
UNIVERSITÀ DEGLI STUDI DI MILANO 
 

Facoltà di Farmacia 
Dipartimento di Scienze Farmacologiche 

 
 
 
 

 
Corso di Dottorato di Ricerca in Scienze Farmacotossicologiche, 

Farmacognostiche e Biotecnologie Farmacologiche (XXIII CICLO) 
 

Graduate School in Pharmacological Sciences / Scuola di Dottorato in Scienze farmacologiche 
 
 
 
 
 

TESI DI DOTTORATO DI RICERCA 
 

PURINERGIC TRANSMISSION IN MIGRAINE: ROLE OF  
P2Y RECEPTORS IN THE SPINAL-TRIGEMINAL  

SYSTEM IN VIVO AND IN VITRO 
 

BIO/14 

 
 
 
 
 
 

Tesi di dottorato di: 
GIOVANNI VILLA 

MATRICOLA: R07517 
 
 
 
 
TUTOR: Chiar.ma Prof.ssa Maria Pia ABBRACCHIO 
 
CORRELATORE: Dr.ssa Stefania CERUTI 
 
COORDINATORE: Chiar.mo Prof. Guido FRANCESCHINI 
 
 
 
 
 

 
ANNO ACCADEMICO 2009/2010 



Index  

 

INDEX 

1.  INTRODUCTION _______________________________ 1 

1.1  PAIN AND NOCICEPTION 2 

1.1.1  Molecular basis of nociception 3 

1.1.2  The trigeminal nerve and the spinal-trigeminal system 4 

1.1.3  Role of non-neuronal cells in pain transmission 9 

1.2  MIGRAINE 12 

1.2.1  Description of the migraine attack 14 

1.2.2  How and where does the migraine attack originate? 15 

1.2.3  Familial hemiplegic migraine 21 

1.2.4  Current and future pharmacological treatment of migraine 24 

1.3  THE PURINERGIC SYSTEM 29 

1.3.1  Purinergic signalling 30 

1.3.2  P2X receptors  32 

1.3.3  P2Y receptors 33 

1.3.4  Pathophysiological roles of extracellular nucleotides in the nervous system 36 

1.4  PURINES AND PAIN 41 

1.4.1  Role of P2X receptors in pain transmission 42 

1.4.2  Role of P2Y receptors in pain transmission: sensory ganglia  46 

1.4.3  Role of P2Y receptors in pain transmission: CNS 48 

2.  AIM OF THE STUDY ____________________________ 51 

3.  METHODS  ____________________________________ 55 

3.1  CELL CULTURES 56 

3.2  PHARMACOLOGICAL TREATMENTS 58 

3.3  IMMUNOCYTOCHEMISTRY 58 

3.4  IMMUNOCYTOCHEMISTRY 59 



Index  

 

3.4.1  Tissue processing 59 

3.4.2  Immunostaining of tissues 59 

3.4.3  Quantification of results and data analysis 60 

3.5  INTRACELLULAR CALCIUM MEASUREMENTS 61 

3.6  TOTAL RNA ISOLATION AND RT-PCR ANALYSIS 62 

3.7  WESTERN-BLOTTING ANALYSIS  65 

3.8  ANALYSIS OF CGRP RELEASE BY ENZYME IMMUNO-ASSAY (EIA) 65 

3.9  IN VIVO EXPERIMENTS  66 

3.9.1  Animals 66 

3.9.2  Orofacial formalin test 66 

3.9.3  Synthesis of dsRNAs and their injection into the trigeminal ganglion 67 

3.9.4  Induction of TMJ inflammation 67 

3.9.5  Behavioral tests 68 

3.9.6  Measurement of Evans’ blue dye extravasation 68 

3.10  STATISTICAL ANALYSIS  69 

4.  RESULTS - Section I: in vitro studies ________________ 70 

4.1   SET UP OF PRIMARY MIXED TRIGEMINAL CULTURES AS AN IN VITRO 
MODEL FOR STUDYING CELL TO CELL COMMUNICATION IN THE 
TRIGEMINAL GANGLIA    71 

4.2   BOTH TRIGEMINAL NEURONS AND SATELLITE GLIAL CELLS BEAR 
FUNCTIONAL P2 RECEPTORS  74 

4.3.. CHRONIC APPLICATION OF THE PRO-INFLAMMATORY MEDIATOR 
BRADYKININ DIFFERENTIALLY AFFECTS NEURONAL P2X3 AND GLIAL 
P2Y RECEPTOR FUNCTIONALITY  79 

4.4   FOLLOWING BK APPLICATION, CGRP RELEASED FROM TG NEURONS IS 
RESPONSIBLE FOR P2Y RECEPTORS UPREGULATION IN SGCs    82 

4.5   CGRP, BUT NOT BK, RETAINS ITS ABILITY TO INDUCE P2Y RECEPTOR 
POTENTIATION IN PURIFIED SGCs CULTURES  84 

4.6.. THE ERK1/2 MAP KINASE PATHWAY HAS A PRIMARY ROLE IN CGRP-
INDUCED POTENTIATION OF GLIAL P2Y RECEPTORS  86 

4.7   CGRP RELEASE IS SIGNIFICANTLY ENHANCED IN TG CULTURES FROM 
CaV2.1 α1 R192Q MUTANT KNOCK-IN MICE  87 

4.8.. APPLICATION OF BK INCREASES THE NUMBER OF ADP- AND UTP-
RESPONDING SGCs IN TG CULTURES FROM CaV2.1 R192Q KI MICE  88 



Index  

 

4.  RESULTS - Section I: in vivo studies ________________ 91 

4.9   SET UP OF IN VIVO MODELS OF TRIGEMINAL PAIN FOR STUDYING 
ROLE OF THE PURINERGIC SYSTEM IN PAIN TRANSMISSION    92 

4.10   SGCs AND MACROPHAGES ARE SELECTIVELY ACTIVATED IN TG 
FOLLOWING TMJ INFLAMMATION  95 

4.11.. MICROGLIAL CELLS, BUT NOT ASTROCYTES, ARE ACTIVATED IN THE 
SPINAL TRIGEMINAL NUCLEUS FOLLOWING TMJ INFLAMMATION  98 

4.12   THE PURINERGIC P2Y12 RECEPTOR IS SELECTIVELY EXPRESSED BY 
MICROGLIAL CELLS IN THE CNS, BUT IT IS NOT UPREGULATED BY 
TMJ INFLAMMATION  101 

5.  DISCUSSION __________________________________ 103 

5.1   PRIMARY MIXED TG CULTURES AS AN IN VITRO MODEL FOR 
EVALUATING P2 RECEPTOR EXPRESSION AND FUNCTIONALITY    104 

5.2   EXPOSURE TO ALGOGENS EXERT A COMPLEX MODULATION OF P2 
RECEPTOR FUNCTIONALITY IN NEURONS AND GLIAL CELLS  107 

5.3.. THE GAIN-OF-FUNCTION MUTATION IN CaV2.1 CALCIUM CHANNELS 
AFFECTS P2Y RECEPTORS FUNCTIONALITY IN SGCs  108 

5.4.. SET UP OF IN VIVO MODELS OF TRIGEMINAL PAIN AS TOOLS FOR 
EVALUATING THE ROLE OF GLIAL P2Y RECEPTORS IN PAIN 
TRANSMISSION  110 

6.  REFERENCES _________________________________ 115 

7.  ABBREVIATIONS ______________________________ 132 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 

2 
 

1.1 PAIN AND NOCICEPTION 

Pain can be defined as “an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, or described in terms of such damage” 

(Merskey & Bogduk, 1994). It is a physical sensation arising from parts of the body, but 

it is also always unpleasant and therefore become an emotional experience. Experiences 

which resemble pain but are not unpleasant, e.g., pricking, should not be called pain 

(Merskey & Bogduk, 1994). Pain is a submodality of somatic sensation like touch and 

pressure, and serves as an important protective function by warning of injury that 

should be avoided or treated. However, unlike other somatic submodalities, and unlike 

vision, hearing, and smell, pain has an urgent and primitive quality, which is responsible 

for the affective and emotional aspects of pain perception (Basbaum & Jessell, 2000). 

The concept of pain is further complicated by the fact that its perception is always 

subjective. In fact, under similar conditions the same stimulus can produce different 

responses in different individuals (Merskey & Bogduk, 1994). Moreover, many people 

report pain in the absence of tissue damage or any likely pathophysiological cause; 

usually this happens for psychological reasons. The highly individual and subjective 

nature of pain makes difficult to treat it clinically. There are no “painful stimuli” that 

invariably elicit the perception of pain in all individuals. For example, many wounded 

soldiers do not feel pain until they are safely removed from battle. Similarly, athletes 

often do not detect their injuries until their game is over (Basbaum & Jessell, 2000).  

Pain can be subdivided in physiological pain and pathological or clinical pain. 

Physiological pain (also called acute pain, sometimes referred to as ‘‘good’’ pain) is 

adaptive, transient, and has a protective role that warns of potential tissue damage in 

response to a noxious stimulus. Pathological pain, or clinical pain (also called chronic, 

‘‘bad’’ pain) is usually maladaptive, persistent, and serves no meaningful defensive, or 

other helpful purpose (Cao & Zhang, 2008). This kind of pain is mainly subdivided into 

neuropathic pain, i.e. pain associated with damage or dysfunction of the peripheral 

nervous system (PNS) and central nervous system (CNS), and inflammatory pain, i.e. 

pain related to peripheral tissue damage/inflammation (e.g. arthritic pain). In addition, 

other types of pathological pain, such as cancer pain, and pain elicited by continuous 

infusion of morphine, share some features with inflammatory and neuropathic pain but 

also have their distinct characteristics (Brennan et al., 1996; Mantyh et al., 2002). 
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Pathological pain is typically characterized by hyperalgesia (increased responsiveness to 

noxious stimuli) and allodynia (painful responses to normally innocuous stimuli), as 

well as by spontaneous pain. Pain hypersensitivity is not only produced in the injured 

tissue or territory (innervated by the injured nerve), but also spread to the adjacent non-

injured regions or the extraterritory (extraterritorial pain) and to the contralateral body 

(mirror-image pain). This exaggerated pain is thought to result from peripheral 

sensitization (increase in sensitivity of nociceptive primary afferent neurons) and central 

sensitization (hyperexcitability of nociceptive neurons in the CNS (Cao & Zhang, 

2008). 

In the following paragraphs the basic principles of nociception, as well as the 

nociceptive neuronal pathways associated to the trigeminal perception of pain, will be 

discussed. Finally, the emerging role(s) of CNS and PNS glial cells in pain genesis and 

maintenance will be analyzed. 

 

 

1.1.1 Molecular basis of nociception 

Nociception is the process by which intense thermal, mechanical, or chemical 

stimuli are detected by a subpopulation of peripheral nerve fibers, called nociceptors 

(Basbaum et al., 2009). The cell bodies of nociceptors are located in the dorsal root 

ganglia (DRG) for the body, and the trigeminal ganglia (TG) for the head district, and 

have both a peripheral and central axonal branch that innervates their target organ and 

the spinal cord/brainstem, respectively (Lazarov, 2002). There are two major classes of 

nociceptors (Meyer at al., 2008). The first includes medium diameter myelinated (Aδ) 

afferents that mediate acute, well-localized “first” or fast pain (conducting signals at 

about 5-30 m/s). These myelinated afferents differ considerably from the larger 

diameter and rapidly conducting Aβ fibers that respond to innocuous mechanical 

stimulation (i.e., light touch). The second class of nociceptor includes small diameter 

unmyelinated “C” fibers that convey poorly localized, “second” or slow pain 

(conducting signals at a rate of less than 1.0 m/s). 

Neuroanatomical and molecular characterization of nociceptors has further 

demonstrated their heterogeneity, particularly for the C fibers (Basbaum et al., 2009). 

For example, the so-called “peptidergic” population of C nociceptors releases 

neuropeptides, substance P (SP), and calcitonin-gene related peptide (CGRP); they also 
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express the TrkA neurotrophin receptor, which responds to nerve growth factor (NGF). 

The nonpeptidergic population of C nociceptors expresses the c-Ret neurotrophin 

receptor that is targeted by glial-derived neurotrophic factor (GDNF), and a large 

percentage of the c-Ret-positive population also binds the IB4 isolectin and expresses 

the specific purinergic P2X3 receptor subtypes (see also Paragraph 1.4.3, Ruan & 

Burnstock, 2003; Basbaum et al., 2009). Nociceptors can also be distinguished 

according to their differential expression of channels that confer sensitivity to heat 

(TRPV1), cold (TRPM8), acidic milieu (ASICs), and chemical irritants (TRPA1; Julius 

& Basbaum, 2001). These functional and molecular heterogeneous classes of 

nociceptors are associated with specific functions. 

Primary nociceptive fibers have a unique morphology, called pseudo-unipolar, 

where both central and peripheral terminals emanate from a common axonal stalk. The 

majority of proteins synthesized by the DRG or TG neurons are distributed to both 

central and peripheral terminals (Basbaum et al., 2009). The biochemical equivalency of 

central and peripheral terminals means that the nociceptor can send and receive 

messages from either end. During neurogenic inflammation, in fact, a peripheral release 

of neuropeptides induces both local vasodilatation and extravasation of plasma proteins, 

and release of neurotransmitters in the CNS (see Paragraph 1.2.2).  

 

 

1.1.2 The trigeminal nerve and the spinal-trigeminal system 

The trigeminal nerve (the fifth cranial nerve) is the largest cranial nerve and 

functions as the great sensory nerve of the head and face districts, and the motor nerve 

for muscles involved in mastication (Gray, 2000).  The posterior scalp and the neck are 

instead innerved by spinal nerves between the C2 and C5. The trigeminal nerve emerges 

from the side of the pons, near to its upper border, by a small motor and a large sensory 

root (Figure 1.1; Gray, 2000). The fibers of the motor root arise from the brainstem (see 

also below), while fibers of the sensory root arise from the cells of the trigeminal 

ganglion, and provide the tactile, proprioceptive, and nociceptive afference of the face 

and mouth. At a distance of about 1-2 cm from the brainstem, the trigeminal nerve 

expands, to form the conspicuous trigeminal ganglion (see also below; Castano & 

Donato, 2001). Three major nerve branches emerge from the ganglion, namely the 

ophthalmic, the maxillary, and the mandibular nerve (Figure 1.1). The ophthalmic and 
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maxillary nerves have purely sensory functions, while the mandibular nerve has both 

sensory and motor functions (Castano & Donato, 2001). 

The Ophthalmic Nerve, or first (V1) division of the trigeminal nerve, supplies 

branches to the cornea, ciliary body, and iris; to the lacrimal gland and conjunctiva; to 

the part of the mucous membrane of the nasal cavity; and to the skin of the eyelids, 

eyebrow, forehead, nose and parts of the meninges (the dura and blood vessels). It is the 

smallest among the three divisions, and arises from the upper part of the trigeminal 

ganglion.  

The Maxillary Nerve, or second (V2) division of the trigeminal nerve is 

intermediate between the ophthalmic and mandibular, both in position and size. It 

begins at the middle of the semilunar ganglion, and supplies the upper lip, lateral 

portions of the nose, part of the oral cavity, mucosa of the nasal cavity, maxillary sinus, 

upper jaw and roof of the mouth, upper dental arch, ethmoid and sphenoid sinuses, and 

parts of the meninges (Gray, 2000). 

The Mandibular Nerve, or third (V3) division of the trigeminal nerve, supplies 

teeths and gums of the mandible, the skin of the temporal region, the auricula, the lower 

lip, the lower part of the face, and the muscles of mastication; it also supplies the 

mucous membrane of the anterior two-thirds of the tongue. It is the largest of the three 

divisions, and consists of two roots: a large, sensory root proceeding from the inferior 

angle of the semilunar ganglion, and a small motor root (the motor part of the trigeminal 

nerve), which passes beneath the ganglion, and unites with to the sensory root, just after 

its exit through the foramen ovale (Gray, 2000).  
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Figure 1.1 

Neuroanatomical organization of the spinal-trigeminal system.  
The trigeminal nerve consist of three major branches that emerge from the trigeminal ganglion (TG): the 
ophthalmic (V1), the maxillary (V2), and the mandibular nerve (V3). The trigeminal sensory fibers from 
the TG enter the pons and terminate in the trigeminal nuclear complex which is formed by three sensitive 
nuclei: the spinal trigeminal nucleus, the main trigeminal nucleus, and the mesencephalic trigeminal 
nucleus. The spinal trigeminal nucleus can be further subdivided from caudal to rostral in: subnucleus 
caudalis, subnucleus interpolaris and subnucleus oralis. Modified from Noback et al., 2005. 
 

 

 

The trigeminal ganglion 

The trigeminal ganglion (also called Semilunar or Gasserian ganglion) occupies a 

cavity (cavum Meckelii) in the dura mater covering the trigeminal impression near the 

apex of the petrous part of the temporal bone (Figure 1.1; Gray, 2000). It represents the 

cranial analog of DRGs in the PNS. In the ganglion parenchyma the somata of 

pseudounipolar neurons are contained, and a single neurite dividing into a central and a 

peripheral process, which convoy the sensory sensations from the head regions to the 

trigeminal nuclei of the brainstem, arises from each cell body (Castano & Donato, 

2001). On the basis of their morphology, the neuronal cells are traditionally divided into 

two classes: large light (A) and small dark (B) cells (Lazarov, 2002). It is known that 

thick myelinated (Aα/β) fibers originate from the large light A-cells and thin myelinated 

(type Aδ) and unmyelinated (type C) fibers derive from the small dark B-cells (Lazarov, 
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2002). According to the diameter of their somata, TG neurons can be also divided in 

three distinct groups: small (20-30 µm), medium-sized (30-50 µm), and large-sized cells 

(50-80 µm; Lazarov, 2002).  

The neuronal somata of sensory neurons are completely enveloped by a layer of 

small glial cells called satellite glial cells (SGCs; Hanani, 2005). In general, each 

sensory neuron has its own SGCs sheath (Figure 1.2), and the neuron and its 

surrounding SGCs form a distinct morphological and functional unit (Hanani, 2005). 

Originally it was believed that that SGCs provide a mere trophic support to the sensory 

neurons. However, starting from the observations that SGCs become reactive and 

increase considerably in number after peripheral nerve injury (Stephenson & Byers, 

1995; Hanani et al., 2002), it was suggested, and later demonstrated, that they actively 

participate in nociception. For this reason, a special discussion on the roles of SGCs in 

pain transmission will be provided in the next paragraph (Paragraph 1.1.3).  

 

 

Figure 1.2 

The neuron-SGCs morphological unit.  
A, An electron micrograph from the mouse dorsal root ganglion, showing the layer of SGCs (sc) around 
sensory neurons (N1-4). Neurons with their associated SGCs are separated by a connective tissue space 
(ct). Asterisks indicate non-myelinated axons surrounded by Schwann cells. Arrows indicate two SCG cell 
bodies. Calibration bar, 2 µm. B, Schematic drawing of the neuron-SGCs morphological unit. Modified 
from Hanani, 2005. 

 

* 

*
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The brainstem nuclei 

The central processes of TG neurons enter the pons via the sensory root of the 

trigeminal nerve, and terminate in the trigeminal nuclear complex which is formed by 

three sensitive nuclei: the spinal trigeminal nucleus, the main trigeminal nucleus, and 

the mesencephalic trigeminal nucleus (Figure 1.1; Capra & Dessem, 1992). The 

trigeminal nerve carries most of the sensory information from the face district, even if 

sensation from certain parts of the mouth, ear and meninges are carried by somatic 

fibers of the facial, the glossopharyngeal, and the vagus nerves. All sensory fibers from 

these nerves terminate in the trigeminal nuclear complex that contains a complete 

sensory map of the face and mouth. Near the main trigeminal nucleus the trigeminal 

motor nucleus of the fifth nerve is also located (Figure 1.1), where motor branches of 

the trigeminal nerve originate and are then distributed through the mandibular branch. 

The spinal trigeminal nucleus extends throughout the entire brainstem, from the 

midbrain to the medulla, and overlaps with the dorsal horn of the cervical spinal cord. 

Three major cytoarchitectonic subdivisions of this nucleus are generally recognized 

along its rostrocaudal axis. The most caudal is the subnucleus caudalis, which extends 

from C2 or C3 caudally to the obex rostrally; the subnucleus interpolaris extends from 

the obex caudally to the caudal pole of the facial motor nucleus; the subnucleus oralis 

extends from the caudal pole of the facial motor nucleus to the caudal end of the 

trigeminal motor nucleus (Figure 1.1; Castano & Donato, 2001). The caudal parts of the 

spinal trigeminal nucleus receive pain/temperature sensory sensations, while the rostral 

parts receive touch/position sensory information. Moreover, a specific dorso-ventral 

somatotopical organization of the spinal trigeminal nucleus can be distinguished: the 

trigeminal fibers innervating the ipsilateral mandibular division are most dorsally 

situated, the maxillary fibers are in the middle, and the ophthalmic fibers are in the most 

ventral part of the tract (Capra & Dessem, 1992).  

The main trigeminal nucleus receives touch/position sensory fibers from the face. 

It is located in the pons, close to the entry site of the fifth nerve. The main trigeminal 

nucleus contains a touch/position sensory map of the face and mouth, just as the spinal 

trigeminal nucleus contains a complete pain/temperature map. The main nucleus is 

analogous to the dorsal column nuclei (i.e. the gracile and cuneate nuclei) of the spinal 

cord, which contain a touch/position map of the rest of the body (Castano & Donato, 

2001). 
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The trigeminal mesencephalic nucleus (MTN) is the only known nucleus situated 

within the CNS that contains the cell bodies of primary afferent neurons. It could be 

considered a ganglion “embedded” in the brainstem. It is also unique in that its neurons 

constitute one distinct functional class of trigeminal sensory neurons, i.e. proprioceptive 

neurons. MTN neurons receive information, via the trigeminal nerve, from the 

masticatory muscle spindles, and from mechanoreceptors in the periodontal ligament. In 

turn, they transfer information to the muscles of mastication through their projections to 

trigeminal motoneurons and premotoneurons for controlling jaw movements, or to the 

cerebral cortex (via the thalamus) for transmission of sensory feedback (Lazarov, 2002). 

 

The thalamus/cortex nuclei 

From the trigeminal nuclear complex, the pain/temperature information from the 

face ascend in the trigeminal lemniscus to the ventral posteromedial nucleus (VPM) of 

the thalamus. From this nucleus, the pain/temperature information is projected to the 

primary and secondary sensory cortex. Other pain/temperature fibers are alternatively 

sent: (i) to the medial dorsal thalamic nucleus, which projects to the anterior cingulate 

cortex, (ii) to the ventromedial nucleus of the thalamus, which projects to the insular 

cortex, and (iii) to the intralaminar nuclei of the thalamus, which project diffusely to all 

parts of the cerebral cortex (Castano & Donato, 2001). Other impulses project to the 

ventrolateral area of the caudal periaqueductal gray region. This latter region is involved 

in the craniovascular pain not only through ascending projections to the thalamus, but 

also through descending modulation (mainly inhibitory) of nociceptive afferent 

information (Figure 1.3, see also below). 

 

 

1.1.3 Role of non-neuronal cells in pain transmission 

Despite great efforts in the last decades towards the understanding of its 

pathophysiology, and the development of new drugs, chronic pain is a difficult to 

manage and disabling condition. The reason for this failure may be partially due to the 

fact that most of the available drugs target neurons (Dworkin et al., 2010), whereas 

increasing evidence now indicates that glial cells in both sensory ganglia and CNS also 

play an important role in chronic pain genesis by participating to the development of 
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hyperalgesia and allodynia (Ren & Dubner, 2008; McMahon & Malcangio, 2009). As 

already mentioned in the previous paragraph, SGCs wrap around the cell bodies of 

primary neurons in sensory ganglia, forming a morphological and functional unit 

(Hanani, 2005). Like other glial cells (see also below), SGCs responds to nerve injury 

by upregulating glial fibrillary acidic protein (GFAP) expression and undergoing 

division  in response to chronic pain (Takeda et al., 2007). In addition, following nerve 

injury or inflammation, there is also an unregulated expression of gap junctions, and an 

increased coupling between SGCs (Ledda et al., 2009; Zhang et al., 2009). It has been 

speculated that these changes in SGCs coupling might be directly correlated to the 

generation or maintenance of neuropathic pain. Indeed, in a model of facial neuropathic 

pain the specific inhibition of Connexin 43 expression levels (one of the major gap 

junctions subunits expressed by glial cells; Vit et al., 2006) by RNA interference 

resulted in a strong reduction of pain behavior (Jasmin et al., 2010). 

A non-synaptic cross communication between neurons and SGCs is probably at 

the basis of SGCs activation following chronic pain (Takeda et al., 2009). Indeed, under 

physiopathological conditions, the somata of sensory neurons release in the extracellular 

space chemical mediators, such as CGRP, SP, and ATP, which in turn activate their 

receptors expressed by other neurons or by surrounding SGCs. Activated SGCs in turn 

release cytokines, such as Interleukin (IL)-1β and tumor necrosis factor α (TNFα), 

which may further potentiate neuronal excitability, leading to an auto-amplifying loop 

of neuronal sensitization (Takeda et al., 2009). Noteworthy, the purinergic system 

participate primarily to this bidirectional neuron-glial communication inside the sensory 

ganglia (Zhang et al., 2007; Suadicani et al., 2009), and in the Paragraph 1.4 more 

details on this subject will be provided. 

Since, differently from the CNS, in sensory ganglia there is no blood-brain 

barrier, immune cells are able to freely move in and out of the ganglion (Ohara et al., 

2009). In fact, each sensory ganglion harbors a large number of resident macrophages, 

representing the first immune cells to respond to nerve injury or viral infection; within 

days however, circulating macrophages and other immune cells invade the sensory 

ganglion (Gowrishankar et a., 2010). Inside the ganglion, activated macrophages divide 

and contribute to the persistence of chronic pain by responding to a mix of molecules 

including neurotransmitters, growth factors, and cytokines, most of which have been 

shown to cause increased pain behavior in animal models (Morin et al., 2007; Zhuang et 
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al., 2007). These data therefore indicate that also macrophages are directly involved in 

the regulation of chronic pain. 

In addition, also glial cells in the CNS (mainly astrocytes and microglia) 

participate in the development and maintenance of chronic pain, and may as well 

represent innovative targets for developing new pain killer molecules (McMahon & 

Malcangio, 2009). In fact, during chronic pain, both microglia and astrocytes become 

activated and undergo to cell proliferation (Ajami et al., 2007; McMahon & Malcangio, 

2009). Compared to resting microglial cells, activated microglia display shorter and 

thicker ramifications, functional changes (migration, phagocytosis and production/ 

release of pro-inflammatory substances), and upregulation of cell specific molecules, 

such as the complement receptor 3 (also known as CD11b), and the ionized calcium-

binding adapter molecule (Iba1; Smith, 2010; Vallejo et a., 2010). Astrocytes become 

activated to a lesser extent than microglia and at later time points after injury; they 

exhibit hypertrophic cell bodies with thick processes, upregulated GFAP levels, and 

increased production and release of a variety of pro-inflammatory substances 

(Raghavendra & Deleo, 2003). 

Similar to sensory ganglia, a bidirectional neuron-glia communication is 

responsible the neuronal sensitization in the CNS. Indeed, glia is first activated by 

neurotransmitters and other mediators released from primary afferent terminals involved 

in pain transmission (Ren & Dubner, 2008): these molecules include neurotransmitters, 

such as SP and CGRP (Guo et al., 2007), purinergic agents (Tsuda et al., 2010; see also 

Paragraph 1.4), glutamate (Kumar  et al., 2010), opioid peptides (Watkins  et al., 2007), 

and chemokines (Zhuang, 2007). Glial cells in turn release a variety of substances 

including inflammatory cytokines (White et al., 2007), prostaglandins (Zhao et al., 

2007), neurotrophic factors (Coull et al., 2005) and nucleotides (Tsuda et al., 2010), that 

modulate neuronal activity and facilitate pain transmission, eventually contributing to 

hyperalgesia and allodynia. To further sustain the hypothesis that glial cells are involved 

in chronic pain development and maintenance, it has been demonstrated that the 

pharmacological administration of glial cells inhibitors, like pentoxifylline, fluorocitrate 

and minocycline, effectively attenuates the development of both neuropathic (Mika, 

2008) and inflammatory pain (Clark et al., 2007).   
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1.2 MIGRAINE 

Migraine is an episodic neurovascular disorder, typically characterized by 

spontaneous and recurrent attacks of unilateral headache, with associated autonomic 

symptoms, like nausea, vomiting, and sensorial hypersensitivity. It belongs to the 

primary headaches family, which include also the tension-type headache, the cluster 

headache, trigeminal autonomic cephalalgias, and other headaches (Edvinsson & 

Uddman, 2005). Migraine is an highly disabling brain disorder that affects about the 

15% of the population, and its socio-economic implications are extensive with 

considerable impact on productivity and quality of life. It has been estimated to be the 

most costly neurological disorder in the European Community with €27 billion spent 

per year (Goadsby, 2007). Accordingly, it is now ranked at the 19th place among all 

world-wide diseases causing disability by the World Health Organization (Lipton et al., 

2004). 

