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Università Cattolica del Sacro Cuore

Scuola di Dottorato in

Fisica, Astrofisica e Fisica Applicata

Dipartimento Matematica e Fisica

Dottorato di Ricerca in

Fisica, Astrofisica e Fisica Applicata

Ciclo XXIII

Wavelet transform analysis in

thermally excited force spectroscopy

Settore Scientifico Disciplinare FIS/03

Tesi di Dottorato di:

Giovanna Malegori

Coordinatore: Prof. Marco Bersanelli

Tutore: Dott. Gabriele Ferrini

A.A. 2009-2010



Scuola di Dottorato in Fisica,

Astrofisica e Fisica Applicata

Ciclo XXIII
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Chapter 1

Introduction

1.1 Overview

The atomic force microscopy is a powerful and versatile technique for atomic and

nanometer-scale imaging of a wide variety of surfaces, both biological and non

biological. Atomic force microscopy methods have found applications also for

metrology and manipulation at the nanometre level. Therefore, the atomic force

microscopy is seen as an essential tool for nanotechnology and is regarded as a

window into the nano-world.

The principles of the atomic force microscopy relies on detecting the repulsive

(hard sphere) or attractive (van der Waals) interaction forces between the atom(s)

at the extremity of a sharp tip protruding from a cantilever and the atom(s) at the

sample surface. Forces are measured trough the cantilever bending revealed by an

optical lever detection system. The quantitative determination of the tip-sample

long and short-range interaction forces is of fundamental importance in the char-

acterization of various properties of materials surfaces and physics processes.

Atomic force microscopy has developed into a powerful technique, delivering

not only topographical images but providing also sensitive force measurements

on the nanometer and atomic scale. The use of the atomic force microscopy in

1



sec. 1.2 Introduction 2

measuring tip-sample force is commonly referred to as force spectroscopy. Many

force spectroscopy techniques suitable for nanoscale investigations are based on

measuring the dynamical parameters of the cantilever excited at or near its res-

onant frequency while experiencing the force field of the sample surface. The

interactions of the probing tip with the sample surface perturbs the amplitude,

frequency, phase or damping of the cantilever oscillation. The measurement of

these parameter modifications provides a sensitive estimation of the tip-sample

interaction force.

The present work stems from this context and focuses on thermally excited

force spectroscopy to probe the surface forces. In particular we introduce a new

approach, the wavelet transform, to analyze the temporal traces of the cantilever

Brownian motion collected while the tip moves toward the sample surface. The

wavelet transform is a time-frequency analysis method which provides localized

information in time and frequency domain simultaneously and it is able to char-

acterize the instantaneous spectral content also of rapidly varying signals.

The wavelet transform in thermally excited force spectroscopy is a very promis-

ing tool to probe the tip-sample interaction since the analysis applies simultane-

ously to the flexural and torsional eigenmodes and can be carried out across the

jump-to-contact transition without interruption. Force gradients, adhesion forces,

elastic response and topography are provided in acquisition times compatible with

practical dynamical force spectroscopy imaging.

1.2 Outline

This work is organized as follows: in Chapter 2 we review the background and

advances on scanning force microscopy methods by describing the major dynamic

atomic force microscopy operating modes and focusing on recent applications in

probing the tip-sample interaction to characterize the sample surface. Moreover

we draw the perspective of possible developments of dynamic force spectroscopy
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measurements toward force imaging.

In Chapter 3 we present a theoretical framework to describe the dynamical

response of an excited cantilever to the local environment energy exchanges. The

thermally excited Brownian motion of the cantilever tip is connected to the local

mechanical compliance via the fluctuation-dissipation theorem. The interaction

potential can be reconstructed by the modification of the thermal motion of the

cantilever due to the interaction of the tip with the sample forces.

In Chapter 4 we introduce the mathematical framework used to study signal’s

time and frequency properties, the wavelet transform analysis. The wavelet trans-

form is a time-frequency analysis method which provides localized information in

time and frequency domain simultaneously. This is particularly useful to study

transitory regimes i.e. signals with a frequency spectrum rapidly changing during

the data collection.

The experimental set-up, the data acquisition and the procedure to calibrate

the cantilevers spring constant are described in Chapter 5.

In Chapter 6 we reconstruct the tip-sample interaction potential from the ther-

mal motion of the cantilever when the tip experiences surface forces. The analysis

is performed in stationary regime by applying three different approaches: fre-

quency shift, Boltzmann distribution of the Brownian motion and thermal mean

square displacement methods. Tip mass loading effect on the cantilever elastic

behavior are estimated. The main limitation of the stationary regime analysis is

that it requires long acquisition time.

We introduce thus an improvement of the experimental conditions and data

analysis in order to shorten the acquisition time, the wavelet transform approach

(Chapter 7). This analysis is applied to thermally excited force spectroscopy to get

insights into fundamental thermodynamical properties of the cantilever Brownian

motion. The time-frequency representation shows the viscous dynamics of the can-

tilever deflection activated by thermal fluctuations and provides a meaningful and

intuitive representation of the cantilever dynamics in time and frequency caused by
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the tip-sample interaction forces. The forces measurement applies simultaneously

to the flexural and torsional eigenmodes, providing information on tip-sample van

der Waals interaction, adhesion forces, friction and elastic response of the surface

in approximately 100 ms.



Chapter 2

State of the art

Since their invention ( [1, 2]) scanning tunneling (STM) and atomic force/scanning

force microscopes (AFM) have emerged as powerful and versatile techniques for

atomic and nanometer-scale imaging of a wide variety of surface, both biological

and non biological [3, 4, 5, 6, 7, 8, 9]. Moreover, AFM methods have found applica-

tions also for metrology and manipulation at the nanometre level. In this Chapter,

we review the background and advances on scanning force microscopy methods.

We describe the major dynamic AFM modes, amplitude modulation atomic force

microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-

AFM), emphasizing their common points and their differences in experimental

set-ups and operating conditions. Finally, we focus on recent AFM applications

in probing the tip-sample interaction in order to characterize the sample surface.

Moreover we draw the perspective of possible developments of tip-sample force

measurements toward force imaging.

5
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2.1 Introduction

The atomic force/scanning force microscopy (AFM) has been introduced in 1986

by Binnig, Quate and Gerber [2] as a method to study the surfaces on an atomic

scale. Since its invention, the AFM has had a major impact on many areas of sci-

ence and has found applications for imaging, metrology and manipulation at the

nanometre level. Indeed the AFM is seen as an essential tool for nanotechnology

and is regarded as a window into the nano-world. The principle of the AFM is

based on the measurement of the repulsive (hard sphere) or attractive (van der

Waals) interaction forces between the atom(s) at the extremity of a sharp tip and

the atom(s) at the sample surface.

The AFM can operate in two modes, contact and oscillating modes. In the

contact mode, the tip extremity is in contact with the sample and the repulsive

force is probed point by point by moving the tip on the sample surface. The user

fixes the value of the repulsive force between the tip and the sample which is kept

constant during the scan, providing an isoforce image of the surface. In the oscil-

lating mode, the tip oscillates at a high frequency, determined by the cantilever

spring constant, and interacts with the surface only at the lower end of each cycle.

When the interaction involves atomic repulsion the technique is usually called the

tapping mode. The main advantage of this technique, as compared to the contact

mode, resides in a marked reduction of the friction forces during scanning.

The atomic force microscopy can also be used for detecting the interaction

forces between the outermost atom of a probing tip and the surface atoms in a

variety of environments and scales (Dynamic Force Spectroscopy). The interac-

tion of the AFM tip (Fig. 2.1) with the sample due to the various forces between

them gives rise to effects that can affect an SPM image and hence the dimensional

measurements inferred. Consequently, these interactions have to be investigated

and understood if measurement uncertainties have to be improved. Moreover the

quantitative determination of forces is of fundamental importance in the charac-
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Figure 2.1: Scanning electron micrograph of a micromachined silicon cantilever

with an integrated tip pointing in the [001] crystal direction.

terization of mechanical processes in nature and mechanical properties of matter.

In the following we presents the principles of the main AFM operating modes

and some applications in imaging organic and inorganic samples whereas the final

section of the chapter focuses on recent AFM applications in force measurements

at the nanoscale and possible improvements of this technique.

2.2 Atomic Force Microscopy

The AFM is a unique multi-purpose microscope whose operating principle is based

on both mechanical and atomic interactions. The AFM can be characterized by

the following features:

• sensitivity to atomic forces

• ability to examine nearly all surfaces: metals, semiconductors and insulators,

• works in air, liquid or vacuum,

• can measure mechanical response (force-distance curves),

• can be used for mechanical manipulation of single atoms, molecules, poly-

mers and surfaces.

Besides the AFM there are other classes of scanning probe microscopes that are
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Figure 2.2: Schematic diagram showing surface forces as a function of distance

and their relation to the modes of AFM operation.

used to measure various properties of surfaces. These include the lateral force

microscope, friction force microscope, dielectric spectroscopy, magnetic force mi-

croscope and near field scanning optical microscopy.

The AFM relays on detecting the interaction of a probing tip (Fig. 2.1) with

the sample surface. Fig. 2.2 shows the force between atoms at the end of an

AFM tip and the surface as a function of distance of the tip from the surface.

As the sample is approached there is an attractive force (van der Waals) that in-

creases to a maximum before a gradual decrease until the force becomes repulsive

(Pauli) [10]. These forces are discussed in more detail in Sec. 3.4. The graph of

surface forces also has regions marked as contact, intermittent contact or tapping

and non-contact referring to the different modes of operation of the AFM, see

Fig. 2.3.

The definition of a tip coming into contact with a surface is very difficult when

observing physical and other effects on an atomic scale because, in contrast to

the macroscopic world, there really is no discrete boundary between the tip and

sample. Therefore in the following we prefer to separate AFM modes into static

and dynamical categories: the static is referred to in the literature as the contact
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Figure 2.3: The most common AFM operation modes. In contact mode (a) the

tip is in permanent contact with the sample surface. The shear forces applied to

the sample during scanning are significant and potentially damaging the surface

especially in case of biological samples. b) The AFM tapping mode uses a tip

oscillating. Since the tip is not in contact with the sample during lateral move-

ment in scanning, shear forces applied to the sample by the tip are negligible. c)

In non-contact AFM modes, the cantilever tip is placed at the attractive van der

Walls force region and force gradients are detected. The force gradient can be

detected either from shift in the cantilever resonance frequency or the amplitude

and phase of the cantilever oscillation.

mode, the dynamical (AM-AFM and FM-AFM) as the non-contact or tapping

mode.

2.3 Static mode

Fig. 2.4 is a schematic diagram showing the major components of a typical scanning

force microscope [7]. A very simplistic explanation of the workings of such an
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Figure 2.4: Schematic diagram showing major components of a scanning force

microscope with an optical beam deflection system.

AFM is as follows. A cantilever supports a very fine tip having a typical end

radius of a few nanometers that is used as a probe to investigate a sample. The

cantilever is attached to a piezoelectric transducer (PZT). Light from a laser diode

is reflected from the cantilever onto a quadrant photocell. As the cantilever and

tip are scanned over the surface the cantilever bends and the light beam reflected

from the cantilever is deviated by the bending, hence its position on the quadrant

photocell changes. The signals from the quadrant photocell are used as the input

to a servo system that applies a voltage to the PZT to move the cantilever so as

to maintain a constant bending of the cantilever and hence return the reflected

beams point of incidence on the quadrant photocell to the center. This ensures

that the force exerted by the tip on the surface remains constant and that the tip

follows the surface. A measure of changes in the servo signal gives an indication

of the surface topography.

The cantilever, tip, detection system and servo are at the heart of the AFM and

their properties must be carefully controlled in order to achieve optimum vertical

and horizontal resolution. The AFM high lateral resolution is achieved by using

sharp tips and low forces. Parameters used to describe the tip properties are the
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radius of the apex of the tip Rtip and the cone angle α.

The displacement or bending of a cantilever z is proportional to the forces

acting on it. The factor describing the proportionality is the stiffness or spring

constant of the cantilever k. In the contact or static mode of operation the feedback

loop controls the displacement or more accurately, the bending of the cantilever

and keeps it constant. This means that the deflection z = Fts/k of the cantilever is

kept constant. The physical interpretation of the images obtained in static mode

as follow: the image is a map z(x, y,gradFts = 0) i.e. z(x, y, Fts=const) where Fts

is the interaction force between the tip and sample.

It has been demonstrated that the atomic resolution is successfully performed

by static AFM, see [8, 9, 7] and references therein. Nevertheless, this operation

mode can only be applied in certain cases since it suffers from several drawbacks.

Frictional force exerted by the sample on the tip as it sweeps over the sample,

may contribute to the topographical image so that surface domain with different

frictional properties may appear as topographical features in the image. Moreover

the constant downward force of the tip onto the surface is not low enough to avoid

certain sample surfaces, including not only biological and most polymer surfaces,

but even many seemingly harder materials which are not completely resistant to

such damage.

Only the introduction of new techniques based on dynamic force microscopy

allows to overcomes many drawbacks of the static-mode.

2.4 Dynamic mode

In this mode the cantilever oscillates above the surface during the scan excited

by an actuator that is driven at either the resonant frequency f0 or close to the

cantilever resonant frequency with fixed amplitude A0. The excitation is in the

vertical direction for the non-contact, intermittent or tapping modes or in the hor-

izontal direction for the torsion mode. As the tip interacts with the sample there
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is a change in amplitude of oscillation. The cantilever position is controlled by

feedback to keep a constant distance between the tip and the sample.

Two main techniques are used to servo control the cantilever: amplitude mod-

ulation (AM) and frequency modulation (FM). The AM mode is used very success-

fully in ambient condition and in liquid as an effective tool for imaging biological

specimens. Besides, using the FM mode in vacuum dramatically improved the

resolution up to atomic scale.

2.4.1 Amplitude modulation mode

In the AM-AFM (also known as tapping mode), a stiff microlever, which has

a sharp tip at its free end, is driven by an oscillation piezo at a fixed frequency,

usually near or at the free resonance frequency. The oscillation amplitude is used as

a feedback parameter i.e. the position of the cantilever is varied to have a constant

amplitude [11]. Indeed the scanning provides an isoamplitude image. In case of

homogeneous sample, the interaction and the the oscillation amplitude depends

only on the tip-sample distance and the isoamplitude imagine is associated with the

surface topography. Additionally, material properties variations could be mapped

by recording the phase shift between the driving force and the tip oscillation.

AM or tapping mode uses an oscillating tip (frequency in air 50-500 kHz, in

fluids approximately 10 kHz) at a tip amplitude of several nm [3, 6]. In the absence

of tip-surface forces Fts = 0, the cantilever is well described as a damped harmonic

oscillator excited by the sinusoidal oscillation of the piezo actuator [12]. After a

transient evolution, the motion is dominated by the steady solution, a sinusoidal

function with a phase lag with respect to the excitation force. The dependence of

the amplitude on the excitation frequency is calculated by the Lorentzian curve.

The oscillation amplitude A depends on the driving force F0, the hydrodynamic

damping and the position of the excitation frequency with respect to the natural
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Figure 2.5: Change of the amplitude-frequency characteristic and phase re-

sponse in a system with dissipation. Blue color shows characteristics of non-

dissipative system.

frequency (Fig. 2.5).

A(ω) =
F0/m√

(ω2
0 − ω2)2 + (ωω0/Q)2

(2.1)

Here m is the effective mass, Q the quality factor.

The resonance frequency ωr in presence of damping is related to the natural

(free resonance) frequency ω0 by

ωr = ω0

√
1− 1

2Q2

where Q is the quality factor.

Approaching the surface, the tip interacts with the sample. In case of small

tip oscillations, the motion of the tip is described as an harmonic oscillator with a

reduced effective resonance frequency depending on the gradient of the interaction

∂Fts/∂z:

ω′0 =

√
k − (∂Fts/∂z)

m

where k stands for the cantilever spring constant.

The change in the effective resonance frequency implies a whole shift of the

resonance curve where ω0 is replaced by ω′0. First, let us assume that the tip is ex-

cited at the natural frequency. The approaching of the tip towards the surface will

modify the resonance frequency which in turn implies a decrease of the oscillation

amplitude to the value of the new resonance curve at the excitation frequency of
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Figure 2.6: Free resonance curve (solid line) for the tip, i.e. the harmonic

oscillator, and under the influence of attractive and repulsive forces (dashed lines).

The force gradient of the external force produces a shift of the resonance curve

(weakly perturbed harmonic oscillator model) without introducing any shape or

size modifications.

the oscillator, see Fig. 2.6. Instead, if the excitation frequency is just off resonance

to the left, the oscillation amplitude could decrease or increase depending on the

position of the new resonance frequency with respect to the natural frequency.

If the oscillating tip moves towards the surface, it begins to interact with the

surface whereas the tip oscillation amplitude decreases due to the surface interac-

tion. This amplitude reduction is used in the AM-AFM operating mode to identify

and measure surface topographic features since the average cantilever deflections

are used as an input signal into the feedback loop to keep a constant amplitude

oscillation. The piezo-vibrator drives the cantilever oscillations at frequency ω

(close to a resonant frequency) and with amplitude Aω. During scanning the

AFM feedback system keeps the oscillations amplitude constant by varying the

PZT positions to keep a constant tip-surface separation. The voltage in the feed-

back loop is recorded as topographic AFM image of the sample.

Phase imaging can be performed at the same time as topographic AM-AFM

imaging tapping mode in a single scan [3, 6]. The tip-sample interactions depends
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Figure 2.7: AFM phase imaging. The variation in materials viscoelasticity

lead to different phase lags of the cantilever oscillation which is simultaneously

monitored by the AFM control electronics, recorded and transformed into AFM

images. AFM phase imaging provides non quantitative information about hard-

ness and elasticity of samples.

not only on the sample topography but also on different sample characteristics as

hardness and elasticity or adhesion. In tapping mode, variations of such material

properties lead to different phase lags of the cantilever oscillation which is simulta-

neously monitored by the AFM control electronics, recorded and transformed into

AFM images. AFM phase imaging provides non quantitative information about

hardness and elasticity of samples. For example, a flat polymer with different

stiffness at the surface may be distinguishable in phase mode but not in surface

topography image. Phase imaging also acts as a real-time contrast enhancement

techniques because it highlights edges.

Approaches to improve spatial and/or compositional resolution by force mi-

croscopy have either been focused on the use of higher harmonics to enhance the

sensitivity to tip-surface interactions [13, 14]. The multi-modes force microscope

is based on the simultaneous excitation of the first two flexural modes of the can-

tilever. The root mean square amplitude of the first mode is used as the feedback

parameter while the phase shift of the second mode is used to obtain composi-

tional maps with very high force sensitivities. The tip-molecule forces generate
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higher harmonics of the first mode. Whenever the frequency of a higher harmonic

matches or is close to the frequency of the second mode, the modes became cou-

pled. Multifrequency AFM has shown a remarkable enhancement of sensitivity

of the microscope to image in a gentle manner and with high spatial resolution a

variety of heterogeneous materials.

AM-AFM solves some problems that appears with static AFM but it cannot be

extended to UHV. In fact, after perturbing the system (as happens when moving

to a new position over the surface during the scan) the change in amplitude in AM

mode does not occur instantaneously but the system responds in a transient time

scale τAM = 2Q/f0 which limits the available bandwidth. Due to high Q factors in

vacuum, the AM mode becomes too slow compared to acquisitions times required

by imaging. The problem is solved by introducing the FM.

