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MARK4 (MAP/Microtubule Affinity-Regulating Kinase 4) belongs to a family of serine-

threonine kinases that are able to phosphorylate the Microtubule Associated Proteins, 

causing their detachment from the microtubules and thus increasing microtubule 

dynamics. MARK4 gene is ubiquitously expressed and encodes at least two 

alternatively spliced isoforms, L and S, which differ in the C-terminal region and are 

differentially regulated in human tissues, especially in the Central Nervous System 

(CNS). MARK4S predominance in normal brain has been related to a putative role in 

neuronal differentiation; MARK4L has been found up-regulated in hepatocarcinoma 

cells and highly expressed in gliomas, suggesting an involvement of the kinase in 

cycling cells. Gliomas are the most common tumors of the CNS and are characterized 

by elevated cellular heterogeneity, which has been imputed to the presence of different 

cells (mature cells / progenitors / stem cells) from which each glioma originates.  

To further investigate MARK4 up-regulation in glial tumors, we analyzed a panel of 35 

glioma tissue samples and 21 glioma cell lines (both low and high malignancy grade) 

and 6 glioblastoma-derived cancer stem cell populations (GBM CSC; glioblastoma is a 

IV grade glioma). Human neural progenitors, total human normal brain and mouse 

neural stem cells (NSC, isolated from the sub-ventricular zone) were also included in 

the study. A quantitative approach (Real-time PCR; q-PCR) was applied for mRNA 

analyses whereas MARK4 protein levels and localization were tested by 

Immunoblotting (IB), Immunohistochemistry (IHC) and Immunofluorescence (IF).  

We first carried out mutational analysis of the main MARK4 domains, but it didn’t 

reveal any genomic alteration, as did not the previously performed array-CGH 

analysis.  

Integrated approaches of q-PCR, IB and IHC studies show that, although MARK4S and 

L have a heterogeneous expression within and across different glioma subtypes 

(consistent with the intrinsic cell heterogeneity of these brain tumors), MARK4L is the 

prevalent isoform in near all the glioma samples. Conversely, MARK4S mRNA levels 

display a significant decrease inversely correlating with malignancy grade and are also 

hardly detectable in both neural and GBM-derived cancer stem cell populations. 

Therefore, a higher MARK4L prevalence in parallel to low levels of MARK4S 

characterizes highly undifferentiated cells, such as NSC, and highly malignant cells, 

such as GBM CSC and glioblastomas, favouring the hypothesis that the ratio between 

the two MARK4 isoforms is strictly regulated along neural differentiation and may be 

subverted in gliomagenesis. These findings, together with the observation that in 

normal brain only the L isoform localizes in the embryonic ventricular zone (VZ) and 
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adult sub-ventricular zone (SVZ), where stem cells reside, suggest that some GBM of 

our panel originated from the SVZ. In contrast, the concomitant expression of both 

MARK4 isoforms in the main substrates of glioma transformation, mature glial cells 

and progenitors, could explain the origin of the Oligodendrogliomas, Astrocytomas and 

of some GBM here studied. Furthermore, both MARK4 isoforms are expressed in 

neurons, extending published data of MARK4S as a neuron-specific marker in mouse 

CNS.  

By Immunofluorescence we found that the two MARK4 isoforms localize at 

centrosomes and midbody of normal and glioma cell lines, showing that MARK4 

association with these cell compartments is neither isoform- nor tumor-specific. It has 

been reported that both normal and cancer stem cells can display centrosome 

amplification, genetic instability and loss of asymmetry with switch to a prevalent 

symmetric division, which may converge in malignant transformation and 

unrestrained growth of stem cells. Interestingly, we previously found MARK4 protein 

in association with glioma aberrant centrosomes, a hint for a possible role of the 

kinase in the abnormal mitotic processes of human glioma. Symmetric division, 

besides promoting the expansion of stem cell numbers, may also be permissive for 

secondary events leading to aneuploidies, since the machinery that controls 

asymmetric division also regulates the orientation of mitotic spindles and of 

centrosomes.  

Finally, an intriguing finding, delineating MARK4L as a tumor marker through its 

nucleolar association, comes from the evidence that L isoform, in contrast to MARK4S, 

is detectable in nucleoli and exclusively in cancer cells. Furthermore, the differential 

expression of MARK4 isoforms in undifferentiated and glial malignant cells expands 

the concept of MARK4 splice variants dysregulation in mediating tumor initiation and 

progression.
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11..11  TTHHEE  FFAAMMIILLYY  OOFF  MMAARRKK  KKIINNAASSEESS  

MAP/Microtubule affinity-regulating kinases (MARKs) constitute a family of serine-

threonine kinases originally discovered for their ability to phosphorylate Microtubule 

Associated Proteins (MAPs, including tau, MAP2, MAP4 and doublecortin), causing 

their detachment from microtubules and thus increasing microtubule dynamics 

[Drewes 1997]. Microtubules indeed consist of assembled α and β tubulin dimers and 

are stabilized by MAP association; phosphorylated MAPs detach from microtubules 

which therefore lose stability and disassemble. In mammals the MARK family consists 

of four members, namely MARK1, MARK2 (EMK1), MARK3 (C-TAK1) and MARK4 

(MARKL-1), encoded on chromosomes 1, 11, 14 and 19 in the human genome 

[Espinosa 1998] and presenting 28 pseudogenes. 

MARKs belong to the AMPK (AMP-activated protein kinases) subfamily of the Ca2+-

calmodulin dependent protein kinases (CAMPK), on the basis of their elevated 

homology with the other proteins of these families. The AMPK group includes 12 

kinases, namely BRSK1 and BRSK2, NUAK1 and NUAK2, SIK1, SIK2 and SIK3, 

MELK, MARK1, MARK2, MARK3 and MARK4 [Bright 2009].  

MARK kinases also have homologues in lower eukaryotes, such as Par-1 (partition-

defective) in Caenorhabditis elegans and KIN1, KIN2 in yeast.  

11..11..11  PPrrootteeiinn  ssttrruuccttuurree  

All MARK proteins have a very conserved structure, similar to that of other AMPK 

kinases, consisting of six sequence segments [Marx 2010] (figure 1.1): 

 

 

Figure 1.1: schematic representation of MARK protein structure. Boxes are not drawn to scale. 

 

 the N-terminal header, whose role is still unknown; 

 the catalytic domain, containing the activation loop (also called T-loop), the 

catalytic loop and the P-loop (phosphate-binding loop); 

 a linker, that is a highly and negatively charged motif that resembles the 

Common Docking (CD) site in MAP kinases and may bind interactors or co-

factors; 

 the UBA domain, that is probably autoregolatory; 
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 a spacer, the most variable region among the MARK members; it is probably 

important for regulating MARK activity, since it holds phosphorylation sites 

that are targeted by aPKC; 

 the C-terminal tail, consisting of the Kinase-Associated (KA1) domain with a 

probably autoinhibitory function. 

 

The three major domains are here described in details.  

The catalytic domain: MARK kinases are activated by phosphorylation in the T-

loop (that contains a conserved sequence, LDTFCGSPP, where the threonine and 

serine residues are phosphorylation targets) and exert their activity by subsequently 

linking a phosphate group to substrate proteins.  

The catalytic domain forms, with the CD domain, the linker and the UBA domain, a 

bi-lobal structure creating a cleft for substrate and ATP. This structure is very flexible, 

allowing conformational changes depending on the activation/inactivation state. In the 

inactive state, the T-loop is disordered and folded into the cleft, blocking the access of 

substrate peptide and ATP. Both the phosphorylation sites (threonine and serine) are 

nevertheless accessible for kinases: once they have been phosphorylated (activation), 

the T-loop is reoriented and folds out of the cleft, which becomes open enabling ATP 

and substrate access [Timm 2008].  

The UBA domain is a small, globular domain which has sequence homology with 

UBiquitin-Associated proteins but, differently from them, it is unusually folded and 

probably doesn’t bind ubiquitin, interacting instead with the MARK catalytic domain 

by binding close to its N-terminal lobe and locking it in an open (inactive) 

conformation. Based on this feature, two different functions were proposed for MARK 

UBA domain, an autoinhibitory role (1) or a positive regulatory one (2): 

(1) by locking the kinase in an open conformation, the UBA domain prevents 

substrate and ATP binding [Panneerselvam 2006]; 

(2) on the other hand, this open conformation increases the accessibility of the 

activation loop for activating or deactivating kinases [Murphy 2007]. 

The UBA domain may thus serve several functions – inhibitory, activating, stabilizing 

– depending on the phosphorylation state of the kinase domain or on cofactor 

interactions (for example, ubiquitin could bind the UBA domain competing with the 

kinase domain) [Marx 2010]. 

The C-terminal tail (KA1 domain) is a 100 aminoacid-long motif and is 

characterized, on its N-terminal region, by a hydrophobic and concave surface, 

surrounded by positively charged residues. This region may interact with negatively 
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charged regions of (1) cytoskeletal proteins, (2) MARK catalytic domain, or (3) MARK 

CD domain [Tochio 2006]. The tail domain could therefore be another autoinhibitory 

domain, as reported for yeast KIN1 and KIN2 and for Snf1-pKD (an AMPK protein from 

Schizosaccharomyces pombe). In particular, Snf1 C-terminal region is an 

autoinhibitory domain (AID) that binds both the N-terminal and C-terminal lobes of 

the kinase domain, reducing its mobility [Chen L. 2009]. In yeast, the C-terminal tail 

physically interacts with the N-terminal kinase domain (presumably when it is in an 

open conformation) with an autoinhibitory effect [Elbert 2005].  