Migraine can be classified into two major categories: the migraine without aura 

(MO) and the migraine with aura (MA). The first one, that occurs in about 80% of 

patients, is a clinical syndrome characterized by headache with specific features and 

associated symptoms. The second category, MA, is primarily characterized by focal 

neurological symptoms that usually precede or sometimes accompany the headache in 

the remaining 20% of migraineurs (Headache Classification Committee of the 

international Headache Society, 2004). The diagnostic criteria for these two categories 

are summarized in Table 1.1. 

One of the most important aspects of the pathophysiology of migraine is the 

inherited nature of the disorder. It is clear from clinical practice that many patients have 

first degree relatives who also suffer from migraine. However, only in few cases it has 

been possible to identify specific genes responsible for the inherited component. This is 

the case of the Familial Hemiplegic Migraine (FHM) which is caused by mutations of 

specific ion channels genes:  the α1 subunit of the Cav2.1 (P/Q) type voltage-gated Ca2+ 

channel (CACNA1A), causing the FHM type-I; the ATP1A2 gene, causing the FHM 

type-II; and the Na+ channel SCN1A, causing the FHM type III (see also below; 

Goadsby, 2007). 

Migraine is a complex neurological disorder, and despite recent advances in the 

comprehension of it pathophysiology, its pharmacological treatment still remains 
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unsuccessful in a significant number of patients. For this reason, new efforts in 

clarifying its mechanisms, in the discovery of innovative targets, and in the developing 

of new drugs are strongly needed. 

 

 

Table 1.1   Diagnostic criteria for migraine. 

Migraine without aura 
A. At least five attacks fulfilling criteria B-D. 

B. Headache attacks lasting 4 to 72 hours. 

C. Headache has at least two of the following characteristics: 

1. Unilateral location 

2. Pulsating quality 

3. Moderate or severe pain intensity 

4. Aggravation by or causing avoidance of routine physical activity  

D. During headache at least one of the following:  

1. Nausea and/or vomiting 

2. Photophobia and phonophobia 

E. Not attributed to another disorder. 

 

Migraine with aura 
A. At least two attacks fulfilling criteria B-D. 

B. Aura consisting of at least one of the following, but no motor weakness: 

1. Fully reversible visual symptoms including positive features (e.g, flickering lights, 
spots, or lines) and/or negative features (i.e, loss of vision) 

2. Fully reversible sensory symptoms including positive features (i.e, pins and 
needles) and/or negative features (i.e, numbness) 

3. Fully reversible dysphasic speech disturbance 

C. At least two of the following: 

1. Homonymous visual symptoms and/or unilateral sensory symptoms 

2. At least one aura symptom develops gradually over ≥ 5 minutes, and/or different 
aura symptoms occur in succession over ≥ 5 minutes 

3. Each symptom lasts ≥ 5 and ≤ 60 minutes 

D. Headache fulfilling criteria B-D for migraine without aura begins during the aura or 
follows aura within 60 minutes 

E. Not attributed to another disorder. 
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1.2.1 Description of the migraine attack 

The migraine attack can consist of four main phases: premonitory, aura, headache, 

and resolution.  

 

The premonitory phase 

Premonitory symptoms occur in 20-60% of patients with migraines, hours to days 

before headache onset. The most common symptoms are feeling tired or weary (72%), 

difficulty concentrating (51%), and a stiff neck (50%; Silberstein, 2004). Patients who 

reported premonitory symptoms usually predicted their incoming headaches. 

 

The aura phase 

Migraine aura consists of focal neurological symptoms that precede, accompany, 

or (rarely) follow an attack. Aura usually develops over 5-20 min, lasts for less than 60 

min, can be visual, sensory, or motor, and can involve language or brainstem 

disturbances (Table 1.1; Lipton et al., 2004). Headache usually follows within 60 min 

from the end of the aura phase. Patients can have multiple aura types: most patients with 

a sensory aura also have a visual aura. Auras vary in complexity; simple auras include 

scotomata, simple flashes (phosphenes), specks, geometric forms, and shimmering in 

the visual field. More complicated visual auras include teichopsia or fortification 

spectra (characteristic aura of migraine), metamorphopsia, micropsia, macropsia, zoom 

vision, and mosaic vision. Paraesthesias are often cheiro-aural, with numbness 

migrating from the hand up the arm and to the face (Silberstein, 2004). Apraxia, 

aphasia, and agnosia, states of altered consciousness associated with déjà vu, and 

elaborate dreamy, nightmarish, trance-like, or delirious states can occur (Silberstein, 

2004).  

 

The headache phase 

The median frequency of migraine attacks is 1-5 per month The typical headache 

is unilateral, of gradual onset, throbbing (85%), moderate to marked in severity, and 

aggravated by movements (Silberstein, 2004). Pain can be unilateral, bilateral, or start 

on one side and become generalized. It lasts 4-72 h in adults and 1-72 h in children 

(Lipton et al., 2004). Nausea occurs in almost 90% of patients, while vomiting occurs in 
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about one third (Lipton et al., 2004). Sensory hypersensitivity results in patients seeking 

for a dark, quiet room. Blurry vision, nasal stuffiness, anorexia, hunger, diarrhoea, 

abdominal cramps, polyuria, facial pallor, sensations of heat or cold, and sweating 

might occur. Depression, fatigue, anxiety, nervousness, irritability, and impairment of 

concentration are common (Silberstein, 2004).  

 

The resolution phase 

After the headache, the patient often feels tired, washed out, irritable, or listless, 

and can have impaired concentration, scalp tenderness, or mood changes. Some feel 

unusually refreshed or euphoric after an attack; others experience depression and 

malaise (Silberstein, 2004). 

 

 

1.2.2 How and where does the migraine attack originate? 

Despite the strong progresses made for a better understanding of migraine 

pathophysiology, a debate about its origin is still ongoing: some scientists argue for a 

central origin of the headache pain (for a review see Goadsby et al., 2009), whereas 

others believe that the headache is triggered by activation of peripheral nociceptors (for 

a review see Olesen et al., 2009). In the following paragraphs the older and newer 

theories raise to better explain this complex disorder will be discussed. 

For most of the last part of the 20th century, migraine pain was theorized to be 

due to dilatation of cranial vessels. According to this “vascular theory of migraine”, 

migraine aura would be caused by transient ischemia induced by vasoconstriction, and 

the headache would arise from rebound abnormal vasodilatation of intracranial arteries, 

and consequent mechanical activation of perivascular sensory fibers (Wolff, 1948; 

Pietrobon & Striessnig 2003). Two-thirds of migraineurs experience relief from pain 

after occlusion of the carotid artery ipsilateral to the side of headache, and distension of 

major cerebral vessels by balloon dilatation leads to pain referred to the ophthalmic 

division of the trigeminal nerve (Goadsby et al., 2009). However, more recent studies 

clearly indicate that vascular changes in the regional cerebral blood flow are totally 

unrelated to the phase of the attack; indeed, blood flow could be reduced or normal 

during the headache phase (Olesen et al., 1981; Olesen et al., 1990). Moreover, it was 
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shown that the vasoactive intestinal polypeptide (VIP), can induce vasodilatation 

without triggering migraine, and migraine can be induced without dilatation in the 

diameter of the middle cerebral artery, the principal artery of the dura mater (Kruuse et 

al., 2003). More recently, using high resolution 3T magnetic resonance angiography, it 

has been reported that migraine triggered by nitroglycerin occurs without any 

continuing change in intracranial or extracranial vessels (Schoonman et al., 2008). In 

conclusion, vasodilatation is neither necessary nor sufficient for migraine genesis.  

Within the skull, pain sensitivity is primarily restricted to the meningeal blood 

vessels, which are densely innervated by nociceptive sensory afferent fibers of the 

ophthalmic division of the trigeminal nerve (Pietrobon, 2005). It has been therefore 

hypothesized that migraine could arise from a primary dysfunction leading to activation 

and sensitization of the trigemino-vascular system. According to this view, the 

sensitization of meningeal nociceptors induced by inflammatory events may be an 

essential process in migraine. This idea was popular for nearly two decades in form of 

“the hypothesis of neurogenic inflammation” (Moskowitz, 1993). The key elements of 

neurogenic inflammation are: (i) vasodilatation, (ii) plasma extravasation and (iii) mast 

cell degranulation (which can experimentally be induced by stimulation of meningeal 

afferents) and the subsequent release of pro-inflammatory neuropeptides from these 

nerve fibers (Figure 1.3; Buzzi et al. 1995; Williamson & Hargreaves 2001). In fact, the 

neuropeptides SP and neurokinin-A are known to cause mainly plasma extravasation, 

while CGRP, VIP but also nitric oxide (NO) are powerful vasodilator of intracranial 

arteries in animals and humans (Pietrobon, 2005). CGRP also induces plasma 

extravasation and mast cell degranulation (Ottosson & Edvinsson, 1997). The 

importance of CGRP in migraine neurobiology is also supported by the fact that 

intravenous infusion of CGRP in migraineurs generates a delayed headache with most 

of the characteristics of migraine (Tepper & Stillman, 2008). Moreover, during an 

attack of migraine, plasma levels of CGRP, but not SP, have been found to be increased 

in the venous outflow from the head (Goadsby et al. 1990; Juhasz et al. 2005). 

Accordingly, relief of migraine corresponds to reduction of blood CGRP (Tepper & 

Stillman, 2008). For these reasons, CGRP receptor antagonists have been providing 

good results in clinical studies for migraine therapy (see below). Activation of the 

meningeal trigemino-vascular afferents finally leads to activation of the spinal 
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trigeminal nucleus, and impulses are then carried rostrally to brain structures involved 

in the perception of pain (see Paragraph 1.1.2 and Figure 1.3). 

 

 

Figure 1.3 

Neuronal pathways involved in trigeminovascular activation and pain processing. 
  

The development of 
migraine depends on the 
activation of nociceptive 
afferent fibers of trigeminal 
ganglion (TG) neurons 
innervating the blood 
vessels in the meninges and 
the subsequent activation of 
second-order dorsal  
horn neurons in the 
trigeminal nuclear complex 
(TNC) and neurons in 
structures involved in the 
processing and perception 
of pain, like the thalamus,   
the caudal periaqueductal 
gray region (PAG), and the 
cortex. The PAG is involved 
in craniovascular pain not 
only through ascending 
projections to the thalamus 
but also through descending 
modulation (mainly 
inhibitory) of nociceptive 
afferent information via 
projections to serotonergic 
neurons in the nucleus 
raphae magnus (MRN) 
 
IV, fourth ventricle; ACh, 
acetylcholine; CGRP, calcitonin 
gene-related peptide; LC, locus 
coeruleus; NKA, neurokinin A; NO, 
nitric oxide; SP, substance P; SPG, 
superior sphenopalatine ganglion; 
SSN, superior salivatory nucleus; 
VIP, vasoactive intestinal peptide. 
 

 

 

The crucial point of this theory is that neurogenic inflammation depends on a 

massive activation of meningeal afferents, and this alone would cause the headache. 

Even if there is no a satisfying idea of which spontaneous process causes the primary 

activation of meningeal afferents, a complex neurological event taking place in the 
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cortex during the aura phase, the so called Cortical Spreading Depression (CSD), has 

been proposed as good trigger candidate for neurogenic inflammation, and possibly for 

headache pain. CSD is a slow propagating (2-6 mm/min) wave of sustained strong 

neuronal depolarization that generates a transient intense spike activity in neurons as it 

progresses into the cortex, followed by a long-lasting neural suppression (Lauritzen, 

1994). It has been demonstrated that CSD and the aura phase that precede a migraine 

attack are strongly correlated events (Eikermann-Haerter & Ayata,  2010). Indeed, aura 

frequently consists in a visual scotoma (an area of lost vision) with a scintillating border 

that usually begins near the center of vision as twinkling stars and then develops into an 

expanding circle that slowly moves across the visual field toward the periphery (Figure 

1.4). By analyzing his own visual aura, in 1941 Lashley postulated that the scotoma 

resulted from a region of depressed neural activity in the visual cerebral cortex and that 

the scintillations resulted from a bordering region of intense cortical excitation 

(Lashley, 1941). A few years later, an electrophysiological correlate was reported in the 

rabbit cerebral cortex and was termed “Cortical Spreading Depression” (Leao & 

Morison, 1945). In animals, CSD can be triggered by focal (electrical, mechanical, or 

high K+) stimulation of the cerebral cortex, and its depolarization phase is associated 

with an increase in regional cerebral blood flow (rCBF), whereas the phase of reduced 

neural activity is associated with a reduction in rCBF (Lauritzen, 1994). The similarities 

between migraine visual aura and CSD led to the hypothesis that CSD was responsible 

for the migraine aura (Lauritzen, 1994). However, only in 2001 Hadjikhani and 

colleagues (2001) clearly correlated this two neurological events. In fact, by using blood 

oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI), it 

was demonstrated that several CSD-associated cerebrovascular changes happened in the 

cortex of migraineurs during a visual aura (Hadjikhani et al., 2001). A clear temporal 

correlation was established between the initial features of the aura percept (i.e., 

scintillations beginning in the paracentral left visual field) and the initial increase in the 

mean BOLD signal, reflecting cortical hyperemia (Figure 1.4). The subsequent decrease 

in mean BOLD level was temporally correlated with the scotoma following the 

scintillations. The BOLD signal changes developed first in the occipital cortex, 

contralateral to the visual changes. It then slowly migrated (3.5 mm/min) toward more 

anterior regions of the visual cortex, representing peripheral visual fields, in agreement 
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with the progressive movement of the scintillations and scotoma from the center of 

vision toward the periphery (Figure 1.4; Hadjikhani et al., 2001).  

 

 

 

BA

 
 
Figure 1.4 

Cortical spreading depression during migraine aura.   
A, Drawing illustrating the progression of a visual aura over time, consisting of a scotoma (an area of 
lost vision; in figure is represented within the dashed line), and scintillating borders. The cross indicates 
the fixation point. B, Cortical spreading depression that causes migraine aura consists of a wave of 
depolarization that spreads through the cerebral cortex at a rate of 2-6 mm per min (red area). The 
depolarization phase is associated with an increase in regional cerebral blood flow (rCBF). Shortly after 
this, repolarisation takes place and is accompanied by a prolonged decrease in rCBF (green area). A 
temporal correlation between the initial features of the aura (scintillations beginning in the paracentral 
visual field) and the rCBF is present. The subsequent decrease in rCBF is temporally correlated with the 
scotoma. Modified from Lauritzen, 2001. 
 

 

 

This observation was successfully confirmed by other neurological evidence 

(Bowyer et al., 2001), and therefore it can be concluded that visual aura arises from 

CSD. Besides causing the aura, CSD also has been proposed as a trigger of headache 

(Moskowitz, 1984). The CSD can activate the meningeal trigemino-vascular system and 

downstream pain pathways in rodents leading to meningeal inflammation and plasma 

extravasation (Moskowitz  et al., 1993; Bolay et al., 2002). Although the mechanism of 

activation remains unknown, it has been assumed that H+, K+, NO, and other agents 

released into the cortical extracellular space during the CSD, depolarize or activate 

adjacent perivascular trigeminal nerve endings surrounding local blood vessels. This 

evidence is further supported by data showing that migraine prophylactic drugs, which 
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are efficacious in preventing migraine attacks with or without a perceived aura, 

decreased CSD susceptibility (see Paragraph 1.2.4; Ayata et al., 2006).  

The facts that only about the 20% of migraineurs experience the aura phase (see 

above) conflicts with the idea of CSD as primary event in migraine pathogenesis. It 

could be hypothesized that in patients suffering of migraine without aura, CSD could 

occur in clinically silent area of the cortex, thus it would not give rise to aura symptoms 

(Woods et al., 1994). An alternative view considers migraine aura and headache as 

parallel processes and proposes that the primary cause of headache as an episodic 

dysfunction in brainstem nuclei involved in the central control of nociception. To 

support this idea two evidence can be considered. First, placement of electrodes in PAG 

for the treatment of chronic pain can produce migraine-like headaches in non-

migraineurs (Raskin et al., 1987). Second, rCBF increases in several areas of the dorsal 

rostral brainstem during migraine attacks (Bahra et al., 2001). Although the spatial 

resolution of the imaging techniques does not allow the distinction of most brainstem 

nuclei, the foci of maximum rCBF increase, as measured by Positron Emission 

Tomography (PET), coincided with the dorsal raphe nucleus and locus coeruleus in 

patients with MO, and with the red nucleus and substantia nigra in a patient with MA, 

during a spontaneous attack (Weiller et al., 1995). Animal studies indicate that these 

brainstem centers might be involved in the central control of nociception and, in 

particular, in descending mechanisms of pain inhibition. Compared to other hypothesis 

on migraine neurobiology, dysfunction of such brainstem structures and networks could 

not only account for the somatosensory component of migraine (headache) but also for 

the auditory, olfactory and visual components. Moreover, a locus coeruleus dysfunction 

could also explain the distractibility and anxiety which is often observed in migraineurs 

(Goadsby et al., 2009). On the other hand several criticisms can be pointed out to this 

brainstem generator theory (Pietrobon, 2005; Olesen et al., 2009), and unfortunately, we 

have to conclude that no clear answers to the crucial question of how and where the 

migraine pain arises are available so far. Migraine is a complex pathology, and different 

clinical manifestations can be observed among the migraineurs. It may be well that the 

primary dysfunction leading to headache could be different among patients, depending 

on either genotypical and/or phenotypical features. To provide an ultimate answer to 

this question, additional studies in this field are strongly needed. 
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1.2.3 Familial hemiplegic migraine 

As mentioned before, migraine has a strong genetic component, and an example 

of a monogenic subtype of migraine is familial hemiplegic migraine (FHM; Pietrobon, 

2007; de Vries et al., 2009). This form of migraine is a rare autosomal dominant 

subtype of MA, whose aura symptoms include motor weakness or paralysis (often, but 

not always, unilateral). Apart from the motor aura, typical FHM attacks resemble MA 

attacks. Usually at least three aura symptoms are present in FHM (typically in the 

temporal order: visual, sensory, motor, aphasic; see Table 1.1), and they last longer than 

in MA. Also the headache phase last longer in FHM than MA, while all other headache 

characteristics are similar (Pietrobon, 2007). In addition to typical FHM attacks, some 

FHM patients can experience atypical severe attacks with signs of diffuse 

encephalopathy, impairment of consciousness (coma) or confusion, prolonged 

hemiplegia lasting several days, and in a few cases seizures (Ducros et al., 2001). 

Moreover, about 20% of FHM families show permanent cerebellar symptoms consisting 

of progressive cerebellar ataxia with or without nystagmus. Emotional stress and minor 

head trauma are among the most common triggers of FHM attacks (Ducros et al., 2001). 

Three genes have been successively identified in FHM families, and, accordingly, three 

types of FHM are recognized.  

 

Familial hemiplegic migraine type 1 (FHM1)  

The first FHM gene identified is CACNA1A, which is located on chromosome 

19p13 and encodes for the α1 subunit of neuronal CaV2.1 (P/Q-type) voltage-gated 

calcium channel that is widely expressed throughout the CNS (de Vries et al., 2009). All 

the 21 FHM1 mutations known so far are missense mutations associated with a broad 

spectrum of clinical features besides hemiplegic migraine, including cerebellar ataxia 

and epilepsy (de Vries et al., 2009). The CaV2.1 channels are located in presynaptic 

terminals and somatodendritic membranes throughout the brain, where they control 

neurotransmitter release particularly at central excitatory synapses (Pietrobon, 2005). 

All the FHM1 mutants show an enhanced single channel Ca2+ influx in a wide range of 

mild depolarizations, reflecting an increased channel open probability, mainly due to a 

shift to lower voltages of channel activation (Tottene et al., 2002). In fact, the analysis 

of mutant channels in neurons from knock-in mice revealed that FHM1 mutations 
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produce gain of function of CaV2.1 channels. Mutant human CaV2.1 channels also open 

at lower voltages and more readily than WT channels, and Ca2+ influx through mutant 

channels can occur in response to small depolarizations insufficient to open WT 

channels. As a consequence, FHM1 mutations produce an increase of CaV2.1-dependent 

neurotransmitter release at synapses. Moreover, recent evidence indicates that FHM1 

knock-in mice are more susceptible to CSD than wild-type mice. Indeed, by using 

animal models of FHM1 (the R192Q and S218L knock-in mice) a lower threshold for 

CSD induction and an increased velocity of propagation of CSD induced by electrical 

stimulation of the visual cortex in vivo were demonstrated (van den Maagdenberg et al., 

2004). The CSD threshold is reached when the regulatory mechanisms that keep the 

local K+ ion concentrations in the physiological range are overwhelmed by the build-up 

of K+ via positive feedback loops. A lower increase of extracellular K+ can activate the 

hyper-functional CaV2.1 channels, leading to an abnormal release of glutamate which in 

turn initiate the positive feedback cycle leading to CSD. Thus, a relatively weak 

depolarizing stimulus, as a minor head trauma, which is without consequences in 

healthy individuals, may release enough glutamate to initiate the positive feedback 

cycle, therefore initiating the CSD (van den Maagdenberg et al., 2004; Pietrobon, 2007). 

Altogether, these findings support a key role of the CSD in the pathogenesis of FHM1. 

 

Familial hemiplegic migraine type 2 (FHM2)  

The second FHM gene was identified in 2003 in two Italian families (De Fusco et 

al. 2003). This gene, located on chromosome 1q23, encodes for the α2 subunit of the 

Na+,K+-ATPase pump that utilizes the energy of ATP to actively transport Na+ ions out 

of and K+ ions into the cell. Over 30 FHM2 mutations have been now recognized and, 

with a few exceptions, are all found in single families (De Fusco et al., 2003). The 

Na+,K+-ATPase pump generates the ion gradients that maintain resting membrane 

potential and cell volume, and provide the driving force for nutrient and 

neurotransmitter uptake. Glial and neuronal Na+,K+-ATPase pumps play an important 

role in the clearance of K+ from the extracellular space during neuronal activity and are 

also fundamental for the clearance of released glutamate from the synaptic cleft, 

because the active transport of glutamate into astrocytes and neurons is driven by both 

Na+ and K+ gradients (D’Ambrosio et al., 2002). Impaired clearance of K+ and 

glutamate by astrocytes during cortical neuronal activity, consequent to a decreased 
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number of functional Na+,K+-ATPase pumps, would depolarize neurons and enhance 

glutamate concentration in the synaptic cleft, thus impairing the recovery from neuronal 

excitation. On the basis of this mechanism, it could be predicted that also FHM2 

patients have enhanced susceptibility to CSD: a weak depolarizing stimulus, which 

would be without consequences in healthy individuals, may be able to produce a local 

buildup of K+ concentration above the critical value, leading to CSD in FHM2 patients 

(Pietrobon et al., 2007). 

 

Familial hemiplegic migraine type 3 (FHM3)  

The most recently identifed FHM gene is the SCN1A gene, which is located on 

chromosome 2q24, and was identified in 2005 in three German families (Dichgans et al. 

2005). SCN1A encodes for the α1 subunit of neuronal NaV1.1 voltage-gated sodium 

channels and represents an already well-known gene with over 100 truncating and 

missense mutations that are associated with several kind of epilepsy (de Vries et al., 

2009). Five FHM3 mutations have been identified so far (Castro et al. 2009; Vahedi et 

al. 2009), and for three of them their functional consequences have been investigated. 

When the FHM3 Q1489K and L1649Q mutations have been inserted in the cardiac 

NaV1.5 cDNAs, various gain-of-function effects were revealed (Vanmolkot et al. 2007). 

However, when these mutations were expressed in the more appropriate NaV1.1 protein, 

clear loss-of-function effects were detected (Kahlig et al. 2008). The third FHM3 

mutation, L263V, that causes FHM3, and in the majority of carriers also generalized 

tonic-clonic epilepsy, has essentially a gain-of-function effect (Kahlig et al. 2008). It 

was hypothesized that loss of sodium channel activity primarily disturbs the functioning 

of inhibitory neurons where the NaV1.1 are expressed normally, whereas gain-of-

activity has a predominant effect on excitatory neurons. The functional consequences of 

FHM3 mutations can be very complex; indeed, depending on the test paradigm the 

Q1489K mutation resulted in either hyperexcitability or hypoexcitability of cultured 

neurons (Cestele et al. 2008). The generation of FHM3 SCNA1a knock-in mice will 

allow to make the situation clearer, and to predict if the FHM3 mutation leads to 

enhanced susceptibility to CSD, similarly to the other FHM types. 
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1.2.4 Current and future pharmacological treatment of migraine 

Migraine pharmacotherapy begins with a correct diagnosis, and the choice of 

treatment depends on the severity and frequency of the attack, associated symptoms, 

coexistent disorders, as well as previous treatment responses, drugs’ efficacy, and 

adverse events (Bartleson & Cutrer, 2010). Pharmacological treatment can be acute 

(abortive) or preventive (prophylactic), and patients might need both approaches. Acute 

treatment attempts to reverse or stop the headache progressing once it has started. 

Preventive treatment is designed to reduce the frequency and severity of the attack. 

Acute treatment is appropriate for most attacks and should be restricted to 2-3 days a 

week; it can be specific (with ergotamine derivatives or triptans), or non-specific (with 

nonsteroidal anti-inflammatory drugs, NSAIDs, or opioids). Nonspecific drugs control 

migraine pain or other pain disorders, whereas specific drugs are effective in migraine 

headache attacks, but are not useful for non-headache pain disorders (Silberstein et al., 

2004). Analgesics are used for mild to moderate headaches while triptans or ergotamine 

derivates are first-line drugs for severe attacks and for less severe attacks not responding 

to analgesics (Goadsby & Sprenger, 2010). A list of the common used drugs is listed in 

Table 1.2.  

Ergot alkaloids and triptans are potent 5-HT1B/1D agonists and in some cases 5-

HT1F receptor agonists. Ergots alkaloids have much greater receptor affinity at 5-

HT1A, 5-HT2, adrenergic, and dopaminergic receptors than triptans, leading to more 

adverse events. Contraindications include documented or suspected ischaemic heart 

disease, Prinzmetal’s angina, uncontrolled hypertension, basilar or hemiplegic migraine, 

and pregnancy (Silberstein et al., 2004).  

Triptans, whose progenitor is sumatriptan, are more effective than ergotamine 

derivates. They are safe (for patients without cardiovascular risk factors), effective, and 

appropriate first-line treatment for patients who have a moderate to severe migraine 

headache or for whom analgesics have failed to provide adequate relief. Subcutaneous 

sumatriptan is the fastest and most effective. Sumatriptan or zolmitriptan nasal spray 

sometimes provide a faster onset of action than oral triptans. Triptans were originally 

thought to provide relief from migraine by causing cranial vasoconstriction, through 

their action at postsynaptic 5-HT1B receptors on the smooth-muscle cells of blood 

vessels. It is now theorized that triptans also block the release of vasoactive peptides 

from the perivascular trigeminal neurons through their action at presynaptic 5-HT1D 
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receptors on the nerve terminals. In addition, triptans are thought to have a central 

activity by blocking the release of neurotransmitters that activate second-order neurons 

ascending to the thalamus, and facilitating descending pain inhibitory systems (Loder, 

2010). All triptans have the same contraindications and safety concerns. None is safer 

than another; however, the response to triptans is often idiosyncratic. One triptan might 

work for one patient and cause no adverse events, and a different triptan might work for 

another patient. The triptan of choice is the one that restores the patient’s ability to 

function by swiftly and consistently relieving pain and associated symptoms with 

minimum adverse events and without recurrence of symptoms. Triptans also relieve 

from nausea and vomiting (Loder, 2010). Before deciding that a drug is ineffective, at 

least two attacks should be treated. It might be necessary to change the dose, 

formulation or route of administration or add an adjuvant. When the response is 

inadequate, the headache recurs, or adverse events are bothersome, changing the drug 

might be needed. If all treatments fail, rescue drugs (opioids, neuroleptics, and 

corticosteroids) are needed. They provide relief, but they have important adverse effects 

(Silberstein et al., 2004) 

Preventive drugs reduce attack frequency, duration, or severity. Indications for 

preventive treatment include: migraine that substantially interferes with the patient’s 

daily routine despite acute treatment; failure of, contraindication to, or troublesome 

adverse events from acute drugs; very frequent headaches with risk of drug overuse; 

special circumstances, such as hemiplegic migraine or attacks with a risk of permanent 

neurologic injury. Preventive drugs include β-adrenergic blockers, antidepressants, 

calcium-channel antagonists, serotonin antagonists, anticonvulsants, and non-steroidal 

anti-inflammatory drugs (Table 1.2). The choice is based on effectiveness, adverse 

events, and coexistent and comorbid conditions (Goadsby & Sprenger, 2010). If 

headache is well controlled, treatment can be lessened and discontinued, in order to 

provide a better risk-to-benefit ratio. Behavioral and psychological interventions can be 

also used for prevention, and they include relaxation training, thermal biofeedback 

combined with relaxation training, electromyography biofeedback, and cognitive-

behavioral treatment (Silberstein et al., 2004). 
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Recent and future pharmacological options 

Although triptans remain the most effective option for acute attack therapy, not all 

patients respond to treatment, and of those who do respond, about one out of three 

experience headache recurrences within 24 hours. Moreover, despite their relative 

safety, the fact that triptans constrict cranial and coronary blood vessels is an important 

issue for patients with cardiovascular diseases (Loder, 2010). For this reason, 

substantial efforts for discovering more effective, and safer, treatments are strongly 

needed. Possible future candidates for migraine treatment include CGRP receptor 

antagonists, nitric-oxide synthase inhibitors, vanilloid receptor antagonists, glutamate 

(AMPA, kainate) receptor antagonists, and 5-HT1F receptor agonists (Goadsby & 

Sprenger, 2010). The purinergic P2 receptors have been proven as important mediators 

in acute and chronic pain (Burnstock et al., 2009b; Jarvis, 2010; Villa et al., 2010), and 

Table 1.2   Current pharmacological treatments for migraine. 

