclockwise [47].

Supposing that, in an infinitesimal time intervaldt, the probability that two transition

occurs iso(dt) (i.e. o(dt)/dt → 0 if dt→ 0) holds that

lim
dt→0

1 − Pii(dt)

dt
= λi (1.11)

lim
dt→0

Pij(dt)

dt
= qij (1.12)

∀i 6= j; therefore

λi =
∑

j 6=i

qij , (1.13)

i.e. the exit rate from statei is the sum of the transition rates from linked states. From

assumptions (1.11) and (1.13) follows the so calledforward Kolmogorov equations[144]:

d

dt
Pij(t) = −λiPij(t) +

∑

k 6=i

qikPkj(t) (1.14)

∀t ∈ R
+ and∀i, j ∈ S.

The system of stochastic differential equations (1.14) describe the temporal behavior

of the transition probabilities for a continuous time Markov chain, and exact stochastic

trajectories of the process can be computed with standard Monte Carlo methods. Drawing

two random numbersr1 andr2 uniformly distributed in[0, 1] and supposing that the system

is in statei, dwell times are computed as

Ti = − log r1/λi,

11



Chapter 1. Cellular models of cardiac electrophysiology

since they are exponentially distributed with parameterλi. At the end of the dwell time,

the next statek of the system is chosen ifr2 ∈ Ik, whereIk (k ∈ S, k 6= i) is a subinterval

of [0, 1] of amplitudeqik/λi.

Hodgkin and Huxley formalism can be derived analyzing the deterministic behavior of

the system. We will denote withxi(t) the probability that a channel is in statei at timet:

noting that the Kolmogorov equations (1.14) provide the temporal behavior of the transition

probabilities not of the occupancy probabilities, and defining the set of states from whose

the system can reach statei as

Ri = {j ∈ S|qji 6= 0},

holds that [144]:
dxi

dt
=
∑

k∈Ri

qkixk(t) − λixi(t).

Therefore the vector of occupancy probabilitiesx(t) = (x1(t), . . . , xN (t))T obeys the

linear system of stochastic differential equations

d

dt
x(t) = Q · x, (1.15)

where thetransition matrixQ is




−λ1 q21 . . . qn1

q12 −λ2 . . . qn2

...
. . .

. . .
...

q1n q2n . . . −λN



. (1.16)

Most ion channel models have distinct eigenvalues of transition matrix Q given in eq.

(1.16), with one being zero, since the sum of each column ofQ is zero for equation (1.13),

and the others negative [22].

Supposing to have a large populations of independent channelsX1, . . . , XM , each of

them obeying (1.15) (i.e.Xi are independent and equally distributed random variables),

and defining the random variable

Yk,i(t) =





1 if Xk(t) = i

0 otherwise

∀i ∈ S, from the laws of large numbers follows that

< lim
M→∞

1

M

M∑

k=1

Yk,i(t) >= xi(t),

and thusxi(t) describes the proportion of channels of the population occupying statei at

a given timet. Therefore, since thousands of channels exist for each species, we can treat

12
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deterministically system (1.15) in order to describe the average behavior of the whole pop-

ulation of a species.

Single activating subunit model. The simplest model is given by assuming that one

subunit determines the opening and closure of the channel. The Hodgkin-Huxley formalism

can be schematized as

C
α(v)−−−⇀↽−−−
β(v)

O (1.17)

whereC andO denotes closed and open state,α(v) andβ(v) are subunit’s positive voltage

dependent transition rates from closed to open state and from open to closed state respec-

tively. The nonlinear system of differential equations is thus





dC

dt
= −α(v)C(t) + β(v)O(t)

dO

dt
= α(v)C(t) − β(v)O(t)

,

and the markovian matrix is

Q =

[
−α β

α −β

]
.

Since∀t ∈ R
+ must beC(t) + O(t) = 1, after some algebra the latter system can be

reduced to a nonlinear differential equation

dO

dt
=
O∞(v) −O

τO(v)
(1.18)

where

O∞(v) =
α(v)

α(v) + β(v)

τO(v) =
1

α(v) + β(v)
.

Assuming thatv is constant and equal tov (as in VC and PC experimental conditions) and

thatO(0) = O, the solution of (1.18) is

O(t) = O∞(v) − (O∞(v) −O)e
−

t

τO(v) . (1.19)

Therefore, for the simple gating schema given in eq. (1.17),if O < O∞(v) the channels

open and the qualitative behavior of the solution is1−e−t/τO(v); otherwise, ifO > O∞(v)

the channels close and the solution behaves ase−t/τO(v). Since equation (1.19) tends to

O∞(v) this quantity is calledsteady state availabilityof the gate; moreover, since it holds

that
O(t+ τO(v)) −O(t)

O∞(v) −O(t)
=
e− 1

e
(1.20)

∀t ∈ R
+, τO(v) is calledtime constantof the gate. Greater time constants imply a slower

13



Chapter 1. Cellular models of cardiac electrophysiology

approach to steady state availability: in fact, assuming the same initial condition and steady

state availability, from eq. (1.20) follows thatO(τO(v)) is a constant function of the time

constant (see Figure 1.6 and its caption).

O
∞

O
∞

A B

τ
1
 τ

2
τ

1
 τ

2

Figure 1.6:Simple gating mechanisms with same steady state availability and different time constants. Panel
A: opening gates. Panel B: closing gates. For each panel, steady state availability (O∞) and time constants
(τ1 < τ2) are shown.

Multiple activating subunit model. Supposing thatK independent and identical subunits

regulate channel activation and denoting withCj the state of a channel with0 ≤ j ≤ K

subunits in the opening position (i.e. the open state isCK), we can deduce the following

schema

C0

Kα(v)−−−−⇀↽−−−−
β(v)

C1

C1

(K−1)α(v)−−−−−−−⇀↽−−−−−−−
2β(v)

C2

C2

(K−2)α(v)−−−−−−−⇀↽−−−−−−−
3β(v)

C3

. . .

CK−2

2α(v)−−−−−−−⇀↽−−−−−−−
(K−1)β(v)

CK−1

CK−1

α(v)−−−−⇀↽−−−−
Kβ(v)

CK .

The system in stateCj can move to stateCj+1 opening one of itsK − j subunit in closing

position (with transition rate(K − j)α(v), whereα(v) is the opening transition rate of

each identical subunit), or to stateCj−1 closing one of itsj subunit (with transition rate

jβ(v), whereβ(v) is the closing transition rate of each identical subunit). In this case, the

markovian matrix becomes a tridiagonal matrix where the main diagonal is given by

(−Kα,−(K − 1)α− β, . . . ,−α− (K − 1)β,−Kβ),

the upper diagonal by

(β, 2β, . . . ,Kβ),
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and the lower diagonal by

(Kα, (K − 1)α, . . . , α).

It is possible to show that the occupancy probability of stateCj for a channel of this type

is (see [64]):

Cj =

(
K

j

)
Oj(1 −O)K−j , (1.21)

where
(
·
·

)
is the binomial coefficient andO obeys the differential equation (1.18). With

multiple subunits, open state probability shows an initialdelay (S shaped behavior in panel

A of figure 1.7) because each subunit must undergo an opening transition to open the chan-

nel, whereas channel closure is faster than in the simple gating mechanism because one

subunit is enough to close the channel; withK subunits the time constant of the gate is

approximatelyK times lower than a single subunit model as it can be seen in panel B of

figure 1.7.

A B

Figure 1.7: Qualitative comparison between opening (panel A) and closure (panel B) of a channel with 1
subunit (continuous lines) and 4 subunits (dotted lines).

Multiple activating and inactivating subunits model. The models constructed above

doesn’t account for the inactivation of channels (in time) at the same constant potential

value. This can be achieved considering two different kind of subunits, one type regulating

activation and one regulating inactivation. Denoting withCi,j the state of a channel with

0 ≤ i ≤ K independent and identical activating subunits (with forward and backward tran-

sition ratesα(v) andβ(v) respectively) in opening positions and0 ≤ j ≤ M independent

and identical inactivating subunits (with forward and backward transition ratesγ(v) and

δ(v) respectively) in opening position, the open state probability CK,M is (see [64])

CK,M = OK
AO

M
I (1.22)

whereOA andOI are the open state probability of an activating and inactivating subunit

respectively, i.e they obeys





dOA

dt
= α(v)(1 −OA(t)) − β(v)OA(t)

dOI

dt
= γ(v)(1 −OI(t)) − δ(v)OI(t)

. (1.23)
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Figure 1.8 shows the open probability of a channel (continuous line) that can inactivate

in time together with the opening probabilities of the activating subunits (dotted line) and

inactivating ones (dashed lines).

Figure 1.8:Opening probability (continuous line) of a channel that caninactivate as the product of the opening
probability of one activating particle (dotted line) and one inactivating particle (dashed line).

As we have seen, Hodgkin-Huxley formalism can be derived from the more general

framework of Markov chains when considering the independence and identity of subunits

composing the channels. Although the Hodgkin-Huxley formalism is a powerful tool capa-

ble to reproduce the macroscopic observed features of the currents, more complex Markov

chains can account for more physiological models of channels and provide useful insights

into their mutations [117]. They are now widely used as accepted as the gold standard of

ion channel modeling and extensively used for detailed cellular simulations (see for ex-

ample [44], [35], [38]). However, the HRd2007 model has beenchosen because it retains

much of the complexity observed in a cardiac cell without thehelp of markovian mod-

els: clearly, a much simpler representation of the cell’s mechanisms will loose accuracy in

reproducing biophysical observations, but inserting markovian models with their multiple

states and small time sclaes in tridimensional mathematical representation of the cardiac

tissue would result in computationally untractable problems.

1.5 Modeling transmural cellular heterogeneities

In this section we will present the changes applied to HRd2007 in order to fit experimen-

tal data related to LV transmural heterogeneities. We will refer to this modified model

as HHRd (Hetero HRd). Other models of ventricular heterogeneity have been published

([38], [10], [124]): [124] has been developed from the Priebe- Beuckelmann model [109]

based on human data, [38] from the canine ventricular markovian model of Winslow and

Greenstein [44] whereas [10] has been assembled from the Hund-Rudy model [54] and

published in the meanwhile HHRd was developed. Qualitativedifferences and similarities

exist between the HHRd model and the model published in [10],and they will be shown

here and in the next sections. Results for Epi cells will be shown in red, for M cells in blue
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and for Endo cells in green. Cell geometry and capacitance isassumed equal among the

three types of cells [82].
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Figure 1.9:Panel A: Peak current voltage relations forIto1 in the three cell types. Panel B: Experimental
values (redrawn from [82]).

Transient outward potassium currentIto1 varies transmurally because of different chan-

nel densities; therefore we scale the maximum conductance of the current to reproduce the

observed heterogeneity. With voltage clamp techniques, the greatest peak current has been

measured in Epi and M cells, the lowest in Endo ([82], [76], [139]). The percentage of

reduction from Epi to Endo cells vary among studies, from 80%([82], [139]) to 50% [76].

The contribution of this current has been evaluated with thesame VC protocol used in

[82], setting [K+]e = 6.0 mM: from an holding potential of−80 mV, the cell is depolar-

ized to different test potentials and peak of the current is measured. In figure 1.9 is provided

a comparison between experimental [82] and simulated peaksat clamped potentials: the

simulated current in Endo cells is greater than that measured in [82] and [76], but the ratio

between Epi and Endo currents is in accordance with [139]. This choice has been made

in order to get a more physiological AP waveform for endocardial cells as in [10]. In the

heterogeneous model published in [38], this issue was overcame augmenting the maximum

conductance of the chloride transient outward currentIto2: further experimental investiga-

tions are mandatory to resolve this point.

Channel densities of delayed rectifier potassium currentsIKs andIKr vary transmu-

rally. evaluating the tail currents (i.e. peak of current inresponse to repolarizing steps) in

voltage clamp experiments, the greatestIKs current has been measured in Epi and Endo

cells, the lowest in M cells ([83]). RegardingIKr, a minimal difference in channel density

can be enlightened evaluating the tail currents [83]. Although a calmodulin mediated cal-

cium dependence ofIKs exists [125], we eliminate the calcium dependence ofIKs from

the original formulation (as in the model published in [44])because it is based on guinea

pig data [153]; further investigations, outside the scope of this study, are required to model

this potentially important mechanism of functional regulation of IKs. Focusing on cellular

heterogeneities, the contribution of delayed rectifier potassium currents has been assessed

measuringtail current densitieswith a VC protocol setting [K+]e = 6.0 mM (see [83]):
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Figure 1.10:Heterogeneity of delayed rectifier potassium currents. Panel A: Tail current voltage relations for
IKs in the three cell types. Panel B:IKs experimental data. Panel C: Tail current voltage relation for IKr . Panel
D: IKs experimental data. (Experimental panels redrawn from [83]).

from an holding potential of−40 mV, the cell is depolarized for5 seconds to different test

potentials, ranging from−20 to 60 mV, and then stepped back to−40 mV (tail current

densities are instantaneous peaks of the current during thestep back); figure 1.10 shows

a comparison between experimental and simulated tail currents densities versus the test

potentials.

Late sodium currentINaL varies transmurally [156]. We simulated the same experi-

mental VC protocol ([K+]e = 0 mM, [Cl−]e = 0 mM and[Na+]i = 10 mM): from an

holding potential of−130 mV, the cell is clamped for1 second to different test potentials

ranging from−40 to 0 mV. The mean current density during intervals of30-35 ms (Panel A

in figure 1.11) and295-300 (Panel B) ms after the start of the depolarizing pulse has been

simulated and compared in figure with experimental data. Time constant of inactivation

was modified from the original constant value of600 ms according to the formula

τ = c1 exp(c2V )

whereV is the potential and the constant values for the different cell types are listed in

Table 1.1, in better agreement with canine data published in[86].

T-type calcium channels are present in Endo cells only; until now, they are not con-

sidered in any of the ventricular canine models present in literature. The formulation of

the gating variables, together with time constant of activation, is from [34]. Time constant
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Figure 1.11:Mean of simulatedINaL current density (panels A and B) and experimental data (panels C and
D, redrawn from [156]) during 30-35 ms interval (panels A andC) and during 295-300 ms interval (panels B and
C) after the start of the depolarizing pulse.

Epi M Endo

c1 495.1 426.9 387
c2 9.185E-3 3.334E-3 7.898E-3

Table 1.1: Constants defining the time constant of inactivation of the Late Sodium current with the HHRd
model. See text for details.

and steady state of inactivation are from canine data published in [149]. Steady state of

activation has been assessed to reproduce observed peak current voltage relationship [149].

In figure 1.12 simulated (solid line) and experimental (filled circles) peak current voltage

relationship have been compared; in order to perform simulation at physiological temper-

atures (experimental data are at29 Celsius degrees) we assume aQ10 factor of 2.5 for the

maximum conductance of the current.

Since a significant transmural gradient in NCX protein levels exists [151], a scaling

parameter is introduced to the maximum current produced by the exchanger. The relative

contribution ofINaCa is evaluated performing the same experimental protocol described

in [151] ([K+]e = [K+]i = 0 mM): the cell is initially clamped for several minutes at

−40 mV to allow adequate internal dialysis of calcium and then a descending VR from80

to −100 mV in 360 ms (dV/dt = 0.5) is applied. In figure 1.5 is shown a comparison

between simulated (Panel A) and experimental (Panel B) currents plotted against trans-

membrane voltage: maxima and minima of current densities are in closely agreement with

experimental values as well as the characteristic crossingof data at about−40 mV.

A transmural gradient ofINaK and associated variations in intracellular calcium has

been recently published [41] for isolated canine ventricular cells; we therefore introduce a
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Figure 1.12:Simulated (panel A) and experimental (panel B, redrawn from[149]) peak current voltage relation
of ICaT in Endo cells at29.
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Figure 1.13:Simulated end experimentalINaCa in different regions of the heart. Experimental figure has
been redrawn from [151]

scaling parameter to the maximum current produced by the pump in order to qualitatively

reproduce the experimental results. From an holding potential of 0 mV and with[Na+]i =

60 mM, a descending VR, from+50 mV to −100 mV in 4 seconds (dV/dt = 3/80),

is applied. In figure 1.5 simulated (continuous lines) and experimental data (dotted lines)

are compared: although simulated and experimental curves don’t match, the transmural

gradient is qualitatively preserved, with the highest current in Epi cells, the lowest in Endo

ones.

A significant transmural gradient in SERCA2a protein levelsexists [73]; a scaling pa-

rameter is thus introduced to the maximum uptake currentIup. Experimental values of

protein level in M and Endo cells is 66% and 61% of Epi cells, computational percentages

used for simulations are 67% and 50% respectively. Since a direct measurement of this

current doesn’t exist in literature, a validation can be made only analyzing his effects on

whole cell calcium transients.
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Figure 1.14:Simulated (continuous lines) end experimental (dotted lines)INaK in different regions of the
heart.

IKs IKr Ito1 INaL INaCa INaK Iup ICaT

Epi 1.72 1.00 1.10 1.77 2.70 1.30 1.50 0.00
M 0.80 0.95 1.00 3.30 1.30 1.05 1.00 0.00

Endo 1.47 0.97 0.50 2.69 0.90 0.95 0.75 0.40

Table 1.2:Summary of scaling factors for maximum conductances of the HHRd model with respect to the
original formulation.

1.6 Validations of the HHRd model

Dynamical steady state. The HHRd model has been simulated for thousands of beats

from original (HRd2007) initial conditions until it will reach a dynamical (long term) steady

state [53], here defined when the maximum absolute value of the difference between two

consecutive vectors of initial conditions is less than 0.0001, i.e.

||xN
0
− xN+1

0
||∞ < 0.0001 (1.24)

wherexN
0

is the vector of initial conditions for theN -th beat. All variables influences AP

waveform: gating variables reach their dynamical steady state values within tens of beats,

subcellular and intracellular calcium concentrations in hundreds of beats whereas other

sarcoplasmatic ionic concentrations (sodium, potassium and chloride) reach their steady

state values in thousands of beats with a biexponential timecourse of the type

x0 + x1e
−t/τ1 + x2e

−t/τ2 (1.25)

wherex0 is the dynamical steady state value. In figure 1.6 is shown a representative be-

haviour of the beat-varying intracellular ionic concentrations for Epi cells: sodium con-

centrations reach their steady state values within the simulations, whereas potassium and
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chloride concentrations reach their long term steady statevalues after the simulated beats

because the stimulus current is injected at every beat. We choose to maintain the cut-off

value (1.24) since long term experimental concentrations of sodium have been already pub-

lished [41], whereas potassium and chloride concentrations haven’t been published yet.
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Figure 1.15:Initial values of intracellular ionic concentrations for Epi cells (asterisks) plotted against beat
number; continuous line are the biexponential fittings. Below each panel the principal features of the fitting are
summarized consistently with the notation used in eq. (1.25). Sodium concentrations are shown in red, potassium
concentrations in blue and chloride concentrations in green
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Figure 1.16:APD rate relationship for the HHRd model (filled circles) andexperimental values (mean± SD)
at [K+]e = 6.0 mM [83].

APD rate relationship. Since the HHRd model was built up to analyze transmural dis-

persion of repolarization (TDR, maximum APD minus minimum APD among cell types

at fixed BCL) in heterogeneous tissues, a validation of the ionic currents’ balance should

be based upon experimental data of steady state APD90 rate relationship: we choose the

data published in [83] since they were used to validate the other models of left ventricular

heterogeneity. Differently from other computational studies of cellular heterogeneity ([38],

[10], [124]), we set [K+]e = 6.0 mM to more closely reproduce experimental conditions:

simulated (filled circles) and experimental values (continuous line is for mean, dashed lines

for mean± standard deviation) are in agreement as shown in figure 1.16.Physiological
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Figure 1.17:Steady state APs simulated with HHrd for BCLs ranging from 500 to 2000 ms in different regions
of the heart.
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Figure 1.18:APD90 rate relationship in different regions of the heart.

([K+]i = 5.4 mM) steady state APs at different BCLs, ranging from 500 to 2000 ms in

500 ms step, are shown in figure 1.17 whereas in figure 1.18 is shown APD90 rate rela-

tionship for the three cell types together with the TDR. Observed APs are well reproduced

by the HHRd model (see figure 1.3). The simulated APD90 rate relationships preserve the

transmural gradient observed in most of experimental studies ([83], [5], [139], [138]), with

Endo APD90 longest than that of Epi cells as in the model [38], even if some other ex-

perimental studies reports the opposite configuration ([82], [76], [127]) as predicted by the

model published in [10]. Moreover, since the maximum conductance ofIKr current is di-

rectly proportional to the square root of extracellular potassium, the HHRd model predicts

longer APs at physiological concentrations of extracellular potassium (with values varying

from 15 to 25 ms) than that used to validate it.

Diastolic concentrations. Dynamical steady states of diastolic intracellular concentra-

tions of sodium and calcium are shown in figure 1.19. Diastolic intracellular sodium is

higher at lower BCLs (a feature already reproduced by HRd2007 model) for each type of

cell; moreover HHRd model predicts higher concentrations of sodium in Endo cells rather

than Epi cells, in closely agreement with experimental values [41]. The greater heterogene-

ity of sodium flux across the membrane is through the sodium-calcium exchanger and the

sodium potassium pump. In fact, total sodium flux through NCX(JNa
NCX ) is positive for

each type of cells at every BCL simulated, and thus NCX pumps sodium into the cell; more-

over, at dynamical steady state, the flux of the exchanger is an increasing function of the
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Figure 1.19:Heterogeneity of diastolic intracellular sodium and calcium concentrations at steady state simu-
lated by the HHrd model as functions of BCL.
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Figure 1.20:Transmural gradient in diastolic intracellular sodium concentration at 1 Hz: control conditions
(continuous line), with the sameINaK for all cells (dotted line) and with the sameINaCa for all cells (dashed
line)

BCL. NaK extrudes sodium ions from the cell (i.e the fluxJNa
NaK < 0) and it is a decreasing

function of the BCL at dynamical steady state. The computational sumJNa
NCX + JNa

NCX

results in a negative decreasing function of the BCL, indicating that NaK has the major

role in intracellular sodium handling. To enlight this point, dynamical steady states at1

Hz have been simulated with the same density ofINaK or with the same density ofINaCa

(chosen equal to the mean of densities in HHRd model) for eachtype of cell (see figure

1.20): the results show how heterogeneity in NaK is necessary to build up the intracellular

sodium gradient observed in isolated cells, whileINaCa heterogeneity doesn’t influence

intracellular sodium concentration heterogeneity. Regarding to diastolic intracellular free

calcium concentration at dynamical steady state, HHRd model predicts higher concentra-

tions in Endo cells rather than in Epi cells as observed experimentally in rat cells [29].

Systolic calcium concentration. Since tension development in cardiac cells is a function

of peak intracellular calcium concentration, another important feature of LV transmural

heterogeneity is the frequency dependence of calcium transients during an AP. In figure

1.21 calcium transients are plotted for the same cell type atdifferent BCLs (see legend),

whereas in figure 1.22 is shown the frequency-dependence of∆[Ca2+]i (panel A) and of

the peak of CaMKII activity (panel B). It must be noted that the model published in [10]
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Figure 1.21:Calcium transients at different BCLs of stimulation (see legend) in different cell types.
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Figure 1.22:Heterogeneity of∆[Ca2+]i (panel A) and CaMKII activity (panel B) simulated by the HHRd
model.

doesn’t account for a positive force frequency relationship (higher calcium peak at higher

frequency) for Epi cells.
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Chapter 2

Cardiac reaction-diffusion models

2.1 Governing partial differential equations

2.1.1 The Bidomain model

In the following, we will denote byΩ the volume of cardiac tissue considered, byv the

transmembrane potential, i.e. the potential jump across the cellular membrane

v = ui − ue,

with ui andue the intra- and extra-cellular electrical potentials, respectively. The macro-

scopic Bidomain model represents the cardiac tissue as a syncytium, i.e. the superim-

position of two anisotropic continuous media, the intra- (i) and extra- (e) cellular media,

coexisting at every point of the tissue and separated by a distributed continuous cellular

membrane; see [98] and [107] for a derivation of the Bidomainmodel from homogeniza-

tion of cellular models. The cardiac ventricular tissue canbe modeled as an arrangement of

cardiac fibers which rotate counterclockwise (CCW) from epi- to endocardium ([134]) and

which has a laminar organization modeled as a set of muscle sheets running radially from

epi- to endocardium ([75]). Therefore, at every pointx it is possible to identify a triplet

of orthonormal principal axes,al(x), at(x) andan(x), with al(x) parallel to the local fiber

direction,at(x) andan(x) respectively tangent and orthogonal to the radial laminae,and

both being trasversal to the fiber axis. Recently, the development of the Diffusion Tensor

Magnetic Resonance Imaging (DT-MRI) has produced non-invasive information about the

anatomic structure of the myocardium, which further supports the concept of a laminar

structure, bringing about an orthotropic anisotropy of themyocardial tissue (see [52] for a

recent numerical and experimental validation on this subject).

Denoting byσi,e
l , σi,e

t andσi,e
n the conductivity coefficients in the intra- and extra-

cellular media measured along the corresponding directions al(x), at(x) andan(x), the

anisotropic conductivity tensorsDi(x) andDe(x) related to orthotropic anisotropy of the
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Intracellular Extracellular Unity measure

σl 3 · 10−3 2 · 10−3 Ω−1cm−1

σt 3.1525 · 10−4 1.3514 · 10−3 Ω−1cm−1

σn 3.1525 · 10−5 6.757 · 10−4 Ω−1cm−1

Table 2.1:Conductivity coefficients

media are given by

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x). (2.1)

In this thesis, domainΩ will be a three-dimensional slab (i.e. a parallelepiped) ofcardiac

tissue described in the usual cartesian coordinate system(ex, ey, ez), in order to reproduce

the experimental setting of thearterially-perfused left ventricular wedgeof Antzelevitch

[152]; the fibers rotate intramurally linearly proceeding CCW from epicardium to endo-

cardium. Noting thatal(x), at(x) andan(x) form an orthonormal triplet∀x ∈ Ω, it follows

that the diffusion tensors (2.1) can be expressed as

Di,e(x) = σi,e
t I + (σi,e

l − σi,e
t )al(x)aT

l (x) + (σi,e
n − σi,e

t )an(x)aT
n (x),

therefore only two orthogonal vectors are required to definethe conductivity tensors. Con-

sideringan(x) = ez (i.e. fibers lie in the (x,y) plane) and denoting withlz the thickness

of the tissue, we thus define a complete orthonormal triplet with a total amount of rotation

α0π by setting:





al(x) = ex cosα(z) + ey sinα(z)

α(z) = α0π
lz − z

lz
− π

4
0 ≤ z ≤ lz

.

We assume that both the intracellular coupling and the extracellular matrix are uniform, i.e.

the intra- and extracellular conductivity coefficients along and across fibers are independent

of position. Their values are given in table 2.1.1: for theirvalidation, the interested reader

is referred to [21].

Denoting byχ the ratio of membrane surface area per tissue volume, then from eq.

(1.2) the transmembrane current per unit volume is given byIion = χiion and the surface

capacitance per unit volume isCm = χcm. In our simulations, the ratio of membrane

area per tissue volume is assumed equal to 1E3 whereas the cell capacitance equal to 1E-3;

therefore in the following we will assumeCm = 1. Imposing the conservation of currents,

i.e. the interchange between the two media must balance the membrane current flow per

unit volume, one derives a reaction-diffusion system for cardiac tissue. More specifically,

denoted byJi = −Di∇ui andJe = −De∇ue the intra- and extracellular current densities

in terms of the intra and extracellular potentials, due to the current conservation law we

have∇ · Ji = −Iion and∇ · Je = Iion − Ie
app (Ie

app is a suitable applied extracellular

27



Chapter 2. Cardiac reaction-diffusion models

current per unit volume) with∇· the usual divergence operator, i.e. in three dimensions

∇ · u =

3∑

i=1

∂u

∂xi
.

Then the Bidomain model in the unknownsui(x, t), ue(x, t) andv(x, t), coupled with the

cellular model, can be written as:





∂tv −∇ · (Di∇ui) + Iion(v, w, c) = 0 onΩ × (0, T )

− ∂tv −∇ · (De∇ue) − Iion(v, w, c) = −Ie
app onΩ × (0, T )

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0 onΩ × (0, T )

nTDi,e∇ui,e = 0 on∂Ω × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) onΩ

(2.2)

where the nonlinear functionsR(v, w) andS(v, w, c) account for the gating and ionic

cellular system (see Chapter 1). Since we have imposed insulated Neumann boundary

conditions, we must impose the following compatibility condition for the system (2.2) in

order to be solvable ∫

Ω

Ie
app = 0. (2.3)

The Bidomain system uniquely determinesv, while the potentialsui andue are defined

only up to a same additive time-dependent constant relatingto the reference potential. This

potential is chosen to be the average extracellular potential in the cardiac volume by im-

posing ∫

Ω

ue dx = 0. (2.4)

2.1.2 The Monodomain model

It is well known that the Bidomain system reduces to the Monodomain model assuming

equal anisotropy ratio of the two media [64]. For simulatingpurposes, we introduce another

interesting derivation which does not make such an assumption (see also [62] and [15]) and

that we will still call Monodomain model. Denoting byJtot = Ji + Je the total current

flowing in the two media, sinceJtot = −Di∇ui −De∇ue and substitutingui = v + ue,

we get

D∇ue = −Di∇v − Jtot (2.5)

with D = Di + De. Since the tensorsDi,e are symmetric positive definite (see eq. (2.1)

and Section 2.4), the second equation in (2.2) can be rewritten as

−∂tv + ∇ · (DeD
−1Di∇v) + ∇ · (DeD

−1Jtot) − Iion(v, w, c) = −Ie
app (2.6)
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and, omitting the dependence of principal axes fromx, we obtain

DeD
−1 = µe

l I + (µe
t − µe

l )ataT
t + (µe

n − µe
l )anaT

n (2.7)

with µe
l,t,n = σe

l,t,n/(σ
e
l,t,n + σi

l,t,n). Assuming constant conductivity coefficients and

taking into account that∇ · Jtot = −Ie
app, we have

∇·(DeD
−1Jtot) = −µe

l I
e
app+(µe

t−µe
l )∇·(ataT

t Jtot)+(µe
n−µe

l )∇·(anaT
n )Jtot). (2.8)

From (2.5) it follows that−DeD
−1Di∇v = DeD

−1Jtot + De∇ue; hence we have the

flux relationship

nT (DeD
−1∇v) = nTDeD

−1Jtot + nTDe∇ue. (2.9)

Using the split form (2.7) the first term on the right hand sidecan be written as

nT (DeD
−1Jtot) = µe

l nTJtot + (µe
t − µe

l )(n
T at)(aT

t Jtot) + (µe
n − µe

l )(n
T an)(aT

nJtot).

The insulating conditionsnTJi = nTJe = 0 trivially imply that nTJtot = 0, i.e. Jtot

is tangent to∂Ω, and assuming that fibers are also tangent to∂Ω we havenT an = 0 and

aT
l Jtot = 0; substituting these conditions in (2.9) it follows

nTDeD
−1Di∇v = 0. (2.10)

Disregarding the two additional source terms in (2.8) related to the projections ofJtot on the

directions across fibers (i.e.at andan), it results∇ ·DeD
−1Jtot ≈ −µe

l I
e
app. Substituting

this approximation in (2.6) and considering the boundary conditions (2.10), we obtain the

anisotropic Monodomain model consisting in a single parabolic reaction-diffusion equation

for the transmembrane potentialv, with the conductivity tensor

Dm = DeD
−1Di (2.11)

and applied stimulus

Im
app = Ie

app σ
i
l/(σ

e
l + σi

l ) (2.12)

coupled with the same cellular system:





∂tv −∇ · (Dm∇v) + Iion(v, w, c) = Im
app in Ω × (0, T )

∂tw −R(v, w) = 0, ∂tc− S(v, w, c) = 0 in Ω × (0, T )

nTDm∇v = 0 in ∂Ω × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω

. (2.13)
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2.2 Variational formulations

In this section, we briefly describe the variational formulation of both the Monodomain and

the Bidomain model, providing some references to their theoretical analysis. We will deal

with the following functional spaces:V the Sobolev spaceH1(Ω), Ṽ the quotient space

H1(Ω)/R andU their cartesian productV × Ṽ . Let us define

(φ, ψ) =

∫

Ω

φψ,

ai,e(φ, ψ) =

∫

Ω

(∇φ)TDi,e∇ψ,

a(φ, ψ) =

∫

Ω

(∇φ)TDm∇ψ

(2.14)

the usualL2(Ω) inner product and the elliptic bilinear forms given by the tensors.

The variational formulation of the Monodomain model (2.13)reads as follows. Given

v0,w0, c0 ∈ L2(Ω) andIm
app ∈ L2(Ω×(0, T )), findv ∈ L2(0, T ;V ),w ∈ L2(0, T ;L2(Ω)M )

andc ∈ L2(0, T ;L2(Ω)P ) such that∂v/∂t ∈ L2(0, T ;V ), ∂w/∂t ∈ L2(0, T ;L2(Ω)M ),

∂c/∂t ∈ L2(0, T ;L2(Ω)P ) and∀t ∈ (0, T )





(∂tv(t), φ) + a(v(t), φ) + (Iion(v, w, c), φ) = (Im
app, φ) ∀φ ∈ V

(∂tw(t), ψ) = (R(v(t), w(t)), ψ) ∀ψ ∈ L2(Ω)M

(∂tc(t), ψ) = (S(v(t), w(t), c(t)), ψ)) ∀ψ ∈ L2(Ω)P

(2.15)

with appropriate initial conditions onv, w andc and taking into account the compatibility

condition (2.3). Analogously, the variational formulation of the Bidomain model (2.2)

reads as follows. Givenv0,w0, c0 ∈ L2(Ω), Ie
app ∈ L2(Ω×(0, T )), findui ∈ L2(0, T ;V ),

ue ∈ L2(0, T ; Ṽ ), w ∈ L2(0, T ;L2(Ω)M ) andc ∈ L2(0, T ;L2(Ω)P ) such that∂v/∂t ∈
L2(0, T ;V ), ∂w/∂t ∈ L2(0, T ;L2(Ω)M ), ∂c/∂t ∈ L2(0, T ;L2(Ω)P ) and∀t ∈ (0, T )





(∂tv(t), ûi) + ai(ui(t), ûi) + (Iion(v, w, c), ûi) = 0 ∀ûi ∈ V

− (∂tv(t), ûe) + ae(ue(t), ûe) − (Iion(v, w, c), ûe) = −(Ie
app, ûe) ∀ûe ∈ Ṽ

(w(t), ψ) = (∂tR(v(t), w(t)), ψ) ∀ψ ∈ L2(Ω)M

(c(t), ψ) = (∂tS(v(t), w(t), c(t)), ψ) ∀φ ∈ L2(Ω)P

(2.16)

with initial conditions onv, w andc and taking into account the compatibility condition

(2.3).

Many well-known theoretical results available for reaction-diffusion equations (see

[12] and [129]) can be applied to the Monodomain model. Less is known on degener-

ate reaction-diffusion systems such as the Bidomain model.For the Bidomain system with

the Fitz-Hugh-Nagumo model, we refer to ([18], [121]) for existence, uniqueness and reg-

ularity results, both at the continuous and at the semidiscrete level, and to [121] for a

convergence analysis of finite element approximations. A recent mathematical analysis
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of the Bidomain model taking into account more general gating systems and intracellular

concentrations can be found in [145]. More results are knownon the related eikonal ap-

proximation describing the propagation of the excitation front; we refer to [16], [17], [61]

and [9]. A mathematical analysis of the Bidomain model usingΓ-convergence theory can

be found in [1].