The KA1 (Kinase Associated) domain was also reported to be involved in protein 

localization [Tochio 2006]. 

11..11..22  MMAARRKK  rreegguullaattiioonn::  aaccttiivvaattiioonn  mmeecchhaanniissmmss    

MARK kinases, containing several domains, appear to be regulated by multiple 

mechanisms. In general, MARK activation increases microtubule dynamics, while its 

inhibition stabilizes microtubules.  

MARK activation by phosphorylation: all MARK kinases are activated by Liver 

Kinase B11 (LKB1) and MARK Kinase (MARKK) by phosphorylation on the threonine 

residue in the T-loop (MARK1 T215; MARK2 T208; MARK3 T211; MARK4 T214). 

Moreover, the Calcium/calmodulin-dependent protein kinase I (CaMKI) 

phosphorylates MARK2 at a different site in its kinase domain [Matenia 2009].  

11..11..33  MMAARRKK  rreegguullaattiioonn::  iinnhhiibbiittiioonn  mmeecchhaanniissmmss  

MARK inhibition by phosphorylation: the Glycogen Synthase Kinase 3β (GSK3β) 

phosphorylates a serine residue, near the threonine activation site in the T-loop, in all 

the MARKs (MARK1 S219; MARK2 S212; MARK3 S215; MARK4 S218), negatively 

regulating protein activity. This inhibition occurs even if the threonine site is 

phosphorylated, since the phosphorylated serine is no longer able to stabilize, by 

interactions with other aminoacids, the activating loop [Timm 2008].  

Mammalian aPKC (atypical Protein Kinase C) phosphorylates MARK2 in the spacer 

region at T595 and MARK3 at the equivalent site, downregulating kinase activity, 

enhancing MARK binding to the 14-3-32 protein and promoting a change in 

localization [Hurov 2004].  

                                                           
1
 LKB1 is a tumor suppressor gene; loss-of-function mutations of LKB1 lead to Peutz-Jeghers Syndrome, 

characterized by the onset of many tumors.  
2
 14-3-3 proteins are phospho-serine/phospho-threonine binding proteins that interact with many partners and 

regulate different biological processes. 
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The human PIM1 kinase phosphorylates MARK3 inhibiting its activity [Matenia 

2009].  

MARK inhibition by interaction: as previously indicated, 14-3-3 proteins (Par-5) 

bind MARK kinases in their catalytic domain [Benton 2003] or in the spacer region 

(after MARK phosphorylation by aPKC) altering MARKs localization and reducing their 

activity, probably by stabilizing the inhibitory interaction between the KA1 domain and 

the catalytic domain.  

MARK2 is also inhibited by interaction with PAK5 (p21-activated kinase) at the 

catalytic domain [Matenia 2005].  

As previously mentioned, also ubiquitin and MARK UBA and KA1 domains can 

interact with MARK kinase domain.  

A novel proposed mechanism for MARK autoinhibition is dimerization: dimer 

formation is common in many kinases and MARK proteins were observed to 

persistently crystallize as dimers, covalently linked by a disulfide bridge between T-

loops. In this particular conformation, the molecules are in an open state and the 

activation loop is folded into the cleft and locks it, inhibiting MARK activity. Despite 

experimental data, there is no direct in vivo evidence of this interaction [Marx 2010]. 
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11..11..44  MMAARRKK  llooccaalliizzaattiioonn  aanndd  ffuunnccttiioonnss  

MARK1, MARK2 and MARK3 show a uniform cytoplasmic localization, associating to 

the intracellular network and, as concerns MARK2, possibly linking to membrane 

components [Drewes 1997]. MARK4 localization is discussed further on. 

Since MARK kinases regulate the affinity between MAP proteins and microtubules, 

they are implicated in many cellular processes involving the microtubule network, 

such as cytoskeleton dynamics [Schneider 2004], centrosome formation, chromosome 

segregation in mitosis and cytokinesis [Fukasawa 2002]. Some cellular processes 

involving MARK activity are here described; particularly attention is focused on 

cellular processes occurring in neurons and in pathologies, such as tumors and 

Alzheimer’s disease. MARK4 functions are reported further on in detail. 

Microtubule-dependent transport. It has been reported that MARK proteins, 

especially MARK2, control microtubule-dependent transport, for example in axons, 

since they phosphorylate MAPs which often interfere with motor proteins (that are 

responsible for protein, vesicle and organelle transport) [Mandelkow 2004]. In 

addition, MARK co-localization with clathrin-coated vesicles (CCV) was recently 

demonstrated, confirming a function of MARK4 in the regulation of microtubule-

dependent transport of CCV during endocytosis [Schmitt-Ulms 2009].  

Cell polarity. Par-1 homologues of MARK were discovered for their role in 

establishing polarity in C. elegans and Drosophila cells: they accumulate 

asymmetrically in the embryo and induce asymmetric division and polarized axis 

formation, which are necessary for correct embryonic development [Tomankak 2000]. 

Also KIN1 and KIN2 homologues in Schizosaccharomyces pombe establish cell polarity, 

inducing a bipolar growth that leads to the acquisition of the classical rod-shape of 

yeasts [Drewes 2003].  

In mammals, MARK proteins are similarly asymmetrically localized in epithelial cells 

and are required, with aPKC and Par-5 (14-3-3) proteins, in polarization processes in 

epithelial and neuronal cells [Bohm 1997; Matenia 2009]. In particular, MARK2 is 

involved in the reorganization of the microtubule network during epithelial 

differentiation of liver and kidney cells [Cohen 2004]. MARK/Par-1 also interacts with 

Helicobacter pylori CagA protein: a peptide of CagA mimics MARK substrate and 

occupies the catalytic loop of the kinase, inhibiting MARK activity [Nesic 2009]. 

Described effects in gastric carcinomas are the disorganization of the gastric epithelial 

structure [Saadat 2007] and spindle misorientation with mitotic delay [Umeda 2009]. 

It has also been reported that MARK2 plays a role in the maintenance of neuronal 
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polarity: strong MARK2 expression inhibits axon formation and dendrite development, 

whereas reduced MARK2 levels induce multiple axons in hippocampal neurons. This 

MARK2 activity is negatively regulated by aPKC phosphorylation that leads to MAPs 

detachment, microtubule assembly and axon elongation [Chen 2006; Terabayashi 

2007].  

Neuron migration. One of MARK substrates is doublecortin, which is highly 

enriched in leading processes of migrating neurons: phosphorylation by MARK 

proteins, regulating doublecortin affinity for microtubules, affects the motility of 

neurons [Schaar 2004]. Indeed, after MARK2 knockdown, neurons of the developing 

mouse cortex fail to migrate beyond the intermediate zone [Sapir 2008]. 

MARK3 and 14-3-3 proteins - cycle control, cell signalling and subcellular 

localization. MARK3 phosphorylation of Cdc25 phosphatase induces 14-3-3 binding 

to Cdc25 and doesn’t allow Cdc25 to activate the Cdc2/cyclinB complex, which is 

required for mitotic entry [Peng 1998]. In addition, Pim-1 phosphorylation and 

inhibition of MARK3 promote cell cycle progression at the G2/M phase [Bachmann 

2004].  

Phosphorylation of KSR1 (Kinase Suppressor of Raf-1) by MARK3 induces its binding 

to 14-3-3 proteins and regulates the Ras-MAPK pathway [Muller 2001]. 

Finally, MARK3 phosphorylates class IIa histone deacetylases (HDAC) on one of their 

14-3-3 binding sites, preventing 14-3-3 binding and thus altering HDAC subcellular 

localization (14-3-3 usually mediates HDAC nuclear exclusion; after MARK3 

phosphorylation HDAC are instead retained in the nucleus) [Dequiedt 2006]. Also 

PKP2 (Plakophilin 2) is phosphorylated by MARK3, creating a 14-3-3 binding site that 

induces PKP2 localization in the nucleus [Muller 2003].  

MARK2 - other physiological functions: experiments in mice demonstrated, by 

knocking-down MARK2, that this kinase is involved in many physiological functions, 

such as fertility, homeostasis of the immune system, memory, growth and metabolism 

[Bessone 1999; Hurov 2001; Hurov 2007; Segu 2008].  

Tau and Alzheimer. Tau is a microtubule-associated protein, particularly expressed 

in the Central Nervous System. It can be phosphorylated by MARK and, subsequently, 

by CDK5 and GSK3 kinases, that alter tau localization and induce tau proteolytic 

cleavage [Drewes 2004]. It is thought that as an effect of this proteolytic cleavage, 

hyperphosphorylated tau accumulates in neuron somatodendritic compartments and 

abnormally aggregates in paired helical filaments that form insoluble neurofibrillary 

tangles [Chin 2000; Gamblin 2003]. All these phenomena, also including loss of 
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synapses and neurons, are characteristic of Alzheimer’s disease and MARK role in this 

pathology has been evaluated by many studies, demonstrating, as an example, MARK 

co-localization with neurofibrillary tangles [Chin 2000].  