Acute treatments 
Specific drugs 

- NSAIDS: aspirin, ibuprofen, tolfenamic acid, naproxen sodium and 
acetaminophen 

- Neuroleptics and antiemetics: prochlorperazine and droperidol 

- Corticosteroids: hydrocortisone, methylprednisolone, and dexamethasone 

- Opioids 

Non-specific drugs 

- Ergotamine and dihydroergotamine 

- Triptans: sumatriptan, zolmitriptan, naratriptan, rizatriptan, almotriptan, 
frovatriptan, and eletriptan.  

 

Preventive treatments 
- β-blockers: propranolol, nadolol, atenolol, metoprolol, and timolol 

- Antidepressants: amitriptyline, fluoxetine and venlafaxine 

- Calcium-channel blockers: flunarizine 

- Anticonvulsant drugs: valproate, gabapentin and topiramate 

- Serotonin antagonists: methysergide 

- Nutraceuticals: riboflavin, coenzyme Q, butterbur (Petasites hybridus) and 
feverfew (Tanacetum parthenium) 
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we strongly believe that this receptor family has a role also in migraine. Indeed, as 

discussed in Chapter 2, our research is based on the study of this field, in order to find 

new molecular targets for migraine therapy. In the meantime, some prominent 

pharmacological approaches are currently studied in clinical trials; in the next section 

they will be briefly discussed. 

CGRP receptor antagonists: CGRP is one of the most important molecules 

involved in migraine neurobiology (see Paragraph 1.2.2). CGRP receptor antagonists 

are the most advanced class in clinical for migraine therapy. The intravenous antagonist 

olcegepant and the orally available antagonist telcagepant have shown clear effects in 

phase 1 and 2 studies. Telcagepant has recently undergone two phase 3 studies without 

cardiovascular liability. A phase 2 trial for another CGRP receptor antagonist, BI44370, 

has been completed and results are awaited. CGRP receptor antagonists have shown 

some positive effects in terms of reduced headache recurrence. The clinical tolerability 

of these drugs in terms of CNS and vascular side-effects seems to be more favorable 

than for triptans. However, concerns about possible liver toxicity remain (Tepper & 

Stillman, 2008). The development program of one compound, MK3207, which was 

undergoing phase 2 evaluation, has been discontinued because of delayed liver test 

abnormalities. Moreover, in a migraine prevention study of daily telcagepant over 3 

months, increases in transaminases were observed in a few patients. FDA filing for 

telcagepant has thus been delayed to allow a review of additional safety data (Goadsby 

& Sprenger, 2010). 

Serotonin receptor agonists: The announcement of the success of a phase 2 study 

with the 5-HT1F receptor agonist COL-144 offers another prospect for acute anti-

migraine therapy. Unlike triptans, COL-144 does not act at 5-HT1B/D receptors and 

therefore does not cause vasoconstriction. In clinical studies it was shown than the drug 

was well tolerated and did not produce triptan-like chest symptoms. At the effective 

doses of COL-144, a higher proportion of patients showed a headache response at 2 h 

than those on placebo. An orally bioavailable formulation of COL-144 is now in phase 

2 testing (Neeb et al., 2010). 

CSD inhibitors: Similarly to the already available preventive agents, tonabersat, a 

novel potential preventive agent that has recently been investigated in three phase 2 

studies, is a specific CSD inhibitor. During clinical studies investigators found a 

significant reduction of the number of aura attacks in tonabersat-treated patients, 
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although the number of migraine headache days was unaffected. This result is in 

agreement with the view that CSD is the experimental equivalent of aura, and 

substances effective in reducing CSD are also effective in preventing aura symptoms. 

Unfortunately, three different clinical studies were negative in terms of prevention of 

migraine without aura (Hauge et al., 2009). Together, these results suggest that, 

although tonabersat is unlikely to be a major step forward for the treatment of patients 

with migraine without aura, it could be a valid option for the management of patients 

with aura.  

Botulinum toxin type A: Botulinum toxin type A (onabotulinum toxin A; BTA) is 

a reversible inhibitor of presynaptic acetylcholine release at motor nerve terminals. 

Open-label experience from its cosmetic use suggested its potential benefits in headache 

after injection into glabellar, frontalis, and temporalis muscles. Its effectiveness in pain 

disorders is probably due to inhibition of the release of neurotransmitters, such as SP 

and CGRP, and effects on muscle spasm and nerve transmission. Despite positive open-

label studies and case reports, BTX has not proven to be effective for many patients 

with chronic tension-type headache or episodic migraine based on double-blind 

placebo-controlled trials. There is increasing evidence, however, that BTX is effective 

in the treatment of chronic migraine and chronic daily headache. More recently, a large 

multicenter randomized, double-blind, placebo-controlled trial of more than 1300 

patients with chronic migraine demonstrated significant reductions in headache 

symptoms, frequency, disability and triptan utilization along with improvements in 

measures of health-related quality of life. Compared with other preventive treatments, 

BTX has a rapid onset of action (less than 2 weeks) with few serious adverse events and 

does not require daily medication use or titration (Goadsby & Sprenger, 2010).  
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1.3 THE PURINERGIC SYSTEM 

ATP has long been recognized only as an intracellular energy molecule, and its 

acceptance as an extracellular signaling molecule has taken a considerably long period 

of time. The potent effects of ATP on the heart and blood vessels were first described in 

1929 (Drury & Szent-Györgyi, 1929), while in 1972 Burnstock proposed new roles for 

adenosine-5'-triphosphate (ATP) as neurotransmitter in non-adrenergic, non-cholinergic 

nerves in the gut and bladder (Burnstock, 1972). In the following years ATP 

metabolites, like the nucleotide adenosine-5'-diphosphate (ADP) and the nucleoside 

adenosine (Ado), obtained by its enzymatic hydrolysis, as well as other extracellular 

nucleotides like the uridine-5'-triphosphate (UTP), uridine-5'-diphosphate (UDP), and 

sugar nucleotides, were progressively proposed as transmitters not only in sensory 

nerves, but also in motor nerves and CNS neurons (Fields & Burnstock, 2006; Inoue et 

al., 2007). The actions of these molecules in the extracellular environment implicated 

the existence of post-junctional receptors. Accordingly, numerous subtypes of these 

receptors were progressively cloned, and scientists gradually coined and accepted the 

term “purinergic system” for describing the system composed by extracellular 

nucleotides/nucleosides and their receptors. The first classification of purinergic 

receptors family dates back to 1978, when Burnstock proposed some criteria for 

differentiating these receptors in two families: the P1 receptors activated by Ado and 

antagonized by methylxantinic compounds, and the P2 receptors, responding to ATP 

and ADP.  

Nowadays, P2 purinoceptors are divided into two families: the ionotropic 

receptors P2X and the metabotropic P2Y receptors (Burnstock & Knight, 2004). P2X 

receptors are ligand-activated cationic channels, specifically activated by ATP 

(Burnstock & Knight, 2004), while P2Y receptors are activated by purine or pyrimidine 

nucleotides, or by sugar-nucleotides, and couple to intracellular second-messenger 

systems through heteromeric G proteins (Abbracchio et al., 2006). In 1994, the 

IUPHAR Subcommittee for Purinoceptor Nomenclature and Classification has 

approved the new classification and has proposed to substitute the term “P2 

purinoceptors” with “P2 receptors”, in order to take into account the observation that 

some P2 receptors are preferentially activated by uridine nucleotides (Fredholm et al., 

1997). To date, at least seven P2X subtypes (P2X1-7) and eight P2Y members 
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(P2Y1,2,4,6,11,12,13,14) have been cloned from different animal species (Abbracchio et al., 

2006). The missing numbers in the P2Y series correspond to receptors cloned from 

vertebrates different from mammals and for which no mammalian orthologs have been 

identified so far, or to receptors that have not been functionally characterized yet. 

The concept that ATP is an extracellular signalling molecule has been established 

not only in the rapid signalling involved in neurotransmission, but also in a wide range 

of other biological processes, including release of cytokines, neurotransmitters and 

hormones, cell proliferation, differentiation and apoptosis in tissues as diverse as the 

skin, skeletal muscle, bone, nervous and immune system (Fields & Burnstock, 2006; 

Inoue et al., 2007). Thus, alterations in purinergic signalling may contribute to the 

development of disorders of the immune system, inflammation, neurodegeneration, 

osteoporosis and cancer. On this basis, a better understanding of the roles of purinergic 

signalling may help identifying novel therapeutic targets for several human diseases. 

 

 

1.3.1 Purinergic signalling 

The first clues on the role of extracellular nucleotides in signal transduction came 

from the observation that neurons and neuroendocrine cells released ATP copackaged 

with other neurotransmitters (Burnstock, 1972). Moreover, it has been demonstrated 

that, following mechanical stress, also non secretory tissues can release nucleotides 

(Lazarowski et al., 2000) which may signal to the same secretory cell (autocrine 

stimulation) as well as to adjacent cells (paracrine stimulation). Following injury or 

inflammation, nucleotides can also be released as a consequence of cell lysis. There is 

ongoing debate, however, about the transport mechanisms involved in nucleotide 

release. There are hints for exocytotic release from endothelial and urothelial cells, 

osteoblasts, astrocytes, and mast and chromaffin cells, but other transport mechanisms 

have been proposed, including ATP binding cassette transporters, connexin 

hemichannels and plasmalemmal voltage-dependent anion channels (Fields & 

Burnstock, 2006). More recently, pyrimidine nucleotides release has been described 

(Lazarowski et al., 2003).  

Once released in the extracellular environment, nucleotides are rapidly degraded 

by ubiquitous ecto-nucleotidases (Zimmermann, 2000), a family of phosphatases 

expressed on the cell surface that are able to dephosphorylate different nucleotides. ATP 
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hydrolysis sequentially produces ADP, AMP and adenosine, whether UTP is degraded 

to UDP, UMP and uridine; many of these metabolites can act as extracellular signalling 

molecules The local response to a specific nucleotide is thus the result of the effects of 

the nucleotide itself and of its degradation products. Distinct classes of ecto-

nucleotidases with different properties and different substrate specificities have been 

identified so far (Yegutkin, 2008). Some are membrane proteins with an extracellular 

catalytic domain, but soluble forms released in the extracellular space have also been 

described. Ecto-nucleotidases can be also released with ATP from sympathetic nerve 

terminals, representing one of the mechanisms to turn off neurotransmitter signalling 

(Todorov et al., 1997). A general scheme of nucleotide-hydrolyzing enzymes include: 

(i) the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, (ii) the 

ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family, (iii) ecto-5'-

nucleotidase, and (iv) alkaline phosphatases (AP; Yegutkin, 2008). This various 

enzymatic family demonstrates that ATP and other nucleotides can be considered 

classical neurotransmitters whose signal can be regulated by enzymatic degradation. 

Nucleotides released or leaked from both glial cells and neurons play a role in 

cell-to-cell communication under physiological and pathophysiological conditions 

(Burnstock & Knight, 2004). Accordingly, in CNS both neuronal cells and the major 

classes of glia (i.e. astrocytes, microglia and oligodendrocytes), express a broad range 

of purinergic receptors (Fields & Burnstock, 2006). For instance, astrocytes release 

ATP in response to various stimuli or even spontaneously, and communicate with 

neurons, microglial cells, and even vascular cells at capillaries (Inoue et al., 2007). Also 

microglial cells respond to a wide range of ATP receptor agonists, through increases in 

intracellular calcium, secretion of cytokines, and rapid changes in their morphology and 

migration (Inoue, 2008). Extracellular nucleotides represent therefore a class of 

signalling molecules that functionally “unite” glia and neurons together. Not by chance 

neuron-glia or glia-glia communications participate in the control of several 

pathophysiological mechanisms, including regulation of synaptic transmission 

(Wieraszko & Ehrlich, 1994), neuroimmune interactions (Inoue et al., 2007), processing 

of information through the retina (Newman, 2006), Schwann cell proliferation and 

myelination (Fields, 2006; Stevens, 2006), cell proliferation (Neary et al., 2006), 

inflammation (Di Virgilio et al., 2009), and pain (Burnsock, 2009a,b; see also 

Paragraph 1.4) 
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1.3.2 P2X receptors 

P2X receptors are membrane ion channels that open in response to the binding of 

extracellular ATP. ATP can elicit rapid responses (<10ms) via these ion channels, 

resulting in selective permeability to Na+, K+, and Ca2+
 cations (North, 2002). In 

vertebrates, seven genes encode P2X receptor subunits, which are 40-50% identical in 

their aminoacidic sequence. Each subunit has two transmembrane domains, separated 

by an extracellular domain (~280 aminoacids). Channels function as trimers of several 

subunits (Figure 1.5). As of today, seven homomeric channels (P2X1-7) have been 

identified, but functional expression studies have also highlighted the existence of 

heteromeric P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7 and P2X5 receptors which assemble 

with any others, except P2X7 (North, 2002).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lengths of P2X subunit differ from 384 (P2X4) to 595 (P2X7) aminoacids. 

Each subunit has two hydrophobic regions of sufficient length to cross the plasma 

membrane, placing most of the protein extracellularly. These hydrophobic regions are 

Table 1.4  Pharmacological properties of rodent P2X receptors. 

Receptor n° of 
amminoacids Agonist potency Antagonists 

P2X1 399 BzATP >> 2MeSATP > 
ATP > ,αβmeATP 

TNP-ATP, 
Suramin, 
PPADS, 

MRS2159 

P2X2 472 2MeSATP > ATP  PPADS 

P2X3 397 BzATP >> 2MeSATP  > 
ATP = α,βmeATP TNP-ATP 

P2X4 388 ATP > 2MeSATP >> 
α,βmeATP TNP-ATP 

P2X5 455 ATP > 2MeSATP > ADP - 

P2X6 379 ATP > 2MeSATP > ADP PPADS  

P2X7 595 BzATP >> ATP4- 
KN-62,  
PPADS,  
oATP 
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separated by the bulk of the polypeptide. The NH2 and COOH terminals are both 

cytoplasmic (North, 2002). The extracellular loop contains the ATP binding site as well 

as sites for antagonists and modulators (Khakh et al., 2001). The aminoacidic identity 

between P2X receptor subunits is distributed throughout the extracellular domain, a 

striking feature of which is the conservation of 10 cysteine residues among all known 

receptors which form disulfide bonds to give the correct conformation to the receptor 

(Vial et al., 2004). All the P2X receptor subunits have consensus sequences for N-

linked glycosylation (Asn-X-Ser/Thr), and some glycosylations are essential for 

trafficking to the cell surface. The extracellular domain carries few conserved glycine 

(G) and proline (P) residues which are involved in conformational changes subsequent 

to ligand-receptor binding. Extracellular protons, bivalent cations and some metals are 

P2X receptors allosteric modulators. In addition, P2X receptors can be modulated via 

phosphorylation of serine (S) and threonine (T) residues. A list of the main nucleotide 

analogues acting as agonists or antagonists at the P2X receptors is summarized in Table 

1.3. 

 

 

1.3.3 P2Y receptors 

P2Y receptors belong to the superfamily of G protein-coupled receptors (GPCR). 

GPCR are a family of membrane receptors responding to a wide variety of ligands such 

as nucleotides, biogenic amines, peptides and other small molecules (Marchese et al., 

1999). The binding of the GPCR to its specific ligand results in the activation of the 

associated heterotrimeric G protein (α, β and γ subunits) that mediate a number of 

intracellular responses. In particular, ligand binding to its receptor results in a decreased 

affinity of the α subunit of the G protein for GDP, that is thus exchanged for GTP. This 

binding causes a conformational modification in the G protein and the dissociation of 

the α subunit from the βγ complex. Both α and βγ subunits can then activate signal 

transduction pathways (Rebois et al., 1997). 

From a phylogenetical point of view, the eight human P2Y receptors can be 

subdivided into two distinct subgroups characterized by a relatively high level of 

sequence divergence. The first subgroup encompasses P2Y1, P2Y2, P2Y4, P2Y6 and 

P2Y11, whereas the second subgroup encompasses P2Y12, P2Y13 and P2Y14 (Abbracchio 

et al., 2006). Site-directed mutagenesis of P2Y1 and P2Y2 receptors has shown that some 
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positively charged residues in transmembrane domains 3, 6 and 7 are crucial for 

receptor activation by nucleotides (Abbracchio et al., 2006). They probably interact 

with the negative charges of the phosphate groups of nucleotides.  
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Figure 1.5 

Organization of P2X and P2Y receptors 
A, Schematic representation of a typical P2X receptor, and a P2Y receptor. B, Representation of P2X and 
P2Y receptor organization in the plasma membrane, and of their intracellular signalling pathways. While 
activation of P2X receptors lead to increase in permeability to Na+, K+, and Ca2+, nucleotides acting at 
P2Y receptors cause activation of specific G proteins:  Gq/G11 for the P2Y1,2,4,6,11, leading to the 
recruitment of the PLC pathway with increases in intracellular calcium;  GS for P2Y11, leading to 
increases in cAMP levels; Gi/o for P2Y12,13,14, leading to decrease in cAMP levels. 
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The eight P2Y receptors identified so far have a H-x-x-R/K motif in TM6 that 

might be important for agonist activity. Receptors in the first subgroup also share a YQ/ 

K-x-x-R motif in TM7 (proposed to participate in ligand binding), whereas in receptors 

of the second subgroup, another motif (K-E-x-x-L) which might affect ligand binding 

characteristics, is observed (Abbracchio et al., 2006). These two P2Y receptor 

subgroups also differ in their primary coupling to transductional G proteins. In 

particular, all receptors in the first subgroup (i.e., P2Y1,2,4,6,11) couple to Gq/G11 to 

activate PLC/IP3 pathway and release intracellular calcium, whereas receptors in the 

second subgroup (i.e., P2Y12,13,14) almost exclusively use the Gi/o class of G proteins to 

lower cAMP levels. Secondary couplings have been also reported, especially for 

receptors of the first subgroup in heterologous expression systems (Abbracchio et al., 

2006). Among receptors of the second group, P2Y13 has been also reported to couple to 

Gα16 and to stimulate PLC in recombinant systems overexpressing this G protein 

(Fumagalli et al., 2004). Such “promiscuity” of G protein coupling may depend on the 

indirect activation of additional G protein subtypes within protein complexes containing 

the P2Y receptor. 

From a pharmacological point of view, P2Y receptors can be broadly subdivided in four 

groups based on their responsivity to nucleotides: i) adenine nucleotide-preferring 

receptors, mainly responding to ADP and ATP. This group includes human and rodent 

P2Y1, P2Y12, and P2Y13, and human P2Y11; ii) uracil nucleotide-preferring receptors, 

including the human P2Y4 and P2Y6 responding to either UTP or UDP; iii) receptors of 

mixed selectivity, the human and rodent P2Y2, the rodent P2Y4 and, possibly, P2Y11; 

and iv) the P2Y14 receptor, responding to both UDP and sugar nucleotides (mainly 

UDP-glucose and UDP-galactose; Abbracchio et al., 2006; Carter et al., 2009). In this 

latter group it could be possibly included a receptor phylogenetically and structurally 

related to already known P2Y receptors, named GPR17, which has been recently 

reported to respond to both cysteinyl-leukotrienes and uracil nucleotides (Ciana et al., 

2006). A list of the main nucleotide analogues, which can act both as agonists, 

antagonists or partial agonists at the P2Y receptor subtypes, is summarized in Table 1.4. 

Unfortunately, although important progress in exploring structure-activity relationships 

has been achieved, most of the P2Y receptor subtypes are still lacking potent and 

selective synthetic agonists and antagonists (Abbracchio et al., 2006).  
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Table 1.4  Pharmacological properties of rodent P2Y receptors. 

Receptor n° of 
amminoacids 

G-protein 
coupling Agonist potency Antagonists 

P2Y1 373 Gq/G11 
2MeSADP > MRS2365 > 

ADP  > ATP 
MRS2500, 
MRS2179 

P2Y2 377 Gq/G11 UTP = ATP = MRS2698 
Suramin, 
PSB-716 

AR-C126313 

P2Y4 365 Gq UTP > ATP PPADS 

P2Y6 328 Gq/G11 
PSB-0474 > 5-iodo-UTP > 

UDP >  UTP 

MRS2567, 
MRS2578, 
MRS2575 

P2Y11 374 
Gq/G11 
and Gs 

NF546 > ATP > 2 MeSATP  
Suramin,  

Reactive blue 2, 
NF340 

P2Y12 342 Gi 2MeSADP = 2MeSATP > 
ADP >ATP > UTP 

Cangrelor, 
PSB-0739 
AZD6140 

P2Y13 333 Gi ADP = 2MeSADP 
Cangrelor 
MRS2211 

P2Y14 338 Gi/Go UDPglucose > UDPgalactose 
> UDP - 

 

 

1.3.4 Pathophysiological roles of extracellular nucleotides in the nervous system 

The hypothesis that ATP plays a central role in modulating cerebral functions 

rises from the broad distribution of P2 receptors in the CNS (Abbracchio et al., 2006). 

ATP is released from nerve terminals and has rapid and direct actions, generally 

associated to activation, whether Ado has inhibitory effects with a negative feed-back 

action on the effects of ATP and of other neurotransmitters released at the synapse. The 

first evidence suggesting a role of ATP as a neurotransmitter in the brain was obtained 

in 1992, with the demonstration that its stable analog, α,β-meATP, provokes a current 

of excitation in rat neurons which is antagonized by P2 antagonists (Edwards et al., 

1992). In some brain areas, ATP regulates neurotransmission through the modulation of 

glutamate release from nerve endings. This effect is mediated by P2 receptors located 
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on the presynaptic as well as on the post-synaptic element (Motin & Bennett, 1995). In 

particular, it has been suggested that ATP can amplify glutamate post-synaptic action 

following interaction with a P2Y receptor, or by activating an ecto-kinase responsible 

for the phosphorylation of membrane proteins associated to glutamate receptors (Chen 

et al., 1996). These observations have led to the hypothesis that ATP, and maybe also 

UTP, might participate in long-term synaptic potentiation, memory, and learning 

processes (Price et al., 2003, Fujii, 2004). According to this hypothesis there is the 

experimental evidence indicating colocalization of ATP with neurotransmitters and 

neuropeptides in secretory vesicles of most synapses. Noradrenaline (NA) and ATP are 

released from sympathetic nervous system endings in variable ratios according to the 

tissue and to the animal species considered (Burnstock & Verkhratsky, 2010). ATP co-

transmission has been also observed in isolated blood vessels as well as in skeletal 

muscle, kidney and intestine vasculature (Burnstock, 2009a). Despite the demonstration 

that ATP is stored in the nerve endings together with NA, prejunctional 

neuromodulation studies demonstrate that ATP and NA are released independently 

following different stimuli (Starke et al., 1996). It can thus be hypothesized that 

different nerve populations containing different ratios of NA and ATP exist in the 

sympathetic nervous system. Finally, indirect evidence demonstrates that ATP and 

acetylcholine co-localize in central and peripheral cholinergic terminals and that a co-

transmission with peptides such as SP, CGRP, neuropeptide Y and somatostatin also 

exists (Burnstock, 1997; Zimmermann, 2008).  

Recent studies also highlighted a direct involvement of extracellular nucleotides 

in neurogenesis and gliogenesis. In the nervous system ATP has been identified as a 

mitogen for v-myc immortalized neural progenitor cells (Ryu et al., 2003), and ATP-

mediated purinergic signalling through the P2Y1 receptor has been associated with 

developmental neurogenesis (Weissman et al., 2004). Moreover, neurospheres cultured 

from the adult SVZ express functional nucleotide receptors as well as enzymes for their 

degradation (Milosevic et al., 2006; Mishra et al., 2006). Interestingly ATP release and 

purinergic signalling may be required not only for the developmental expansion of 

progenitor cell and neurogenesis, but also to control the proliferative and differentiative 

potential of the progenitor cells in the adult brain. The colocalization of both P2Y 

receptors and ecto-nucleotidases activity to regions of active mitotic progenitor cell 

expansion and neurogenesis in the adult brain (Braun et al., 2003; Shukla et al., 2005) is 
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particularly significant in this regard, given the apparent necessity of purinergic 

signalling to neural progenitor cell expansion in vitro (Mishra et al., 2006). 

Following pathological/traumatic events a massive release of purines and 

pyrimidines at the site of injury is observed and they seem to have a dualistic effect: on 

one hand, they contribute to lesion worsening, but on the other side they are involved in 

tissue regeneration and repair. In the next sections the main roles of these molecules 

during pathological events will be briefly discussed, whereas a detailed dissertation of 

their role in pain transmission will be provided in the following paragraphs. 

 

Brain ischemia and spinal cord injury 

During ischemia or hypoxia in the CNS a massive release of nucleotides is 

observed (Neary et al., 1996; Melani et al., 2005). ATP participate to cell death 

induction immediately (minutes to hours) following tissue injury, probably as a 

consequence of a diffuse dysregulation of the release mechanisms and of a pathologic 

activation of P2 receptors. For instance, it has been demonstrated that ATP has a 

cytotoxic effect on cerebellar neurons (Amadio et al., 2002) and potentiates 

hypoglycemia-induced tissue injury (Cavaliere et al., 2002). In the weeks following 

ischemic injury, when homeostatic control is re-established in the injured area, ATP 

seems to contribute to differentiation and to promote the long-term functional repair of 

the damaged area (Abbracchio & Ceruti, 2006; Abbracchio & Verderio, 2006). During 

ischemic and hypoxic events, high extracellular concentrations of adenosine are also 

reached, in part as a consequence of ATP degradation. It has been demonstrated that 

adenosine has a protective role in cerebral ischemia in several experimental models. 

Accordingly, both adenosine administration as well as inhibition of its degradation 

reduces injury associated to cerebral or cardiac ischemia and protects from organ loss of 

function (Phillis & O'Regan, 1996; Mentzer et al., 1996; Fredholm, 2010). 

Extracellular nucleotides can also induce cell death, through the formation of 

P2X7 receptor-associated pore (Di Virgilio et al., 1996; Ferrari et al., 1997). This 

mechanism could influence neuronal remodeling through the elimination of critically 

injured cells, in particular during acute brain ischemic events, thus limiting the area of 

damaged tissue (Neary et al., 1996). Brain damage caused by a transient MCAo results 

in a sustained pathologically high ATP outflow; while in the infarct region the release 

of ATP is low because of disturbed cellular synthesis, in the peri-infarct area its 
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concentration is increased, due both to the deregulation of its enzymatic degradation, 

and to the concomitantly enhanced outflow of the nucleotide from damaged cells 

(Melani et al., 2005). 