2.4.2 Frequency modulation mode

The FM mode introduced in [15] provided the key to achieve increased sensitivity

through higher Q without any restriction on the detection bandwidth B, which

approximately represents the number of pixels per second that can be recorded.

In the FM mode the signal used to produce the image comes from the direct mea-

surement of the resonance frequency of the cantilever, which is modified, as in the

AM case, by the tip-surface interaction [6, 8].

At variance with the AM mode, the cantilever is kept oscillating at its current

resonant frequency (different from f0 due to the tip-sample interaction) with a con-

stant amplitude A0. The driving signal of the cantilever oscillations is generated

through a feedback loop. The output of the deflection sensor is amplified, phase

shifted by -90◦ and used to drive the cantilever (self-excitation scheme) [6, 16, 8].

Usually, either the input signal to the self excitation circuit or its inputs signal

is bandpass filtered with the center frequency set to the fundamental resonance

of the cantilever. Moreover the excitation amplitude Aexc is adjusted to keep the

oscillation amplitude of the tip constant. The variation of Aexc may be measured
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Figure 2.8: Block diagram of the FM-AFM feedback loop for constant am-

plitude control and frequency-shift measurement. Three physical observables

are available: frequency shift, damping signal and (average) tunneling current.

From [8].

giving the additional energy dissipation due to tip-surface interaction.

The controlled FM-AFM positive feedback is shown in Fig. 2.8. The deflection

signal first enters a bandpass filter. Then the signal splits into three branches:

one branch is phase shifted, routed through an analog multiplier, and fed back to

the cantilever via an actuator; one branch is used to compute the actual oscilla-

tion amplitude, this signal being used to calculate a gain input g to keep constant

oscillation amplitude; and one branch is used to feed a frequency detector. The

frequency f is determined by the eigenfrequency f0 of the cantilever and the phase

shift ω between the mechanical excitation generated at the actuator and the de-

flection of the cantilever. Since ω = π/2, the loop oscillates at f = f0, see Fig. 2.5.

Indeed the control circuitry required by FM-AFM is complex since three feed-

backs operate simultaneously. The first keeps the oscillation amplitude of the

cantilever constant, the PLL system adjusts the frequency of the excitation os-
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Figure 2.9: Atomically resolved image of KBr(001) in contact AFM mode.

The small and large protrusions are attributed to K+ and Br− ions, respectively.

Schematic diagram showing major components of a scanning force microscope

with an optical beam deflection system. From [17].

cillation to keep the phase constant (self-excitation) and the third controls the

tip-sample distance to maintain the frequency shift setpoint since during the scan,

the tip-sample distance is varied in order to achieve a set value of ∆f . Thus, the

topography in the images represents a map of constant frequency shift over the

surface.

2.5 AFM imaging

Atomic resolution of inert surfaces is successfully performed by static AFM, as

shown in Fig. 2.9 [17] where KBr surface is resolved on an atomic scale by using a

4-K ultrahigh-vacuum (UHV) instrument. Nevertheless, imaging reactive surfaces

such as Si(111)-(7 × 7) in ultra-high vacuum remained an unsolved challenge for

static AFM that was solved by dynamic operation modes.

The atomic resolution of dynamic AFM has been proved on semiconductor

surfaces by Erlandsson et. al. [18] who imaged the Si(111)7 × 7 surface with the

amplitude modulation technique whereas Giessibl [19] demonstrated the atomic
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Figure 2.10: Tapping-mode AFM image (attractive interaction regime) of sev-

eral antibodies obtained in air and at room temperature. The molecules show

the morphologies of the characteristic Y shape of antibodies according to the

orientation with respect to the support which are zoomed in A-D. From [20].

resolution on Si(111)-7×7 operating in UHV and using the FM detection mode.

The AM mode has been used to image a variety of system such as non organic

surfaces or nanostructures see [9, 3] even if it is most often used in biomaterials

science, due to the relatively small interactions between the tip and the sample,

especially in the lateral direction of the surface, so that the sample distortion or

damage is minimized [6, 4, 5].

In [20] high-resolution imaging of antibodies is provided by AM-AFM in at-

tractive interaction regime i.e. when a net attractive force dominates the amplitude

reduction and the tip-sample contact is avoided. Fig. 2.10 is a tapping-mode AM-

AFM image of the simplest antibody molecules, the anti-human serum albumin

a-HSA. The molecules have four basic morphologies associated with the orientation

of the antibodies on the support. The apparent size of a given molecule is inde-

pendent of the number of times this molecule has been imaged. This demonstrates

that the AM-AFM prevents any sample damage also in case of soft biological sam-

ple weakly adherent to the substrate.

Achieving molecular resolution images of biological systems has been much

more difficult than obtaining atomic resolution images of crystalline surfaces,
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Figure 2.11: A) Bi-modal AFM phase image of mica surface with IgM pen-

tamers. The image represents the variation of the phase shift of the second mode

across the sample surface. B)-D) individual bi-modal images showing five sub-

units and a central structure (J-chain). E) Model of IgM. From [21].

see [21]. Usually, the forces exerted by the tip on the molecules either displace

them laterally or break the noncovalent bonds that held the biomolecules together

which in turn prevents high resolution imaging. The use of higher harmonics

(multi-modes force microscope) enhances the sensitivity to tip-surface interactions

and so enables imaging under the application of forces which are as small as needed

by to avoid biomolecules damages [13, 14]. With this technique a complex pro-

tein structure such as the antibody immunoglobulim M pentamers (IgM) has been

resolved [21]. The pentagonal shape and the position of the J-chain (central struc-

ture) are readily recognized in high resolution bi-modal phase images acquired in

a noninvasive manner (Fig. 2.11).

FM-AFM is mostly used in UHV environments since it provides increased sen-

sitivity through high-Q stiff cantilever. The atomic resolution was demonstrated

on Si(111)-7×7 reconstruction and on InP(110) operating in UHV and using the
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Figure 2.12: a) Topographic image of a surface alloy composed by Si, Sn and

Pb atoms blended in equal proportions on a Si(111) substrate. b) Local chemical

composition of the image in a). Blue, green and red atoms correspond to Sn, Pb

and Si, respectively. c) Distribution of maximum attractive total forces measured

over the atoms in a). By using the relative interaction ratio determined for Sn/Si

and Pb/Si, each of the three groups of forces can be attributed to interactions

measured over Sn, Pb and Si atoms. Adapted from [24].

FM detection mode, see [22, 23, 19].

The chemical identification of single atoms and molecules at surfaces is a

challenge pursued since the invention of the atomic force microscope. Dynamic

force microscopy is particularly promising since it achieves true atomic imaging

resolution by detecting the short-range forces which depends sensitively on the

chemical identity of the atoms involved since they are associated with the onset

of the chemical bond between the outermost atom of the tip apex and the sur-

face atoms being imaged. Sugimoto et. al. [24] performed precise measurements

of such short-range chemical forces and showed that their dependence on the tip

used can be overcome through a normalization procedure. This allowed to ex-

ploit the chemical force measurements as the basis for atomic recognition, even at

room temperature. The effectiveness of the approach was verified by imaging the

surface of a particularly challenging alloy system. The three constituent atomic

species silicon, tin and lead, were successfully identified, even though they exhibit

very similar chemical properties and identical surface position preferences that

render any discrimination attempt based on topographic measurements impossi-
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Figure 2.13: STM and AFM imaging of pentacene on Cu(111). A) Ball-and-

stick model of the pentacene molecule. B) Constant-current STM and (C and

D) constant-height AFM images of pentacene acquired with a Co-modified tip.

From [25].

ble (Fig. 2.12).

Another important goal of FM-AFM is the imaging with atomic resolution

of the complete chemical structure of an individual molecule. This is possible by

functionalizing the microscopes tip apex with suitable, atomically well-defined ter-

minations which dramatically enhances the atomic scale contrast [25]. Pentacene

C22H14 molecules are imaged in FM-AFM modes on Cu(111) by using a CO-

terminated tip, clearly resolving the five hexagonal carbon rings of each pentacene

molecule, see Fig. 2.13.

2.6 Force Spectroscopy

Atomic force microscopy (AFM) has developed into a powerful technique, deliv-

ering not only topographical images with sub-molecular resolution but providing

also sensitive force measurements on the nanometer and atomic scale [16, 6, 8, 10].

The use of AFM in such tip-sample force measurements is commonly referred to

as force spectroscopy. The simplest technique used for quantitative force mea-

surements involves directly monitoring the static deflection of the cantilever, from

which the force is determined using Hooke’s law [26, 27, 28]. In [28] the transition

from van der Waals to Casimir forces between macroscopic gold surfaces in air is
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Figure 2.14: Short-range force and interaction energy (inset) measured above

two different sites of the Si(111)-7×7 surface. From [31].

investigated by AFM in the plane-sphere geometry by measuring the cantilever

static bending. The sphere and plate geometry is given by a sphere on cantilever

with a diameter of 100 µm and a flat surface. The Hamaker constant of the van

der Waals interactions between real Au surfaces in air is estimated in agreement

with theoretical predictions.

More refined techniques suitable for nanoscale investigations rely on measuring

the dynamical parameters of the cantilever excited at or near its resonant frequency

while experiencing the force field of the sample surface. The interactions of the tip

with the sample surface perturbs the amplitude, frequency, phase or damping of the

cantilever oscillation. The measurement of these parameter modifications provides

a sensitive estimation of both tip sample interaction force [29, 30, 25, 31, 32, 33, 34].

Tip-sample forces versus distance can be inferred from resonance frequency

shift versus distance curves [29, 31, 34]. Lantz et. al. [31] performed spectroscopy

over specific atomic sites on the Si(111)-7×7 using a low-temperature AFM op-

erating in UHV environment, see Fig. 2.14. After image acquisition, the tip is

positioned above a specific lattice position determined from the atomically re-

solved image. The shift in resonance is then recorded while the sample is ramped

toward the tip by a fixed distance. The force acting on the tip at the distance of the

closest approach to the sample during an oscillation cycle is calculated by inverting
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Figure 2.15: a) The gray scale height image shows the surface topography at a

constant frequency shift obtained in conventional scan mode of noncontact atomic

force microscopy on NaCl(100) in ultrahigh vacuum. For 3D spectroscopy the

frequency shift was acquired as a function of tip-sample distance z for 34 points

along the dashed line in x direction. b) Image of the tip-sample potential energy

as a function of horizontal and vertical tip position. The black line indicates the

z positions of the potential energy minima. Adapted from [35].

the frequency-distance measurement. The force has three main contributions: a

strongly site-dependent short range force as well as long-range electrostatic and

van der Waals forces. The short-range force due to the chemical interaction is

determined by subtracting the site independent long-range force. The interaction

potential and energy measured above inequivalent adatom sites displays differences

suggesting the possibility to distinguish between different atomic species.

Performing force spectroscopy on planes over the sample gives the potential

energy landscape of surfaces. The shape of the potential interaction energy profile

between a single-atom terminated tip and a NaCl(100) surface is measured in [35].

Experiment is performed with an UHV AFM by measuring the force induced fre-

quency shift as a function of relative tip-sample distance on a predefined grid,

consisting of 34 equidistant points along the x axis for 10 equidistant positions

along the y axis. Each spectroscopy curve required an acquisition time of approx-

imately 2.5 s. Hence, including the extra time needed for feedback stabilization

after each spectroscopy curve the total time for one slice in space at each y position

amounted to 1.5 min. The image of the tip-sample potential energy as a function
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Figure 2.16: On the left the two-dimensional frequency shift mapping on the

Si(111)-7×7 surface. Data acquisition was performed above the arrow connecting

the two corner holes in the inset. The hatched lines define data inverted to provide

figures on the right. a) Total force and b) the interaction potential. From [36].

of horizontal and vertical tip position is shown in Fig. 2.15.

In [36], a two-dimensional force mapping on Si(111)-7×7 surface was per-

formed at room temperature in the plane of the 60.5Å×18.6Å area above the line

connecting the two corner holes, see Fig. 2.16. Again interaction forces are pro-

vided by inverting the frequency shift versus distance curves (Eq. 3.13). It took

approximately 3.5 min to obtain two-dimensional mapping image of 1024×1024

points, so that thermal drift effects had to be compensated.

An alternative way to perform force spectroscopy is the broad band excita-

tion technique. In this case the cantilever is excited and the response recorded

over a band of frequencies simultaneously, rather than at a single frequency as in

conventional SPM. The full spectral response allows to reconstruct force-distance

spectroscopy and enables to directly measure the energy dissipation through the

determination of the Q-factor of the cantilever-sample system. The simultane-

ous analysis at all frequencies within the excited band (parallel detection) reduces

the acquisition time. Broad band excitation can be achieved by external driving

force [37] or by thermal excitation [38, 39].

The external band excitation (BE) takes advantage of the fact that only se-

lected regions of Fourier space contain information of any practical interest [37],

for instance in the vicinity of resonances. The generic BE process is illustrated in
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Figure 2.17: Operational principle of the BE method in SPM. The excitation

signal is digitally synthesized to have a predefined amplitude and phase in the

given frequency window. The cantilever response is detected and Fourier trans-

formed at each pixel in an image. The ratio of the fast fourier transform of

response and excitation signals yields the cantilever response (transfer function).

Fitting the response to the simple harmonic oscillator yields amplitude, resonance

frequency, and Q-factor, that are plotted to yield 2D images. From [37].

Fig. 2.17. Instead of a simple sinusoidal excitation, the BE method uses a signal

generated to have the predefined Fourier amplitude density and phase contrast in

the frequency band of interest. The inverse Fourier transform releases the exci-

tation signal in time domain. The resulting complex waveform is used to excite

the cantilever. The cantilever response to the BE drive is measured and Fourier

transformed to yield the amplitude and phase-frequency curves. The acquisition

is repeated at several distances from the surface providing a 3D data set i.e. A(ω)

and ϑ(ω) at each tip-sample separation (Fig. 2.18a). The ratio of the response

and excitation signals yields the transfer function of the system. The measured

response curves are analyzed by fitting each curve independently to the simple

harmonic oscillator (SHO) model to determine the resonant frequency, amplitude,

and Q-factor at each distance and display each as 2D image. and/or use as feed-

back signals, see Fig. 2.18b. This fast Fourier transform/fitting routine substitutes

the traditional lock-in/lowpass filter that provides amplitude and phase at a single

frequency at time. In the BE method, parallel acquisition of the response at all
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Figure 2.18: (a) Evolution of the dynamic properties of the cantileversurface

system during forcedistance curve acquisition. (b) Deconvolution of the BE data

in amplitude, resonant frequency, and Q-factor measured along the forcedistance

curve. From [37].

frequencies within the band allows complete spectral acquisition at a rate of ∼10

ms for each tip-sample separation. Thus, in the BE response the system is excited

and the response is measured simultaneously at all frequencies within the excited

band (parallel detection). With standard lock-in detectors the response over a

broad band is acquired by sampling one frequency at time. The BE approach

allows a time reduction for acquiring a sweep by a factor of 10100 by performing

this detection on all frequencies in parallel. Moreover, the BE acquisition time

does not depend on the width of the frequency band, or, equivalently, on the num-

ber of frequency analyzed (unlike lock-in detection, which scales linearly with this

number).

As an illustration of force spectroscopy, BE mapping of the frequency depen-

dence of the cantilever response with tipsurface separation under an electrostatic

broad band driving force is illustrated in Fig. 2.18a. The measurements are per-

formed on a freshly cleaved mica surface in ambient. On approaching the surface

(bottom to top) the the resonance frequency remains constant (region I). In the

close vicinity of the surface, the resonant frequency decreases due to strong at-

tractive interactions (inset). A rapid change in the resonant structure occurs upon
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transition from the free to bound cantilever modes (jump to contact). Upon in-

creasing the contact force by loading the cantilever, a slight increase in contact

stiffness is observed (region II). The reverse sequence is observed during retraction

(region III). The total acquisition time for this data is approximately 100 s since

it is the mean of 128 curves each recorded into ∼1 s. The individual resonances

at points along the vertical tip trajectory can be fitted by the SHO model and

the resulting evolution of amplitude, resonant frequency, and quality factor are

shown in Fig. 2.18b. Force versus distance curve can be inferred from the fre-

quency’s evolution, energy dissipation from phase and quality factor. Note that

BE allows an extremely broad frequency range (25-250 kHz) to be probed in ∼1

s. A comparable scan over the same frequency band using a lock-in would require

∼30 min.

2.7 Summary

In this chapter we review the fundamental applications of static and dynamic AFM

methods. In particular we describe how the changes observed in the dynamic prop-

erties of a vibrating tip that interacts with the surface make it possible to obtain

molecular resolution images or to chemically resolve surfaces in UHV. Currently,

AM-AFM is used very successfully in ambient condition or in liquid environments

to imaging biological specimens systems whereas using the FM operating mode in

UHV environments dramatically improves the resolution up to atomic scale. This

division is not artificial. Amplitude modulation will be an unlike technique for

UHV because the high quality factor of the microlever (Q ≈ 104) would imply

extremely slow feedback responses. On the other hand, FM-AFM requires three

feedback loops which makes its electronics complex and slow for operation in air

or liquids. Due to their characteristic, AM-AFM is widely applied in imaging bio-

logical system with molecular resolution while FM-AFM is more suitable for non

organic sample imaged and chemically resolved on the atomic scale.
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Atomic force microscopy provides also sensitive measurements of forces be-

tween the tip and the sample (force spectroscopy). FM-AFM quantifies the in-

teraction forces by detecting the shift of the cantilever resonant frequency from

the free-oscillation value upon variations in the tip-sample distance. Through the

precise quantification of the short-range chemical forces responsible for atomic con-

trast, this spectroscopic technique has provided valuable information to unravel

complex atomistic processes taking place between tip and surface and it has en-

dowed FM-AFM with atomic specificity.

An alternative way to perform force spectroscopy is the broad band excitation

technique. In this case the cantilever is excited and the response recorded over

a band of frequencies simultaneously, rather than at a single frequency at a time

as in conventional SPM. The full spectral response allows to reconstruct force-

distance spectroscopy and enables to directly measure the energy dissipation of

the cantilever-sample system. The simultaneous analysis at all frequencies within

the excited band (parallel detection) reduces the acquisition time.

The main limitation of these spectroscopy techniques regards the time required

to record a complete force-versus distance curve. In any case, the lower limits in

time is in the order of 0.1-1 s required to detect a complete force spectroscopy. This

long acquisition times are incompatible with 1-30 ms/pixel required for practical

scanning probe microscopy. This is the reason why we introduce a new approach

to spectroscopy measurements, the wavelet transform in thermally excited dy-

namic spectroscopy. The technique presented in this thesis allows to study the

tip-sample interaction across the JTC transition and to characterize the adhesion

surface forces after JTC. The temporal resolution is improved and the acquisition

time reduced to values compatible with practical dynamical force spectroscopy

imaging. The analysis applies simultaneously to all the modes either flexural ad

torsional within the cut frequency of the acquisition system.