Recently, other studies have revalued microtubule alterations in Alzheimer’s disease, 

hypothesizing that tau phosphorylation is not the initial event of the pathology 

[Chatterjee 2009] but a consequence of β-amyloid aggregation. In particular, abnormal 

β-amyloid causes transport defects (due to increase and bundling of microtubules) 

and improper distribution of tau into the somatodendritic compartments (in contrast 

to axonal sorting in normal neurons) [Zempel 2010]. Very interestingly, MARK2 

activation in this early step of Alzheimer’s disease could rescue transport mechanisms 

and synapses [Thies 2007]. Instead, if pathogenesis goes on, hyperphosphorylated tau, 

elevated kinase activities (including MARK) and breakdown of microtubules are 

commonly found in the missorted dendritic regions [Zempel 2010].  

MARK1 and pathologies. MARK1 gene was recently identified as a susceptibility 

gene for autism, since several SNPs within the gene were significantly associated with 

autism and MARK1 was found overexpressed in the prefrontal cortex on post-mortem 

brain tissues from autistic patients. Authors suggested that MARK1 may be involved 

in cognition and be responsible for subtle changes in dendritic functioning [Maussion 

2008]; an earlier study had also hypothesized that MARK1 might be implicated in the 

regulation of synaptic plasticity [Jeon 2005].  

Many studies have hinted that MARK1 could have a role in neoplastic 

transformation: MARK1 gene is localized in a fragile site (FRA1H) and its expression 

levels presented significant modifications in tumor-derived cell lines compared to 

normal controls [Pelliccia 2007]. MARK1 was found to be methylated, and thus 

silenced, in primary gastric cancers [Yamashita 2006], whereas it was up-regulated in 

lung carcinoma compared to normal bronchial epithelium [Sun 2004]. 
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11..22  MMAARRKK44  ((MMAAPP//MMIICCRROOTTUUBBUULLEE  AAFFFFIINNIITTYY--

RREEGGUULLAATTIINNGG  KKIINNAASSEE  44))  

11..22..11  GGeennee,,  aalltteerrnnaattiivvee  ttrraannssccrriippttss  aanndd  pprrootteeiinn  ssttrruuccttuurree  

MARK4 is the less characterized and studied member among MARK proteins.  

The gene codifying for MARK4 was discovered by Kato and colleagues in 2001, 

among few genes whose expression resulted significantly increased in 

hepatocarcinoma cells with elevated β-catenin levels accumulated in their nucleus, 

and named MARKL1 (MARK-Like 1) on the basis of its homology to MARK3 [Kato 

2001].  

 

MARK4 gene is located on chromosome 19q13.2 and consists of 18 exons. At least 

two MARK4 isoforms are known (figure 1.2): 

 MARK4S (Short) mRNA, the native isoform, consists of 18 exons and is 3609 

base pairs (bp) long; it encodes a 688 aa3-long protein whose predicted 

molecular weight (MW) is 75.3 kilo Daltons (kDa); 

 MARK4L (Long) mRNA (3529 bp) is originated by the skipping of exon 16 and 

the consequent shift of the reading frame, leading to the production of a 752 

aa-long protein with a predicted MW of 82.5 kDa. 

 

MARK4 sequence has near 55% homology with the other MARKs, with the higher 

homology with MARK3. MARK4 isoforms have the characteristic protein structure and 

domains of the other MARKs, consisting of the N-terminal catalytic domain, a linker 

(common docking domain), the UBA domain, a spacer and the C-terminal tail. The 

kinase domain shows 90% homology compared to the other MARK members and 

contains the T-loop with the phosphorylation sites (T214 and S218), while the spacer 

region (the most variable segment among family members) is wide. As a consequence 

of the alternative splicing, the two isoforms differ in the C-terminal tail, since MARK4L 

includes the Kinase-Associated 1 (KA1) domain as the other MARK proteins, whereas 

MARK4S contains a domain with no homology to any known structure [Espinosa 

1998], suggesting different functions for the two isoforms. Actually, MARK4 shows 

much less sequence homology in the tail domain compared to the other MARKs, 

nevertheless MARK4 tail seems to fold in a conformation similar to those of MARK1, 2 

and 3, and thus the suggested autoinhibitory and interactor role of the C-terminal 

region applies also to MARK4 [Marx 2010]. 

                                                           
3
 Aminoacids. 
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Figure 1.2: [top] schematic representation of MARK4 exons and respective protein domains; [bottom] 

alternative splicing of exon 16 gives origin to MARK4 isoforms. When exon 16 is included in the mRNA, 

the stop codon is inside exon 18 and the encoded protein, MARK4S, lacks the KA1 domain at the C-

terminal tail (left); if exon 16 is skipped, a shift of the reading frame also occurs, changing the stop codon 

and generating a longer MARK4L protein, which has the classical KA1 domain (right). Boxes are not 

drawn to scale. 

 

11..22..22  MMAARRKK44  rreegguullaattiioonn  

Since the protein structure is conserved among MARK family, regulation of MARK4 is 

similar to that of the other MARK members.  

MARK4 is activated by LKB1 that phosphorylates Threonine 214 in the T-loop 

[Lizcano 2004; Brajenovic 2004]. A recent study demonstrated that MARK4 is 

polyubiquitinated and interacts with the deubiquitinating enzyme USP9X. Non-

USP9X-binding mutants of MARK4 are hyperubiquitinated and not phosphorylated at 

their T214, therefore polyubiquitination may inhibit LKB1 activation of MARK4. The 

proposed model implicates that in the steady state MARK4 UBA domain is bound by 

ubiquitin and cannot interact with the catalytic domain, making the T-loop less 

accessible to LKB1 (see also - in chapter 1.1.1 - the positive regulation of UBA domain 

proposed by Murphy). Alternatively, ubiquitin may cover and hide theT214 site or 

induce conformational modifications favouring the activity of phosphatases [Al-hakim 

2008]. 
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It has also been demonstrated that MARK4 interacts with aPKC [Brajenovic 2004] 

and could therefore be phosphorylated and inactivated by this kinase, as reported for 

MARK2 and MARK3 [Hurov 2004]. 

11..22..33  MMAARRKK44  iinntteerraaccttoorrss  

By Tandem Affinity Purification and Immunoprecipitation experiments, near twenty 

proteins have been identified as putative MARK4 interactors [Brajenovic 2004]. Among 

them, PKCλ and Cdc42 are implicated in cell polarity control and TGFβIAF 

(Transforming Growth Factor β-Inducing Anti-apoptotic Factor) is thought to be a 

hortologue of Miranda, a protein involved in the asymmetric division of neuroblasts in 

Drosophila. MARK4 interacts with the 14-3-3η isoform [Brajenovic 2004; Angrand 

2006]: 14-3-3 proteins, as previously reported, control many cellular processes by 

binding phosphorylated proteins and could directly regulate MARK4 or act as bridges 

among different pathways. Other MARK4 interactors are ARHGEF2, a cytoskeleton 

binding protein, and Phosphatase 2A, which is associated to microtubules and 

regulates Tau [Brajenovic 2004].  

MARK4 protein was also found to co-localize and co-precipitate in complex with α, β, 

and γ tubulin, myosin and actin [Trinczek 2004; Brajenovic 2004]. 

As previously indicated, MARK4 interacts with LKB1 and aPKC kinases and also 

with the deubiquitinating enzyme USP9X.  



Background 

 

 15 

11..22..44  GGeennee  eexxpprreessssiioonn  aanndd  pprrootteeiinn  llooccaalliizzaattiioonn  

Few MARK4 expression studies are reported in literature; they were performed with 

non-quantitative methods, such as Northern Blot [Kato 2001; Trinczek 2004; 

Schneider 2004] and semi-quantitative competitive PCR [Moroni 2006], on different 

organisms (human, rat and mouse tissues) not always discerning between the two 

MARK4 isoforms. As a result from all these data (that sometimes were discordant), 

MARK4 gene appeared to be ubiquitously expressed, with particularly elevated levels 

in brain and testis. In general, MARK4L seemed to be highly expressed in testis, brain 

and also in kidney, liver and lung [Trinczek 2004; Schneider 2004; Moroni 2006], 

whereas MARK4S levels were elevated in testis, heart and brain [Kato 2001; Moroni 

2006]. In details, Northern Blot analysis on rat tissues pointed out that MARK4L and 

S expression levels are equal in testis, whereas the L isoform is prevalent in brain and 

lung [Schneider 2004]. On the contrary, semi-quantitative PCR on mouse samples 

highlighted high MARK4L levels along with reduced S expression in testis and high 

MARK4S levels in brain [Moroni 2006].  

In brain, MARK4 protein (presumably the L isoform) was observed on the tips of 

neurite-like processes [Trinczek 2004]; Immunohistochemistry on rat cerebral cortex 

and hippocampus showed MARK4L and S expression in neurons of the grey matter, 

whereas the white matter was unlabeled [Moroni 2006]. 