An abnormal purinergic signaling has been also observed following spinal cord 

injury (SCI). In the peritraumatic spinal cord regions, ATP is released at high levels and 

causes neuronal cell death through P2X7 receptors. In this respect, P2X7 receptor 

blockade is associated to improved functional recovery and diminished cell death in the 

peritraumatic zone (Wang et al., 2004). Analysis of P2X4 receptor expression following 

SCI also demonstrated a significant accumulation of P2X4-positive 

microglia/macrophages as early as 24 h after SCI, peaking on day 7 (Schwab et al., 

2005). Taken together, these observations confirm the role of the purinergic system in 

the traumatic degeneration, and possibly in tissue remodeling. 

 

P2 receptors in reactive astrogliosis 

Astrocytes respond to traumatic and inflammatory CNS insults through major and 

rapid modifications of their morphology and cell structure and with an increased 

proliferation, a process known as “reactive astrogliosis” (Eddleston & Mucke, 1993). 

Reactive astrogliosis occurs in several pathologies, including ischemia and chronic pain, 

and is characterized by hypertrophy and proliferation of astrocytes around the injured 

region (Marchetti & Abbracchio, 2005). Reactive astrocytes produce and release 

inflammatory mediators such as cytokines and chemokines, as well as various growth 

factors. In addition, reactive astrocytes upregulate the expression of nestin, GFAP, and 

vimentin markers (Clarke et al., 1994). The functional role of reactive astrogliosis has 

not been clearly delineated yet; some studies suggest a protective role of the glial scar 

that protects nervous tissue and limits damage progression, whereas others indicate that 

it could interfere with axonal growth and regeneration (Sofroniew & Vinters, 2010). 

Despite these discordant experimental evidence, there is agreement on the fact that an 

excessive and long-lasting reactive gliosis can be deleterious for functional repair of the 

damaged area. Probably this mechanism is initially activated as a protective response to 

tissue injury, but a prolonged activation can result in a pathological event and contribute 

to neurodegeneration. Importantly, astroglial cell activation has been correlated to P2 

activation (Neary et al., 2006). It has been demonstrated that ATP induces pro-

inflammatory enzymes and arachidonic acid release (Bolego et al., 1997; Brambilla et 



Introduction 

40 
 

al., 1999), therefore worsening the neurodegenerative damage through the formation of 

radical oxygen species, prostaglandins, leukotrienes and the blockade of glutamate 

reuptake (Volterra et al., 1994). These data suggest that in pathological conditions, P2 

receptor activation on both neurons and astrocytes can contribute to neurodegenerative 

damage, and thus P2 antagonists might represent an interesting approach to 

neuroprotection in acute cerebral damage. 

 

Chronic neurodegenerative diseases 

P2 receptor ligands have been proposed as potential neuroprotective agents 

following neuronal death associated with neurodegenerative diseases such as 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral 

sclerosis and multiple sclerosis (Burnstock, 2008). For instance, different P2 receptor 

subtypes are involved the development and growth of dopaminegic neurons in CNS 

(Heine et al., 2007), and P2X7 receptors are involved in ATP-mediated necrotic volume 

increase in substantia nigra, which has been implicated in the pathogenesis of 

Parkinson’s disease (Jun & Kim, 2004). P2X7 receptors have been also found 

upregulated in the brain of patients with Alzheimer’s disease (McLarnon et al., 2006), 

and ATP released during neuronal excitation or injury enhances the inflammatory 

effects of cytokines and prostaglandin E2 in astrocytes, thus contributing to the chronic 

inflammation seen in Alzheimer’s disease (Xu, et al., 2003). P2X7 receptor antagonism 

therefore represents a therapeutic strategy for blocking inflammatory responses 

associated to neurodegenerative disorders.  

In the brain, stress or damage causes the release of nucleotides and activation of 

P2Y2 receptors, leading to pro-inflammatory responses including the stimulation and 

recruitment of glial cells, which can protect neurons from injury (Peterson et al., 2010). 

Indeed, P2Y2 receptor expression is increased in glial cells by stimulation with IL1β, a 

pro-inflammatory cytokine whose levels are elevated in Alzheimer’s disease, and this 

effect has been proposed to be neuroprotective, since it increases the non-

amyloidogenic cleavage of the amyloid precursor protein (Camden et al., 2005). Thus, 

activation of P2Y2 receptors in glial cells can promote neuroprotective responses, 

therefore indicating this receptor subunit as a novel pharmacological target for the 

treatment of neurodegenerative diseases.  
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1.4 PURINES AND PAIN  

The first hints about the involvement of ATP in pain transmission came from the 

observation that its injection into the human skin elicited pain (Bleehen and Keele, 

1977; Krishtal et al., 1983). A significant breakthrough in this field was made in 1995, 

when the P2X3 receptor channel was cloned from rat DRG, and it was shown to be 

expressed on small nociceptive sensory neurons together with P2X2/3 heteromultimer 

receptors (Chen et al., 1995; Lewis et al., 1995). The next year Burnstock proposed a 

unified hypothesis on the role of ATP in pain, suggesting that: (i) ATP released as a 

cotransmitter with noradrenaline and neuropeptide Y from sympathetic nerve terminal 

varicosities is involved in sympathetic pain; (ii) ATP released from vascular endothelial 

cells of microvessels during reactive hyperaemia is associated with pain in migraine, 

angina and ischemia; (iii) ATP released from tumor or damaged cells activates P2X3 

receptors on nociceptive sensory nerves (Burnstock, 1996). This hypothesis has been 

followed by an increasing number of papers that confirmed and expanded this concept 

(see also below). 

Although ATP is one of the key mediators in nociception, emerging evidence 

indicates that also other extracellular nucleotides (namely ADP, UTP and UDP), and 

nucleosides (adenosine) participate in the modulation of pain transmission (Liu & 

Salter, 2005; Burnstock, 2009a; Jarvis, 2010). Indeed, several P1 and P2 receptors have 

been found to be expressed by both neurons and glial cells involved in nociceptive 

transmission (Donnelly-Roberts et al., 2008; Burnstock, 2009a), and the effects of 

extracellular nucleotides on nociception are extremely complex and related to the 

specific receptor subtypes and/or their cellular localization. For instance, both P2X 

(e.g., P2X4) and P2Y (e.g., P2Y6,12) purinergic receptors are upregulated in activated 

microglia following nerve injury, and their pharmacological or biotechnological 

inhibition has been demonstrated to critically modulate the development and 

maintenance of neuropathic pain (Inoue, 2008; Tsuda et al., 2010). Another interesting 

pharmacological target involved in pain pathophysiology is the P2X7 channel, 

specifically expressed by SGCs in sensory ganglia. The purinergic P2 receptors 

therefore represent interesting targets in nociception, and the development of clinically 

administrable drugs will be of primary importance for successfully treating chronic pain 

diseases like migraine. 
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1.4.1 Role of P2X receptors in pain transmission 

Since the publication of early works demonstrating ATP involvement in pain (see 

above), the expression and function of P2X receptors in sensory neurons have been 

characterized. To date the most important P2X receptors subtypes implied in pain 

transmission are the P2X3 and P2X2/3 receptors subtypes, expressed by sensory neurons; 

the P2X4 receptor, expressed by CNS microglia; and the P2X7 receptor, expressed in 

sensory ganglia by SGCs (Burnstock, 2009b).  

 

P2X3 and P2X2/3 receptors  

The P2X3 receptor was originally cloned from the rat DRG, and was shown to be 

expressed by about the 40% of small to medium-sized nociceptive sensory neurons, 

together with P2X2/3 heteromultimer receptors. P2X3 receptors are expressed by IB4-

positive sensory neurons, colocalize with the vanilloid receptor subtype 1 (VR1), and 

only partially with the neuropeptide CGRP (Bradbury et al., 1998; Guo et al., 1999). 

P2X3 receptor subunits are synthesized in the cell bodies of sensory neurons and then 

transported both peripherally and centrally: peripheral expression contribute to ATP 

nociceptive sensory transmission, while the central projections of P2X3-positive 

neurons terminate in inner lamina II of the spinal cord (Vulchanova et al., 1998).  

Expression level and functional properties of P2X3 and P2X2/3 are dynamically 

modulated in different pain models. For instance, chronic inflammation induced by 

complete Freund's adjuvant (CFA) results in the upregulation of P2X3 or P2X2/3 

receptor expression and functionality in both in DRG and TG neurons (Xu & Huang, 

2002; Shinoda et al., 2005). Moreover, injury produced by the chronic constriction of 

the sciatic nerve produces a general increase of P2X3 receptor-positive DRG cells, in 

both small- and medium-sized neurons (Novakovic et al., 1999). By using an 

experimental model of trigeminal neuropathic pain, produced by the partial ligation of 

the infra orbital nerve, it was shown that the number of P2X3-immunoreactive neurons 

was significantly increased ipsillaterally, and the heat-related hyperalgesia development 

was inhibited by the peripheral injection of P2 receptors antagonists pyridoxal-

phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) and 2',3'-O-(2,4,6-trinitrophenyl) 

adenosine 5'-triphosphate (TNP-ATP; Shinoda et al., 2007). This evidence, together 

with others indicating a strong expression of P2X3 receptors in deep craniofacial nerve 
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terminals (Ambalavanar & Dessem, 2009), indicates this receptor as a potential target 

for developing novel therapies for trigeminal neuropathic pain, and possibly for 

migraine.  

The subcutaneous or intrathecal injection of the highly selective, stable and 

competitive P2X3/P2X2/3 antagonist, A-317491, effectively attenuated both formalin-

induced acute pain, and thermal hyperalgesia induced by intra-plantar CFA injection. 

Spinal delivery of A-317491 also reduces chronic neuropathic pain induced by the 

chronic constriction of the sciatic nerve, or by the L5/L6 spinal nerve ligation (Jarvis et 

al., 2002; McGaraughty et al., 2003). The selective knock down of P2X3 receptors 

expression by using antisense oligonucleotides (ASO) or RNA interference 

demonstrated a significant role for P2X3 receptor in both inflammatory and neuropathic 

pain. Indeed, the nociceptive behaviors observed after injection of formalin or α,β-

methylene-ATP (α,β-meATP) into the rat hind paw, the mechanical and thermal 

hyperalgesia induced by CFA, as well as the mechanical hyperalgesia and allodynia 

induced by nerve injury were significantly reduced by acute P2X3 gene knock down 

(Honore et al., 2002; Barclay et al., 2002; Dorn et al., 2004).  Finally, the physiological 

role of P2X3 receptor subunits in sensory transmission has been also studied using P2X3 

null mutant mice (Cockayne et al., 2000; Souslova et al., 2000). These animals respond 

normally to acute noxious thermal and mechanical stimuli, but display attenuated 

responses to non-noxious warm stimulation. Formalin-induced nociceptive behavior is 

attenuated in P2X3 null mice, thus providing a genetic evidence for the requirement of 

this receptor in acute inflammatory pain. However, in chronic inflammation induced by 

CFA, there is a paradoxical enhancement of thermal hyperalgesia in P2X3 null mice, 

which may be due to some unknown developmental compensatory changes (Souslova et 

al., 2000). Moreover, ATP-induced hyperalgesia is reduced but not eliminated in P2X3 

null mice, thus indicating that other P2 receptors are probably involved in these 

mechanisms (Cockayne et al., 2000; Souslova et al., 2000). 

A role for the P2X3 receptor during migraine has been also proposed. In fact 

application of migraine mediators, like NGF and the neuropeptide CGRP, enhanced 

P2X3 receptor conductance in cultured trigeminal sensory neurons (Fabbretti et al., 

2006; Giniatullin et al., 2008). Moreover, by using a mouse genetic model of FHM1 

(knockin for the R192Q mutation of the CACAN1A gene, see Paragraph 1.2.3), a 

significant increase in P2X3 receptor activity was found (Nair et al., 2010). The 
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molecular analysis of this mechanism revealed that P2X3 potentiation in these animals 

is due to increased calcium/calmodulin kinase II (CaMKII)-dependent activation of the 

phosphatase Calcineurin, and subsequent impairment of the phosphorylation state of the 

receptor. Although these studies require further investigations, it has been proposed that 

a strong P2X3 receptor activation might facilitate ATP-dependent migraine and sensitize 

trigeminal nociceptors (Nair et al., 2010). 

 

P2X4 receptors 

An initial clue indicating a role for P2X4 receptors in pain came from 

pharmacological investigations of pain behavior after nerve injury. Indeed, the 

pharmacological blockade of spinal P2X4 receptors reversed tactile allodynia caused by 

peripheral nerve injury, without affecting acute pain behaviors (Tsuda et al., 2003). 

Following nerve injury, the expression of P2X4 receptors increased specifically in spinal 

cord microglia, indicating that a tonic activation of this receptor is necessary for 

sustaining allodynia (Tsuda et al., 2003). Moreover, intraspinal administration of P2X4-

specific ASO decreased the induction of receptor expression, and suppressed tactile 

allodynia. Conversely, intraspinal administration of microglia in which P2X4 receptors 

had been induced and stimulated, produced tactile allodynia in naive rats. Therefore, 

P2X4 receptor activation in microglia is not only necessary but also sufficient to cause 

tactile allodynia (Tsuda et al., 2003). This hypothesis is substantially supported by 

recent findings showing that both mice treated spinally with a P2X4 ASO and mice 

lacking P2X4 show attenuated tactile allodynia after nerve injury (Tsuda et al., 2010).  

The mechanisms by which microglia are crucial for producing neuropathic pain 

involve signaling pathways from activated microglia to dorsal horn neurons. In this 

respect, studies on rats spinal cord slices revealed that spinal microglia stimulated by 

P2X4 receptors agonists cause neuropathic pain through a rise in intracellular [Cl-] in 

spinal lamina I neurons (Coull et al., 2005). This effect was shown to be mediated by 

activation of P2X4 receptors on microglial cells and the subsequent release of brain 

derived neurotrophic factor (BDNF; Trang et al., 2009). Accordingly, interference of 

signaling between BDNF and its receptor (TrkB) prevented tactile allodynia caused by 

peripheral nerve injury or by intrathecal administration of P2X4-stimulated microglia. 

Thus, these results indicate that P2X4-stimulated microglia release BDNF as a crucial 
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factor to signal to dorsal horn neurons, causing a collapse of their transmembrane anion 

gradient with a subsequent neuronal hyperexcitability (Trang et al., 2009).  

The above evidence indicates that the P2X4 subtype might be a potential 

therapeutic target to treat neuropathic pain. However, there are currently no antagonists 

to potently and selectively inhibit P2X4 receptors. It has been proposed that some 

antidepressants and anticonvulsants clinically used in patients with neuropathic pain 

have inhibitory effects on ATP-evoked Ca2+ response in cells expressing recombinant 

P2X4 receptors and primary cultured microglial cells (Nagata et al., 2009). Among the 

drugs used, paroxetine and fluvoxamine, but not citalopram, produced an anti-allodynic 

effect in an animal model of neuropathic pain, and this effect correlated with the 

potency of inhibition of rat P2X4 receptors. Interestingly, the anti-allodynic action of 

paroxetine is insensitive to 5-HT receptor antagonists, suggesting that this effect could 

be independent from the spinal 5-HT system, and could be mediated through a direct 

inhibition of P2X4 receptors (Nagata et al., 2009). It remains to be tested whether novel 

selective P2X4 antagonists will elicit analgesic effects in neuropathic and inflammatory 

pain states. 

 

P2X7 receptors 

In sensory ganglia, the P2X7 subunit has been demonstrated to be selectively 

expressed by SGCs (Kobayashi et al., 2005; Zhang et al., 2005; Chessell et al., 2005; 

Chen, et al., 2008). In non-neuronal cells from DRG, the pharmacological 

characterization of cell responses showed a rank order of potency for known P2X 

receptor agonists as follows: BzATP > ATP > α,β-meATP, and the inhibition of 100µM 

BzATP-evoked currents by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate 

(PPADS) and Mg2+ (Zhang et al., 2005). This pharmacological profile was consistent 

with the involvement of P2X7 receptors (Bianchi et al., 1999).  

In 2005, Chessell and coll. have shown that the P2X7 knock out mouse did not 

develop either mechanical allodynia or thermal hyperalgesia after inflammatory and 

neuropathic injury, while normal nociceptive processing was preserved (Chessell et al., 

2005). Interestingly, this receptor was found upregulated in DRGs and injured nerves 

from chronic neuropathic pain patients (Chessell et al., 2005). Given that P2X7 

stimulation is known to induce IL-1β release from macrophages/microglia and reactive 

astrocytes (Bianco et al., 2005; Sanz et al., 2009) and IL-1β levels were also strongly 
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upregulated in the inflamed paws following CFA intraplantar injection (Chessel et al., 

2005), it has been suggested that the P2X7 receptor subtype might play a pivotal role in 

the molecular cascade of events leading to inflammatory and neuropathic pain. In this 

context, growing evidence supports a role for P2X7 receptors as a "sensor of danger" 

that, by monitoring ATP extracellular levels, may participate to the modulation of IL-1β 

processing and release (Bianco et al., 2005; Ferrari et al., 2006). To further confirm this 

issue, systemic administration of selective P2X7 receptor antagonists, such as A-740003 

(Honore et al., 2006), and A-438079 (McGaraughty et al., 2007), was associated with a 

significant dose-dependent reduction of both allodynia and hyperalgesia in several 

animal models of neuropathic and inflammatory pain. The antinociceptive actions of A-

438079 were correlated to its ability to reduce both the evoked and the spontaneous 

firing of different classes of spinal neurons in neuropathic animals, and to inhibit the 

release of IL-1β (McGaraughty et al., 2007). Thus, these results would suggest a 

specific role for glial P2X7 receptors in neuron to glial cell interaction associated with 

ongoing pain (Zhang et al., 2005; Jarvis, 2010).  

 

 

1.4.2 Role of P2Y receptors in pain transmission: sensory ganglia  

In contrast to the abundance of data on the roles of P2X receptors in pain, only 

little and controversial information about the involvement of P2Y receptors in 

nociceptive transmission is known. However, these receptors are widely expressed in 

both neurons and glial cells of the PNS and CNS and therefore the comprehension of 

their nociceptive functions is of paramount importance for discovering new potential 

targets for pain therapy.  

In sensory ganglion neurons, P2Y receptors are located not only at the cell body, 

but also at the peripheral and central terminals (Gerevich & Illes, 2004; Burnstock, 

2009a). Here, their activity is integrated within the complex molecular network 

associated to the transmission of nociceptive signals to the CNS. For example, the 

preferential P2Y1 agonist ADP was found to inhibit the N-type voltage-activated 

calcium channels in rat DRG neurons. The outcome of this channels inhibition could be 

a decrease of sensory transmitters release from DRG terminals in the spinal cord, 

therefore diminishing the spinal pain transmission (Gerevich et al., 2004). P2Y receptor 
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expression on sensory terminals could also control ATP actions on P2X subtypes. In 

fact, P2Y1 and P2X3 receptors are often coexpressed in the same neuron (Ruan & 

Burnstock, 2003), and functional studies in DRG showed that P2Y1 receptor activation 

leads to P2X3 receptor inhibition (Gerevich et al., 2005; Chen et al., 2008). P2Y 

receptors can also modulate neuropeptide release; indeed, the P2Y2-4 preferential 

agonist UTP was found to induce release of CGRP from the rat DRG neurons (Sanada 

et al., 2002). Others studies failed to demonstrate a direct release of CGRP by UTP, but 

rather an enhancement of acid buffer solutions and capsaicin evoked neuropeptide 

release (Zimmerman et al., 2002; Huang et al., 2003). 

In sensory ganglia, P2Y receptors undergo significant changes on their expression 

levels after neuropathic or inflammatory conditions. It has been shown that after 

peripheral axotomy of the sciatic nerve in rat, P2Y1 mRNA is upregulated in DRGs 

(Xiao et al., 2002). Additionally, P2Y2 mRNA levels were strong upregulated after CFA 

injection in the hindpaw, while P2Y2-4-6 RNAs were downregulated (Malin et al., 2008). 

After CFA-induced inflammation, only WT mice showed hyperensivity to noxious heat, 

while P2Y2
-/- mice failed to develop thermal hyperalgesia. On the contrary, there were 

no differences in the extent of mechanical allodynia between WT and P2Y2
-/- mice 

(Malin et al., 2008). These results demonstrate that neuronal P2Y2 receptor subtype is 

specifically involved in thermal nociceptive transmission. It has been also demonstrated 

that receptor subtypes that are expressed but not functional upon basal conditions (e.g., 

P2Y14), are upregulated under specific chronic pathological painful situations (Vega-

Avelaira et al., 2009). These receptors could therefore represent innovative drug targets 

with an ideal therapeutic profile, since their pharmacological manipulation should not 

interfere with physiological transmission. 

Very few data are available on the role of the P2Y receptor family in SGCs. In 

DRG, in situ hybridization histochemistry (ISHH) studies detected mRNA expression 

only for the P2Y12 and P2Y14 receptor subtypes on these cells (Kobayashi et al., 2006). 

However, immunofluorecence studies showed staining for P2Y1 on both neurons and 

SGCs (Chen et al., 2008). Immunofluorescence staining also indicated the selective 

expression of P2Y4 on SGCs from both mouse and rat TG (Weick et al., 2003; Vit et al., 

2006). Unfortunately no functional studies, which could help clarifying this issue, are 

available for DRG-derived SGCs. Calcium imaging experiments on intact trigeminal 

ganglia revealed that application of ATP and UTP caused functional raises in [Ca2+]i in 
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almost all SGCs (Weick et al., 2003). This effect persisted in nominally Ca2+-free 

extracellular solution, but was blocked by cyclopiazonic acid, an inhibitor of 

intracellular Ca2+ release from the endoplasmic reticulum. These experiments confirmed 

that ATP/UTP responses on SGCs were due to functional P2Y receptors, likely the 

P2Y2/P2Y4 receptor subtypes (Weick et al., 2003). Moreover, [Ca2+]i increases were 

observed in SGCs after application of adenosine 5'-[β-thio]-diphosphate (ADPβS) and 

2-methylthio adenosine 5'-diphosphate (2MeSADP), two P2Y1 receptor selective 

agonists (Abbracchio et al., 2006), therefore suggesting that P2Y1 receptors are also 

expressed and functional in these cells (Weick et al., 2003). In conclusion, also SGCs 

from TG bear a wide panel of functional P2Y receptors, thus suggesting a primary role 

for nucleotides in modulating cell-to-cell communication in sensory ganglia.  

As already mentioned in Paragraph 1.1.3, SGCs form a morphological and 

functional unit together with sensory neurons (Hanani, 2005). Recent evidence suggests 

that, within this functional unit, a non-synaptic cross communication between neurons 

and SGCs can increase the excitability of both primary afferents and centrally 

projecting neurons, leading to the development of hyperalgesia and allodynia (Takeda et 

al., 2009). The P2 purinergic receptors expressed by SGCs participate primarily to this 

bidirectional neuron-glial communication inside the sensory ganglia. Indeed, a seminal 

work by Zhang and coll. (Zhang et al., 2007) reported that the electrical stimulation of 

DRG neurons elicited robust vesicular ATP release from their somata. The rate of ATP 

release was dependent on the frequency of nerve stimulation, and on the entry of 

external Ca2+ into the neuron. In addition, released ATP could activate P2X7 receptors 

on SGCs, leading to the release of TNFα, which in turn potentiated P2X3-mediated 

ATP currents in neurons (Zhang et al., 2007). The purinergic signaling pathways 

activated in SGCs might therefore represent interesting pharmacological targets to be 

exploited for the development of new analgesic strategies. 

 

1.4.3 Role of P2Y receptors in pain transmission: CNS  

There are only few and relatively controversial data on the presence and functions 

of P2Y receptors in spinal cord (Jarvis, 2009; Tsuda et al., 2009). For instance, 

intrathecal administration of UTP and UDP elevated the mechanical nociceptive 

threshold and prolonged the thermal nociceptive latency in uninjured rats. Moreover, 
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following partial ligation of the sciatic nerve UTP and UDP produced significant anti-

allodynic effects, thus suggesting an antinociceptive role for the P2Y2, P2Y4 and P2Y6 

receptor subtypes (Okada et al., 2002). Surprisingly, this study contrasts with a more 

recent data showing that the intrathecal delivery of suramin (a non-selective P2Y2 and 

P2Y4 receptor antagonist) blocks microglia activation and long-term hyperalgesia 

induced by formalin injection, therefore suggesting that a block, rather than an 

activation,  of P2Y receptors con provide pain relief following inflammatory conditions 

(Wu et al., 2004).  

Contrasting data notwithstanding, it seems clear that purinergic receptors 

expressed by microglial cells critically participate to the genesis and maintenance of 

neuropathic pain. Several purinoceptors are expressed by microglial cells, including the 

P2X4, P2X7, P2Y6, and P2Y12 receptor subtypes (Inoue & Tsuda, 2009). Besides the 

prominent roles of the P2X4 subtype (see previous paragraph), recent studies have 

revealed that the P2Y12 receptor is also crucial for neuropathic pain. Both the expression 

of P2Y12 receptor mRNA and protein are markedly enhanced in microglial cells of the 

ipsilateral spinal cord following nerve injury (Tozaki-Saitoh et al., 2008) or partial 

ligation of the sciatic nerve (Kobayashi et al., 2008). Interestingly, administration of 

P2Y12 receptor antagonists, such as Cangrelor (intrathecally) or Clopidogrel (orally), as 

well as antisense oligonucleotide for P2Y12 receptors, significantly suppressed the 

development of neuropathic pain after spinal nerve injury (Tozaki-Saitoh et al., 2008) 

and partial sciatic nerve injury (Kobayashi et al., 2008). Furthermore, mice lacking 

P2Y12 receptors displayed impaired tactile allodynia after nerve injury without any 

change in basal mechanical sensitivity (Tozaki-Saitoh et al., 2008). The P2Y12 and P2X4 

receptor subtypes have been identified as primary sensors for ATP-mediated 

chemotaxis in microglia (Inoue & Tsuda, 2009), and P2Y12 receptors are also 

implicated in the motility of microglial cells (Haynes et al., 2006). The strategic 

importance in P2Y12 receptor targeting is due to its restricted expression in the CNS. In 

fact, this receptor is specifically localized to brain and spinal cord resident microglia, 

but not in peripheral macrophages (Haynes et al., 2006). Therefore, the P2Y12 receptor 

subtype could be considered as a molecular switch to specifically inhibit microglial cell 

activation, and possibly, chronic pain.  

Microglial cells also express P2Y6 receptors, and their expression markedly 

increases in the spinal cord after peripheral nerve injury (Koizumi et al., 2007). It has 
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been also found that UDP, an agonist for P2Y6 receptors, facilitated phagocytosis in 

primary cultured microglial cells. The P2Y6 receptor can be thus considered a sensor for 

microglial cell phagocytosis by sensing diffusible UDP signals (Koizumi et al., 2007); 

unfortunately its role under neuropathic pain conditions still remains unknown. 
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Migraine is a highly disabling neurovascular disorder, affecting about 15% of 

adults in the Western World, which is characterized by spontaneous and recurrent 

attacks of unilateral headache with associated autonomic symptoms. Its socio-economic 

implications have a considerable impact on both productivity and quality of life, and it 

has been estimated to be the most costly neurological disorder in the European 

Community (Goadsby, 2007). Accordingly, it is now ranked at the 19th place among all 

worldwide diseases causing disability by the World Health Organization (Lipton et al., 

2004). Despite the strong progresses made in recent years, there is still ongoing debate 

about the mechanisms leading to the generation of migraine pain. Consistently, the 

pharmacological treatment of migraine still remains unsuccessful for a significant 

number of patients. For this reason, new efforts in the study of its pathophysiological 

mechanisms, in the discovery of innovative pharmacological targets, and in the 

developing of new effective drugs are strongly needed. 

As mentioned in Paragraph 1.1.2, the trigeminal ganglia (TG) are the location of 

primary afferent neurons for sensing and relaying nociceptive sensations associated 

with painful conditions, such as dental pain, trigeminal neuralgia, and 

temporomandibular disorders (Fried et al., 2001). Importantly, the peripheral 

sensitization of sensory neurons in the TG and the concomitant increased release of 

neurovascular mediators, like the Calcitonin Gene-Related Peptide (CGRP), are also 

thought to play an important role in migraine (Messlinger, 2009). Sensory neurons in 

the TG act in strict synergy with non-neuronal satellite glial cells (SGCs), which 

envelop neuronal bodies to constitute a functional unit within the ganglion (Hanani, 

2005). Recent evidence suggests that, within this functional unit, a non-synaptic cross 

communication between neurons and SGCs can increase the excitability of both primary 

and CNS neurons, leading to the development of hyperalgesia and allodynia (Takeda et 

al., 2009). Although various pro-inflammatory mediators are released in the TG 

(Takeda et al., 2009), the whole molecular network at the basis of this neuron-to-SGCs 

interplay, and its involvement in migraine pain mechanisms, is still largely unknown. 