2.3 Space-Time discretization

Spatial discretization.

The parallelipedal domainΩ is discretized by introducing a structured quasi-uniform grid

of hexahedral isoparametricQ1 elements (see e.g. [113] for a general introduction to the

finite element method, FEM) obtained by a uniform subdivision of the intervals[0, lx] ×
[0, ly] × [0, lz], into (nx, ny, nz) subintervals. Using the same symbol for the domain and

its FEM approximation, we haveΩ =
⋃

E∈Th
E, whereE = TE(Ê), with Ê = [−1, 1]3

andTE a trilinear map. The associated finite element spaces are given by:

Vh = {ϕh ∈ V : ϕh ∈ C0(Ω), ϕh|E ◦ TE ∈ Q1(Ê), ∀E ∈ Th}, (2.17)

Ṽh = {ϕh ∈ Vh :

∫

Ω

ϕh = 0}, (2.18)

Uh = Vh × Ṽh,

whereQ1(Ê) is the space of the trilinear functions on̂E. A semidiscrete problem is first

obtained by applying a standard Galerkin procedure and choosing a finite element basisϕi

for Vh. Let M = (mrs), A = (ars) and Ai,e = (ai,e
rs ) be the symmetric mass and stiffness

matrices defined by:

mrs =
∑

E

∫

E

ϕrϕs dx,

ars =
∑

E

∫

E

∇ϕrDm(x)∇ϕs dx,

ai,e
rs =

∑

E

∫

E

∇ϕrDi,e(x)∇ϕs dx,

where the diffusion tensors’ appearing in these formulas are from (2.11) and (2.1). Let

Ih
ion, Im,h

app andIe,h
app be the finite element interpolants ofIion, Im

app andIe
app, respectively.

Denoting by the same letters finite element functions and thevectors of their nodal val-

ues, in the Monodomain model, the finite element approximationvh of the transmembrane

potential is the solution of the following nonlinear systemof ODEs

M
∂vh

∂t
+ Avh + MIh

ion(vh, wh, ch) = MIm,h
app ,
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while in the Bidomain model, the finite element approximationsui,h andue,h of the intra-

ed extracellular potentials are the solutions of the system





M
∂vh

∂t
+ Aiui,h + MIh

ion(vh, wh, ch) = 0

−M
∂vh

∂t
+ Aeue,h − MIh

ion(vh, wh, ch) = −MIe,h
app

,

or in compact form as

M ∂

∂t

(
ui,h

ue,h

)
+ A

(
ui,h

ue,h

)
+

(
MIh

ion(vh, wh, ch)

−MIh
ion(vh, wh, ch)

)
=

(
0

−MIe,h
app

)
,

wherevh = ui,h − ue,h and

M =

[
M −M

−M M

]
, A =

[
Ai 0

0 Ae

]
.

For both models, system’s equations are coupled with the semidiscrete approximations of

the gating and concentration systems





∂wh

∂t
= R(vh, wh)

∂ch
∂t

= S(vh, wh, ch)

.

Time discretization.

Time discretization is performed by an IMEX method [3] usingfor the diffusion term the

implicit Euler method, while the nonlinear reaction term istreated explicitly [19]. For a

fully implicit approach using the first Luo-Rudy model for cellular reaction see [93]. The

implicit treatment of the diffusion terms appearing in the models illustrated before is es-

sential in order to adaptively change the time step according to the stiffness of the various

phases of the heart-beat. The ODE system for the gating variables is discretized by the

semi-implicit Euler method and the explicit Euler method isapplied for solving the ODE

system for the ion concentrations. As a consequence, the operator of the full evolution

system is splitted by first solving (at time stepn + 1) for gating and ionic concentrations

variables given the transmembrane potential at then-th time-step





wn+1
h − wn

h

δt
= R(vn

h , w
n+1
h )

cn+1
h − cnh
δt

= S(vn
h , w

n+1
h , cnh)

and then solving forvn+1
h in the Monodomain case

(
1

δt
M + A

)
vn+1

h =
1

δt
Mvn

h − MIh
ion(vn

h , w
n+1
h , cn+1

h ) + MIm,h
app (2.19)
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and forun+1
i,h andun+1

e,h in the Bidomain case

(
1

δt
M + A

)(
un+1

i,h

un+1
e,h

)
=

1

δt
M
(
un

i,h

un
e,h

)
−
(

MIh
ion(vn

h , w
n+1
h , cn+1

h )

−MIh
ion(vn

h , w
n+1
h , cn+1

h )

)
+

(
0

−MIe,h
app

)
.

(2.20)

The adaptive time-stepping strategy employed is based on controlling the transmem-

brane potential variation

δv = max(vn+1
h − vn

h )

at each time step. In short, the adaptive strategy is the following:

• if δv < δvmin thenδtnew =
δvmaxδtold

δv

• if δv > δvmin thenδtnew =
δvminδtold

δv

where

δvmin = 0.5mV, δvmax = 0.5mV, δtmin = 0.05ms, δtmax = 6ms

Due to the linearity of the gating equation (1.4) in the Hodgkin-Huxley formalism and

in order to also guarantee a control on their variation, gating variables are integrated ex-

actly according to (1.19) yielding a first order approximation provided that the potential

variation is bounded (see also [146] and [50]). Higher orderapproximations of ionic and

gating variables should be implemented when considering more advanced Markov Chains

for the gating system [137].

A uniform spatial discretization of orderh =1E-2cm is necessary in order to produce

simulations free of numerical artifacts and sufficiently accurate, since during the cardiac

excitation phase a moving internal layer about1 mm thick, associated to a fast variation

of the transmembrane potential distribution, sweeps the entire tissue. In order to elicit the

excitation front, we apply a stimulus of200µA/cm3 lasting for1ms on a small volume

of the tissue. Integrals are computed with a 3D trapezoidal quadrature rule, so the mass

matrix M is lumped to diagonal form. As in the continuous Bidomain model,vn+1
h is

uniquely determined by the given initial and boundary conditions, whileun+1
i,h andun+1

e,h

are determined only up to the same additive time-dependent constant related to a reference

potential. Since we consider bounded domains, we can determine this constant imposing

Mun+1
e,h = 0,

which is the discrete counterpart of (2.4).

Our strategy for building an efficient parallel solver is based on using the parallel li-

brary PETSc from Argonne National Laboratory (http://www.mcs.anl.gov/petsc, [6]). In

our FORTRAN code, the necessary vectors and matrices are built and subassembled in

parallel on each processor and then the solution is advancedin time on each processor in
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a synchronous manner. The linear system associated to the Monodomain model given in

eq. (2.19) is very well conditioned and it can be solved efficiently with cheap precon-

ditioners: a preconditioning choice for the Monodomain model is to use a block Jacobi

preconditioner with ILU(0) solver (BJ) on each block [19]. The blocks are associated with

a decomposition of the domain into subdomains and each one isassigned to one processor.

Even if one-level preconditioner is not optimal, since the number of iterations of the result-

ing solver will depend on the number of subdomains, previousnumerical results show that

for the Monodomain model the number of iterations of the one-level preconditioner BJ is

quite satisfactory [19]. The more severe ill-conditioningof the Bidomain matrix seems to

be related to its degenerate structure rather than just to the size of doubling the unknowns.

In fact, the addition to the stiffness matrices (related to elliptic operators with Neumann

boundary conditions) of a zero-order term with the mass matrix stemming from the time

stepping scheme, greatly improves the spectrum of the Monodomain iteration matrix but

not of the Bidomain iteration matrix (see [19]). More advanced preconditioners, such as

multilevel additive Schwarz preconditioners of the overlapping type (see e.g. [123], [104]

and also [122]) must be employed in order to efficiently solvethe coupled semidefinite

Bidomain problem.

2.4 Variational formulations of the stationary problems

In this section we will provide additional results needed for the analysis of non-overlapping

preconditioners introduced in the following chapters. Assume that

(H1) the cardiac regionΩ is a bounded Lipschitz connected open subset ofR
3.

(H2) the tensorsDi,e(x) andDm(x), given in eqs. (2.1) and (2.11) respectively, satisfy

the following uniform ellipticity condition:

∃ αi,e,m, βi,e,m > 0 : αi,e,m|ξ|2 ≤ ξTDi,e,m(x)ξ ≤ βi,e,m|ξ|2

∀ξ ∈ R
3 and∀x ∈ Ω.

The variational formulation of the elliptic stationary Monodomain problem reads as

follows: givenfn ∈ L2(Ω) find vn+1 ∈ V such that:

amono(v
n+1, ϕ) = fn(ϕ), ∀ϕ ∈ V (2.21)

with

amono(v, ϕ) =

∫

Ω

Dm∇v · ∇ϕ+ γ

∫

Ω

vϕ, (2.22)

γ = 1/δt and

fn(ϕ) =

∫

Ω

(γvn − Iion(vn, wn+1, cn+1) + Im
app)ϕ, (2.23)

whereIion(vn, wn+1, cn+1) is the ionic current andIm
app the applied current per unit vol-

ume. For sake of simplicity, we drop the dependence of the tensor fromx. The ellipticity
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assumption (H2) guaranties the ellipticity of the variational problem (2.21) and thus exis-

tence and uniqueness of the solution.

The variational formulation of the elliptic stationary Bidomain problem reads as fol-

lows: givenFn = (fn,i, fn,e) ∈ L2(Ω) × L2(Ω) find un+1 = (un+1
i , un+1

e ) ∈ U such

that:

abido(u
n+1, ϕ) = Fn(ϕ), ∀ϕ = (ϕi, ϕe) ∈ U (2.24)

where

fn,i(ϕi) =

∫

Ω

(γvn − Iion(vn, wn+1, cn+1))ϕi,

fn,e(ϕe) = −
∫

Ω

(γvn − Iion(vn, wn+1, cn+1) + Ie
app)ϕe,

vn the tranmembrane potential at thenth time step and the Bidomain bilinear form defined

onU × U given by

abido(u, ϕ) =

∫

Ω

Di∇ui · ∇ϕi +

∫

Ω

De∇ue · ∇ϕe + γ

∫

Ω

(ui − ue)(ϕi − ϕe). (2.25)

To prove existence and uniqueness of the variational problem related to the stationary Bido-

main model we must first define a norm onU and show the continuity and coercivity of

abido(·, ·) with respect to it.

Lemma 2.4.1. The bilinear form((·, ·)) : U × U → R defined as

((u, ϕ)) =

∫

Ω

∇ui · ∇ϕi +

∫

Ω

∇ue · ∇ϕe +

∫

Ω

(ui − ue)(ϕi − ϕe).

is an inner product onU

Proof. Clearly((·, ·)) is symmetric, bilinear and positive semidefinite; if((u, u)) = 0 for

someu ∈ U , then necessarilyui = ue and thus
∫
Ω
|∇ue|2 = 0. But sinceue ∈ Ṽ and

(H1) holds, thenue = 0, which in turn impliesui = 0 and thus((·, ·)) is an inner product

onU .

Denoting with||| · ||| the norm onU induced by the inner product((·, ·)), it is now

simple to show the ellipticity of the variational formulation of the stationary Bidomain

model onU .

Lemma 2.4.2. The bilinear formabido(·, ·) is elliptic inU with respect of||| · |||.

Proof. We can easily prove continuity using (H2), usual Cauchy-Schwarz inequalities and

definition of||| · ||| norm:

abido(u, ϕ) =

∫

Ω

Di∇ui · ∇ϕi +

∫

Ω

De∇ue · ∇ϕe + γ

∫

Ω

(ui − ue)(ϕi − ϕe)

≤ βi

∫

Ω

∇ui · ∇ϕi + βe

∫

Ω

∇ue · ∇ϕe + γ

∫

Ω

(ui − ue)(ϕi − ϕe)

≤ max{βi, βe, γ}((u, ϕ))

≤ max{βi, βe, γ} |||u||| |||ϕ|||.
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Similarly, we can prove the coercivity:

abido(u, u) =

∫

Ω

Di∇ui · ∇ui +

∫

Ω

De∇ue · ∇ue + γ

∫

Ω

(ui − ue)(ui − ue)

≥ αi

∫

Ω

|∇ui|2 + αe

∫

Ω

|∇ue|2 + γ

∫

Ω

(ui − ue)
2

≥ min{αi, αe, γ}|||u|||2.

Remark2.4.3. It can be easily shown that the variational problem of the elliptic stationary

Bidomain model given in (2.24) is equivalent to the following one (see [122] for the proof):

find un+1 = (un+1
i , un+1

e ) ∈ U such that

abido(u
n+1, ϕ) = Fn(ϕ) ∀ϕ ∈ V × V.

Remark2.4.4. Regarding assumption (H2), denoting by

Q(x) =
[
al(x)|at(x)|an(x)

]

the matrix formed columnwise by the three orthonormal directions at pointx, from tensors’

definition given in (2.1) we will have

Di,e(x) = Q(x)Σi,eQ(x)T , (2.26)

with

Σi,e =




σi,e
l 0 0

0 σi,e
t 0

0 0 σi,e
n


 .

SinceQ(x) is orthonormal at every pointx, we will have

Q(x)TDi,e(x)Q(x) = Σi,e,

and thusDi,e(x) andΣi,e will have the same eigenvalues, which implies that

αi,e = min
•=l,t,n

{σi,e
• }, βi,e = max

•=l,t,n
{σi,e

• }.

For the Monodomain model, recalling that

Dm(x) = De(x)(Di(x) +De(x))−1Di(x),

we can use formula (2.26) and the fact thatQ(x) is orthonormal at every pointx, to obtain

(Di(x) +De(x))
−1

=
(
Q(x)ΣiQ(x)T +Q(x)Σi,eQ(x)T

)−1
= Q(x)(Σi + Σe)

−1Q(x)T
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where

(Σi + Σe)
−1 =




1

σi
l + σe

l

0 0

0
1

σi
t + σe

t

0

0 0
1

σi
n + σe

n



.

Therefore, we can rewrite the monodomain diffusion tensor as

Dm(x) = De(x)(Di(x) +De(x))−1Di(x)

= Q(x)ΣeQ(x)TQ(x)(Σi + Σe)
−1Q(x)TQ(x)ΣiQ(x)T

= Q(x)Σe(Σi + Σe)
−1ΣiQ(x)T ,

and thus we will have

αm = min
•=l,t,n

{ σi
•σ

e
•

σi
• + σe

•

}, βm = max
•=l,t,n

{ σi
•σ

e
•

σi
• + σe

•

}.
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Chapter 3

Choice of Krylov initial guess and

efficient multiple heartbeat

simulations

3.1 Introduction

Computational multiscale modeling of the heart (see [132] and [102] for recent reviews)

has becoming widely accepted as a tool for future drug design[131] and patient-specific

therapies [114]. Thus it is very important to develop efficient solvers at tissue level (see

[147] for a review on this subject) and sufficiently detailedmodels at the cellular level (see

Chapter 1 and reference therein). In this chapter, we will analyze two separate approaches

in order to reduce the whole computational costs associatedwith three-dimensional multi-

beating simulations using HHRd as cellular model. In the final section of the chapter we

will show some numerical results on the influences of transmural cellular heterogeneity on

three-dimensional patterns of activation and repolarization wavefronts.

At each time step the main computational costs are associated with updating pointwise

the cellular variables and the reaction term, and then solving a sparse linear system

Miteryn+1 = bn+1, (3.1)

where the superscriptn indicated the current time step. Since the iteration matrixMiter is

symmetric and positive definite for the Monodomain discretization and positive semidefi-

nite for the Bidomain discretization (see Chapter 2), we usethe preconditioned conjugate

method (PCG) as iterative method to solve (3.1) for which holds the well known formula

for the error reduction (see e.g. [113])

||yn+1 − ym||Miter
≤ 2||yn+1 − yn+1

0 ||Miter

(√
κ2 − 1√
κ2 + 1

)m

,
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Chapter 3. Choice of Krylov initial guess and efficient multiple heartbeat simulations

whereyn+1
0 is the PCG initial guess,ym them-th iterate produced by the method andκ2

is the condition number of the preconditioned system. The choice of the initial guess can

thus produce a gain in the iterative solution process, toughit will not be as substantial as

using an optimal preconditioner which speed up the iterative solution process. However,

the latter can be designed independently from the choice of the initial guess (see chapter

5). In Sections 3.2 to 3.4 we will consider different approaches to the choice of the PCG

initial guess using previous computed solution vectors, providing numerical results either

for the Monodomain or the Bidomain model. We note that, instead of using the previous

solutions, another interesting approach consists in reusing the Krylov vectors generated by

the PCG either for the choice of the initial guess, or to augment the preconditioner via a

projection (see e.g. [119]).

Another aspect to deal with in multibeating simulations arethe initial ionic concentra-

tion variables prescribed at the beginning of the simulations. As seen in Chapter 1, cellular

models that incorporate ionic concentrations variables requires the simulation of a greater

number of beats in reaching a suitable dynamical steady state to study APD and trasnmural

dispersion or repolarization (TDR). Drug developing thus requires simulations of several

beats, either with the Bidomain or the Monodmain model, in order to accurately analyze the

drug effects’ at tissue level. In section 3.5 we will consider two different choices of cellular

initial conditions simulating for 50 beats the Monodomain model and compare them either

from the point of view of the cellular variables, or analyzing the three-dimensional patterns

of activation and repolarization wavefronts sweeping the tissue, described in details in the

last section.

For the test cases considered in sections 3.2 to 3.4, the slabdimension for the Mon-

odomain model is1 × 1 × 0.5 cm3, discretized with a grid100 × 100 × 50 and solved

with 18 processors, distributed3 × 3 × 2 across the spatial grid using the Linux clus-

ter Ulisse located at University of Milan. In Bidomain test cases, the slab dimension is

1.92 × 1.92 × 0.48 cm3, discretized with a grid192 × 192 × 48 and solved with 36 pro-

cessors, distributed6 × 4 × 1 across the spatial grid using the Linux cluster Topsy located

at IMATI-CNR in Pavia. We use HHRd (see Chapter 1) has cellular model. An absolute

preconditioned residual norm lesser than 1E-4 has been chosen as stopping criterion for

the PCG. For all configurations, transmural cellular heterogeneity is considered as in the

3-slab configuration already introduced in [21]: briefly, the cardiac slab is transmurally

subdivided into three equal layers of the same thickness, endocardial, mid-myocardial and

epicardial, and the corresponding type of cell (see Chapter1) is assigned to each layer.

Four test cases will be considered:

• TC1: Monodomain model solved with constant time stepδt = 0.05 ms for 500 ms

• TC2: Monodomain model solved with adaptive time stepping strategy for 2000 ms

• TC3: Bidomain model solved with constant time stepδt = 0.05 ms for 50 ms

• TC4: Bidomain model solved with adaptive time stepping strategy for 500 ms
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Chapter 3. Choice of Krylov initial guess and efficient multiple heartbeat simulations

3.2 Lagrangian interpolants of previous solutions

In most applications involving the discretization of time dependent PDEs, the initial guess

for the linear solver is chosen as the solution at the previous time step. A very simple and

computational inexpensive approach to improve this choiceis to use lagrangian interpolants

in time of previous solutions, i.e. setting

yn+1
0 =

d∑

k=0

yn−d+klk(tn+1), (3.2)

where0 ≤ k ≤ d and

lk(t) =

d∏

j=0,j 6=k

t− tn−d+j

tn−d+k − tn−d+j

are the usual lagrangian polynomials on the time gridtn−d < tn−d+1 < · · · < tn. Note

that the choice of the previous computed solution as PCG initial guess can be thought as

a zero order polynomial approximation settingd = 0 in the above formulas. Figure 3.1

shows the number of iterations and the initial residual

||Miteryn+1
0 − bn+1||2;

for different choices of interpolation degrees with the Monodomain model solved with con-

stant step sizeδt = 0.05ms for 10000 time steps using a Block Jacobi (BJ) preconditioner

(TC1). Results are collected in Table 3.1.
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Figure 3.1:PCG iterations (upper panels) and initial residual norm in logarithmic scale (lower panels) at each
time step for different degrees of lagrangian interpolation (showed on top) for Monodomain model with constant
step sizeδt = 0.05ms. PCG was preconditioned with BJ.

At each time step and for each choice of degree, lagrangian interpolations show to

be very effective tools in lowering the initial residual of the Monodomain linear system;

moreover, since neglecting the approximation errors introduced by the stopping criterion
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Lagrangian initial guesses for TC1

degree 0 1 2 3 4 dAD

Iterations per time step

phase 0 7.6 6.3 5.5 5.4 5.4 5.4
phase 1-2 6.1 2.5 0.8 1.1 1.1 0.8

phase 3 6.4 2.6 1.0 1.1 1.1 0.8
rest 4.1 0.9 0.8 1.1 1.1 0.5

Admissible Solutions

phase 0 0 0 0 3 3 3
phase 1-2 0 0 589 9 0 598

phase 3 0 0 334 6 3 339
rest 0 1496 1063 10 6 2100

Table 3.1:PCG-BJ iteration counts for different choices of lagrangian interpolations, from degree 0 to 4; 10000
steps withδt = 0.05 ms with Monodomain model.

of the PCG holds that

Miteryk = bk, ∀k ≤ n

the initial residual with lagrangian interpolation of degreed can be equivalently expressed

as

||
d∑

k=0

bn−d+klk(tn+1) − bn+1||2. (3.3)

and thus we can directly estimate the initial residual without using matrix vector multipli-

cations and adaptively select the interpolation degreedAD which minimizes (3.3) at each

time step. Moreover, equation (3.3) implies that the capabilities of lagrangian interpolants

in lowering the initial residual are limited by the dependence of the interpolation error

from the smoothness of the rhs. Indeed, it must be noted that some interpolants were able

to produce admissible solutions for the linear solver (i.e.initial guesses that automati-

cally fulfill the stopping criterion of the PCG) in the plateau and resting phases of the AP

where the reaction term is smoother; on the other hand, the capability in lowering the ini-

tial residual saturates with the interpolation degree during the activation phase (see Table

3.1). Quadratic interpolation showed the best performancein terms of total number of it-

erations (data not shown), reducing them considerably by a factor of 4, and yielding the

greatest number of admissible solutions for the solver. Linear interpolation gave the worse

results during the first three phases of APs (i.e. when cells are active) and doesn’t produce

admissible solutions during the plateau phase, but it performed better in the resting phase
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regarding to admissible solutions. Results for third and fourth degree interpolation were

better in the activation phases but after this phase their approximation properties degraded.

For quadratic interpolation, a20% reduction in the total solving time has been observed:

this difference was totally due to a55% reduction in entire solving time for the linear sys-

tem, since this interpolation produce a76% reduction of the whole number of iterations,

that is a speed up factor 4. Finally, degree adaptivity was able to select the best initial guess

at each time step reducing further the number of iterations and improving the total number

of admissible solutions.

The second test case for lagrangian interpolants has been performed using the adaptive

time stepping strategy (see Chapter 2) on a time interval of 2000 msec with the Mon-

odomain model (TC2); lagrangian interpolants lowered the initial residual with variable

time step size mainly when the cardiac cells in the spatial domain were active rather than in

the resting phase of the AP, see Figure 3.2 and Table 3.2. Quadratic interpolation showed

the best performance with a speed up factor 2 in terms of totalsolving time for the linear

system, due to a57% reduction of total number of iterations of the PCG. A66% reduction

in total number of iterations has been achieved using the adaptive selection of the interpo-

lation degree. In all the cases, no admissible solutions were produced.
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Figure 3.2:PCG iterations (upper panels) and initial residual norm in logarithmic scale (lower panels) at each
time step for different degrees of lagrangian interpolation (showed on top) for Monodomain model with adaptive
time stepping strategy. PCG was preconditioned with BJ

Until now, we studied lagrangian interpolants for a well conditioned system like the

Monodomain model precondioned with BJ. The Bidomain model is an ill-conditioned sys-

tem due to the singularity of the linear system’s matrix, andwhen preconditioned with BJ

it requires a huge number of iterations per time step to achieve convergence. In order to

test if an ill-conditioned system can benefit by using lagrangian interpolants, we perform

some Bidomain runs with a constant time step sizeδt = 0.05ms for 1000 iterations in

the activation phase, i.e. the most expensive part of the simulation (TC3). The number of

iterations and initial residual norms at each time step are shown in Figure 3.3, the results on
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Lagrangian initial guesses for TC2

degree 0 1 2 3 4 dAD

Total number of iterations

27913 16001 11927 12235 14425 9926

Total solving time (s) for linear solver

1623 1384 875 1031 1230 775

Table 3.2:PCG-BJ iteration counts for different choices of lagrangian interpolations, from degree 0 to 4; 2
seconds of heartbeat for Monodomain model with adaptive time stepping strategy

iteration counts in Table 3.3. Differently from the Monodomain model, linear interpolation

in time showed the best results with a speed up factor 2 and other the choices of inter-

polation degree yielded oscillating results in terms of number of iterations per time step.

Using an adaptive interpolation degree doesn’t improve further the results in terms of total

number of iterations and solving time and, as expected, the convergence remained slow.
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Figure 3.3: PCG iterations (upper panels) and initial residual norms inlogarithmic scale (lower panels) at
each step for different degrees of lagrangian interpolation (showed on top) with Bidomain model. PCG was
preconditioned with BJ

When the Bidomain linear system is preconditioned with a multilevel Schwarz precon-

ditioner, the number of iteration per time step is considerably reduced from hundreds to tens

or lower. We then test lagrangian interpolants with the preconditioner MHS(5) published
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Lagrangian initial guesses TC3

degree 0 1 2 3 4 dAD

Total number of iterations

193278 111234 106357 119555 134685 96195

Total solving time (s) for linear solver

54394 28361 35458 39245 44351 27075

Table 3.3:PCG iteration counts for different choices of lagrangian interpolations, from degree 0 to 4; 1000
steps withδt = 0.05 ms with Bidomain model preconditioned with BJ

in [123] in order to analyze the reduction factor with time adaptivity simulating 500 ms

(TC4). For additional details on the preconditioner see also [122]. Third order lagrangian

interpolants yielded the best results together with the adaptive choice of the interpolation

degree, with a speed up factor of more than 2; second and fourth order lagrangian gave

almost same results. See Figure 3.4 and Table 3.4.
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Figure 3.4:PCG iterations (upper panels) and initial residual norms inlogarithmic scale (lower panels) at each
time step for different degrees of lagrangian interpolation (showed on top) for Bidomain model with adaptive time
stepping strategy. PCG was preconditioned with MHS(5)

Despite their simplicity, Lagrangian interpolants in timeare effective and computa-

tional inexpensive tools for the choice of the initial guess; also, they are very simple to

implement. Moreover, the degree adaptation can yield even more gain at a lower additional

cost. High order lagrangian interpolants works better withwell- rather than ill-conditioned
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Lagrangian initial guesses TC4

degree 0 1 2 3 4 dAD

Total number of iterations

21002 14212 10227 9579 10263 9173

Total solving time (s) for linear solver

48550 38651 27227 27017 27386 26954

Table 3.4:PCG iteration counts for different choices of lagrangian interpolations, from degree 0 to 4; 500 ms
of heartbeat for Bidomain model preconditioned with MHS(5)and adaptive time stepping strategy.

linear systems; moreover, the action of suitable preconditioner make them effective also

with the Bidomain system. With the adaptive time stepping strategy they run the risk of

generating poor initial guesses since they doesn’t take into account any information about

the underlying system’s matrix. In the next section we will thus consider a different ap-

proach to the choice of the PCG initial guess.

3.3 Fischer’s projection algorithms

Instead of interpolating in time the previous solutions, another possible approach to speed

up iterative solution processes is using information generated from previous right-hand

sides. In this section we apply two algorithms, first proposed in [37], for extracting informa-

tion from the previous linear systems to generate initial guesses to the current one. The first

approach is equivalent to simply remove any component of thecurrent right hand sidebn+1

for which the solution is already known, i.e. by projectingbn+1 onto a set of orthonormal

vectors which spans{bn, . . . ,bn−k} (having associated solutions{yn, . . . , yn−k}), and

then solving the linear system with a zero initial guess and the orthogonal component of

bn+1 to the finite dimensional set spanned by{bn, . . . ,bn−k} as right hand side. Here

1 ≤ k ≤ K, andK represents the maximum number of vector to be stored by the al-

gorithm. The second approach is a refinement of the first and exploits the features of the

conjugate gradient method that seeks approximations whichsuccessively minimize the er-

ror in the Miter-norm: the second method looks in fact for the best approximation toyn+1

in the set spanned by{yn, . . . , yn−k} with respect to the Miter-norm when the linear sys-

tem matrix is symmetric and positive definite, i.e.

yn+1
0 = argmin

y∈span{yn,...,yn−k}

||yn+1 − y||Miter
. (3.4)
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These procedures, summarized below, are in principle superior to those derived from ex-

trapolation techniques based on high-order interpolants in time since such projection tech-

niques yield the best possible approximation within a givenbasis set. We will test this two

approaches only with the Monodomain model, since they implicitly assume the positive

definitess of the iteration matrix (see basis updating procedures below) and thus they can-

not be directly applied to the Bidomain model; we will overcome this issue using a different

technique in the following section.

The choice of the initial guess by the two algorithms described in [37] can be summa-

rized as:

Method 1 : Supposing that we have collected two orthogonal setsUk = {ỹ1, . . . , ỹk}
andBk = {b̃1, . . . , b̃k} and thatBk is orthonormal with respect to an appropriately

weighted inner product< ·, · >, the guess generator at time stepn+ 1 is given by:

• evaluateβi =< bn+1, b̃i >, i = 1, . . . , k

• generate the next initial guess asyn+1
0 =

∑k
i=1 βiỹi

• update the setsBk andUk

Method 2 : Supposing that we have collected an orthonormal (with respect to Miter-norm)

setXk = {ỹ1, . . . , ỹk}, the guess generator at time stepn+ 1 is given by:

• evaluateβi =< bn+1, ỹi >, i = 1, . . . , k (minimization procedure)

• generate the next initial guess asyn+1
0 =

∑k
i=1 βiỹi

• update the setUk

The minimization procedure of the residual in the second method is based on the following

straightforward calculation: since

||yn+1−yn+1
0 ||Miter

= (yn+1)T Miteryn+1−2
k∑

i=1

βiỹ
T
i Miteryn+1+

k∑

i,j=1

βiβj ỹT
i Miter ỹj

exploiting the orthonormality of the basis (with respect tothe Miter-norm) and requiring a

vanishing first variation of the last expression leads to

βi =< bn+1, ỹi > i = 1, . . . , k.

To complete the description of the methods, we summarize algorithmically the basis

updating:

Method 1 :

if k = K then

b̃1 = M iteryn+1/||M iteryn+1||
ỹ1 = yn+1/||M iteryn+1||
k = 1
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else

ỹ = yn+1 −∑k
i=1 βiỹi

b̂ = M iterỹ

γi =< b̂, b̃i >, i = 1, . . . , k

b̃k+1 =
(

b̂ −∑k
i=1 γib̃i

)
/||b̂ −∑k

i=1 γib̃i||
ỹk+1 =

(
ỹ −∑k

i=1 γiỹi

)
/||b̂ −∑k

i=1 γib̃i||
k = k + 1

endif

Method 2 :

if k = K then

ỹ1 = yn+1/||yn+1||Miter

k = 1

else

ỹ = yn+1 −∑k
i=1 βiỹi

γi =< ỹ, ỹi >Miter
, i = 1, . . . , k

ỹk+1 =
(

ỹ −∑k
i=1 γiỹi

)
/||b̂ −∑k

i=1 γib̃i||Miter

k = k + 1

endif
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Figure 3.5:Preconditioned initial residual for the two Fischer’s methods as a function of stored vectorK at
the 20-th time step of TC1.

For our numerical experiments we use the implementation of the Fischer’s methods

provided by the PETSc library. Figure 3.5 shows the preconditioned initial residual as

a function of K for both methods applied to TC1 at the 20-th time step with different

values K of stored vectors; we choose the 20th time step in order to have a comparison

of the methods with the greatest allowed dimension of projection basis for each K (i.e
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Fischer’s method 2 for TC1

K 0 5 10 20

Iterations per time step

phase 0 7.6 6.2 5.7 5.4
phase 1-2 6.1 1.5 0.6 0.3

phase 3 6.4 1.5 0.7 0.3
rest 4.1 0.5 0.3 0.3

Admissible Solutions

phase 0 0 0 2 9
phase 1-2 0 1091 1816 2259

phase 3 0 640 1138 1443
rest 0 2866 3210 3566

Table 3.5:PCG-BJ average number of iterations per time step and numberof admissible solutions in different
AP phases for different choices of stored vectorsK with Fischer’s method 2 in TC1 case.

k = K at the 20th time step) since the basis updating procedure suffers from an implicit

restart. Numerical results show a saturation in the approximation properties with growing

K for both methods thus the performances of projection-basedmethods suffer from the

same saturation problem experienced during the activationphase also by the lagrangian

interpolants. Moreover, no significant differences between the two Fischer methods were

observed in terms of iterations reduction.

Tables 3.5 and 3.6 collect the results for the second Fischermethods in the TC1 and

TC2 case respectively for different choices ofK, in order to give a comparison between

projection-based methods and lagrangian interpolants (see Table 3.1 and 3.2 respectively).

With such projection techniques, a further improvement in reducing the total number of

iterations of the TC1 and TC2 simulations is achieved as expected since projection methods

produce the best initial guess with respect to a given basis set; on the other hand, such

improvement is less pronounced for the total solving time due to expensive Gram-Schmidt

orthogonalization procedures inherent in the algorithms.

3.4 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) technique is able to extract, from a given set

of snapshots{yi | 1 ≤ i ≤ N} of discrete solutions on a given time gridt1 < · · · < tN , a

coherent structure which has the largest mean square projection on the observations [128].

Although it is possible to use POD to derive the approximate solution of some classes of
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Fischer’s method 2 for TC2

K 0 5 10 20

Total number of iterations

27913 13833 10365 8341

Total solving time (s) for linear solver

1623 1447 778 750

Table 3.6:PCG-BJ iteration counts for different choices of stored vectorsK for Fischer’s method 2 in TC2.

parabolic problems (see e.g. [71], [40]), due to IMEX approach to the strong nonlinearity

of the cardiac models, we are only concerned here in analyzing the performances of a POD

based technique in finding suitable PCG initial guesses for the full order linear system (3.1).

Supposing that the solution of the problem of interest isy ∈ X whereX is a suitable

Hilbert space, with the POD approach we seek for its projection ỹ ∈ Xnp , whereXnp is a

finite dimensional subspace ofX of dimensionnp. POD aims to construct a suitable basis

{ψk}np

k=1 of Xnp in order to split the solution field as

Py =

np∑

k=1

αkψk(x), (3.5)

whereP is the projection operator fromX onXnp . Given a suitable inner product(·, ·)X

in X , the key idea of the POD method consists in finding such subspaceXnp , in a way

that the basis{ψk}np

k=1 is orthonormal inX (with respect to the norm induced by the inner

product) and captures the highest energy configuration provided by the snapshots. Then,

the projection of each snapshot onXnp can be expressed as

Pyi =

np∑

k=1

(yi(x),ψk)Xψk. (3.6)

From the knowledge of the basis elements,αk coefficients in (3.5) can be obtained as

αk = (yi,ψk(x))X .