Exogenous GFP-conjugated MARK4 protein was reported to localize in normal and 

aberrant interphase centrosomes in CHO4 and neuroblastoma cell lines. It was 

hypothesized that inactive MARK4 is located near the nucleus, possibly associated to 

the endoplasmic reticulum, and once activated it co-localizes with microtubules in the 

centrosome, exerting its function [Trinczek 2004]. Very recently, endogenous MARK4L 

localization was assessed by Immunofluorescence (IF), with a specific MARK4L 

antibody, in glioma cell lines. MARK4 protein localizes in normal and aberrant 

interphase centrosomes and maintains this association also in mitosis, co-localizing 

with γ-tubulin in all the cell cycle phases. This centrosome association was not 

abolished by nocodazole-induced depolymerization of microtubules, suggesting that 

MARK4L is a core component of centrosomes. Moreover, two novel MARK4 localization 

sites were highlighted, by showing MARK4L additional association with the nucleolus 

and the midbody. All these IF results were confirmed by Immunoblotting in 

centrosome, nucleolus and midbody fractions [Magnani 2009]. 
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The CENTROSOME is a little organelle, not bound by any membrane, positioned centrally in the 

cell near the nucleus [Fukasawa 2002]. It is the primary MicroTubule Organizing Center 

(MTOC), as it can nucleate and organize microtubules. It consists of two distinct domains: 

 the centriolar domain, including the centrioles, which are cylindrical organelles 

important for centrosome organization and replication. Each centriole consists of 9 

triple microtubules; 

 the pericentriolar domain, consisting of many fibers and proteins that surround the 

centriole. In this domain microtubules are nucleated, by associating α and β-tubulin 

dimers from a γ-tubulin ring [Doxsey 2001]. 

The centrosome plays a key role in organizing the interphase cytoskeleton (regulating cell 

polarity, adhesion and motility) and the mitotic spindle [Kramer 2002]. It also contributes to 

cell cycle progression and cytokinesis [Martinez-Garay 2006] and is involved in cell cycle 

transitions, in the cellular response to stress and signal transduction [Doxsey 2005]. The 

centrosomes duplicate only once in the cell cycle, during G1/S transition and in S phase, and 

forms a strictly bipolar spindle during mitosis. 

Centrosomes that were aberrant in their size, shape, number or composition (also presenting 

improper phosphorylation or expression of centrosomal proteins) were observed in many 

tumors [Yamamoto 2004; Katsetos 2006]. A surplus of centrosomes causes the formation of 

aberrant multipolar mitotic spindles, which can be responsible for errors in chromosome 

segregation and, subsequently, for the chromosomal instability (CIN) often found in tumors. 

 

CYTOKINESIS is the process occurring at the very end of mitosis, when the cell splits into two 

daughter cells.  

During mitosis the mother cell develops the mitotic spindle, consisting of two asters (star-

shaped microtubular structures) located at the cell poles, from which bundles of microtubules 

start and overlap at the equator (midzone). The spindle allows the accurate and equal 

segregation of chromosomes into the two daughter cells.  

During cytokinesis, the mitotic spindle locates the cleavage furrow, which will divide the cell, 

exactly inside the midzone in a point which is equidistant from the two asters. In this furrow, a 

contractile ring of actin and myosin grows up and shrinks, causing the "stricture" of the cell, 

until the two opposing surfaces of the membrane come in contact and merge, closing and 

delimiting the two daughter cells [Bringmann 2005].  

Initially the two daughter cells are connected by a narrow intercellular bridge, whose core is 

the MIDBODY, which consists of microtubules and of a dense matrix [Mullins 1982]. The 

diameter of the intercellular bridge then decreases until it vanishes, making effectively 

separated the two daughter cells. The midbody is finally discarded and undergoes degradation 

[Mullins 1977]. The midbody is thought to have an important role in maintaining a bipolar 

spindle and in correctly separating the cytoplasm between the two daughter cells. 
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The nucleolus is a subnuclear organelle not surrounded by membranes and whose main 

function is ribosome biogenesis. It originates at the end of mitosis (during mitosis the 

nucleolus doesn’t exist) from the Nucleolus Organizing Regions (Nors), which are clusters of 

genes (rDNA) codifying for ribosomal RNA (rRNA) located on the acrocentric chromosomes. The 

nucleolus consists of three main components, each with a different role in the formation of 

ribosomes, here defined starting from the inside of the nucleolus to outside: 

 the fibrillar center, which is a NOR (rDNA); 

 the dense fibrillar component, consisting of pre-rRNA; 

 the granular component, whose granular appearance is conferred by the presence of 

ribosomal subunits. 

The transcription of the rDNA leads to the formation of pre-rRNAs, which then undergo 

rearrangements and are assembled with ribosomal proteins to form the pre-ribosomes. The 

pre-ribosomal particles then move into the cytoplasm, passing through the nuclear pores 

[Carmo-Fonseca 2000; Schwarzacher 1983]. 

Besides this traditional ribosome biogenesis activity, the nucleolus is characterized by multiple 

functions, including the response to cellular stress, the regulation of cell cycle [Visintin 2000] 

and cell growth [Zhang 2010] and of post-translational modifications (phosphorylation and 

sumoylation) of proteins. 
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11..22..55  MMAARRKK44  iinn  tthhee  CCeennttrraall  NNeerrvvoouuss  SSyysstteemm  aanndd  iinn  ttuummoorrss  

MARK4 gene was first discovered in hepatocarcinoma cells, since after inactivation of 

the Wnt/β-catenin pathway many cells accumulated β-catenin in the nucleus and 

showed elevated expression levels of certain genes, including the novel MARK4 gene. 

Kato and colleagues hypothesized that it could be a downstream component of the 

Wnt-signalling pathway involved in hepatocellular carcinogenesis [Kato 2001].  

MARK4 gene was also found rapidly and transiently up-regulated after an ischemic 

event in brain, mainly in the hippocampus. Many genes were overexpressed in the 

injured brain compared to the healthy counterpart, including LKB1 which 

phosphorylates MARK4. Experimental overexpression of MARK4S in hepatocytes led to 

a reduction in cell vitality, thus it was hypothesized that MARK4S up-regulation in the 

early stages of an ischemic event might increase the probability of neuron death 

[Schneider 2004]. 

By analyzing frequent rearrangements involving chromosome 19q13 in gliomas, 

which are glial cancers and the most frequent tumors in the Central Nervous System, 

an amplified region in 19q13.2 was discovered. This was very interesting, since the 

amplified region was centromerical to the LOH5 area in gliomas [Hartmann 2002] but 

never deleted in these tumors, so it could harbour a gene probably important for 

cancer cells. DNA sequence of the amplified region corresponded specifically to the 

MARK4 gene [Beghini 2003].  

MARK4 gene was found duplicated in one glioblastoma (IV grade glioma) cell line (MI-

4) [Beghini 2003] and this duplication was confirmed by array-CGH6 analyses [Roversi 

2006]. By a semi-quantitative PCR approach, MARK4L was also seen up-regulated in 8 

tissue samples and 26 cell lines (10 I and II grade, 11 III grade and 5 IV grade gliomas) 

with a direct correlation between malignancy grade and MARK4L levels. MARK4S was 

found highly expressed in normal brain (with low L levels) and hardly detectable in 

tissue samples and human neural progenitors (data about glioma cell lines are not 

available). It was therefore suggested that MARK4L might be a mitogen protein, 

necessary for proliferation and thus highly enriched in proliferating or undifferentiated 

cells [Beghini 2003].  

MARK4L and S isoforms were analyzed by competitive PCR (a semi-quantitative 

method) in human and mouse normal brain, neural progenitors, NT27 cells and cells 

differentiated in neurons. S was the main expressed isoform in mouse and human 

brain but appeared undetectable in neural progenitors and in un-differentiated NT2 

                                                           
5
 Loss Of Heterozygosity.  

6
 Comparative Genomic Hybridization. 

7
 NTera2 (NT2) is a cell line derived from a human embryonic teratocarcinoma. 
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cells. MARK4S expression levels were shown to increase during neuronal 

differentiation of NT2 cells and progenitors, whereas MARK4L expression was 

maintained at the same levels in differentiated neurons. The S isoform was therefore 

suggested to be a neuron-specific marker in the CNS and to mark neuronal 

commitment. Nevertheless, both MARK4L and S proteins were found expressed in 

neurons by means of Immunohistochemistry, suggesting that both forms play a 

general role in neurons [Moroni 2006]. 

Finally, many hints were given about MARK4 association with Alzheimer’s disease 

(AD), since this kinase phosphorylates tau protein which is involved in this pathology, 

and also because MARK4 gene is located nearby a locus of susceptibility (ApoE) for AD 

[Trinczek 2004]. Several studies have also suggested that chromosome 19 could 

harbour another mutated gene linked with the disease [Podusio 2001]. Recently, the 

rs597668 locus, fairly close to the ApoE gene, was identified as significantly associated 

with AD. This locus is near EXOC3L2/BLOC1S3/MARK4 genes but does not improve 

Alzheimer risk prediction [Seshadri 2010]. 

11..22..66  MMAARRKK44  hhyyppootthheettiiccaall  ffuunnccttiioonnss  

As the other MARK members, MARK4 phosphorylates MAP proteins, increasing 

microtubule dynamics and cell shape alterations [Brajenovic 2004] suggesting its 

involvement in regulating microtubule dynamics and in the processes implying 

microtubules. MARK4L may probably take part in cell cycle progression and in 

coordinating cytokinesis, since it interacts with microtubules and, in glial tumors, it 

was found associated with centrosomes and midbody, as several kinases involved in 

cell cycle regulation [Magnani 2009]. Being up-regulated in some tumors, MARK4 

could indeed have a role in cell proliferation [Kato 2001; Beghini 2003]. 

MARK4 direct interactors, or proteins bound by 14-3-3 proteins after MARK4 

phosphorylation, were thought to be involved in cytoskeleton remodeling [Brajenovic 

2004]. 