Therefore, the identification of the signalling molecules controlling neuron-to-glia 

communication could help finding new potential strategies to modulate pain 

transmission and, possibly, to yield new pharmacological targets to prevent or abort 

migraine attacks. 
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Starting from the first observations that ATP injection into the human skin elicited 

pain (Bleehen and Keele, 1977; Krishtal et al., 1983), several studies progressively 

indicated that the purinergic system plays a crucial role in the transmission and 

integration of pain sensation. Besides ATP, emerging evidence indicates that also other 

extracellular nucleotides (ADP, UTP and UDP), and nucleosides (adenosine) participate 

in the modulation of pain transmission (Liu & Salter, 2005; Burnstock, 2009a; Jarvis, 

2010). The most studied and characterized receptors involved in nociception are the 

P2X3 and the P2X2/3 receptor channels, which are expressed by neurons in sensory 

ganglia, and play a fundamental role in transducing ATP-mediated painful signals 

(Burnstock, 2009a). However, a role for G protein-coupled P2Y receptor subtypes in 

nociception is also emerging (Jarvis, 2010). These receptors are widely expressed by 

both neurons and glial cells of the PNS and CNS, and undergo significant changes in 

their expression levels after neuropathic or inflammatory conditions (Jarvis, 2010). 

However, most of the currently available information on P2Y receptors in nociception is 

based on results obtained from dorsal root ganglia (Burnstock, 2009b), or from the 

spinal cord (Tsuda et al., 2010). Therefore, deciphering the nociceptive functions of 

P2Y receptors in TG is of paramount importance for discovering new potential targets 

for migraine therapy.  

On this basis, the first objectives of my study have been aimed at setting up an in 

vitro model of primary mixed neuron-glia cultures from mouse TG, and at evaluating 

the presence and functionality of P2 receptors in both neurons and SGCs. To evaluate 

the presence of the specific P2 receptor subtypes, I have utilized RT-PCR analysis and 

single cell calcium imaging by applying subtype-selective P2 ligands. Since very few 

data are available on the role of the P2Y receptor family in SGCs (Villa et al., 2010), 

peculiar attention has been given to the characterization of P2Y receptors in this cell 

population. I have also evaluated changes in P2Y receptors calcium transients in vitro 

after acute or long-term treatments with Bradykinin and CGRP, two mediators involved 

in migraine neurobiology (See Paragraph 1.2.2; Pietrobon, 2005).  

One of the most important features of the pathophysiology of migraine is its 

inherited nature. However, only few specific genes have been correlated with migraine. 

This is the case of the Familial Hemiplegic Migraine (FHM) which is caused by 

mutations of specific genes: the α1 subunit of the Cav2.1 (P/Q) type voltage-gated Ca2+ 

channel (CACNA1A), causing the FHM type-I; the ATP1A2 gene, causing the FHM 
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type-II; and the Na+ channel SCN1A, causing the FHM type III (Goadsby, 2007). We 

have taken advantage of a genetic mouse model of FHM1, carrying the R192Q 

missense mutation in the α1 subunit of CaV2.1 calcium channels (van den Maagdenberg 

et al., 2004), and we have looked for possible alterations in purinergic signaling in TG 

cultures that could have implications for migraine pathophysiology. 

The last part of my PhD project has been aimed at setting up in vivo models of 

pain, as tools for evaluating the roles of specific P2Y receptors expressed by glial cells. 

I have initially set up a model of acute pain, based on the injection of formalin into the 

upper lip of mice, and I have looked for changes in pain behavior after double-stranded 

RNAs mediated silencing of the P2Y4 receptor subtype, which is selectively expressed 

by SGCs in the TG.  

As for migraine pain, chronic pain is still a difficult to manage and disabling 

condition, despite great efforts in the last decades towards the understanding of its 

pathophysiology, and the development of new drugs. The reason for this failure may be 

partially due to the fact that most of the available drugs target neurons (Dworkin et al., 

2010), whereas increasing evidence now indicates that glial cells in both sensory 

ganglia and CNS also play an important role in chronic pain genesis (McMahon & 

Malcangio, 2009). A well-established model of inflammatory pain, which shares several 

characteristics with migraine-associated TG sensitization (Ballegaard et al., 2008; Taub 

et al., 2008), is based on the injection of pro-inflammatory mediators (e.g., the 

Complete Freund’s Adjuvant, CFA) in the temporomandibular joint (TMJ). TMJ 

inflammation potentiates the excitability of both primary and secondary neurons, and 

leads to increased neuron-to-SGC communication within the TG (Iwata et al., 1999; 

Thalakoti et al., 2007). However, no studies have explored the reaction of glial cells in 

the whole spinal-trigeminal system following induction of TMJ inflammation so far. 

Therefore, we have characterized the reaction of PNS and CNS glial cells to the 

injection of CFA into the rat TMJ and, finally, we have evaluated expression changes 

for the P2Y12 receptor subtype, which is selectively expressed by CNS microglia, and 

participates actively in chronic pain development (see Paragraph 1.4.3). This model of 

sub-chronic inflammation will allow us to evaluate the role of specific P2Y receptor 

subtypes, expressed by glial cells, in the development and maintenance of chronic 

trigeminal pain and migraine-associated pain. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. METHODS 
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3.1 CELL CULTURES  

Primary mixed neuron-satellite glial cells (SGCs) cultures were prepared from 

trigeminal ganglia (TG) of wild type C57Bl/6J mice (Charles River lab, Calco, Italy) or 

of transgenic CaV2.1 α1 R192Q mutant KI mice at postnatal day 11 (P11; van den 

Maagdenberg et al., 2004), as previously described (Ceruti et al., 2008) (see Figure 

3.1A for a schematic protocol). Briefly, after decapitation TG were rapidly excised and 

dissociated in 0.25 mg/ml trypsin, 1 mg/ml collagenase and 0.2 mg/ml DNAse (Sigma-

Aldrich, Milan, Italy) in F12 medium (Invitrogen, Gibco, Italy) at 37oC. Enzymes were 

then inactivated by adding 10% fetal calf serum and 0.125 mg/ml trypsin inhibitor 

(Sigma-Aldrich). Cells were centrifuged at 1,000 rpm for 5 min, resuspended in F12 

medium +10% fetal calf serum and plated onto poly-L-lysine-coated 24 mm-diameter 

glass coverslips. Experiments involving primary mixed neuron-SGCs cultures were 

performed 48 h after plating. A representative field of primary mixed neuron-SGCs 

cultures is shown in Figure 3.1B.  

SGCs purified cultures were prepared from mixed cultures at day 6 in culture, 

after replacing culture medium at days 1 and 3 (Figure 3.1A). At day 6, cells were 

detached from the Petri dish by a 5-min treatment with 0.5%-trypsin/0.2%-EDTA 

(Sigma-Aldrich, Milan, Italy) at 37°C, resuspended in fresh culture medium, and 

replated onto uncoated wells or 24 mm diameter coverslips. This procedure completely 

removed all neurons without affecting SGCs adhesion and growth (England et al., 2001; 

Capuano et al., 2009). The culture medium was replaced 24 hours later, and 

experiments were performed after additional 24 hours. A representative field of purified 

SGCs cultures is shown in Figure 3.1C. 
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Figure 3.1 

Schematic experimental protocol for trigeminal cultures preparation.  
A, Primary mixed neuron-SGCs cultures were prepared from trigeminal ganglia of P11 wild type 
C57Bl/6 mice or of transgenic CaV2.1 α1 R192Q mutant KI mice (see text for more details). B, 
Representative picture showing primary mixed neuron-glia trigeminal cultures 48h after plating. NeuN-
positive neurons are shown in green. C, Representative picture showing purified SGCs cultures 8 days 
after plating. Using our purification protocol (see text for more details), neurons were completely 
removed, as demonstrated by the lack of NeuN staining. In all pictures, nuclei were stained with the 
Hoechst 33258 dye. Scale bars: 50 μm. 
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3.2 PHARMACOLOGICAL TREATMENTS 

Both primary mixed and purified SGCs cultures were exposed to 100 nM BK 

(Sigma-Aldrich), or 1 µM CGRP (Tocris Bioscience, Bristol, UK) for the indicated time 

periods (see Results and Figures). In selected experiments, the CGRP receptor 

antagonist, CGRP8-37 (2 µM; Tocris Bioscience), or the ERK1/2 inhibitor PD98059 (50 

µM; Sigma-Aldrich), were added to the culture medium 30 min before CGRP or BK 

application. Parallel control cells were treated with vehicle (Ham’s F-12) alone. 

For single cell calcium measurements, the following pharmacological agents were 

tested: αβ-methylene-ATP (αβ-meATP; 100 μM), ADP (10 and 100 μM), UTP (10 and 

100 μM), UDP (100 µM), UDP-glucose (100 μM), N6-methyl-2-deoxyadenosine 3',5'-

bisphosphate (MRS2179; 100 μM), Cangrelor (10 μM), Reactive-blue-2 (RB-2, 100 

μM), Suramin (100 μM). All reagents were obtained from Sigma-Aldrich, except for 

Cangrelor that was a kind gift of The Medicines Company, Parsippany, NJ, USA.  

 

 

3.3 IMMUNOCYTOCHEMISTRY 

Cell cultures were fixed at room temperature for 25 min with 4% 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS; Euroclone, Milan, Italy) 

containing 0.12 M sucrose. Cells were subsequently incubated for 20 min at room 

temperature with Goat Serum Dilution Buffer (GSDB; 450 mM sodium chloride and 20 

mM sodium phosphate buffer, pH 7.4, 15% goat serum, and 0.3% Triton X-100), before 

exposure to the primary antibodies diluted in GSDB. The following primary antibodies 

were utilized: rabbit anti-CGRP (1:800; Enzo Life Sciences AG, Lausen, Switzerland), 

mouse anti-β-Tubulin-III (β-TubIII; 1:500; Promega, Milan, Italy), mouse anti-

glutamine synthetase (GS, 1:100; Millipore, Vimodrone, Italy), mouse anti-vesicle 

associated membrane protein 2 (VAMP2; 1:300; Synaptic Systems, Göttingen, 

Germany), rabbit anti-P2X3 (1:250 o/n at 4°C; Alomone Labs, Jerusalem, Israel), mouse 

anti-2'3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase, 1:100, 1 hour room 

temperature; Chemicon). Bandeireae simplicifolia isolectin B4 directly conjugated to 

fluorescein isothiocyanate (FITC-IB4, 1:100; Sigma-Aldrich) was also utilized. After an 

overnight incubation at 4°C, cells were rinsed three times for 10 min in a high salt 



Methods 

 59

buffer solution (500 mM sodium chloride and 20 mM sodium phosphate buffer, pH 

7.4), and then incubated (1 hour, room temperature) with secondary goat anti-rabbit and 

goat anti-mouse antibodies conjugated to AlexaFluor®488 or AlexaFluor®555 (1:600 in 

GSDB; Molecular Probes, Invitrogen, Milan, Italy). Subsequently, nuclei were labeled 

with the fluorescent dye Hoechst-33258 (1:10,000 in PBS, Molecular Probes, 

Invitrogen). Cells were rinsed three times in high salt buffer, once in PBS, and finally 

once in 5 mM sodium phosphate buffer, pH 7.4. Coverslips were mounted with 

Fluorescent Mounting Medium (Dako, Milan, Italy), and analyzed using an inverted 

fluorescence microscope (200M; Zeiss, Milan, Italy) connected to a PC computer 

equipped with the Axiovision software (Zeiss). The same software also enabled us to 

measure neuron diameters. Non-specific staining was evaluated on coverlips where the 

primary antibodies were omitted from the staining procedure.  

 

 

3.4 IMMUNOHISTOCHEMISTRY  

3.4.1 Tissue processing 

Naïve mice or rats injected with saline or CFA (see Paragraph 3.9) were 

anesthetized with intraperitoneal injection of 400 mg/kg chloral hydrate and 

transcardially perfused with 4% formalin fixative. Intact brains and TGs were excised, 

postfixed in 4% formalin for 60-90 min, and cryoprotected in 30% sucrose for at least 

48 hours. The left and right TG from each animal were embedded together in mounting 

medium (OCT; Tissue Tek, Sakura Finetek, Zoeterwoude, The Netherlands), and cut 

longitudinally on a cryostat at 15 μm thickness. Brainstems were separate from the rest 

of the brain, and marked ventrally on the contralateral side to subsequently identify 

tissue orientation. Transverse 40 μm thick free-floating sections were then cut on a 

cryostat. 

 

3.4.2 Immunostaining of tissues 

Free-floating brainstem sections or on-slide TG sections were incubated for 45 

min at room temperature in PBS containing 10% normal goat serum (Sigma-Aldrich, 

Milan, Italy) and 0.1% Triton X-100 (Sigma-Aldrich), and then overnight at room 

temperature with the primary antibodies listed in Paragraph 3.3 with the addition of: 
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rabbit anti-glial fibrillary acidic protein (GFAP, 1:600; Dako, Milan, Italy), mouse anti-

NeuN (1:500; Millipore, Vimodrone, Italy), rabbit anti-ionized calcium binding adaptor 

molecule 1 (Iba1, 1:800; Biocare Medical, Space Import-Export, Milan, Italy), rabbit 

anti-P2Y12 receptor polyclonal antiserum (1:1,500; a generous gift by Prof. David 

Julius, University of California San Francisco, CA, USA), and mouse anti-ED1 (1:200; 

Serotec, Space Import-Export).  

For fluorescence analysis, sections were then rinsed three times with PBS, and 

incubated for 1 h at room temperature with goat anti-rabbit and goat anti-mouse 

secondary antibodies conjugated to AlexaFluor®488 or AlexaFluor®555 fluorochromes 

(1:600; Molecular Probes, Invitrogen, Milan, Italy). Nuclei were subsequently labeled 

with the fluorescent dye Hoechst 33258 (1:10,000 in PBS; Molecular Probes). Slides 

were finally washed, mounted with Fluorescent Mounting Medium (Dako), and 

examined with a laser scanning confocal microscope (LSM 510; Zeiss, Jena, Germany). 

Images were acquired and analyzed using the LSM Image Browser software (Zeiss). 

For light microscopy, sections were incubated for 1h at room temperature with an 

anti-rabbit biotinylated secondary antibody (1:500; PerkinElmer, Monza, Italy), and 

then with horseradish peroxidase (HRP)-conjugated streptavidin (1:400, 45 min at room 

temperature; PerkinElmer). To visualize the antibody-antigen complex, the nickel- 3,3'-

diaminobenzidine (Sigma-Aldrich) protocol was used. Sections were mounted with the 

DPX mountant for histology (Sigma-Aldrich), and analyzed with an inverted 

microscope (Axiovert 200; Zeiss) equipped with a color CCD camera (AxioCam HRc; 

Zeiss), connected to a PC computer equipped with the software Axiovision (Zeiss).  

All antibodies were diluted in PBS containing 0.1% Triton X-100 and 1% normal 

goat serum. 

 

3.4.3 Quantification of results and data analysis 

Quantitative analysis of the number of Iba1+ macrophages in TGs was performed 

by using the NIH Image-J software on digital images of immunolabeled sections, 

captured at 10x magnification. A stack of all acquired images was created, and the 

threshold was set to a level that included all Iba1 immunopositive pixels but not the 

lighter background pixels. Both the number and the size of Iba1+ cells, distributed in the 

V1, V2 and V3 divisions, were then automatically measured. The number of positive 

cells has been normalized to the area of measurement.  
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ED1-immunoreactivity in the TG, and GFAP-, Iba1- and P2Y12 receptor-

immunoreactivity in the brainstem was assessed by densitometric analysis. A digital 

image of the immunolabeled sections was acquired at 20x or 10x magnification for TG 

or brainstem, respectively, and the threshold for the positive staining was set as 

described above. The number of immunostained pixels was then automatically counted 

by using the NIH Image-J software. For GFAP, Iba1 and P2Y12 receptor 

immunostaining, the mean pixel intensity values were expressed as fold increase 

compared to the contralateral side of saline injected animals set to 1.0.  

Two sections for each TG or brainstem and for each antibody were analyzed. To 

avoid variability in the staining procedure, all the sections to be compared were 

immunostained together, and images were acquired under the same exposure 

conditions. The anatomical structures in the brainstem and spinal cord were identified 

with reference to a rat brain atlas (Paxinos & Watson, 1986). 

 

 

3.5 INTRACELLULAR CALCIUM MEASUREMENTS 

Cultures were loaded for 45 min at 37°C with 2 μM Fura-2 pentacetoxy 

methylester in Krebs-Ringer solution buffered with HEPES (KRH; 125 mM NaCl, 5 

mM KCl, 1.2 mM MgS04, 2 mM CaC12, 10 mM glucose, and 25 mM HEPES/NaOH, 

pH 7.4), as previously described (Ceruti et al., 2008), and transferred to the recording 

chamber of an inverted microscope (Axiovert 100TV; Zeiss) equipped with a calcium 

imaging unit. Polychrome IV (TILL Photonics, Germany) was used as light source. 

Fura-2 fluorescence images were collected with a CCD camera Imago-QE (Till 

Photonics), and analyzed with the Tillvision 4.0.1 software.  

Fura-2 is a ratiometric fluorescent dye which binds to free intracellular calcium. 

The Fura-2-Ca2+ complex adsorbs the light at 340nm, while the free form of Fura-2 

adsorbs at 380nm. Application of stimuli increasing the intracellular calcium 

concentration ([Ca2+]i), evoke an increase in light absorption at 340nm and a decrease at 

380nm. Calcium concentrations are estimated by measuring the emitted light after 

excitation at 340 and 380 nm wavelengths, and by calculating the F340/380 

fluorescence ratio. A representative calcium imaging experiment, showing the [Ca2+]i 

increase after application of 100µM ATP or 50mM KCl, is shown in Figure 3.2. In our 
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settings, recordings were usually made at 1 ratio/s, and were increased up to 8 ratios/s 

upon stimulation with αβ-meATP. Neurons were identified by their peculiar 

responsiveness to 50 mM KCl. The total number of cells analyzed for any given 

condition is indicated as “n”.  
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Figure 3.2 

Representative series of pictures from a Calcium imaging experiment.  
A-C, representative series of pseudocolor images of Fura-2-loaded cells under basal conditions (basal, 
A), and after application of 100µM ATP (B) or 50mM KCl (C). The latter is utilized as a depolarizing 
agent to identify neurons. Graded colors from blue to green and yellow indicate the increase in F340/380 
ratio. Scale bar: 15 µm. D, representative temporal plot of [Ca2+]i changes recorded from the  two cells 
circled in A-C, and stimulated with 100 µM ATP followed by 50mM (blue circle: neuron, indicated by the 
blue trace, and responding to KCl; red circle: SGC, indicated by the red trace). 
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3.6 TOTAL RNA ISOLATION AND RT-PCR ANALYSIS 

Total RNA was extracted using the TRIZOL® reagent (Invitrogen) according to the 

manufacturer's instructions. Total RNA was then pre-treated with RQ1 DNase 

(Promega) for eliminating genomic DNA contamination. Retrotranscription of 1μg 

RNA was performed with Superscript II RNaseH Reverse Transcriptase (200U per 

sample; Invitrogen) using 100 pmoles of random hexamers or OligodT (Applied 

Biosystems) as primers. Aliquots of total cDNA (1-2μl) were amplified in each PCR 

assay with Platinum Taq DNA polymerase (1.25U per sample; Invitrogen) in a 25μl 

reaction mixture containing 20 pmoles of primer pair, in a standard PCR buffer (50mM 

KCl, 1.5mM MgCl2, 20mM Tris–HCl, pH 8.4). For cDNA, control samples which did 

not undergo reverse transcription (indicated as -RT) were processed in parallel with the 

same experimental protocol to check for contamination of RNA with genomic DNA. 

Amplifications were performed in a GeneAmp 9700 thermal cycler (Applied 

Biosystems, Milan, Italy) for 35 cycles (typically 94 °C/45 sec; 45 sec at an the optimal 

annealing temperature for each primer pair, see Table 3.1; 72 °C/45 sec), after an initial 

denaturation at 94 °C for 2 min. The primer pairs used for detecting the RNAs of 

interest via PCR amplification, and designed with the software Oligo 4.0, are reported 

in Table 3.1. Amplified products were size-separated by electrophoresis on a 1.5% 

agarose gel with ethidium bromide, and visualized under an UV light. 
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Table 3.1: Primer sequences, annealing temperatures and expected molecular weight 
of the detected PCR products.  

Gene Primers Ta 
(°C) 

cDNA 
(bp) 

Accession 
number 
(Gene Bank) 

β-Actin S   5’-TGACGGGGTCACCCACACTGTGCCCATCTAC-3’ 
A   5’-CTAGAAGCATTGCGGTGGACGATGGAGGG-3’ 55.0 661 NM_007393 

β-TubIII S   5’-CTTCCAGCTGACACACTCAC-3’ 
A   5’-AGACACAAGGTGGTTGAGGT-3’ 56.5 295 NM_023279 

B1 S   5’- TCCTGTCCTTCTTCCTTTTG -3’ 
A   5’- CCATTGTCTTGCTGTCCTTG -3’ 57.4 600 NM_007539.2 

B2 S   5’- TTCACCAACGTGCTGCTGAAC -3’ 
A   5’- ACTGTTTCTTCCCTGCCCAGTC -3’ 60.0 508 NM_009747.2 

RAMP1 S   5’- GACGCTATGGTGTGACT -3’ 
A   5’- AGTGCAGTCATGAGCAG -3’ 57,4 249 NM_007588.2 

CLR S   5’- TGCTGGAATGACGTTGCAGC -3’ 
A   5’- GCCTTCACAGAGCATCCAGA -3’ 54,1 483 NM_016894.3 

P2X1 
S   5’-GTTTGGGATTCGCTTTGA-3’ 
A   5’-TCAGGAAGGGAAGTGTGG -3’ 55.8 452 NM_008771 

P2X2 
S   5’-GGTGGAGGATGGGACTTC-3’ 
A   5’-ATGGTGGGAATGAGACTG-3’ 53.1 498 AB094664 

AB094663 

P2X3 
S   5’-ACTTTGTGGGGTGGGTTT-3’ 
A   5’-GCTGCCATTCTCCATCTT-3’ 55.6 767 NM_145526 

P2Y1 
S   5’-CCTGCGAAGTTATTTCATCTA-3’ 
A   5’-GTTGAGACTTGCTAGACCTCT-3’ 51.6 319 NM_008772 

P2Y2 
S   5’-GCAGCATCCTCTTCCTCACCT-3’ 
A   5’-CATGTTGATGGCGTTGAGGGT-3’ 60.2 503 NM_008773 

P2Y4 
S  5’- CTTTGGCTTTCCCTTCTTGA -3’ 
A  5’- GTCCGCCCACCTGCTGATGC -3’ 57.2 492 NM_020621 

P2Y6 
S   5’-CGCTTCCTCTTCTATGCCAA-3’ 
A   5’-GTAGGCTGTCTTGGTGATGTG-3’ 59.6 480 AF298899 

P2Y12 
S   5’-CCGCTACCTGAAGACCACCA-3’ 
A   5’-GTTCGCCACCTTCTTGTCCTT-3’ 55.1 641 NM_027571 

P2Y13 
S   5’-CAGGGACACTCGGATGACA-3’ 
A   5’-CACCGCATAAAACAGAAGC-3’ 55.4 577 NM_028808 

P2Y14 
S   5’-GTCTCTGCCGTCATCTTCT-3’ 
A   5’-GGGTCCAGACACACATTG-3’ 54.3 591 NM_133200 
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3.7 WESTERN-BLOTTING ANALYSIS 

Whole-cell lysates were prepared and analyzed by Western blotting as previously 

described (Bianco et al., 2005). Briefly, approximately 30 μg aliquots from each protein 

sample were loaded on 11% sodium-dodecylsulphate polyacrylamide gels, and blotted 

onto nitrocellulose membranes (Bio-Rad Laboratories, Milan, Italy). Filters were then 

saturated with 10% non-fat dry milk in Tris-buffered saline (TBS; 1 mM Tris-HCl, 15 

mM NaCl, pH 8) for 1 h at RT, and incubated overnight at 4°C with mouse anti-

phospho-ERK1/2 (p-ERK1/2) and rabbit anti-ERK1/2 primary antibodies (1:500 and 

1:1,000 in 5% non-fat dry milk in TBS respectively; Cell Signaling, Danvers, MA, 

USA). Filters were then washed in TBS-T (TBS plus 0.1% Tween20®), incubated for 1 

h with goat anti-rabbit or anti-mouse secondary antibodies conjugated to horseradish 

peroxidase (1:4,000 or 1:2,000 in 5% non-fat dry milk in TBS respectively; Sigma-

Aldrich). Detection of proteins was performed by enhanced chemiluminescence (ECL, 

Amersham Biosciences, Milan, Italy) and autoradiography. Non-specific reactions were 

evaluated by in the presence of the secondary antibodies alone. 

 

 

3.8 ANALYSIS OF CGRP RELEASE BY ENZYME IMMUNO-ASSAY   

Basal and stimulated extracellular CGRP concentrations were evaluated in 

primary mixed cultures after 48 h in vitro. For each sample, basal CGRP levels were 

measured after a 15-min incubation with fresh culture medium (see above), which was 

then removed, stored for subsequent analysis, and replaced with culture media alone 

(CTR), or containing 100 nM BK. After 1 hour at 37°C, culture medium was collected, 

samples were centrifuged at 1,200 rpm for 5 min, and the supernatants processed for 

CGRP evaluation. Maximal CGRP released was evaluated by a 15 min incubation with 

50 mM KCl. A commercial Enzyme Immunometric Assay (EIA) kit for rat CGRP 

(SPIbio, Montigny-le-Bretonneux, France) was utilized, following manufacturer’s 

instructions. We validated the use of this EIA kit for the measurements of mouse CGRP 

by verifying the homology between the mouse and rat mature α-CGRP peptide 

sequences (UniProtKB database; www.uniprot.org), which was found to be 100%. 

Samples were analyzed at a 415 nm wavelength with a microplate reader (iMarkTM, 
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Bio-Rad Laboratories). CGRP concentrations in pg/ml were extrapolated from a best-fit 

line calculated from serial dilutions of a CGRP sample standard. 

 

 

3.9 IN VIVO EXPERIMENTS 

3.9.1 Animals 

Experiments were performed on adult male Sprague-Dawley rats (200 - 250 g) or adult 

C57Bl/6J mice (30 g; Charles River Lab, Calco, Milan, Italy). Animals were housed 

under controlled conditions (temperature 22 ± 2 °C; relative humidity 50 ± 10%; 

artificial light 12 h light/dark cycle, lights on at 7 A.M.). All animals had access to both 

distilled water and standard diet ad libitum. The study has been approved by the Council 

of the Department of Pharmacological Sciences of the Università degli Studi di Milano, 

Milan, Italy, and was carried out in accordance with National and European regulations 

regarding the protection of animals used for experimental and other scientific purposes 

(D.M. 116192; 86/609/EEC), as well as following the ethical guidelines of the 

International Association for the Study of Pain (IASP; Zimmermann, 1983). 

 

 

3.9.2 Orofacial formalin test  

A 29-gauge needle was used to inject subcutaneously 10µL of 4% formalin or 

saline (0.9% NaCl), into the center of the right vibrissae pad of adult mice. Injections 

were performed as quickly as possible, with minimal animal restraint. Following the 

injection, animals were placed in a test box, and video recorded for 30 min. The total 

recording time was divided into 6 blocks of 5 min, and the nociceptive behaviour was 

determined for each block by measuring the number of seconds that the animals spent 

grooming the injected area with the ipsilateral fore- or hindpaw. Movements of the 

ipsilateral forepaw were accompanied by movements of the contralateral forepaw. 

Analysis of the behaviour was made by an investigator who was blinded to the animal’s 

group assignment.  
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3.9.3 Synthesis of dsRNAs and their injection into the trigeminal ganglion 

To reduce P2Y4 receptor expression, long double-stranded RNAs (dsRNAs) sequences 

that have been shown to produce robust, specific, and reversible gene silencing were 

used (Bhargava et al., 2004). A BLAST (basic local alignment search tool) search of the 

non-redundant mouse database identified a 564 bp sequence that was not homologous to 

any other sequences, and therefore targeting only P2Y4 receptor. cDNA of P2Y4 was 

produced by reverse transcription of total RNA followed by a 30-cycle PCR using 

specific primers. These cDNAs were then cloned into a pTOPO vector (Invitrogen). The 

specific forward and reverse primer sequences used to make the dsRNAs corresponded 

to nucleotides 481-500 and 1114-1145, respectively (GenBank accession number 

NM_020621). MalE sequences were used as nonspecific dsRNA control as previously 

described (Bhargava et al., 2004). Sense and antisense RNAs were synthesized from 

cDNA inserts by using MegaScript RNA kit (Ambion, Monza, Italy) according to the 

manufacturer’s specifications. Before the injection in the trigeminal ganglion, 11 µg of 

dsRNAs of either P2Y4 or MalE dsRNA were mixed with 1µL lipofectamine 

(Invitrogen) in a final volume of 5µl, and let stand at room temperature for 30 min. 