The idea of POD is based on an optimality argument: given a setof snapshots, it
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chooses the first basis element maximizingαk coefficients in equation (3.5) according to

max
ψ∈X

N∑

i=1

(yi,ψ)2X , (3.7)

where the optimization problem is subjected to the constraint ||ψ||X = 1 with || · ||X the

norm onX induced by the inner product(·, ·)X . The second basis element is obtained

posing the same maximization problem in the space orthogonal to the first eigenfunction,

and by finite induction we can obtain the POD basis of ranknp < N as the solution of the

optimization problem

max
ψ1,...,ψnp

np∑

i=1

N∑

j=1

(yj ,ψi)
2
X , (3.8)

with the constraint(ψi,ψj)X = δij . Moreover, it can be shown that the latter maximiza-

tion problem is equivalent to a minimization one

min
{ψk}

np
k=1

N∑

i=1

||yi −
np∑

k=1

(yi(x),ψk)Xψk||2X , (3.9)

where again the minimum is constrained to the condition of orthonormality of the basis,

i.e.

(ψi,ψj)X = δij

∀ 1 ≤ i ≤ np, 1 ≤ j ≤ i. We note that the POD space describes a typical member

of the snapshots’ ensemble better than any other finite dimensional subspace ofX of di-

mensionnp, providing the most efficient way of capturing the dominant components of an

infinite-dimensional process with only finitely many, and often surprisingly few, modes in

the Hilbert spaceX . This basis is known by different names in the literature: Karhunen-

Loeve expansion ([60], [84]), principal components [56], empirical orthogonal eigenvec-

tors [85], factor-analysis [45] and total least squares [43]. Usual choices of the spaceX

in literature areRNdof whereNdof is the number of degrees of freedom for the FE system,

L2 (Ω) andH1 (Ω); for sake of simplicity, we will sketch the derivation of thePOD basis

in the vector spaceRNdof; for additional functional details and a more complete treatment

of POD see [59], [40] or the monograph [49].

Let us now consider for simplicity the optimization problem(3.8) withnp = 1 and his

associated lagrange function

L(ψ, λ) =

N∑

j=1

(yj ,ψ)2
R

Ndof + λ(1 − ||ψ||2
R

Ndof).

A first order necessary optimality condition can be obtainedderiving the latter function
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with respect to an arbitrary componentψi (i = 1, . . . , Ndof) of the vectorψ

∂L(ψ, λ)

∂ψi
=

∂

∂ψi




N∑

j=1

|
Ndof∑

k=1

Ykjψk|2 + λ(1 −
Ndof∑

k=1

ψ2
k)




= 2

N∑

j=1

(
Ndof∑

k=1

Ykjψk

)
Yij − 2λψi

= 2




N∑

j=1

Ndof∑

k=1

YijYkjψk − λψi




= 2

(
Ndof∑

k=1

(Y Y T )ikψk − λψi

)

= 2((Y Y Tψ)i − λ(ψ)i),

where we denoted byY the matrix formed columnwise by the snapshots, i.e.

Y = [y1| . . . |yN ].

Requiring a zero first order variation for each vector component, we obtain the eigenvalue

problem

Y Y Tψ = λψ, (3.10)

where the matrixY Y T is symmetric and positive semi-definite, and therefore all the eigen-

values are real and nonnegative. The first POD basis elementsψ1 is thus the eigenvector

which maximizesλ; by finite induction one can prove that theith POD basis element is the

eigenvector ofY Y T associated to theith largest eigenvalue. See [59] for additional details.

Computing the POD basis elements solving the eigenvalue problem (3.10) can be very

expensive since the matrixY Y T has dimensionRNdof × RNdof; in order to overcome this

issue, thesnapshots method[128] has been introduced in literature. With this method we

can reduce drastically the dimension of the eigenvalue problem for computing the POD

basis elements using a Singular Value Decomposition (SVD) argument. First recall the

singular value decomposition of a rectangular matrix:

Lemma 3.4.1. For a matrix Y ∈ R
m×k with k < m and rankr ≤ k there existr

positive singular valuesd1 ≥ d2 ≥ · · · ≥ dr > 0 together with orthogonal matrices

U = [u1| . . . |um] ∈ R
m×m andV = [v1| . . . |vk] ∈ R

k×k, which satisfy

Y = UDV T .

The matrixD has nonzero entries only on the diagonal, that isDii = di for 1 ≤ i ≤ r.

Moreover,
Y vi = diui,

Y T ui = divi.
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Corollary 3.4.2. From SVD Lemma follows directly than the left singular vectors ui and

the right singular vectorsvi are eigenvectors ofY Y T andY TY respectively and their as-

sociated eigenvalues satisfiesλi = d2
i .

Using the SVD we can thus infer that the eigenvalues of the matrix Y Y T andY TY are

the same; moreover the POD basis elements (eigenvectors ofY Y T ) can be calculated from

the eigenvectors of the so calledcorrelation matrixY TY that are easier to compute since

the latter matrix has dimensionN × N . Thekth POD spatial mode is then reconstructed

according to the formula

ψk =
1√
λk

N∑

j=1

vj
kyj , (3.11)

wherevj
k is thejth element of thekth eigenvector of the correlation matrixvk, or in matrix

form as

Ψ = Y V D−1/2,

where

D = diag(λ1, . . . , λN )

is the diagonal matrix of eigenvalues ofY TY and

Ψ = [ψ1| . . . |ψN ]

is the matrix formed columnwise by the finite element approximation of theN spatial

modes.

Remark3.4.3. In order to compute the POD basis elements using a general inner product

(·, ·)X the correlation matrix entries will simply be

(yi, yj)X . (3.12)

Moreover, the computational costs of building the correlation matrix can be limited noting

that at each time step we only need to shift the already computed values and update the

last column of the correlation matrix. We choose to assembleand compute eigenvalues and

eigenvectors of the correlation matrix on each processor using standard LAPACK subrou-

tines [72] for symmetric eigenvalue problems; then each processor can compute its local

part of the POD basis elements using (3.11) without additional communications. For the

Bidomain model, we choose to decouple the intra- and the extra-cellular component of the

snapshots and construct a correlation matrix separately for each scalar component.

The POD approximation properties with general inner products are guarantied by the

following Lemma (for the proof see [128]):
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Lemma 3.4.4. Let λ1 ≥ · · · ≥ λN ≥ 0 denote the eigenvalues of the correlation matrix

given by theN snapshots according to (3.12). We then have the following error formula

∀np ≤ N :
N∑

i=1

||yi −
np∑

k=1

(yi,ψk)ψk||2X =

N∑

k=np+1

λk.

Differently from Fischer’s methods illustrated in the previous section, with the POD

projection technique we don’t necessarily need the iteration matrix to compute the pro-

jection basis; moreover we can in principle obtain additional informations on the basis

elements using their energies. The eigenvalue of the correlation matrix in fact decay to

zero and the faster the decay, the lowest the number of POD basis elements required to

accurately approximate the previous solutions. An exampleof the exponential decay of the

eigenvalues at a given time step during the activation phaseis plotted in Figure 3.6 for the

Monodomain model (black curves) and the Bidomain model (redcurvesue, blue curves

ui) usingN = 10 snapshots and different discrete inner products (inner product inL2 (Ω)

continuous lines, inner product inRNdof dashed lines). Since we are dealing with structured

grids with a lumped mass matrix, the choice of the inner product yielded approximatively

the same relative decay.
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Figure 3.6:Exponential decay of the eigenvalues at a fixed time step during the activation phase. Red curves
extracellular potential and blue curves intracellular potential for the Bidomain model; black curves tranmembrane
potential for the Monodomain model. Continuos linesX = L2 (Ω), dashed linesX = R

Ndof

Remark3.4.5. For the application of POD to concrete problems the choice ofthe number

of basis elements is certainly of central importance, as is also the number of snapshots

taken. No general a-priori rules are currently available. Rather, the choice ofnp is based

on heuristic considerations combined with observing the ratio between the modeled and the

total information contained in the snapshot ensemble. A usual procedure in the literature

consists in choosing the firstnp eigenvalues that retain a prescribed fraction of the total

energy of the system, that is, using Lemma 3.4.4,np is the maximum integer lesser thanN
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for which it holds ∑np

i=1 λi∑N
i=1 λi

≤ 1 − ε, (3.13)

whereε is a prescribed tolerance, referred to in the sequel as PODcut-off tolerance.
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Figure 3.7:Number of POD basis elements (see colorbar) with 20 snapshots for transmembrane potential with
Monodomain model, and for intra- and extracellular potentials with the Bidomain model

Figure 3.7 shows the dependence of the number of POD basis elements from the POD

cut-off toleranceε for the cardiac Monodomain (left panel) and Bidomain model (central

panelui, right panelue) both solved with a constant time stepδt = 0.05 ms for 10000

time steps, and considering as snapshots’ set the previous 20 computed solutions. As a first

observation, the POD technique seems to be able to sense the temporal variation of the AP

but also that its approximation properties deteriorates with the presence of localized sharp

activation fronts inside the spatial domain: a slower decayof the approximation error is

present during the activation phase, which means that a greater number of basis elements

is not sufficient to accurately approximate the past dynamics. In the other AP phases, very

few POD elements are needed to closely approximate the previous solutions.

v
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Figure 3.8:Transmembrane potentialv and first three most energetic POD basis elements for the Monodomain
model during the activation phase

Figures 3.8, 3.9 and 3.10 show layers cut of the three most energetic POD basis ele-

ments at different AP phases for the Monodomain model excited in the lower left corner
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Figure 3.9:Transmembrane potentialv and first three most energetic POD basis elements for the Monodomain
model during the plateau phase
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Figure 3.10: Transmembrane potentialv and first three most energetic POD basis elements for the Mon-
odomain model during the repolarization phase

and in the right vertical face at different time instances; transmembrane potential distribu-

tion is also provided to give a comparison. The activation fronts are evident in Figure 3.8

for the transmembrane potential; POD elements are locally sharp near the fronts, whereas

they are almost equal to 0 far away from the fronts. In the other AP phases, the transmem-

brane potential and the POD elements are smoother.

POD-Galerkin initial guess.

The POD technique can be very efficient used in combination with Galerkin projection

schemes in order to obtain lower dimensional systems that, when solved, could produce

suitable initial guesses for the PCG [89]; we will refer to this approach as POD-Galerkin

scheme. In the general context of Galerkin methods (see e.g [113]), after introducing an

approximation space where we seek for the solution, we forcethe true residual (i.e. the

difference between the computed approximated solution andthe exact one) to be zero onto

the approximation space. Therefore, with a POD-Galerkin scheme, a lower dimensional
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system can be derived using as approximation space

Xnp = {ϕ ∈ X | ϕ =

np∑

i=1

αiψi}, (3.14)

thus using the POD basis elements like test functions in a usual FEM method.

For the Monodomain system’s matrix (2.19), the POD-Galerkin scheme at time step

n+ 1 can be compactly written in matrix form as:

ΨT MiterΨα
n+1 = ΨT bn+1, (3.15)

whereΨ is the matrix formed columnwise by the spatial modes computed at the current

time step, Miter is the iteration matrix (2.19),bn+1 the right hand side of the full order

linear system (3.1) andαn+1 the unknowns of the current lower dimensional system.

Analogously, the POD-Galerkin scheme for the Bidomain system’s matrix (2.20) can

be derived using as approximation space the cartesian product of the two POD spaces for

the intra- and extra-cellular components, that isX i
np

×Xe
np

; therefore the matrix of POD

basis elements is

Ψ =

[
Ψi 0

0 Ψe

]
,

where

Ψi,e = [ψi,e
1 | . . . |ψi,e

ni,e
p

]

are the POD basis element matrices for the intra- and extra-cellular component. Thus

the lower dimensional linear system matrix, obtained by projecting the Bidomain iteration

matrix (2.20) ontoΨ, is

1

δt

[
ΨiT

MΨi ΨiT

MΨe

ΨeT

MΨe ΨeT

MΨe

]
+

[
ΨiT

AiΨi 0

0 ΨeT

AeΨe

]
, (3.16)

where M and Ai,e are respectively the original mass and stiffness matrices.Analogous

arguments can be used to construct the right hand side of the lower dimensional system

starting from the right hand side of the full-order linear system.

The lower dimensional POD-Galerkin matrices will be symmetric and positive definite

either for the Monodomain or the Bidomain model; as for the correlation matrices, we

choose to assemble the lower dimensional systems on each processor and then solve them

using standard LAPACK subroutines for Cholesky decomposition. Then, each processor

compute the local part of the PCG initial guess as

yn+1
0 = Ψαn+1.

Remark3.4.6. The computational limitations of the POD technique mostly resides in the

assembling of the lower dimensional matrix, which in principle require at leastnp(np +

1)/2 matrix vector multiplications for symmetric linear systems like the Monodomain
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model; in case of unsymmetric systems, the number of matrix vector multiplication be-

comesn2
p. This issue can be overcame using suitable inner products inbuilding the corre-

lation matrices. For the Monodomain model, since the iteration matrix is symmetric and

positive definite, we can choose it as the discrete inner product. With this choice, the com-

putational costs of assembling the lower dimensional system can be considerably reduced

since the lower dimensional system’s matrix will become theidentity matrix exploiting the

orthonormality of the POD basis with respect to the inner product chosen. Moreover, for

the recursive nature of the correlation matrix, only one matrix vector multiplication, namely

Miteryn, must be performed in order to compute the new column

(y1Miteryn, . . . , ynMiteryn)T

of the correlation matrix at the current time step. In practice, the latter matrix vector multi-

plication can be avoided noting that its result is equal to the previous right hand side of the

full-order system. Note that with this choice of inner product, the POD-Galerkin scheme

will strictly resemble the second Fischer method illustrated in Section 3.3. For the Bido-

main model, we see that if we use the discreteL2 inner product (i.e. the lumped mass

matrix M) for the calculation of the correlation matrix, thelower dimensional projected

matrix can be written as

1

δt

[
I −M̃

−M̃
T

I

]
+

[
Ãi 0

0 Ãe

]
,

where the diagonal blocks of the first matrix are identity matrices of appropriate sizes, the

off-diagonal block

M̃ = Ψi
T MΨe

is the cross mass matrix between the two POD spaces and

Ãi,e = ΨT
i,eAi,eΨi,e

are the projected stiffness matrices. With this inner product additional matrix vector mul-

tiplications must be performed to project the stiffness matrices and thus we will not have

any computational gain. A suitable choice is to choose as inner products the matrices

1

δt
M + Ai,e

for the intra- and extra-cellular components: in this way, the diagonal blocks of the lower

dimensional matrix will become the identity and we need to perform onlyni
pn

e
p additional

discreteL2 dot products to assemble the off diagonal blocks.

Remark3.4.7. Fischer’s methods and POD-Galerkin technique strictly resembles each

other, but the latter can also be applied to semidefinite (as in our case) but also indefi-
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nite linear systems since the derivation of the lower dimensional system is naturally related

to the full dimensional one. Moreover, the former methods possess additional limitations

since they suffer from an implicit restart which make the choice of the dimension of the

projection subspace untractable without a necessary rebuilding of the basis. Also, with

Fischer’s algorithms the cost of implementing the Gram-Schmidt orthogonalizations must

be taken into account, whereas the computational costs of assemble the lower order system

can be drastically reduced with POD-Galerkin method.

Remark3.4.8. As shown in [71], the choice of inner product does not affect the POD

approximation properties, which can be improved by including in the snapshots ensemble

the so calleddifference quotients: with the notation introduced at the beginning of the

section, the snapshots’ ensemble introduced in [71] becomes:

ỹB
i =





yi if 1 ≤ i ≤ N
yi−N+1 − yi−N

ti+1 − ti
if N + 1 ≤ i ≤ 2N − 1

.

Note that the difference quotients are usual backward finitedifference (and so theB super-

script) and that no additional inner products must be performed to assemble the correlation

matrix due to the linearity of the inner products involved. With the same idea, we can

consider in the snapshots ensemble the centered finite differences

ỹC
i =





yi if 1 ≤ i ≤ N
yi−N+1 − yi−N−1

ti−N+1 − ti−N−1
if N + 1 ≤ i ≤ 2N − 1

.

In this case, the zero index snapshot must be stored andN additional inner products must

be performed. In order to limit the computational costs involved in forming the correlation

matrix, we can use the modified snapshots’ ensemble with central differences for all time

instances butt1 andtN :

ỹCM
i =





yi if 1 ≤ i ≤ N
yi−N+2 − yi−N

ti−N+2 − ti−N
if N + 1 ≤ i ≤ 2N − 2

.

In all cases, no additional matrix vector multiplications are needed to assemble the lower

dimensional linear system.

Numerical results.

We test the POD-Galerkin schemes for different choices of the snapshots’ numberN and

POD cut-off toleranceε. The results are summarized in Table 3.4 for TC1, in Table 3.8

for TC2 and in Table 3.4 for TC4 using all spatial modes with positive eigenvalues. We

also test the POD-Galerkin method with the Bidomain model BJpreconditioned in TC3
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POD-Galerkin method for TC1

N 0 10 20 30

Iterations per time step

phase 0 7.6 5.3 5.3 5.4
phase 1-2 6.1 0.5 0.7 0.7

phase 3 6.4 0.7 0.9 0.8
rest 4.1 0.5 0.9 1.0

Admissible Solutions

phase 0 0 0 0 0
phase 1-2 0 1534 879 1021

phase 3 0 550 333 437
rest 0 1866 383 74

Table 3.7:POD initial guess: average iteration count per time step andadmissible solutions in different AP
phases for TC1. See text for details.

(data not shown): no substantial gain was achieved with respect to the lagrangian choice

(see Table 3.3). The very simple derivation of the low-ordermodel and the capability of

the POD technique in produce admissible solutions even withfew snapshots taken make it

the ideal candidate as a tool for the choice of the next initial guess for the cardiac models.

Numerical results show that increasing the number of storedsnapshots doesn’t necessarily

produce high dimensional POD spaces suitable in predictingthe future, either when sharp

fronts are locally moving inside the spatial domain during tissue activation or in the other

AP phases. In the activation phase iterations are similar for different values of the number

of snapshots and POD cut-off tolerance (see Table 3.9): thiscan be due to the minimiza-

tion procedure inherent in the construction of the POD basiswhich is defined on the whole

spatial domain and thus suffering from the strong localization of the fronts. Moreover, a

POD space derived from a lower number of snapshots better catch the dynamics, as it can

be seen in Table 3.4 taking into account the admissible solutions or in Table 3.8. The best

choice with POD-Galerkin method is thus a relatively littlenumber of snapshots and to

retain all the spatial modes with positive eigenvalues.

Results including the difference quotients in the snapshots’ ensemble for TC1 are

shown in table 3.4 forN = 5 andN = 10 retaining all spatial modes; the inclusion of

the difference quotients greatly improve the performancesof the POD-Galerkin scheme

for the Monodomain model in all AP phases but the activation.Central finite differences

show to be the best choice, with a little loss of performance in the modifiedCM case.

Moreover, the inclusion of the difference quotients in the snapshots’ ensemble improve
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POD-Galerkin method for TC2

N 0 5 10

Total number of iterations

27913 8303 7200

Total solving time (s)

1623 544 496

Table 3.8:POD initial guess: total number of iterations and total solving time for different numbers of stored
snapshots for TC2.

POD-Galerkin method in phase 0
and POD cut-off tolerance

ε 1E-12 1E-13 1E-14 1E-15 1E-16

Iterations per time step

N = 10 5.5 5.5 5.5 5.4 5.4
N = 20 5.5 5.4 5.3 5.3 5.3
N = 30 5.5 5.4 5.4 5.3 5.3

Table 3.9:Average number of iterations per time step in the activationphase for TC1. Number of snapshots by
rows and POD cut-off toleranceε by columns.
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POD-Galerkin method for TC4

N 5 10 15 20

Total number of iterations

9852 8338 7933 7914

Admissible solutions

65 172 250 257

Table 3.10:Total number of iterations and admissible solutions for theBidomain model preconditioned with
MHS(5) in TC4 for different values ofN .

the performances only with lower values ofN , confirming the fact that the dimension of

the snapshots set can (and must) be small. In Chapter 5 we willprovide additional results

applying the POD-Galerkin technique to the Schur complement matrix of the Bidomain

system.

3.5 Choice of cellular initial conditions

In this section we will concentrate on the cellular initial conditions prescribed at the be-

ginning of the simulations simulating 50 beats with the Monodomain model and adaptive

time stepping strategy at different stimulation frequencies. At each time step, the initial

guess for the linear solver is chosen using the adaptive lagrangian method descripted in

section 3.2 since these results were obtained before studying the POD method. As test

case for this section, the dimension of the slab is1.92 × 1.92 × 0.64 cm3 and the grid

dimension is192 × 192 × 64: simulations has been performed with 18 processors, dis-

tributed3 × 3 × 2 across the spatial grid with the Linux cluster Ulisse at University of

Milan (www.ulisse.mat.unimi.it). With this solving configuration, each beat requires ap-

proximatively 40 minutes to be simulated.

Transmural cellular heterogeneity is considered as in the 3-slab configuration already

introduced in [21]: the cardiac slab is subdivided transmurally into three equal layers of the

same thickness: endocardial, mid-myocardial and epicardial, composed by the correspond-

ing type of cell provided by the HHRd model developed in Chapter 1. In order to describe

the macroscopic features of the excitation and subsequent repolarization process, we extract

from the spatiotemporal transmembrane potential the sequence of the propagating excita-

tion and repolarization wave fronts. Since cellular AP waveform is increasingly monotone

in the upstroke phase and decreasingly monotone in the repolarization phase (see e.g. Fig-
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POD-Galerkin method for TC1
and difference quotients

nodiff B C CM

Iterations per time stepN = 5

phase 0 5.9 5.9 5.4 5.6
phase 1-2 1.0 0.7 0.4 0.5

phase 3 1.2 0.9 0.5 0.6
rest 0.8 0.5 0.4 0.4

Admissible SolutionsN = 5

phase 0 0 0 1 2
phase 1-2 838 1026 1699 1381

phase 3 581 657 901 804
rest 2294 2470 2268 2568

Iterations per time stepN = 10

phase 0 5.3 5.3 5.3 5.3
phase 1-2 0.5 0.4 0.3 0.4

phase 3 0.7 0.7 0.6 0.6
rest 0.5 0.5 0.7 0.7

Admissible SolutionsN = 10

phase 0 0 1 3 1
phase 1-2 1534 1683 1946 1922

phase 3 550 658 767 907
rest 1866 1872 1418 1553

Table 3.11:POD initial guess and difference quotients: average iteration count per time step and admissible
solutions in different AP phases for TC1. See text for details.
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Figure 3.11:Slab sections considered in showing results; numbers in following figures identify the spatial grid

ure 1.2), activation and repolarization times are uniquelydetermined for fixed threshold

values of the transmembrane potential, chosen as−60 mV for activation (with upward

crossing) and−75mV for repolarization (with downward crossing). From the knowledge

of ACTI and REPO patterns, APD distributions can be obtainedas REPO− ACTI. In the

following, the level surfaces of activation and repolarization times will be denoted by ACTI

and REPO respectively and will be shown as slab sections (seeFigure 3.11).

In order to elicit the excitation front, we apply a stimulus of 200µA/cm3 for 1ms on a

small volume (containing 5 mesh points in eachx- andy-direction and 3 mesh points in the

z-direction) at the center of the endocardial face. The totalamount of rotation considered

is 120 degrees, starting from 75 degrees at the endocardial face. BCLs considered are 500

ms (in the range of normal canine rates) and 2000 ms (to reproduce bradycardia). We take

into account two configurations for the initial conditions (IC) of the cellular system:

IC0D IC from the dynamical steady state of the 0D model

IC1D IC evaluated simulating 500 beats of an heterogeneous monodomain fiber

The transmural fiber has been implemented in MATLAB with a centered finite difference

scheme for the spatial discretization and the same IMEX approach (see Chapter 2) for the

temporal discretization, using HHRd as cellular model. Thegrid dimension of the fiber

has been chosen equal to the dimension of thez-axis of the three dimensional grid: initial

conditions for the cellular model in the slab are then assigned depending on the height

(z-value) of the cell in the slab.

Regularities of ACTI and REPO waves through successive waves are summarized in

Figure 3.12 for BCL 500 and in Figure 3.13 for BCL 2000: for each beat we collected

ACTI and REPO three dimensional patterns and a relative differences between successive

waves has been measured by means of the following simple formulas:

||ACTIn+1 − ACTIn||2
||ACTIn||2

||REPOn+1 − REPOn||2
||REPOn||2

where|| · ||2 is the usual euclidean norm.

ACTI patterns result similar among successive beats, whereas REPO patterns depends

on different choices of initial conditions and on differentstimulation frequencies. At BCL
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500 ms, REPO wave alternates starting from endocardial or epicardial sites during the first

beats (not shown), until a stable configuration is reached; no substantial differences exist

between IC0D and IC1D choices (see Figure 3.12). At BCL2000 ms, REPO waves are

much more stable through multiple beats and IC1D choice perform better than IC0D in

terms of relative differences, indicating lesser variation between waves through successive

beats, and thus a more stable APD configuration. It must be noted that the two choices

of cellular initial conditions yields qualitatively the same three dimensional patterns of

activation and repolarizations, either at BCL 500ms or at BCL 2000 ms, but with different

APD mean values as it can be seen in Figure 3.14, where the meanAPD on each layer

of the slab (for each choice of initial condition) is compared with the dynamical steady

state obtained from the 0D model and with its final distribution on the transmural fiber.

It was also noted (data not shown) that the total number of iterations per beat decrease

in successive beats, for each choice of initial conditions;moreover, IC1D lowers the total

number of iterations per beat with respect to IC0D. This can be due to the fact that IC1D

introduce a smoother initial distribution of the transmembrane potential that lowers the

iterations per time step mainly during the activation phase.
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Figure 3.12: Three dimensional relative differences in logarithmic scale of ACTI and REPO patterns for
different choice of initial conditions at BCL 500. Red dots curve IC1D, black dots curve IC0D

Next, we analyze the three-dimensional relative differences collected for HHRd cellu-

lar variables and the results are shown in Figure 3.15 for BCL500 and in Figure 3.16 for

BCL 2000. Cellular variables that moves slower to their dynamical steady state are, as

expected, ionic concentration variables (sodium, potassium and chloride, respectivelynai,

ki andcli in figures) and subcellular calcium concentrations (denoted by jsrT andnsr

in the figures); for the gating variables (see [54] and [81] for their definitions) the choice

of cellular initial conditions doesn’t influence the results. Note that the highly oscillatory

behaviour of theirel variable is a numerical artifact since at the beginning of each beat,

its value is almost equal to 0 for each cell of the slab. Relative differences of cellular vari-

ables suggest thus that IC1D is closer than IC0D to the three dimensional dynamical steady

state, even if it is far from being reachable in three dimensional simulations also with the
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Figure 3.13: Three dimensional relative differences in logarithmic scale of ACTI and REPO patterns for
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Figure 3.14:APD90 distributions at the frequencies considered: cellular model HHRd (dotted lines), one
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Monodomain model. Numerical results suggest also that a lower number of beats simu-

lated with the transmural fiber would give better results in the IC1D case.

3.6 Influence of transmural heterogeneity in three dimen-

sions

In this section we qualitatively describe activation and repolarization patterns at the 50th

beats simulated using IC1D as prescribed ionic initial conditions, either at BCL 500 ms or

at BCL 2000 ms. Representative three-dimensional ACTI patterns (similar between dif-

ferent BCL considered and initial conditions prescribed) are shown in figures 3.17, 3.18

and 3.19. Their features has been studied extensively with the Monodomain and Bido-

main models (see e.g. [20]) and with the approximation of itslevels set known as eikonal

equations ([16], [17]); here only the main features will be pointed out. Intramural exci-
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tation, starting from an endocardial stimulation site, first proceeds toward the epicardium

but subsequently, due to fiber rotation, comes back pointingtoward the endocardial plane.

Due to these intramural return pathways, propagation undergoes an acceleration, in partic-

ular in endocardial areas where the excitation moves mainlyacross fibers. Stimulation at

the center of the endocardial face produces approximately elliptical excitation isochrone

lines, a clear sign of their anisotropic propagation: the major axes of the oblong excita-

tion isochrones are nearly parallel to the endocardial fiberdirection (5/12π). Also, the

excitation isochrones show an inflection corresponding to adimple-like inflection of the

wave front (see also [20] where the slab dimension is greaterand these features are more

pronounced). These findings, i.e. the accelerating propagation across fibers, the bulging

and the dimple-like inflection of the isochrones, are attributed to the influence on the endo-

cardium of the activation processes through the deeper layers (see figure 3.18 where the cut

planes are nearly perpendicular to the endocardial fiber direction). Proceeding from endo-

to epi-cardium on the intramural planes parallel to the endocardium, the spacing between

excitation isochrones increases, the wave front shapes become rounder and we observe a

transmural twisting of the isochrones, i.e. the major axis of the oblong isochrones pro-

gressively rotates clockwise with increasing depth. However, their rotation lags behind the

rotation of the fiber direction at corresponding depths (thefiber direction at the epicardium

is−π/4). On the epicardial plane, the excitation front-boundary collision first occur at the

center of the face (BKT,breakthroughpoint) since the model considered does not incorpo-

rate the epi- endocardial obliqueness of the fibers ([134]) (see e.g. [17] were this feature

was included in the simulations). Subsequent excitation isochrones have a well rounded,

elliptical shape centered at the point of epicardial face and the large spacing between suc-

cessive isochrones indicates a fast excitation.

Following the analysis on relative differences, only REPO and APD patterns for the last

beat simulated with IC1D will be shown. Repolarization waves on layers cut are similar for

BCL 500 and BCL 2000 ms, and both are faster then the activation ones. At endocardium,

REPO waves are faster along than across fibers, yielding almost elliptical shape of the

isochrones; through the depth of the slab the front shape rotates clockwise (lesser than

the excitation front) from endo- to epicardium maintainingthe ellipticity in the central

part of the layers. When the repolarization wave approach the boundaries of the slab, the

front velocity decreases yielding almost linear isochrones. APD distributions on layers

are therefore similar between the two stimulation frequencies considered; with respect to

previous simulations, the dispersion od repolarization per layers is higher with HHRd rather

than LR1 (see [21]). The only qualitative difference per layers between the two frequencies

considered using HHRd ad cellular model has been observed onthe endocardial surface in

the proximity of the point where we applied the stimulus: at BCL 2000, the repolarization

wave start from the stimulus site and proceeds mainly along the fiber direction, whereas at

BCL 500 REPO wave starts almost contemporary from two different sites symmetric with

respect to the fiber direction as observed experimentally in[101] (see figure 3.20, left panel

BCL 500, right panel BCL 2000).
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The main differences between REPO waves at the frequencies considered can be en-

lighted analyzing the vertical sections: at BCL 500 ms, the wave start at the BKT point on

the epicardial face and then proceeds almost as a planar wavethrough the depth of the slab,

ending in the slab’s angles opposed to the fiber direction andlasting for 80 ms. At BCL

2000 ms, REPO wave starts almost contemporary from the stimulus site at the endocardium

and from the the activation BKT at the epicardium; since the front velocity on the bound-

aries is lower, these two fronts first proceeds faster through the center of the slab and then

they come back pointing through the slab’s angles opposed atthe fiber direction ending in a

subendocardial zone after about 40 ms, roughly an half of theduration of the repolarization

wave at BCL 500. As a consequence, the APD distribution differs significantly through the

depth of the slab, even if it resembles the0D distribution (see figure 1.18); at BCL 500 ms,

APD is greater at endocardium rather than at epicardium, with a maximum attained at the

stimulus site. At BCL 2000 ms, even if the local maximum is attained at the stimulus site,

an island of M-cell can be clearly distinguished in the center of the slab, further supporting

the concept of cellular heterogeneity for left ventriculartissue.
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Figure 3.15:Three dimensional relative differences in logarithmic scale for cellular variables for different
choice of initial conditions at BCL 500. Red dots curve IC1D, black dots curve IC0D
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Figure 3.16:Three dimensional relative differences in logarithmic scale for cellular variables for different
choice of initial conditions at BCL 2000. Red dots curve IC1D, black dots curve IC0D
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Figure 3.17:Monodomain activation sequence per layers (see figure 3.11)with central endocardial stimulus.
For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.18:Monodomain activation sequence on ik sections (see figure 3.11) with central endocardial stimu-
lus. For each panel we show the number of section on top; belowminimum and maximum attained.
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Figure 3.19:Monodomain activation sequence on jk sections (see figure 3.11) with central endocardial stimu-
lus. For each panel we show the number of section on top; belowminimum and maximum attained.
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Figure 3.21:Monodomain repolarization sequence per layers (see figure 3.11) with central endocardial stimu-
lus. For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.22:Monodomain repolarization sequence on ik sections (see figure 3.11) with central endocardial
stimulus. For each panel we show the number of section on top;below minimum and maximum attained.
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Figure 3.23:Monodomain repolarization sequence on jk sections (see figure 3.11) with central endocardial
stimulus. For each panel we show the number of section on top;below minimum and maximum attained.
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Figure 3.24:Monodomain action potential duration distribution per layers (see figure 3.11) with central endo-
cardial stimulus. For each panel we show the number of layer on top; below minimum and maximum attained.

125.51  203.15

1

127.51  207.31

25

127.33  210.46

49

127.17  214.47

73

127.18  219.88

97

127.27  213.88

120

127.44  210.17

144

127.50  207.20

168

 

 

125.52  203.11

192

APD ik sections: 50th beat at BCL 500

Figure 3.25:Monodomain action potential duration distribution on ik sections (see figure 3.11) with central
endocardial stimulus. For each panel we show the number of section on top; below minimum and maximum
attained.

72



Chapter 3. Choice of Krylov initial guess and efficient multiple heartbeat simulations

125.51  192.79

1

126.31  197.21

25

126.60  201.94

49

126.98  208.24

73

127.50  219.91

97

126.92  207.54

120

126.59  201.56

144

126.32  197.09

168

 

 

125.52  192.70

192

APD jk sections: 50th beat at BCL 500

Figure 3.26:Monodomain action potential duration distribution on jk sections (see figure 3.11) with central
endocardial stimulus. For each panel we show the number of section on top; below minimum and maximum
attained.
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Figure 3.27:Monodomain repolarization sequence per layers (see figure 3.11) with central endocardial stimu-
lus. For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.28:Monodomain repolarization sequence on ik sections (see figure 3.11) with central endocardial
stimulus. For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.29:Monodomain repolarization sequence on jk section (see figure 3.11) with central endocardial
stimulus. For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.30:Monodomain action potential duration distribution per layers (see figure 3.11) with central endo-
cardial stimulus. For each panel we show the number of layer on top; below minimum and maximum attained.
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Figure 3.31:Monodomain action potential duration distribution on ik sections (see figure 3.11) with central
endocardial stimulus. For each panel we show the number of layer on top; below minimum and maximum
attained.
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Figure 3.32:Monodomain action potential duration distribution on jk sections (see figure 3.11) with central
endocardial stimulus. For each panel we show the number of layer on top; below minimum and maximum
attained.
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Chapter 4

Neumann-Neumann

preconditioners for cardiac

models

4.1 Introduction

In this chapter we will introduce and analyze non-overlapping domain decomposition pre-

conditioners of Neumann-Neumann type for the cardiac Monodomain and Bidomain model.

For a general introduction to these methods, the interestedreader is referred to the mono-

graphs [140], [88] and [130]. In this section we will providea brief introduction to the

iterative substructuring approach. We decompose a polyhedral domainΩ into N non-

overlappingopen subdomainsΩi of the same diameterH (often referred to assubstruc-

tures) such that the union of their closures is the closure ofΩ, i.e.

Ω =

N⋃

i=1

Ωi

and each of which is the union of shape-regular elements withthe finite element nodes on

the boundaries of neighboring subdomains matching across the interface.