MARK4L association with the nucleolus in glial tumors is very interesting and 

should be further studied, since MARK4L could have a functional impact on the 

nucleolus (as many kinases do) as well as it could be spatially regulated by alternate 

translocation in and out the nucleolus [Magnani 2009]. 

MARK4S isoform was suggested to be a neuron-specific marker in the CNS and to 

mark neuronal commitment; both MARK4L and S proteins were thought to play a 

general role in neurons [Moroni 2006]. 
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11..22..77  MMAARRKK44  mmuuttaattiioonnss  

Mutations in protein kinase genes are often implicated in cancer initiation and 

development, since most kinases are involved in cell proliferation. Most of the 

activating alterations occur inside the catalytic domain, including the ATP-binding 

site.  

However, few MARK4 alterations are reported in literature data and only a splice-site 

mutation (exon 13 +1 G>A; spacer region) was identified in one glioblastoma sample 

(among 91 GBM samples analyzed) [The Cancer Genome Atlas Research Network 

2008]. In a huge study involving 518 protein kinase genes in 210 diverse human 

cancers, five MARK4 mutations were also found [Greenman 2007]:  

 two missense mutations in exon 12 (spacer region) occurred in two colorectal 

adenocarcinomas (R377Q and R418C);  

 two silent mutations were found in exon 5 (Y137Y) and in exon 9 (I286I) (kinase 

domain) in multiple tumor samples;  

 one intronic mutation occurred (exon 8 +5 C>T; kinase domain) in a lung 

cancer specimen.  

No MARK4 mutations, but only few SNPs8, were found in patients affected by 

Peutz-Jeghers Syndrome, which is characterized by LKB1 mutations [de Leng 2007].  

                                                           
8
 Single Nucleotide Polymorphism. 
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11..33  GGLLIIOOMMAA  

Glioma is the most common type of primary brain tumor in adults, accounting for 

more than 70% of all the tumors in the Central Nervous System (CNS) [Ohgaki 2009]. 

Gliomas have a high incidence in children between 0-8 years and in adults between 

50-70 years and there is a slight male predominance [Gladson 2010].  

11..33..11  CCllaassssiiffiiccaattiioonn  

The human brain is composed of two main cell types: neurons (2-10% of the cells in 

the CNS) and glia (90-98%). There are three different glial sub-populations: astrocytes, 

oligodendrocytes and microglia. Astrocytes (“star-shaped”) are the most abundant glial 

cells and have a role in neuron nourishing and protection, regulation of synapse 

formation and activation of the immune response. Oligodendrocytes release neuronal 

growth factors and cover neuronal axons with their cytoplasmatic processes to form 

the myelin. Microglial cells, finally, are mainly located near blood capillaries and have 

phagocytic and protective activities.  

Histologically, gliomas can resemble astrocytes, oligodendrocytes or ependymal cells, 

thus they are classified on the basis of their morphologic appearance.  

 

Accordingly to the World Health Organization (WHO) classification, drafted in 1993 

and updated in 2008 [Rousseau 2008], gliomas are histologically sub-divided in: 

 ASTROCYTIC TUMORS: 

Pilocytic astrocytoma  

Diffuse astrocytoma (fibrillary, protoplasmic and gemistocytic astrocytomas) 

Anaplastic astrocytoma 

Pilomyxoid astrocytoma 

Glioblastoma 

Giant cell glioblastoma 

Gliosarcoma 

Pleomorphic xantoastrocytoma 

Subependymal giant cell astrocytoma; 

 OLIGODENDROGLIAL TUMORS: 

Oligodendroglioma 

Anaplastic oligodendroglioma; 

 MIXED GLIOMAS: 

Oligoastrocytoma 

Anaplastic oligoastrocytoma; 
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 EPENDYMOMAS; 

 OTHER NEURONAL, NEURO-GLIAL AND NEUROEPITHELIAL TUMORS. 

 

Besides this histological classification, gliomas are separated in four different 

malignancy grades, on the basis of the presence/absence of nuclear atypia, mitosis, 

microvascular proliferation and necrosis: 

 WHO grade I: lesions with low proliferative potential and with a good 

prognosis (treatment with surgical resection is usually sufficient for the 

complete recovery). 

 WHO grade II: generally infiltrating lesions with low mitotic activity and 

possible recurrences. Some of these tumors can progress to higher 

malignancy grade lesions. 

 WHO grade III: lesions with histological evidence of malignancy, generally 

characterized by high mitotic activity, pronounced anaplasia and infiltrative 

capacity. 

 WHO grade IV: lesions with high mitotic activity, prone to necrosis and 

generally associated with a rapid pre- and post-operation evolution of the 

disease. 

The WHO classification, however, is not sufficient for a correct diagnosis and 

especially for the prediction of survival and response to therapy, since gliomas show 

considerable heterogeneity and variability among tumors of the same type and grade 

and also within individual tumors. Therefore, biopsies are often not fully 

representative of the whole tumor mass, because of the intrinsic heterogeneity that 

makes it difficult to obtain complete samples. In addition, genetic alterations have 

been reported to differ in tumors of the same histotype, thus classification on the 

basis of genetic phenotype could lead to a more accurate prognosis prediction. 

11..33..22  CClliinniiccss  

The main symptoms of gliomas are characteristic of brain tumors and depend on 

the anatomical site of the tumor in the brain: 

 partial or generalized seizures (epilepsy); 

 nausea, vomiting, drowsiness, headache, visual abnormalities, changes in 

speech, hearing or balance. All these symptoms are caused by increased 

intracranial pressure, especially in rapidly growing lesions; 

 focal and progressive neurological deficits. The type of deficit (motor or sensory) 

is generally indicative of the tumor site; 
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 cognitive dysfunctions, in most cases symptomatic of meningeal involvement or 

diffuse tumor infiltration. 

Diagnosis. Magnetic resonance imaging (MRI) or computed tomography (although 

less sensitive) are used to confirm a suspect of brain tumor. Surgical biopsy with 

histological examination is then necessary to diagnose tumor type and grade. 

Therapy. Glial tumors are treated by surgery, radiation and chemotherapy. Since 

the tumor is located in the brain and often infiltrates extensively into surrounding 

normal tissue, complete resection is difficult. Nevertheless, when surgery is not 

completely curative, at least it relieves symptoms by decompressing the brain. Surgery 

is usually combined with adjuvant post-operation radiotherapy and chemotherapy 

(represented by temozolomide, nitrosurea or by the combination of procarbazine, 

lomustine and vincristine – PCV) to increase survival; however disease recurrence is 

very common [Park 2009].  

Advances in understanding the molecular mechanisms of gliomagenesis are leading 

to the development of new therapies, mainly targeted to inhibit signal transduction 

pathways, which are often constitutively altered in glial tumors and can drive 

uncontrolled tumoral proliferation [Sathornsumetee 2007]. In particular, monoclonal 

antibodies and kinase inhibitors are studied in order to target protein kinases; these 

inhibitors, however, have shown little efficacy, probably because of their low specificity 

and reduced ability to cross the blood brain barrier [Chi 2007]. Recent advances 

include immunotherapy and anti-angiogenic drugs; anti-VEGF drugs are of particular 

interest, since the Vascular Endothelial Growth Factor is responsible for the high 

vascularization commonly found in gliomas [Jain 2007] and is involved in a pathway 

frequently altered in these tumors.  

Survival. The median survival is 5-8 years for patients with grade II tumors, 3 

years for patients with grade III anaplastic astrocytomas and 12-18 months for 

patients with glioblastomas (older patients, > 60 years old, typically have a shorter 

survival) [Gladson 2010]. 

11..33..33  EEttiioollooggyy  II  ––  rriisskk  ffaaccttoorrss  

Specific risk factors have not been identified; occupational exposure to organic 

solvents or pesticides appears to be a predisposing factor [Gladson 2010], as well as 

exposure to ionizing radiations [Fisher 2007]. There are evidences of a possible 

association between immunological factors and gliomas: atopic people seem to have a 

lower risk of developing gliomas [Linos 2007] and patients with high IgE levels have a 

longer survival [Wrensch 2006]. Cytomegalovirus (CMV) infection has also been 
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suggested to play a role in the etiology and progression of some gliomas, on the basis 

of CMV RNA detection in glioblastoma tumors [Mitchell 2008].  

11..33..44  EEttiioollooggyy  IIII  ––  ggeenneettiicc  aalltteerraattiioonnss  

Familiar forms. Most brain tumors are sporadic, nevertheless few familiar 

syndromes are known to be associated with an increased incidence of brain neoplasia. 

In these syndromes gliomas occur in combination with other clinical signs, in 

particular tumors in other locations. Examples are the Li-Fraumeni syndrome, 

involving p53 gene on chromosome 17p13, the neurofibromatosis I (NF1 on 

chromosome 17q11) and the Cowden syndrome (PTEN 10q22-q23).  