Chapter 3

Dynamic response of AFM

cantilevers

Dynamic force spectroscopy utilizes the response of an excited cantilever to the in-

teraction of the tip with surface forces to probe the mechanical, chemical and topo-

graphical characteristics of the surface at the nanoscale [16, 6]. The response of the

cantilever may show a modification of the oscillation amplitude, frequency, phase

or damping. The measurement of these cantilever parameters provides information

on the physical properties of the sample with (sub-)molecular resolution [24, 25].

The dynamic behavior of a weakly interacting cantilever in the vicinity of the res-

onance can be well approximated by a simple harmonic oscillator model, described

by three independent parameters: resonant frequency, ω0, amplitude at resonance,

A0, and quality factor, Q. A shift in ω0 is related primarily to the tip-surface force

gradient, A0 to the driving force, and Q to the energy dissipation [8, 6, 40]. Here

we describe the cantilever from a thermodynamical point of view in order to relate

its oscillating behavior to the tip-sample interaction. The nature of these force

interaction is also discussed.

30
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Figure 3.1: Probe model as an elastic cantilever with a mass at one end.

3.1 Introduction

The exact description of the AFM cantilever oscillations is a complex mathemat-

ical task [41, 42]. However, the basic features of the processes occurring during

interaction of an oscillating cantilever with the environment and the surface can be

understood on the basis of elementary models, in particular, using the approxima-

tion of a localized mass model. The cantilever is described as an elastic massless

beam (with elastic constant k), fixed at one end to the chip, plus a mass m local-

ized on the other end (Fig. 3.1).

The oscillating behavior of the system depends on the forces acting on it. First

we describe the mechanical response of the free cantilever to the thermal excitation

induced by the energy exchange with the environment through the Fluctuation-

Dissipation Theorem. Then we consider variations in the cantilever dynamics

caused by forces between tip and sample. Detecting these changes allows to recon-

struct the tip-sample interaction potential and to characterize the chemical and/or

physical properties of the sample surface. A review of the experimental methods

and results in measuring these forces is presented at the end of the chapter.

3.2 Free cantilever fluctuations

When a mechanical system is in equilibrium with a thermal bath at temperature T ,

there is a continuous exchange between the mechanical energy accumulated in the

system and the thermal energy of the local environment, the driving reservoir. The

statistic interpretation of the Second Thermodynamic Principle leads to admit that
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a system in thermodynamic equilibrium is not at rest but continuously fluctuates

around its equilibrium state. These thermal fluctuations are always present at non

zero absolute temperature.

Consider a system whose the extensive variable x is coupled to the intensive

parameter F in the Hamiltonian of the system [43]. The response function G(ω)

describes the response x of the system to the driving variable F in the frequency

domain and is defined as:

G(ω) =
F (ω)

x(ω)

G(ω) The thermal fluctuations of an observable x are described by the Fluctuation-

Dissipation theorem [43, 44] which relates the power spectral density (PSD) of the

fluctuations of the variable x, Sx(ω), to the temperature and the response function

G(ω) [45] as:

Sx(ω) =
x2(ω)

∆ω
= −2kBT

ω
Im

[
1

G(ω)

]
(3.1)

where kB, ∆ω and ω = 2πf are the Boltzmann constant, the angular frequency

bandwidth and the angular frequency or pulsation associated to frequency f . Im

stands for the imaginary part of its argument. The average shape of a spontaneous

fluctuation pulse is identical with the observed shape of a macroscopic irreversible

decay toward equilibrium and is, therefore, describable in terms of the macroscopic

response function.

An example of mechanical dissipative system is the AFM cantilever placed

in air far from the surface (free cantilever) and driven by background thermal

energy. The cantilever is in thermal equilibrium with the molecules of the gas or

liquid in which it is immersed and fluctuates in response to stochastic forces due to

molecular motion that is connected to the temperature of the thermal bath. The

cantilever dynamics can be reasonably modeled as a stochastic harmonic oscillator

with viscous dissipation [46, 47, 48]. In this case x and F are the displacement and

the force applied to the system. The Brownian motion of the vertical coordinate
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x of the cantilever free end is described by the second order Langevin equation

mẍ(t) + γẋ(t) = −kx(t) + Fext(t) (3.2)

Here m and k mean the cantilever effective mass and elastic stiffness, respectively,

γ the damping factor. The external driving force Fext is the thermal stochastic

force which accounts for the interaction with the local environment. Fext is defined

by its statistic properties (Langevin hypothesis) [49, 48, 44]:

• Fext(t) is a zero-mean force 〈Fext(t)〉 = 0

• Fext(t) is completely uncorrelated in time:

〈
Fext(t)Fext(t

′)
〉

= αδ(t− t′) (3.3)

where δ(t− t′) is the Dirac delta function and α a proportionality constant whose

value will be determined in the following through the fluctuation-dissipation the-

orem. Since the autocorrelation function and the spectral density are mutual

Fourier transform (Wiener-Khintchine theorem [43, 48]), the power spectrum of

the stochastic thermal activating force SF (ω) = α. Hence the stochastic force of

the physical system has no frequency dependence, the reason why it is called white

noise.

The transfer function of the system is provided by writing Eq. 3.2 in the Fourier

space (frequency domain) as

G(ω) = k

[
1− ω2

ω2
0

+ i
ω

Qω0

]
(3.4)

where we introduced the resonant angular pulsation ω0 =
√
k/m and the quality

factor Q = mω0/γ. In this case, from Eq. 3.1 and Eq. 3.4, the PSD of the thermal

fluctuations x is given by

Sx(ω) =
2kBT

kω0

1/Q

(1− u2)2 + (u/Q)2
(3.5)

where u = ω/ω0 is the reduced frequency. The PSD of the fluctuations Sx(ω)

is related to the PSD of the driving force SF (ω) trough the response function
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G(ω) [47] by

SF (ω) = Sx(ω)G2(ω) (3.6)

The power spectrum of the stochastic thermal activating force F is deduced from

Eq. 3.4, Eq. 3.6 and Eq. 3.5 giving

SF (ω) = 2kBTγ

Therefore the α constant in Eq. 3.3 as determined from the Fluctuation-Dissipation

theorem is α = 2kBTγ providing an autocorrelation function of the external

stochastic force expressed by:

〈
Fext(t)Fext(t

′)
〉

= 2kBTγδ(t− t′)

The last relation quantifies the intimate connection between the viscous co-

efficient γ and the randomly fluctuating force Fext(t): the fluctuating force is an

increasing function of γ and vanishes identically if and only if γ vanishes. This is

a consequence of the fact that the microscopic events that give rise to those two

forces (the damping force −γẋ and the fluctuating force Fext) simply cannot be

separated into one kind of microscopic event (like the molecular collision) that give

rise only to a viscous effect and another kind that give rise only to a fluctuating

effect.

The Parseval relation allows to determined the variance of the fluctuations of

the observable x (in our case the cantilever positional fluctuations) by integrating

the positional PSD Sx(ω). Then:

〈
x2
〉

=

∫ +∞

−∞
Sx(ω)dω =

2kBT

kω0Q

∫ +∞

−∞

dω(
1− ω2

ω2
0

)2
+
(

ω
Qω0

)2 =
kBT

k
(3.7)

where we used Eq. 3.5 and the relation:∫ +∞

−∞

dω(
1− ω2

ω2
0

)2
+
(

ω
Qω0

)2 =
Qω0

2
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Considering Eq. 3.7, the potential energy of the cantilever modeled as a damped

harmonic oscillator takes the form of:

1

2
mω2

0

〈
x2
〉

=
1

2
k
〈
x2
〉

=
1

2
kBT

where
〈
x2
〉

represents the mean square displacement of the cantilever caused by the

thermal motion in the direction normal to the surface. This relation corresponds

to the equipartition theorem stating that if a system is in thermal equilibrium, the

mean value of any harmonic term in energy must be equal to the thermal energy

to 1/2kBT .

Finally, by applying the Fluctuation-Dissipation theorem (Eq. 3.1) to an har-

monic damped oscillator we demonstrate the equipartition theorem. The reverse

path to infer the Fluctuation-Dissipation theorem from the equipartition theorem

is also possible [47, 44].

The mean-square amplitude of the cantilever thermal fluctuation experimen-

tally measured in the frequency domain is often used to estimate the cantilever

spring constant k [41, 50] from:

〈
x2
〉

=

∫ ∞
0

2Sx(f)df =
kBT

k

3.3 Interacting cantilever

Near the surface the tip experiences the sample force. During the surface approach,

the cantilever motion is affected by the additional force Fts(z) due to van der Walls

interaction with the sample. For small oscillations of the cantilever around the

distance z0 from the surface, as for examples in case of thermal excitations, the

force may be approximated by the first (linear) term in the series expansion [40, 8]:

Fts(z) = Fts(z0) +
∂Fts
∂z

(z0)x
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Figure 3.2: Model of the interacting cantilever.

where z is the tip-surface distance, positive along the surface normal direction.

The cantilever motion is now described by

mẍ(t) + γẋ(t) + kx(t) = Fext(t) + Fts(z0) +
∂Fts
∂z

(z0)x(t) (3.8)

The constant force Fts statically deflects the cantilever, the force gradient influ-

ences the cantilever oscillations around the new equilibrium position. In fact, with

the variables substitution x = x + Fts(z0)/k which incorporates the cantilever

static bending, we come to the equation

mẍ(t) + γẋ(t) +

(
k − ∂Fts

∂z
(z0)

)
x(t) = Fext(t) (3.9)

where x is the cantilever vertical motion and z0 the separation from the sur-

face(Fig. 3.2).

This means that in case of small oscillations the derivative of the tip-sample

force is constant for the whole range covered by the oscillating cantilever and the

presence of a force gradient results in a change of effective stiffness of the system

k∗ = k − ∂Fts
∂z

(3.10)

Presence of a gradient in the tip-surface interaction force results in a shift of the

amplitude and phase response curves of the oscillating cantilever. The change

in the effective spring constant modify the cantilever resonance frequency since

ω0 = 2πf0 =
√
k/m and therefore

f ′0 = f0

√
1− 1

k

∂Fts
∂z
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In case of small force gradient (|∂Fts/∂z| << k the shift in eigenfrequency ∆f =

f ′0 − f0 becomes proportional to the force gradient

∂Fts
∂z

= −2k
∆f

f0
(3.11)

By measuring the frequency shift ∆f , one can determine the tip-sample force

gradient.

Approaching the surface, the attractive tip-sample force causes a sudden jump-

to-contact. The instability occurs in the quasistatic mode if

−∂Fts
∂z

(zjtc) > k (3.12)

The jump to contact often renders the short-range part of the interaction curve

inaccessible experimentally. The jump-to-contact can be avoided even for soft

cantilevers by dynamic methods i.e. by oscillating the cantilever a large enough

amplitude. FM-AFM detects with high sensitivity minute changes in the resonant

frequency due to the force interaction between cantilever tip and sample. In this

case the relation connecting the frequency shift to the interaction force is signifi-

cantly more complex and depends on both the spring constant and amplitude of

oscillation [51]

∆f = − f0
πAk

∫ 1

−1
Fts(z +A(1− u))

u√
1− u2

du (3.13)

where f0 is the unperturbed resonance frequency, ∆f the change in resonance

frequency, A the amplitude of oscillation kept constant during the measurement

and z is the distance of closest approach between tip and sample.

3.4 Tip-sample force interaction

The tip-sample interaction can be modeled by two main contributions, short range

forces (such as bonding forces) and long range forces (such as van der Waals and

electrostatic forces) [8, 51, 10, 6], see Fig. 2.2. In ambient conditions, meniscus
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forces formed by adhesion layers on tip and sample (water or hydrocarbons) can

also be present [52, 53]. The van der Waals interaction is caused by fluctuations in

the electric dipole moment of atoms and their mutual polarization. For two atoms

at distance z, the energy varies as 1/z6. Assuming additivity and disregarding

the discrete nature of matter by replacing the sum over individual atoms by an

integration over a volume with a fixed number density of atoms, the van der

Waals interaction between macroscopic bodies can be calculated by the Hamaker

approach [54] This approach does not account for retardation effects due to the

finite speed of light and is therefore only appropriate for distances up to several

hundred angstroms. For a spherical tip with radius R next to a flat surface (z is

the distance between the plane connecting the centers of the surface atoms and

the center of the closest tip atom) the van der Waals potential is given by [55, 56]

VvdW = −HR
6z

The van der Waals force for spherical tips is thus proportional to 1/z2, while for

pyramidal and conical tips, a 1/z force law holds [51]. The Hamaker constant H

depends on the type of materials (atomic polarizability and density) of the tip and

sample. For most solids and interactions across a vacuum, H is of the order of 0.1

aJ [56, 57, 58].

Approximating tip and sample by a continuum is valid if z is significantly

greater than the interatomic distances. If z is in the order of the next-neighbor

distance σ, the continuum vdW force can be superseded by the van der Waals force

between the front atom and the sample atom closest to it. If tip and sample have

exposed dangling bonds, chemical bonding can also occur. The simplest modele

of this chemical short-range interaction is provided by a Lennard-Jones potential

with bond energy Ebond and equilibrium distance σ:

VLJ = −Ebond
[
2
(σ
z

)6
−
(σ
z

)13]
Different potentials used to quantitatively describe the chemical short-range forces

are provided by [8, 6] and references in it.
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When AFM experiments are performed in air, a thin liquid film composed

mostly of water adsorbs on all surfaces. Due to the presence of this film, the surface

properties can change dramatically. The physics and chemistry of these films are

very rich and complex: they determine friction and adhesion of surfaces, chemical

reactivity, optical properties, among others. Moreover, as the SFM tip approaches

the surface, water condensation can induce the formation of a nanometer-sized

water bridge even before tip and sample are in mechanical contact [52, 53, 59]. This

meniscus implies an attractive (capillary) force. With soft cantilevers (< 1 N/m),

this meniscus can be strong enough to pull the tip onto the sample so that the tip

jumps onto the sample long before the critical jump distance is reached and the

resonance frequency does not drop to zero, see Eq. 3.12 and Eq. 3.11. Therefore,

the jump to contact observed typically in SFM under ambient conditions is mainly

not due to van der Waals forces, but a two-fold process: first, when the tip is at

a distance of about 2-3 nm, a liquid meniscus forms between tip and sample,

and afterward, this meniscus pulls the tip onto the sample so that a mechanical

contact between both is formed. The process of water films formation depends on

relative humidity. Water could be ever observed on a highly hydrophobic surface

like graphite where the presence of the scanning tip produces the condensation of

water on the surface [52].

3.5 Summary

Here the AFM cantilever is modeled as a damped harmonic oscillator to char-

acterize its response to the local environment energy exchanges. The thermally

excited Brownian motion of the cantilever tip is connected to the local mechani-

cal compliance via the fluctuation-dissipation theorem. The interaction potential

can be reconstructed by the modification of the thermal motion of the cantilever

due to the tip-surface forces. In particular, we present the relation between the

frequency shift and the tip-sample interaction force for both large and small oscil-
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lations amplitude. The van der Waals long-range forces are model by an Hamaker

potential, the short-range interaction by a Lennar-Jones potential. In ambient

condition, effects of capillary forces due to liquid neck between tip and surface are

discussed.



Chapter 4

Time meets frequency

The mathematical framework used for simultaneous analysis of the signal’s time

and frequency properties is the wavelet transform analysis. This is often com-

pared with the Fourier transform, in which signals are represented as a sum of

sinusoids. The main difference is that wavelets are localized in both time and

frequency whereas the standard Fourier transform is only localized in frequency.

The wavelet transform is a time-frequency analysis method which provides local-

ized information in time and frequency domain simultaneously (time-frequency

representation) [60, 61]. Nevertheless it is necessary to determine the time and

frequency resolution of wavelet transforms and how this resolution depends on

wavelet parameters. Time-frequency analysis by wavelet transform is an effective

tool to characterize the spectral content of signals rapidly varying in time. There-

fore it has been successfully adopted for a vast number of applications in many

areas of physics and engineering for quantitative measurements.

41
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4.1 Introduction

Experimental data frequently appear as a time series. In order to be character-

ized, time signals are transformed in frequency domain to describe their spectral

content. A fundamental method for signal processing is the Fourier transform

(FT). However the Fourier analysis is devised for stationary system i.e. the fre-

quency spectrum is correctly correlated only with a temporally invariant physical

system. This leaves aside many applications where the spectral content of the sig-

nal changes during the data collection. This change is not revealed by FT which

only provides an average over the time period and prevents from correlating the

frequency spectrum with the signal modification in time.

To overcame FT limitations, data are studied in the frequency domain by the

Continous Wavelet transform (WT), a powerful tool to characterize non stationary

systems [61]. WT is a time-frequency analysis method which provides localized in-

formation in time and frequency domain simultaneously. The one-dimensional time

series data are decomposed into a time-frequency plane allowing to determine the

temporal evolution of the signal spectral content i.e. both spectral modes and how

those modes vary in time. WT is a refined alternative to the classical windowed

Fourier analysis, providing not only the representation of the spectral energy con-

tent of the signal at a certain time, but also the ability to adapt the resolution to

the signal frequency. A wavelet is a smooth function Ψ(t) with a compact support

(or a rapid decay at infinity, contrary to the Fourier basis), and zero average,∫ +∞

−∞
Ψ(t)dt = 0

which is translated in time by d and dilated by a positive scale parameter s,

Ψs,d(t) =
1√
s

Ψ

(
t− d
s

)
The zero average condition imply that Ψ(t) is an oscillating function. The function

Ψ(t) is called a mother wavelet, the translated and dilated replicas Ψs,d(t) are called

daughter wavelets. The wavelet transform of a function of time t, f(t), at the scale
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Figure 4.1: Comparison between the Fourier transform and the wavelet trans-

form analysis. a) The time signal, a cosine function for negative times and a cosine

with quadratic chirp for positive times. Two daughter wavelet functions are su-

perposed to the signal. b) Wavelet Transform of the temporal trace represented

in a) showing the evolution of the frequency. The white line is the calculated

instantaneous frequency. c) Fourier Transform (Power Spectral Density) of the

signal represented in a). Only an average of the signal frequencies is observed

s and delay d is computed by correlating f(t) with the daughter wavelet at the

corresponding scale and delay,

Wf(s, d) =

∫ +∞

−∞
f(t)Ψ∗s,d(t)dt =

∫ +∞

−∞
f(t)

1√
s

Ψ∗
(
t− d
s

)
dt (4.1)

The wavelet transform coefficients Wf(s, d) are “resemblance” coefficients, that

measure the similitude between the signal and the wavelet atoms at various scales

and delays.

The square modulus of the wavelet coefficients |Wf(s, d)|2 is proportional to

the local energy density of the signal at the given delay and scale, called the

scalogram of the signal. As explained in detail below, the delay-scale representation

in which wavelets are defined can be mapped into the more physical time-frequency



sec. 4.2 Time meets frequency 44

representation to describe the signal energy localization in frequency and time. It

is useful to point out that the instantaneous frequency of the signal can be traced

by the so called wavelet ridges analysis of the spectrogram in the time-frequency

plane. The wavelet ridges are the maxima points of the normalized scalogram

[61], showing the instantaneous frequencies within the limits of the transform’s

resolution.

To visualize the differences between the FT and WT consider an analytical

signal f(t) = a cosϕ(t) with time varying phase ϕ(t), where ϕ(t) = ω0(t) at

negative times and ϕ(t) = ω0t+αt
3 at positive times (Fig. 4.1a). The instantaneous

pulsation is the derivative of the phase ω(t) = ϕ
′
(t) (the white line in Fig. 4.1b).