Injections were performed under xylazine-ketamine anesthesia by placing the 

mice in a stereotaxic instrument. The skull was exposed, and a burr hole was drilled 

above the location of the trigeminal nerve of the right trigeminal ganglion, at 1.6 mm 

posterior to the bregma, and 1.6 mm lateral to the midline. A pulled pipette, filled with 

dsRNAs, was then inserted through the hole, at 6.6 mm below the cortical surface. The 

pipette was connected to a Hamilton syringe attached to a microinjection pump, set to 

deliver the 5µL dsRNAs over a 2 min period. 

 

 

3.9.4 Induction of TMJ inflammation  

The sub-chronic TMJ inflammation was induced by injecting 50 µl of CFA 

(Sigma, Milan, Italy) oil/saline (1:1) emulsion into the left TMJ capsule, under 

isoflurane anesthesia. Control rats were injected with saline (0.9% NaCl). The TMJ 

capsule was identified by palpating the zygomatic arch and condyle, and the injection 

was delivered by advancing a 27-gauge needle medioanteriorly through the skin 

immediately below to the posteroinferior border of the zygomatic arch until it entered 
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into the joint capsule (Bereiter et al., 2005). Then, CFA or saline was injected slowly 

over 2 minutes. 

 

 

3.9.5 Behavioral tests 

Mechanical allodynia was measured by a previously described protocol with some 

minor modifications (Ren et al. 1999). Unrestrained rats were trained to stay in position 

and to be probed with von Frey filaments (North Coast Medical, Morgan Hill, CA, 

USA) at least one week before the injection of CFA. The left and right orofacial skin 

regions were tested, near the center of the vibrissa pad. An ascending series of von Frey 

filaments was used. The starting filaments corresponded to log unit 4.31 (force: 2 

grams) and 3.22 (force: 0.16 grams) for control and inflamed animals, respectively. 

Each filament was tested five times with an interval of a few seconds. The response 

threshold was defined as the lowest force required eliciting at least three head 

withdrawal responses out of five tests. The elapsed time between the applications of a 

new filament was 2 minutes. All experiments were carried out in a quiet room between 

the 8.30 AM and 1.00 PM, in order to avoid diurnal variations. 

 

 

3.9.6 Measurement of Evans’ blue dye extravasation  

Evans’ blue dye (5 mg/kg, 0.3% solution) was injected into the tail vein (Zhou et 

al., 1999), 10 minutes before animal perfusion with PFA (see Paragraph 3.4) . Ipsi- and 

contra-lateral (with respect to the side of CFA injection) TMJs were then dissected, cut 

into small blocks and incubated overnight at room temperature in a 7:3 (vol/vol) 

mixture of acetone and 35.2 mM sodium sulphate on a shaking table. Samples were 

then centrifuged, the supernatant separated, and dye absorbance determined in a 

spectrophotometer at 620 nm. Evans’ blue dye concentrations, in μg/ml, were 

extrapolated from a best-fit line calculated from a standard curve, prepared from a series 

of supernatants extracted from the TMJs of naïve animals, and mixed with serial 

dilutions of the Evans’ blue dye. 
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3.10 STATISTICAL ANALYSIS 

All results are expressed as mean±s.e.m. of at least three independent 

experiments. Statistical significance between groups was derived from one-way 

ANOVA followed by Scheffe’s analysis, performed with the SPSS software. Three 

degrees of significance were considered: P < 0.05 (*), P < 0.01 (**), P < 0.001 (***). 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. RESULTS 
Section I: in vitro studies 
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4.1. SET UP OF PRIMARY MIXED TRIGEMINAL CULTURES AS AN IN VITRO 

MODEL FOR STUDYING CELL TO CELL COMMUNICATION IN THE 

TRIGEMINAL GANGLIA 

As mentioned in Chapter 2, the first part of my PhD experimental work has been 

aimed at evaluating the presence and function of P2 receptors in an in vitro model of 

primary mixed cultures from mouse trigeminal ganglia (TG). This culture model was 

previously set up and validated as a reliable experimental model to study the purinergic 

regulation of trigeminal functions (Fabbretti et., 2006; Simonetti et al., 2006). However, 

these studies were focussed on studying only the neuronal P2X3 receptor subtype, while 

no evidence on the role of other purinergic receptors, or on the contribution of glial cells 

to purinergic signalling, was provided.  

As a first step, we have characterized our primary TG cultures, 48h after their 

preparation, in terms of the presence and organization of the different cell populations. 

As discussed in Paragraph 1.1.2, the cellular organization of the intact TG consists of 

neuronal cell bodies surrounded by satellite glial cells (SGCs; Hanani, 2005). These 

cells can be identified by the expression of the marker Glutamine Synthetase (GS), as 

shown by immunohistochemistry on sections from intact undissociated ganglia (Figure 

4.1A). Since SGCs share some common characteristics with oligodendrocytes, a 

subpopulation of SGCs was also stained with an antibody against 2',3'-cyclic nucleotide 

3'-phosphodiesterase (CNPase; Figure 4.1B). Panels D and E of Figure 4.1, show the 

typical appearance of primary mixed TG cultures 48 hours after plating, consisting of 

neurons, identified by staining with the neuronal marker β-tubulin-III (β-tubIII; Figure 

4.1D-F), surrounded by GS- (Figure 4.1D) and CNPase-positive (Figure 4.1E) glial-like 

cells. Interestingly, several neurons sat on and were wrapped by glial cells, likely 

belonging to the SGCs population (Figure 4.1D,E). Cultured neurons displayed the 

typical pseudo-unipolar morphology of sensory neurons (Figure 4.1D) and accounted 

for the 11.1±0.97% of total cell population (n=8340; 12 coverslips from 8 independent 

experiments). As shown in Figure 4.1H and in line with previous data (Fabbretti et., 

2006; Simonetti et al., 2006), the 41.5±5.8% of total neuronal cells were small neurons 

with a diameter of the soma lower than 15 μm, the 53.4±4.1% were medium neurons 

with a diameter between 15 and 25 μm and only the 5.1±0.7% were large neurons with 

a diameter greater than 25 μm.  
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We also characterized the molecular phenotype of the cultured sensory neurons. 

Most of the nociceptive neurons that have unmyelinated C-fibre axons can be 

subdivided into two overlapping groups, on both anatomical and functional c (see 

Paragraph 1.1.2; Ruan & Burnstock, 2003): the first group contains peptidergic 

neuropeptides, such as the Calcitonin gene-related peptide (CGRP), the other can be 

distinguished by the binding of the Isolectin B4 (IB4). By immunofluorescence analysis 

we showed that in intact ganglia CGRP was expressed by 34.2±0.80% of β-tubIII- 

positive neurons (n=3251; Figure 4.1C). Interestingly, primary mixed TG cultures 

retained the neuronal location of CGRP observed in the intact tissue (35.0±1.85%, 

n=588; Figure 4.1F). Moreover, in our cultures the 37.3±1.5% of the total β-tubIII-

positive neurons were also positive for IB4 (Figure 4.1G,G’). These cells were 

exclusively small- to medium-sized, as shown in Figure  4.1H. 

In conclusion, in our primary mixed TG cultures the presence of neurons 

surrounded by SGCs resembles the morphological and probably functional unit 

observed in the intact ganglia. Moreover, cultured sensory neurons retain most of the 

phenotypical characteristics observed in vivo. Taken together, these data validate the use 

of dissociated primary cultures as an adequate model to study the nociceptive functions 

of the various TG cell populations and the associated cross talk between neurons and 

SGCs.  
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Figure 4.1 

Primary mixed neuron-SGCs trigeminal cultures partially maintain the cellular and 
anatomical organization of the trigeminal ganglia in vivo.  
A, B, C, Representative confocal microscopy pictures from intact trigeminal ganglia after double 
immunofluorescence staining for the neuronal marker β-tubIII (red) together with glutamine synthetase 
(A), CNPase (B) and CGRP (C) expression (green). D, E, F, Double immunostainings, with the same 
antibodies as above, of primary mixed trigeminal cultures after 48h in vitro. G, Confocal microscopy 
image of trigeminal sensory neurons labeled with fluorescein-conjugated isolectin B4 (IB4, green). G’, 
Same field as in G, after double immunostaining for IB4 (green) and β-tubIII (red), demonstrating IB4 
colocalization with β-tubIII only in medium/small size neurons. H, Histograms showing the distribution 
of β-tubIII-positive neurons according to the size (diameter) of their soma (indicated as “tot”, light-blue 
columns). The size distribution of IB4-positive neurons was also calculated and expressed as percentage 
of the total neuronal population (“IB4+” blue columns). To rank the diameters of neuronal cells, a 
classification previously proposed by Simonetti and coll. (Simonetti et al., 2006) was used (small 
neurons: diameter < 15 μm; medium neurons: diameter between 15 μm and 25 μm; large neurons: 
diameter > 25 μm). In all pictures, nuclei were labeled with the Hoechst 33258 dye (blue). Scale bars: 15 
μm. 
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4.2. BOTH TRIGEMINAL NEURONS AND SATELLITE GLIAL CELLS BEAR 

FUNCTIONAL P2 RECEPTORS 

Previous studies have highlighted a role for ATP in cell-to-cell signalling in intact 

TG and have indicated the presence of various P2 receptor subtypes on both neurons 

and glia (Weick et al., 2003; Ceruti et al., 2008; Burnstock, 2009a,b). Among the ATP-

responding receptors, the P2X3 receptor subunit represents the most characterized in TG 

sensory neurons (Simonetti et al., 2006; Teixeira et al., 2010; Villa et al., 2010). To 

assess the presence and function of this receptor in our experimental setting, we 

performed double immunostaining experiments with an anti-β-tubIII and an anti-P2X3 

antibody. Most neurons (i.e., 73.6±2.7% of β-tubIII-positive cells, n=440) expressed 

P2X3; Figure 4.2A). Moreover, this receptor was found in almost all (95.3±0.9%, 

n=324) IB4-positive sensory neurons (Figure 4.2B). The presence of P2X3 in our 

cultures was also confirmed by RT-PCR (Figure 4.2C), and by western blot analysis 

(data not shown). Expression of the P2X2 receptor (that can assemble in heterodimers 

with P2X3) was also found, whereas the P2X1 receptor subtype was not expressed 

(Figure 4.2C). Calcium transients induced by the P2X1/P2X3 receptor agonist α,β-

meATP indicated the presence of functional receptor in trigeminal neurons (Figure 

4.2D), with 58.0±4.7% of responding neurons The mean calcium increase (evaluated as 

the change in the 340/380 fluorescence ratio; ΔF340/380) was 0.12±0.01 (n=115). The 

P2X3 receptor was never found in glial cells, as assessed by both immunostaining and 

calcium imaging analysis (data not shown, n=105). 

Trigeminal cells have been demonstrated to express several P2Y receptors (Ruan 

& Burnstock, 2003; Burostock, 2009b; Villa et al., 2010), but a systematic analysis of 

their role in TG cultures has never been performed. Thus, we analyzed the presence of 

all P2Y receptors cloned from rodent tissues in both intact ganglia and mouse trigeminal 

cultures. RT-PCR analysis showed that all known rodent P2Y receptors (i.e., the 

P2Y1,2,4,6,12,13,14 subtypes) were expressed with no appreciable differences in their 

expression profile between the intact tissue and the dissociated cultures (Figure 4.3). 

We next analyzed the responses of TG neurons to the most commonly utilized P2Y 

agonists by single cell calcium imaging. A small percentage of neurons responded to 

either ADP (8.5±3.9% of total, n=142) or UTP (13.0±4.1% of total, n=142; Figure 

4.4C,E) application, with a mean calcium response of 0.44±0.06 ΔF340/380 and 
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0.34±0.09 ΔF340/380, respectively (Figure 4.4D). No neuronal cell showed responses 

to either UDP or UDPglucose (n=83 and n=43, respectively; Figure 4.4C). Response to 

ADP is likely mediated by P2Y1 receptors, as demonstrated by the almost complete 

blockade exerted by the P2Y1 receptor antagonist MRS2179 (Figure 4.4F,G). In some 

experiments, ADP response was also partially antagonized by the P2Y12/P2Y13 

antagonist Cangrelor, suggesting that some neurons may also express these receptor 

subtypes together with P2Y1 (data not shown).  
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Figure 4.2 

P2X3 receptors are expressed and functional in trigeminal ganglion sensory neurons. 

A, Double immunostaining of cultures with anti-β-tubIII (red) and anti-P2X3 receptor antibodies (green), 
showing that most of β-tubIII-positive cells also express P2X3. B, Representative image showing double 
staining of cultures with an anti-P2X3 receptor antibody (red) and FITC-IB4 (green). Scale bars: 15 μm. 
C, RT-PCR analysis showing expression of P2X2 and P2X3, but not of P2X1 receptors, in trigeminal 
cultures. No amplification products were detected in RNA samples that were not subjected to 
retrotranscription (indicated as -RT). β-tubIII was used as an internal control for RT-PCR amplification. 
D, Representative temporal plot of [Ca2+]i increases recorded from two trigeminal neurons upon 
stimulation with the P2X1/P2X3 agonist α,β-meATP (100 μM), followed by application of 50mM KCl. 
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Figure 4.3 

Trigeminal ganglia and cultures express all cloned P2Y receptors.  
Total RNA isolated from either intact trigeminal ganglia (indicated as “tissue”) or from primary 
trigeminal cultures 48 hours after preparation (indicated as “culture”) was subjected to RT and the 
resulting cDNA was amplified with primers specific for each indicated P2Y receptor (see Table 3.1). No 
products were detected in the absence of retrotrascription (indicated as -). Parallel expression of the 
housekeeping gene β-actin (β-act) is shown. No significant differences in P2Y receptor expression were 
detected between freshly isolated tissue and cultures.  

 

 

 

In a similar way, we characterized the functionality of P2Y receptors in TG SGCs. 

Application of P2Y agonists resulted in [Ca2+]i increases in most cells, with 78.0±5.2% 

(n=320) and 83.0±4% (n=331) of SGCs responding to ADP and UTP respectively 

(Figure 4.5A). The mean calcium increases were 0.73±0.03 and 0.8±0.3 ΔF340/380, for 

ADP and UTP respectively (Figure 4.5B). A lower percentage of cells (20±6%, n=237) 

instead responded to UDP, with a mean calcium increase of 0.4±0.06 ΔF340/380 

(Figure 4.5A,B). Examples of agonist-induced calcium transients are reported in Figure 

4.5C; interestingly, 100µM UTP-evoked calcium responses were more sustained and 

prolonged compare to the same concentration of ADP and UDP. Experiments 

performed with MRS2179 and Cangrelor showed that, in glial cells, response to ADP 

mainly involved the P2Y1 receptor with a smaller contribution of P2Y12/P2Y13 receptors 

(Figure 4.5D). Suramin and RB2 (P2Y2/P2Y2 antagonists) inhibited UTP-induced 

[Ca2+]i transients by 76.6% and 76.7%, respectively, thus suggesting the involvement of 

P2Y2/P2Y4 receptors (Figure 4.5E). 
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Figure 4.4 

Trigeminal ganglion sensory neurons bear some functional P2Y receptors. 
A, Series of pseudocolor images of Fura-2 loaded cells before (basal) and at peak [Ca2+]i responses after 
the application of 100 μM ADP, followed by 50mM KCl to indentify neuronal phenotype. B, Identification 
of neurons was confirmed by immunopositivity to β-tubIII (red). Scale bars: 15 μm. C, Histograms 
showing the percentage of neurons responding to the indicated P2Y agonists. D, Histograms showing the 
mean [Ca2+]i increases, evaluated as increase in 340/380 fluorescence ratio (ΔF340/380), induced in 
neuronal cells by the P2Y agonists ADP and UTP. E, Representative temporal plots of [Ca2+]i increases 
recorded from neurons upon stimulation with either ADP or UTP (100µM), as indicated, followed by 50 
mM KCl. In the case of ADP, the neuron is the one marked with a white circle in A and B. F, 
Representative temporal plot of [Ca2+]i changes recorded from two neurons stimulated with 100 μM ADP 
before and after application of the P2Y1 antagonist MRS2179 (100 μM), followed by exposure to 50 mM 
KCl. G, Quantification of data reported in F expressed as mean calcium responses±s.e.m. *p<0.05 with 
respect to ADP alone; one-way ANOVA followed by Scheffe’s analysis. 
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Figure 4.5 

(figure legend in the following page) 
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Figure 4.5 

Trigeminal ganglion SGCs express functional P2Y receptors. 

A, B, Histograms showing the percentage of responding SGCs (A) or the mean [Ca2+]i increases (B) 
induced by the indicated P2Y receptor agonists. C, Examples of [Ca2+]i changes recorded from SGCs 
upon stimulation with various P2Y agonists. D, Left: representative temporal plots of [Ca2+]i changes 
recorded from four SGCs stimulated with 100 μM ADP before and after application of the P2Y1 selective 
antagonist MRS2179 (100 μM), as indicated. Right: Quantification of the mean calcium increases±s.e.m. 
after stimulation with 100 μM ADP before and after exposure to 100 μM MRS2179 (n=25 cells) or 10 
μM Cangrelor (n=20 cells). Values were normalized to results obtained with ADP alone set to 1.00. E, 
Left: representative temporal plots of [Ca2+]i changes recorded from three satellite cells stimulated with 
100 μM UTP before and after application of the relatively P2Y2/P2Y4-selective antagonist Reactive Blue-
2 (RB-2; 100 μM), as indicated. Right: Quantification of mean calcium increases±s.e.m. induced by 100 
μM UTP before and after exposure to 100 μM Suramin (n=24 cells) or 100 μM RB-2 (n=30 cells). 
Values were normalized to results obtained with UTP alone, set to 1.00. *p<0.05 and **p<0.01 with 
respect to corresponding agonist alone, by one-way ANOVA followed by Scheffe’s analysis. 
 

 

 

4.3 CHRONIC APPLICATION OF THE PRO-INFLAMMATORY MEDIATOR 

BRADYKININ DIFFERENTIALLY AFFECTS NEURONAL P2X3 AND GLIAL 

P2Y RECEPTOR FUNCTIONALITY 

The pro-inflammatory mediator bradykinin (BK) is a known activator of sensory 

neurons (Heblich et al., 2001) that was shown to increase the neuronal firing rate in the 

trigeminal subnucleus caudalis of the medulla oblongata and to enhance the release of 

CGRP from cultured dorsal horn and TG neurons (Jenkins et al., 2003). Moreover 

SGCs are also sensitive to BK (England et al., 2001). On this basis, we deemed it 

interesting to study the effect of either an acute (up to 5 min) or a prolonged (24-hour) 

exposure to BK on purinergic signalling in both neurons and SGCs in our culture 

model.  

As a first step, we investigated the expression, functionality, and cellular 

localization of BK receptors (i.e. the B1 and B2 subtypes) in our cultures. RT-PCR 

analysis demonstrated expression of the constitutive B2 receptor subtype in both the 

intact tissue and dissociated cultures (Figure 4.6A). Conversely, the inducible B1 

receptor subtype was barely present in the intact tissue and clearly expressed in primary 

cultures, suggesting its upregulation with time in culture (Figure 4.6A). An acute 

exposure to 100 nM BK evoked changes in the [Ca2+]ì in the 35.11±4.72% (ΔF340/380) 

of neurons (n=188; 11 independent experiments; Figure 4.6B), with respect to the 
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3.76±2.01% of SGCs (n=319; 11 independent experiments) suggesting that, in TG, BK 

receptors are almost exclusively functional on neuronal cells only.  

We then studied the effect of BK treatment on the P2X3 and P2Y receptors 

functionality. An acute application of BK (2-3 min) significantly increased the calcium 

response induced by the P2X3 agonist α,β-meATP (normalized mean calcium increases: 

1.00±0.1 for control cultures, n=24 vs. 1.41±0.3 for BK treated cultures, n=48; Figure 

4.6C). No changes were observed in P2Y receptor-mediated modulation of [Ca2+]ì (not 

shown). This result is in line with previous evidence indicating that acute (50 sec) 

exposure to BK rapidly sensitised P2X3 receptor functionality in Xenopus Laevis 

oocytes (Paukert et al., 2001). 

On the contrary, a 24-hour exposure of trigeminal cultures to 100 nM BK did not 

modify the amplitude of calcium responses induced by 100 µM α,β-meATP (Figure 

4.6D), but resulted in a highly significant reduction of the percentage of responsive 

neurons which was decreased to 28.5±5.7% (n=125) with respect to 62.1±5.8% in 

control untreated cultures (n=118; Figure 4.6E). Interestingly, considerable changes in 

P2Y receptor-mediated responses were recorded in SGCs. In particular, BK-treated 

cultures showed a significant increase of the mean calcium amplitude (expressed as 

ΔF340/380 and normalized to BK-untreated control cells exposed to the same P2 

agonist set to 1.00) of 1.36±0.11 (n=60), 1.39±0.07 (n=119) and 1.44±0.11 (n=75) after 

exposure to 100 µM ATP, 100 µM ADP, and 100 µM UTP, respectively (Figure 4.6F), 

with no changes in the percentage of responding cells (Figure 4.6G). A trend to increase 

in the mean calcium amplitudes, which did not reach the statistical significance, was 

also observed after exposure to 100 µM UDP (Figure 4.6F), whereas the percentage of 

responding SGCs was dramatically increased (% of UDP-responding cells with respect 

to BK-untreated cells set to 100%: 253.9±5.9%, n=265; Figure 4.6G). 
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Figure 4.6 

Acute and chronic exposure to bradykinin (BK) differentially affects the function of 
neuronal P2X3 and glial P2Y receptors.  
A, RT-PCR experiments demonstrating B1 and B2 BK receptor expression (expected PCR product 
lengths: 600 and 508 base pairs, respectively) in intact trigeminal ganglia (T) and primary mixed 
trigeminal cultures (C). The housekeeping gene β-actin (expected PCR product length: 661 bps) was used 
as an internal positive control. B, Representative temporal plots of BK-evoked [Ca2+]i increases in two 
trigeminal neurons (blue lines), and two SGCs (light-blue lines). The depolarizing agent KCl (50 mM) 
was used to discriminate between neuronal (responding) and non-neuronal (non-responding) cells. C, 
Quantification of mean calcium increases±s.e.m. induced by 100 µM α,β-meATP in vehicle (-BK) or 
acutely (2-3 min) BK-treated (100 nM) neurons. D-G, results obtained after a chronic (24 hours) 
exposure of trigeminal cultures to either vehicle (-BK) or 100 nM BK. D: mean calcium responses to α,β-
meATP in neurons. E: mean percentage of neurons responding to α,β-meATP. F: mean calcium 
responses to various nucleotides (normalized to corresponding vehicle-treated control cells, set to 1.00) 
recorded in SGCs. G: mean percentage of glial cells responding to ATP, ADP, UTP and UDP (100 µM; 
normalized to corresponding vehicle-treated control cells, set to 100%). *p<0.05 and **p<0.01 with 
respect to vehicle-treated cells, one-way ANOVA followed by Scheffe’s analysis. 
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4.4 FOLLOWING BK APPLICATION, CGRP RELEASED FROM TG NEURONS 

IS RESPONSIBLE FOR P2Y RECEPTORS UPREGULATION IN SGCs 

Our data clearly indicate that exposure of primary mixed neuron-SGCs TG 

cultures to the pro-algogenic mediator BK significantly enhances the responsiveness of 

glial P2Y receptors to ADP and UTP. We also demonstrated that BK receptors are 

almost exclusively functional in TG neurons. For this reason we speculated that the BK-

induced upregulation of P2Y receptors in SGCs could be mediated by the release of a 

neuronal mediator. Since previous studies indicate that stimulation with pro-

inflammatory mediators, like BK, is associated to the release of the calcitonin gene-

related peptide (CGRP; Ebersberger et al., 1999; Meng et al., 2007; Eberhardt et al., 

2008), we chronically (i.e., 24 hours) exposed primary mixed TG cultures to BK alone 

or in the presence of the CGRP receptor antagonist, CGRP8-37, and subsequently 

recorded ADP- and UTP-induced increases in [Ca2+]i in SGCs (Figure 4.7A). As 

expected, BK alone significantly increased the mean peak amplitudes (expressed as 

ΔF340/380, and normalized to values obtained in CTR cells exposed to the same P2 

agonist set to 1.00) exerted by 1 μM ADP (1.52±0.172, n=90 cells), and by 10 μM UTP 

(1.53±0.182, n=71 cells). Pre-treatment with 2 μM CGRP8-37 almost completely 

abolished the BK-induced effect (normalized ΔF340/380: 1.10±0.08, n=172 cells, and 

1.11±0.115, n=95 cells for ADP and UTP, respectively; Figure 4.7A). Similarly to BK, 

a 24-hour exposure to 1 μM CGRP also induced an increase in P2Y receptor-mediated 

responses in SGCs (normalized ΔF340/380: 1.56±0.106, n=146 cells and 1.58±0.119, 

n=121 cells for ADP and UTP, respectively), which is in line with the BK-induced 

effects (normalized ΔF340/380: 1.46±0.157, n=108 cells, and 1.53±0.182, n=71 cells 

for ADP and UTP, respectively; Figure 4.7B). No changes in the percentages of SGCs 

responding cells were observed upon either treatments (data not shown). These results 

clearly suggest a role for CGRP as the key mediator of neuron-to-SGC communication 

upon BK exposure.  

To further demonstrate this hypothesis, we measured extracellular CGRP 

concentrations after application of BK. As shown in Figure 4.7C, a 1-hour treatment of 

primary mixed TG cultures with 100 nM BK almost doubled extracellular CGRP levels, 

from 19.10±2.28 pg/ml (n=22 coverslips) in CTR cultures, to 36.33±4.07 pg/ml (n=23 

coverslips) in BK-treated cultures. The maximal CGRP release was assessed by 
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exposing cultures to the depolarizing agent KCl (50 mM) for 15 min, and corresponded 

to 152.5±27.51 pg/ml (n=21 coverslips).  
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Figure 4.7 

BK-induced enhancement of P2Y receptor function in trigeminal SGCs is mediated by the 
neuronal release of CGRP. 
A, Primary mixed trigeminal cultures were sub-chronically (24 h) treated with vehicle (CTR), or 100 nM 
BK alone or in the presence of the CGRP receptor antagonist CGRP8-37 (2 μM). Cultures were then 
challenged with 1 μM ADP or 10 μM UTP, and the increases in [Ca2+]i recorded from SGCs. B, Primary 
mixed trigeminal cultures were treated for 24 h with vehicle (CTR), 100 nM BK, or 1 μM CGRP, then 
exposed to ADP or UTP, and changes in [Ca2+]i analyzed in SGCs (see above). In both A and B, 
histograms show the mean [Ca2+]i normalized to CTR cells set to 1.0 from at least 3 independent 
experiments. *p<0.05, and **p<0.01 with respect to CTR; §p<0.05, and #p=0.057 with respect to BK 
alone; one-way ANOVA followed by Scheffé’s test. C, Histograms show the mean extracellular CGRP 
concentrations after 1 h application to primary mixed trigeminal cultures of either vehicle (CTR) or 100 
nM BK. A 15-min exposure to 50 mM KCl was utilized as a positive control of maximal neuronal CGRP 
release. **p<0.01 with respect to CTR, one-way ANOVA followed by Scheffé’s test. D, Double 
immunofluorescence staining showing the specific localization of CGRP (red) to vesicle-associated 
membrane protein 2 (VAMP2)-positive axons terminals (green) in primary trigeminal cultures. Nuclei 
were labeled with the Hoechst 33258 dye (blue). Scale bar: 20 μm. 
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Data from literature (Xiao et al., 2008) and our data on maximal CGRP release 

obtained with the depolarizing agent KCl already suggested a neuronal localization and 

release of this neuropeptide. To unequivocally confirm this, we performed a double 

immunofluorescence experiment for CGRP and the vesicle-associated membrane 

protein 2 (VAMP2), demonstrating the selective expression of the neuropeptide in 

VAMP2+ axons terminals (Figure 4.7D), and therefore the exclusive neuronal 

localization of CGRP.  