Sporadic forms. The sporadic forms of glioma show different cytogenetic 

abnormalities, such as deletions and duplications of entire chromosomal segments, 

Loss Of Heterozigosity (LOH) and gene amplification, genetic alterations in oncogenes 

and tumor suppressor genes. These anomalies cause deregulation of specific pathways 

involved in cell cycle control, proliferation and cell differentiation. The oncogenes and 

tumor suppressor genes found altered in gliomas are not specific of this class of 

tumors, but their combination and their particular accumulation inside glial cell are 

typical of gliomas and correlate with neoplastic transformation and tumor progression 

[Zhu 2002]: 

 Oligodendroglioma (WHO grade II) and Anaplastic oligodendroglioma (WHO 

grade III) frequently exhibit specific loss of heterozygosity on chromosomes 1p 

(1p36.22-p36.31) and 19q13.3 [Smith 2000], which predicts a favorable 

response to therapy and a longer survival [Collins 2004]. It is not yet known 

which genes present in these loci are tumor suppressor genes or, vice versa, 

may be involved in tumor initiation and/or growth promotion so that their 

loss may lead to a favorable prognosis [Gladson 2010]. The tumor suppressor 

PTEN gene (10q22-q23) is often downregulated, as a consequence of promoter 

methylation or 10q chromosome loss. PDGFRα (Platelet-Derived Growth Factor 

Receptor α) amplification (4q12) is frequently present and leads to 

uncontrolled cell proliferation. Growth factor receptor signaling plays indeed 

an important role in promoting both a highly proliferative phenotype and an 

invasive phenotype, in cooperation with cell-adhesion receptors and 

proteases. Anaplastic oligodendrogliomas (grade III) show genetic and 

epigenetic aberrations of INK4A-ARF and INK4B which are involved in 

regulating the G1/S transition in the cell-cycle. 
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 Astrocytomas (WHO grade II) frequently exhibit amplification of the PDGFRα 

and/or PDGFRβ genes and of the genes encoding their ligands (PDGF-A, -B, -

C and –D). The increased expression of both ligands and receptors suggests 

that an autocrine or paracrine loop exists which amplifies signaling [Shapiro 

2002]. Loss of p53 is a common genetic event in astrocytomas, perhaps one of 

the first events of the neoplastic transformation [Reifenberger 1996]: the 

tumor suppressor p53 activity is lost for LOH of chromosome 17p or for 

missense mutations in the gene locus. 

 Anaplastic astrocytomas (WHO grade III) originate from II grade astrocytomas 

and thus present the same mutations, such as loss of p53. In addition, they 

show other genetic alterations, mostly involving genes which control cell-cycle 

progression, resulting in deregulated cell proliferation. In particular, loss of 

the Rb gene (13q13) is frequently found, as well as CDK4 amplification, 

p16/CDKN2A deletion or promoter hypermethylation and MDM2 (an 

endogenous p53 inhibitor) amplification (12q).  

 Glioblastomas (WHO grade IV) are the most aggressive glial tumors; they can 

arise de novo (primary GBM, showing mainly an astrocytic component) or 

originate from pre-existing low-malignancy grade lesions (figure 1.3). A small 

subgroup of grade IV GBM contains areas of oligodendrocytes and is thus 

indentified as oligodendroglioma-derived and named GBMO; in contrast, most 

of grade IV GBM originate from grade II/III astrocytomas and are referred to 

as secondary glioblastomas. Between astrocytic tumors, primary and 

secondary GBM develop through distinct genetic pathways, show different 

RNA and protein expression profile and epigenetic aberrations and may differ 

in their response to therapy, despite the fact that they are histologically 

largely indistinguishable [Ohgaki 2009].  

 In primary glioblastomas, amplification and/or mutation of the EGFR gene 

(Epidermal Growth Factor Receptor; chromosome 7) are very common and can 

promote glioma cell proliferation and invasion. EGFR alterations are mutually 

exclusive with MDM2 overexpression (an endogenous p53 inhibitor; 

interestingly, no p53 mutations or deletion are present). LOH of chromosome 

10q causes deletion of PTEN gene; other potential tumor suppressor genes 

mapping in this locus are DMBT1 (Deleted in Malignant Brain Tumors 1) and 

the Myc antagonist Mxi1 [Gladson 2010], but they have not been definitively 

associated with glioblastoma development. Mutations and/or deletions in NF1 

(NeuroFibromin 1, a tumor suppressor gene associated to neurofibromatosis 
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type 1 and negative regulator of Ras signaling) are also present in sporadic 

glioblastomas [Huse 2010]. 

 Hypermethylation of the promoter of the MGMT gene (06-Methyl-Guanine-

MeThyltransferase) occurs in both primary and secondary GBM and indicates 

a better response to temozolomide therapy, since MGMT repairs DNA damage 

that is induced by alkylating agents, such as temozolomide [Ney 2009].  

 Recently, genome-wide association screens have identified single nucleotide 

polymorphisms (SNPs) in RTEL1 (Regulator of Telomere Elongation Helicase) 

and TERT (Telomerase reverse Transcriptase) genes with increased glioma 

incidence [Shete 2009; Wrensch 2009]. Missense mutations in IDH1 and IDH2 

(Isocitrate DeHydrogenase) were found in a significant number of 

astrocytomas and oligodendrogliomas, but are largely absent in primary 

glioblastomas, suggesting that primary and secondary GBM may originate 

from different progenitor cells [Ohgaki 2009]; multivariate analysis also 

suggests that they are favorable prognostic markers [Huse 2010]. 

 It has recently been shown that microRNA (miRNA) play a role in gliomagenesis, 

since they may repress control genes or, when down-regulated, do not target 

oncogenes anymore [Huse 2010].  

 

 

 

Figure 1.3: schematic representation of different grade gliomas. 



Background 

 

 27 

11..44  HHYYPPOOTTHHEESSEESS  OONN  TTHHEE  OORRIIGGIINN  OOFF  GGLLIIOOMMAASS  

All the formulated hypotheses on the origin of gliomas agree in asserting that glioma 

arises from a tumor initiating stem-like cell (named brain tumor stem cell, BTSC), 

whereas from which normal cell the BTSC derives is still widely debated. 

11..44..11  BBrraaiinn  TTuummoorr  SStteemm  CCeellllss  

The presence of Cancer Stem Cells in glioma was hypothesized to explain the cellular 

heterogeneity and resistance to therapy which especially characterize malignant 

glioblastomas [Reya 2001]. Several cancer stem cells may be present inside the tumor, 

differing in their genetic and epigenetic features and “escaping” therapy since they can 

split infinitely. 

Cancer stem cells were isolated from glioblastoma biopsies for the first time in 2002 

[Ignatova 2002] and were identified as stem-like cells, growing in neurospheres and 

being able to differentiate in neuronal and astroglial cells. The term “Brain Tumor 

Stem Cell” refers to cells which can long-term proliferate and self-renew, are 

multipotent (can differentiate into the three neural cell lineages) and are capable of 

giving rise to tumors in vivo [Vescovi 2006].  

Self-renewal and multipotent differentiation are features of stem cells:  

 self-renewal: stem cells can split infinitively;  

 multipotent differentiation: stem cells can give origin to mature cells belonging 

to different lineages, through differentiation. 

These features of stem cells are allowed and influenced by the stem niche, which is 

mainly composed of mature tissue cells, physically associated with blood vessels and 

lodges the stem cell. In the niche, specific growth factors (also coming from 

bloodstream) and adhesion molecules regulate stem cell polarization towards the niche 

basal membrane, determining the way the stem cell splits [Spradling 2001]. Stem cells 

can indeed divide in two ways (figure 1.4): 

 by symmetric division the stem cell gives origin to two identical daughter cells 

which maintain stem features; 

 asymmetric division generates two completely different daughter cells: one is a 

stem cell and will maintain the stem cell pool in the tissue, the other will 

differentiate into a specific cell type.  
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Figure 1.4: schematic representation of 

the symmetric and asymmetric division of 

the stem cell (red); differentiating progeny 

cells are yellow-coloured [modified from 

Spradling 2001].  

 

 

 

 

 

 

Typically, cancer stem cells account for less than 5% of the cells within the tumor 

mass [Gladson 2010] and are thought to reside in the perivascular area of the tumor, 

referred to as the vascular niche. Here the capillary network seems to provide both 

the signals and the nourishment required for CSC support, offering a specialized 

microenvironment which allows the maintenance of their features [Huse 2010]. 

Changes in this local microenvironment (niche; increased expression of growth factors; 

interactions with immune cells) are indeed thought to play a role in glioma formation 

[Germano 2010; Park 2009]. This may suggest that therapeutic targeting of the tumor-

associated vasculature, with anti-angiogenic drugs, may at least indirectly interfere 

with glioma CSC growth [Park 2009].  

 

Many studies have been made so far to facilitate the identification and isolation of 

glioma-initiating cells from GBMs by using intracellular and/or surface markers, such 

as CD133, BMI1, nestin, Sox2, Notch. Reliance on markers alone is however 

insufficient, because, unlike normal stem cells, the genetic dysregulation that occurs 

in cancer may lead to ectopic protein expression [Park 2009]. Thus current 

identification methodology is considered limited. 

As an example, the only CD133 marker is not suitable for identifying cancer stem 

cells, since also CD133 negative cells fulfilling stem cell criteria were found among 

GBM-derived CSC; this evidence suggested the presence of distinct CSC subgroups 

with distinct molecular, phenotypic and prognostic profiles [Günther 2008; Lottaz 

2010]. CSC isolated from primary glioblastomas were indeed divided in two groups: 

 type I CSC were CD133 positive, displayed neurosphere-like growth and 

formed highly invasive tumors in vivo; they were multipotent and 

characterized by the expression of neurodevelopmental genes or proneural 

genes resembling fetal neural stem cell lines; 
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 type II CSC were CD133 negative, grew semi-adherently and had a lower 

proliferation index, with less – but not absent – iv vivo tumorigenicity and 

invasion; they had a more restricted differentiation capacity and shared 

expression signatures enriched for extracellular matrix-related genes (or 

“mesenchimal” signature) similar to adult neural stem cells. 