Since FT is a time invariant operator, only an average of the time dependent

spectrum is observed (Fig. 4.1c). On the other hand, WT approach combines the

time domain and frequency domain analysis so that the evolution of each spectral

component is determined. The wavelet analysis allows to extract accurately the

instantaneous frequency information even for rapidly varying time series.

This chapter describes the method of wavelet analysis, includes a discussion of

different wavelet functions and summarizes some examples of WT applications to

demonstrate its usefulness in quantitative measurements.

4.2 Wavelet transform analysis

The WT approach adopts an analyzing function Ψ(t) called mother wavelet as

basis function [61, 62]. One thing to remember is that wavelet transforms do not

have a single set of basis functions like the Fourier transform, which utilizes just

the sine and cosine functions. Instead, wavelet transforms have an infinite set of

possible basis functions. A function Ψ ∈ L2(R) is admissible as a wavelet basis if

it has zero average ∫ +∞

−∞
Ψ(t)dt = 0
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Figure 4.2: Three wavelet basis functions and their properties. Constant factors

for Ψ0 and Ψ̂0 ensure a total energy of unity.

and therefore if it is oscillatory. Moreover an admissible function must be local-

ized in both time (unless the Fourier basis) and frequency space i.e. must have a

band-pass like spectrum. In other word, Ψ(t) must be a wave. A wavelet function

is normalized ‖Ψ‖ = 1 and centered in the neighborhood of t = 0. The wavelet

basis function is chosen according to the application to be analyzed. In choosing

the wavelet function, there are several factors which should be considered.

1) Complex or real. A complex wavelet function will return information about

both amplitude and phase and is better adapted for capturing oscillatory behavior.

A real wavelet function returns only a single component and can be used to isolate

peaks or discontinuities.

2) Width. The width of a wavelet function is defined here as the wavelet am-

plitude in time domain. The resolution of a wavelet function is determined by the

balance between the width in real space and the width in Fourier space. A narrow

(in time) function will have good time resolution but poor frequency resolution,
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Figure 4.3: Four different wavelet bases. The plots on the left give the real part

(solid) and imaginary part (dashed) for the wavelets in the time domain. The

plots on the right give the corresponding wavelets in the frequency domain. For

plotting purposes, the scale was chosen to be s = 10dt. (a) Morlet or Gabor, (b)

Paul (m = 4), (c) Mexican hat (DOG m = 2), and (d) DOG (m = 6)

while a broad function will have poor time resolution, yet good frequency resolu-

tion.

3) Shape. The wavelet function should reflect the type of features present

in the time series. For time series with sharp jumps or steps, one would choose a

boxcar-like function such as the Harr, while for smoothly varying time series one

would choose a smooth function such as a damped cosine.

Four common nonorthogonal wavelet functions are given in Fig. 4.2. The Gabor

and Paul wavelets are both complex, while the DOGs are real valued. Pictures

of these wavelet in both the time and frequency domain are shown in Fig. 4.3.

Many other types of wavelets exist, such as the Haar and Daubechies, most of

which are used for orthogonal wavelet analysis. Here we choose a complex Gabor

wavelet (also called Gaussian wavelet) as the mother wavelet, because it has the

least spread in both frequency and time domain and thus the best time-frequency
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Figure 4.4: Complex Gabor wavelet with different shaping factors. An increase

of GS corresponds to more oscillations. The ”Heisenberg box” depicts the rela-

tionship between the time and frequency resolution, like the uncertainty principle

in quantum mechanics (adapted from Ref. [63])

resolution. The Gabor wavelet consists of a plane wave modulated by a Gaussian

Ψ(t) =
1

(σ2π)1/4
e
t2

2σ2
+iηt

Here σ controls the amplitude of the Gaussian envelope, η the carrier frequency.

The shape of the mother Gabor wavelet is characterized by a single dimensionless

parameter called the Gabor shaping factor GS = ση [63], which takes in to account

the envelope width (temporal resolution) and the number of oscillations within the

envelope width (frequency resolution) (Fig. 4.4). An increase of GS means more

oscillations under the wavelet envelope and a larger time spread, the frequency

resolution being improved and the time resolution degraded.

A family of time-frequency atoms is obtained by dilations and translations of

a mother wavelet Ψ(t) as

Ψs,d(t) = Ψ

(
t− d
s

)
where d is the delay and s the adimensional scale parameter. The generated

functions Ψs,d(t) are called daughter wavelets (Fig. 4.5). These atoms remain nor-

malized ‖Ψs,d‖ = 1 to have unit energy. The wavelets dilation sets by the scale
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Figure 4.5: The daughter wavelets generated by dilations and translations of a

mother wavelet. The Heisenberg box is determined by the shaping factor of the

mother wavelet GS and the scaling parameter s of the daughter wavelet (adapted

from [64])

parameter s is directly related to the frequency. The wavelet angular frequency at

scale s is given by ωs = η/s [65]. The associated frequency is fs = ωs/2π.

The continuous wavelet transform of a signal f(t) is expressed as the convolu-

tion of the signal with a daughter wavelet, see Eq. 4.1 which we rewrite herein:

Wf(s, d) =

∫ +∞

−∞
f(t)Ψ∗s,d(t)dt =

∫ +∞

−∞
f(t)

1√
s

Ψ∗
(
t− d
s

)
dt

By varying the wavelet scale s and translating along the localized time axis that

means delaying by d, one can construct a time frequency representation showing

both the amplitude of the spectral content and how this amplitude varies with time.

Because the wavelet function Ψ(t) is in general complex, the wavelet transform

coefficients Wf(s, d) are also complex. The transform can then be divided into

the real part, Re {Wf(s, d)}, and imaginary part, Im {Wf(s, d)}, or amplitude,

|Wf(s, d)|, and phase, ∠Wf(s, d). Finally, the square modulus of the wavelet

coefficients |Wf(s, d)|2, called the scalogram, represents the local time-frequency

energy density of the signal within the limit of the wavelet transform resolution.

For real-valued wavelet functions such as the DOGs (derivatives of a Gaussian)

the imaginary part is zero and the phase is undefined.



sec. 4.3 Time meets frequency 49

4.3 Instantaneous frequency

A cosine modulation

f(t) = a cos(ω0t+ φ0) = a cos(φ(t))

has a frequency ω0 that is the derivative of the phase φ(t) = ω0t + φ0 [61]. To

generalize this notion, real signals f are written as an amplitude a modulated with

a time varying phase φ:

f(t) = a(t) cos(φ(t))

with a(t) > 0. The instantaneous frequency is defined as a positive derivative of

the phase

ω(t) = φ′(t) ≥ 0

The time variation of several instantaneous frequencies can be measured with

time-frequency decompositions. The WT coefficients are resemblance coefficients,

that measure the similarity between the signal and the wavelet function at var-

ious delays and scales. The WT compares the signal with the daughter wavelet

(Fig. 4.1a). When the period of a daughter wavelet is the same as or the clos-

est to that of the signal, the WT amplitude reaches the maximum at that time

and frequency position. Considering the time t, the scalogram is maximum at

frequency
η

s
(t) = ω(t) = φ′(t)

The corresponding points (t, ω(t)) are called ridges and the instantaneous fre-

quency is traced by the wavelet ridges analysis of the spectrogram in the time-

frequency plane as shown in Fig. 4.1b. In other word, the wavelet ridges are the

maximum points of the normalized scalogram [61, 66], representing the instanta-

neous frequencies within the limits of the transform resolution. When the signal

contains several spectral lines whose frequencies are sufficiently apart, the wavelet

transform separates each of these components and the ridges detect the evolution
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Figure 4.6: Wavelet transform of a signal that includes a linear chirp whose

frequency decreases and a quadratic chirp whose frequency increases. The green

points are the ridges calculated from the time-frequency topography. The black

lines display the instantaneous frequency of the linear and quadratic chirp cal-

culated mathematically. The ridges discriminates the instantaneous frequency of

the two spectral components.

in time of each spectral component [61]. Let us consider

f(t) = a1(t) cos(φ1(t)) + a2(t) cos(φ2(t))

Sufficiently apart means that the difference between the instantaneous frequency

of the two components (|φ′1(t)− φ′t(t)|) is larger than the wavelet atom bandwidth.

Then the ridge points are distributed along two time-frequency lines ω(t) = φ′1(t)

and ω(t) = φ′2(t). Fig. 4.6 refers to a signal that includes a linear chirp whose

frequency decreases and a quadratic chirp whose frequency increases. The two

components are sufficiently separated to be extracted by ridges analysis. This

results is valid for any number of time varying spectral components, as long as
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Figure 4.7: Wavelet transform of a signal that includes a linear chirp whose

frequency decreases and a quadratic chirp whose frequency increases. The green

points are the ridges calculated from the time-frequency topography. The black

lines display the instantaneous frequency of the linear and quadratic chirp calcu-

lated mathematically. The interference of the two spectral components destroys

the ridge pattern.

the distance between any two instantaneous frequencies exceeds the frequency

resolution of the wavelet atom. If two spectral lines are too close, they interfere,

which destroys the ridge pattern (Fig. 4.7).

4.4 Time-frequency resolution

Time and frequency energy concentrations are restricted by the Heisenberg un-

certainty principle. This principle has a particularly important interpretation in

quantum mechanics that the energy and frequency uncertainty cannot be reduced

arbitrarily. In signal processing, the uncertainty principles sets that the time reso-
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Figure 4.8: Heisenberg boxes of two wavelets. Smaller scales decrease the

time spread but increase the frequency support, which is shifted towards higher

frequencies.

lution and the frequency resolution cannot be improved simultaneously. When the

time resolution is improved, the frequency resolution degrades. Likewise, when the

frequency resolution is improved, the time resolution degrades. The basis function

must therefore be adjusted as a trade-off between both accuracies [61, 67].

The time-frequency resolution of the WT is limited by the time-frequency reso-

lution of the corresponding atoms. Using a mother wavelet implies an uncertainty

both in time and frequency. In the time-frequency space this uncertainty is rep-

resented as a box, called the Heisenberg box, one dimension denoting the time

resolution ∆t, the other the frequency resolution ∆ω, the area of the Heisenberg

box ∆t∆ω being constant. In signal processing the Gabor wavelets have a mini-

mum joint time-frequency localization. Its Heisenberg box is determined by the σ

parameter, giving a time resolution ∆t = σ/
√

2 and an angular frequency resolu-

tion ∆ω = 1/(
√

2σ), associated to the frequency resolution by ∆f = ∆ω/2π.

When the wavelet is subject to a scale dilatation s, the corresponding Heisen-

berg box centered at time t and frequency fs = ωs/2π has size ∆s,t = s∆t along

time and ∆s,ω = ∆ω/s along frequency (see Fig. 4.5). As expected from the un-

certainty principle, the area of the rectangle ∆s,t∆s,ω remains equal to that of the
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mother wavelet at all scales i.e. ∆s,t∆s,ω = ∆t∆ω = 1/2.

In order to appreciate the different time-frequency resolutions imposed by

the parameters choice, three model signals, a temporal delta function, a square

pulse and a sinusuoid, are transformed using two different Gabor mother wavelets

(σ =
√

3/2, η = 9π and σ =
√

3/4, η = 4.5π) (Fig. 4.9). A delta-like signal

is completely localized in time and has a spectral content uniformly spread over

all frequencies. The time spread of the scalogram at each frequency is then de-

termined only by the time resolution of the wavelet. Small values of GS improve

the time resolution whereas increasing the scaling factor s (and then decreasing

the frequency at which the Heisenberg box is centered) implies a smaller time lo-

calization (Fig. 4.9a-b). This is true also considering the edge effects caused by a

square function whose temporal amplitude is equal to the wavelet transform time

window. In this case only half of the Heisenberg box centered at the time interval

boundaries falls into the scalogram (Fig. 4.9c-d). A sinusoid signal is completely

localized in frequency domain and spread in time domain. The wavelet transform

of a sinusoid function is a line centered at the oscillation frequency whose frequency

spread is determined by the frequency resolution of the wavelet transform. Higher

Gabor shaping factor GS means higher frequency resolution (Fig. 4.9e-f). Note

that the edge effects, due to the truncation of the sinusuoid by the finite transform

time window, are consistent with the previous example.

The frequency resolution of wavelet atoms is proportional to 1/s and then to

ω = 2πf in such a way that the bandwidth-to-frequency ratio ∆s,f/fs is constant,

as illustrated in Fig. 4.5 and Fig. 4.8. This means that the frequency resolution

of the wavelet scalogram is higher at low frequencies but coarser at higher fre-

quency. This is an important improvement of wavelet transform with respect to

windowed Fourier transform whose frequency support remains constant at all fre-

quency [61, 62, 67]. The widowed Fourier transform is a time-frequency analysis

which correlates the signal with sliding blocks obtained by multiplying the sines

and cosines (waves) by a sliding window localized in time. The main problem is
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Figure 4.9: Wavelet transform of three model signals using two different mother

wavelets (on the left GS = 12, on the right GS = 35). a-b) WT of a delta-like

function. The time spread is only due to the wavelet resolution in time ∆s,t. It is

proportional to the scaling factor s then it decreases as the frequency increases.

c-d) WT of a square function. The time spread at the edges due to the wavelet

resolution in time is ∆s,t/2, decreasing with frequency. e-f) WT of a cosinusoid

function. The frequency spread depends on the mother wavelet used. The lines

are the calculated time (a-d) and frequency (e-f) accuracy

that the blocks do not depend on the frequency to be analyzed so that relative

resolution at high frequency degrades significantly.

One way to see the time-frequency resolution differences between the win-
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Figure 4.10: Windowed Fourier basis functions (left) and Daubechies wavelet

basis functions (right) time-frequency tiles and coverage of the time-frequency

plane.

dowed Fourier transform and the wavelet transform is to look at the basis function

coverage of the time-frequency plane [67]. Fig. 4.10 shows a windowed Fourier

transform performed by using simply a square wave as window. Because the same

window is used for all frequencies, the resolution of the analysis is the same at all

locations in the time-frequency plane, limiting its applicability. For instance, the

hyperbolic chirp

f(t) = cos

(
α

β − t

)
has instantaneous frequency

φ′(t) =
α

(β − t)2

which goes from 0 to +∞ in a finite interval. The instantaneous frequency of

hyperbolic chirps cannot be estimated by a windowed Fourier transform because

for any fixed window size, the instantaneous frequency varies too quickly at high

frequencies, see Fig. 4.11.

An advantage of wavelet transforms is that the windows vary proportionally

with the frequency. In order to isolate signal discontinuities, one would like to have
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Figure 4.11: Sum of two hyperbolic chirps. a) Windowed Fourier transform b)

Ridges calculated from the spectrogram in a).

some very short basis functions. At the same time, in order to obtain detailed

frequency analysis, one would like to have some very long basis functions. A

way to achieve this is to have short high-frequency basis functions and long low-

frequency ones. This is exactly what wavelet transforms provide. Fig. 4.10 shows

the coverage in the time-frequency plane with one wavelet function, the Daubechies

wavelet. The wavelet ridges are able to follow also the rapid time modification of

the instantaneous frequencies of hyperbolic chirps. This is particularly useful to

analyze the return signals of hyperbolic chirps emitted by radars or sonars [61].

The response can be detected at all frequencies with adapted resolution. Therefore

WT can accurately extract the instantaneous frequency also of signal with rapid
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Figure 4.12: Normalized scalogram of two hyperbolic chirps. b) Wavelet ridges.

and wide spectral variation.

4.5 Applications of wavelet transform

Wavelets have been used in a number of application in different fields of science

and technology to extract information from and/or denoise many different kinds

of data, including - but certainly not limited to - audio signals, images, optical

spectra, time series. Previously, wavelet analysis have been used in atomic force

spectroscopy mainly to denoise or extract data from images [68, 69], which is by
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Figure 4.13: Time course of roller bearing vibration signal with typical local

fault

far the most important application of the wavelet transform. Moreover, thanks to

its character of reflecting the localized information in time and frequency, WT can

be applied in vibration signal analysis in transient regimes.

In [70] the time-energy density methods is used to efficiently extract the fault

characteristics of a roller bearing. The high frequency vibrations caused by local

fault of the rotating roller bearing can excite a resonance response of the system.

The excitation force due to the fault activates a non stationary response 4.13.

Since the forces induced by the fault act for a short time lapse, the steady-state

roller bearing vibrations signals display an abrupt change due to huge vibrations

at the resonant frequency from the roller bearing which attenuate rapidly because

of damping. The vibration signal of roller bearing with fault is then modulated

by an impulsive force so that the fault characteristic frequency cannot be defined

by FT analysis. On the contrary, the time-energy density analysis based on WT

easily extract the position of the fault characteristic frequency in case of roller

bearing with both outer-race and inner-race fault.

The WT approach is a efficient tool also to estimate damage location in a

simply-supported solid beam [65]. The beam is excited by the impact of a dropped

steel ball, that generates bending waves exploited to localized the position of a

small crack artificially created between the impact point and the free end. If the

bending wave is measured between the impact point and the crack, the signal con-

tains the initial propagating wave and a small wave reflected by the damage. The
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Figure 4.14: Extracted group delay dispersion from the double differentiations

of phases extracted from a Fourier transform technique.

difference in the arrivals time of the propagating wave and the reflected wave al-

lows to estimate the crack location. The bending waves have frequency-dependent

group velocity which has to be considered. This is performed by WT ridges anal-

ysis delivering an accurate measurement of the damage location.

Moreover, WT analysis is used to extract group delay (GD) and group delay

dispersion (GDD) from white light spectral interferograms [66, 71]. In conven-

tional approaches, GD is obtained by differentiation of the phase extracted by FT

technique. The measured GD displays additional oscillation structures mainly in-

troduced by the noise of the phase differentiation. In GDD extraction that takes

double differentiations this effect is more dramatic. The noise level induced by dif-

ferentiation is so high that the GDD is difficult to extract, see Fig. 4.14. The joint

time-frequency analysis with WT technique allows to directly extract the GD from

the spectral interferogram by ridges analysis. Then differentiation noise effect are

greatly reduced. GD and GDD are more precisely measured. The improvement of

GDD estimation by wavelet analysis is shown in Fig. 4.15
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Figure 4.15: Extracted group delay dispersion from the ridges of wavelet-

transform for the spectral interferograms.

4.6 Summary

Fourier theory states that a signal can be expressed as the sum of a, possibly

infinite, series of sines and cosines, referred to as a Fourier expansion. The big

disadvantage of a Fourier expansion however is that it has only frequency resolution

and no time resolution. This means that although we might be able to determine

all the frequencies present in a signal, we do not know when they are present.

The wavelet transform or wavelet analysis is probably the most common solution

to overcome the shortcomings of the Fourier transform. Wavelet analysis adopts

scalable functions as basis. They are shifted along the signal and for every position

the spectrum is calculated. The result is a time-frequency representations of the

signal. The wavelet basis is not unique but has to be carefully choose depending

on the signal characteristics. Then the instantaneous frequency can be evaluated

by wavelet ridges, the maximum points of the time-frequency representation.