Definition 4.1.1. Following [140] we define theinterface:

Γ =
⋃

i6=j

∂Ωi ∩ ∂Ωj

as the union of

• the subdomainfaces, regarded as open sets, that are shared by two subregions,

• the subdomainedges, also regarded as open, that are shared by more than two subre-

gions,
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• the subdomainvertices, which are endpoints of edges.

Each local interface will be denoted by

Γ(i) = ∂Ωi ∩ Γ.

Remark4.1.2. If a subdomain edge is a part of∂Ω and is common to the boundaries of

only two subdomains, we will regard that edge as a part of the face common to this pair of

subdomains. Similarly, we will regard a subdomain vertex on∂Ω part of an interior edge.

The subdomain faces which belong to∂Ω are not part of the interfaceΓ; the nodal values

on∂Ω which belong to only one subdomain will effectively belong to the subdomain inte-

rior.

Following the usual notation of substructuring algorithms, we will denote withW(i) the

finite element space defined onΩi: in particularW(i) = Vh(Ωi) for the Monodomain dis-

cretization andW(i) = Vh(Ωi) × Vh(Ωi) for the Bidomain discretization (see definitions

given in eqs. (2.17) and (2.18)). EachW(i) is then decomposed into a subdomain interior

partW(i)
I and a subdomain interface partW(i)

Γ such that

W(i) = W(i)
I

⊕
W(i)

Γ .

We will denote the associated product spaces by

W =

N∏

i=1

W(i), WI =

N∏

i=1

W(i)
I , WΓ =

N∏

i=1

W(i)
Γ

and thus we will have

W = WI

⊕
WΓ.

Note that the functions belonging toW will not be in general continuous across the inter-

face; we will denote the space of functions defined onΩ and continuous acrossΓ with Ŵ,

i.e.

Ŵ = WI

⊕
ŴΓ,

where we denoted the subspace ofWΓ of continuous functions onΓ by ŴΓ. With abuse

of notation, we will make no distinction between the space offinite element functions and

the space of degrees of freedoms (dofs) of the finite element functions.

Denoting the faces ofΩi byF ij , its edges byE ik and its vertices byV il, and introducing

the set

Nx = { j |x ∈ W(j) , j = 1, . . . , N}

we can now describe the sets of nodes onF ij , E ik andV il for our case of structured grid
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by equivalence classes:

x ∈ F ij ⇐⇒ |Nx| = 2

x ∈ E ik ⇐⇒ |Nx| = 4

x ∈ V il ⇐⇒ |Nx| = 8

where|Nx| denotes the cardinality of the setNx ; clearly

x ∈ W(i)
I ⇐⇒ |Nx| = 1.

Figure 4.1 shows the union of the wirebaskets, i.e. the unionof edges and vertices for a

global cubic grid9 × 9 × 9 decomposed with a2 × 2 × 2 subdomain grid withH/h = 5.

Ω

Figure 4.1:Edges nodes (blue circles) and vertices (green circles) fora 2x2x2 decopomposition ofΩ.

In order to describe the iterative substructuring algorithms, we need to introduce sev-

eral restriction, extension, and scaling operators between different spaces. The restriction

operatorR(i) maps a vector of the spacêW to its restriction to the subdomain subspace

W(i), whereas the restriction operatorR(i)
Γ maps a vector of the spacêWΓ to its restric-

tion to the subdomain subspaceW(i)
Γ . The extension operatorsR(i)T

andR(i)T

Γ perform

the inverted transformations. Furthermore, we introduce the restriction operatorR, which

maps functions defined on̂W to W, as the direct sum of theR(i), andRΓ, which maps

functions defined on̂WΓ to WΓ, as the direct sum of theR(i)
Γ , together with their inverted

transformationsRT andRT
Γ . Restriction and extension operators are rectangular matrices

with boolean values; for a formal definition of such entries see [88].

Another important tool of substructuring algorithms is theso calledpartition of unity

operator, defined by the quantities

δi(x) =

∑
j∈Nx

aγ
j (x)

aγ
i (x)

(4.1)

for someγ ∈ [1/2,∞), whereaj(x) is a representative value for subdomainj at the node
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x. Coefficients given in (4.1) provide a partition of unity in the sense that

N∑

i=1

R
(i)T

Γ δ†i (x) = 1, ∀x ∈ Γ. (4.2)

whereδ†i (x) is the pseudo-inverse ofδi(x). Clearly, for the Bidomain discretization, we

will have two subdomain representative values associated to the two components of the

finite element space. Denoting withD(i) the diagonal matrix withδ†i (x) along the diagonal,

we obtain the operatorR(i)
D,Γ multiplying eachR(i)

Γ byD(i), and the operatorRD,Γ as the

direct sum of theR(i)
D,Γ . We than introduce theaverage operator

ED : WΓ → ŴΓ

whose action onu ∈ WΓ is given by

EDu =

N∑

i=1

R
(i)T

Γ Ih(δ†i ui) (4.3)

whereIh is the usual Lagrangian interpolation operator. Note thatED is equal to the iden-

tity when restricted on̂WΓ thanks to formula (4.2).

Ordering the nodes interior to the subdomains first, followed by those on the interface

Γ we can then write each symmetric linear system assembled onŴ

Âu = f̂

as (
AII AIΓ

AT
IΓ AΓΓ

)(
uI

uΓ

)
=

(
fI

fΓ

)
. (4.4)

From now on, the hat symbol will denote an assembled matrix.

Within the substructuring approach, each bilinear form andload vector defined onΩ

are written in terms of contributions from individual subregions, simply restricting their

integration set to eachΩi: denoting witha(·, ·) andai(·, ·) the discrete bilinear forms on

Ŵ andW(i) respectively, we can state the subassembly relation for thethese forms as:

a(u, v) =

N∑

i=1

ai(R
(i)u,R(i)v), ∀u, v ∈ Ŵ

where clearly each subdomain contribution is zero outside the substructure. The global

finite element system can then be expressed by subassembling, i.e.

Â = RTAR =
N∑

i=1

R(i)T

A(i)R(i), f̂ =
N∑

i=1

R(i)T

f (i)
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where the local system matricesA(i), the global unassembled matrixA, and the local load

vectorsf (i) are given by

A(i) =

(
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

)
, (4.5)

A =




A(1) 0 0

0
. . . 0

0 0 A(N)




and

f (i) =

(
f

(i)
I

f
(i)
Γ

)
.

Thus, in order to perform a matrix-vector multiplication with Â, we first restrict properly

the vectorsuI anduΓ to eachW(i), then multiply them by the individual substructure

matrices and, finally, obtain the productÂu by extending by zeros and adding the resulting

vectors.

4.2 Schur Complement and discrete harmonic extensions

Let us now consider how to represent the inverse of the symmetric, positive (semi)definite

block matrix given in eq. (4.4). Provided the invertibilityof theAII block, we can use

block Cholesky elimination (see [79]) and split the matrix as

(
III 0

AT
IΓA

−1
II IΓΓ

)(
AII 0

0 AΓΓ −AT
IΓA

−1
II AIΓ

)(
III A−1

II AIΓ

0 IΓΓ

)
(4.6)

whereIII andIΓΓ are identity matrices of appropriate sizes. The symmetric matrix

ŜΓ = AΓΓ −AT
IΓA

−1
II AIΓ

is theSchur complementof the matrix (4.4) assembled at the interface nodes.

Differently to thedirect substructuring, in theiterative substructuringapproach the ma-

trix ŜΓ is not formed explicitly, since this is a potentially expensive operation. Indeed, the

Schur complement matrix̂SΓ will have a block dense structure depending on the ordering

of nodes inΓ. If two nodesxi andxj lie on some common subdomain boundary, then

entry Ŝij will typically be nonzero, otherwise, the entrŷSij will be zero. The magnitude

of a nonzero entrŷSij typically decreases with increasing distance between the nodesxi

andxj . Instead of explicitly assemblêSΓ, in the iterative substructuring approach a sparse

representation ofAIΓ, whose action can be evaluated by subassembly, and the sparse, tri-

angular factors of theAII are stored, and the action ofŜΓ on an interface vector is obtained

by subassembly, i.e.

ŜΓ = RT
ΓSRΓ =

N∑

i=1

R
(i)T

Γ S(i)R
(i)
Γ
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where

S =




S(1) 0 0

0
. . . 0

0 0 S(N)


 (4.7)

is the unassembled Schur complement defined onWΓ and

S(i) = A
(i)
ΓΓ −A

(i)T
IΓ A

(i)−1

II A
(i)
IΓ (4.8)

are the local Schur complement operators acting on the spacesW(i)
Γ .

Remark4.2.1. Note that the action ofA−1
II is evaluated subdomain per subdomain in par-

allel since it is a block diagonal matrix, with subdomain blocksA(i)−1

II , due to the fact

that

W(i)
I ∩ W(j)

I = ∅, i 6= j.

Its application to a vector corresponds to the parallel solution of problems with Dirichlet

boundary conditions onΓ(i) and, eventually, homogeneous Neumann data on∂Ωi ∩ ∂Ω.

For both configurations, the presence of a Dirichlet boundary make these local problems

always solvable, either for the Monodomain or the Bidomain model.

We can thus formally invert the three factors of (4.6), finding:

(
AII AIΓ

AT
IΓ AΓΓ

)−1

=

(
III −A−1

II AIΓ

0 IΓΓ

)(
A−1

II 0

0 Ŝ−1
Γ

)(
III 0

−AT
IΓA

−1
II IΓΓ

)

=

(
A−1

II 0

0 0

)
+ ΦŜ−1

Γ ΦT

(4.9)

where

Φ =

(
−A−1

II AIΓ

IΓΓ

)
.

Therefore, in order to solve a symmetric positive (semi)definite linear system with ma-

trix (4.4), we first solve on̂WΓ, through conjugate gradient iterations, the Schur comple-

ment system defined on the interface

ŜΓuΓ = ĝΓ (4.10)

with right hand side given by

ĝΓ = ΦT f = fΓ −AT
IΓA

−1
II fI =

N∑

i=1

R
(i)T

Γ

(
f

(i)
Γ −A

(i)T

IΓ A
(i)−1

II f
(i)
I

)
(4.11)
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then we extend the solution on̂W by solving foruI the block diagonal system:

AIIuI = fI −AIΓuΓ.

Due to this fact, we will sometime refer to the Schur system asthe reducedsystem, in

contrast to theglobalsystem represented bŷA.

It can be easily seen that the reduced Schur complement system inherits the positive

(semi)definitess from the global system, together with the system solvability, through the

concept ofdiscrete harmonic functions:

Definition 4.2.2. A functionu(i) defined onΩi is said to be discrete harmonic onΩi if

A
(i)
II u

(i)
I +A

(i)
IΓu

(i)
Γ = 0.

From this definition and the assumption of invertibility of local problems represented

byAII , we can see thatu(i) is fully determined byu(i)
Γ , i.e. the value ofu(i) on Γ(i). We

will use the notationu(i) = Hiu
(i)
Γ and callHi the discrete harmonic extension operator

onΩi defining

Hiu
(i)
Γ =




−A(i)−1

II A
(i)
IΓu

(i)
Γ onW(i)

I

u
(i)
Γ onW(i)

Γ

A direct consequence of Definition 4.2.2 is that

v(i)T

A(i)Hiu
(i)
Γ = 0

∀ v(i) that vanishes onΓ(i). We then have the following properties of the discrete harmonic

extension and discrete harmonic functions (see [140]) thatcan be obtained with elementary

matrix algebra arguments using the 2x2 block decompositionof eachA(i) given in eq.

(4.5).

Lemma 4.2.3. Letu(i)
Γ be the restriction of a finite element functionu(i) to Γ(i). Then, we

can equivalently define the action of the local Schur complements matrices as

(
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

)(
−A(i)−1

II A
(i)
IΓu

(i)
Γ

u
(i)
Γ

)
=

(
0

S(i)u
(i)
Γ

)

and thus the discrete harmonic extension satisfies the following matrix equivalence

u
(i)T

Γ S(i)u
(i)
Γ = (Hiu

(i)
Γ )TA(i)Hiu

(i)
Γ .

We can thus empirically define the local Schur bilinear formsas

si(u
(i)
Γ , v

(i)
Γ ) = ai(Hiu

(i)
Γ ,Hiv

(i)
Γ ) (4.12)
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and state the following Lemma (see also [140])

Lemma 4.2.4. The local Schur bilinear forms satisfies the energy minimization property

si(u
(i)
Γ , u

(i)
Γ ) ≤ ai(u

(i), u(i))

whereu(i)
Γ is the restriction toΓ(i) of a finite element functionu(i) ∈ W(i).

Remark4.2.5. We can also define thepiecewise discrete harmonic extension operatorH
as direct sum ofHi operators: defining the Schur bilinear form from the following sub-

assembly relation

S(uΓ, vΓ) =

N∑

i=1

si(R
(i)
Γ uΓ, R

(i)
Γ vΓ) (4.13)

then, if uΓ is the restriction of a finite element functionu to Γ, the piecewise discrete

harmonic extension ofuΓ into the interior of the subdomains satisfies

S(uΓ, vΓ) = a(HuΓ,HvΓ).

Remark4.2.6. Clearly, the Schur bilinear formS(·, ·) inherits all the properties of the

elliptic bilinear forma(·, ·) since it is the restriction of the latter on the subspace of piece-

wise discrete harmonic extension. Therefore,S(·, ·) will be positive definite for the Mon-

odomain model and (at least) positive semidefinite for the Bidomain model. The same will

hold for the local bilinear forms.

Remark4.2.7. Regarding to the Bidomain model, it is easy to show that1(i)
Γ spans the null

space of all the local Schur system, i.e.

1Ωi = Hi(1Γ(i)).

where1Ωi and1Γ(i) are the identity vectors of appropriate sizes and thus that

1Ω = H(1Γ).

In fact, since1Ωi spans the null space ofai(·, ·), from the positive semidefinitess ofsi(·, ·)
and the energy minimization property follows

0 ≤ 1T
Γ(i)S

(i)1Γ(i) ≤ 1T
Ωi
A(i)1Ωi = 0

and thus1Γ(i) belongs to the null space ofS(i). Otherwise, letu(i)
Γ belongs to the null space

of S(i). Then for the definition of the local Schur bilinear forms it will hold that

0 = u
(i)T

Γ S(i)u
(i)
Γ = (Hiu

(i)
Γ )TA(i)Hiu

(i)
Γ .

ThereforeHiu
(i)
Γ , and thusu(i)

Γ , must be constant vectors.

Table 4.1 shows some preliminary results on conjugate gradient iterations applied to
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Monodomain Bidomain

iter ||r||2 ||e||2 ||e||∞ iter ||r||2 ||e||2 ||e||∞

Â 29 6.5E-9 5.2E-4 9.6E-5 164 9.9E-9 7.5E-3 3.5E-4
ŜΓ 22 8.9E-9 3.1E-4 2.4E-5 73 9.5E-9 1.1E-3 5.1E-5

Table 4.1:Conjugate gradient iterations of the Monodomain and Bidomain system, using the global assembled
systemÂ or the Schur system̂SΓ. Test case considered ish =1E-2, global grid 17x17x17, random right-hand
side, null initial guess and absolute residual tolerance 1E-8. Substrucutres subdivision in the three dimensions is
2x2x2. For each solve, number of iteration, euclidean residual norm||r||2, euclidean and infinity norm of the
exact error are shown.

the solution of the Monodomain and Bidomain systems and to their assembled Schur com-

plements. Test cases considered are descripted in the caption.

4.3 Technical tools

In this section, we will present some technical tools routinely employed in the analysis

of domain decomposition algorithms and that will be used throughout this and the next

chapter; unless otherwise stated, these results can be found in [140] and references therein.

Assume we have a bounded open Lipschitz setΩ ⊂ R
n with Lipschitz continuous bound-

ary according to the next definition:

Definition 4.3.1. The boundary∂Ω is Lipschitz continuous if there exist a finite number of

open setsOi, i = 1, . . . ,m, that cover∂Ω such that, for everyi, the intersection∂Ω ∩ Oi

is the graph of a Lipschitz continuous function andΩ ∩ Oi lies on one side of this graph

We will deal with the usual functional Sobolev spaces definedonΩ:

L2(Ω) = {u : Ω → R |
∫

Ω

|u|2 <∞}

and

H1(Ω) = {u : Ω → R |
∫

Ω

|∇u|2 +

∫

Ω

|u|2 <∞}.

These spaces are equipped with the norms

||u||2L2(Ω) =

∫

Ω

|u|2, ||u||2H1(Ω) = |u|2H1(Ω) + ||u||2L2(Ω)

with the seminorm onH1(Ω) defined by

|u|2H1(Ω) =

∫

Ω

|∇u|2.

Given a proper subsetΓ ⊆ ∂Ω with non vanishing (n − 1)-dimensional measure and
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relatively open with respect to∂Ω, we can define the spaceHs(Γ), s ≥ 0, consisting

of functions onΓ such that:

||u||2Hs(Γ) = ||u||2H[s](Γ) + |u|2Hs(Γ) <∞

where[s] denotes the greater natural number lesser thans and the seminorm is defined as:

|u|2Hs(Γ) =
∑

[α]=[s]

∫

Γ

∫

Γ

|Dαu(x) −Dαu(y)|2
|x− y|2σ+n−1

dxdy

with σ = s− [s], α = (α1, . . . , αN ) is a multi-index with|α| =
∑n

i=1 αi, αi > 0 and

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn

If |α| = (0 . . . , 0), thanDαu = u. The following two lemmas hold:

Lemma 4.3.2. LetΩ be a Lipschitz region ands > 1/2. Then, the operator

γ : C∞(Ω) → C∞(Γ)

mapping a function into its restriction onΓ, can be extended continuously to an operator

γ0 : Hs(Ω) → Hs−1/2(Γ).

Lemma 4.3.3. With the same assumptions of the previous lemma, there exista continuous

lifting operator

R0 : Hs−1/2(Γ) → Hs(Ω)

such thatγ0(R0u) = u with u ∈ Hs−1/2(Γ).

Even if Γ is a proper subset of∂Ω, Hs
0(Γ) (the space defined by the kernel ofγ0)

coincides withHs(Γ) for s ≤ 1/2; on the other hand, the extension by zero of functions in

H
1/2
0 (Γ) do not, in general, belong toH1/2(∂Ω). We thus define the space

H
1/2
00 (Γ) = {u ∈ H1/2(Γ) | Eu ∈ H1/2(∂Ω)}

whereEu is the extension by zero ofu to ∂Ω. The latter space coincides with the interpo-

lation space[H1
0 (Γ), L2(Γ)]1/2 defined by

[H1
0 (Γ), L2(Γ)]1/2 = {u ∈ L2(Γ)]1/2 | t−1K(t, u;H1

0 (Γ), L2(Γ)) ∈ L2(0,∞)}

where

K(t, u;L2(Γ), H1
0 (Γ))2 = inf

u0+u1=u
{||u0||2L2(Γ) + t2||u1||2H1

0 (Γ)}.
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The interpolation space can be equipped with the norm

||u||
H

1/2
00 (Γ)

= ||u||2L2(Γ) +

∫ ∞

0

t−2K(t, u;L2(Γ), H1
0 (Γ))2dt.

Remark4.3.4. If u ∈ H1/2(∂Ω) vanishes almost everywhere on∂Ω \ Γ, then it can be

shown that the two norms||u||H1/2(∂Ω) and||u||
H

1/2
00 (Γ)

are equivalent norms.

The following lemma relates theH1 seminorm of a finite element function inu ∈
H1(Ω) with the seminorm of its trace onΓ.

Lemma 4.3.5. There exist two constantC1 andC2, depending only on the shape ofΩ and

not on its size, such that

C1|uΓ|H1/2(Γ) ≤ |u|H1(Ω) ≤ C2|uΓ|H1/2(Γ)

for everyuΓ ∈ H1/2(Γ) which is the trace onΓ of a finite element functionu ∈ H1(Ω).

We note that the proof of the following lemma relates for the first inequality on the trace

theorem given in lemma 4.3.2 and some scaling arguments; forthe second inequality, some

regularity results for the Laplace problem with appropriate boundary conditions must be

employed. In particular, anH3/2(Ω) regularity for the Laplace problem with non homoge-

nous Dirichlet boundary conditions is needed whenΓ coincides with∂Ω; otherwise, ifΓ

is a proper subset of∂Ω, anH3/2(Ω) regularity result for the Laplace problem with mixed

Dirichlet (onΓ) and Neumann (on∂Ω\Γ) boundary conditions is needed. A suitable result

for the mixed problem for three-dimensional polyhedral domains can be found in [24] or

in [25]. For the proof of the latter lemma, see Lemma 4.6 in [140] and references therein.

The following lemma is known in literature as Poincarè-Friedrichs inequality. For sim-

plicity, we will only present the results for three-dimensional domains.

Lemma 4.3.6. Let Ω ⊂ R
3 be Lipschitz continuous with diameterH andu ∈ H1(Ω).

Then, there exist a constantC that depend only on the shape ofΩ but not on its size such

that:

||u||2L2(Ω) ≤ CH2|u|2H1(Ω)

if u has vanishing mean value onΩ or vanishes on a two dimensional subsetΓ of ∂Ω with

non-vanishing measure.

Finally, in order to give estimates for the condition numberof the preconditioned Schur

system, we must employ some results which relates the norm ofa conforming finite element

solution of an elliptic second order problem on the faces andedges of the subdomains plus

estimates for the dofs on the vertices. Unless otherwise stated, their proofs can be found in

[140]. We first proceed with face terms. The following Lemma can be found in [13].

Lemma 4.3.7. For any faceF of a parallelepipedal domainΩ, there exist a finite element

functionϑF ∈ V h(Ω) that equals 1 at the nodal points ofF , vanishes on∂Ω \ F and
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satisfies for anyu ∈ V h(Ω)

||Ih(ϑFu)||2H1/2
00 (F)

≤ C(1 + log(H/h))2
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

and

||Ih(ϑF (u− uF ))||2
H

1/2
00 (F)

≤ C(1 + log(H/h))2|u|2H1(Ω)

whereuF is the average value ofu onF .

Lemma 4.3.8. LetE be an edge ofΩ; then there exist a constantC, independent ofh and

H , such that for anyu ∈ V h(Ω)

||u||2L2(E) ≤ C(1 + log(H/h))
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

and

||u− uE ||2L2(E) ≤ C(1 + log(H/h))|u|2H1(Ω)

whereuE is the average value ofu onE .

Given an edgeE of Ω, let ϑE ∈ V h(Ω) be the finite element function that vanishes at

all nodes ofΩ except on the nodes ofE where it takes the value 1. Then the following will

hold:

Lemma 4.3.9. Let E be an edge ofΩ andu any finite element function inV h(Ω). Then

there exist a constantC, independent ofh andH , such that

|Ih(ϑEu)|2H1/2(Γ) ≤ C||u||2L2(E)

Finally, we need a result for a vertexV of Ω. As for the edges, we introduce a finite

element cut-off functionϑV ∈ V h(Ω) which vanishes at all nodes ofΩ except on the vertex

V where it takes the value 1. Then the following result will hold:

Lemma 4.3.10.LetV be a vertex ofΩ and letu ∈ V h(Ω). Then there exist a constantC

independent ofh andH such that

|u(V)ϑV |2H1/2(Γ) ≤ C
(
|u|2H1(Ω) +H−2||u||2L2(Ω)

)

4.4 A Neumann-Neumann preconditioner for the

Monodomain model

In this Section we will introduce the basic ingredients of a Neumann-Neumann precondi-

tioner for the Monodomain problem. Recall (see Section 2.4)that the local bilinear forms

ai(·, ·) are given in this case by

ai(u, v) =

∫

Ωi

Dm∇u · ∇v + γ

∫

Ωi

uv
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whereγ = 1/δt. By subassembly, they define the assembled elliptic formamono(·, ·) given

in formula (2.22): the resulting Schur symmetric elliptic bilinear form onŴΓ is obtained

restricting the bilinear formamono(·, ·) on the subspace of piecewise discrete harmonic

functions as in eq. (4.13).

Neumann-Neumann (NN) domain decomposition methods are a widely used family of

preconditioners for Schur complement matrices in two and three dimensions. From a com-

putational viewpoint, these preconditioners solve a Neumann problem on each subdomain

(see section 4.8), and hence the name; in addition a Dirichlet problem must be solved on

each subdomain in the application of the Schur matrix. From the viewpoint of Schwarz

subspace methods (see e.g. [130]), a Neumann-Neumann preconditioner has the structure

of an additive Schwarz preconditioner forŜΓ. An abstractadditive Schwarzpreconditioner

is specified by a decomposition of the spaceŴΓ into the subspacesW(i)
Γ and by symmetric

elliptic bilinear formss̃i(·, ·) defined onW(i)
Γ as

s̃i(u
(i)
Γ , v

(i)
Γ ) = si(δiu

(i)
Γ , δiv

(i)
Γ ); (4.14)

in an abstract Schwarz framework we are using inexact local solvers on each subdomain.

Clearly, from definition (4.13)

S(uΓ, vΓ) =

N∑

i=1

s̃i(R
(i)
D,ΓuΓ, R

(i)
D,ΓvΓ).

For the Monodomain discretization, each subdomain bilinear form s̃i(·, ·) is continuous

and positive definite: therefore each local variational problem defined bỹsi(·, ·) will be well

defined and it will have a unique solution due to the Lax-Milgram Lemma. The Schwarz

framework then introduces a projection-like operator on each subdomain

Pi = R
(i)T

Γ P̃i

given by the local problem

s̃i(P̃iuΓ, v
(i)
Γ ) = S(uΓ, R

(i)T

Γ v
(i)
Γ ), ∀ v(i)

Γ ∈ W(i)
Γ . (4.15)

It can be easily proved (see [140]) that eachPi can be written in matrix form as

Pi = RT
D,Γ(i)S

(i)−1

RD,Γ(i) ŜΓ (4.16)

and then the partition of unity Neumann-Neumann abstract Schwarz operator can be de-

fined by:

PNN =
N∑

i=1

Pi. (4.17)

Moreover, eachPi will be selfadjoint with respect to the scalar product induced byS(·, ·).
Taking into account the Schur complement operator defined onthe product spaceWΓ as
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subd PCG-BJ PCG-AS PCG-NN Schur

it ||r||2 ||e||2 it ||r||2 ||e||2 it ||r||2 ||e||2

2x2x2 15 1.4E-13 3.7E-9 9 3.1E-13 8.7E-9 4 4.8E-14 2.7E-11
8x1x1 4 3.7E-15 3.1E-12
1x8x1 4 3.3E-15 2.6E-12
1x1x8 2 2.6E-15 1.5E-12

Table 4.2:Comparison between different solvers for the Monodomain model. Test case considered:h =1E-2,
global grid 17x17x17, random right-hand side, null initialguess and absolute residual tolerance 1E-8. Subdomains
subdivision in the three dimensions is showed on the left. For each solver, number of iteration, euclidean residual
||r||2 and exact error||e||2 norms are shown.

in equation (4.8), the action of the standard one-level Neumann-Neumann preconditioner

MNN on the residual can be represented by:

M−1
NN = RT

D,ΓS
−1RD,Γ =

N∑

i=1

RT
D,Γ(i)S

(i)−1

RD,Γ(i) , (4.18)

and thus

PNN = M−1
NN ŜΓ.

The use of the scaling means that we partition the residual onthe interface and then, after

solving the local problems, we restore the continuity across the interface averaging the

resulting values.

Remark4.4.1. Test results for the one-level Neumann-Neumann preconditioner applied to

the conjugate gradient solution of the Schur complement of the Monodomain model are

shown in Table 4.2, together with the results of other one-level preconditioners such as

Block Jacobi (BJ) and the Additive Schwarz (AS) applied to the global system, in order

to give a comparison among widely used one-level preconditioners. NN preconditioner

performs better than the other two preconditioners considered, either in terms of number

of iterations or of accuracy. Moreover, since the conductivity coefficients are constants

on all the slab and the principal axes of conduction are constant on plane parallel to the

(x, y)−axis, thestrip-like decomposition performs better than the other type of decompo-

sitions as expected, due to the layer structure of the modeled conduction system (see [88]

Section 3.8.6).
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4.5 Monodomain theoretical estimates

In the Schwarz framework, bounds for the condition number ofthe additive operatorPNN

given in eq. (4.17) are derived by considering the linear system

PNNuΓ = M−1
NN ĝΓ

which is equivalent to system (4.10), and estimating the minimumλm and maximumλM

eigenvalue for the Rayleigh quotient associated toPNN in the inner product generated by

the Schur complement, i.e.

λmS(uΓ, uΓ) ≤ S(PNNuΓ, uΓ) ≤ λMS(uΓ, uΓ), ∀uΓ ∈ ŴΓ, uΓ 6= 0 (4.19)

sincePNN is self-adjoint with respect toS(·, ·). We will adopt the abstract Schwarz results

only for the minimum eigenvalue. The maximum eigenvalue will be estimated directly as

in [140]. The next Lemma states a property known in the Schwarz framework asstable

decompositionwhich gives a lower bound for the minimum eigenvalueλm.

Lemma 4.5.1. Assume that there exist a constantC0 such that everyuΓ ∈ ŴΓ admits a

decomposition

uΓ =

N∑

i=1

R
(i)T

Γ v
(i)
Γ

that satisfies
N∑

i=1

s̃i(v
(i)
Γ , v

(i)
Γ ) ≤ C2

0S(uΓ, uΓ) (4.20)

with v(i)
Γ ∈ W(i)

Γ . Then

S(PNNuΓ, uΓ) ≥ C−1
0 S(uΓ, uΓ)

that isλm ≥ C−1
0 .

Proof. See Lemma 2.5 in [140].

Recalling that

PNNuΓ = M−1
NN ŜΓuΓ = RT

D,ΓS
−1RD,ΓŜΓuΓ

we can definew ∈ WΓ locally as

wi = S(i)−1
D(i)R

(i)
Γ ŜΓuΓ. (4.21)

Then, it follows easily that

EDw = PNNuΓ (4.22)

whereED is the average operator introduced in eq (4.3). Define also the Schur seminorm
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onWΓ as

|w|2S =

N∑

i=1

|wi|2S(i) , ∀w ∈ WΓ

where

|wi|2S(i) = si(wi, wi).

Note that, ifw ∈ ŴΓ, than by subassembly we will have|w|2S = S(w,w).

An auxiliary result for the upper bound ofPNN is given by the following Lemma. We

will write u . w wheneveru ≤ Cw with C independent ofh, H , δt, the conductivity

coefficients and the numberN of subtructures. In order to simplify the notations and

the discussion, we will assume that the conductivity coefficients have no jumps across

substructures. The jumping coefficients case will be analyzed later in Remark 4.5.4.

Lemma 4.5.2. Letw ∈ WΓ be defined as in formula (4.21). Then for the Monodomain

model

|EDw|2S .
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

whereσM andσm are the maximum and minimum eigenvalue of the diffusion tensor given

in eq. (2.11) andδt is the time step.

Proof. As in [140], we will give bounds for each substructure contribution toEDw: more

precisely we will estimate each contribution|vi|2S(i) where

vi(x) = (EDw(x))i =
∑

j∈Nx

Ih(δj(x)
†wj(x))

Using the cut-off functionsϑ• ( • = F , E ,V ) introduced in Section 4.3, we can split the

boundary vectorvi in a sum of face, edge and vertex components:

vi =
∑

F⊂Γ(i)

Ih(ϑFvi) +
∑

E⊂Γ(i)

Ih(ϑEvi) +
∑

V⊂Γ(i)

Ih(ϑVvi).

Since eachsi(·, ·) is positive definite, it follows that

|vi|2S(i) .
∑

F⊂Γ(i)

|Ih(ϑFvi)|2S(i) +
∑

E⊂Γ(i)

|Ih(ϑEvi)|2S(i) +
∑

V⊂Γ(i)

|Ih(ϑVvi)|2S(i) .

We will estimate the contribution of faces, edges and vertices separately. The coercivity

and continuity for the local Schur bilinear forms of the Monodomain model yields (see

Remark 2.4.4):

si(u
(i)
Γ , u

(i)
Γ ) ≥ σm|Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

si(u
(i)
Γ , u

(i)
Γ ) ≤ σM |Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

(4.23)

whereσm andσM are the minimum and maximum eigenvalue for the diffusion tensor

andγ = 1/δt. For each of the functionsIh(ϑ•vi) the Poincarè-Friedrichs inequality (see
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Lemma 4.3.6) holds since these functions vanish on a subset of ∂Ω:

||HiI
h(ϑ•vi)||2L2(Ωi)

. H2|HiI
h(ϑ•vi)|2H1(Ωi)

and thus, for Lemma 4.3.5

|Ih(ϑ•vi)|2S(i) . (σM +H2γ)|Ih(ϑ•vi)|2H1/2(Γ(i)). (4.24)

Face terms. For the face terms, noting that∀x ∈ Γ(i)

δ†i (x) ≤ 1 ∀i ∈ {1, . . . , N}

we can use Remark 4.3.4 and Lemma 4.3.7 and obtain

|Ih(ϑFvi)|2H1/2(Γ(i)) . ||Ih(ϑFvi)||2H1/2
00 (F)

. ||Ih(ϑFwi)||2H1/2
00 (F)

+ ||Ih(ϑFwj)||2H1/2
00 (F)

. (1 + log(H/h))2
(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

+ (1 + log(H/h))2
(
|Hjwj |2H1(Ωj) +H−2||Hjwj ||2L2(Ωj)

)
.

Therefore, ifH2γ ≤ σm

(1 + log(H/h))−2|Ih(ϑFvi)|2S(i)

.
σM +H2γ

H2γ

(
H2γ|Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

+
σM +H2γ

H2γ

(
H2γ|Hjwj |2H1(Ωj)

+ γ||Hjwj ||2L2(Ωj)

)

and thus

|Ih(ϑFvi)|2S(i) .
σM +H2γ

H2γ
(1 + log(H/h))2

(
|wi|2S(i) + |wj |2S(j)

)
.

Otherwise, ifH2γ ≥ σm

(1 + log(H/h))−2|Ih(ϑFvi)|2S(i)

.
σM +H2γ

σm

(
σm|Hiwi|2H1(Ωi)

+H−2σm||Hiwi||2L2(Ωi)

)

+
σM +H2γ

σm

(
σm|Hjwj |2H1(Ωj)

+H−2σm||Hjwj ||2L2(Ωj)

)

and thus

|Ih(ϑFvi)|2S(i) .
σM +H2γ

σm
(1 + log(H/h))2

(
|wi|2S(i) + |wj |2S(j)

)
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Therefore, for the face terms, we will have

|Ih(ϑFvi)|2S(i) .
σM +H2γ

min{H2γ, σm}(1 + log(H/h))2
(
|wi|2S(i) + |wj |2S(j)

)
(4.25)

Edge terms. For the edges, we can proceed as in [140] using Lemmas 4.3.9 and a triangle

inequality to bound

|Ih(ϑEvi)|2H1/2(Γ(i)) .
∑

k∈KE

||wk||2L2(E)

whereKE is the set of subdomain indices sharing edgeE . Now, using eq. (4.24), Lemma

4.3.8 and the same arguments on the interaction betweenH2γ andσm as before we find

|Ih(ϑEvi)|2S(i) .
σM +H2γ

min{H2γ, σm} (1 + log(H/h))
∑

k∈KE

|wk|2S(i) (4.26)

Vertex terms. Similarly, using Lemma 4.3.10 we bound also the vertex components as

|Ih(ϑVvi)|2S(i) .
σM +H2γ

min{H2γ, σm}
∑

k∈KV

|wk|2S(i) (4.27)

whereKV is the set of subdomain indices sharing vertexV .