On the other hand, few studies demonstrated that CSC proliferative and 

tumorigenic capacities are not associated with CD133 expression, whereas they may 

derive from specific altered pathways, such as PTEN loss or mutation and EGFR 

expression [Chen 2010; Mazzoleni 2010]. 

 

The overall data suggest that both a hierarchical and a stochastic mechanism may 

be involved in tumor formation. According to the hierarchical model, only an 

identifiable CSC population, among the numerous CSC subpopulations present in the 

tumor mass, drives and repopulates the tumor. In contrast, the stochastic mechanism 

implies that different types of cancer stem cells, characterized by different tumorigenic 

ability, lead to tumor formation. This latter model could explain the cellular 

heterogeneity often found in glioblastomas.  

 

 

 

11..44..22  CCeellll  ooff  oorriiggiinn  

Different hypotheses have been formulated, suggesting that the Brain Tumor Stem 

Cell may derive from oncogenic transformation of: 

 mature glial cells which de-differentiate; 

 neural progenitor cells; 

  neural stem cells. 

 

Neural stem cells (NSC) have self-renewal ability and an indefinite life-time making 

them likely to accumulate mutations in respect to mature cells. On the other hand, 

stem cells are in most circumstances quiescent, thus they may not experience an 

adequate number of divisions to acquire genomic errors [Park 2009]. Nevertheless, 

many pathways constitutively activated in gliomas are also important for maintaining 

the undifferentiated state and the survival of neural stem cells (Notch, EGFR, SHH9, 

PTEN, BMI1) [Purow 2005; Vescovi 2006; Stiles 2008].  

                                                           
9
 Sonic HedgeHog. 



Background 

 

 30 

Neural stem cells have been identified in two regions of the adult nervous system, 

the Sub-Ventricular Zone (SVZ) of the forebrain and the dentate gyrus of the 

hippocampus. In these two regions the genesis of new neurons, which can be 

integrated in pre-existing neuronal circuits to maintain brain functionality and 

plasticity, has been consistently documented.  

The sub-ventricular zone is the adult brain region with the highest neurogenic rate; 

it creates a niche inside the CNS parenchyma, since it is proximal to the cerebrospinal 

fluid and present large intercellular spaces with reduced cell-cell contacts.  

In this region three main undifferentiated and highly proliferative cell types are 

found, named type A, B and C cells (figure 1.5). Type B cells express markers of both 

mature astrocytes (GFAP10) and immature and radial glial cells (vimentin and nestin) 

and are thought to represent relatively quiescent stem cells that proliferate at low rate 

and generate fast-proliferating, transit-amplifying progenitor cells (C cells). Type C 

cells are multipotent and in turn originate neuronal precursors (type A cells or 

neuroblasts), which leave the SVZ and migrate in several brain areas where they 

terminally differentiate [Galli 2003]. Some C cells express oligodendrocytic markers 

(Oligo2, NG2) and originate oligodendrocytes [Stiles 2008]. 

While in vivo endogenous NSC seem able to produce almost exclusively neurons, in 

vitro they are able to generate mainly astrocytes but also oligodendrocytes and 

neurons. This evidence highlights the importance of epigenetic signals in the 

neurogenic niches, where glial cells and neurons exert mutual influences [Gritti 2007]. 

 

Figure 1.5 [left]: stem cells (B cells; blue), neural progenitors (C cells; amber) and neuroblasts (A cells; 

green) in the sub-ventricular zone [Stiles 2008]. [Right]: adult rodent brain ventricle (V) and sub-

ventricular zone (SVZ). Arrows point to some of the proliferating cells in the SVZ that were labeled after 

intraperitoneal injection of the thymidine analogue, 5-bromodeoxyuridine [modified from Galli 2003].  

                                                           
10

 Glial Fibrillary Acidic Protein. 
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Neural progenitors are more proliferative than stem cells and differentiated cells, 

thus they are more likely to get oncogenic mutations and to fix them during 

replication. Many of the pathways found abnormally activated in gliomas are also 

sustained in neural progenitor cells, since they are necessary for progenitor 

proliferation and migration. Progenitors can migrate as well as tumor cells, even if 

glioma cells can proliferate and migrate at the same time, whereas progenitor cells 

have limited migration capacities and enter mitosis only after they have reached their 

destination [Canoll 2008].  

In contrast, they need to recover the self-renewal capacity. Neural progenitors are 

characterized by a high plasticity, and were observed to change their differentiation 

state as a result of specific stimuli [Vescovi 2006]. Oligodendroglial progenitors were 

demonstrated to regain stem features after in vitro treatments which reactivated Sox2, 

a neural stem cell marker [Kondo 2000]. 

 

De-differentiated mature glial cells. Glioma cells express both undifferentiated 

and differentiated markers, and the tendency of gliomas to become more aggressive is 

associated to a progressive increase of markers of de-differentiation and decrease of 

markers of differentiation [Germano 2010]. Many studies demonstrated that activation 

of oncogenes or signal transduction pathways in cortical neurons reproduces brain 

tumors in animal models [Bachoo 2002]. Despite these evidences, there is no 

knowledge of the de-differentiation phases that these mature cells should undergo to 

originate multipotent malignant cells.  

 

A recent study classified primary glioblastomas in four groups on the basis of their 

closeness and spatial relationship with the sub-ventricular zone and the cortex. Group 

I GBMs, contacting the SVZ and infiltrating the cortex, were characterized by 

multifocality and tumor recurrences noncontiguous with the initial lesion (so they had 

a more invasive and migratory phenotype), whereas group IV GBMs, neither 

contacting SVZ nor involving cortex, were never multifocal and their recurrences were 

always bordering the primary lesion. Authors therefore suggested that group I GBMs 

may originate from transformed neural stem cells: an invasive and migratory tumor 

phenotype is indeed more common to stem cell-derived cancer, since it is possible that 

gliomas arising from stem cells maintain expression of matrix metalloproteinases 

which are present in neural stem cells but not in the whole adult brain. The SVZ zone, 

or niche, may also be permissive for tumor growth and migration. Group IV GBMs 

may instead arise from white matter glial progenitors, which have very limited 

migration potential [Lim 2007].  
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Neural progenitor or stem cells may be at the origin of mixed glial tumors 

(oligoastrocytomas), since a transformed pluripotential cell may express some 

elements of both astrocytes and oligodendrocytes [Quingley 2007]. 

Different studies demonstrated that driving PDGFB expression in nestin-positive 

progenitor cells, committed oligodendroglial precursors or mature GFAP-positive 

astrocytes generates gliomas [Huse 2010]. Stimulation of PDGFR signaling by infusion 

of the ligand was sufficient to induce tumor-like proliferation of neural stem cells, 

whereas the combined activation of two oncogenes was needed to drive tumor 

formation of progenitor cells and combination of oncogene activation plus disruption of 

a tumor suppressor gene prompted tumorigenesis of differentiated astrocytes [Park 

2009]. These findings suggest that several different cell types probably harbor 

tumorigenic potential and that their ability to initiate neoplasia may depend on  

specific oncogenic mechanism (alteration type, involved pathway) and/or on the 

molecular subclass of the tumor in question [Huse 2010]. 

In conclusion, summarizing all these hypotheses, we can say that gliomas are 

maintained by a population of malignant cells that exhibit stem-like properties, 

irrespective of the cell of origin which may be a stem cell, a progenitor cell or a 

differentiated cell that has reacquired the stem-like properties [Park 2009]. 
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22..11  TTIISSSSUUEE  SSAAMMPPLLEESS  

22..11..11  HHuummaann  gglliioommaa  ttiissssuuee  ssaammpplleess  

A total of 35 human glioma tissue samples were provided by Professor Lorenzo Bello 

(Department of neurological sciences, Università degli Studi di Milano, Milano) and are 

parts of glial tumors excised from patients who had received no previous 

chemotherapy or radiation treatment, in accordance with a protocol approved by the 

Internal Review Board of the University of Milan’s Neurosurgery department. Features 

of the glioma samples are reported in table 2.1. 

The specimens were stored at -80°C immediately after surgery.  

22..11..22  HHuummaann  nnoorrmmaall  bbrraaiinn  ((HHNNBB))  

Human samples for Immunohistochemistry (Professor Carolina Frassoni; Clinical 

epileptology and experimental neurophysiology unit, Istituto neurologico Carlo Besta, 

Milano) were obtained from:  

 autopsies of three stillborn infants, died after premature delivery at the 

23rd-27th gestational week; the death was due to non-neurological disorders 

and no brain malformation was detected at macroscopic and microscopic 

examination; following the Italian law, the autopsies were performed 24 

hours after death;  

 two drug-resistant patients operated on for intractable epilepsy; the surgery 

was performed for strictly therapeutic reasons after the patients had given 

their informed consent; at the neuropathological investigation, the samples 

did not show any cytological alteration.  