The wavelet transform resolution is limited by the Heisenberg’s uncertainty

principle, which, in signal processing terms, states that it is impossible to know

the exact frequency and the exact time of occurrence of this frequency in a signal.
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In other words, a signal can simply not be represented as a point in the time-

frequency space but as the energy density contents into the Heisenberg box.

Wavelet transform approach has been successfully exploited in many field of

physics and engineering providing quantitative measurements. This induced us to

apply the wavelet time-frequency analysis in AFM force spectroscopy.



Chapter 5

The experiment

The experiments is performed by monitoring the cantilever thermal fluctuations

with an AFM based on the optical beam deflection detector. The custom acqui-

sition system collects the photodiode signal by an external digitizing oscilloscope.

In this chapter we describe the experimental set-up and the procedure to calibrate

the cantilevers spring constant.

62
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Figure 5.1: Block diagram of the optical beam detection system. The power

spectral density is provided by the thermal vertical signal of the free cantilever.

5.1 Introduction

The experiments consists in measuring the tip-sample interaction through the anal-

ysis of the thermally excited cantilever fluctuations in the vicinity of the sample.

In both cases the sample is a freshly cleaved highly oriented pyrolitic graphite

(HOPG) surface in ambient condition. The experiment is performed in two phases.

First long-range van der Waals force are probed in stationary regime and the data

processed by Fourier transform analysis. Then, to reduce the acquisition time,

the measurement is performed in dynamic regime i.e. transient regime and the

tip-sample force is inferred by wavelet transform analysis of the time signal. In

this case both long- and short-range interactions are probed

5.2 Experimental set-up

Fig. 5.1 schematically shows the experimental apparatus. The experiment is per-

formed with an AFM [72] (Fig. 5.2) suitable for static and dynamic (amplitude

modulation) operation modes. The AFM resides on a massive platform suspended
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Figure 5.2: A) APE Research Atomic Force Microscope. B) Picoscope PC

Oscilloscope 5402

by springs to provide isolation from external mechanical noise. The system is in-

side an isolation box to provide thermal and acoustic shielding. The head houses

the cantilevers holder which can be removed to easy mount the cantilever. The

piezoscanning system is based on a single scanner tube with a maximum vertical

extension of 2 µm.

The cantilever deflection is monitored by a standard optical beam deflection

system based on a 600 nm laser diode coupled to a monomode fiber (with a mode

field diameter of 4µm), which acts as a mode filter, giving a TEM00 beam output

after recollimation. The collimated fiber output is focalized with an aspherical

lens to a 10 µm spot on the cantilever end. A four quadrant silicon diode monitors

the cantilever flexural deflection (vertical signal provided by the top-bottom differ-

ential output) and its torsion (lateral signal provided by the left-right differential

output). The overall bandwidth of the optical lever deflection system exceeds 1

MHz.

The scanner and the data acquisition are driven by a Control Unit equipped with

a multi input-output board that allows to easy collect the photodiode outputs
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Figure 5.3: Left: SEM image of the Silicon cantilever and probe. Right:

Schematic diagram of the probe chip.

by a digitizing oscilloscope (PicoScope 5204 PC oscilloscope 5.2 [73]) devised for

high-speed data acquisition and digitize signals with 8 bit vertical resolution and

minimal distortion. Its 250 MHz analog bandwidth is complemented by a real-time

sample rate of 1 GS/s. The 128 megasample buffer memory ensures that complex

waveforms can be captured at the full sampling rate. A USB cable connects the

PicoScope to the PC where data are stored in real time.

The sample consisted of a freshly cleaved highly oriented pyrolitic graphite

(HOPG) surface. The experiments are conducted in air, with a relative humidity

of less than 50%. No external driving force is applied to cantilever whose vibra-

tions are activated only by thermal exchanges with the local environment.

The experiments are performed using µmasch CSC17 [74] rectangular cantilevers

whose nominal dimensions are 50 × 460 × 2µm3, the resonance frequency f1=12

kHz and the elastic constant k=0.15 N/m, see Fig. 5.3.

Before performing the measurements of the tip-sample interaction, the cali-

bration of the optical lever sensitivity (deflection sensitivity calibration) of the

instrument is performed on the hard HOPG surface. The cantilever bending is

monitored by the differential vertical output current from the quadrant photodi-

ode, which is correlated with the calibrated piezotube extension. The deflection

calibration is done while the tip is in contact with the hard HOPG surface by

assuming a negligible indentation and thus equal distances spanned by the can-
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Figure 5.4: Left: SEM image of the uncoated SPM Silicon probe tip. Right:

SEM micrograph of Silicon etched probe tip end.

tilever tip and the piezotube. The obtained sensitivity is in the range of 50-200

nm/V, depending on the cantilever type, beam position, and laser light power

level. Since the laser beam position influences the effective length of the cantilever

and the sensitivity, care has been taken during the measurements regarding the

stability of laser alignment. The cantilever 15◦ tilt with respect to sample surface

is considered for sensitivity correction [26].

5.3 The cantilevers spring constant

The n-type silicon (phosphorus doped) etched probe tip has a conical shape with

full cone angle of 40◦ as shown in Fig. 5.4. The total tip height is 20-25 µm and

the typical probe tip radius R = 10 nm. By measuring the plan view dimensions

of many cantilever from CSC17 series by an optical microscope we obtained a

mean width of approximately 40µm, a value which is 20% less than the nominal

value. On the contrary, the measured mean length (460 µm) agrees with the value

declared by the manufacturer.

The rectangular cantilever displays different oscillation modes (Fig. 5.5): flex-

ural, torsional and lateral oscillations. In all cases the system can be modeled as

a damped oscillator whose spectral response is a Lorentzian function, see Sec. 3.2.
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Figure 5.5: Oscillation modes of the rectangular cantilever: flexural, torsional

and lateral.

The cantilever elastic constants can be estimated by measuring its spectral behav-

ior. In fact, the cantilever spring constant can be calibrated by two different

procedures: the Sader method [75] and the thermal noise method [41, 50]. The

Sader methods relies solely on the measurement of the cantilever plan view di-

mensions (length L and width w), the resonant frequency f0 and quality factor Q

of the cantilever oscillation and the knowledge of the density and viscosity of the

fluid in which these are measured (typically air). In case of rectangular cantilever

the elastic constant is provided by [75]:

k = 0.1906ρfw
2LQω2

0Γi(ω0) (5.1)

ρf is the density of the fluid in which the measurement is taken (typically air), ω0

the fundamental mode resonant angular frequency, Γi is the imaginary component

of the hydrodynamic function, which is available on Sader website with a Java

applet to perform the elastic constant calculation [76]. The resonance frequency

f0 = ω0/2π and Q of the cantilever are measured by performing a power spectral

density analysis of the cantilever thermally driven oscillations. The resonance peak

is then fitted with the simple harmonic oscillator (SHO) model:

A(ω) = Awhite +
A0√

(ω2
0 − ω2)2 + (ωω0/Q)2
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Figure 5.6: Shape of the first four vibrations modes of a free (a) and supported

(b) cantilever.

where Awhite is a white noise fit baseline accounting for the electronic white noise.

The parameters Awhite, A0, ω0 = 2πf0 and Q are fitted to the PSD data using a

least-squares procedure implemented in MatLab code [77].

An alternative calibration method is the thermal tune method based on mod-

eling the cantilever as a rectangular bar with a fixed end [41, 50, 78]. Making use

of the equipartition theorem, the thermal (i.e. Brownian) motion of the cantilever

oscillation is related to the thermal energy kBT . The beam theory explicitly con-

siders the actual bending modes of the cantilever (Fig. 5.6) and therefore the energy

of all the oscillatory modes. Moreover, the cantilever displacement as measured by

the optical lever detection scheme is different from the actual displacement of the

cantilever because it is proportional to angular changes in the cantilever position,

not its absolute deflection and these angular changes depend on the bending mode

of the cantilever. Then, considering only a single bending mode i, the cantilever

elastic constant is evaluated by:

k =
16kBT

3α2
i 〈z∗2〉

(
sinαi sinhαi

sinαi + sinhαi

)2

Here
〈
z∗2
〉

is the mean square virtual cantilever displacement i.e. the mean square

displacement as measured by the optical lever scheme. By the Parsival’s relation〈
z∗2
〉

can be estimated in the frequency domain allowing to subtract the white noise
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free flex. clamped flex.

mode 1 2 3 4 5 1 2

FT fn (kHz) 10.757 74.28 215.1 431.3 724 69.23 200.81

Qn 58 170 290 420 530 17 89

fn/f1 exp. 6.90 20.0 40.1 67 6.43 18.7

WT fn (kHz) 10.908 76.09 222.6 444.4 62.80 195.7

Qn 63 180 320 470 32 89

fn/f1 exp. 6.97 20.4 40.7 5.75 17.9

fn/f1 teo. 6.26 17.5 34.4 56.8 4.38 14.2

Table 5.1: Free and clamped cantilever flexural resonant frequencies and quality

factors for the cantilever used in the FT and WT approaches. The measured ratio

between the frequencies of the higher modes with the first one is compared with

the theoretical prediction [41].

background contribution, see Sec. 6.4 and [79]. The coefficients αi as determined by

the boundary conditions are tabled in [41] both for free and supported cantilever

end. In particular, for the first two flexural modes for the free cantilever:

α1 = 1.88 and k = 0.82
kBT

〈z∗2〉
(5.2)

α2 = 4.69 and k = 0.25
kBT

〈z∗2〉
(5.3)

In the following, we present the results of spring constant calibration per-

formed on the two cantilever used for the tip-sample interaction measurements in

both FT and WT approaches. The two µmasch CSC17 cantilevers came from the

same batch.

As previously seen, the procedure to calibrate the cantilever spring constant

requires to detect the PSD of the free cantilever. The photodiode signal is collected

while the cantilever thermally oscillates far from the surface. Then the power spec-

tral density (PSD) is calculated off line and averaged over 90 temporal traces of



sec. 5.3 The experiment 70

Figure 5.7: Power Spectral density of the free flexural modes for the cantilever

used in the FT approach. The inset zooms on the two lower modes.

1 ·106 samples each, acquired at 1MHz. Fig. 5.7 displays the PSD of the cantilever

used to evaluate the tip-sample interaction by the FT approach, see Chap. 6. The

electronic white noise level is small enough to observe the resonances up to the fifth

flexural mode. The resonance peaks are fitted by a Lorentzian function providing

the resonant frequencies f0 and quality factors Q in Tab. 5.1.

When the tip is in contact with the sample, the cantilever still thermally os-

cillates but with modified flexural modes of oscillation (supported cantilever, see

Fig. 5.6). The changed boundary conditions shift the resonance frequencies and

increase the energy dissipation effects giving rise to a decrease of the quality fac-

tors (Tab. 5.1). The measured resonant frequencies compare well with theory for

both free and supported cantilever [41]. The fitting parameters f0 and Q and

the measured plan views dimensions provide the elastic constant k=0.12 N/m as

evaluated with the Sader method. The thermal tune method applied to both the

first and second flexural modes gives k values that agree within 5%.

The same measurements are performed to calibrate the elastic constant of the

cantilever used in the WT approach (Chap. 7). Fig. 5.8 shows the PSD referred
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Figure 5.8: a) Thermal PSD of the flexural fluctuations zoomed on the three

lower modes for the cantilever used in the WT approach. The arrow points at the

first torsional mode. b) Same as a) but with the tip in contact with the sample

at constant negative load (F≈ −0.6nN)

to the three lower flexural eigenmodes of the free cantilever and to the two lower

contact eigenmodes (Fig. 5.6). In the spectrum it is visible also a minute contri-

bution from the first torsional mode at 240 kHz, due to positioning the laser spot

not exactly in the middle of the cantilever width. The resonant frequencies f0 and

quality factors Q for the free and pinned cantilever are reported in Tab. 5.1. The

small disagreement between measured and calculated resonance frequencies can be

explained by the not perfect rectangular shape of the cantilever. In this case the

fifth eigenmode peak is not visible probably due to the position of the laser spot

of the optical beam detection which was on the fifth mode node, see Fig. 5.6. The

plan view dimensions measured by an optical microscope are used to estimate the

elastic constant k = 0.13 N/m [75].

Since we apply the WT approach also to the torsional modes, we need to

calculate their PSD from the photodiode lateral temporal traces. The PSD is per-
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t1 t2 tc1 tc2 l1 lc1

Frequency (kHz) 239.4 763.4 305 782 210.1 221.6

Quality factor (Q) 310 570 14 120 590 200

Frequency ratio exp. 22.0 70.0 28.0 71.7 19.3 20.3

Frequency ratio theo. 23.4 70.1 19.0

Table 5.2: Measured and calculated [41, 80] torsional t and lateral l resonance

frequencies for the cantilever free (ti and li) and clamped (tci and lci) cantilever

used in the WT approach. The theoretical results are expressed as ratios with

respect to the first flexural frequency. The Q factors are measured from the PSD.

formed off-line by averaging over 90 temporal traces of 1M samples each, acquired

at 1MHz, see Fig. 5.9a. The PSD displays the resonance peaks corresponding to

the first lateral and and to the two lower torsional modes [80, 81]. The lateral

bending mode is analogous to the flexural modes but with interchanged cantilever

width and thickness. The resonance frequencies and quality factors are reported in

Tab. 5.2. The small peak at 223 kHz is the third flexural mode, which contributes

to the lateral signal because the cantilever is not perfectly parallel to the sample

surface. The Sader method gives a torsional elastic constant kϑ = 9.9 nNm [82].

When the tip is in contact with the surface, due to the modified mechanical

boundary conditions, the cantilever end is no longer free. A clear shift of the tor-

sional and lateral mode resonances is observed (Fig. 5.9b). The ratios between free

and clamped resonances follows the trend predicted by standard beam mechanical

theory [41, 80], as reported in Tab. 5.2. In the PSD it is possible to observe the

broadening of the resonances width. The Q factor of the oscillator, expressed as

the relative Lorentzian broadening Q = ∆ω/ω, is connected to the energy dis-

sipated by the oscillator, the decrease in Q indicates an increase in dissipation

processes.
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Figure 5.9: a) Thermal power spectral density of the cantilever torsional fluc-

tuations zoomed on the first torsional (t1) and first lateral (l1) resonance peaks.

The arrow points at the third flexural mode (f3). b) Same as a) but with the tip

in contact with the sample at constant negative load (F≈ −0.5nN)

5.4 Data acquisition

The experiments consists in acquiring the temporal evolution of the thermal noise

as a function of the tip-sample distance. Then the data are off-line processed to

provide the tip-sample interaction forces. We apply two different procedures of

data collections depending on the method used to analyze the time signal.

In the FT approach (stationary regime), the oscillating cantilever is placed at

a fixed distance from the surface so that the tip experiences the long-range forces

of the sample surfaces. The time trace of the cantilever thermal fluctuations is

collected by the digitizing oscilloscope. Then the tip is moved toward the sample

at a lower distance from the surface and the new time signal acquired. The mea-

surement is repeated at different tip-sample separations up to the jump-to-contact

(JTC) distance. The complete data acquisition requires minutes. The time traces

of the cantilever thermal fluctuations are off-line processed by three different routes
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in order to calculate the long-range tip-sample interaction. The data analysis is

performed exploiting programs implemented in MatLab code. Results provided by

this approach are presented in Chap. 6.

The WT approach (dynamic or transient regime) consists on acquiring force

spectroscopy curves by driving the z-piezo motion at constant velocity to move

the tip toward the surface. The time signal i.e. the temporal evolution of the

cantilever thermal oscillations as a function of the tip-sample distance (force curve

or spectroscopy curve) is stored by the PicoScope PC oscilloscope. The time data

are off-line processed using a wavelet transform (WT) analysis exploiting the rou-

tines from the WAVELAB library [83]. In this case both long- and short range

tip-sample interactions are probed. The total data acquisition required approxi-

mately 150 ms, a time orders of magnitude lower than that required for the FT

analysis. Moreover, lateral and vertical photodiode signals are collected provid-

ing the simultaneous analysis of the cantilever flexural and torsional eigenmodes

presented in Chap. 7.

5.5 Summary

The experiments consists in measuring the tip-sample interaction through the anal-

ysis of the thermally excited cantilever fluctuations in the vicinity of the sample.

The acquisition system relays on an AM-AFM [72] which monitors the cantilever

bending by an optical beam deflection system. The photodiode signals feed a

digitizing oscilloscope to detect and store the temporal evolution of the cantilever

thermal vibrations. The data are off-line processed by two different routes (FT and

WT analysis) to provide the tip-sample interaction. In this chapter we described

the experimental set-up and the methods used to calibrate the cantilever stiffness.

Moreover, we summarized the data acquisition procedures in both static FT and

dynamic WT approaches whose results are presented in the next chapters.



Chapter 6

Tip-sample force in the

stationary regime

Thermal noise is caused by random thermal excitations that result in positional

fluctuations of the cantilever, thereby setting a lower limit on the force resolu-

tion of an atomic force microscope. However, thermal noise can also be used to

probe the interaction between the AFM tip and the sample. In this chapter we

present three different approaches to exploit the information contained in the can-

tilever thermal motion (frequency shift, Boltzmann distribution of the Brownian

motion and thermal mean square displacement) and some results concerning the

characterization of the tip-sample van der Waals force.

75
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6.1 Introduction

A NC-AFM is able to detect small long-range forces acting between the AFM tip

and the sample surface. Among the various options devised to operate a NC-AFM,

the thermal oscillation regime has attracted attention because it provides insights

into the fundamental mechanical properties of an AFM in a very direct way [10].

The analysis of the thermal motion of the cantilever is important to characterize

both its mechanical properties and the performance of the AFM deflection sensor.

The thermal motion (or Brownian motion) of the cantilevers tip is connected to

the local mechanical compliance via the fluctuation-dissipation theorem. From

the modification of the thermal motion of the cantilever due to the tip-surface

interaction forces, it is possible to reconstruct the interaction potential and obtain

information on various kinds of surface forces. In this chapter, we will use three

different approaches to exploit the information contained in the cantilever thermal

motion;

• to measure the shift of the cantilever resonances of the first and second flex-

ural modes as the tip is brought near the surface to retrieve the gradient of the

interaction forces [15, 11, 38];

• to analyze the probability distribution of the tips position during the Brow-

nian motion and use the Boltzmann distribution to calculate the Helmholtz free

energy of the tip interacting with the surface as a function of the tip-sample dis-

tance. From these data, it is possible to obtain the interaction force gradient from

the second derivative of the Helmholtz free energy;

• to measure the mean square displacement of the tip subjected to thermal

motion to estimate the interaction force gradient dependence on the tip-sample

distance.

All the analyses are conducted on the same temporal trace of the tip ther-

mal motion normal to the surface, recorded by sampling the thermally excited

flexural modes of the cantilever with a fast digitizer connected to the deflection
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Figure 6.1: Power spectral density of cantilevers fluctuations acquired at dif-

ferent tip-sample separations zoomed on the first mode resonance peak. Each

spectrum is the average of 20 spectra obtained by Fourier transforming data

strings of 520 ksample each, acquired at sampling rate of 4 Msample/s. The

resonant peaks are fitted with a Lorentzian.

sensor photodiode of a standard optical beam deflection apparatus. The time sig-

nal consists of 20 data strings of 520 ksample each, acquired at sampling rate of 4

Msample/s while the cantilever dwells at a fixed separation from the surface. The

total time required to detect and store these data is approximately 3-4 s, by taking

into account also the recovery time of the acquisition system. The measurement

is repeated at decreasing distances in the range of the tip-sample interaction until

the jump to contact occurs. This allows to reconstruct the long-range van der

Waals force and to estimate the tip radius. All the data necessary to determine

the force versus distance curve are collected in some minutes.