Therefore the thesis follows using estimates (4.25), (4.26) and (4.27) and summing over

faces, edges and vertices ofΩi and then over the substructures noting that

σM +H2γ

H2γ
=
σMδt +H2

H2

and
σM +H2γ

σm
=
σMδt +H2

σmδt

We are then ready to prove the main theorem for the one-level Neumann-Neumann

preconditioner applied to the Schur complement of the Monodomain model.

Theorem 4.5.3.The condition number of the preconditioned Schur complement system of

the Monodomain model satisfies:

κ2(M
−1
NN ŜΓ) .

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2 (4.28)

Proof. Lower Bound. A partition of unity NN preconditioner has the advantage that a

stable decomposition is immediately available withC0 = 1. In fact, choosing

v
(i)
Γ = δ†iR

(i)
Γ uΓ

in Lemma 4.5.1, we will have

uΓ =

N∑

i=1

R
(i)T

Γ v
(i)
Γ
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and by subassembly

N∑

i=1

s̃i(v
(i)
Γ , v

(i)
Γ ) =

N∑

i=1

si(R
(i)
Γ uΓ, R

(i)
Γ uΓ) = S(uΓ, uΓ).

This implies thatλm in (4.19) is exactly one.

Upper Bound. Using the definitions ofw given in eq. (4.21) and of the operatorsP̃i

given in eq. (4.15) we have

|w|2S =
N∑

i=1

si(wi, wi) =
N∑

i=1

si(D
(i)−1

P̃iwi, D
(i)−1

P̃iwi)

=

N∑

i=1

S(uΓ, R
(i)T

Γ P̃iuΓ) = S(PNNuΓ, uΓ).

(4.29)

Therefore using the latter result, eq. (4.22) and Lemma 4.5.2 we have

S(PNNuΓ, PNNuΓ) = |PNNuΓ|2S = |EDw|2S

.
σM δt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

=
σM δt +H2

min{H2, σmδt}
(1 + log(H/h))2S(PNNuΓ, uΓ)

and thus, since for the Cauchy-Schwarz inequality holds that

S(PNNuΓ, uΓ) ≤ S(PNNuΓ, PNNuΓ)1/2S(uΓ, uΓ)1/2

we will have, canceling a common term and squaring,

S(PNNuΓ, uΓ) .
σM δt +H2

min{H2, σmδt}
(1 + log(H/h))2S(uΓ, uΓ)

and thus the maximum eigenvalue of the Rayleigh quotient (4.19) can be bounded by

λM .
σM δt +H2

min{H2, σmδt}
(1 + log(H/h))2.

Remark4.5.4. In Lemma 4.5.2, we assumed that the conductivity coefficients were con-

stants among the substructures to simplify the notations. Now, we will analyze the case of

discontinuous conductivity coefficients with jumps aligned with the interface. Before we

didn’t use any particular choice of the partition of unity coefficients but we only used the

coefficients were all less than one; now we will use as partition of unity

δ†i (x) =
σ

(i)
M∑

j∈Nx
σ

(j)
M
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whereσ(i)
M is the maximum eigenvalue of the diffusion tensor of thei-th substructure. We

did not explore the possibility of using representative values which includes terms withδt

since the time step is the same for all substructures. For thechoice made for partition of

unity, the following property holds (see [140])

σ
(i)
M δ†

2

j ≤ min{σ(i)
M , σ

(j)
M } ∀i, j ∈ {1, . . . , N}. (4.30)

The coercivity and continuity for the local Schur bilinear forms now reads

si(u
(i)
Γ , u

(i)
Γ ) ≥ σ(i)

m |Hiu
(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

si(u
(i)
Γ , u

(i)
Γ ) ≤ σ

(i)
M |Hiu

(i)
Γ |2H1(Ωi)

+ γ||Hiu
(i)
Γ ||2L2(Ωi)

whereσ(i)
m is the minimum eigenvalue for the diffusion tensor of thei-th substructure and

γ = 1/δt. We proceed similarly to Lemma 4.5.2 using the Poincarè-Friedrichs inequality

and the trace theorem 4.3.5 bounding from above the local Schur seminorm

|Ih(ϑ•vi)|2S(i) . (σ
(i)
M +H2γ)|Ih(ϑ•vi)|2H1/2(Γ(i)) = σ

(i)
M (1+

H2γ

σ
(i)
M

)|Ih(ϑ•vi)|2H1/2(Γ(i)).

We will only present the algebra related to the face terms: edges and vertices can be treated

similarly. For the face terms we proceed as before and use in addition eq. (4.30)

σ
(i)
M |Ih(ϑFvi)|2H1/2(Γ(i)) . σ

(i)
M ||Ih(ϑFvi)||2H1/2

00 (F)

. σ
(i)
M δ†

2

i ||Ih(ϑFwi)||2H1/2
00 (F)

+ σ
(i)
M δ†

2

j ||Ih(ϑFwj)||2H1/2
00 (F)

. σ
(i)
M (1 + log(H/h))2

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

+ σ
(j)
M (1 + log(H/h))2

(
|Hjwj |2H1(Ωj)

+H−2||Hjwj ||2L2(Ωj)

)
.

Now consider only thei-th term of the previous summation disregarding the(1+log(H/h))2

factor. IfH2γ ≤ σ
(i)
m

σ
(i)
M

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

.
σ

(i)
M

H2γ

(
H2γ|Hiwi|2H1(Ωi)

+ γ||Hiwi||2L2(Ωi)

)

.
σ

(i)
M

H2γ

(
σ(i)

m |Hiwi|2H1(Ωi)
+ γ||Hiwi||2L2(Ωi)

)

=
σ

(i)
M

H2γ
|wi|2S(i)
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Otherwise, ifH2γ ≥ σ
(i)
m

σ
(i)
M

(
|Hiwi|2H1(Ωi)

+H−2||Hiwi||2L2(Ωi)

)

.
σ

(i)
M

σ
(i)
m

(
σ(i)

m |Hiwi|2H1(Ωi)
+H−2σ(i)

m ||Hiwi||2L2(Ωi)

)

.
σ

(i)
M

σ
(i)
m

(
σ(i)

m |Hiwi|2H1(Ωi)
+ γ||Hiwi||2L2(Ωi)

)

=
σ

(i)
M

σ
(i)
m

|wi|2S(i)

For thej-th term we can do the same and, supposing thatσ
(i)
m ≤ σ

(j)
m , and denoting by

M1 = max
•=i,j

{σ
(•)
M

σ
(•)
m

+
H2γ

σ
(•)
m

}

M2 =
max•=i,j{σ(•)

M }
H2γ

M3 = max{M1,M2}

we obtain

|Ih(ϑFvi)|2S(i) .





CM1

(
|wi|2S(i) + |wj |2S(j)

)
if σ(j)

m ≤ H2γ

CM3

(
|wi|2S(i) + |wj |2S(j)

)
if σ(i)

m ≤ H2γ ≤ σ
(j)
m

CM2

(
|wi|2S(i) + |wj |2S(j)

)
if σ(i)

m ≥ H2γ

whereC = (1+log(H/h))2. Since for edges and vertices we will obtain the same qualita-

tive estimates, we conclude that for the Monodomain model with discontinuous coefficients

it will hold

|EDw|2S . max{M1,M2}(1 + log(H/h))2|w|2S .

Remark4.5.5. We note that, for very smallδt, the Monodomain operator is dominated by

theL2 term, and thus no preconditioning is needed at all. The estimates developed in this

Section have a leading term ofH2/(σmδt), which can get very large for smallδt, coming

from the inequality (4.24) which is needed to work with traceseminorms.

4.6 A Balancing Neumann-Neumann preconditioner for

the Bidomain model

In this section we will construct Balancing Neumann-Neumann preconditioners for the

Bidomain model. Recall (see Section 2.4) that the local bilinear formsaj(·, ·) are given by

aj(u, v) =

∫

Ωj

D
(j)
i ∇ui · ∇vi +

∫

Ωj

D(j)
e ∇ue · ∇ve + γ

∫

Ωj

(ui − ue)(vi − ve).
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whereγ = 1/δt andD(j)
i,e are the anisotropic diffusion tensors (see eq. (2.1)) of thejth sub-

structure with associated conductivity coefficientsσi,e(j)

l , σi,e(j)

t , σi,e(j)

n . In case of constant

conductivity coefficients, the local bilinear forms define by subassembly the assembled el-

liptic form abido(·, ·) given in formula (2.25): since the resulting Schur symmetric elliptic

bilinear form onŴΓ is obtained restricting the bilinear formabido(·, ·) on the subspace of

piecewise discrete harmonic functions as in eq. (4.13), from the definition of piecewise

discrete harmonic extensions and Remark 4.2.7, we must choose the finite element space

as

Ŵ = Vh(Ω) × Vh(Ω)/R.

in order to makeS(·, ·) an inner product on̂WΓ. While the one-level Neumann-Neumann

preconditionerPNN has the structure of an additive Schwarz preconditioner, a Balancing

Neumann-Neumann (BNN) preconditioner can be viewed as an hybrid Schwarz precondi-

tioner for ŜΓ. It is specified by the same additive decomposition of the spaceŴΓ into the

subspaces defined for the Neumann-Neumann preconditioner combined, in a multiplicative

way, to acoarse spaceW(0)
Γ (see e.g. [130]). The latter plays a special role, providinga

mechanism of global transport of information between the subdomains and assuring the

well posedness of Neumann-Neumann additive Schwarz operator PNN , providing com-

patible right hand sides in the case of singular local problems; moreover, a suitable choice

of coarse space will provide quasi-optimal bounds for the condition number of the precon-

ditioned Bidomain operator as a function of the subtructures’ diameterH .

For the Bidomain model each local projection-like operatorP̃juΓ as in eq. (4.15) can

be defined only for thoseuΓ ∈ ŴΓ for which

S(uΓ, R
(j)T

D,Γ 1Γ(j) ) = 0

since the local Schur systems are singular with a null space spanned by the constant vec-

tors (see Remark 4.2.7). A right hand side for the local problems (4.15) satisfying these

compatibility conditions is said to bebalanced. Then a solution will exist for each local

problem, though it will not be unique, as any scalar multipleof the null space may be added

to. The non-uniqueness of the local solutions can be formalized using the pseudo-inverses

S(j)† of S(j) (see e.g. [43]) and the action of the local operators can be written as

Pj = RT
D,Γ(j)S

(j)†RD,Γ(j) ŜΓ.

As pointed out in [140], the choice of this local solution will not affect the algorithm at all;

it will be only required for the analysis. See Lemmas 4.7.3 and 4.7.4 for additional details.

In order to assure balancing, we must include in the coarse space the local constant

vectors scaled with the partition of unity; thus a minimal coarse space for the Bidomain

model is

W(0)
Γ,n = span{R(j)T

D,Γ 1Γ(j) | j = 1, . . . , N}. (4.31)

In the following, we will refer to the spaceW(0)
Γ,n asnaturalcoarse space. A natural coarse
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functionu(0) ∈ W(0)
Γ,n will thus be identified by a vectorα = (α1, . . . , αN ) having one

component for each substructure and we will write

u(0) =
N∑

j=1

αjR
(j)T

D,Γ 1Γ(j) =
N∑

j=1

R
(j)T

D,Γ αj1Γ(j) .

In order to obtain quasi-optimal bounds for the condition number as a function of the sub-

structures diameterH (see Lemma 4.7.4 for details) we will also consider anenriched

coarse space given by

W(0)
Γ,e = span{R(j)T

D,Γ 1Γ(j) , R
(j)T

D,Γ 1∗Γ(j) | j = 1, . . . , N}, (4.32)

where1∗Γ(j) ∈ W(j)
Γ is the vector which equals one for the intracellular component and

minus one for the extracellular component. An enriched coarse functionu(0) ∈ W(0)
Γ,e will

be identified by a vectorα = (α1,1, α1,2, . . . , αN,1, αN,2) with two components for each

substructure (one for each vector defining the coarse basis functions) and we will write

u(0) =

N∑

j=1

R
(j)T

D,Γ (αj,11Γ(j) + αj,21∗Γ(j)) .

Given a coarse space, either the naturalW(0)
Γ,n or the enrichedW(0)

Γ,e coarse space, the

Schwarz framework than construct the coarse bilinear form by projecting the Schur bilinear

form on the coarse basis functions

s0(α, β) = S(R
(0)T

Γ α,R
(0)T

Γ β)

whereα andβ are coarse vectors, or in matrix form as

S(0) = R
(0)
Γ ŜΓR

(0)T

Γ (4.33)

whereR(0)T

Γ is the matrix formed columnwise by the coarse basis functions. Note that we

must employ an exact solver for matrix (4.33) in order to assure balancing and make the

resulting coarse operator a projection.

Remark4.6.1. Using the fundamental property of the partition of unity given in eq. (4.2),

we can easily show that the Bidomain coarse problem will be singular. Consider for sim-

plicity the natural coarse space (4.31) and the coarse constant vector1, it will hold

S(0)1 = R
(0)
Γ ŜΓR

(0)T

Γ 1 = R
(0)
Γ ŜΓ1Γ = R

(0)
Γ 0Γ = 0.

The same will hold also for the enriched coarse space (4.32),which will have a null space

spanned by the coarse vector

(1, 0, . . . , 1, 0)
T
.
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Remark4.6.2. The choice of the partition of unity can enlarge the null space of the resulting

coarse problem. Take for example the usual counting function as partition of unity for both

the intra- and extracellular components, i.e. formula (4.1) with ai,e
j (x) = 1 ∀ j = 1, . . . , N

and∀x ∈ Γ(j) and, for simplicity, the natural coarse space (4.31). Then the coarse vector

with a checkerboard pattern of +1 and -1 values will generatethe null interface vector, and

thus it will span the null space of the coarse problem. In order to guarantee that the null

space of the coarse problem will be generated only by the nullspace of the Schur system

and, therefore, that the coarse problem will be solvable, wemust choose a representative

value for nodex which will yield a different coefficient of partition of unity at least on the

vertices of the substructures. A possible choice for the representative values of the intra-

and extra-cellular components is

ai
j(x) =

∫

Ωj

D
(j)
i ∇φx · ∇φx

ae
j(x) =

∫

Ωj

D(j)
e ∇φx · ∇φx

(4.34)

whereφx is the finite element function which is zero elsewhere unlessat x where it takes

on the value1.

Remark4.6.3. For the definition of the representative valuesai,e
j (x) given in eq. (4.34), it

follows easily that

σi,e(j)

M δi,e
k

†
(x)2 . min{σi,e(j)

M , σi,e(k)

M } ∀x ∈ Γ(j), (4.35)

whereσi,e(j)

M are the maximum eigenvalues of the tensorsD
(j)
i,e . In fact, it is possible to

show that the representative values given in formula (4.34)can be estimated for linear

finite elements as

cσi,e(j)

M h ≤ ai,e
j (x) ≤ Cσi,e(j)

M h (4.36)

with positive constantsc andC independent from the discretization steph and the conduc-

tivity coefficients of the tensors. In details, since∀ x ∈ Ωj we can split the gradient

∇φx = βlal(x) + βtat(x) + βnan(x)

using the orthonormal triplet of the fibers{al(x), at(x), an(x)} (see Sections 2.1.1 and 2.4

for additional details), due to the definition of the conductivity tensors given in eq. (2.1),

we will have

D
(j)
i,e∇φx · ∇φx = σi,e(j)

l β2
l + σi,e(j)

t β2
t + σi,e(j)

n β2
n.

Thus estimate (4.36) follows, since

σi,e(j)

M = max
•=l,t,n

σi,e(j)

•
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and there exist positive constantsc andC independent fromh such that

ch−2 ≤ β2
l,t,n ≤ Ch−2.

Then, using (4.36) we obtain

σi,e(j)

M δi,e
k

†
(x)2 ≤ σi,e(j)

M

(
Cσi,e(k)

M h
∑

l∈Nx
cσi,e(l)

M h

)2

. σi,e(j)

M

(
σi,e(k)

M∑
l∈Nx

σi,e(l)

M

)2

and thus eq. (4.35) follows using formula (4.30) for each component.

The projection operatorP0 can be written as

P0 = R
(0)T

Γ S(0)†R
(0)
Γ ŜΓ (4.37)

where we employed a pseudo-inverse to take into account the singularity of the coarse

problem. The following properties will hold forP0, either with natural or enriched coarse

space. We provide their proofs since in domain decomposition literature (see e.g. [140])

they have been proved for nonsingular coarse matrices.

Lemma 4.6.4. The operatorP0 is theŜΓ-orthogonal projection on the spaceW(0)
Γ and it

holds:
P 2

0 = P0

S(P0uΓ, vΓ) = S(uΓ, P0vΓ)

S(P0uΓ, vΓ) = S(P0uΓ, P0vΓ)

Proof. For the first equality, a fundamental property of pseudoinverses (see e.g. [43]) states

S(0)†S(0)S(0)† = S(0)†

thus for the definition ofS(0) given in eq. (4.33)

P 2
0 = R

(0)T

Γ S(0)†R
(0)
Γ ŜΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓ = R

(0)T

Γ S(0)†S(0)S(0)†R
(0)
Γ ŜΓ = P0.

For the second equality

S(P0uΓ, vΓ) = uT
ΓP

T
0 ŜΓvΓ = uT

Γ Ŝ
T
ΓR

(0)T

Γ S(0)†
T

R
(0)
Γ ŜΓvΓ.

Since pseudoinversion commutes with the transposition (see e.g. [133]) and the matrix̂SΓ

is symmetric, we deduce that

S(0)† = S(0)†
T

and thus

S(P0uΓ, vΓ) = uT
Γ ŜΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ = S(uΓ, P0vΓ).
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Regarding to the third equality, using the definition ofS(0) and the fundamental property

of the pseudoinverses we obtain

S(P0uΓ, P0vΓ) = uT
ΓP

T
0 ŜΓP0vΓ

= uT
Γ Ŝ

T
ΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ

= uT
Γ Ŝ

T
ΓR

(0)T

Γ S(0)†S(0)S(0)†R
(0)
Γ ŜΓvΓ

= uT
Γ Ŝ

T
ΓR

(0)T

Γ S(0)†R
(0)
Γ ŜΓvΓ

= S(P0uΓ, vΓ).

TheBalancing Neumann-Neumannabstract hybrid Schwarz operatorPBNN can then

be stated as (see [140] and [88])

PBNN = P0 + (I − P0)PNN (I − P0). (4.38)

or equivalently

PBNN = M−1
BNN ŜΓ.

whereM−1
BNN is the preconditioner.

Remark4.6.5. Because of the definition of the projection operatorP0 given in eq. (4.37),

at each application of the BNN preconditioner the right handside of the coarse problem

will result compatible to the singular coarse matrix since for any vectorvΓ ∈ range(ŜΓ) it

will hold

1T
ΓvΓ = 0.

Remark4.6.6. Due to the second application of(I − P0) in eq. (4.38), we can add any

linear combination of the coarse basis functions to the output of the additive operatorPNN

without affecting the Balancing Neumann-Neumann operatorPBNN , which can thus be

equivalently expressed with the enriched coarse space as

P ∗
BNN = P0 + (I − P0)P

∗
NN (I − P0), (4.39)

with

P ∗
NNvΓ = PNNvΓ +

N∑

j=1

R
(j)T

D,Γ (αj,11Γ(j) + αj,21∗Γ(j)) .

For the theoretical analysis of the next Section, we will need only αj,2 6= 0 and we will

thus write

P ∗
NNvΓ = PNNvΓ +

N∑

j=1

R
(j)T

D,Γ αj1∗Γ(j) . (4.40)
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subd CG Schur PCG-BNN Schur

it ||r||2 ||e||2 ||e||∞ it ||r||2 ||e||2 ||e||∞

2x2x2 73 9.5E-9 1.1E-3 5.1E-5 19 6.9E-14 4.2E-9 3.5E-10
8x1x1 111 8.1E-9 1.7E-3 8.7E-5 34 7.7E-14 4.3E-9 1.7E-10
1x8x1 112 9.8E-9 2.1E-3 7.5E-5 36 4.1E-14 4.5E-9 2.1E-10
1x1x8 101 8.8E-9 2.7E-3 1.1E-4 7 1.7E-14 1.2E-9 3.9E-11

Table 4.3:Comparison between different solvers for the Schur complement of the Bidomain model. Test case
considered:h =1E-2, global grid 17x17x17, random right-hand side, null initial guess and absolute residual
tolerance 1E-8. Subdomains subdivision in the three dimensions is showed on the left. For each solver, number of
iteration, euclidean residual||r||2 and exact error||e||2 norms, infinity norm of the exact error||e||∞ are shown.

Remark4.6.7. First test results for the BNN preconditioner with the natural coarse space

applied to the Schur complement of the Bidomain model are shown in Table 4.3, together

with the results of the unpreconditioned Schur complement.As for the NN preconditioner,

thestrip-like decomposition performs better than the other type of decompositions as ex-

pected, due to the layer structure of the modeled conductionsystem (see [88] Section 3.8.6).

4.7 Bidomain theoretical estimates

As for the additivePNN operator introduced for the Monodomain model we will consider

the solution of the equivalent preconditioned systems

PBNNuΓ = M−1
BNN ĝΓ

for the natural coarse space (4.31) and

P ∗
BNNuΓ = M∗−1

BNN ĝΓ

for the enriched coarse space (4.32); since bothPBNN andP ∗
BNN are self-adjoint in the

inner productS(·, ·) generated bŷSΓ onŴΓ, their condition numbersκ2 andκ∗2 can be es-

timated as previously as the ratio of the largest and smallest eigenvalues of their generalized

Rayleigh quotient, i.e. for the natural coarse space

λmS(uΓ, uΓ) ≤ S(PBNNuΓ, uΓ) ≤ λMS(uΓ, uΓ), ∀uΓ ∈ ŴΓ, uΓ 6= 0ŴΓ
, (4.41)
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and for the enriched coarse space

λ∗mS(uΓ, uΓ) ≤ S(P ∗
BNNuΓ, uΓ) ≤ λ∗MS(uΓ, uΓ), ∀uΓ ∈ ŴΓ, uΓ 6= 0ŴΓ

. (4.42)

We will need some auxiliary results; the next Lemma (borrowed from [88]) states that

we can estimate the lower and upper bounds of the operatorPNN (4.17) on the subspace

range(I − P0) in order to give bounds for the operatorPBNN .

Lemma 4.7.1. Suppose that exists positive real numberscm andcM such that

cm ≤ S(PNN (I − P0)uΓ, (I − P0)uΓ)

S((I − P0)uΓ, (I − P0)uΓ)
≤ cM

∀ uΓ ∈ ŴΓ. Thenλm ≥ min{cm, 1} andλM ≤ max{cM , 1}.

Proof. Using the definition ofPBNN given in eq (4.38) and the properties ofP0 given in

Lemma 4.6.4, we have

S(PBNNuΓ, uΓ) = S(P0 + (I − P0)PNN (I − P0)uΓ, uΓ)

= S(P0uΓ, uΓ) + S((I − P0)PNN (I − P0)uΓ, uΓ)

= S(P0uΓ, P0uΓ) + S(PNN (I − P0)uΓ, (I − P0)uΓ)

and

S(uΓ, uΓ) = S(P0uΓ, P0uΓ) + S((I − P0)uΓ, (I − P0)uΓ).

Thus from the hypothesis it follows

min{cm, 1} ≤ S(P0uΓ, P0uΓ) + S(PNN (I − P0)uΓ, (I − P0)uΓ)

S(P0uΓ, P0uΓ) + S((I − P0)uΓ, (I − P0)uΓ)
≤ max{cM , 1}

and thus the thesis follows.

Remark4.7.2. Due to Remark 4.6.6, in order to perform the theoretical analysis of the

BNN preconditioner with the enriched coarse space we will consider the operatorP ∗
NN

given in eq. (4.40). The results of Lemma 4.7.1 still hold; moreover

P ∗
NN (I − P0)uΓ = PNN (I + P0)uΓ +

N∑

j=1

R
(j)T

D,Γ αj1∗Γ(j)

= EDw + EDα1∗

= ED(w + α1∗),

(4.43)

where

α = (α1, . . . , αN ), αj ∈ R,

and1∗ ∈ WΓ is the vector with local components1∗Γ(j) .
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As previously done for the Monodomain model, we can definew ∈ WΓ locally as

wj = S(j)†D(j)R
(j)
Γ ŜΓ(I − P0)uΓ. (4.44)

An equality similar to eq. (4.22) holds by using the fundamental properties of the pseu-

doinverses (see [88] for further details), and thus we can write

EDw = PNN (I − P0)uΓ. (4.45)

We then proceed estimating the upper bound of the average operator. In order to sim-

plify the notations, we will first assume that the conductivity coefficients have no jumps

across substructures. We note that with the natural coarse space (4.31) we cannot obtain a

general bound in case of jumping coefficients with jumps aligned with the interface due to

more complicated nature of the Bidomain problem. However, we will derive such bounds

using the enriched coarse space (4.32).

Lemma 4.7.3. Letw ∈ WΓ be defined as in formula (4.44). Then for the Bidomain model

with natural coarse space (4.31) it will hold

|EDw|2S .
σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2|w|2S

whereσM = max{σi
M , σe

M} andσm = min{σi
m, σ

e
m} with σi,e

M andσi,e
m the maximum

and minimum eigenvalues of the intra- and extracellular diffusion tensors given in eq. (2.1),

andδt is the time step.

Proof. As already done in Lemma 4.5.2, we will estimate each contribution |vj |2S(j) where

vj(x) = (EDw)j(x) =

(
∑

k∈Nx

Ih(δi
k

†
(x)wi

k(x)),
∑

k∈Nx

Ih(δe
k
†(x)we

k(x))

)

whereδi
k andδe

k are the partition of unity coefficients andwi
k andwe

k are the the intra-

and extra-cellular components ofwj . Using splitting functions for each component of the

solution given by

Θ•vj = (ϑ•v
i
j , ϑ•v

e
j ),

where the cut-off functionsϑ• are given in Section 4.3, we can split (with an abuse of

notation on the lagrangian interpolator) the boundary vector vj in a sum of faces, edges

and vertices components, for both the intra and extracellular components:

vj =
∑

F⊂Γ(j)

Ih(ΘFvj) +
∑

E⊂Γ(j)

Ih(ΘEvj) +
∑

V⊂Γ(j)

Ih(ΘVvj)

Noting that eachsj(·, ·) defines a seminorm, it follows that

sj(u
(j)
Γ , v

(j)
Γ ) . sj(u

(j)
Γ , u

(j)
Γ ) + sj(v

(j)
Γ , v

(j)
Γ ) ∀u(j)

Γ , v
(j)
Γ ∈ W(j)

Γ
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therefore

|vj |2S(j) .
∑

F⊂Γ(j)

|Ih(ΘFvj)|2S(j) +
∑

E⊂Γ(j)

|Ih(ΘEvj)|2S(j) +
∑

V⊂Γ(j)

|Ih(ΘVvj)|2S(j)

The coercivity and continuity for the local Schur bilinear forms yields (see Remark 2.4.4):

sj(u
(j)
Γ , u

(j)
Γ ) ≥ σ

i
m|(Hju

(j)
Γ )i|2H1(Ωj ) + σ

e
m|(Hju

(j)
Γ )e|2H1(Ωj ) + γ||(Hju

(j)
Γ )i − (Hju

(j)
Γ )e||2L2(Ωj )

sj(u
(j)
Γ , u

(j)
Γ ) ≤ σ

i
M |(Hju

(j)
Γ )i|2H1(Ωj) + σ

e
M |(Hju

(j)
Γ )e|2H1(Ωj) + γ||(Hju

(j)
Γ )i − (Hju

(j)
Γ )e||2L2(Ωj)

whereσi
m, σi

M (respectivelyσe
m, σe

M ) are the minimum and maximum eigenvalues for the

intracellular (extracellular) diffusion tensors andγ = 1/δt. Noting that the function

(Hj(I
h(Θ•vj)))

i − (Hj(I
h(Θ•vj)))

e

vanishes on a two-dimensional subset ofΓ(j), we can use a Poincarè-Friedrichs inequality

(see Lemma 4.3.6) and obtain:

||(Hj(I
h(Θ•vj)))

i − (Hj(I
h(Θ•vj)))

e||2L2(Ωj)
.

H2|(Hj(I
h(Θ•vj)))

i|2H1(Ωj)
+H2|(Hj(I

h(Θ•vj)))
e|2H1(Ωj)

and thus we can work with theH1/2(Γ(j)) seminorm using Lemma 4.3.5:

|Ih(Θ•vj)|2S(j) . (σi
M +H2γ)|Ih(ϑ•v

i
j)|2H1/2(Γ(j)) + (σe

M +H2γ)|Ih(ϑ•v
e
j )|2H1/2(Γ(j))

. (σM +H2γ)
(
|Ih(ϑ•v

i
j)|2H1/2(Γ(j)) + |Ih(ϑ•v

e
j )|2H1/2(Γ(j))

)

whereσM = max{σi
M , σe

M}. As done previously in Lemma 4.5.2, we can estimate the

contribution of faces, edges and vertices separately.

Face terms. For the face terms we obtain as previously done for the Monodomain model

in Lemma 4.5.2 using Remark 4.3.4 and Lemma 4.3.7:

|Ih(ϑFv
i
j)|2H1/2(Γ(j)) .(1 + log(H/h))2

(
|(Hjwj)

i|2H1(Ωj) +H−2||(Hjwj)
i||2L2(Ωj)

)
+

(1 + log(H/h))2
(
|(Hkwk)i|2H1(Ωk) +H−2||(Hkwk)i||2L2(Ωk)

)

|Ih(ϑFv
e
j )|2H1/2(Γ(j)) .(1 + log(H/h))2

(
|(Hjwj)

e|2H1(Ωj) +H−2||(Hjwj)
e||2L2(Ωj)

)
+

(1 + log(H/h))2
(
|(Hkwk)e|2H1(Ωk) +H−2||(Hkwk)e||2L2(Ωk)

)

and summing over the two cellular components

(1 + log(H/h))−2
[
|Ih(ϑFv

i
j)|2H1/2(Γ(j)) + |Ih(ϑFv

e
j )|2H1/2(Γ(j))

]
.

|(Hjwj)
i|2H1(Ωj)

+ |(Hjwj)
e|2H1(Ωj)

+H−2
(
||(Hjwj)

i||2L2(Ωj)
+ ||(Hjwj)

e||2L2(Ωj)

)
+

|(Hkwk)i|2H1(Ωk) + |(Hkwk)e|2H1(Ωk) +H−2
(
||(Hkwk)i||2L2(Ωk) + ||(Hkwk)e||2L2(Ωk)

)
.

(4.46)
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Edge terms. For edge terms we can proceed as in [140] using Lemma 4.3.9, a triangle

inequality and then Lemma 4.3.8, to obtain a bound for each local component

|Ih(ϑEv
i
j)|2H1/2(Γ(j)) .(1 + log(H/h))2

∑

k∈KE

(
|(Hkwk)i|2H1(Ωk) +H−2||(Hkwk)i||2L2(Ωk)

)

|Ih(ϑEv
e
j )|2H1/2(Γ(j)) .(1 + log(H/h))2

∑

k∈KE

(
|(Hkwk)e|2H1(Ωk) +H−2||(Hkwk)e||2L2(Ωk)

)

whereKE is the set of subdomain indices sharing edgeE . Summing over the two cellular

components we will find a bound similar to that given in formula (4.46).

Vertex terms. Similarly, using Lemma 4.3.10 we bound also the vertex components as

|Ih(ϑVv
i
j)|2H1/2(Γ(j)) .(1 + log(H/h))2

∑

k∈KV

(
|(Hkwk)i|2H1(Ωk) +H−2||(Hkwk)i||2L2(Ωk)

)

|Ih(ϑVv
e
j )|2H1/2(Γ(j)) .(1 + log(H/h))2

∑

k∈KV

(
|(Hkwk)e|2H1(Ωk) +H−2||(Hkwk)e||2L2(Ωk)

)

whereKV is the set of subdomain indices sharing vertexV obtaining a bound similar to

(4.46) summing up the two cellular components.

Now consider only theL2 contribution from one substructure to formula (4.46) (the

contributions from other substructures can be treated similarly): since the intra- and the

extra-cellular components of the local Schur complements solutions are unique modulo a

constant and the discrete harmonic function of a constant isa constant function itself (see

Remark 4.2.7), we can choosewj such that

∫

Ωj

(Hjwj)
i + (Hjwj)

e = 0; (4.47)

In fact, letwj = w̃j + βj with βj ∈ R and

∫

Ωj

(Hjw̃j)
e = 0

a solution of the local discrete harmonic Bidomain problem;denoting with|Ωj | the volume

of Ωj we can write

∫

Ωj

(Hjwj)
i + (Hjwj)

e = 2βj |Ωj | +
∫

Ωj

(Hjw̃j)
i + (Hjw̃j)

e

which is equal to zero by choosing

βj = − 1

2|Ωj|

∫

Ωj

(Hjw̃j)
i.
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Thus for the parallelogram identity of Hilbert spaces and Lemma 4.3.6, it follows that

H−2
(
||(Hjwj)

i||2L2(Ωj)
+ ||(Hjwj)

e||2L2(Ωj)

)

.H−2
(
||(Hjwj)

i − (Hjwj)
e||2L2(Ωj)

+ ||(Hjwj)
i + (Hjwj)

e||2L2(Ωj)

)

.H−2
(
||(Hjwj)

i − (Hjwj)
e||2L2(Ωj)

+H2|(Hjwj)
i + (Hjwj)

e|2H1(Ωj)

)

.H−2||(Hjwj)
i − (Hjwj)

e||2L2(Ωj) + |(Hjwj)
i|2H1(Ωj) + |(Hjwj)

e|2H1(Ωj).

We thus obtain for the face terms

(1 + log(H/h))−2
[
|Ih(ϑFv

i
j)|2H1/2(Γ(j)) + |Ih(ϑFv

e
j )|2H1/2(Γ(j))

]

.|(Hjwj)
i|2H1(Ωj)

+ |(Hjwj)
e|2H1(Ωj)

+H−2||(Hjwj)
i − (Hjwj)

e||2L2(Ωj)

+|(Hkwk)i|2H1(Ωk) + |(Hkwk)e|2H1(Ωk) +H−2||(Hkwk)i − (Hkwk)e||2L2(Ωk)

Therefore, ifH2γ ≤ σm, with σm = min{σi
m, σ

e
m}

H2γ

σM +H2γ
(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.H2γ|(Hjwj)
i|2H1(Ωj) +H2γ|(Hjwj)

e|2H1(Ωj)
+ γ||(Hjwj)

i − (Hjwj)
e||2L2(Ωj)

+H2γ|(Hkwk)i|2H1(Ωk) +H2γ|(Hkwk)e|2H1(Ωk) + γ||(Hkwk)i − (Hkwk)e||2L2(Ωk)

and thus

|Ih(ΘFvj)|2S(j) . (1 + log(H/h))2
σM +H2γ

H2γ

(
|wj |2S(j) + |wk|2S(k)

)

Otherwise, ifH2γ ≥ σm

σm

σM +H2γ
(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.σm|(Hjwj)
i|2H1(Ωj)

+ σm|(Hjwj)
e|2H1(Ωj) + σmH

−2||(Hjwj)
i − (Hjwj)

e||2L2(Ωj)

+σm|(Hkwk)i|2H1(Ωk) + σm|(Hkwk)e|2H1(Ωk) + σmH
−2||(Hkwk)i − (Hkwk)e||2L2(Ωk)

and thus

|Ih(ΘFvj)|2S(j) . (1 + log(H/h))2
σM +H2γ

σm

(
|wj |2S(j) + |wk|2S(k)

)

Therefore, for the face terms we will have

|Ih(ΘFvj)|2S(j) . (1 + log(H/h))2
σM +H2γ

min{H2γ, σm}
(
|wj |2S(j) + |wk|2S(k)

)

We can proceed similarly for edge and vertex terms boundingL2 contributions from each

subtructure using the samewj = w̃j + βj ; the thesis then follows by summing over faces,

edges and vertices ofΩj and then over the substructures.
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Lemma 4.7.4. Letw ∈ WΓ be defined as in formula (4.44). Then for the Bidomain model

with enriched coarse space (4.32) existsα = (α1, . . . , αN ) such that

|ED(w + α1∗)|2S . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2|w|2S

whereσi,e(j)

M andσi,e(j)

m are the maximum and minimum eigenvalues of the intra- and ex-

tracellular diffusion tensors for thejth substructure andδt is the time step.