 

 

4.5 CGRP, BUT NOT BK, RETAINS ITS ABILITY TO INDUCE P2Y RECEPTOR 

POTENTIATION IN PURIFIED SGCs CULTURES 

To get further insights in the molecular pathways linking glial CGRP receptor 

activation to the upregulation of P2Y receptor function, we generated an in vitro model 

of purified SGCs cultures. As described in more details in Paragraph 3.1 and in Figure 

3.1, five days after preparation of primary mixed neuron-SGCs cultures, SGCs 

approached confluence and were replated on uncoated wells. This procedure allowed 

completely removing all neurons, as demonstrated by the lack of staining of the 

neuronal marker NeuN (Fig. 3.1C). We have also previously demonstrated that there 

was no difference in P2Y receptor expression and function between purified SGCs 

cultures and primary mixed neuron-glia cultures (Villa et al., 2010).  

RT-PCR analysis for the two subunits composing the functional CGRP receptor 

(namely, the receptor activity modifying protein 1, RAMP1, and the calcitonin receptor-

like receptor, CLR; Lennerz et al., 2008) showed that the expression of CGRP receptor 

complex was retained in purified SGCs cultures (Figure 4.8A).  

Next, we exposed purified SGCs cultures to 100 nM BK and 1 µM CGRP for 24 

h, and analyzed the mean [Ca2+]i responses after ADP and UTP application. Differently 

from mixed neuron-SGCs cultures (see above), P2Y receptor functionality in purified 

glial cultures was not affected by BK treatment (normalized ΔF340/380: 0.98±0.151, 

n=174 cells, and 0.92±0.180, n=99 cells, after exposure to 1 µM ADP and 100 µM 

UTP, respectively; Figure 4.8B). Conversely, CGRP retained its ability to potentiate 

glial P2Y receptors even in the absence of neurons (normalized ΔF340/380: 1.42±0.112, 

n=366 cells, and 1.48±0.144, n=150, in the case of ADP and UTP, respectively; Figure 
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4.8B-D). Globally, these data further confirm that BK does not directly target SGCs, but 

acts through its neuronal receptors, and that the mediator of this neuronal-to-glial cell 

communication is indeed CGRP. 
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Figure 4.8 

CGRP, but not BK, maintains its ability to potentiate P2Y receptors responsiveness in 
purified SGCs cultures. 
A, RT-PCR analysis from purified SGC cultures (PC), neuron-SGCs mixed cultures (MC), and intact 
trigeminal ganglia (T). Specific primers for the receptor activity modifying protein 1 (RAMP1; expected 
PCR product length: 249 bps), the calcitonin receptor-like receptor (CLR; expected PCR product length: 
483 bps), and the housekeeping gene β-actin (expected PCR product length: 661 bps) were used. B, 
Histograms showing the ADP- and UTP-evoked mean [Ca2+]i increases recorded from purified SGCs 
cultures after a 24-h treatment with either vehicle (CTR), 100 nM BK, or 1 μM CGRP. Mean [Ca2+]i 
values have been normalized to CTR set to 1.0. C, D, Representative plots showing the increased ADP- 
and UTP-induced [Ca2+]i peaks in SGCs after chronic exposure to CGRP compared to CTR. *p<0.05 
with respect to CTR; one-way ANOVA followed by Scheffé’s test. 
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4.6 THE ERK1/2 MAP KINASE PATHWAY HAS A PRIMARY ROLE IN CGRP-

INDUCED POTENTIATION OF GLIAL P2Y RECEPTORS 

Since it is well known that CGRP activates the MAP kinase pathway in trigeminal 

SGCs (Vause and Durham, 2009; 2010), we exposed purified SGCs cultures to 1 μM 

CGRP and analyzed the phosphorylation/activation of the ERK1/2 MAP kinase 

pathway by western blotting. As shown in Figure 4.9A,B, 1 µM CGRP induced a 

biphasic wave of ERK1/2 activation (measured as the ratio between the intensities of 

the phosphorylated vs total ERK1/2 protein bands) peaking at 10 and 40 min of 

incubation, which was completely inhibited by the CGRP receptor antagonist CGRP8-37 

(Figure 4.9C). Noteworthy, the activation of ERK1/2 pathway is directly correlated with 

the potentiation of P2Y receptors function, since the inhibitor PD98059 fully prevented 

the increase in UTP-mediated [Ca2+]i mobilization induced by CGRP (normalized 

ΔF340/380: 1.46±0.078, n=63 cells for CGRP alone, and 0.99±0.158, n=40 for CGRP + 

PD98059; Figure 4.9D).  
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Figure 4.9 

(figure legend in the following page) 
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Figure 4.9 

The ERK1/2 MAP kinase pathway is involved in CGRP-induced P2Y receptor 
upregulation. 
A, Representative western blotting experiment showing the biphasic activation of extracellular signal-
regulated kinase 1/2 (ERK1/2) induced by application of 1 µM CGRP to purified SGCs cultures for 10, 
20 and 40 min. B, Densitometric analysis of western blotting experiments showing the biphasic activation 
of ERK1/2 after exposure of purified SGCs to 1 µM CGRP. For each sample, the ratio between the 
intensities of the phosphorylated and total ERK1/2 (pERK/ERKtot) protein bands has been calculated, 
and normalized to the corresponding mean CTR value (set to 1.0).  C, The CGRP receptor antagonist 
CGRP8-37 (2 μM) inhibits CGRP-induced ERK1/2 activation (10 min). D, The ERK1/2 inhibitor PD98059 
prevents the potentiation of UTP-evoked [Ca2+]i increases induced by CGRP. Histograms show the mean 
calcium increases in SGCs after chronic (24 h) treatment with vehicle (CTR), 1 μM CGRP alone, or 
CGRP + 50 μM PD98059. In A and D data are the mean±s.e.m. of 3 independent experiments. *p<0.05 
with respect to CTR, §p<0.05 with respect to cells treated with CGRP alone; one-way ANOVA followed 
by Scheffé’s test. 
 

 

 

4.7 CGRP RELEASE IS SIGNIFICANTLY ENHANCED IN TG CULTURES 

FROM CaV2.1 α1 R192Q MUTANT KNOCK-IN MICE 

Our data point to a key role of CGRP in neuron-to-glia communication between 

TGs and SGCs and on its contribution to the molecular and signalling network 

controlling the transmission and integration of painful signals. Therefore, we decided to 

evaluate both basal and stimulated CGRP release in primary TG cultures obtained from 

a transgenic mouse model of migraine, the CaV2.1 α1 R192Q mutant knock-in (KI) 

mouse (van den Maagdenberg et al., 2004). Figure 4.10A shows that, under basal 

conditions, a significantly higher CGRP release was detected in primary TG cultures 

from R192Q KI mice (50.49±7.33 pg/ml, n=29 coverslips) with respect to cultures from 

R192Q wild type (WT) animals (33.75±2.80 pg/ml, n=31 coverslips from 3 independent 

experiments). Following exposure to 100nM BK (1h), the increase in CGRP 

extracellular levels was higher in R192Q KI cultures, with CGRP levels being 

61.49±6.73 pg/ml in R192Q WT cultures (n=14 coverslips), and 110.80±19.70 pg/ml 

(n=10 coverslips) in R192Q KI cultures (Figure 4.10B). Moreover, an over twofold 

(238%) higher CGRP release was detected after maximal neuronal depolarization by 50 

mM KCl (15 min) in R192Q KI cultures compared to R192Q WT cultures (from 

194.1±28.25 pg/ml, n=9 coverslips from 3 independent experiments, to 461.1±119.2 

pg/ml, n=8 coverslips in WT and KI cultures, respectively; Figure 4.10B).  
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Figure 4.10 

Both basal and stimulated extracellular CGRP concentrations are higher in trigeminal 
cultures from CaV2.1 α1 R192Q mutant KI mice, compared to WT animals. 
A, B, histograms show the mean extracellular CGRP levels in primary mixed trigeminal cultures from 
R192Q wild type (WT) and CaV2.1 α1 R192Q mutant KI mice, after 48 h in vitro. Basal CGRP 
concentrations were measured after a 15-min incubation with fresh medium alone (A), whereas 
stimulated CGRP levels were measured after a subsequent incubation with vehicle (CTR; 1 h), 100 nM 
BK (1 h), or 50 mM KCl (15 min) (B). #p<0.05 with respect to the basal CGRP levels in WT cultures, 
*p<0.05 with respect to the corresponding stimulated CGRP levels in WT cultures; one-way ANOVA. 

 

 

 

4.8 APPLICATION OF BK INCREASES THE NUMBER OF ADP- AND UTP-

RESPONDING SGCs IN TG CULTURES FROM CaV2.1 R192Q KI MICE 

Having established that the R192Q mutation in CaV2.1 channels is associated to 

increases of both basal and stimulated CGRP release, we next evaluated P2Y receptors 

functionality in TG cultures from KI mice. Since the ability of BK to upregulate ADP 

and UTP mean calcium amplitudes in SGCs is related to the neuronal release of CGRP 

(Figure 4.7), we anticipated the BK dependent P2Y receptor upregulation to be even 

stronger in KI cultures. Surprisingly, no substantial differences in BK-evoked 

upregulation of ADP and UTP mean calcium amplitudes were observed between SGCs 

of R192Q WT and KI cultures. In fact, ADP-elicited ΔF340/380 values were 0.95±0.07 

(n=132) in control- and 1.18±0.08 (n=116) in BK-treated R192Q WT cultures, whereas 

values were 0.98±0.06 (n=136) and 1.28±0.08 (n=165) in control and BK-treated 

R192Q KI cultures, respectively (Figure 4.11A). UTP-elicited ΔF340/380 values were 

0.83±0.08 (n=57) in control- and 1.05±0.11 (n=40) in BK-treated R192Q WT cultures, 

and 0.82±0.07 (n=51) and 1.15±0.08 (n=95) in control- and BK-treated R192Q KI 
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cultures (Figure 4.11B). However, following chronic treatment with BK the percentage 

of UTP-responding SGCs was significantly increased in R192Q KI cultures with respect 

to CTR cultures (Figure 4.11D). A trend to increase was also observed in the case of 

ADP-responding cells (Figure 4.11C). Following BK exposure, the percentage of 

nucleotide-responding SGCs was therefore significantly higher in R192Q cultures when 

compared to BK-treated R192Q WT cultures (% of ADP responding SGCs: 55.6±7.42 

in WT cultures vs. 75.7±3.74 in KI cultures; % of UTP responding SGCs: 20.1±2.71% 

in WT cultures vs. 54.9±5.91%  in KI cultures). No changes in both mean calcium 

increases, and in the percentages of responding cells were observed between R192Q 

WT and KI neurons (not shown). These data suggests that, in the presence of the gain-

of-function R192Q mutation of CaV2.1 channels, application of nociceptive mediators 

(i.e., BK), by stimulating a higher release of neurotransmitters (i.e., CGRP) from 

neurons, can induce an increase in P2Y receptor responsiveness.  

 

 
Figure 4.11 

(figure legend in the following page) 
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Figure 4.11 

The chronic treatment with BK significantly increases the percentage of ADP- and UTP-
responding SGCs in KI cultures. 

A, B, histograms show the 1 μM ADP- (A) or 10 μM UTP-elicited (B) mean [Ca2+]i increases in WT and 
KI cultures, after a 24 hours treatment with vehicle alone (CTR) or with 100nM BK. C, D, mean 
percentage of SGCs responding to ADP (C) and UTP (D) in R192Q WT and KI cultures, after a 24 hours 
treatment with vehicle alone (CTR) or with 100nM BK.  *p<0.05 with respect to the corresponding  WT 
or KI control cultures; §p<0.05 with respect to WT cultures exposed to BK; one-way ANOVA followed by 
Scheffe’s analysis. 
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4.9. SET UP OF IN VIVO MODELS OF TRIGEMINAL PAIN FOR STUDYING 

THE ROLE OF THE PURINERGIC SYSTEM IN PAIN TRANSMISSION 

The results obtained during the first part of my PhD experimental work 

demonstrate the presence of functional P2Y receptors in glial cells from TG in vitro, 

and their complex modulation under exposure to pro-inflammatory agents. Taken 

together these data suggest that glial purinergic receptors act as important players in 

nociceptive transmission. For this reason, we deemed interesting to set up in vivo pain 

models of TG sensitization in order to study the involvement of the purinergic system in 

pain transmission, and to validate the role of specific P2Y receptor subtypes through 

their specific knock down in vivo.  

To test the role of selected P2Y receptors in the development of pain behaviour, 

we initially set up a mouse model of acute pain involving trigeminal sensitisation: the 

oro-facial pain model. A solution of formalin was injected into the upper lip of mice, 

and their nociceptive behaviour was monitored with a video camera for 30 min. A 

nociceptive score was then determined by measuring the time (in seconds) that the 

animal spent in grooming the injected area (Luccarini et al., 2006; see Methods). We 

initially focused our attention on the P2Y4 receptor, due to its expression by trigeminal 

SGCs, and to previous data implicating this receptor in pain signalling (Weick et al., 

2003; Vit et al., 2006). The silencing strategy was based on the injection in the TG of 

long double-stranded RNAs (dsRNAs) probes designed to knock down the expression 

of the specific receptors. Sequences directed against the bacterial gene MalE have been 

also designed and injected in parallel as non-specific dsRNA control. Western Blotting 

analysis on explanted trigeminal ganglia showed a strong reduction (about 60%) of 

P2Y4 protein levels in the ipsilateral ganglion of mice injected with P2Y4-dsRNAs, with 

no significant difference after MalE-dsRNA injection (Figure 4.12A). As expected, 

behavioural studies showed that the face rubbing time was significantly higher in 

formalin-injected mice compared to saline-treated animals (Figure 4.12B), but no 

significant differences were detected when comparing formalin-treated mice that also 

received P2Y4-dsRNA with respect to formalin-treated animals receiving MalE-dsRNA 

(Figure 4.12B). These data apparently rule out a role for P2Y4 receptor in acute 

trigeminal pain transmission.  
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Figure 4.12 

P2Y4 receptor knock-down did not produce any change in acute pain behavior following 
orofacial formalin injection. 
A, Western blot autoradiograms showing the P2Y4 protein levels in contralateral (contra) and ipsilateral 
(ipsi) trigeminal ganglia from mice injected with the MalE- (CTR) or the P2Y4-dsRNA (Silenced). The 
housekeeping gene α-Tubulin was used as an internal loading control. B, Time course of the face-rubbing 
activity observed after subcutaneous injection of either saline or 4% formalin into the upper lip of mice 
injected with the MalE- or the P2Y4-dsRNA. The mean time±s.e.m spent rubbing within each 5-min block 
intervals over the 30-min post-injection observation period is shown. At least 4 animals were analyzed in 
each group. 

 

 

We next decided to set up and characterize a model of chronic trigeminal inflammation 

based on the injection of the Complete Freund’s Adjuvant (CFA) into the 

temporomandibular joint (TMJ) of adult rats. This is a well-established model of 

inflammatory pain, which shares several characteristics with migraine-associated TG 

sensitization (Ballegaard et al., 2008; Taub et al., 2008). Since glial cells participate in 

the genesis and maintenance of chronic pain (See Paragraph 1.1.3) and strongly 

express P2Y receptors (See Paragraphs 1.3 and 1.4), but no studies have explored the 

reaction of glial cells following the induction of TMJ inflammation, we have first 

characterized the activation of PNS and CNS glial cells to the injection of CFA into the 

TMJ. The baseline values for the mechanical threshold in non-inflamed rats were 

determined by probing their orofacial regions with von Frey filaments (see Methods). 

Mean head withdrawal thresholds were measured from the left and right orofacial 

regions (16.11±2.06 g for the right side and 15.50±1.73 g for the left side; n=12 

animals; Table 4.1 and Figure 4.13A). Rats were then injected with either saline or CFA 

into the left TMJ and tested for their pain behavior. A significantly lower mechanical 

threshold was measured in the ipsilateral side of CFA injected rats, starting from 24h 

post injection (p.i.), thus demonstrating the development of mechanical allodynia (see 
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Table 4.1 and Figure 4.13A). No significant changes between the ipsi- and the 

contralateral mechanical thresholds were observed in control saline-injected animals 

(see Figure 4.13A and Table 4.1). To further confirm the establishment of inflammation 

following CFA injection, we measured the TMJ extravasation of the Evans’ blue dye 

injected into the tail vein. While there was no difference in the low dye concentration in 

the TMJs of rats injected with saline (0.07±0.07 µg/ml for the ipsilateral side vs. 

0.07±0.06 µg/ml for the contralateral side; n=7 animals; Figure 4.13B), a significantly 

greater amount of dye was extracted from the ipsilateral TMJ of CFA-injected rats, both 

at 24h p.i. (0.76±0.17 µg/ml vs. 0.13±0.05 µg/ml for ipsi- and contralateral tissue, 

respectively, n=6 animals), and, to a lesser extent, at 72h p.i. (0.43±0.07 µg/ml vs. 

0.07±0.03 µg/ml for ipsi- and contralateral tissue, respectively; n=7 animals; (Figure 

4.13B). These results confirm that the injection of CFA into the TMJ induces a 

persistent inflammation associated with the development of mechanical allodynia. 

 

 

 

Table 4.1: Mean head withdrawal threshold values (in grams, g) after saline or CFA 
injection in the TMJ.  Ipsi: ipsilateral side; contra: contralateral side. 

Stimulus Time post 
injection 

Ipsilateral 
(g) 

Contralateral 
(g) 

n° of 
rats 

p value 
(ipsi vs. 
contra) 

p value 
(ipsi vs. 

baseline) 

baseline - 15.5 ± 1.73 16.1 ± 2.06 12 - - 

saline 4h 15.0 ± 0.00 20.5 ± 5.50 4 0.423 0.813 

24h 12.7 ± 2.33 17.0 ± 4.73 4 0.457 0.395 

48h 17.0 ± 4.73 17.0 ± 4.73 4 1.000 0.845 

72h 16.3 ± 5.24 17.0 ± 4.73 4 0.929 0.962 

CFA 4h 10.1 ± 2.59 15.1 ± 3.07 8 0.231 0.088 

24h 6.94 ± 1.45 14.0 ± 2.47 8 0.05 0.01 

48h 5.33 ± 0.67 10.5 ± 0.96 8 0.01 0.01 

72h 5.67 ± 1.20 12.7 ± 1.48 8 0.01 0.01 
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Figure 4.13 

Injection of CFA into the TMJ produces mechanical allodynia and plasma extravasation. 
A, Rats were tested for the development of mechanical allodynia by probing the contralateral (contra) 
and ipsilateral (ipsi) orofacial regions with von Frey filaments before (pre) and post injection of saline or 
CFA into the TMJ. The head withdrawal threshold force, in grams (g), was measured. Y-axis = log10 
scale. B, The development of inflammation was analyzed by injecting the Evans’ blue dye through the tail 
vein. A significantly higher amount of dye was extracted from the ipsilateral TMJs of CFA-injected rats 
compared to the contralateral side at both 24h and 72h p.i.  ** p<0.01, and * p<0.05 compared to the 
contralateral side of CFA-injected rats, #p<0.01 compared to the contralateral tissue; one-way ANOVA. 
 

 

 

4.10 SGCs AND MACROPHAGES ARE SELECTIVELY ACTIVATED IN TG 

FOLLOWING TMJ INFLAMMATION 

We next evaluated the morphological and biochemical consequences of the 

induction of TMJ inflammation in the TG, with particular focus on SGCs. Previous 

studies have indeed reported that either tooth pulp injury or TG inflammation induces 

SGCs hypertrophy, with increased expression of GFAP (Stephenson et al., 1996; 

Jimenez-Andrade et al., 2006; Takeda et al., 2007), which is considered to be a marker 

of reactivity and activation for this particular type of glia. In the contralateral side of 

CFA injected rats, very low levels of GFAP immunoreactivity were observed, as 

measured by counting the number of TG neurons encircled by GFAP-positive (GFAP+) 

SGCs. A large increase in the number of GFAP-encircled neurons was observed in the 

ipsilateral TG at both 24h (Figure 4.14A’,B) and 72h p.i. (Figure 4.14B), as expected 

(Takeda et al., 2007). From 24h p.i. the number of GFAP-encircled neurons was higher 

in the ipsilateral V3-mandibular division of the trigeminal nerve (29.38±2.20 in the 
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ipsilateral side vs. 5.99±0.94 in the contralateral side; n = 7 animals; Figure 4.14B). 

Similar results were observed in the V2-maxillary division of the trigeminal nerve 

(28.79±2.30 vs. 4.92±1.00; n=7 animals), and in the V1-ophthalmic division, although 

to a lesser extent (12.83±1.24 vs. 3.88±0.69; n=7 animals). At 72h p.i. a reduction in 

GFAP staining compared to the 24 hour values was observed, although it was still 

significantly higher than the contralateral side or controls (n=7 animals; Figure 4.14B). 

No differences in the number of GFAP-encircled neurons were found between the ipsi- 

and contralateral TG in saline-injected rats (n=7 animals; Figure 4.14B). 

Macrophages have been reported to infiltrate the DRG following sciatic nerve 

damage or hindpaw inflammation (Inglis et al., 2005; Hu et al., 2007). We therefore 

evaluated whether a similar effect also takes place in the TG after the development of 

TMJ inflammation. Surprisingly, no changes in the number of Iba1+ resident 

macrophages and no difference in the mean cell size of Iba1+ cells  were observed 

following CFA injection in the ipsilateral TG (n=7 animals; not shown). Nevertheless, 

clear signs of macrophagic activation were detected by using an antibody directed 

against the lysosomal antigen ED1, a marker of activated macrophages (Damoiseaux et 

al., 1994; Mueller et al., 2007; Moxon-Emre et al., 2010). In fact, 24h after CFA 

injection, the densitometric analysis of ED1 immunostaining yielded to a mean value of 

111.39±16.71 pixels for the ipsilateral side vs. 36.44±10.73 pixels for the contralateral 

side (V3 division; n=6 animals; Figure 4.14C-D). This effect persisted at 72h p.i., 

although to a lesser and non-significant extent (82.47±27.86 pixels for the ipsilateral 

side vs. 37.76±15.94 pixels for the contralateral side, V3 division; n=7 animals; Figure 

4.14D). These results suggest that, early after induction of TMJ inflammation, there is 

no recruitment of new inflammatory cells from the bloodstream, but rather a strong 

activation of local resident macrophages. 
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Figure 4.14 

SGCs and resident TG macrophages are activated following induction of TMJ 
inflammation. 
A, Few GFAP+ SGCs (red) encircling NeuN+ neurons (green) were detected in the contralateral 
(CONTRA) TG of CFA-injected rats, or in TGs from saline-injected rats (not shown). A’, A significant 
increase in the number of GFAP-encircled neurons was instead observed in the ipsilateral (IPSI) TG 
starting at 24h post CFA injection. B, Histograms showing the increase in the number of GFAP-encircled 
neurons in the V3-mandibular division of the ipsilateral (ipsi) TG at both 24h and 72h post CFA 
injection. Similar changes were observed in the V1-ophthalmic and V2-maxillary divisions (see text). 
Data are expressed as number of GFAP-encircled neurons per counting field at 40x magnification. C, C’, 
ED1 immunostaining (green) of activated macrophages, showing a significant upregulation 24h after the 
injection of CFA. D, Densitometric analysis, showing that a lower, although not statistically significant, 
effect was also present at 72h p.i. Nuclei were labeled with the Hoechst 33258 dye (blue). Scale bars: 20 
μm. *** p<0.001 and ** p<0.01 compared to the contralateral side; one-way ANOVA. 
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4.11 MICROGLIAL CELLS, BUT NOT ASTROCYTES, ARE ACTIVATED IN THE 

SPINAL TRIGEMINAL NUCLEUS FOLLOWING TMJ INFLAMMATION 

Although previous studies reported that CNS glial cells (astrocyte and microglial 

cells) become activated following CFA-induced sciatic nerve inflammation 

(Raghavendra et al., 2004; Sun et al., 2007; Hernstadt et al., 2009), no studies on the 

reaction of these cells to inflammatory TMJ sensitization are available. 

Immunoreactivity levels for Iba1 (a marker for microglial cells) and GFAP (a marker 

for astrocytes) in the different regions of the spinal trigeminal nucleus (see Paragraph 

1.1.2) were thus evaluated in saline and CFA-injected rats. As shown in Figure 4.15, no 

changes in Iba1 immunoreactivity were observed between the contra- and ipsi-lateral 

sides of saline-injected rats in either the trigeminal subnucleus caudalis of the medulla 

oblongata (n=8 animals; Figure 4.15A) or in the dorsal horn of the cervical spinal cord 

(n=8 animals; Figure 4.15C). However, 72 hours after CFA administration Iba1 

immunoreactivity was significantly up-regulated in the dorsal laminae of the trigeminal 

subnucleus caudalis (normalized values: 1.51±0.13 pixels for the ipsilateral side vs. 

0.90±0.06 pixels for the contralateral side; n=8 animals; Figure 4.15A). In the ipsilateral 

side, microglial cells displayed shorter and thicker ramifications, a typical characteristic 

of activated microglia, when compared to the fine processes of microglia in the 

contralateral side (Figure 4.15B’,B’’). Similar changes were also observed in the dorsal 

horn of the cervical spinal cord (normalized values: 1.80±0.21 pixels for the ipsilateral 

side vs. 1.00±0.12 pixels for the contralateral side; n=7 animals; Figure 4.15C,D). 

Conversely, no reactive astrogliosis was detected in the spinal trigeminal nucleus, 

both in terms of GFAP immunoreactivity (n = 7 animals; Figure 4.16A,C), and of the 

morphology of GFAP+ astrocytes (Figure 4.16B,D). We conclude that, during the sub-

acute phase of CFA-induced TMJ inflammation, microglial cells, but not astrocytes, are 

selectively activated in the CNS regions relaying nociceptive information. 
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Figure 4.15 

TMJ inflammation induces microglial activation in the spinal trigeminal nucleus.  
A, C, Densitometric analysis of Iba1 immunoreactivity (number of immuno-positive pixels, see Methods) 
showing a significant increase in Iba1 immunoreactivity in the ipsilateral side of both the trigeminal 
subnucleus caudalis in the medulla oblongata (delimited by the dotted line; A) and the dorsal horn of the 
cervical spinal cord (C) 72h after CFA injection. The mean values of pixel intensity have been normalized 
to the values obtained from the contralateral side of saline injected rats, set to 1.0. ** p<0.01 compared 
to the contralateral side; one-way ANOVA. B-B’’, D-D’’, Resting microglial cells (i.e., ramified cells 
with fine processes) were detected in the contralateral side of the trigeminal subnucleus caudalis (B’) 
and of the cervical dorsal horn (D’), whereas activated microglial cells (i.e. cells with thicker 
ramifications) were observed ipsilaterally to the site of injection (B’’, D’’). Scale bars: 20 μm.  
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Figure 4.16 

TMJ inflammation does not affect the activation state of GFAP+ astroglial cells in the 
CNS.  
A, C, Densitometric quantification of GFAP immunoreactivity in the trigeminal subnucleus caudalis 
(delimited by the dotted line; A) and the cervical dorsal horn (C) revealed no changes between the 
contralateral (contra) and the ipsilateral (ipsi) sides of CFA inflamed rats. The mean values of pixel 
intensity have been normalized to the contralateral side of saline injected rats, set to 1.0. B-B’’, D-D’’, 
No changes in astroglial cell morphology were detected. Scale bars: 20 μm. 
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4.12 THE PURINERGIC P2Y12 RECEPTOR IS SELECTIVELY EXPRESSED BY 

MICROGLIAL CELLS IN THE CNS, BUT IT IS NOT UPREGULATED BY TMJ 

INFLAMMATION 

In microglial cells, the purinergic P2Y12 receptor subtype was shown to be up-

regulated following nerve injury, and its pharmacological or biotechnological inhibition 

prevented the development of mechanical allodynia (Kobayashi et al., 2008; Tozaki-

Saitoh et al., 2008). On this basis, we analyzed the possible changes of P2Y12 receptor 

expression in our inflammatory model. Using a specific antibody directed against the C-

terminal domain of the rodent P2Y12 receptor (Haynes et al., 2006), we were not able to 

detect any staining within the TG of control animals (Figure 4.17A). This finding is in 

contrast with a previous report indicating the presence of P2Y12 receptor mRNAs in rat 

DRGs (Kobayashi et al., 2006), and to our RT-PCR analysis on both intact ganglia and 

primary TG cultures (Figure 4.3). Interestingly, in the same tissue sections P2Y12 

receptor immunoreactivity was detected at the boundary between the trigeminal nerve 

root (i.e., the PNS) and the CNS (Figure 4.17B), thus indicating that the expression of 

this receptor subtype is probably restricted to cells of the CNS. Furthermore, while 

P2Y12 receptor and Iba1 immunostaining colocalized in CNS microglial cells (Figure 

4.17B, yellow arrows), Iba1+ macrophages resident in the trigeminal nerve root were 

P2Y12-negative (Figure 4.17B). In the brainstem, the P2Y12 receptor was only expressed 

by Iba1+ microglial cells (Figure 4.17C,C’’), confirming previous reports indicating this 

receptor expressed by CNS microglia (Haynes et al., 2006). 