6.2 Frequency shift method

First we place the cantilever far from the surface (free cantilever). From the

temporal trace of the thermal oscillations of the free cantilever, we obtain the

power spectral density distribution. The first two resonances, at 10.757±0.002
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Figure 6.2: a) and b) Shift of the resonance frequency and Q factor of the first

mode, respectively, as a function of the tip-sample distance. c) and d) Same as

a) and b) for the second flexural mode.

and 74.276±0.004 kHz, respectively, are fitted with a simple damped harmonic

oscillator model [16, 40], whose Lorentzian curve gives quality factors (Q factors)

of about 58 and 170, respectively. (Tab. 5.1).

The analysis is repeated at various distances approaching the surface, up to

the jump-to-contact event. Fig. 6.1 shows the thermal PSD at several tip-sample

separations as obtained by averaging 20 spectra obtained by Fourier transform-

ing 20 temporal traces collected from photodiode. The image zooms on the first

eigenmode resonance peaks and also displays the Loretzian fitting functions. The

spectra show a negative shift of the resonance frequency for the first and second

modes due to the interaction of the tip with the force gradient near the surface 6.2.

Considering each flexural mode equivalent to a mass-spring system, the tip-sample

interaction elastic constant, kts = −dFts/dz (where Fts is the tip-sample interac-

tion force, z is the tip-surface distance, positive along the surface normal direction),

can be expressed as a function of the resonant frequency as

kts = k

(
(f ′0 + f0)(f

′
0 − f0

f20

)
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where f0 is the resonant frequency of the free cantilever, f ′0 is the resonant fre-

quency of the cantilever that interacts with the surface force gradients, and k is the

equivalent elastic constant of the mode under consideration (see also Sec. 3.3. This

relation holds if kts remains constant for the whole range of displacements from

the equilibrium position covered by the cantilever and this is assumed to be true in

our case since we are dealing with small oscillations (the root mean square deflec-

tion of the free cantilever is less than 0.2 nm). If |kts| << k, one expects f ′0 ∼ f0

and the frequency shift ∆f = f ′0 − f0 becomes proportional to the force gradient

kts = 2k∆f/f0 [11, 8]. These approximations (constant kts and |kts| << k) are

valid for the second flexural mode that has a higher equivalent elastic constant,

but may break down for the first flexural mode near the jump-to-contact point.

Near this point |kts| ∼ k and the effective spring constant experienced by the tip

k∗ = k + kts [11, 15] tends to zero (kts = −dFts/dz is negative because the tip-

sample force is increasingly attractive approaching the surface). As a consequence,

the displacement amplitude increases and the condition that kts remains constant

for the whole range of displacements may not be satisfied. However, we experi-

mentally verify that the cantilever can be treated as a mass-spring system up to

the jump-to-contact distance by showing that the measured interaction potential

(see Sec. 6.3) can be considered parabolic with a good approximation.

Along with the force gradient, it is possible to measure the Q factor, which

is found to depend on the distance from the surface (Fig. 6.2b and Fig. 6.2d).

Q is almost constant for both flexural modes up to the jump-to-contact distance

of D ∼2.2 nm. It is interesting to note that the first flexural mode, but not the

second, shows an evident decrease in the Q value before the jump-to-contact dis-

tance. This means that the interaction is conservative at distances greater than

D and becomes increasingly dissipative on approach to this point. The fact that

the second mode does not show a decrease in the Q value can be explained with

a superposition principle argument. Since the equivalent stiffness of the second

mode is much higher than that of the first, the oscillation amplitude of the second
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Figure 6.3: Force gradient between the tip and the sample resulting from the

frequency shift of the first and second mode as a function of the tip-sample

distance. For the second mode, data obtained by two different values of the

spring constant k2 are displayed. The line is the fitting power function Az−3.

mode remains small even at distances where the first mode amplitude becomes

substantially higher. As a consequence, the dissipation of the cantilever energy to

the surface is channeled mainly through the first mode, not the second.

It is interesting to note that near the sample, the quality factors (Q1 ∼ 40 and

Q2 ∼ 160) are lower than that of the free cantilever (Q1 = 58 and Q2 = 170, see

Tab. 5.1). The decrease is due to the interaction of the rectangular beam with the

sample surface. If the tip-sample separation is very small, the distance between

the beam and the surface is about the tip height (nominal value h = 20− 25 µm).

When the cantilever oscillates in air or in a fluid close to a solid surface, due to a

confinement effect, an increased damping is manifested as a decrease of the quality

factor [84]. This effect is relevant for piezotube movements on the µm scale but

not on the nm scale covered by the present measurements, where the effect of the

tip-sample interaction dominates.

The measured force gradient versus distance is shown in Fig. 6.3 (circles) for

the first flexural mode. The dependence of the force gradient on the tip-surface

distance z is well reproduced by a simple power function, describing a van der
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Waals-like tip-sample interaction dFts/dz = Az−3 [51, 56], where A is a constant,

up to the jump-to-contact distance. All cantilevers we used display the same de-

pendence of the force gradient on the tip-sample spacing, i.e., measurements are

reproducible.

The same procedures are applied to the frequency shift of the second flexu-

ral mode. In this case, we obtain a much stiffer equivalent elastic constant of

k2 = 42k = 5.0 N/m by the Sader method and, as a consequence, the frequency

shift of the second mode is smaller by almost one order of magnitude with re-

spect to the first mode. When we compare the force gradient calculated from

the frequency shift of the second mode Fig. 6.3 with that from the first mode, a

clear discrepancy is evidenced. Since the explored physical potential is obviously

the same for both flexural modes, this discrepancy must hint to some problems

inherent to the method used to determine k2. It is known that the mass of the

tip shifts the node of the cantilever second flexural toward its free end, causing

a reduction in its effective length and thus a higher equivalent stiffness [29, 85].

Since the Sader calculation does not take into account this mass loading effect,

a stiffer equivalent elastic constant k2 is expected for the second flexural mode.

On this basis, we increased the k2 value until a satisfactory fit to the dFts(z)/dz

retrieved with the first mode was obtained, finding on physical grounds that the

equivalent stiffness of the second mode is k2 = (75± 10)k.

6.3 Potential from Boltzmann distribution

The temporal trace of the free thermal oscillations normal to the surface of the

cantilever has been digitized at 4 Msample/s for a time span much longer than

the average vibration period of the cantilever. During its motion, the cantilever is

thermally sampling the accessible deflections according to a Boltzmann probability

distribution

p(s) = p0 exp

(
−V (s)

kBT

)
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where p(s) is the probability of observing the tip at a deflection s from the equi-

librium position, p0 is a normalization constant, V (s) is the position dependent

potential, kB is the Boltzmann constant, and T is the absolute temperature. In-

verting the relation gives

V (s) = −kBT ln
p(s)

p0

which connects the potential (within an additive constant) to the probability to

find the cantilever at a certain deflection s, measured as the number of counts

observed at a certain deflection divided by the total number of counts in the entire

temporal trace. Since the actual thermal oscillation is influenced by the cantilever

static deflection due to Fts, the potential will depend also on the equilibrium

tip-surface distance z0, i.e. V = V (s, z0). Following Ref. [86] we consider two con-

tributions to the total potential V , the cantilever potential Vc and the tip-sample

interaction potential Vts, so that V = Vc + Vts. This relation is formally valid for

an instrument with an infinite acquisition bandwidth and without electronic noise.

Since real instruments have electronic noise that cannot be completely filtered out,

the amplitude of the random oscillations of the cantilever is overestimated. As a

consequence, an apparent larger curvature of the retrieved potential is detected.

This effect is not present in the other two proposed methods because in one case

only frequency measurements are required to retrieve forces (frequency shift) and

in the other the electronic noise can be easily separated from the signal in the

Fourier domain. The effects due to electronic noise are taken into account by a

multiplicative correction factor ε in the potential relation V = ε(Vc + Vts). The

correction factor is experimentally found by measuring the free cantilever thermal

oscillation Vc(s,∞) and comparing the measured cantilever spring constant (Sader

method) with the apparent cantilever constant obtained by the second derivative

of the potential kapp = d2/ds2 (Vc(s,∞)), i.e., ε = kc/kapp. In the present case, the

correction factor is ε = 1.2.

Since we are interested in measuring Vts(s, z0), the cantilever potential is

subtracted from the total potential and the result is shown in Fig. 6.4. We note
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Figure 6.4: Results obtained by the potential analysis. a) Fluctuations of the

free cantilever as a function of time retrieved by off-line bandpass filtering (50

Hz-100 kHz) of the photodiode signal. b) Probability distribution of the free

cantilever deflections. The plot is the average of the probability curves calcu-

lated from 20 time signals like the one in a). The distribution is Gaussian. c)

Apparent potentials of the free cantilever at 2.2 nm and far from the surface.

These potentials are fitted with parabolas. d) Tip-sample interaction potentials

obtained subtracting the free cantilever potential to the total potentials. The 2.2

nm interaction potential is fitted with a parabola.

that the data corresponding to Vts(s, z0 =2.2 nm) in Fig. 6.4 are well described by

a parabolic fit, confirming that the cantilever in interaction moves in a quasihar-

monic potential and thus can be described as a mass-spring system. To give an

estimate of the expected anharmonicity, consider the interaction potential at an

equilibrium position z0, obtained after the expansion of the van der Waals potential

up to the third order and subtraction of the harmonic cantilever contribution,

V − 1

2
kcs

2 = const.− HRs2

6z30

(
1− s

z0

)
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Figure 6.5: Force gradient between the tip and the sample calculated by the

second derivative of the potentials. The line is the power function Az−3 resulting

from the fitting of the frequency shift data.

see Fig. 6.4d, where s is the displacement from the equilibrium position z0, positive

along the surface normal direction. The anharmonic third order term at z0=2.2 nm

and for a displacement s=0.2 nm is estimated to be roughly 1/10 of the quadratic

term. From the fitting procedure, using a quadratic function of s, we obtain

residuals of the same order of magnitude. However, the noise and the resolution

of our analog-to-digital converter do not allow a quantitative estimation of the

anharmonic term.

The force gradient between the tip and the sample is calculated by the second

derivative of the potentials dFts/dz = d2/dz2Vts. As shown in Fig. 6.5, the force

gradient delivered by the potential method is in good agreement with the one

measured by the frequency shift method.

6.4 Mean-square displacement from power spec-

tral density

The cantilever in thermal equilibrium with the molecules of the gas or liquid in

which it is immersed fluctuates in response to stochastic forces due to molecular
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motion that is connected to the temperature of the thermal bath. The equiparti-

tion theorem states that the mean square displacement of the tip from its neutral

position is described by 1/2kBT = 1/2k
〈
s2
〉
.
〈
s2
〉

is the mean square displace-

ment of the cantilever caused by the thermal motion in the direction normal to the

surface, kB is the Boltzmann constant, T is the temperature of the surrounding

heat bath, and k is the cantilever spring constant. Measuring the mean square

fluctuations of a freely vibrating cantilever allows one to estimate the cantilever

spring constant. This estimation is performed by taking into account a) that all

vibration modes contribute to the mean square displacement and b) that with the

optical lever technique the slope at the cantilever end is detected instead of the

deflection itself [41].

The temporal trace of the free thermal oscillations is affected by various noise

sources, which tend to mask the thermal thermal contribution. In order to isolate

the thermal oscillations, the data are examined in the frequency domain [79, 78, 47].

First, we collect photodiode signal of the free cantilever. The temporal trace is

composed of 20 time signals acquired at 4 MHz for about 0.13 s (520 ksamples).

The PSD is calculated off-line and then averaged over the 20 traces. In the absence

of additional noise sources, the power spectral density of the cantilever fluctuations

has a Lorentzian line shape. White noise adds a background floor to this thermal

response. Subtracting this background, the area below the remaining peak is the

estimation of the power of the cantilever fluctuations, see Fig. 6.6a. The integral

over all frequencies of the power spectrum equals the mean square of the displace-

ments in the time domain. Then, for the first flexural mode, the spring constant

is directly evaluated by (see also Eq. 5.2):

k = 0.82
kBT

P ′

where P ′ is the area of the power spectrum of the thermal virtual deflections alone

(the superscript ’ means that the optical lever measures the slope at the cantilever

end, i.e., the virtual deflection, instead of the deflection itself) [41, 50].
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Figure 6.6: Results from mean square displacements analysis. a) Power spectral

density of the free cantilever fluctuations. The shaded area is the contribution

of the simple harmonic oscillator (Lorentzian function), that is the fit minus the

white-noise background. The mean square of the cantilever displacement in the

time-series data equals this area. b) Force gradient between the tip and the

sample calculated by the reduced effective spring constant k∗. The line is the

power function Az−3 resulting from the fitting of the frequency shift data.

The analysis we already performed for the free cantilever is repeated at vari-

ous tip-sample distances approaching the surface until the jump-to-contact occurs.

As pointed out in Sec. 6.2, since we are dealing with small oscillations, the tip-

sample force gradient can be considered constant for the whole range of displace-

ments from the equilibrium position covered by the cantilever at each tip-sample

distance. This interaction causes an additional spring-type force Fts. The interac-
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tion elastic constant retrieved from the gradient along the normal to the surface

kts = −dFts/dz is negative and reduces the effective spring constant k∗ = k + kts

(see Eq. 3.10) where the superscript ∗ indicates that the elastic constant refers

to an effective mean square displacement increased by the tip-sample interaction.

The cantilever mean square fluctuations increase due to the lower spring constant.

Measurements of the cantilevers mean square virtual displacement
〈
s′2
〉

= P ′∗ at

several distances approaching the surface allow to estimate the reduced effective

spring constant

k∗ = 0.82
kBT

P ′∗

The force gradient is easily deduced by the relation

dFts
dz

= −kts = k − k∗

As in the previous analyses, the force gradient displays a van der Waals-type

dependence dFts/dz = Az−3 on tip-sample distance z, see Fig. 6.6b.

Finally, it is worthwhile to note that in all cases, the tip-sample separation z

is determined by both the piezotube position and the cantilever static deflection.

6.5 Discussion on the static regime results

The flexural mode resonances calculated for a cantilever with a rectangular section

(without tip, the so-called diving board mode [10]) agree, within a systematic

10%−15% underestimation, with the experimental values, as reported in Tab. 5.1.

According to the equivalent stiffness model [85] the elastic constant associated

with the first and second flexural modes of such cantilever are k1 = 1.03k and

k2 = 40.2k, where

k = 0.25
Ewh3

L3

(here, L is the length of a cantilever with a rectangular cross section of width w

and thickness h and E is the modulus of elasticity). Since the correct equivalent

stiffness for different eigenmodes can be approximately determined experimentally
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Theoretical

k2 k′2 tip 10%

k=0.12 N/m Sader method From fit to kts no tip CL

k2 N/m 5.0 9.0

k2/k 42 75 40.2 74.9

Table 6.1: Experimental evaluation of the second mode equivalent spring con-

stant obtained by the Sader method and retrieved by the fit to the first mode force

gradient curve. Theoretical prediction without and with mass loading obtained

from finite elements calculations in [85].

using Saders method [75] the discrepancy pointed out in Sec. 6.2 must be recon-

ciled by invoking a mass loading effect. According to the calculations reported

in [85], a 10% tip mass is sufficient to modify the equivalent stiffness to k′1 = 1.01k

and k′2 = 74.9k. Therefore, while the tip mass does not influence significantly

the equivalent stiffness of the first eigenmode, it can have a dramatic effect on

the equivalent stiffness of the second. Similar results have been reported in [29].

Tab. 6.1 shows a comparison of the theoretical values without and with mass load-

ing with the experimental results based on the Sader method and the results based

on the fitting procedure explained in Sec. 6.2. It can be seen that the experimental

value of k′2 which reconciles the gradient force calculated from the frequency shift

of the second mode to the gradient force retrieved from the first mode frequency

shift, is comparable with the theoretical value calculated with a 10% tip mass

loading.

We would like to point out the fundamental differences in considering the actual

elastic constant of the cantilever, k, and the equivalent elastic constants associated

with each mode, k1 and k2. The elastic constant k is specified by the elastic prop-

erties of the material and the dimensions of the cantilever and can be retrieved

using the thermal tune method by measuring the mean square tip displacement

and applying the equipartition theorem from the resonance shape of the first or the
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Figure 6.7: Force gradient provided by (red circles) the frequency shift method,

(blue triangles) the potential from Boltzmann distribution method, and (green

squares) the mean square displacement from power spectral density method. The

line is the power function Az−3 resulting from the fitting of the frequency shift

data in Fig. 6.3. The force is the analytic integral of the this fitting function

(−A/(3z2)).

second mode. It can also be retrieved from the Sader method applied to the first

flexural mode and, as stated in Sec. 5.3, all these methods give an elastic constant

value within 5%. Instead, the equivalent constant of each mode, k1 and k2, gives

a different information, not linked only to the elastic constants of the material,

but taking into account the modal shape in connection to the tip displacement.

Since each mode is viewed as equivalent to a mass-spring system, to have the same

actual tip displacement ∆z needs different interaction forces for different flexural

shapes and, consequently, at each mode is assigned a different equivalent elastic

constant ki = Fi/∆zi, i=1,2.

The gradient of the interaction force between the tip and the surface obtained

by the three methods discussed above are reported in Fig. 6.7 to demonstrate their

consistency. Force gradients of the order of tens of mN/m and interaction forces

of the order of tens of piconewton are easily accessible with a standard AFM.

When the proximity between material objects becomes of the order of a few
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microns down to nanometers, van der Waals and Casimir forces, which are quan-

tum mechanical in nature, become operative [28]. In the present case, the force

gradient data are well reproduced by a nonretarded van der Waals function in the

form (see Sec. 3.4):
dFts
dz

=
HR

3z3

with HR = 3 · 10−27 Jm, from which it is possible to extract the Hamaker con-

stant H if the radius of curvature of the cantilever R is known. Since we have

not directly measured R, no measure of H is possible. However, from the typical

values of H in graphite (H=0.1 aJ [56, 57, 58]), it is possible to infer R=30 nm,

which is compatible with the radius of curvature given by the manufacturer. The

interaction force Fts, reported in Fig. 6.7, is obtained by the analytic integration

of the interaction force gradient, giving a dependence as −HR/6z2.

Finally, we note that approaching the surface, the jump-to-contact occurs

before the tip-sample distance corresponding to the interaction instability (see

Eq. 3.12) d/dzFts(zjtc) = k. Therefore, the jump to contact we observe is mainly

due to capillary force of the liquid meniscus linking the tip and the surface, as

explained in Sec. 3.4. These mechanisms justify that the reduction in the Q factor

has an extremely sharp distance dependence, indicating that the underlying dissi-

pation mechanism is very local due to some interaction of the very end of the tip

with the wetting layer on the surface.