Proof. We can proceed as before in Lemma 4.7.3 and obtain

|Ih(Θ•vj)|2S(j) . (σi(j)

M +H2γ)|Ih(ϑ•v
i
j)|2H1/2(Γ(j)) + (σe(j)

M +H2γ)|Ih(ϑ•v
e
j )|2H1/2(Γ(j)),

(4.48)

where now

vj(x) = (ED(w + α1∗))j(x)

=

(
∑

k∈Nx

Ih(δi
k

†
(x)wi

k(x) + δi
k

†
(x)αk),

∑

k∈Nx

Ih(δe
k
†(x)we

k(x) − δe
k
†(x)αk)

)
.

As before, we can estimate the face, edge and vertex contributions separately. We explicitly

develop the algebra related to the face terms; edge and vertex terms can be treated similarly

as already done in Lemma 4.7.3 using in addition the same arguments developed in the

following. For the face terms we first obtain using Remark 4.3.4

|Ih(ϑFv
i
j)|2H1/2(Γ(j)) . ||Ih(ϑFv

i
j)||2H1/2

00 (F)

. δ
i†

2

j ||Ih(ϑF (wi
j + αj))||2H1/2

00 (F)
+ δ

i†
2

k ||Ih(ϑF (wi
k + αk))||2

H
1/2
00 (F)

|Ih(ϑFv
e
j )|2H1/2(Γ(j)) . ||Ih(ϑFv

e
j )||2H1/2

00 (F)

. δ
e†2

j ||Ih(ϑF (we
j − αj))||2H1/2

00 (F)
+ δ

e†2

k ||Ih(ϑF (we
k − αk))||2

H
1/2
00 (F)

,

where

δ
i,e†

k = max
x∈Γ(j)

δi,e†

k (x).

Using Lemma 4.3.7 we can bound from above each of theH
1/2
00 (F) norms by

(1 + log(H/h))2
(
|(Hj,k(wj,k + αj,k))i|2H1(Ωj,k) +H−2||(Hj,k(wj,k + αj,k))i||2L2(Ωj,k)

)

(1 + log(H/h))2
(
|(Hj,k(wj,k − αj,k))e|2H1(Ωj,k) +H−2||(Hj,k(wj,k − αj,k))e||2L2(Ωj,k)

)

Since the discrete Bidomain harmonic extension of a constant function is a constant itself,

we can replace the arguments of theH1 seminorm in the latter expressions by

|(Hj,k(wj,k + αj,k))i|2H1(Ωj,k) = |(Hj,k(wj,k))i|2H1(Ωj,k)

|(Hj,k(wj,k − αj,k))e|2H1(Ωj,k) = |(Hj,k(wj,k))e|2H1(Ωj,k).
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We then sum over the two cellular components as previously done in Lemma 4.7.3; as

before, we thus need only to analyze theL2(Ωj,k) contributions, i.e.

H−2(||(Hj(wj + αj))
i||2L2(Ωj)

+ ||(Hj(wj − αj))
e||2L2(Ωj)

),

H−2(||(Hk(wk + αk))i||2L2(Ωk) + ||(Hk(wk − αk))e||2L2(Ωk))

We then use the parallelogram identity in Hilbert spaces andthe fact that the Bidomain

discrete harmonic function of a constant is a constant function itself (see Remark 4.2.7) to

bound from above theL2(Ωj) contribution by

||(Hj(wj + αj))
i + (Hj(wj − αj))

e||2L2(Ωj) + ||(Hj(wj + αj))
i − (Hj(wj − αj))

e||2L2(Ωj)

= ||(Hjwj)
i + (Hjwj)

e||2L2(Ωj)
+ ||(Hjwj)

i − (Hjwj)
e + 2αj ||2L2(Ωj)

.

(4.49)

As done before in Lemma 4.7.3, the first term on the right hand side of eq. (4.49) can be

bounded from above by the sum of theH1 seminorms using a Poincarè inequality and a

triangle inequality, since we can add a suitable constant function towj , i.e. we can choose

wj = w̃j + βj with ∫

Ωj

(Hjw̃j)
e = 0

and

βj = − 1

2|Ωj|

∫

Ωj

(Hjw̃j)
i.

For the second term on the right hand side of eq. (4.49), we canproceed similarly choosing

αj such that

0 =

∫

Ωj

(Hjwj)
i − (Hjwj)

e + 2αj =

∫

Ωj

(Hjw̃j + βj)
i − (Hjw̃j + βj)

e + 2αj

= 2αj|Ωj | +
∫

Ωj

(Hjw̃j)
i − (Hjw̃j)

e

i.e.

αj = − 1

2|Ωj|

∫

Ωj

(Hjw̃j)
i.

We thus end up with the estimate for the face terms

(1 + log(H/h))−2|Ih(ΘFvj)|2S(j)

.δ
i†

2

j (σi(j)

M +H2γ)|(Hjwj)
i|2H1(Ωj)

+ δ
e†2

j (σe(j)

M +H2γ)|(Hjwj)
e|2H1(Ωj)

+δ
i†

2

k (σi(j)

M +H2γ)|(Hkwk)i|2H1(Ωk) + δ
e†2

k (σe(j)

M +H2γ)|(Hkwk)e|2H1(Ωk)

.(σi(j)

M +H2γ)|(Hjwj)
i|2H1(Ωj)

+ (σe(j)

M +H2γ)|(Hjwj)
e|2H1(Ωj)

+(σi(k)

M +H2γ)|(Hkwk)i|2H1(Ωk) + (σe(k)

M +H2γ)|(Hkwk)e|2H1(Ωk)

where we have used formula (4.35) to obtain the last inequality. Thus, we can finally bound
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the face terms

|Ih(ΘFvj)|2S(j) . max
•=i,e

(
max
l=j,k

σ•(l)

M δt +H2

σ•(l)

m δt

)
(1 + log(H/h))2(|w|2S(j) + |w|2S(k)).

The thesis then follows proceeding similarly for edge and vertex terms using the samewj ,

and then summing over faces, edges and vertices and finally over the subtructures.

We are then ready to prove the main theorems for the conditionnumber of the precon-

ditioned Bidomain model.

Theorem 4.7.5.The condition number of the preconditioned Schur complement system of

the Bidomain model with natural coarse space (4.31) satisfies:

κ2(M
−1
BNN ŜΓ) .

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2. (4.50)

Proof. Lower Bound. A lower bound of one for the Rayleigh quotient of the additive

operatorPNN , and thus for Rayleigh quotient ofPBNN (4.41) using Lemma 4.7.1, can be

deduced by the existence of a stable decomposition of the bilinear formS(·, ·) in terms of

s̃j(·, ·) with a constantC0 equal to one.

Upper Bound. The equality stated in formula (4.29) still holds (see e.g. [140]) with a

slight modification, that is

|w|2S = S(PNN (I − P0)uΓ, (I − P0)uΓ) (4.51)

wherew is given as in eq. (4.44). Proceeding as before in Theorem 4.5.3 using eq. (4.45)

and the estimate given in Lemma 4.7.3, we obtain

S(PNN (I − P0)uΓ, (I − P0)uΓ)

S((I − P0)uΓ, (I − P0)uΓ)
.

σMδt +H2

min{H2, σmδt}
(1 + log(H/h))2

and thus the thesis follows using Lemma 4.7.1.

As for the one-level Neumann-Neumann preconditioner for the Monodomain model

analyzed in Section 4.5, the estimates for the Bidomain model with a balancing precon-

ditioner possess a leading term proportional toH−2 for very large values ofδt using the

natural coarse space. We next show that augmenting the coarse space of the Balancing pre-

conditioner considering the enriched coarse space (4.32) will give us quasi-optimal bounds.

Theorem 4.7.6.The condition number of the preconditioned Schur complement system of

the Bidomain model with enriched coarse space (4.32) satisfies:

κ2(M
∗−1

BNN ŜΓ) . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

110



Chapter 4. Neumann-Neumann preconditioners for cardiac models

Proof. We first estabilish the same equality of (4.51) for the operator P ∗
NN using the fact

thatP0 is an orthogonal projection (see Lemma 4.6.4):

S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ) =

= S(PNN (I − P0)uΓ, (I − P0)uΓ) + S(
N∑

j=1

αjR
(j)T

D,Γ 1∗Γ(j) , (I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ) +

N∑

j=1

αjS(R
(j)T

D,Γ 1∗Γ(j) , (I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ) +

N∑

j=1

αjS(R
(j)T

D,Γ 1∗Γ(j) , P0(I − P0)uΓ)

= S(PNN (I − P0)uΓ, (I − P0)uΓ)

for all possible values of the constantsαj . Thus, using eq. (4.51) we have

S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ) = S(PNN (I − P0)uΓ, (I − P0)uΓ) = |w|2S . (4.52)

Lower Bound. A lower bound for the additive operatorP ∗
NN on the subspace range(I −

P0), and therefore forP ∗
BNN using Lemma 4.7.1, can be obtained using the lower bound

of the operatorPNN on the subspace range(I − P0) and eq. (4.52):

S((I − P0)uΓ, (I − P0)uΓ)

≤ S(PNN (I − P0)uΓ, (I − P0)uΓ)

= S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ)

and thus the minimum eigenvalue of the Rayleigh quotient (4.42) for the enriched coarse

space is equal to one.

Upper Bound. For the upper bound, we can proceed as in Theorem 4.5.3 using eq.

(4.43), Lemma 4.7.4 and eq. (4.52) to obtain

S(P ∗
NN (I − P0)uΓ, P

∗
NN (I − P0)uΓ)

= |P ∗
NN (I − P0)uΓ|2S

= |ED(w + α1∗)|2S

. max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2|w|2S

= max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2S(P ∗

NN (I − P0)uΓ, (I − P0)uΓ)

and thus, using a Cauchy-Schwarz inequality, canceling a common term and squaring as in
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Theorem 4.5.3, we obtain

S(P ∗
NN (I − P0)uΓ, (I − P0)uΓ)

. max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2S((I − P0)uΓ, (I − P0)uΓ),

and thus, using Lemma 4.7.1, the maximum eigenvalue of the Rayleigh quotient (4.42) for

the enriched coarse space can be bounded by

λ∗M . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

4.8 Implementational details and numerical results

The code has been written in Fortran 90 and the MPI library hasbeen used for paralleliza-

tion, assigning one subdomain to one MPI process. The PETSc library has been used to

manage local data structures such as sparse matrices and vectors in order to assure porta-

bility of the code. The actions of the assembled matrices on given vectors are evaluated

exploiting the subassembling relations and an exchanging subroutine with non-blocking

MPI sends and receives using derived MPI datatypes to avoid additional copies and fully

exploit the local cache.

Each local Dirichlet problem involved in the computation ofthe Schur matrix vector

product is factorized in a preprocessing step using LU factorization provided by the serial

library UMFPACK [142]; forward and backward substitutionsare then used whenever local

Schur matrices must be applied on some vectors. The Neumann problems involved in the

application of the additive part of the NN preconditioners,i.e. M−1
NN given in eq. (4.18),

are solved using the LU factorizations of the local stiffness matricesA(j) since the vector

u
(j)
Γ = S(j)−1

r
(j)
Γ

can be found by solving the local system

A(j)

(
u

(j)
I

u
(j)
Γ

)
=

(
0

r
(j)
Γ

)
.

In order to minimize the bandwidth of the local stiffness matrices and reduce the amount

of fill-in of the local LU factorizations, we have reordered the unknowns and have written

for every node the intra- and extra-cellular components consecutively.

For the application of the Balancing preconditioner to the Bidomain model, we use the

algorithm 3.7.2 given in Section 3.7 of [88]. The coarse problem of the Balancing operator

is evaluated in the preprocessing step; it is assigned to oneMPI process and it is solved
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using serial factorization for sparse matrices provided byUMFPACK [142]. Usual MPI

scatter and gather operations are then used for the communications involved in assembling

the coarse right hand side and distributing the coarse solution.

Numerical tests were performed on Linux clusters Ulisse (84cores) and Nemo (48

cores) located at the University of Milan (see ulisse.mat.unimi.it) and IBM clusters BCX

(power5) and SP6 (power6) located at CINECA (see hpc.cineca.it).

MonodomainH/h dependence.
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Figure 4.2:Condition number of PCG-NN solver for the Schur complement of the Monodomain model as a
function ofH/h with different sets of conductivity coefficients. Test casewith 3× 3× 3 subdomains,h =1E-2,
δt =1E-2, random right-hand side and null initial guess; PCG iteration is stopped when the absolute precondi-
tioned residual is lower then 1E-8. Details for the values ofthe conductivity coefficients are given in the text.

Numerical results on the estimated condition number, evaluated using the usual Lanc-

zos’ method, of the Monodomain system preconditioned withM−1
NN are shown in Table

4.4 and Figure 4.2. Figure 4.2 shows the condition number as afunction ofH/h con-

sidering a cubic 3x3x3 decomposition of the spatial domainΩ; we note that, since we

kept constant the domain decomposition, in the test case considered the dimension ofΩ

increases as the ratioH/h increases. We considered two different sets of conductivity co-

efficients: the first set of conductivity coefficients, whoseresults are shown in Panel A of

Figure 4.2, is that normally used in our cardiac simulations(see Table 2.1.1 and Remark

2.4.4); the second set of conductivity coefficients (panel B) is given byσM =1, σm=1E-2

with the intermediate eigenvalue equal to 1E-1. With the former set, the condition number

increases as the number of subdomain elements (i.e.H/h) increases and the dependence

of the condition number frommin{H2, σmδt} is masked by the small values of the con-

ductivity coefficients. The dependence fromH−2 is indeed evident in Panel B, where the

condition number decreases as the number of subdomain elements increases and it grows

rapidly as the number of elements decreases under ten. We note that we can drop theH−2

dependence of the Monodomain condition number using a natural balancing operator for

the Monodomain model.

NN preconditioner Scaled Speedup, Monodomain model.
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Scalability PCG-NN Schur Monodomain

subd Ŵ dofs ŴΓ dofs iter λmin λmax κ2

2x2x1 30’420 1’540 4 1.000 1.165 1.165
4x4x1 118’580 9’060 4 1.000 1.170 1.170
6x6x1 264’500 22’500 4 1.000 1.172 1.172
8x8x1 468’180 41’860 4 1.000 1.173 1.173

10x10x1 729’620 67’140 4 1.000 1.173 1.173
12x12x1 1’048’820 98’340 4 1.000 1.174 1.174
14x14x1 1’425’780 135’460 4 1.000 1.174 1.174
16x16x1 1’860’500 178’500 4 1.000 1.174 1.174

Table 4.4:Monodomain Schur complement scaled speedup test for PCG-NNsolver. Test case withh =1E-2,
H/h = 20, δt =1E-2, random right-hand side and null initial guess; PCG iteration is stopped when the initial
preconditioned residual is reduced by a factor 1E-6. For each run, subdomain subdivision in the three dimensions,
number of global grid and interface dofs, number of iterations, extreme eigenvalues and condition number are
shown.

Table 4.4 shows the scalability (scaled speedup) of the NN preconditioner for the con-

ductivity coefficients usually used for cardiac simulations. In this type of test, we fix the

local sizes of the substructures and progressively increase the number of substructures,

thus let growing the dimension ofΩ keeping fixedh andH . As predicted by the theory, the

minimum eigenvalue of the preconditioned system is exactlyone, whereas the maximum

eigenvalue, and thus the condition number, remains almost constant as the number of the

substructures increases. We note that, instead of increasing the number substructures only

in two directions, we could also increase it uniformly in allthree directions but this strategy

would have quickly exceeded our computational resources.

Monodomain with jumping coefficients.

50 100 150 200 250 300

50

100

150

200

250

Figure 4.3:CheckerBoard pattern for discontinuous coefficients test case. See text for details.
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PCG-NN Schur Monodomain
Jumping Coefficients

p 1 1E1 1E2 1E3 1E4
κ2 7.41 21.93 105.76 976.24 9686.64

Table 4.5:Monodomain Schur complement dependence from jumps in the conductivity coefficient. Test case
with 3x3x3 subdomains,h = 0.01, H/h = 15, δt =1E-2, random right-hand side and null initial guess; PCG
iteration is stopped when the initial residual is reduced bya factor of 1E-6. For each run, jumping factorp (see
text for details) and condition number for the preconditionedP−1

NN
ŜΓ Monodomain operator are shown.

To validate the results in Remark 4.5.4, we will consider a 3x3x3 decomposition of

the whole domain and a checkerboard pattern (see Figure 4.3)of discontinuities in the

conductivity coefficients such that the ratio

(
max

j=1,...,N

σ
(j)
M

σ
(j)
m

)
.

will remain constant. We initially set the eigenvalues of the diffusion tensor asσM =1,

σm =1E-2 with the intermediate eigenvalue equal to 1E-1; then wefix a factorp and

multiply each eigenvalue byp in the black subdomains and by1/p in the others. Since

the termH2γ and the ratio between the extreme eigenvalues remain constants varying the

factorp, the condition number should depend only on the maximum among the local max-

imum eigenvalues (see Remark 4.5.4). Numerical results confirm the theoretical estimates,

showing an asymptotical linear dependence of the conditionnumber of the Monodomain

operatorP−1
NN ŜΓ on the factorp (see Table 4.5).

BNN preconditionerH/h dependence, Bidomain model.

PCG-BNN Schur Bidomain
H/h dependence

H/h 5 10 15 20 25

κ2 5.93E4 (453) 1.81E4 (408) 8.96E3 (406) 5.43E3 (374) 3.67E3 (350)
κ∗2 18.91 (37) 28.83 (47) 34.91 (55) 39.39 (58) 42.93 (63)

Table 4.6:Condition number (number of iterations in parenthesis) of PCG-BNN solver for the Schur com-
plement of the Bidomain discretization as a function ofH/h. Coarse space as natural coarse space (4.31) and
enriched coarse space (4.32). Test case with3 × 3 × 3 subdomains,h =1E-2, δt =1E1, random right-hand
side and null initial guess; PCG iteration is stopped when the preconditioned residual is lower then 1E-4. For the
values of the conductivity coefficients see text.
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Figure 4.4:Condition number of PCG-BNN solver for the Schur complementof the Bidomain discretization as
a function ofH/h. Coarse space as natural coarse space (4.31). Test case with3× 3 × 3 subdomains,h =1E-2,
δt =1E-2, conductivity coefficients as in Table 2.1.1, random right-hand side and null initial guess; PCG iteration
is stopped when the preconditioned residual is lower then 1E-8.

Numerical results on theH/h the dependence of the BNN preconditioner for the Bido-

main model with natural coarse space are shown in Figure 4.4;as already noted for the

same test on the additive NN preconditioner for the Monodomain model, the dimension

of Ω increases as the ratioH/h increases. A typical(1 + log(H/h))2 behavior of the

condition number has been observed for conductivity valuesusually used for our cardiac

simulations and a time step of the order 1E-2 (see figure 4.4);we don’t show the compu-

tational results using the enriched coarse space since it doesn’t improve the results with

this set of parameters. On the other hand, the robustness of the enriched coarse space with

respect to the substructure diameterH is indeed evident in Table 4.6, where a different set

of parameters has been used;δt =1E1 and conductivity coefficients such thatσi,e
M =1E1,

σi,e
m =1E-1 with the intermediate eigenvalues equal to 1.

Bidomain Scaled speedup.

Table 4.7 shows the scalability (scaled speedup) of the BNN preconditioner for the

conductivity coefficients usually used for cardiac simulations and natural coarse space. As

predicted by the theory, the minimum eigenvalue of the preconditioned system is exactly

one, whereas the maximum eigenvalue, and thus the conditionnumber, initially grows and

finally remains almost constant as the number of the substructures increases, being thus

independent from the number of substructures. We obtained the same results using the en-

riched coarse space (data not shown).

Bidomain δt dependence.

Finally, we compare the performance of natural and enrichedcoarse spaces testing the

dependence of the condition number of BNN preconditioner from the time stepδt, using
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Scalability PCG-BNN Schur Bidomain

subd Ŵ dofs ŴΓ dofs iter λmin λmax κ2

2x2x1 120’050 4’850 11 1.00 3.63 3.63
4x4x1 470’450 28’650 14 1.00 5.08 5.08
6x6x1 1’051’250 71’250 15 1.00 5.53 5.53
8x8x1 1’862’450 132’650 15 1.00 5.75 5.75

10x10x1 2’904’050 212’850 16 1.00 5.86 5.86
12x12x1 4’176’050 311’850 16 1.00 5.91 5.91
14x14x1 5’678’450 429’650 16 1.00 5.78 5.78
16x16x1 7’411’250 566’250 16 1.00 5.84 5.84
18x18x1 9’374’450 721’650 16 1.00 5.89 5.89
20x20x1 11’568’050 895’850 16 1.00 5.93 5.93
22x22x1 13’992’050 1’088’850 16 1.00 5.97 5.97
24x24x1 16’646’450 1’300’650 16 1.00 5.99 5.99

Table 4.7:Bidomain Schur complement scalability test for PCG-BNN solver with natural coarse space. Test
case withh = 0.01, H/h = 25, random right-hand side and null initial guess; PCG iteration is stopped when the
initial preconditioned residual is reduced by a factor of 1E-6. For each run, subdomain subdivision in the three
dimensions, global grid and interface dofs, number of iterations, extreme eigenvalues and condition number are
shown.

physiological conductivity coefficients (see Table 2.1.1)and keeping fixed the local size.

The estimated dependence of the condition number fromδt is in agreement (see Theorems

4.7.5 and 4.7.6) with the numerical results listed in Table 4.8, since for the natural coarse

space we will have

σMδt +H2

min{H2, σmδt}
≈





O (δt) δt → ∞

O
(
δ−1
t

)
δt → 0

PCG-BNN Schur Bidomainδt dependence

δt 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4

κ2 2.71E2 29.17 5.26 3.79 3.82 4.81 9.34 19.45 1.27E2 1.23E3
κ∗2 2.71E2 29.17 5.26 3.79 3.81 4.78 8.35 12.50 14.20 14.44

Table 4.8:Bidomain Schur complementδt dependence test for PCG-BNN solver with natural (κ2) and enriched
(κ∗

2) coarse space. Test case with 2x2x2 subdomains,h = 0.01, H/h = 15, conductivity coefficients as in Table
2.1.1, random right-hand side and null initial guess; PCG iteration is stopped when the initial preconditioned
residual is reduced by a factor of 1E-6. For each run, time step δt and condition numbers are shown.
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whereas for the enriched coarse space we will have

max
•=i,e

(
σ•

Mδt +H2

σ•
mδt

)




O (1) δt → ∞

O
(
δ−1
t

)
δt → 0

.

Bidomain with jumping coefficients.

PCG-BNN Schur Bidomain
Jumping Coefficients

A B

p κ2(PBNN ) κ2(P
∗
BNN ) κ2(ŜΓ) κ2(PBNN ) κ2(P

∗
BNN ) κ2(ŜΓ)

1 34.89 34.89 1.04E5 34.89 34.89 1.04E5
1E1 58.98 27.50 2.64E5 29.67 29.05 2.16E5
1E2 491.79 27.11 1.78E6 29.32 28.67 2.91E6
1E3 4840.13 27.11 div. 29.30 28.65 div.
1E4 48317.41 27.11 div. 29.30 28.65 div.

Table 4.9:Bidomain Schur complement dependence from jumps in the conductivity coefficient for PCG-BNN
solver with natural and enriched coarse spaces. Test case with 3x3x3 subdomains,h = 0.01, H/h = 15, δt =1E-
2, random right-hand side and null initial guess; PCG iteration is stopped when the initial residual is reduced by a
factor of 1E-6. For each run, jumping factorp (see text for details) and condition number for the preconditioned

P−1
BNN

, P ∗
−1

BNN and unpreconditioned̂SΓ operators are shown.

To analyze the jumping coefficients case, we will consider a 3x3x3 decomposition of

the whole domain and a checkerboard pattern (see Figure 4.3)of discontinuities in the

conductivity coefficients, with two different sets of discontinuities, but such that the ratio

max
•=i,e

(
max

j=1,...,N

σ•(j)

M

σ•(j)

m

)
.

will remain constant. We initially set the conductivity coefficients asσi,e
l =1E1,σi,e

t =1

andσi,e
n =1E-1, then we consider a first test case, fixing a factorp and then multiplying

each conductivity coefficient, either intra- or extracellular, by p in the black subdomains

and by1/p in the others. In the second test case, we multiply differently the intracellu-

lar and extracellular coefficients in the two coloured regions: in the black subdomains we

multiply the intracellular conductivity coefficients byp and the extracellular ones by1/p.

In the white subdomains we will do the viceversa. Numerical results are summarized in

Table 4.9 using the natural and enriched coarse spaces: columns labelled byA refer to the
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first type of discontinuity, whereas columnsB refer to the second one. Results for the un-

preconditioned Schur complement operatorŜΓ are also shown to give a comparison. For

the natural coarse space, in caseA the condition number depends linearly on the factorp

and the preconditioned system diverges for large values ofp. On the other hand, in case

B the condition number with natural coarse space remains almost constant while varying

largelyp. As predicted by the theory, the enriched coarse space is robust for the jumping

coefficients case and gives optimal results with respect to both cases considered.
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Chapter 5

Balancing by Constraints

(BDDC) preconditioner for the

Bidomain model

5.1 Introduction

In this chapter we will introduce and analyze the Balancing Domain Decomposition by

Constraints (BDDC) preconditioner for the Bidomain problem. BDDC methods can be

regarded as an evolution of BNN methods where all local and coarse problems are treated

additively and a proper set of primal continuity constraints across the interface of the sub-

domains is selected. These primal constraints can be point (vertex) constraints and averages

over edges and/or faces of the subdomains. We will show that appropriate sets of primal

constraints can be associated with the subdomain vertices,edges, and faces, so that the

resulting BDDC methods have a fast convergence rate and we will prove that the condi-

tion number of the BDDC preconditioned operator of the cardiac Bidomain model depends

only on the ratioH/h of subdomain to element diameters, while being independentof the

number of subdomains. Parallel numerical results will confirm the theoretical estimates

and illustrate the effects of the choice of the primal constraints. Numerical results will also

show the independence of the condition number of the preconditioned Bidomain problem

from large jumps in the conductivity coefficients aligned with the interface. We remark

that the results obtained in this chapter will also apply to the related FETI-DP algorithms

(see e.g. [36]) defined by the same set of primal constraints,since it is known that the

BDDC and FETI-DP operators have the same eigenvalues with the exception of at most

two ([79], [87], [11]). The BDDC algorithm has been extendedto a variety of cases, in-

cluding Gauss-Lobatto-Legendre (GLL) spectral elements in the scalar elliptic case ([103],

[69]), mortar discretizations ([65], [66]), discontinuous Galerkin methods [32], advection-

diffusion [141], indefinite problems [80], Reissner-Mindlin plates [8] and incompressible
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Stokes [77]. We also developed a BDDC method for the three dimensional linear elastic-

ity system in the almost incompressible case and discretized with GLL spectral elements

[105]. For BDDC application to biomechanics problems see [70].

5.2 Dual and primal finite element spaces

An interface is defined similarly to Section 4.1 with a different treatment of the nodal values

on the Neumann boundary of the global problem; in details, the nodal values defining

the interface will remain the same but we will treat as edges the subdomain edges on the

Neumann boundary and then define the vertices as endpoints ofedges; figure 5.1 shows

edges and vertices for this configuration (compare it with Figure 4.1).

Ω

Figure 5.1: Edges nodes (blue circles) and vertices (green circles) fora 2x2x2 decopomposition ofΩ and
H/h = 5

A finite element spacẽWΓ, intermediate between̂WΓ and WΓ, and constituted by

partially continuous variables, can be defined by

W̃Γ = W∆

⊕
ŴΠ

whereŴΠ is the continuousprimal variable space, typically spanned by the discrete har-

monic extensions with respect to a certain Schur complementSΠΠ acting on subdomain

corner nodal basis functions and/or selected edge and face averages. For details see Sec-

tion 5.4.W∆ is the product space of the subdomaindualvariable spaces

W∆ =

N∏

j=1

W(j)
∆

which consist of functions with zero values at the primal degrees of freedom. The functions

in the spacẽWΓ will be continuous at the coarse primal level and discontinuous elsewhere

across the subdomain interface.

Additional restriction and extension operators between the interface spaces need to be
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defined. R(j)
∆ is the restriction operator that extracts the subdomain part W(j)

∆ from the

dual spaceW∆ andR∆ is the direct sum of theR(j)
∆ operators. Similarly,R(j)

Π extracts

the subdomain componentW(j)
Π from the assembled primal spacêWΠ, with RΠ the direct

sum of theR(j)
Π operators. Furthermore,RΓ∆ is the restriction operator from the spaceWΓ

onto the subspaceW∆. For the analysis of the BDDC preconditioner, we will also need a

jump operatorPD, complementary of the average operator already introducedin equation

(4.3), defined as (see Lemma 6.10 in [140])

PD = I − ED. (5.1)

Since ∑

k∈Nx

δi,e
k

†
(x) = 1, x ∈ Γ(i)

for both the intra- and the extra-cellular components of thepartition of unity, the local

action of the jump operator an a given vectorw ∈ WΓ can be written as

(PDw(x))j =

(
∑

k∈Nx

δi
k

†
(wi

j(x) − wi
k(x)) ,

∑

k∈Nx

δe
k
†(we

j (x) − we
k(x))

)
(5.2)

∀x ∈ Γ(j).

5.3 Original formulation of the BDDC preconditioner

In this section we will briefly introduce the BDDC preconditioner as originally formulated

in [30]. It is a two-level preconditioner such as the BNN preconditioner, but with BDDC

the coarse (often referred to also asprimal) and local problems are treated additively; the

balancing procedure is performed by imposing a set of constraints on each substructure in

order to guarantee existence and uniqueness of the local problems involved in the appli-

cation of the preconditioner. The coarse-level problem is assembled from a special set of

coarse basis functions, which are the minimum energy extension on the subdomains subject

to sets of primal constraints: they usually represent continuity at the substructures corners

plus common edge or face averages across the interface.

The action of the BDDC preconditioner can be written in the form:

M−1
BDDC = RT

D,Γ [Plocal + Pcoarse]RD,Γ. (5.3)

The coarse correction operatorPcoarse is defined by

Pcoarse = Ψ
(
ΨTSΨ

)−1
ΨT
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where the coarse basis function matrix

Ψ =




Ψ(1)

...

Ψ(N)




is determined by solving individual subdomain problems

Ψ = argmin
Cw=I,w∈WΓ

wTSw (5.4)

whereS is the unassembled Schur complement acting on the spaceWΓ introduced in

eq. (4.7) andI is a boolean matrix whose number of rows is the sum of the number of

local constraints and whose number of columns is the global number of constraints. The

non-zero values of a fixed column ofI locally represents the constraint, since one global

constraint corresponds to a set of constraints applied on different substructures. Therefore,

the number of columns of the coarse basis function matrixΨ equals the number of global

constraints imposed. The local constraints are imposed through the matrix

C =




C(1)

. . .

C(N)




with C(j) a rectangular matrix representing the primal constraints imposed onΓ(j); the

number of rows ofC(j) equals the number of local constraints and the number of columns

equals the number of nodes onΓ(j).

Remark5.3.1. Here we will construct the local constraint matricesC(j). Only a few values

of a row ofC(j) will be non-zero, namely those associated with the local constraint. For

simplicity, we will consider only a single scalar componentof the PDE: a generalization to

vector valued PDEs is straightforward. We first reorder the local interface variables with

faces first, then edges and last the vertex variables, i.e.

u
(j)
Γ = (uF1 , . . . , uFNF , uE1 , . . . , uENE , uV1 , . . . , uVNV )

T

whereNF , NE andNV are the number of local faces, edges and vertices respectively. If

we require vertex constraints only, we will choose the matrix C(j) as

C(j) =
(
0 INV

)

with INV the identity matrix of sizeNV . If we also require edge average constraints, then

C(j) =

(
0 CNE 0

0 0 INV

)
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whereCNE is a rectangular matrix withNE rows and
∑

k nEk columns, withnEk the

number of edge nodes for thek-th edge. Letαk
i be the quadrature weights defined by the

discretization of the one dimensional edge integral by the following nodal quadrature rule

∫

Ek

f ≈
n
Ek∑

i=1

αk
i f(xk

i )

wherexk
i are the nodes of thek-th edge. Each row of matrixCNE impose the average

constraints if we set it as

(
0, . . . , 0, αk

1 , . . . , α
k
n
Ek
, 0, . . . , 0

)
.

Analogous arguments can be used to build the rows of matrixC(j) associated to the face

averages.

The minimization problem (5.4) can be solved using the method of Lagrange multipli-

ers introducing an equivalent saddle point formulation; the latter can be solved in parallel

by solving individual subdomain problems with multiple right hand sides of type

(
S(j) C(j)T

C(j) 0

)(
Ψ(j)

Λ(j)

)
=

(
0

I(j)

)
(5.5)

whereΛ(j) is a local matrix with columns made by the Lagrange multipliers andI(j) the

submatrix ofI which has as many rows as the number of local constraints and as many

columns as the number of global constraints.

The subdomain correction operator is defined by

Plocal =
N∑

j=1

(R
(j)T

Γ 0)
(
S(j) C(j)T

C(j) 0

)−1(
R

(j)T

Γ

0

)
(5.6)

and it gives subdomain corrections for which all primal constraints vanish. Additional

details on the solution of the saddle point problems appearing in formulas (5.5) and (5.6)

will be given in the next chapter. Here we will adopt a different strategy, proposed in [79]

to impose the primal constraints on the subdomains.

Remark5.3.2. It must be noted that the choice of the primal constraints must guarantee the

solvability of local saddle point problems given in (5.5). For the Bidomain system, vertex

constraints are enough to guarantee existence and uniqueness of their solutions; the set of

primal constraints must be enriched with additional averages on edges and faces in order to

obtain a good bound on the condition number as a function of the substructures diameter.
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5.4 BDDC with a change of basis

In this section we will introduce a reformulation of the BDDCpreconditioner adopting the

strategy proposed in [67]: we will perform a change of basis so that each primal constraint

will correspond to an explicit degree of freedom; in this waywe can work in the coarse

primal space without enforcing any saddle point problem forthe Lagrange multipliers as

in eq. (5.5). We will briefly present how such a reformulationcan be performed, and then

we will reformulate the main ingredients of the BDDC preconditioner.

Consider the unknownsuE on an edgeE of a single scalar component of the PDE, and

define a transformation matrixTE that performs the change of basis from the coefficients

in the new basiŝuE to the coefficients in the original nodal basisuE

TE ûE = uE .

To make explicit the edge average, we can choose matrixTE as

TE =




1 0 . . . 0 1

. . .
...