We next evaluated whether or not P2Y12 receptor levels in the spinal trigeminal 

nucleus were affected by CFA injection into the TMJ. Despite the observed 

upregulation of Iba1 immunoreactivity and the morphological changes observed in 

microglial cells (see above), no increase in P2Y12 receptor immunoreactivity in the 

ipsilateral side of CFA-injected rats was observed in either the trigeminal subnucleus 

caudalis (n=7 animals; Figure 4.17D,E) or in the cervical dorsal horn (not shown; n=7 

animals). Taken together, these results suggest that the purinergic P2Y12 receptor, which 

has been implicated in some forms of pain sensations (Kobayashi et al., 2008; Tozaki-

Saitoh et al., 2008), might not be directly involved in the subacute reaction of CNS glial 

cells to TMJ inflammation. 
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Figure 4.17 

P2Y12 receptor is selectively expressed by microglial cells of the brainstem, but its 
expression  levels are not affected by TMJ inflammation. 
A,  In the TG, no staining for the P2Y12 receptor subtype (green) was detected in Iba1-expressing 
macrophages (red). B,  At the trigeminal nerve root (i.e., the PNS/CNS boundary), Iba1+/ P2Y12

+ 

microglial cells were observed (yellow arrows). C, C’, In the brainstem, P2Y12 receptor immunoreactivity 
was specifically found on Iba1+ microglial cells (red). Nuclei were labeled with the Hoechst 33258 dye 
(blue). Scale bars: 20 μm. D, Densitometric quantification of P2Y12 receptor immunoreactivity in the 
trigeminal subnucleus caudalis revealed no changes in the receptor expression between the contralateral 
(contra) and the ipsilateral (ipsi) sides of inflamed rats. Similar results were detected in the cervical 
dorsal horn (not shown; see text). The mean values of pixel intensity have been normalized to the 
contralateral side of saline injected rats, set to 1.0. E-E’’, Immunostaining of the P2Y12 receptor subtype 
in the trigeminal subnucleus caudalis 72h after CFA injection. Scale bars: 20 μm.  

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Discussion 

 104

Migraine is a highly disabling neurovascular disorder, affecting about 15% of 

adults in the Western World, with considerable socio-economic implications on both 

productivity and quality of life (Goadsby, 2007). Great progress has been made in 

migraine research during the past few decades: (i) migraine has been better classified 

and defined (Silberstein, 2004); (ii) imaging studies have shown that cortical spreading 

depression is most probably the phenomenon that underlies the migraine aura (see 

Paragraph 1.2.3; Pietrobon, 2007); (iii) the neurobiology of the trigeminal vascular 

system has been better delineated, and several messenger molecules have been strongly 

implicated in the initiation and triggering mechanisms of migraine (see Paragraph 

1.2.2; Pietrobon, 2005); and (iv) and novel classes of selective antimigraine drugs, such 

as triptans and CGRP antagonists, have been developed (see Paragraph 1.2.4; Goadsby 

& Sprenger, 2010). 

Despite these progresses, there is little or no evidence that shows with certainty 

which and how pain fibers are activated during migraine attacks. Most investigators 

currently believe that a migraine attack starts in the brain, as suggested by premonitory 

symptoms. However, a debate about migraine origin is still ongoing: some scientists 

argue for a central origin of the headache pain (Goadsby et al., 2009), whereas others, 

including our research group, believe that the headache is triggered by activation of 

peripheral nociceptors. Indeed, the trigeminal nerve conveys sensory information from 

most extracranial and intracranial structures to the spinal trigeminal nucleus, and it has 

been therefore hypothesized that migraine could arise from a primary dysfunction 

leading to activation and sensitization of the trigemino-vascular system (Olesen et al., 

2009). On this basis, the final aim of my study have been setting up both in vitro and in 

vivo models, as tools for evaluating the molecular and cellular role of the purinergic 

system in trigeminal pain transmission, in order to identify new potential targets for 

migraine pain therapy.  

 

 

5.1 PRIMARY MIXED TG CULTURES AS AN IN VITRO MODEL FOR 

EVALUATING P2 RECEPTOR EXPRESSION AND FUNCTIONALITY  

To characterize calcium signaling via P2 receptors in TG, we have taken 

advantage of in vitro trigeminal cultures that have been previously reported as a reliable 
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experimental model to study purinergic transmission in trigeminal neurons (Fabbretti et 

al., 2008; Simonetti et al., 2006). However, these previous studies were only focused on 

the neuronal P2X3 receptor, and no evidence was provided on the contribution of glial 

cells to purinergic signaling in TG. As a first step, we have characterized the dissociated 

TG cultures in terms of presence and structural organization of the different cell 

populations, demonstrating that primary mixed neuron-glia TG cultures are a reliable in 

vitro model of sensory ganglia. Indeed, cultured neurons survived for several days in 

vitro and displayed a good viability, as indicated by their responsiveness to 

depolarization and by the MTT cytotoxicity assay (data not shown). An analysis of the 

distribution of neurons according to their somatic size showed that small and medium 

nociceptive neurons represent almost the totality of the neuronal population (Figure 

4.1H), in full agreement with data obtained in cell cultures from DRG (Gu et al., 2006) 

and TG (Simonetti et al., 2006). Moreover, most of cultured neurons maintained the 

typical morphological features of sensory neurons with a single axon forming a T-shape 

bifurcation, and retained most of the phenotypical characteristics observed in vivo 

(Figure 4.1D-G’). Finally, cultured neurons retained, at least in part, their physical 

relationships with satellite glial cells (SGCs; Figure 4.1D,E), suggesting that also their 

functional and modulatory activities are preserved.  

We next analyzed single cell calcium changes induced by culture exposure to 

different subtype-selective P2 agonists in both neurons and glial cells 48 hours after TG 

dissociation. As a first step, we focused our attention on the P2X3 receptor subtype, the 

most important purinoceptor involved in pain transmission. Expression levels of P2X3 

receptor, and of the P2X2/P2X3 heterodimer, increases in different inflammatory (Xu & 

Huang, 2002; Shinoda et al., 2005), and neuropathic (Novakovic et al., 1999) models of 

pain, and the pharmacological or biotechnological inhibition of P2X2/P2X3 activation 

reduces or abolished pain sensation (Honore et al., 2002; McGaraughty et al., 2003; 

Dorn et al., 2004). Recent studies reported that P2X3 receptor-mediated responses are 

also increased in trigeminal primary cultures after exposure to pro-algogenic CGRP 

(Fabbretti et al., 2006), suggesting the possible importance of this receptor subtype also 

in migraine pain. Confirming to literature data (Bradbury et al., 1998; Guo et al., 1999), 

we found P2X3 receptors expressed in approximately 70% of neurons (Figure 4.2A), 

and, relevant to pain transmission, in almost the totality of IB4-positive sensory neurons 

(Figure 4.2B). In approximately 60% of neurons, P2X3 was coupled to [Ca2+]i increases 
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as demonstrated by the application of its relatively selective agonist αβ-meATP (Figure 

4.2D). Primary trigeminal cultures also expressed P2X2, which likely dimerizes with 

P2X3 contributing to pain transmission, but not the P2X1 receptor subtype (Figure 

4.2C). Taken together, these results suggest that cultured TG sensory neurons maintain 

their physiological responses to ATP, and express functional algogenic P2X3 and P2X2/3 

receptors, thus confirming the suitability of this in vitro model to study the modulation 

of pain transmission by the purinergic system. 

As mentioned above, the present study has been principally aimed at 

characterising P2Y receptors in both neurons and SGCs in the TG cultures. Regarding 

the presence of these receptors in sensory neurons, immunohistochemical analysis on 

intact DRG, TG, and nodose ganglia has demonstrated that P2Y1 and P2Y4 receptors are 

expressed by two distinct neuronal populations (Ruan & Burnstock, 2003), but so far no 

functional studies have been performed. Interestingly, our RT-PCR analysis showed 

that all cloned murine P2Y receptors (i.e., P2Y1,2,4,6,12,13,14) are expressed in both intact 

TG and in trigeminal cultures 48 hours after plating (Figure 4.3). Results obtained by 

single cell calcium recordings from TG neurons indicated that only some P2Y receptors 

are functional in these cell populations. In particular we showed that TG neurons 

express metabotropic ADP-sensitive P2Y1 and UTP-responding P2Y2/P2Y4 receptors 

(Figure 4.4). We have also evaluated the functionality of calcium-linked P2Y receptors 

on SGCs, for which very few data have been available so far. In fact, in one single study 

on intact TG ganglion, P2Y1 and P2Y2/P2Y4 receptors were demonstrated to couple to 

increases of intracellular calcium concentrations in SGCs (Weick et al., 2003). As 

shown in Figure 4.5, in dissociated TG cultures SGCs expressed functional 

metabotropic P2Y1 and P2Y12/P2Y13 receptors responsive to ADP, as well as 

P2Y2/P2Y4 receptors responsive to UTP, as further indicated by the use of selective 

antagonists. A smaller response to UDP was also found, indicating that P2Y6 receptors 

only marginally contribute to P2-mediated calcium increases in these cells, at least 

under control conditions (see also below). Taken together, our results represent the first 

systematic evaluation of P2Y receptor expression and function in both neuronal and 

non-neuronal TG cells. 
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5.2 EXPOSURE TO ALGOGENS EXERT A COMPLEX MODULATION OF P2 

RECEPTOR FUNCTIONALITY IN NEURONS AND GLIAL CELLS 

Prolonged exposure to algogenic mediators modulates both neuronal and glial cell 

activity, thus contributing to the development of chronic pain (Wang et al., 2007; 

McMahon & Malcangio, 2009). Among known algogens, BK is indeed a known 

activator of sensory neurons and has been demonstrated to increase the neuronal firing 

rate in trigeminal nucleus caudalis and to enhance the release of CGRP from cultured 

dorsal horn and TG neurons (Jenkins et al., 2003). Moreover, literature data indicates 

that an acute (50 sec) exposure to BK rapidly sensitizes the function of the P2X3 

receptor subtype (Paukert et al., 2001). Since subpopulations of SGCs are also sensitive 

to BK (Heblich et al., 2001), we deemed it interesting to study the effect of an acute (up 

to 3 min) or a prolonged (24 h) BK exposure on purinergic signaling in both neurons 

and SGCs. Acute application of BK induced responses in a significant percentage of 

neurons (see also below), and significantly enhanced the amplitude of neuronal P2X3 

receptor-mediated peak calcium response (Figure 4.6C), thus confirming literature data 

in an expression system (Paukert et al., 2001). Instead, chronic treatment with BK 

induced a strong and highly significant reduction of the number of αβ-meATP-

responding neurons (Figure 4.6E). These data represent the first demonstration of a 

P2X3 receptor modulation by BK in a native system. Thus, a biphasic response of P2X3 

receptor to painful situations, with increased or decreased firing depending on the length 

of the exposure to the noxious and pro-inflammatory stimulus, might exist. This 

evidence suggests that different pharmacological manipulations of this receptor subtype 

might be utilized in acute or chronic pain. Interestingly, in TG cultures a 1 hour 

exposure to CGRP also led to the upregulation of neuronal P2X3 receptors (Fabbretti et 

al., 2008). 

Upon chronic exposure to BK, a significant upregulation of P2Y receptors 

responding to either ADP or UTP was also observed in SGCs (Figure 4.6F,G). Of 

interest, very few SGCs (about 3%) responded to BK, compared to the 35% of 

responding neurons (data not shown). This allowed us to hypothesize that the observed 

changes of P2Y receptors functionality in SGCs might be due to a soluble mediator 

released by neurons upon BK stimulation. We identified this mediator as the 

neuropeptide CGRP based on the following evidence: (i) BK-mediated effects on P2Y 
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receptors were inhibited by the CGRP antagonist, CGRP8-37 and mimicked by CGRP 

itself (Figure 4.7A,B); (ii) a significant increase in extracellular CGRP concentrations 

was detected after exposure of cultures to 100 nM BK (Figure 4.7C); (iii) in purified 

SGCs cultures (i.e., in the absence of neurons), BK lost its ability to enhance P2Y 

receptor responses, whereas the effects of CGRP were fully preserved (Figure 4.7B), 

due to direct activation of CGRP receptors on these cells and subsequent activation of 

ERK1/2 MAP kinase signalling pathway. In this scenario, it can be envisaged that BK- 

(and consequently CGRP-) induced upregulation of glial P2Y receptors contributes to 

the long-term maintenance of the TG pro-algogenic state, possibly by promoting the 

synthesis and release of additional glial pro-inflammatory mediators (e.g., chemokines, 

cytokines, or arachidonic acid metabolites), as already demonstrated for the P2Y2 

receptor subtypes in astrocytes (Weisman et al., 2005). Nevertheless, at this stage we 

cannot exclude that the observed plasticity of P2Y receptors represent an attempt to 

counteract the pro-nociceptive effects of BK and CGRP or that the different receptor 

subtypes involved (namely, the P2Y1,12,13 and the P2Y2,4 subtypes for ADP and UTP, 

respectively) might play opposite roles in the modulation of TG sensitivity.  

Our observation that BK-induced effects on SGCs are mediated by the neuronal 

release of CGRP suggests that this whole molecular network could be involved in 

migraine pathology. As discussed in Paragraph 1.2.2, CGRP play a central role in 

migraine. For instance, during the acute migraine attack, CGRP is released by TG 

afferent at the meninges, where it contributes to central neurogenic inflammation and 

induces pain-associated vasodilatation (Tepper & Stillman, 2008). Accordingly, CGRP 

plasma levels are increased during a migraine attack (Goadsby et al., 1990), and return 

to baseline after administration of migraine abortive drugs (Lassen et al., 2002), thus 

demonstrating its causative correlation with headache pain. No wonder if CGRP 

antagonists are now evoked as new effective drugs in untreatable migraine (Tepper & 

Stillman, 2008).  

 

 

5.3 THE GAIN-OF-FUNCTION MUTATION IN CaV2.1 CALCIUM CHANNELS 

AFFECTS P2Y RECEPTORS FUNCTIONALITY IN SGCs  

By using TG cultures derived from CaV2.1 α1 R192Q mutant KI mice we have 
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demonstrated, for the first time, a significantly increased basal and stimulated 

extracellular CGRP release compared to wild type cultures. Transgenic mice carrying 

this mutation were previously shown to exhibit an enhanced Ca2+ influx in cortical 

neurons, which could explain their increased susceptibility to the generation of cortical 

spreading depression (that is also observed in FHM1 patients, see Introduction; van den 

Maagdenberg et al., 2004; van den Maagdenberg et al., 2010). Our results suggest that, 

in R192Q KI cultures, mutated CaV2.1 calcium channels lead to an increased neuronal 

firing, which in turn promotes CGRP release in TG and may augment their sensitivity to 

migraine triggers. More specifically, we hypothesize that the presence of a basal pro-

inflammatory milieu within the TG of these mice might lower the threshold for neuronal 

firing. The fact that the already elevated extracellular CGRP levels can be further 

enhanced by neuronal stimulation stimuli (with BK or KCl) suggests that this pathway 

can contribute to an amplification and worsening of this basal pro-inflammatory state 

under conditions that occur during a migraine attack. Accordingly, in the presence of 

high levels of CGRP, neuronal P2X3 receptors show an enhanced synthesis and a 

reduced desensitization potential (Fabbretti et al., 2006), contributing to the increased 

transmission of pain. Moreover, an increase in basal neuronal P2X3 receptor activity has 

been recently found in TG cultures from CaV2.1 α1 R192Q KI mice, as a consequence 

of calcium-dependent alterations of the receptor phosphorylation state (Nair et al., 

2010).  

We have also evaluated if the augmented CGRP release in R192Q KI cultures was 

associated to modulation of P2Y receptor functionality in SGCs. We observed no 

differences in basal ADP- and UTP-related mean calcium increases between R192Q 

WT or KI SGCs (compare “CTR” histograms in Figure 4.11), thus indicating that the 

higher basal release of CGRP in KI cultures does not affect P2Y receptor functionality 

in glial cells, or that the chronic exposure to CGRP might have triggered some 

compensatory mechanisms. However, following BK application, despite a similar 

upregulation of P2Y receptors in SGCs from R192Q WT and KI animals (Figure 4.11), 

a significant increase in the percentage of ADP and UTP responding SGCs was found in 

R192Q KI cultures (Figure 4.11). This evidence suggests that the larger CGRP release 

induced by BK in R192Q KI cultures might enhance the transcription of specific P2Y 

receptor subtypes or that some yet-to-be identified mechanisms of modulation of P2Y 

receptor function is involved (e.g., receptor phosphorylation or recruitment of scaffold 
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proteins). It should be noted that the percentage of ADP- and UTP-responding SGCs in 

R192Q WT cultures is lower to that reported in our previous experiments, as shown in 

Figure 4.5. This apparent discrepancy could be explained by the use of lower 

concentration of nucleotides in experiments involving R192Q WT and KI cultures 

(1µM for ADP and 10 µM for UTP), compared to our previous experiments (100µM for 

both ADP and UTP). Moreover, the R192Q WT littermates utilized in the last set of 

experiments were selected during the generation of R192Q KI transgenic mice from 

C57black/6 mice (van den Maagdenberg et al., 2004), thus some genetic differences 

with the C57black/6 mice we usually purchase from a commercial source could be 

present. 

In conclusion, we have demonstrated that the gain-of-function R192Q mutation in 

CaV2.1 channels is associated to a basal and stimulated increase of CGRP released from 

TG neurons, which in turn modulates P2Y receptor expression and functionality in 

SGCs. Thus, the complex interplay between TG neurons and SGCs has implications for 

migraine pathophysiology and could become even more important in FHM1 patients. 

To date, the pro- or anti-algogenic role of glial P2Y receptors in pain transmission is 

still unknown; future in vivo studies are therefore needed to clarify this issue. 

 

 

5.4 SET UP OF IN VIVO MODELS OF TRIGEMINAL PAIN AS TOOLS FOR 

EVALUATING THE ROLE OF GLIAL P2Y RECEPTORS IN PAIN 

TRANSMISSION 

The results obtained from our TG cultures in vitro demonstrate that glial P2Y 

receptors act as important players in nociception. For this reason, we deemed interesting 

to set up in vivo pain models of TG sensitization, in order to study the involvement of 

the purinergic system in pain transmission, and to validate the role of specific P2Y 

receptor subtypes. To this aim, we initially set up a mouse model of acute trigeminal 

pain, based on the injection of formalin into the upper lip of mice, and we focused our 

attention on the P2Y4 receptor, due to evidence indicating its expression by trigeminal 

SGCs (Weick et al., 2003; Vit et al., 2006). Although we successfully reduced P2Y4 

protein levels by injecting long double-stranded RNAs (dsRNAs) designed to 

selectively knock-down P2Y4 receptor expression directly in the TG, no significant 
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differences in pain behaviour were detected when comparing formalin-treated mice that 

received P2Y4-dsRNAs to formalin-treated animals receiving control dsRNAs (Figure 

4.12). These data apparently rule out a major role for P2Y4 receptors in acute trigeminal 

pain transmission. Moreover, doubts on the specificity of the anti-P2Y4 commercially 

available antibody, and on the actual expression of this receptor subtype in SGCs have 

been raised (Villa et al., 2010). For this reason, we focused our attention on other P2Y 

receptors subtypes that could be targeted by antibodies whose specificity has been fully 

validated (see below). 

Therefore, we set up and characterized a model of chronic trigeminal 

inflammation based on the injection of the Complete Freund’s Adjuvant (CFA) into the 

temporomandibular joint (TMJ) of adult rat. This paradigm of pain is a well established 

model of chronic trigeminal pain, associated with strong neuronal sensitization both in 

the trigeminal ganglion and in the brainstem (Zhou et al., 1999). Since the trigeminal 

and CNS nociceptive pathways are sensitized in migraneurs as well (Pietrobon, 2005), 

this models can be proposed to mimic the molecular mechanisms at the basis of 

migraine sensitization. It should be also considered that specific in vivo models of 

migraine pain are not available, and even impossible to be achieved. Moreover, relevant 

links between migraine and inflammatory pain can be found in literature. In fact, 

clinical studies have demonstrated a strong correlation between migraine and the 

temporo-mandibular disorders (Taub et al., 2008; Kang et al., 2009), and the 

pharmacological treatment of various temporo-mandibular symptoms significantly 

decreases headache pain (Mitrirattanakul & Merrill, 2006). In addition, it has been 

demonstrated the existence of a prevalence to temporo-mandibular disorders in patients 

with combined migraine and tension-type headache (Ballegaard et al., 2008).  

Due to the limited information on the role glial cells in the spinal-trigeminal 

system following TG sensitization, we have examined the response of TG and CNS 

glial cells in our inflammatory pain model. First of all, we have demonstrated that CFA 

injection into the TMJ produces a significant increase in GFAP expression in SGCs in 

the TG (Figure 4.14), thus confirming the reaction of this glial cell family to the 

administration of a pro-algogenic stimulus (Takeda et al., 2009). The key role of SGCs 

in the development and maintenance of chronic pain has been demonstrated in other 

pain models by their increased expression and release of IL-1β (Takeda et al., 2007), 

TNFα (Zhang et al., 2007), as well as augmented gap junction-mediated cell coupling 
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(Garret et al., 2008; Ledda et al., 2009) following nerve injury. All together, these 

changes are associated with increased excitability of both primary afferents and CNS 

neurons, leading to the development of hyperalgesia and allodynia (Takeda et al., 2009).  

We also provide new evidence on the behavior of TG macrophages under 

inflammatory conditions. In particular, following induction of TMJ inflammation a 

strong upregulation of ED1 (a specific marker for activated macrophages; Hu et al., 

2007) in the ipsilateral side of inflamed rats was found (Figure 4.14). Since no increases 

in either the number or the average cell size of macrophages were detected, we conclude 

that CFA injection does not trigger macrophages infiltration from the bloodstream into 

the trigeminal perineuronal regions, but rather modulates the activation state of resident 

immune cells. These cells can in turn contribute to the development of TG sensitization 

following TMJ inflammation.  

Microglial cells, the resident macrophagic population in the CNS, have been 

crucially implicated in the initiation and modulation of certain chronic pain states 

(Smith, 2010). For instance, in various neuropathic pain models, activated microglia 

was shown to release pro-inflammatory cytokines and other substances that facilitate 

pain transmission (Inoue & Tsuda, 2009; White et al., 2007). Moreover, several drugs 

acting as glial cell inhibitors (e.g., propentofylline, pentoxifylline and minocyclin) 

eventually suppress the development of neuropathic pain by decreasing both microglial 

activation and cytokine release (Mika, 2008; Sweitzer et al., 2001). Here we report for 

the first time that injection of CFA into the TMJ induces a significant ipsilateral 

activation of microglial cells, both in the dorsal laminae of the trigeminal subnucleus 

caudalis in the medulla oblongata and in the dorsal horn of the cervical spinal cord 

(Figure 4.15), which represent the territories innervated by the mandibular fibers of the 

trigeminal nerve (Capra & Dessem, 1992), and represent key stations for the integration 

of temporomandibular painful sensations. Our data are in agreement with previous 

papers indicating an increased expression of microglial cell markers in the lumbar 

spinal cord in CFA-induced ankle or tibio-tarsal joint monoarthritis in rats, associated 

with the appearance of cells having an activated morphology (Sun et al., 2007; 

Hernstadt et al., 2009). This confirms that the induction of deep articular inflammation 

represents a potent trigger for CNS microglial activation.  

We also examined astrocyte activation in the brainstem following TMJ 

inflammation. At variance from previous reports on sciatic nerve inflammation 
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(Raghavendra et al., 2004; Sun et al., 2007), we did not detect any evidence of astroglial 

activation (Figure 4.16). This divergence could be due to the fact that the latter studies 

showed astroglial activation at later time points (11 and 14 days) following the 

inflammatory insult, thus suggesting that astrocytes are not involved in the first sub-

acute phases of tissue sensitization, but might be recruited at later times. 

As discussed in Paragraph 1.4.2, the purinergic P2Y12 receptor is a key player in 

controlling microglia-associated development of neuropathic pain, and thus represents a 

possible therapeutic target for treating chronic pain disorders. For these reasons we 

checked for its possible modulation in our inflammatory pain model. By utilizing a 

custom-made antibody whose specificity was already successfully validated in P2Y12-

deficient mice (Haynes et al., 2006), no P2Y12 immunostaining was detected on TG 

sections, although we have detected its mRNA in mouse TG (Figure 4.3). Interestingly, 

staining for the P2Y12 receptor was observed at the boundary between the trigeminal 

nerve root and the CNS, and in Iba1+ cells of the brainstem (Figure 4.17). This 

observation correlates with previous reports indicating that, unlike other extracellular 

nucleotide receptors, such as the P2X4, P2X7, and P2Y6 receptor subtypes, P2Y12 

receptor expression is restricted to CNS microglia (see Section 1.4; Haynes et al., 2006). 

Quite surprisingly, we detected no changes in microglial P2Y12 receptor levels after the 

injection of CFA in the TMJ, suggesting that this receptor might not participate to the 

first phases of tissue hypersensitivity following an inflammatory stimulus; however, 

only pharmacological studies can endorse this evidence. In a different model of 

inflammatory pain (i.e., the injection of CFA in the hindpaw) the intraperitoneal 

administration of the P2Y12 receptor antagonist 2,2-dimethyl-propionic acid 3-(2-

chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester 

(MRS2395) significantly alleviated the mechanical hypersensitivity (Ando et al., 2010), 

but authors did not evaluated the possible changes in P2Y12 receptor expression in their 

experimental model. Thus, it may well be that, despite the lack of detectable receptor 

upregulation, P2Y12 receptor targeting might be beneficial also for treating other 

chronic inflammatory pain states involving the sensitization of the spinal-trigeminal 

system. 

In conclusion, this in vivo model represents an useful tool for evaluating the role 

of specific P2Y receptor subtypes, expressed by glial cells, in the development and 

maintenance of chronic trigeminal pain and migraine-associated pain. We intend now to 
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look for possible changes in other P2Y receptors expressed by glial cells, and to 

evaluate the pro- or anti-algogenic effects of their pharmacological or biotechnological 

inhibition. 
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Abbreviations 

 
[Ca2+]i   intracellular calcium concentration 

2MeSADP   2-methylthio adenosine 5'-diphosphate  

a,ß-meATP   a,ß-methylene-ATP  

Ado    adenosine  

ADP    adenosine-5'-diphosphate   

ADPβS  adenosine 5'-[β-thio]-diphosphate   

ASO   antisense oligonucleotides   

ATP    adenosine-5'-triphosphate  

BDNF   brain derived neurotrophic factor  

BK    bradykinin  

CaMKII   calcium/calmodulin kinase II  

CFA    complete Freund's adjuvant   

CGRP    calcitonin-gene related peptide  

CNPase   2',3'-cyclic nucleotide 3'-phosphodiesterase 

CNS   central nervous system 

CSD   cortical spreading depression  

DRG   dorsal root ganglia  

dsRNAs   long double-stranded RNAs   

EIA    enzyme immunometric assay   

FHM1   familial hemiplegic migraine type 1  

FHM2   familial hemiplegic migraine type 2  

FHM3   familial hemiplegic migraine type 3  

GDNF   glial-derived neurotrophic factor  

GFAP    glial fibrillary acidic protein  

GPCR    G protein-coupled receptors  

IASP   international association for the study of pain  

IB4   isolectin B4  

Iba1   ionized calcium-binding adapter molecule 

IL   interleukin  

ISHH    in situ hybridization histochemistry   

KI    knock-in   

MA   migraine with aura  
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MO   migraine without aura 

NA    noradrenaline   

NGF    nerve growth factor 

NO   nitric oxide  

NSAIDs  nonsteroidal anti-inflammatory drugs 

p.i.   post injection  

PET   positron emission tomography  

PNS    peripheral nervous system  

PPADS   pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid   

SCI    spinal cord injury  

SGCs    satellite glial cells  

SP   substance P 

TG   trigeminal ganglia  

TMJ    temporomandibular joint  

TNFα   tumor necrosis factor α 

TNP-ATP   2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate  

UDP    uridine-5'-diphosphate  

UTP    uridine-5'-triphosphate  

VIP   vasoactive intestinal polypeptide  

VR1   vanilloid receptor subtype 1  

WT   wild type   
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