6.6 Summary

In this chapter we reconstruct the tip-sample interaction potential from the mod-

ification of the thermal motion of the cantilever due to the tip-surface interaction

forces. The analysis is performed in stationary regime by applying three different

approaches to exploit the information contained in the cantilever thermal motion:

frequency shift, Boltzmann distribution of the Brownian motion and thermal mean

square displacement methods. All the analyses are conducted on the same tempo-
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ral trace of the tip thermal motion normal to the surface, providing aa estimation

of non retarded van der Waals interaction forces. We also estimated the tip mass

loading effect on the cantilever elastic behavior by comparing the results provided

by the frequency shift of the two lower flexural eigenmodes.

Although the methods employed are well established, their simultaneous use

in the same experimental session allows one to fully calibrate the instrument in

terms of frequency response, temporal response, and sampling rate of the optical

lever deflection system and the associated electronics. The main limitation of the

stationary regime analysis is that it requires long acquisition time since it takes

minutes to perform a complete force versus distance curve. In order to prevent

thermal drift effects and especially to allow Dinamical Force Spectroscopy imag-

ing, the experimental conditions and data analysis should be improved to shorten

the acquisition time as it is described in the next chapter.



Chapter 7

Wavelet analysis in dynamical

force spectroscopy

Time-frequency analysis by wavelet transform is an effective tool to characterize

the spectral content of signals rapidly varying in time. Wavelet transform analysis

is applied to a thermally excited dynamic force spectroscopy to get insights into

fundamental thermodynamical properties of the cantilever Brownian motion as

well as giving a meaningful and intuitive representation of the cantilever dynamics

in time and frequency caused by the tip-sample interaction forces. It is remarkable

the possibility to carry out measurements across the jump-to-contact transition

without interruption, providing information on the long- and short-range adhesion

surface forces. Information on tip-sample van der Waals interaction, adhesion

forces, friction and elastic properties of the surface are acquired in approximately

100 ms, a time compatible with practical Dynamic Force Spectroscopy imaging.

92
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7.1 Introduction

Atomic force microscopy (AFM) delivers not only topographical images with sub-

molecular resolution but provides also sensitive force measurements on the nanome-

ter and atomic scale [16, 6, 8, 10]. The use of AFM in force measurements is

commonly referred to as force spectroscopy. The simplest technique used for quan-

titative force measurements involves directly monitoring the static deflection of

the cantilever, from which the force is determined using Hooke’s law [79, 27, 28].

More refined techniques rely on the measurements of the cantilever dynami-

cal parameter while it is excited at or near its resonant frequency and interact-

ing with the force field provided by a sample surface. The interactions of the

tip with the sample surface perturbs the amplitude, frequency, phase or damp-

ing of the cantilever oscillation. The measurement of these parameter modifica-

tions provides a sensitive estimation of both long-range and short-range interaction

force [29, 30, 25, 31, 32, 33, 34].

The cantilever can be excited and the response recorded over a band of frequen-

cies simultaneously, rather than at a single frequency. The full spectral response

allows to reconstruct force-distance spectroscopy and enables to directly measure

the energy dissipation through the determination of the Q-factor of the cantilever-

sample system. The simultaneous analysis at all frequencies within the excited

band (parallel detection) reduces the acquisition time. Broad band excitation can

be achieved by external driving force [37] or by thermal excitation [38, 39].

In both cases the spectral analysis is usually provided by the Fourier transform

of the cantilever amplitude response, to represent it in the frequency domain and

obtain the power spectral density of the cantilever oscillations. However, Fourier

analysis is correctly interpreted only in the case of stationary systems, i.e. the fre-

quency spectrum must be correlated with a temporally invariant physical system.

If the spectral content of the signal changes during the data collection, this change

is not revealed in the Fourier transform description which only displays an average
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over the time period and prevents from correlating the frequency spectrum with

the signal modification in time.

Non-stationary signals require a mathematical tool that combines time do-

main and frequency domain analysis, the wavelet transform (WT) approach. WT

converts one-dimensional time signal into two-dimensional time-frequency repre-

sentation, which displays the time and frequency information of the signal in a

time-frequency plane. This is particularly useful to study transitory regimes i.e.

signal with a frequency spectrum changing during the data collection. One such

example is the jump-to-contact (JTC) transition, which occurs when the attractive

interaction force gradient exceeds the cantilever spring constant [8].

In the following, we apply the wavelet transform approach to study the tip-

sample interactions across the JTC transition in the thermal driving regime and

to characterize the adhesion surface forces after JTC. In studying transients it is

also necessary to improve the temporal resolution and reduce the acquisition time

to values compatible with practical dynamical force spectroscopy imaging.

The measurement is performed on HOPG in ambient condition. The cantilever

deflections are detected by an optical beam deflection system and a four quadrant

photodiode. The differential voltage output from the photodiode sectors (up-down

for the flexural modes and right-left for the torsional modes) are simultaneously

collected by a digitizing oscilloscope. Force spectroscopy curves are collected driv-

ing the z-piezo motion at constant velocity of 225 nm/s. Since the sampling time

is 240ns, the signal string is composed of 4.166×106 sampling points every second.

The time signal i.e. the temporal evolution of the cantilever thermal oscillations as

a function of the tip-sample distance (force curve or spectroscopy curve) is off-line

processed by wavelet transform (WT) analysis exploiting the routines from the

WAVELAB library [83].
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Figure 7.1: a) Force spectroscopy curve showing the signal collected by the op-

tical lever detector as a function of time and piezoscanner position. The origin of

the time corresponds to the onset of the jump-to-contact (JTC), the origin of the

piezotube position to the surface position. b) Zoom on the cantilever oscillation

just before the JTC. c) Oscillations of the pinned cantilever immediately after

the JTC.

7.2 Tip-sample interaction by flexural modes

To study the tip-sample interaction, the cantilever Brownian motion and its static

deflection are detected while the tip approaches the sample, to obtain a spec-

troscopy curve, as shown in Fig. 7.1a. The spectroscopy curve contains a mea-

surement of the temporal evolution of both the static deflection and the frequency

distribution of the thermally excited vibration modes of the cantilever up to the

cut frequency of the optical beam detection system. The static deflection in ap-

proaching the sample (Fig. 7.1b) is caused by long-range electrostatic forces, that
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Figure 7.2: a) Wavelet transform of the spectroscopy data before the JTC.

The black box is the Heisenberg box at the respective frequency. The open

box delimited by black lines represents the damped oscillator box. A marked

frequency decrease is observed just before the JTC as indicated by the dashed

line, that is a guide to the eye. b) Time-frequency representation of the cantilever

thermal fluctuation immediately after the JTC. The big bump is the clamped

cantilever oscillation due to the tip impact with the surface. The dashed line is

a guide to the eye to show the frequency increase.

affect also the resonant frequencies of the cantilever thermally driven eigenmodes

until the JTC transition occurs. The JTC transition is accompanied by a high-

amplitude damped oscillation of the clamped cantilever started by the impact of

the tip on the surface, visible immediately after the transition (Fig. 7.1b). After

the JTC transition, the cantilever is still thermally excited, vibrating with different

boundary conditions and mode resonances due to the clamped end.

The wavelet transform analysis provides a time-frequency representation of

the temporal evolution of the spectral content of the thermally excited cantilever

across the JTC transition, as shown in Fig. 7.2 and Fig. 7.3 for the flexural modes.

The time-frequency representations display structures centered around the eigen-

mode frequencies. The discontinuous appearance of the signal will be discussed in

Sec. 7.2.3. Despite of the smaller mean square displacements of the higher flexural

modes, their thermal spectra are still visible above the background mechanical
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Figure 7.3: Time-frequency representation of the cantilever thermal motion

across the JTC transition, showing the first three flexural modes and the first

contact mode provided by the same temporal trace of Fig. 7.1a. a), b) and c)

Wavelet transform of the third and second free modes and of the first contact

mode, respectively. The black boxes represent the Heisenberg boxes. The black

lines correspond to the resonant frequencies from power spectral density fitting

by Lorentzian function. The bump in c) has been rescaled by a factor of 0.2

for graphical reasons. The high mode stiffness prevent the observation of the

frequency shift near the surface.

noise, as shown in Figure 7.3. The frequency shift due to the (weak) surface forces

before the JTC is visible only in the first flexural mode and negligible in the higher

modes because of their much higher equivalent stiffness [85, 39, 29]. The frequency

shift due to the JTC transition is followed seamlessly by the wavelet transform,

that allows to characterize the very moment of the cantilever jump within the

wavelet time resolution. From the temporal traces we estimate that the cantilever

takes around 10 µs to collapse into the new state with a clamped end, a duration

shorter than the system oscillation period and that can be considered as instanta-

neous on the cantilever typical timescales.
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In the following, we first discuss the analysis of the static and dynamic force

spectroscopy data, to confirm their quantitative agreement and discuss the ad-

vantages of wavelet analysis. Then we concentrate on the analysis of the spectral

transient immediately after the cantilever jump to the surface, that gives informa-

tion on the adhesion forces.

7.2.1 Static vs dynamic force spectroscopy

In the static deflection analysis the photodiode signal is converted into cantilever

deflections trough the detection system sensitivity. The tip sample distance is

calculated from the piezotube position taking into account the cantilever static

deflection itself. As the tip is moved closer to the surface, the cantilever bends be-

cause of the long-range tip-sample interaction but still thermally vibrates around

the equilibrium position, see Fig. 7.4. The deflecting force is retrieved multiplying

the cantilever static bending by its elastic constant k. The deflection signal is de-

noised with a Daubechies wavelet basis [61] to remove additive noise like electrical

noise or thermal fluctuations.

Since the sample is electrically neutral, the only long-range force is the van

der Waals attraction, which for a spherical tip interacting with a flat sample has

the form Fts = HR/6z2, see Sec. 3.4. Here H is the Hamaker constant, R the tip

radius and z the tip sample separation, positive along the surface normal direction.

We fitted the denoised static bending force curve by the Hamaker interaction as

suggested in [79], providing an estimation of HR = 1.1 × 10−27 Jm. Due to the

weakness of the interaction force, the signal from the optical beam deflection sys-

tem due to the static bending is few times the minimum resolution of the analog

to digital converter, i.e. few times its least significant bit (2.5 Å), represented as

vertical gray lines in Figure 7.4. After averaging and denoising, the maximum

static deflection (3.5 Å) is comparable to the free cantilever mean square thermal

vibrations (2 Å) so that changes of HR by ±50% still gives a van der Waals func-

tion consistent with the measured static deflections, as evidenced by the dashed
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Figure 7.4: In light gray the cantilever deflection versus tip-sample distance as

sampled from the optical beam deflection system. The resolution bits from the

analog to digital converter are clearly visible. In gray the previous signal after

wavelet denoising. The line is the fitting by an Hamaker-like force of the denoised

signal. The dashed line are provided by an Hamaker constant ±50% of the fitted

one. The origin of the distance axis (corresponding to the dashed vertical line in

Fig. 7.1a) is determined as a fitting parameter.

lines in Fig. 7.4. This gives an estimation of HR = (1.1 ± 0.5) × 10−27 Jm. It is

remarkable that wavelets can extract information from a temporal signal with an

amplitude of just five bits. We verified that the same results can be obtained with

signals sampled with better resolution.

The same signal used for the static deflection analysis has been processed

by wavelet transform analysis, providing the time-frequency representation for the

first flexural mode shown in Fig. 7.2a. Before the tip JTC, the time-frequency

representation displays a negative frequency shift of the first free flexural mode

caused by the tip-surface force gradients due to the long-range forces. The in-

stantaneous frequency is calculated by the wavelet ridges, the maxima points of

the normalized scalogram. In order to reduce noise effects, only maxima above a

threshold are considered. From the instantaneous frequency the gradient of the

tip-sample interaction force is directly retrieved (Sec. 3.3) to obtain a tip-sample
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Figure 7.5: Force gradient vs tip-sample distance near JTC using wavelet ridges,

showing the instantaneous frequencies within the limits of the scalogram resolu-

tion. The WT of Fig. 7.2a) is represented in color scale on the background

together with its ridges (black points). Gray points are ridges corresponding to

other two measurements to show reproducibility. The continuous black line is

an Hamaker-like force gradient function fitted to the wavelet ridges. The origin

of the distance axis (corresponding to the dashed vertical line in Fig. 7.1a) is

determined as a fitting parameter. The dashed line is the force calculated by

mathematical integration.

distance vs force gradient image (Fig. 7.5). The analysis is repeated with other two

spectroscopy force curves in order to demonstrate reproducibility and to improve

results accuracy. The gradient data from WT ridges of the three measurements

together are well fitted by a van der Waals function, with HR = 1.1× 10−27 Jm.

The uncertainty of the HR measurement is evaluated by repeating the fitting pro-

cedure to each of the three wavelet frequency data separately. The values obtained

(HR=1.2, 1.2, 0.96 ×10−27) give an uncertainty of 10%. Thus wavelet transform

analysis provides HR = (1.1 ± 0.1) × 10−27 Jm, an estimation more precise than

that released by the static deflection method. Using the the nominal radius of cur-

vature given by the manufacturer (R = 10 nm), the measured Hamaker constant

agrees with typical values of H in air (H = 0.1 aJ, [10, 56]). The interaction force

is provided by analytical integration of the fitted force gradient function. This
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means that WT analysis allows a precise estimation of the tip-sample van der

Waals interaction with a single force curve acquired in less than 40ms, a time sig-

nificantly lower than that usually needed for force versus distance measurements.

An important point in measuring the tip-sample interaction is to fix the sur-

face position of the graphite sample in the spectroscopy curve. We have described

three kind of spectroscopy curves: 1) static bending, non-contact mode, long-range

forces; 2) dynamical force spectroscopy, frequency shift, long-range forces; 3) static

bending, contact mode, short-range forces. The “true” surface position is deter-

mined from the static bending in contact mode by tracing a line extending the

horizontal trace of the non interacting cantilever to intersect the contact line af-

ter JTC. The intersection relates the position of the surface to the piezo scanner

position, i.e. the position where the cantilever is not deflected while the tip is in

contact with the surface. The surface position is represented by the continuous

vertical line in Fig. 7.1.

In the van der Waals force fit of both the static bending and the frequency-shift

analysis, the position of the vertical force barrier is a fitting parameter. In Fig. 7.4

and Fig. 7.5 the vertical force barrier is located at z = 0 to appreciate the spatial

range of these long-range forces, however this must not be regarded as the true

surface position. In fact, taking the surface position obtained from the contact

deflection curve as a reference, both the static bending and the frequency-shift

analysis fitted with the van der Waals long-range force function place the vertical

force barrier very nearly in the same place, about 4 nm above the true surface

position. From the fitting procedure, we obtain 4± 1 nm from the static bending

analysis and 4.0±0.1 nm from the frequency shift analysis. This vertical force bar-

rier is indicated by a vertical dashed line in Fig. 7.1. This behavior is reproduced

in all the measurements we performed. The wavelet frequency analysis using the

wavelet ridges is thus independently validated against the static bending analysis.

Similar results have been reported also by [53] and explained as a wetting layer

effect. In ambient condition a water layer can deposit on the tip and/or on the
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Figure 7.6: a) Temporal evolution of the resonant frequency for the first con-

tact eigenmode immediately after the jump-to-contact. The WT of Fig. 7.1c)

is represented on the background together with its ridges (black points). The

instantaneous frequency increases as the cantilever is moved toward the sample.

Ridges corresponding to different measurements (gray points) display similar be-

havior. b) Normalized wavelet coefficient |W (s, t)| along the dashed line in a).

sample. Then the tip-sample distance, calculated from the long-range force data

of both static bending and frequency-shift analysis, is from the liquid-vapor inter-

face. The true surface position, as explained above, is deduced from the contact

deflection vs distance curve since in this case the tip is pulled through the liquid

film (solid-liquid interface).

7.2.2 Contact dynamic force spectroscopy

The JTC transition is accompanied by a high-amplitude damped oscillation of the

clamped cantilever started by the impact of the tip on the surface, visible im-

mediately after the transition (Fig. 7.1c). In this case the tip, attracted by the

short-range adhesion forces, behaves like a nano-hammer. The wavelet transform

can be carried out across the JTC transition without interruption (Fig. 7.2c). The

changed boundary condition (from free to clamped cantilever end) produces a sud-

den variation of the flexural resonant frequencies. The oscillations induced by the
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JTC event are shown in the wavelet representation as a big bump in the time-

frequency space (Fig. 7.6). The time scale is converted to cantilever deflection

scale taking in account the piezotube movement and the position of the surface

deduced by the deflection vs distance curve (the z = 0 position corresponds to the

solid-liquid interface). Negative deflection means that the beam is bent toward

the sample. The load of the tip on the sample is directly calculated as Fload = kd

where k and d are the cantilever elastic constant and static deflection, respec-

tively. In this case the loading is negative since adhesion forces on tip oppose to

the elastic force of the bent cantilever. The transient frequency analysis allows

to retrieve the Q factor of the oscillator by measuring the ratio of the frequency

width to the oscillation frequency of the initial high-amplitude damped oscillation.

The time-frequency resolution defined by the Heisenberg box dimension of the an-

alyzing wavelet is 0.27 ms × 1.2 kHz whereas the WT frequency width is of the

order of ∆f = 2kHz. Therefore, the frequency width is not limited by the wavelet

transform resolution but is associated to the Q factor of the damped oscillator that

model the dynamic response of the supported cantilever. With a central frequency

of about 60 kHz, the Q factor is obtained as Q = f/∆f=60kHz/(2kHz)=30. This

estimate is quite consistent with the Q factor found using the power spectral den-

sity analysis of the stationary cantilever oscillations in contact (see Table 5.1).

The resonant frequency has an evident raise caused by the decrease in the ad-

hesion forces due to cantilever moving towards the surface at constant velocity, a

behavior reproducible in all our measurements. The frequency shift is related to

the total force (adhesion minus elastic force) that decreases as the cantilever neg-

ative deflection approaches the zero value. This transient behavior could not be

captured with standard or non-dynamical technihn ques. It is possible to continue

the contact mode WT analysis (Fig. 7.3c) increasing the load up to high posi-

tive values. Using the wavelet ridges analysis, the time-frequency representation

is transformed into a contact-interaction-force vs instantaneous-frequency repre-

sentation after JTC. Fig. 7.7a shows the ridges analysis of the entire spectroscopy
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Figure 7.7: a) Evolution of the first contact mode resonant frequency as the

cantilever moves toward the sample. The wavelet transform is represented on

the background in gray scale together with its ridges (black points). The bump

immediately after the jump to contact has been rescaled by a factor of 0.2 for

graphical reasons. The line is a guide to the eye. b) Power Spectral Density

calculated by the same temporal trace used for the wavelet transform in a).

curve. The frequency shift can be followed starting from the very beginning of can-

tilever interaction with the surface and with good resolution. After the transient

at negative loading described above, the cantilever passes through the zero-load

neutral point, where it is not deflected, and then continues with increasing positive

load on the surface. Traditional frequency domain analysis is not suitable to de-

scribe the rapid evolution of the signal spectral content. The same temporal trace

used for the wavelet analysis is Fourier transformed giving the PSD in Fig. 7.7b.

Only an average of the time dependent frequency spectrum is observed and the

instantaneous frequency changes are revealed as an asymmetry in the PSD not

useful to extract any information on tip-sample short-range forces. On the con-

trary, by applying the wavelet analysis the shift of the resonance frequency can be

followed starting from the very beginning of cantilever interaction with the surface

and with good resolution.