1 1

. . .
...

−α1

αn
. . . . . . −αn−1

αn
1




wheren is the number of edge nodes andαi the quadrature weights of the one dimensional

nodal quadrature rule of the edge integral. We will thus have

uE = ûn




1
...

1


+




û1

...

ûn−1

−∑n−1
i=1

αi

αn
ûi




splitting the dofs of the original basis in a sum of a constantfunction (represented by the last

coefficient of the edgêun in the new basis) and another function with vanishing average.

For structured equispaced grids like that generated by using Q1 elements, the quadrature

weights are the same, that is

αi

αn
= 1 ∀i = 1, . . . , n− 1.

Analogous transformation matricesTF can be defined for the implementation of the face

constraints. As for the edges, the last element of the dual part of each scalar component on

a face can be chosen as primal, and face averages can be obtained with a transformation

matrix structurally similar toTE : the elements on the main diagonal and in the last column

are equal to one, while the other values are all zero except for the last row, associated
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with the new primal degrees of freedom, which are given by theratiosαi/αn with αi the

quadrature weights of the two-dimensional quadrature ruleemployed andn the number of

nodes ofF .

All the transformations introduced can be constructed separately for each component

of the solution on each face and edge of the substructure interfaceΓ(j): since this is a local

procedure it can be carried out face by face and edge by edge, as long as the sets of variables

being transformed do not contain any common degrees of freedom, a condition satisfied by

definition of the interface points. Denoting withT (j) the resulting transformation of basis,

a local linear system for thej-th substructure

A(j)u(j) = f (j)

can be equivalently written as

A
(j)
û(j) = T (j)T

A(j)T (j)û(j) = T (j)T

f (j)

with

A
(j)

=




A
(j)
II A

(j)

I∆ A
(j)

IΠ

A
(j)T

I∆ A
(j)

∆∆ A
(j)

∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)

ΠΠ


 .

Here the superscriptΠ defines the new explicit dofs representing vertex constraints, edge

and faces averages. The resulting matrixA
(j)

will be denser than the original stiffness

matrixA(j) but only the blocks related to the interface degrees of freedom will be affected

by the transformation, while the block corresponding to thesubdomain interior degrees of

freedom will not. From now on, in this chapter we will assume that the subdomain variables

have been changed when primal vertices, edges or faces are used and we will drop the bar

superscript in the following formulas. For additional details see [67].

Once we have changed the local variables, the Lagrange multipliers are no longer

needed to enforce the primal continuity constraints and no saddle point problems must be

solved in practice (see also [79]). Equation (5.5) is thus replaced by a Schur complement

argument on the local primal nodes




A
(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ







w
(j)
I

Ψ
(j)
∆

R
(j)
Π


 =




0

0

S
(j)
ΠΠR

(j)
Π


 (5.7)

where the coarse basis functions spanningŴΠ are the columns of the matrix

Ψ =




Ψ(1)

...

Ψ(N)
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which are given subdomainwise by

Ψ(j) =

(
Ψ

(j)
∆

R
(j)
Π

)
.

The number of columns of eachΨ(j) is the same as the number of global coarse-level

degrees of freedom. Only a few columns of eachΨ(j) are non-zero namely those supported

in Γ(j). To compute a non-zero column ofΨ(j), a subdomain Neumann problem is solved

subject to the given primal constraint, which corresponds to a non-zero column of the

matrix R(j)
Π . We can see from equation (5.7), that each non-zero column ofΨ(j) is the

minimum energy extension to the substructureΩj setting one of the primal constraints

equal to 1 and all others equal to 0. The dual part of the local matricesΨ(j) can thus be

compactly written as the following problem with multiple right hand sides

Ψ
(j)
∆ =

(0 −I(j)
∆ )

(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)−1(
A

(j)
IΠ

A
(j)
∆Π

)
R

(j)
Π .

The subdomain contributionS(j)
ΠΠ to the operatorSΠΠ, the Schur complement assembled

at the primal nodes, can be written

S
(j)
ΠΠ = A

(j)
ΠΠ − (AT

IΠ AT
∆Π)

(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)−1(
A

(j)
IΠ

A
(j)
∆Π

)
.

Moreover, since from eq. (5.7) and the definition of the localSchur complementS(j) given

in Lemma 4.2.3 follows that

S(j)Ψ(j) =

(
0

S
(j)
ΠΠR

(j)
Π

)
,

it can be shown that

ΨTSΨ =
N∑

j=1

Ψ(j)T

S(j)Ψ(j) =
N∑

j=1

R
(j)T

Π S
(j)
ΠΠR

(j)
Π = SΠΠ. (5.8)

Since, changing variables, we can enforce zero primal constraints by simply restricting the

operators to the dual interface spaceW∆, the subdomain correction operator given in eq.

(5.6) can be equivalently expressed as

Plocal = RT
Γ∆S

−1
∆ RΓ∆ (5.9)
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where the action of the Schur complementS∆ on the product spaceW∆

S∆ =




S
(1)
∆

. . .

S
(N)
∆




is defined by




A
(1)
II A

(1)
I∆

A
(1)
I∆

T
A

(1)
∆∆

. . .

A
(N)
II A

(N)
I∆

A
(N)
I∆

T
A

(N)
∆∆







w
(1)
I

w
(1)
∆
...

w
(N)
I

w
(N)
∆




=




0

S
(1)
∆ w

(1)
∆

...

0

S
(N)
∆ w

(N)
∆




. (5.10)

Remark5.4.1. The primal problem of the BDDC operator will be singular for the Bidomain

model using vertex and/or edge averages and/or face averages primal constraints. In fact,

let 1Π(j) be the vector of local primal constraints equal to one and suppose to use only

vertex constraints for both the components of the solution.ThenΨ(j)1Π(j) will be a vector

of W(j)
Γ with all ones at the vertices. Therefore, since each local contributionS(j)

ΠΠ to the

primal problem is the Schur complement ofS(j) at the local primal nodes we will have

1T
Π(j)S

(j)
ΠΠ1Π(j) = 1T

Π(j)Ψ
(j)T

S(j)Ψ(j)1Π(j) ≤ 1T
Γ(j)S

(j)1Γ(j) = 0

and thusS(j)
ΠΠ will be singular with a null space spanned by the constant vectors. Analogous

arguments will be valid if we use the same set of edge and/or face averages, even without

vertex constraints, noting that a function with constant average on an edge (or a face) and

zero values at the dual nodes will represent the constant function on that edge (or face)

in the original dof basis. It must be noted that the singularity of the primal problem is

not harmful for the BDDC operator as long as the primal systemis consistent, that is, the

primal right-hand side does not have any component onto the null space ofSΠΠ.

Using eqs. (5.9) and (5.8), the action of the BDDC preconditioner given in eq. (5.3)

can than be reformulated as

M−1
BDDC = RT

D,Γ

[
RT

Γ∆S
−1
∆ RΓ∆ + ΨS†

ΠΠΨT
]
RD,Γ (5.11)

where we employ the pseudoinverse ofSΠΠ taking into account its singularity.

5.5 Bidomain theoretical estimates

In this section we will give estimates for the preconditioned operatorM−1
BDDCŜΓ. As for

the Neumann-Neumann preconditioners, we will estimate itscondition numberκ2 as the
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ratio of the largest and smallest eigenvalues of the generalized Rayleigh quotient

λmS(uΓ, uΓ) ≤ S(M−1
BDDC ŜΓuΓ, uΓ) ≤ λMS(uΓ, uΓ), ∀uΓ ∈ ŴΓ, uΓ 6= 0ŴΓ

.

We will follow the approach of [87]: the following Lemmas canbe found in the latter

reference.

Lemma 5.5.1.The local partially continuous spacẽW
(j)

Γ = W(j)
∆

⊕
W(j)

Π issj-orthogonal,

that is

sj(w
(j)
∆ , w

(j)
Π ) = 0

with w = w
(j)
∆ + w

(j)
Π , wherew(j)

Π = Ψ(j)wc with wc a vector of primal dofs, or equiva-

lently

sj(w,w) = sj(w
(j)
∆ , w

(j)
∆ ) + sj(w

(j)
Π , w

(j)
Π ).

Proof. Using eq. (5.7), we obtain

sj(w
(j)
∆ ,Ψ(j)wc) =

(0 w
(j)T

∆ 0)



A
(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ







w
(j)
I

Ψ
(j)
∆

R
(j)
Π


wc

=

(0 w
(j)T

∆ 0)



0

0

S
(j)
ΠΠR

(j)
Π


wc = 0.

Lemma 5.5.2. The preconditioned operatorM−1
BDDCŜΓ satisfies∀uΓ ∈ ŴΓ

M−1
BDDCŜΓuΓ = RT

D,Γw

withw ∈ W̃Γ defined by

vTSw = vTRD,ΓŜΓuΓ = S(uΓ, R
T
D,Γv)

∀v ∈ W̃Γ.

Proof. Using eq. (5.11), we can see that the action of the BDDC preconditioner on a given

residual vectorr can be obtained as

M−1
BDDCr = RT

D,Γ(RT
Γ∆w∆ + wΠ)

wherewΠ = Ψwc with
ΨTSΨwc = ΨTRD,Γr

S∆w∆ = RΓ∆RD,Γr.
(5.12)
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Let v ∈ W̃Γ, v = RT
Γ∆v∆ + vΠ with vΠ = Ψvc; using thesj-orthogonality of local

subspacesW(j)
∆ andW(j)

Π given in Lemma 5.5.1 it follows that

vTSw =

N∑

j=1

sj(v
(j)
∆ + Ψ(j)vc, w

(j)
∆ + Ψ(j)wc)

=

N∑

j=1

(
sj(v

(j)
∆ , w

(j)
∆ ) + sj(Ψ

(j)vc,Ψ
(j)wc)

)

= vT
∆RΓ∆SR

T
Γ∆w∆ + vT

ΠSwΠ.

Lettingr = ŜuΓ, from the first equation in (5.12) it follows

vT
ΠSwΠ = vT

ΠRD,ΓŜΓuΓ. (5.13)

For the second equation we can deal with the subdomain component ofw∆ and, recalling

the definition ofS(j)
∆ given in eq (5.10) we obtain:

(v
(j)T

∆ 0)
S(j)

(
w

(j)
∆

0

)
=

(0 v
(j)T

∆ 0)



A
(j)
II A

(j)
I∆ A

(j)
IΠ

A
(j)T

I∆ A
(j)
∆∆ A

(j)
∆Π

A
(j)T

IΠ A
(j)T

∆Π A
(j)
ΠΠ







w
(j)
I

w
(j)
∆

0




=

(0 v
(j)T

∆ 0)



0

S
(j)
∆ w

(j)
∆

A
(j)T

IΠ w
(j)
I +A

(j)T

∆Π w
(j)
∆


 = v

(j)T

∆ S
(j)
∆ w

(j)
∆

and thus from the second equation of (5.12) and the fact thatS∆ = RΓ∆SR
T
Γ∆ we obtain

vT
∆RΓ∆SR

T
Γ∆w∆ = vT

∆S∆w∆ = vT
∆RΓ∆RD,ΓŜΓuΓ. (5.14)

The thesis then follows by summing the contributions (5.13)and (5.14).

Remark5.5.3. Since

EDuΓ = RT
ΓRD,ΓuΓ = uΓ ∀uΓ ∈ ŴΓ,

we can assert that the average operator is a projector onW̃Γ, i.e.

E2
D = ED.

As in [87], we will use an additional result between complementary projectors which can

be found in [57], which assures that

|EDw|2S = |(I − ED)w|2S (5.15)

∀w ∈ W̃Γ, noting that the Bidomain seminorm| · |2S is actually and inner product oñWΓ,
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since the latter space doesn’t contain any local constant function. For additional properties

of average and jump operators, see [140] and [87].

Remark5.5.4. For BDDC estimates we will consider discontinuous conductivity coeffi-

cients for both the intra- and extracellular diffusion tensors, with jumps aligned with the

substructures interface. As partition of unity, we will use

δi
j

†
(x) =

σi(j)

M∑
k∈Nx

σi(k)

M

, δe
j
†(x) =

σe(j)

M∑
k∈Nx

σe(k)

M

whereσi(j)

M is the maximum eigenvalue of the intracellular diffusion tensor for thej-th

substructure; clearly the same notation will hold for the extracellular part of the partition

of unity. We will use an elementary result proved in [140], that is

σi,e(j)

M δi,e
k

†2 ≤ min{σi,e(j)

M , σi,e(k)

M }. (5.16)

Finally, we will need an estimate of the norm of the jump operatorPD defined in (5.2)

on the subspacẽWΓ.

Lemma 5.5.5. If edge and face averages are included in the primal spaceŴΠ for both the

intra- and extracellular components together with vertex constraints, the jump operator

PD satisfies:

|PDw|2S . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2|w|2S

∀w ∈ W̃Γ.

Proof. As already done in the previous chapter, we will estimate thecontribution of each

substructure, namely

v(x)j : = (PDw(x))j

=

(
∑

k∈Nx

Ih(δi
k
†
(x)(wi

j(x) − wi
k(x))),

∑

k∈Nx

Ih(δe
k
†(x)(we

j (x) − we
k(x)))

)

=
∑

F⊂Γ(j)

Ih(ΘFvj) +
∑

E⊂Γ(j)

Ih(ΘEvj).

whereΘ•vj = (ϑ•v
i
j , ϑ•v

e
j ), with the definitions of the cutoff functionsϑ• provided in

Section 4.3. Note that the vertex component of the previous summation vanishes; in fact,

since we consider vertex constraints in the primal space, itwill hold thatwi
j(x) = wi

k(x)

andwe
j (x) = we

k(x) ∀x ∈ V andj, k ∈ Nx. Therefore, we need to bound only the face

and edge components.
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Face terms. Using the same arguments used in Lemmas 4.5.2 and 4.7.3 we canbound

|Ih(ΘFvj)|2S(j) . σi(j)

M |Ih(ϑFv
i
j)|2H1/2(Γ(j)) +H2γ|Ih(ϑFv

i
j)|2H1/2(Γ(j))

+ σe(j)

M |Ih(ϑFv
e
j )|2H1/2(Γ(j)) +H2γ|Ih(ϑFv

i
j)|2H1/2(Γ(j))

. σi(j)

M ||Ih(ϑFv
i
j)||2H1/2

00 (F)
+H2γ||Ih(ϑFv

i
j)||2H1/2

00 (F)

+ σe(j)

M ||Ih(ϑFv
e
j )||2H1/2

00 (F)
+H2γ||Ih(ϑFv

e
j )||2H1/2

00 (F)

. σi(j)

M δi
k

†2||Ih(ϑF (wi
j − wi

k))||2
H

1/2
00 (F)

+H2γδi
k

†2||Ih(ϑF (wi
j − wi

k))||2
H

1/2
00 (F)

+ σe(j)

M δe
k
†2||Ih(ϑF (we

j − we
k))||2

H
1/2
00 (F)

+H2γδe
k
†2||Ih(ϑF (we

j − we
k))||2

H
1/2
00 (F)

Let wi,e
F be the face average values common between thej-th andk-th substructure of

the intra- and the extracellular component. From the hypothesis, the faces averages are

included in the primal space, thus for the triangle inequality

||Ih(ϑF (wi,e
j − wi,e

k ))||2
H

1/2
00 (F)

= ||Ih(ϑF (wi,e
j − wi,e

F − wi,e
k + wi,e

F ))||2
H

1/2
00 (F)

. ||Ih(ϑF (wi,e
j − wi,e

F ))||2
H

1/2
00 (F)

+ ||Ih(ϑF (wi,e
k − wi,e

F ))||2
H

1/2
00 (F)

We will thus have for the face terms using the second equationof Lemma 4.3.7 and eq.

(5.16)

(1 + log(H/h))−2|Ih(ΘFvj)|2S(j) . (σi(j)

M +H2γ)|(Hjwj)
i|H1(Ωj)

+ (σe(j)

M +H2γ)|(Hjwj)
e|H1(Ωj)

+ (σi(k)

M +H2γ)|(Hkwk)i|H1(Ωk)

+ (σe(k)

M +H2γ)|(Hkwk)e|H1(Ωk).

Therefore, for the face terms, we obtain

|Ih(ΘFvj)|2S(j) . max
•=i,e

(
max
l=j,k

σ•(l)

M δt +H2

σ•(l)

m δt

)
(1 + log(H/h))2

(
|w|2S(j) + |w|2S(k)

)
.

(5.17)

Edge terms. We can prooced as in Lemma 4.5.2, and, since the edge averagesare included

in the primal space, we can exploit the same arguments used before for the face terms.
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Therefore, from the second equation of Lemma 4.3.8 we conclude that

|Ih(ΘFvj)|2S(j) . max
•=i,e

(
max
k∈KE

σ•(k)

M δt +H2

σ•(k)

m δt

)
(1 + log(H/h))

∑

k∈KE

|w|2S(k) (5.18)

whereKE is the set of subdomain indices sharing edgeE .

The thesis then follows by summing over faces and edges ofΩj and then over the

substructures.

We are then ready to prove the following:

Theorem 5.5.6.If edge and face averages are included in the primal spaceŴΠ for both the

intra- and extracellular components together with vertex constraints, the condition number

of the preconditioned operatorM−1
BDDC ŜΓ for the Bidomain model satisfies:

κ2(M
−1
BDDC ŜΓ) . max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2. (5.19)

Proof. Lower bound. Since

RT
ΓRD,ΓuΓ = RT

D,ΓRΓuΓ = uΓ ∀uΓ ∈ ŴΓ,

we have by using Lemma 5.5.2, withw defined in Lemma 5.5.2 andv = RΓuΓ ∈ W̃Γ,

S(uΓ, uΓ) = S(uΓ, R
T
D,ΓRΓuΓ)

= uT
ΓR

T
ΓSw

≤ (wTSw)1/2(uT
ΓR

T
ΓSRΓuΓ)1/2

= |w|S |RΓuΓ|S

(5.20)

where we have used the Cauchy-Schwarz inequality applied tothe inner product generated

by the Schur complementS acting on the product spaceWΓ. Settingv = w ∈ W̃Γ and

using again Lemma 5.5.2 we can rewrite

|w|2S = S(uΓ, R
T
D,Γw) = S(uΓ,M

−1
BDDC ŜΓuΓ). (5.21)

By subassembly, we also get

|RΓuΓ|2S = S(uΓ, uΓ). (5.22)

Substituting (5.21) and (5.22) into (5.20), canceling the common terms and squaring we

obtain

S(uΓ, uΓ) ≤ S(uΓ,M
−1
BDDCŜΓuΓ)

and thusλmin ≥ 1.
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Upper bound. For the upper bound, since by subassembly it holds

S(M−1
BDDC ŜΓuΓ,M

−1
BDDCŜΓuΓ) = |RΓM

−1
BDDCŜΓuΓ|2S

using the definition of| · |S , w and eq. (5.21) we get

|RΓM
−1
BDDC ŜΓuΓ|2S = |RΓR

T
D,Γw|2S = |EDw|2S ≤ |w|2S sup

w∈W̃Γ

|EDw|2S
|w|2S

. sup
w∈W̃Γ

|EDw|2S
|w|2S

S(uΓ,M
−1
BDDCŜΓuΓ).

Now, using eq. (5.15), the definition of the jump operator (5.1) and Lemmma 5.5.5 we

obtain

|RΓM
−1
BDDC ŜΓuΓ|2S . max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1+log(H/h))2 S(uΓ,M

−1
BDDC ŜΓuΓ).

Since for the Cauchy-Schwarz inequality it holds that

S(uΓ,M
−1
BDDC ŜΓuΓ) ≤ S(uΓ, uΓ)1/2S(M−1

BDDC ŜΓuΓ,M
−1
BDDC ŜΓuΓ)1/2

using subassebly relations and a little algebra (see [87] for additional details) we can prove

S(uΓ,M
−1
BDDC ŜΓuΓ) . max

•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2S(uΓ, uΓ)

and thus

λmax . max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
(1 + log(H/h))2.

5.6 Numerical results

In this section we will give additional details on the implementation of the BDDC precon-

ditioner and some numerical results to confirm our theoretical estimates. Regarding to the

implementational aspects, many details have been already given in Section 4.8; here we

will only treat the implementational aspects related to theprimal elements of the BDDC

preconditioner. The coarse basis functions are first assembled locally, then the local part

of the coarse matrix is evaluated using eq. (5.8) and a parallel matrix is assembled sum-

ming properly the local contributions. Local-to-global and global-to-local operations asso-

ciated to the parallel coarse vectors are performed using the VecScatter objects provided

by PETSc; we then use the parallel LU factorization providedby the MUMPS library [92]

in order to solve exactly the primal problem at each application of the preconditioner. We

note that we can also use a different solving approach to the coarse problem, replicating
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the coarse matrix and then solving the coarse problem on eachprocessor without using the

parallel LU factorization; collective MPI communicationswill be needed. See Section 6.4

for the computational comparison of this two primal approaches.

BDDC dependence fromH/h.
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Figure 5.2:Comparison of the condition number of PCG-BDDC (with vertexand edge averages constraints)
and PCG-BNN solver for the Schur complement of the Bidomain discretization as a function ofH/h. Test case
with 3 × 3 × 3 processors,h =1E-2,δt =1E-2, conductivity coefficients as in Table 2.1.1, random right-hand
side and null initial guess; PCG iteration is stopped when the preconditioned residual is lower then 1E-8.

Figure 5.2 shows theH/h dependence of the condition number of the BDDC precon-

ditioner with only vertex and edges averages constraints, aset of constraints poorer than

that required for the analysis. Results for vertex constraints plus edge and faces averages

does not improve substantially these results. It must be noted that, also with this set of

primal constraints, BDDC outperforms the BNN preconditioner with the Bidomain model

on the same test case. A least squares fitting of the data showsthat the power of the factor

(1 + log(H/h)) is approximatively 2 for both the preconditioners; their fittings differ only

for a constant coefficient which multiplies the latter factor. Table 5.1 shows the results with

only vertex constraints, which suggest an additional linear dependence of the condition

number fromH/h as expected by the theory (see e.g. [140])

We then reproduce the numerical test performed to enlight the dependence of the con-

dition number of BNN preconditioned Bidomain problem with natural coarse space from

H−2 (see Section 4.8) in order to compare with the performances of the BDDC method.

Results (compare them with the results listed in Table 4.6) for the BDDC preconditioner

are shown in Table 5.2 usingδt =1E1 and conductivity coefficientsσi,e
M =1E1,σi,e

m =1E-1

with the intermediate eigenvalues equal to 1. With this set of parameters, BDDC outper-

forms BNN preconditioner with enriched coarse space.

BDDC scaled speedup.

In Table 5.3 we show the scalability of the BDDC preconditioner with vertices and edge

averages as primal constraints. If we add faces averages to the primal space we will obtain

slightly better results but without a substantial improvement (data not shown).
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PCG-BDDC Schur BidomainH/h dependence
Vertex constraints only

H/h 5 10 15 20 25
κ2 6.93 22.68 42.97 66.15 91.24

Table 5.1:Bidomain Schur complementH/h dependence test for PCG-BDDC solver with only vertex con-
straints as primal variables. Test case with 3x3x3 processors, h =1E-2,δt =1E-2, conductivity coefficients as
in Table 2.1.1, random right-hand side and null initial guess; PCG iteration is stopped when the preconditioned
residual is lower then 1E-8.

H/h 5 10 15 20
κ2 2.61 4.91 7.07 9.02

Table 5.2:Bidomain Schur complementH/h dependence test for PCG-BDDC solver with vertex and edges
averages constraints as primal variables. Test case with 3x3x3 processors,h =1E-2,δt =1E1, random right-hand
side and null initial guess; PCG iteration is stopped when the preconditioned residual is lower then 1E-8. For the
conductivity coefficients, see text.

BDDC dependence fromδt.

Next, we tested the estimated dependence of the condition number by the time stepδt

and we collected the results in Table 5.4 using vertex and edge averages as primal space:

differently from the BNN preconditioner (see Section 4.8) the experimental condition num-

bers show a sigmoidal dependence fromδt of the form

c1
δm
t + 1

δm
t + c2

with m > 0. The same qualitative behavior was observed adding also thefaces aver-

ages. The theoretical estimates thus overestimate the dependence of the condition number

form δt when it approaches zero. Figure 5.3 shows the comparison between the values of

the condition number provided in Table 5.4 and their least square fitting with a sigmoidal

curve withc1 = 6.372 ± 0.28, c2 = 2.425 ± 0.18 andm = 0.8574 ± 0.41 with 95%

confidence to validate the experimental findings.

BDDC with jumping coefficients.

From Theorem 5.5.6 we infer that the condition number of the Bidomain operator

M−1
BDDC ŜΓ will be independent of jumps in the conductivity coefficients aligned with the
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PCG-BDDC Schur Bidomain Scalability
Vertex and edge averages constraints

subd Ŵ dofs ŴΓ dofs ŴΠ dofs iter λmin λmax κ2

2x2x1 120’050 4’850 46 10 1.00 3.09 3.09
4x4x1 470’450 28’650 222 12 1.00 3.33 3.33
6x6x1 1’051’250 71’250 509 12 1.00 3.46 3.46
8x8x1 1’862’450 132’650 910 13 1.00 3.51 3.51

10x10x1 2’904’050 212’850 1’422 13 1.00 3.55 3.55
12x12x1 4’176’050 311’850 2’046 14 1.00 3.56 3.56
14x14x1 5’678’450 429’650 2’782 14 1.00 3.58 3.58
16x16x1 7’411’250 566’250 3’630 14 1.00 3.59 3.59
18x18x1 9’374’450 721’650 4’589 14 1.00 3.59 3.59
20x20x1 11’568’050 895’850 5’662 14 1.00 3.59 3.59
22x22x1 13’992’050 1’088’850 6’846 14 1.00 3.60 3.60
24x24x1 16’646’450 1’300’650 8’141 14 1.00 3.60 3.60

Table 5.3:Bidomain Schur complement scalability test for PCG-BDDC solver with vertices and edge average
constraints as primal variables. Test case withh = 0.01, H/h = 25, δt = 1e−2, conductivity coefficients as in
Table 2.1.1, random right-hand side and null initial guess;PCG iteration is stopped when the initial preconditioned
residual is reduced by a factor of 1E-6. For each run, subdomain subdivision in the three dimensions, number of
global, interface and primal dofs, number of iterations, extreme eigenvalues and condition number are shown.

interface; it will depend on the conductivity coefficients at most through the factor

max
•=i,e

(
max

j=1,...,N

σ•(j)

M δt +H2

σ•(j)

m δt

)
. (5.23)

To validate this finding, as for the Neumann-Neumann preconditioners in the previous

chapter, we will consider a 3x3x3 decomposition of the wholedomain and a checkerboard

pattern (see Figure 4.3) of discontinuities in the conductivity coefficients, with two different

sets of discontinuities. We initially set the conductivitycoefficients asσi,e
l =1E1,σi,e

t =1

andσi,e
n =1E-1, then we consider a first test case, fixing a factorp and then multiplying

PCG-BDDC Schur Bidomainδt dependence

δt 1E-4 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4
κ2 2.73 2.74 2.75 2.88 3.78 5.45 6.19 6.35 6.37

iter 10 10 10 10 12 14 16 16 16

Table 5.4: Bidomain Schur complementδt dependence test for PCG-BDDC solver with vertices and edge
average constraints as primal variables. Test case with 2x2x2 subdomains,h = 0.01, H/h = 15, conductivity
coefficients as in Table 2.1.1, random right-hand side and null initial guess; PCG iteration is stopped when the
initial preconditioned residual is reduced by a factor of 1E-6. For each run, time stepδt, condition number and
number of iterations are shown.
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Figure 5.3:Bidomain Schur complementδt dependence test for PCG-BDDC solver with vertices and edge
average constraints as primal variables. Condition numberas a function oflog(δt): the triangles are the exper-
imental values and the continuous curve represents their fitting. Test case with 2x2x2 subdomains,h = 0.01,
H/h = 15, conductivity coefficients as in Table 2.1.1, random right-hand side and null initial guess; PCG itera-
tion is stopped when the initial preconditioned residual isreduced by a factor of 1E-6.

each conductivity coefficient, either intra- or extracellular, by p in the black subdomains

and by1/p in the others. In the second test case, we multiply differently the intracellular

and extracellular coefficients in the two coloured regions:in the black subdomains we mul-

tiply the intracellular conductivity coefficients byp and the extracellular ones by1/p. In

the white regions we will do the viceversa. Numerical results are summarized in Table 5.5:

column labelled byA refers to the first type of discontinuity, whereas columnB refers to

the second one. In either case, the condition number and the number of iterations remains

almost constants varying largely the factorp: note that the theoretical results are not sharp

in the case of jumping coefficients due to the presence of theH2 addendum in (5.23) in-

troduced by the Poincarè-Friedrichs inequalities for theL2 norms. In fact, without theH2

addendum, the factor (5.23) will be independent of jumps in the conductivity coefficients.

PCG-BDDC Schur Bidomain
Jumping Coefficients

A B
p it κ2 it κ2

1 18 7.16 18 7.16
1E1 19 8.51 18 8.11
1E2 19 8.61 18 8.52
1E3 20 8.71 18 8.52
1E4 20 9.05 18 8.52

Table 5.5:Bidomain Schur complement dependence from jumps in the conductivity coefficient. PCG-BDDC
solver with vertices and edge average constraints as primalvariables. Test case with 3x3x3 subdomains,h = 0.01,
H/h = 15, δt =1E-2, random right-hand side and null initial guess; PCG iteration is stopped when the initial
residual is reduced by a factor of 1E-6. For each run, jumpingfactorp (see text for details), number of iteration
and condition number for the preconditionedM−1

BDDC
ŜΓ operator are shown.
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BDDC and lagrangian initial guesses

degree 0 1 2 3 4

Iterations per time step

phase 0 5.73 4.17 3.73 3.73 3.91
phase 1-2 4.04 1.79 1.36 1.99 2.55

phase 3 5.52 2.22 1.47 2.11 4.35

Admissible Solutions

phase 0 0 0 0 0 0
phase 1-2 0 17 9 0 0

phase 3 0 0 10 0 0

Table 5.6:An heartbeat with BDDC preconditioner and different choiceof the polynomial order for Lagrangian
initial guesses. For each Lagrangian degree, average number of iterations per time step and number of admissible
solutions for the linear solver are shown for different AP phases. See text for further details.

An heartbeat with BDDC preconditioner and different initia l guesses.

We then test the BDDC preconditioner in a heartbeat simulation. We consider a global

grid 43 × 43 × 43 decomposed with3 × 3 × 3 subdomains (H/h = 15) and we simulate

an heartbeat with the Bidomain model for 350 ms stimulating the lower left (endocardial)

corner of the slab using HHRd as ionic cellular model (see Chapter 1) and the adaptive time

stepping strategy (see Chapter 2). We note that with this configuration, the repolarization

wave ends after 335 ms from the stimulus injection. Results for the Lagrangian choice of

the PCG initial guess are shown in Table 5.6 whereas for the POD-Galerkin technique in

Table 5.7 using the notation adopted in Chapter 3. Note that the case with PCG initial guess

as the solution at the previous time step is contained in the Lagrangian case as a zero order

polynomial approximation.

For POD-Galerkin, the choice of inner products to build the correlation matrices needs

some discussion since we don’t assemble the Schur matrix. Ateach time step, we need to

solve the full order Schur symmetric linear system, which can be reordered as

ŜΓ =

(
Sii

Γ Sie
Γ

SieT

Γ See
Γ

)

splitting the Schur degrees of freedom in intra- end extra-cellular dofs, and thus the lower

139



Chapter 5. Balancing by Constraints (BDDC) preconditionerfor the Bidomain model

BDDC and POD initial guesses

N 2 3 4 5 10

Iterations per time step

phase 0 4.35 3.77 3.54 3.47 3.56
phase 1-2 1.54 1.18 1.02 0.89 0.68

phase 3 1.52 1.21 0.97 0.80 0.60

Admissible Solutions

phase 0 0 1 3 6 13
phase 1-2 7 55 109 139 210

phase 3 42 51 90 151 215

Table 5.7:An heartbeat with BDDC preconditioner and POD initial guessfor different number of snapshots
np. For eachnp, average number of iterations per time step and number of admissible solutions for the linear
solver are shown for different AP phases. See text for further details.

order POD-Galerkin system becomes (see Section 3.4)

(
ΨiTSii

Γ Ψi ΨiTSie
Γ Ψe

ΨeTSieT

Γ Ψi ΨeTSee
Γ Ψe

)

where the matrix of POD basis elements is

Ψ =

(
Ψi 0

0 Ψe

)
.

Next, in order to reduce the computational costs of assembling the lower order POD system

(see Remark 3.4.6), we can choose as inner productsSii
Γ andSee

Γ for the intra- and extra-

cellular components respectively and thus obtain a lower dimensional matrix which has the

diagonal blocks equal to identity matrices of appropriate sizes. Splitting thejth snapshot

vector in intra- and extracellular component, i.e.

yj =

(
yi

j

ye
j

)

it holds (
Sii

Γ Sie
Γ

SieT

Γ See
Γ

)(
yi

j

0

)
=

(
Sii

Γ yi
j

SieT

Γ yi
j

)

(
Sii

Γ Sie
Γ

SieT

Γ See
Γ

)(
0

ye
j

)
=

(
Sie

Γ ye
j

See
Γ ye

j

)
;
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therefore, the action ofSii
Γ (resp. See

Γ ) on a given intracellular (extracellular) interface

snapshot vector can be obtained extending by zero the vectorin the extracellular (intracel-

lular) part, multiplying the resulting vector by the Schur matrix and then restrict the result

on the intracellular (extracellular) part. Therefore, we need to perform only two Schur

matrix-vector multiplications in order to assemble the correlation matrix at each time step.

In addition, for the lower dimensional system we don’t need to perform any additional ma-

trix vector multiplication involving the off diagonal block Sie
Γ ; in fact, consider to compute

the general entry of the lower dimensional off-diagonal block

(ΨiTSie
Γ Ψe)km = ψi

k

T
Sie

Γ ψ
e
m.

Using eq. (3.11) and denoting by superscriptsi, e the eigenvalues and eigenvectors of the

intra- and extra-cellular correlation matrices, we obtain

ψi
k

T
Sie

Γ ψ
e
m =

1√
λi

kλ
e
m

(

N∑

j=1

vj,i
k yi

j)
TSie

Γ (

N∑

j=1

vj,e
k ye

j)

=
1√
λi

kλ
e
m

N∑

j,l=1

vj,i
k vl,e

m yi
j

T
Sie

Γ ye
l .

Thus, if we store the vectorsSie
Γ ye

j for all j = 1, . . . , N already computed during the

correlation matrices assembling, we need to perform only some additional dot products to

assemble the lower order POD-Galerkin system with the result that additional expensive

Schur matrix-vector products can be avoided.

Results show efficiency for both approaches in all AP phases but the activation phase,

in which the reduction of the number of iterations saturatesincreasing either the interpola-

tion degree, or the dimension of the POD snapshot ensembleN . In other AP phases, POD

shows the best results, either in terms of average number of iteration per time step, or taking

into account the admissible solutions; moreover, the approximation properties of POD are

better than the lagrangian approach when considering the same number of stored snapshots

(compare the columns for whose the lagrangian degree is equal to N − 1 POD snapshots).