The results reproducibility is demonstrated by repeating the analysis to other

two force spectroscopy curves, as shown in Fig. 7.8. There are several analyti-
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Figure 7.8: Instantaneous frequency versus load provided by wavelet ridges

analysis. Three different measurements (black, gray and light grey points) are

shown to demonstrate reproducibility. The line is a guide to the eye.

cal models [87, 88, 89, 90] and finite element analysis [80] able to quantitatively

extract the adhesion forces and/or the elasticity parameters (e.g the Young’s mod-

ulus) from the spectral response of the cantilever in contact with the surface (Hertz

contact dynamics). Applying these models to measure the tip-sample short-range

force is the main goal of our work for the future. Finally it is worthwhile to

note that the single measure is taken in approximately 100 ms, a time significantly

shorter than the usual force spectroscopy techniques probing the short-range inter-

action 2.6. As a final comment to this section, we stress that the wavelet transform

approach could provide quantitative information on the surface elastic properties

especially when low force regimes are need, i.e. on softer samples such as biological

or polymer surfaces [88].

7.2.3 The oscillator box

Fig. 7.9a-c are the time-frequency representation of the thermal noise signal com-

ing from the AFM photodiode. WT for the three eigenmodes refers to the same

time interval i.e. the same trace contains the temporal evolution of all the flexural

modes whose oscillation frequencies are below the cutting frequency of the optical

lever position detector. WT is performed on the same temporal traces processed
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Figure 7.9: a)-c) Wavelet transform of the free cantilever thermal vibrations for

the three lower flexural eigenmodes. The wavelet coefficients |Wf(s, t)| are coded

in colorscale. The horizontal white rectangles represent the damped oscillator

boxes, the vertical rectangles the Heisenberg boxes at the respective frequencies.

The time range is approximately proportional to the viscous time decay (τγ),

the frequency range to the power spectral density linewidth. The dashed lines

correspond to the resonant frequencies from power spectral density fitting by

Lorentzian function. g)-i) Square root of the normalized power spectral density of

the free cantilever Brownian motion zoomed on the first three resonant frequency.

The blue line is the frequency linewidth ∆f = f0/Q. The corresponding colorscale

plots are displayed in d)-f).

for the PSD calculations but considering a reduced sampling time of a few mil-

liseconds. The Gabor mother wavelets used have GS= 25, 61, 109, for the first,

second and third mode, respectively, so that the time resolution in the Heisenberg

box is approximately one eighth of the viscous relaxation time.

The time-frequency representation displays structures centered around the
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eigenmode frequencies. The discontinuous appearance of the signal is due to the

statistical nature of the cantilever thermal excitation Fext. Microscopically this

force can be regarded as the action of random thermal kicks (i.e. uncorrelated

impulsive forces), a driving force with white frequency spectrum. This thermal

force induces cantilever displacements from the equilibrium position, that show a

marked amplitude enhancement in correspondence of the flexural eigenfrequencies.

Since the cantilever is subjected also to dissipative friction forces, the amplitude

response of the cantilever around a flexural resonant frequency is not delta-like,

but has a finite linewidth.

It is interesting to clarify the origin of the “bumps” observed in the time-

frequency representation. When the cantilever has a thermally activated fluctu-

ation, each flexural mode responds as a damped harmonic oscillator, see Eq. 3.2

that we rewrite herein:

mẍ(t) + γẋ(t) = −kx(t) + Fext(t) (7.1)

Considering for simplicity the initial conditions x(0) = x0, ẋ(0) = 0 and assuming

Q � 1, the solution is an exponentially decaying amplitude oscillating at the

resonance frequency: x = x0e
−ω0t/(2Q)cos(ω0t). The energy associated to the

oscillator E(t) is proportional to ẋ2 and from the above relations we see that the

associated exponential energy decay time is τ = Q/ω0 (viscous relaxation time).

The spectral energy density of the damped oscillator (L(ω)) is proportional to the

square modulus of the Fourier transform of x(t), L(ω) = |FT(x(t))|2. Under the

assumption Q � 1, L(ω) is well approximated by a Lorentzian with a full width

at maximum height of ∆ω = 2π∆f = 1/τ .Since the cantilever is first thermally

excited and then damped to steady state by random forces that act on a much

smaller time scale than its oscillation period, the characteristic response time for

an isolated excitation/decay event cannot be smaller than 2τ , with an associated

Lorentzian full width at half maximum of ∆ω.

From the above reasoning, it is natural to introduce the damped oscillator box,
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a geometrical representation of the extension in the time-frequency plane of the

wavelet coefficients associated to a single excitation/decay event, centered at time

t and frequency ω, defined as

[t− τ, t+ τ ]× [ω −∆ω/2, ω + ∆ω/2]

The damped oscillator box, contrary to the Heisenberg box (Sec. 4.4), does not

represent a limitation in resolution due to the wavelet choice, but a physical repre-

sentation of the damped oscillator time-frequency characteristics. It is important

to note that the ultimate resolution limitations imposed by the Heisenberg box

associated with the analyzing wavelet could prevent the observation of the true

dimensions of the damped oscillator box.

Due to their different definitions, a comment on the the sizes of the Heisenberg

box and the damped oscillator box is useful. The Heisenberg box dimensions are

the root-mean-square extensions of the Gabor wavelet envelope (i.e. its modulus)

in time and frequency. Since the Gabor wavelet evelope is a gaussian in time and

frequency, its root-mean-square extension is by definition the gaussian standard

deviation, i.e. the half width at 1/
√
e ≈ 0.606 of the maximum. The damped

oscillator box dimension in frequency is the full width at half maximum of L(ω).

In terms of the wavelet envelope (proportional to
√
L(ω)), it is the full width at

1/
√

2 ≈ 0.707 of the maximum. The damped oscillator box dimension in time is

2τ , where τ is the full width at 1/e ≈ 0.368 of the maximum of the exponentially

decaying oscillator amplitude. We did not attempt to correct the sizes of the boxes

using a single common definition because the comparisons with the experimental

data in the present work are mainly qualitative.

In our case the viscous relaxation time provided by f0 and Q in Tab. 5.1 for

the first, second and third eigenmodes is τ =0.93, 0.38, 0.23 ms, respectively. It is

important to note that the temporal width of many discrete time-frequency small

structures seen in the CWT of the cantilever thermal signal in Fig. 7.9 are of

the same temporal dimensions of the damped oscillator box 2τ , corresponding to
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Figure 7.10: a-b) Wavelet transform of the free cantilever thermal vibrations

for the first flexural eigenmode using a Gabor mother wavelet with shaping fac-

tor GS = 22. The wavelet coefficients |Wf(s, t)| are coded in colorscale in a),

in gray scale in b). The dashed line is the resonant frequency. The horizontal

and vertical red rectangles are the damped oscillator box and the Heisenberg box,

respectively. The two boxes are overlapped and compared with the discrete struc-

tures in the time-frequency representation. c)-d) Same as a) and b) but for the

first contact mode with a tip load of approximately -0.6 nN. The Gabor mother

wavelet shaping factor is GS = 87. In d) the vertical red rectangles represent the

damped oscillator box. The other rectangles represent the Heisenberg box.

the cantilever excitation and decay to steady state after a single thermal fluctu-

ation event. This can be regard as a representation of the fluctuation-dissipation

theorem at the microscopic scale (Sec. 3.2). The observation in time domain is

possible because the Heisenberg box has smaller time width than the damped

oscillator box. Besides the frequency spread of the bumps is determined by the

frequency resolution of the WT i.e. by the frequency dimension of the Heisenberg

box which is larger than the damped oscillator frequency linewidth.

Fig. 7.10 compares the wavelet transform of the thermal noise signal for the

free cantilever flexural fluctuations and for the cantilever pinned to the surface
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(contact mode) with a constant tip load of approximately -0.6 nN (negative load

means that the cantilever is bent toward the sample). We choose the first free and

first contact modes as model systems with high and low Q factors, respectively,

in order to underline how viscous effects are revealed by WT analysis. The tip-

sample contact increases dissipation effect which are revealed by comparing the Q

factor of eighenmodes with similar oscillation shape (Tab. 5.1). For instance, first

flexural contact mode is correctly associated to the second free mode since they

display similarity (they have both one node and similar oscillation shape). In this

case tip-sample contact dissipation reduces the value of Q by a factor of ten.

A lower Q factor allows to analyze the oscillator dissipation in the frequency

domain, by choosing an analyzing wavelet with Heisenberg box (0.31 ms × 1.0

kHz) whose frequency resolution is lower than the width of the oscillator box (0.16

ms × 1.9 kHz). Then the frequency spread of the bumps is now defined by the

damped oscillator frequency linewidth which is larger than the frequency reso-

lution of the Heisenberg box, while the damping time decay is too short to be

analyzed by WT. Since the frequency width of the trace in the time-frequency

plane is roughly 2 kHz, the quality factor Q = f/∆f=63kHz/(2kHz)=31. This

value agrees with the analysis made on the high-amplitude transient bump and

with the power spectral density analysis (Table 5.1), confirming that the physical

oscillator (the cantilever) has the same damped harmonic oscillator dynamics in

the various interaction-force regimes after JTC.

The WT analysis of the thermal oscillations of the free and supported can-

tilever demonstrate how the WT describes more easily a single thermal excitation

event time decay in high-Q environments and measures its frequency linewidth

in low-Q environments. In both cases, WT allows the instantaneous mapping of

energy dissipation effects.
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7.3 Torsional modes

The WT analysis can be extended to left-right photodiode signal that describes

the torsional oscillation of the cantilever. In torsional modes the cantilever oscil-

lates along its long axis and the tip moves parallel to the surface, see Fig. 5.5.

Therefore the probe tip is sensitive to in-plane forces and the eigenfrequency of

the torsional modes only depends on the lateral stiffness of the sample. Indeed

torsional modes are useful as shear stiffness sensors. An increasing shear stiffness

increases the lateral spring constant and consequently the resonant frequency of

the system [91]. Moreover, since the torsional modes are stiffer than the flexural

modes, a higher quality factor Q and greater sensitivity is obtained. We study the

spectra of thermally excited torsional modes of the cantilever as the tip approaches

a graphite surface. The left-right photodiode signal is acquired simultaneously to

the top-bottom signal exploited to study the flexural modes, we are able to de-

scribe the effects of the tip-sample interaction also on the torsional modes.

The wavelet transform of the free thermally excited oscillations of the can-

tilever detected by the left-rigth sections of the quadrant photodiode shows the

evolution in time of the first torsional mode and the lateral mode coupled to a

torsional oscillation (see Fig. 7.11). The discontinuous appearance of the traces

in the time-frequency plane (the bumps) is due to the intrinsic statistical nature

of the thermal excitation, see Sec. 7.2.3. The time-frequency box 2τ × ∆ω rep-

resents the damped oscillator box, characteristic of a thermally excited damped

oscillator response. When the Q factor of a mode is high, the mechanical reso-

nance is strongly peaked around the resonance frequency, and the corresponding

frequency linewidth is small. In this case the frequency resolution of a wavelet

may be not sufficient to resolve the intrinsic linewidth of the mechanical reso-

nance. Thus the frequency width of the time-frequency distribution is limited by

the wavelet resolution i.e. by the frequency width of the Heisenberg box which

is higher than the frequency width of the oscillator box (see Fig. 7.11). On the
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Figure 7.11: a)-b) Wavelet transform of the cantilever thermal fluctuations far

from the surface, referred to the first lateral (l1) and first torsional (t1) mode. The

wavelet coefficients |Wf(s, d)| are coded in color scale and gray scale, respectively.

In b) the vertical oblong red rectangle represents the damping oscillator box. The

horizontal oblong red rectangle represents the Heisenberg box. The two boxes are

overlapped to appreciate the comparison with the features in the time-frequency

representation. c) - d) same as a) - b) but with the tip in contact with the surface,

at constant positive load of approximately 1.6 nN.

other hand, a high Q implies a long decay time associated to the oscillator energy.

In this case the time associated to the damped oscillator box is larger than the

temporal wavelet resolution, i.e. the time width of the oscillator box is larger

than the time width of the Heisemberg box. In Fig. 7.11 the oscillator box and

the Heisemberg box, represented as red boxes, have been superposed on the time-
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Figure 7.12: Wavelet transform of the cantilever thermal torsional oscillation

across the jump-to-contact transition, showing the evolution of the first torsional

and lateral resonance frequency. The wavelet coefficients |Wf(s, d)| are coded in

color scale. The origin of the time axis is at the jump-to-contact onset. Both

modes have an evident shift as the tip is attracted on the surface.

frequency representation of the wavelet coefficients. On the basis of the precedent

discussion, the size of the thermally activated fluctuations in time or frequency

are, in a statistical sense, comparable to that of the bigger dimension between

the two boxes (Heisenberg box, frequency width; oscillator box, time width). Such

structures can be interpreted as the cantilever excitation and decay to steady state

after a single thermal fluctuation event. Across the JTC transition the Q factor

of the first torsional mode decreases rapidly and the oscillator box re-shapes ac-

cordingly, reducing the damping time of the oscillator and increasing its frequency

bandwidth (Fig. 7.11d). In this case, the frequency resolution of the wavelet is

sufficient to reconstruct the linewidth profile of the time-frequency trace since the

Heisenberg box frequency dimension is smaller than the frequency width of the

oscillator box. Nevertheless, now the time resolution of the wavelet does not allow

to follow the evolution of the activated thermal events, because the time width

of the oscillator box is smaller than the corresponding Heisenberg box dimension.

The torsional resonance shift can be followed through the JTC transition with the
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wavelet transforms. The JTC transition is conventionally located at time zero,

separating the negative times of the free cantilever evolution, from the positive

times of the clamped cantilever evolution. In Fig. 7.12 the increase of the tor-

sional frequency oscillation and that of the lateral mode across the JTC transition

are shown. The lateral mode frequency immediately after JTC is fairly constant

but higher than that of the free cantilever. Instead, the torsional mode shows

an increasing frequency after JTC (that evolves in a time interval of the order of

10µs) during several ms. The frequency evolution is provided by the wavelet ridges

that show the instantaneous frequencies within the transform resolution limits [61].

The time axis of the time-frequency representation has a different meaning before

and after JTC. Before JTC the time is connected to the tip displacement towards

the surface. Taking into account both the scanner piezo vertical velocity and the

static deflection, it is possible to map time to tip-sample distance. Immediately

after JTC the force acting on the cantilever is negative (negative loading). In

this case the tip is acted on by adhesion forces that attracts the tip towards the

surface. The piezo displacement is connected with the contact interaction force

between the tip and the surface. In this case it is possible to map the time to

contact interaction force (as shown in Fig. 7.13). Using the wavelet ridges, the

time-frequency representation is thus transformed into a contact-interaction-force

vs frequency shift representation after JTC. The frequency shift is thus caused by

the decrease in strength of adhesion forces, a transient that could not be captured

with standard or non-dynamical techniques. With a suitable model this technique

could allow to measure the properties of adhesion forces in detail [80, 32, 87].

7.4 Summary

We applied wavelet transform analysis to the thermal oscillations of a free can-

tilever and to an interacting cantilever with a graphite surface. Both flexural

and torsional modes are analyzed. The time-frequency representation shows the
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Figure 7.13: a) Frequency shift of the first torsional mode versus the tip load.

The wavelet ridges (black points) provide the instantaneous frequency within the

limit of the scalogram resolution. The wavelet in Fig. 7.12 is represented in gray

scale on the background. The continuous vertical line corresponds to the jump-

to-contact onset. The dashed horizontal line is a guide to the eye. b) Same as a)

for the lower lateral mode. The dashed line is the contact resonance frequency.

viscous dynamics of the cantilever deflection activated by thermal fluctuations.

The wavelet transform is able to analyze the instantaneous spectral content of a

rapidly varying signal such as the response of a thermally excited cantilever to

the tip interaction with the sample surface. The wavelet transform technique is

a very promising tool to probe the tip sample interaction since the analysis ap-

plies simultaneously to the flexural and torsional eigenmodes and the analyses are

carried out across the JTC transition without interruption. The measure is taken

in approximately 100 ms. With an optimization of the electronics and reduction

of dead times in the detection process, it would be possible to acquire images in

which a complete information on force gradients, adhesion forces, elastic response
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and topography is compatible with data acquisition times required for practical

DFS imaging.



Chapter 8

Conclusions and perspectives

In this thesis, we study the dynamic response of an atomic force microscopy can-

tilever thermally driven in order to probe short- and long-range interaction forces

between the tip and the graphite sample surface. We made use of two different

approaches.

In stationary regime the cantilever thermal fluctuations are analyzed by apply-

ing three different methods, frequency shift, Boltzmann distribution of the Brow-

nian motion and thermal mean square displacement methods. This allows to

estimate the non retarded van der Waals interaction force and to discuss the tip

mass loading effect on the cantilever elastic behavior. The main limitation of the

stationary regime analysis is that it requires long acquisition time.

An improvement of the experimental conditions and data analysis is provided

by the wavelet transform approach (dynamic regime, Chapter 7). The time-

frequency representation of wavelet analysis shows the viscous dynamics of the

cantilever deflection activated by thermal fluctuations. The wavelet transform

analysis performed when the tip is near the sample surface allows to quantitative

measure tip-sample van der Waals interaction force and to estimate the Hamaker

constant. The wavelet analysis of the cantilever fluctuations in contact with the

surface provides qualitative information on adhesion forces, friction and elastic re-

117
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sponse. The measurement is performed in short acquisition times.

The main perspective of this work is to apply suitable analytical models [87,

88, 89, 90] or finite element analysis [80] to quantitatively extract the adhesion

forces and/or the elasticity parameters (e.g the Young’s modulus) from the spec-

tral response of the cantilever in contact (Hertz contact dynamics). In the present

work we choose a graphite sample to test the validity of the technique in measuring

short-range force. In the future the wavelet analysis will be applied to characterize

friction and elastic response of both organic and inorganic materials.

Here we exploited only the amplitude of the complex wavelet transform. Nev-

ertheless, information on other properties such as viscoelasticity could be extract

by studying the evolution of the phase [6] provided by the wavelet transform co-

efficients.

The technique can be improved by driving the cantilever motion with impulsive

broad band excitation [37]. The wavelet analysis would provide the full spectral

response of the interacting cantilever reducing the acquisition time required to

reconstruct force-distance spectroscopy. Moreover the dissipation energy could be

simultaneously measured by estimating the Q-factor of the cantilever-sample sys-

tem.

The wavelet transform analysis could be adopted in AFM dynamic force spec-

troscopy performed in all cases where a rapid quantitative measurement of the

spectral evolution of the system is needed. In order to apply the wavelet trans-

form to real time analysis, the data processing has to be sped up. The goal can be

reached by using discrete wavelet transform (DWT) instead of continuous wavelet

transform (CWT). DWT adopts an orthonormal set of basis atoms which elimi-

nates redundant calculations due to non orthogonality of the CWT basis [61, 67].

Thus signals could be processed in times as short as required by on-line measure-

ments.
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[50] R. Lévy and M. Maaloum, Nanotechnology 13, 33 (2002).

[51] D. T. Giessibl, Phys. Rev. B 56, 16010 (1997).

[52] M. Luna, J. Colchero, and A. M. Barò, J. Phys. Chem. B 103, 9576 (1999).
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