As noted in Chapter 5, the dimension of the snapshot ensemblefor POD need not to be

large, and for this test case 5 snapshots are enough to obtaina satisfactory reduction of the

number of iterations per time step.
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Chapter 6

Approximate BDDC for the

Bidomain model

6.1 Introduction

The local problems of the BDDC preconditioner can be computational bottlenecks if the

subdomains’ sizes are large. In fact, one of the shortcomings of BDDC is that the direct

solutions for the local Dirichlet and Neumann problems usedby the method may require

too much time and memory if the number of degrees of freedomNdof in any substructure is

too large. For example, in three dimensions the floating point operations needed to factor

and solve, through backward and forward substitutions, either of the local problems for the

discrete Laplacian and an optimal Nested Dissection ordering are indeed asymptotical to

O(N2
dof) and0(N

4/3
dof ) respectively (see [33]). One technique for removing these difficul-

ties consists in using multigrid preconditioners as inexact solvers for these problems, since

multigrid computational costs are asymptotical toO(Ndof), still maintaining the scalability

of the preconditioner and a good rate of convergence with respect to the spatial discretiza-

tion. An inexact approach to the FETI-DP methods can be foundin [68]

The Dirichlet solver is used to obtain the action of the Schurcomplement matrix on

the interface unknowns: we will thus end up solving a different system if we just replace

it by an inexact solver in the Schur matrix application. In order to overcome this issue,

we must iterate on the assembled matrixÂ given in formula (4.6) instead of̂SΓ and con-

struct a BDDC preconditioner for the operatorÂ. The Neumann solver is involved in the

computation of the coarse basis functions and thus in the resulting coarse problem during

the preprocessing step; moreover, we need it also in the application of the BDDC pre-

conditioner during the conjugate gradient iterations. Inexact Neumann solvers should thus

be chosen to guarantee the positive semidefiniteness of the Bidomain coarse matrix and

preserve the null space during the conjugate gradient iterations.

Here we will follow the algebraic approach proposed by Dohrmann [31]. We will

deal with the original formulation of the BDDC preconditioner (see Section 5.3 for the
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details) without imposing the change of variables since it would guaranties that multigrid

preconditioners, used as black-boxes for the inexact solvers, will be spectrally equivalent

to the exact problems (see the next section for details). A different inexact approach to

BDDC with change of basis can be found in [78]. To explain the construction of such an

approximate BDDC, we first need some additional restrictionoperators: let

RI : Ŵ → WI

the operator which extracts the interior dofs from̂W and letRD the scaled restriction

operator fromŴ to W using a suitable partition of unity. We can then define an equivalent

BDDC preconditioner for matrix̂A as:

M−1 = M−1
I + (I −M−1

I Â)M−1
BDDC(I − ÂM−1

I ) (6.1)

where

M−1
I = RT

I A
−1
II RI

andM−1
BDDC is, with a little abuse of notation, given similarly to its formulation given in

eq. (5.3)

M−1
BDDC = RT

D [Pcoarse + Plocal]RD

assuming that now the BDDC operatorsPcoarse andPlocal act onW. The coarse parts of

the preconditioner can be defined by

Pcoarse = ΨA−1
c ΨT , Ac = ΨTAΨ

with the coarse basis function matrix given by the solution of the following minimization

problem posed onW

Ψ = argmin
Cw=I,w∈W

wTAw. (6.2)

whereA is the unassembled stiffness matrix andC is the block matrix imposing the local

constraints. The action of the additive part of the preconditioner is then given by

(
A CT

C 0

)(
Plocal g

µ

)
=

(
g

0

)
.

See eq. (5.6) for a comparison.

Remark6.1.1. Due to the Schur complement definition given in Lemma 4.2.3, problem

(5.4) is equivalent to problem (6.2). The matrixC is similar to the matrix built in Remark

5.3.1 except that now the number of columns of eachC(j) equals the number of nodes on

W(j), and thus the number of rows ofΨ (i.e. the support of the coarse basis functions)

equals the number of dofs ofW. The same arguments hold true also for the matrixI. See

Remark 5.3.1 for the construction of such matrices.

Remark6.1.2. As it can be seen, the same block saddle point problem needed for the
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additive part of the preconditioner and also involved in thecomputation of the coarse basis

function and the resulting coarse problem can be generalized as

(
A CT

C 0

)(
w

µ

)
=

(
g

h

)
. (6.3)

Here we will illustrate how problem (6.3) can be solved directly as descripted in [31].

Suppose to have an ordering ofW with the vertex nodes (denoted with a subscriptv)

ordered last, i.e.

A =

(
Arr Arv

Arv Avv

)

with

Arr =




A
(1)
rr

. . .

A
(N)
rr


 , Arv =




A
(1)
rv

. . .

A
(N)
rv




and

Avv =




A
(1)
vv

. . .

A
(N)
vv


 .

In turn, nodes reordering induces a reordering of the constraints matrix

C =

(
Cr 0

0 I

)
.

The number of rows ofCr is the sum of averages imposed on each substructure and the

size of the identity matrix is the number of unassembled vertex constraints; using the latter

splitting of the dofs, the solution of the saddle point system (6.3) is given by

µr =
(
CrArrC

T
r

)−1 [
CrA

−1
rr (gr −Arvhv) − hr

]

wr = A−1
rr

(
gr −Arvhv − CT

r µr

)

wv = hv

µv = gv −AT
rvwr −Avvhv.

(6.4)

The action of operatorPlocal is thus calculated by settingh = 0. Denoting withnc the

global number of constraints imposed, the matrix of coarse basis functionΨ can be ob-

tained solvingnc problems of the type (6.3) withg = 0 andµ a vector of all zeros except

for the indices which represent one global constraints where it takes on the value 1. Thew

solution of the latter problem will thus represent the columns of the coarse matrix. Once the

coarse basis function matrix has been calculated, the coarse problemAc can be efficiently

obtained as

Ac = ΨTAΨ = −ΨTCT Λ
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whereΛ is the matrix formed columnwise by theµ solutions obtained by calculating the

coarse basis function matrix: expensive matrix-vector products involving matrixA are thus

not needed. Additional details can be found in [30] and [31].

Remark6.1.3. Solving problem (6.3) requires the solution of two local problems, one

sparse and given byA−1
rr , and a second small and dense problem given by(CrArrC

T
r )−1.

Therefore, in order to solve problem (6.3) we will need only the action ofA−1
rr . With the

inexact approach proposed in [31], we substitute matrixA−1
rr with the action of multigrid

preconditioners.

The following theorem holds:

Theorem 6.1.4.The BDDC operatorM−1 given in eq. (6.1) satisfies

M−1Â =

(
I A−1

II AIΓ(I −M−1
BDDC)ŜΓ

0 M−1
BDDC ŜΓ

)

and thus the preconditioned operatorM−1Â has the same eigenvalues ofM−1
BDDCŜΓ plus

some additional eigenvalues, whose number equals the number of interior dofs, equal to 1.

Proof. See [31].

6.2 Approximate BDDC

In this section we will expose in details the construction ofthe approximate BDDC precon-

ditioner using inexact solvers for problemsAII andArr. LetA♭ be the assembled matrix

which is equal to the assembled matrix̂A except for the coupling of the interior dofs, i.e.

A♭ =

(
A♭

II AIΓ

AT
IΓ AΓΓ

)
,

and letA♯ be the unassembled matrix which is similar toA except for the block related to

the Neumann problem of the BDDC preconditioner (see Remark 6.1.3), i.e.

A♯ =

(
A♯

rr Arv

AT
rv Avv

)
.

MatricesA♭
II andA♯

rr must be suitable chosen to construct the approximate BDDC pre-

conditioner; they are not known explicitly and represents an approximation of the exact

matrices corresponding to using inexact Dirichlet and Neumann solvers respectively. The

inexact approach proposed in [31] requires two basic assumptions on such inexact matrices:

• Null space property: The null space of matricesA♭ andA♯ must be the same of̂A

andA respectively.

• Spectral equivalence: MatricesA♭ andA♯ must be spectrally equivalent tôA and

A respectively; we thus need the existence of positive real numbers0 < γ1 ≤ γ2 and
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0 < α1 ≤ α2, independent of the characteristic sizes of the spatial discretizationsh

andH , such that

γ1g
T Âg ≤ gTA♭g ≤ γ2g

T Âg ∀g ∈ Ŵ

α1g
TAg ≤ gTA♯g ≤ α2g

TAg ∀g ∈ W
(6.5)

Null space property

The null space property for the Dirichlet solver of the Bidomain model requires that

(
A♭

II AIΓ

AT
IΓ AΓΓ

)(
1I

1Γ

)
=

(
AII AIΓ

AT
IΓ AΓΓ

)(
1I

1Γ

)
=

(
0

0

)

where1I , and1Γ are identity vectors of appropriate sizes. A simple calculation reveals that

A♭−1

II AII1I = 1I

must be satisfied. Now letP−1
II be a candidate preconditioner forA♭−1

II . The following

correction ofP−1
II was proposed in [31] to obtain a preconditionerA♭−1

II for the Dirichlet

problem that satisfies the null space property:

A♭−1

II = 1I(1
T
I AII1I)

−11T
I + ET

I P
−1
II EI (6.6)

where

EI = I −AII1I(1
T
I AII1I)

−11T
I

with I the identity matrix of appropriate size. The same argumentswill hold true for the

Neumann problem, and thus we will use

A♯−1

rr = 1r(1
T
r Arr1r)

−11T
r + ET

r P
−1
rr Er (6.7)

where

Er = I −Arr1r(1
T
r Arr1r)

−11T
r

whereP−1
rr is a candidate preconditioner forA♯−1

rr .

Spectral equivalence

A priori estimates for the constants appearing in eqs. (6.5)are difficult to obtain directly.

As noted in [31], the spectral equivalent constants can be estimated by conjugate gradient
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iterations (even if they are not required by the implementation) as

γ1 = 1/λmax(A♭−1

Â), γ2 = 1/λmin(A♭−1

Â),

α1 = 1/λmax(A♯−1

Â), α2 = 1/λmin(A♯−1

Â).

where the action of the inverses appearing in the above formulas can be obtained with a

Schur complement argument (see eq. (4.6) ) as

A♭−1

g =

(
A♭−1

II (gI −AIΓgΓ)

S♭−1

Γ (gΓ −AT
IΓA

♭−1

II gI)

)
,

A♯−1

g =

(
A♯−1

rr (gr −Arvgv)

S♯−1

v (gr −AT
rvA

♯−1

rr gr)

)
,

with
S♭−1

Γ = AΓΓ −AT
IΓA

♭−1

II AIΓ,

S♯−1

v = Avv −AT
rvA

♯−1

rr Arv.

In [31] three inexact preconditioner were proposed: the first inexact preconditioner

uses only inexact Neumann solvers, whereas the second generalizes the first using both

inexact Dirichlet and Neumann solvers. For both preconditioners, the inexact local solvers

must satisfy the null space and spectral equivalence properties. The third preconditioner

proposed uses both inexact problems but the null space property for the Dirichlet problem

can be relaxed. Since the second and third preconditioners gave nearly the same results in

[31], here we will deal with the second preconditioner because we can bound its condition

number in terms of the exact BDDC preconditioner. The actionof the second approximate

BDDC preconditioner proposed in [31], here denoted byM̃−1, can be defined as:

M̃−1 = M ♭−1

I + (I −M ♭−1

I A♭)M ♯−1

BDDC(I −A♭M ♭−1

I ) (6.8)

where the superscript♭ (resp.♯) denote quantities obtained by replacing matrixÂ (resp.A)

byA♭ (resp.A♯) in all equations where they appear. Thus

M ♭−1

I = RT
I A

♭−1

II RI

and

M ♯−1

BDDC = RT
D

[
P ♯

coarse + P ♯
local

]
RD

with

P ♯
coarse = Ψ♯A♯−1

c Ψ♯T

, A♯
c = Ψ♯T

A♯Ψ♯
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and the block saddle point problem (6.3) replaced by

(
A♯ CT

C 0

)(
w♯

µ♯

)
=

(
g

h

)
.

Note that we must take into account the null space property and thus we use equations (6.6)

and (6.7) in order to solve the Dirichlet and Neumann problems respectively.

Then the following theorem will hold (see [31] for the proof)for the condition number

of the approximate BDDC.

Theorem 6.2.1.Let

ω = sup
w∈W̃Γ

|PDw|2S
|w|2S

the supremum of the jump operator (5.1) on the partially continuous spacẽWΓ with respect

to the Schur complement seminorm. Then, the condition number of the approximate BDDC

preconditioner (6.8) satisfies

κ2(M̃
−1Â) ≤ ω

α2γ
3
2

α1γ3
1

whereγ1 andγ2 are the spectral equivalence constants for the Dirichlet problem andα1

andα2 the spectral equivalence constants for the Neumann problemgiven in (6.5). In other

words (see Theorem 5.5.6)
κ2(M̃

−1Â)

κ2(M−1Â)
.
α2γ

3
2

α1γ3
1

.

Corollary 6.2.2. If we solve inexactly the inexact coarse problemA♯
c by the action of a

preconditionerA♯♯−1

c which satisfies

β1g
TA♯−1

c g ≤ gTA♯♯−1

c g ≤ β2g
TA♯−1

c g

for all primal vectorsg with 0 < β1 ≤ β2, we then have

κ2(M̃
−1Â) ≤ ω

max{1, β2}
min{1, β1}

α2γ
3
2

α1γ3
1

.

Remark6.2.3. The constantsβ1 andβ2 associated to the inexact coarse problem can be

estimated directly by conjugate gradient iterations on thepreconditioned systemA♯♯−1

c A♯
c.

In fact, calculating the extreme eigenvalues of the resulting tridiagonal Lanczos matrix, we

will have

λming
T g ≤ gTA♯♯−1

c A♯
cg ≤ λmaxg

T g

148



Chapter 6. Approximate BDDC for the Bidomain model

for all primal vectorsg. Denoting withρ(A♯♯−1

c ) the spectrum of theA♯♯−1

c operator, it will

hold

ρ(A♯♯−1

c ) = ρ(A♯♯−1

c A♯
cA

♯−1

c ) = ρ(A♯−1/2

c A♯♯−1

c A♯
cA

♯−1/2

c )

and thus we will have

β1g
TA♯−1

c g ≤ gTA♯♯−1

c g ≤ β2g
TA♯−1

c g

where

β1 = λmin(A♯♯−1

c A♯
c), β2 = λmax(A♯♯−1

c A♯
c).

6.3 Algebraic multigrid preconditioners

Multigrid methods are efficient numerical algorithms either for solving partial differential

equations or instead used as preconditioners for the discretized problem using a hierarchy

of discretizations. The main idea of multigrid is to accelerate the convergence of a basic

iterative method by the recursive smoothing and correctionof the residual error through

the hierarchy of operators associated to the hierarchy of discretizations. An extension of

multigrid methods include techniques where no partial differential equation nor geometri-

cal problem background is used to construct the multilevel hierarchy. In contrast to other

methods, Algebraic MultiGrid methods (AMG) (see e.g. [118]) are general in that they can

treat arbitrary regions and boundary conditions, moreoverthey do not depend on the sepa-

rability of the equations or other special properties of underlying PDE. Such AMG methods

construct their hierarchy of operators directly from the linear system matrix, and the levels

of the hierarchy are simply subsets of unknowns without any geometric interpretation, thus

becoming true black-box solvers for sparse matrices.

To simplify the discussion we will briefly explain how a two-level AMG method works.

With AMG, fine (F ) and coarse (C) grid points (which represent the next level of hierarchy)

are selected in such a way that the degrees of freedoms at coarse points maximally influence

the dofs at fine points using a suitable interpolation

P : C → F

between coarse and fine grid. Either the grid point subdivision or the interpolation operators

are constructed using solely the knowledge of the matrix entries. The two main components

of an AMG method are then the smoothing and the coarse-grid correction operators. The

smoother is generally a simple pointwise iterative method which eliminates all but the

smooth errorswhich are then transferred to the coarse-grid correction. It must be noted that

in order to use AMG as a preconditioner for the PCG, we must usea symmetric smoother

such as Gauss-Seidel to preserve the symmetric nature of thepreconditioned linear system.
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The most common approach for the coarse-grid correction is to use the Galerkin projection

of the original matrix (denoted withA) onto the coarse mesh through the interpolation

operator, namely,

Ac = PTAP

which guaranties (for symmetric positive definite matricesA) that the maximum eigenvalue

of the preconditioned operator will be less or equal 1 (see e.g. [100]). The action on a given

residual vectorr of a one-level AMG method used as a preconditioner can then bestated as:

Do ν1 smoothing steps onAu = r

Compute the fine grid residualrF = r −Au

Solve at the coarse gridAcec = PT rF

Correctu = u+ Pec

Do ν2 smoothing steps onAu = r

The latter method is often referred to in literature as a two-levelVν1,ν2-cycle. The gener-

alization to more levels can be obtained replacing the solvestep on the coarse grid with

the action of nested two-levelVν1,ν2-cycles using prolongation and coarse grid operators

builded starting from the matrix at the previous level of hierarchy. For the Bidomain local

matrices (see eq. (2.20)), the presence of negative off diagonal elements, due to the matrix

−1/δtM , and the larger weight of the diagonal entries, due to the matrix 1/δtM , makes

the coarsening procedure very effective and results in a very efficient preconditioner. See

also the numerical results provided in [147] and [108] whereAMG preconditioner has been

applied respectively to the parallel and serial solution ofthe Bidomain linear system.

Remark6.3.1. If we apply the inexact approach to BDDC with change of basis,we will

have the same Dirichlet problem since the block diagonal matrix AII will not change with

changing the basis (see Section 5.4); the Neumann problem will be affected by the trans-

formation and we must solve the block diagonal system with matrix

ANN =




A
(1)
NN

. . .

A
(N)
NN




where

A
(j)
NN =

(
A

(j)
II A

(j)
I∆

A
(j)T

I∆ A
(j)
∆∆

)
.

Table 6.1 shows the extreme eigenvalues of block diagonal problemsAII , Arr and

ANN preconditioned with AMG methods (whose actions are denotedby P−1
II , P−1

rr and

P−1
NN respectively) usingboomerAMGpreconditioner provided by the HYPRE library [55]

developed at the Lawrence Livermore National Laboratory; in details, each local linear sys-

tem is solved until machine precision with a random right hand side and null initial guess,
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P−1
II AII P−1

rr Arr P−1
NNANN

H/h λmin λmax λmin λmax λmin λmax

5 8.5E-1 1.00 8.3E-1 1.00 6.3E-1 1.00
10 8.3E-1 1.00 7.3E-1 1.00 1.6E-1 1.00
15 7.8E-1 1.00 6.6E-1 1.00 5.6E-2 1.00
20 7.6E-1 1.00 6.4E-1 1.00 2.5E-2 1.00
25 7.6E-1 1.00 6.7E-1 1.00 1.3E-2 1.00
30 7.2E-1 1.00 6.0E-1 1.00 6.2E-3 1.00
35 7.5E-1 1.00 7.0E-1 1.00 2.8E-3 1.00
40 6.6E-1 1.00 6.0E-1 1.00 1.1E-3 1.00

Table 6.1:Bidomain local AMG based solvers as a function ofH/h. Vertices and edge averages as primal
constraints. Test case with3×3×3 subdomains,h = 0.01, random right-hand side and null initial guess; iterative
solver is stopped when the preconditioned residual is lowerthan 1E-12. For each run extreme eigenvalues of the
local problems are shown.

and then the global minimum of local minimum eigenvalues andthe global maximum of

local maximum eigenvalues are collected. Results show the effectiveness of the AMG pre-

conditioner for the local Dirichlet and Neumann problems with the original formulation of

the BDDC preconditioner; on the other hand, AMG preconditioner did not results in a spec-

trally equivalent preconditioner for the Neumann problem after performing the change of

basis. Numerical results were obtained using one multilevel V1,1-cycle with Gauss-Seidel

smoothing and without any other explicit settings of the other parameters offered to the

user by the HYPRE library.

Remark6.3.2. Note that, if we want to use AMG preconditioner as a local inexact solver

for a more difficult problem than the Bidomain model, we must assure independence of

the minimum eigenvalue of the preconditioned operators of the local problems as in Table

6.1 fromh andH and any other parameters of the underlying PDE, otherwise the rate of

convergence of the inexact BDDC can deteriorate. A different inexact strategy could be

to construct local and robust BDDC preconditioners for Dirichlet and Neumann problems;

from the computational viewpoint using such arecursiveBDDC can be easier to implement

than develop and implement an ad-hoc multigrid preconditioner, since in the former case

we can use an already existing code. We are planning to apply these ideas to an inexact

formulation of the BDDC preconditioner of the system of linear elasticity in the almost

incompressible case in three dimensions where black boxes AMG preconditioners does not

give satisfactory results. Results of scalability and robustness of exact BDDC methods for

the latter system have been already obtained in [105] in collaboration with Prof Olof B.

Widlund (Courant Institute, NYU) and Prof Luca F. Pavarino (University of Milan).
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M−1Â M̃−1Â

H/h λmin λmax κ2 it λmin λmax κ2 it

5 1.00 1.45 1.45 6 0.88 1.42 1.61 7
10 1.00 2.28 2.28 9 0.87 2.14 2.45 10
15 1.00 2.98 2.98 11 0.87 2.66 3.06 11
20 1.00 3.49 3.49 11 0.85 3.17 3.71 13
25 1.00 4.02 4.02 13 0.85 3.56 4.18 14
30 out of memory 0.76 3.91 5.14 15
35 out of memory 0.75 4.23 5.60 16
40 out of memory 0.70 4.43 6.27 16

Table 6.2: Inexact BDDCH/h dependence. Exact BDDC preconditioner versus inexact BDDCwith local
AMG based preconditioners. Vertices and edge averages as primal constraints. Test case with 3x3x3 subdomains,
h = 0.01, random right-hand side and null initial guess; iterative solver is stopped when the initial preconditioned
residual is reduced by a factor of 1E-6. For each run, extremeeigenvalues, condition number and number of
iterations are shown. Coarse problem is solved exactly.

6.4 Implementational details and numerical results

The action of the BDDC preconditioner has been descripted indetails in the previous sec-

tions. In order to complete the description of the action ofM̃−1 on a given residual vectorr,

we must calculate the action of the variational corrections(I−A♭M ♭−1

) and(I−M ♭−1

A♭),

needed respectively before and after the application ofM ♯−1

BDDC , and given by

(I −A♭M ♭−1

)r =

(
0 0

−AT
IΓA

♭−1

II I

)(
rI

rΓ

)

and

(I −M ♭−1

A♭)s =

(
0 −A♭−1

II AIΓ

0 I

)(
sI

sΓ

)

wheres is the output ofM ♯−1

BDDC .Finally, in the following we will refer to the ratio

κ2(M̃
−1Â)

κ2(M−1Â)

as experimental inexact factor.

Approximate BDDC H/h dependence.

First, we study theH/h dependence (fixing the time step) using inexact local solvers

given by eqs. (6.6) and (6.7) and compare it with the exact approach. OneV1,1-cycle with

Gauss-Seidel smoothing is used for the AMG methods. Resultsare listed in Table 6.2: for

the inexact approach, the inexact coarse problem is solved exactly with a parallel factoriza-
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PCG-BDDC Inexact Bidomain Scalability
Vertex and edge averages constraints

exact inexact
subd κ2 (it) κ2 (it) β1 β2 inex. fact.

2x2x1 3.09 (10) 3.51 (12) 0.87 1.00 1.14
4x4x1 3.33 (12) 3.71 (13) 0.80 1.00 1.15
6x6x1 3.46 (12) 3.72 (13) 0.80 1.00 1.07
8x8x1 3.51 (13) 3.79 (14) 0.80 1.00 1.08

10x10x1 3.55 (13) 3.76 (13) 0.80 1.00 1.06
12x12x1 3.56 (14) 3.87 (14) 0.79 1.00 1.08
14x14x1 3.58 (14) 3.84 (14) 0.75 1.00 1.07

Table 6.3: Inexact BDDC Scaled Speedup. PCG-BDDC inexact solver with vertices and edge average con-
straints as primal variables; local and coarse problems solved with boomerAMG. Test case withh = 0.01,
H/h = 25, random right-hand side and null initial guess; PCG iteration is stopped when the initial precondi-
tioned residual is reduced by a factor of 1E-6. For each run, subdomain subdivision in the three dimensions,
condition number (number of iterations in parenthesis) areshown for both exact and inexact formulations. For a
comparison with the exact BDDC, extreme eigenvalues of the inexact coarse problem and inexact experimental
factor (inex. fact.) are also shown (see text for details).

tion. As it can be seen, using inexact local solvers spectrally equivalent to the original ones

does not deteriorate the properties of the BDDC preconditioner with respect toh andH

and it permits to manage larger local problems, since the memory requirements for a multi-

grid preconditioner are linear in the local size. Moreover,the minimum eigenvalue of the

inexact preconditioned operator is worse than the exact one, but the maximum eigenvalue

is better.

Approximate BDDC scaled speedup.

Next, we reproduce the scaled speed up test performed on the exact BDDC precondi-

tioner (see Table 5.3) and compare the results in Table 6.3 with the inexact approach using

eqs. (6.6) and (6.7) with one AMGV1,1-cycle for the local problems. Moreover we solved

inexactly the coarse problem with one AMGV1,1-cycle. The condition number of the inex-

act approach remains bounded as the number of subdomains increases as for the exact one.

Approximate BDDC δt dependence.

From our numerical experiments we deduce that the conditionnumber of the inexact

operator will be independent of the spatial constants of discretizationsh andH ; however,

the performances of the AMG methods can depend on the time step taken. We therefore

reproduce the test case for theδt dependence of the exact BDDC operator (see Table 5.4)

and list the inexact results in Table 6.4. The sigmoidal dependence fromδt remains un-
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PCG-BDDC Inexact Bidomainδt dependence

δt 1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3
κ2 2.76 2.86 3.60 5.98 10.43 12.97 13.40

iter 10 10 11 14 17 20 20

Table 6.4:Inexact BDDC dependence fromδt. PCG-BDDC solver with vertices and edge average constraints
as primal variables. Test case with 2x2x2 subdomains,h = 0.01, H/h = 15, conductivity coefficients as in
Table 2.1.1, random right-hand side and null initial guess;PCG iteration is stopped when the initial preconditioned
residual is reduced by a factor of 1E-6. For each run, time step δt, condition number and number of iterations are
shown.

altered using twoV2,2-cycles for the application of the AMG preconditioner in equations

(6.6) and (6.7).

Approximate BDDC with jumping coefficients.

PCG-BDDC Inexact
Jumping Coefficients

A B
p it κ2 inex. fact. it κ2 inex. fact.

1 20 10.47 1.47 20 10.47 1.47
1E1 22 12.41 1.46 21 12.12 1.49
1E2 22 12.54 1.46 24 13.70 1.60
1E3 23 13.75 1.57 24 15.13 1.78

Table 6.5:Inexact BDDC dependence from jumps in the conductivity coefficient. PCG-BDDC solver with ver-
tices and edge average constraints as primal variables. Test case with 3x3x3 subdomains,h = 0.01, H/h = 15,
random right-hand side and null initial guess; PCG iteration is stopped when the initial preconditioned residual is
reduced by a factor of 1E-6. For each run, jumping factorp (see text for details), number of iteration and condition
number for inexact BDDC are shown. Inexact experimental factor (inex. fact.) is also shown (see text for details).

We test the independence of the inexact approach from jumps in the conductivity coef-

ficients reproducing the test case described in the previouschapter for the exact BDDC and

using oneV1,1-cycle. The inexact coarse problem has been solved exactly with a parallel

LU factorization. The condition number of the inexact BDDC remains constant varying

largely the factorp and the experimental ratio between the condition number of inexact

and exact BBDC preconditioners remains bounded. Note that the condition number of the

exact BDDC is not shown in table.

Approximate BDDC computational times.
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Approximate BDDC Scalability

CPUs 2x2x2 4x4x4 6x6x6 8x8x8
κ2 5.63 4.08 3.59 3.07
λM 4.02 3.50 3.12 2.69
λm 0.71 0.85 0.86 0.87
iter 15 13 12 11

TPP(s) 37.69 3.55 3.46 6.42
TCS(s) 37.92 3.24 0.75 0.61

Table 6.6:PCG scalability with approximate BDDC preconditioner withvertices and edge average constraints
as primal variables. Test case withh = 0.01, global grid 80x80x80, random right-hand side and null initial
guess; PCG iteration is stopped when the initial preconditioned residual is reduced by a factor of 1E-6. For each
run, number of subdomains (one per cpu) per dimension, condition number, extreme eigenvalues and number of
iterations are shown. Computational times in seconds are reported for both primal approaches descripted in text.

Tables 6.6 and 6.7 collect some computational times of the inexact BDDC code devel-

oped; results have been obtained using the Linux cluster Matrix of CASPUR (for cluster’s

details see http://hpc.caspur.it) located in Rome. We considered two different approaches

for dealing with the primal problem. Approach denoted by PP (Point-to-point Parallel) con-

sists in assemble and solve a parallel problem distributed across the processors, using for

the solving step the parallel LU factorization for sparse matrices provided by MUMPS [92]

and the VecScatter objects provided by PETSc [6] to perform the point-to-point communi-

cations related to assemble the primal right hand side and distribute the primal solution at

each application of the preconditioner. With approach denoted by CS (Collective Serial) we

assemble the primal problem on each processor using collective MPI gathering operations

and then solve them with the serial package UMFPACK [142] forsparse matrices; note that

with this approach, we need only one collective MPI operation to gather the primal right

hand side to all processors at each application of the BDDC preconditioner.

Table 6.6 reports on the parallel scalability of the PCG method with approximate BDDC:

we first fix the dimension of the global grid (80x80x80 corresponding to one million dofs

approximatively) and then subdivide it along each spatial dimension, assigning one sub-

domain to one cpu. OneV1,1 cycle has been used as AMG method for solving both the

Dirichlet (6.6) and Neumann (6.7) local problems. In both cases, the BDDC code scales

superlinearly until 64 processors since the communicationcosts are limited and the sub-

structure diameter decreases together with the number of iterations; the CS approach con-

tinues scaling until 512 processors even if the scaling is not linear; on the other hand, the

PP approach suffers over 64 processors since the communication costs of the parallel LU

solving step dominate the overall computational costs (data not shown).

Table 6.7 contains the computational times of the scaled speed-up of the PCG with

approximate BDDC for the PP and CS approaches described previously. We used physi-

ological conductivity coefficients (see Table 2.1.1) and a fixed local grid 40x40x40 for all

substructures (H/h = 40); oneV1,1 cycle has been used as AMG method for solving both
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Approximate BDDC Scaled speed up

CPUs 8 32 72 128 200 288 392 512
κ2 5.16 4.95 4.96 4.95 5.08 5.05 5.23 5.21
λM 3.99 4.15 4.18 4.19 4.18 4.18 4.18 4.17
λm 0.77 0.73 0.84 0.84 0.82 0.82 0.80 0.80
iter 15 15 15 15 16 16 17 17

TPP (s) 40.55 50.60 52.03 52.85 57.44 65.85 64.13 65.88
TCS (s) 36.26 39.88 41.97 44.14 47.69 48.07 50.65 50.33
Ŵ dofs 1.0M 3.9M 8.7M 15.5M 24.2M 34.8M 47.3M 61.7M

Table 6.7:Scaled speed up of PCG method and approximate BDDC preconditioner with vertices and edge
average constraints as primal variables. Test case withh = 0.01, local grid 40x40x40, random right-hand side
and null initial guess; PCG iteration is stopped when the initial preconditioned residual is reduced by a factor
of 1E-6. For each run, number of subdomains (one per cpu), condition number, extreme eigenvalues, umber of
iterations and global number of dofs are shown. Computational times in seconds are reported for both primal
approaches descripted in text.

the Dirichlet (6.6) and Neumann (6.7) local problems. CS approach perform better than the

PP approach also in this case; for both approaches the overall computational costs initially

increase with increasing the number of subdomains and then remains almost constants until

512 processors and more than 60 million dofs.
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Conclusions

In this thesis we have considered different aspects relatedto the mathematical modeling of

cardiac electrophysiology, either from the cellular or from the tissue perspective, and we

have developed novel numerical methods for the parallel iterative solution of the resulting

reaction-diffusion models.

In Chapter one, starting from a recently published ionic model for epicardial cells, we

have developed and validated the HHRd model, which accountsfor transmural cellular

heterogeneities of the canine left ventricle. The HHRd model has been developed using

available published experimental data on epicardial, midmyocardial and endocardial cells,

reproducing numerically the same experimental conditionsdescribed in the experimental

papers; numerical simulations of cellular action potentials have shown a good agreement

with experimental data on steady state action potential duration, intracellular diastolic ionic

concentrations and force frequency relationship for each type of cell considered by the

HHRd model. Future studies should investigate the effects of specified drugs on the differ-

ent type of cells modeled by HHRd.

Next, we have introduced the reaction-diffusion models describing the spread of exci-

tation in cardiac tissue, namely the anisotropic Bidomain and Monodomain models. For

their discretization, we have considered trilinear isoparametric finite elements in space and

a semi-implicit IMEX method in time. In order to reduce the computational costs of par-

allel three-dimensional cardiac simulations, in Chapter three we have considered different

strategies to accelerate convergence of the Preconditioned Conjugate Gradient method used

for the solution of the large and sparse linear systems coming from the finite element dis-

cretization of both cardiac models. We have considered novel choices for the Krylov initial

guess in order to reduce the number of iterations per time step, namely lagrangian inter-

polants in time of the previous computed solutions, or the projected solution, using a usual

Galerkin technique, on the lower order subspace generated by using the Proper Orthog-

onal Decomposition technique applied to a subset of previous computed solutions. Both

approaches were found to be very efficient only if combined with a suitable preconditioner,

which optimizes the rate of convergence of the preconditioned conjugate gradient method.

POD-Galerkin approach has shown the best results in terms ofreduction of total number

of iterations in heartbeat simulations using only few solution vectors to generate the POD

basis either for the Bidomain or the Monodomain model. Moreover, in Chapter five we

have applied both strategies to the preconditioned Schur complement system of the car-
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diac Bidomain model, providing in addition a technique to reduce the computational costs

associated to the POD-Galerkin technique. Our results suggest that future works should in-

vestigate strategies to simulate all but the activation phase in cardiac tissue by using lower

order POD basis without solving for the full order finite element basis.

In the last three chapters we have constructed and analyzed non-overlapping domain

decomposition methods for both cardiac reaction-diffusion models. In Chapter four we

have dealt with preconditioners of the Neumann-Neumann type, in particular we have

considered the additive Neumann-Neumann method for the Monodomain model and the

Balancing Neumann-Neumann method for the Bidomain model. In Chapter five we have

constructed and analyzed a Balancing Domain Decompositionby Constraint method for

the Bidomain model, whereas in Chapter six we have investigated the use of an approx-

imate BDDC method for the Bidomain model, in order to reduce the memory and com-

putational requirements of the exact BDDC approach. For allpreconditioners considered,

we have developed novel theoretical estimates for the condition number of the precondi-

tioned systems with respect to the spatial discretization,to the subdomains’ diameter and

to the time step, also in case of discontinuity in the conductivity coefficients of the cardiac

tissue, with jumps aligned with the interface among subdomains. In particular, we were

able to prove scalability and quasi-optimality for the two balancing methods considered

for the Bidomain model using suitable coarse (or primal) spaces. Using the same theoret-

ical framework, proofs of quasi-optimality can be easily developed for balancing methods

for the Monodomain model. Parallel numerical results have confirmed the theoretical es-

timates; numerical results on the parallel scalability of the inexact BDDC preconditioner

were also provided.

The code developed for the BDDC method was also applied to thespectral element

discretization of Almost Incompressible Elasticity in three dimensions; a robust inexact

BDDC method for this problem is under study.
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