As control for Real-time PCR and Immunoblotting, we used a sample of brain 

obtained from a male patient operated on for intractable epilepsy; the sample was 

stored at -80°C immediately after surgery. RNA from total human normal brain (MVP 

Total RNA, Human Brain) was also purchased by Stratagene (La Jolla, CA, USA); the 

donor was a 60-year-old male man. 
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TTaabbllee  22..11::  clinic and pathological features of gliomas, divided in Oligodendrogliomas (O; n=16), 

Astrocytomas (A; n=7) and Glioblastomas (GBM; n=12). SVZ+ = the tumor is close to the Sub-ventricular 

Zone. mMGMT = methylation of MGMT gene. Del = deletion. N.A. = not available; N.E. = not evaluated.  

22..11..33  RRooddeenntt  nnoorrmmaall  bbrraaiinn  

Rodent normal brains for Immunohistochemistry (Professor Carolina Frassoni) were 

obtained from three adult mice (C57B6/CD1), two adult rats (CD1) and one rat 

embryo at embryonic day (E) 15 from Charles River Laboratories International (Inc., 

Calco, Italy). Animals were brought up and sacrificed in accordance with the European 

Community Council Directive (86/609/EEC) and every effort was made to limit the 

number of animals used. 
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22..22  CCEELLLL  CCUULLTTUURREESS  

22..22..11  HHuummaann  pprriimmaarryy  gglliioommaa  cceellll  lliinneess  

A total of 21 human primary glioma cell lines were obtained from post-surgery 

specimens and characterized as described elsewhere [Magnani 2004; Perego 1994; 

Beghini 2003; Roversi 2006]. Features of cell lines are reported in table 2.2. 

Cells were grown in RPMI11 supplemented with 5% fetal bovine serum (FBS), 100 

U/ml penicillin (Pen) and 100 U/ml streptavidin (Strep) at 37°C in a 5% CO2 

atmosphere. After reaching 80% confluence, cells were detached using trypsin-EDTA12 

and split.  

Cells were tested by Immunofluorescence with DAPI13 to verify the absence of 

mycoplasma contamination. 

22..22..22  HHuummaann  nneeuurraall  pprrooggeenniittoorr  cceellllss    

ReNcellCX 

The established human neural progenitor cell line ReNcellCX (Millipore, Billerica, 

MA, USA) derive from progenitors isolated from the cortex of a human fetal brain and 

immortalized by c-myc oncogene. Cells were grown as a monolayer on laminin diluted 

with DMEM14/F12 medium to 20μg/ml, and maintained by serial passages (within 

ten) in a defined serum-free medium supplemented with 20 ng/ml Epidermal Growth 

Factor (EGF) and 20ng/ml Fibroblast Growth Factor-2 (FGF-2) at 37°C in 5% CO2 

(Laminin was from Sigma, Saint Louis, MI, USA; DMEM/F12 medium and the serum-

free ReNcell NSC Maintenance Medium were from Millipore/Chemicon; EGF was from 

Sigma and FGF-2 from Invitrogen, Camarillo, CA, USA). 

Cells were detached using Accutase (Millipore/Chemicon) after reaching 80% 

confluence. 

NHNP 

Normal Human Neural Progenitor Cells (NHNP) (Lonza, Walkersville, MD, USA), grown 

as neurospheres, were kept in Neural progenitor maintenance bulletkit according to the 

manufacturer’s protocol, at 37°C in a 5% CO2 atmosphere. 

                                                           
11

 Developed by Moore at the Royal Park Memorial Institute. 
12

 Ethylenediaminetetraacetic acid. 
13

 4’,6-Di Amidino-2-Phenyl Indole. 
14

 Dulbecco’s Modified Eagle’s Medium. 
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SEX/ 
AGE at 

surgery 

CELL 

LINE 

HISTOLO- 
GICAL 

DIAGNOSIS 

WHO 
GRA- 

DE 

KARYOTYPE 

M / 4 G91 
Pilocytic 

astrocytoma 
I 46, XY / 92, XXYY 

M / 31 G157 
Oligo 

astrocytoma 
II not evaluated 

M / 30 G6 

Anaplastic 

astrocytoma 
(AA) 

III not evaluated 

F / 6 T29 AA III not evaluated 
N. A. G47 AA III not evaluated 
N. A. G110 AA III not evaluated 

F / 10 G114 AA III 46, XX 

N. A. G141 AA III not evaluated 
N. A. G151 AA III not evaluated 

F / 36 MI4 
Glioblastoma 

(GBM) 
IV 

Clone A: 47, XX, der(1)t(1;19)(p10;p10), +7,-10, 

-19,+2mar 
Clone B: 45, X, -X, der(1)t(1;19)(p10;p10),  

del 5(p11), +7, add(9)(p11), -10, -14, -19, +1 mar 

Clone C: 48, idem, -21, +2 mar 

M / 63 G32 GBM IV 
64, XXY, +1, +7, +7, +8, +8, +10, +13, +14, +14, 

+18, +19, +21, +22, +3mar 

F / 73 MI38 GBM IV 46, XX / 48, XXXX 

N. A. T45 GBM IV not evaluated 
N. A. T51 GBM IV not evaluated 

F / 36 MI60 GBM IV 

45-46, XX, add(1)(q12), +7, -10, -13, -19, 

der(19)t(19;19)(pter;q12), del(19)(q12), -21, [+18, -
22] 

M / 45 MI63 GBM IV 

Clone A: 63, XXYY, +1, +1, +2, +3, +6, +8, +8, +9, 

+9, +20, +22, +4mar 

Clone B: 44, XY, -14, -15 

Clone C: 40, XY, -10, -12, -14, -14, -17, -22 

F / 66 MI70 GBM IV 

Clone A: 45, XX, +3, +7, -10, -14, t(18;21)(p11;p11), 

-21, +1 mar 
Clone B: 90, XXXX, +3, +3, +7, +7, del9(p12)x2, 

add(9)(q34)x2, -10, -10, -14, -14, 

t(18;21)(p11;p11)x2, -21 ,-21, +1mar 

N. A. G150 GBM IV not evaluated 

M / 48 GBM GBM IV 

Clone A: 72-74, XXYYYY, +Y, +Y, +Y, +1, -2, 

del(2)(p21), -5, -6, add (7)(p22), add(7)(p11)del(q34), 

+del(7)(p11)del(q34), add(9)(p11), add(9)(p11), -10, 
del(10)(p11), -12, -13, add(14)(p11), +20, +1-3 mar 

Clone B: 65-66, XYY, -X, +Y, der(1)t(1;Y)(q24;q12),  

-2, del(2)(p21), -4, -5, -10, -12, -13, +15, -16, -16,  

-17, +20, -22, +3-4mar 

F / 62 G1 

Giant cell 

glioblastoma 

(GC-GBM) 

IV 
68, XX, del(1)(q31.1), +3, -5, +7,+9,-10, -11, -13,  

-14, -17, -18, +19, +21, -22, -X, +2mar 

M / 51 MI7 GC-GBM IV 
Clone A: 45, X, -Y 
Clone B: 46, X, -Y, +7 

Clone C: 46, XY 

 
Table 2.2: clinic and pathological features of gliomas from which the cell lines under study derive. In this 
study cell lines were divided in NOT-GBM (grade I, II; III) and GBM (grade IV). Data about karyotypes 
come from Roversi et al., 2006. N.A. = not available.  
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22..22..33  HHuummaann  pprriimmaarryy  nnoorrmmaall  cceellll  lliinnee::  ffiibbrroobbllaassttss  aanndd  

mmyyoobbllaassttss  

Adult fibroblasts were grown at 37°C in a 5% CO2 atmosphere in RPMI 

supplemented with 10% FBS and 100 U/ml Pen-Strept.  

Myoblasts were grown at 37°C in 5% CO2 in DMEM + 20% FBS + 100 U/ml Pen-

Strept + 2mM L-glutamine + 10 μg/ml insulin + 25 ng/ml FGF-2 + 10 ng/ml EGF. 

22..22..44  HHuummaann  gglliioobbllaassttoommaa--ddeerriivveedd  ccaanncceerr  sstteemm  cceellll  lliinneess  aanndd  

mmoouussee  nneeuurraall  sstteemm  cceellll  lliinneess  

Human glioblastoma-derived cancer stem cell lines (GBM CSC) and a mouse neural 

stem cell line (NSC), both undifferentiated and differentiated, were grown, harvested 

and gently provided by Dr. Rossella Galli and Stefania Mazzoleni (Neural stem cell 

biology unit, Division of regenerative medicine, stem cell and gene therapy, Istituto 

scientifico san Raffaele, Milano). 

GBM CSC were isolated from post-surgery specimens of primary glioblastomas, 

while the neural stem cell culture was established from the sub-ventricular zone of 

post-natal day 7 C57 mice (wild-type mice).  

Characterization of GBM CSCs and NSCs stem cell lines is reported in literature 

[Mazzoleni et al. 2010; Galli et al. 2004; Foroni et al. 2007]. Briefly, tissue was 

dissected, enzymatically digested (in the case of GBM CSCs) and dissociated into a 

single cell suspension. Viable cells were plated at clonal density in DMEM/F12 

medium containing 20 ng/ml of both EGF and FGF2: these serum-free, stringent and 

low-density conditions select away differentiated/differentiating cells, while enriching 

for the stem cell component (Reynolds and Rietze, Nature Methods, 2006). The 

resulting neurospheres were analyzed and validated for being bona fide stem cells, by 

assessing their ability for long-term proliferation, self-renewal (by subcloning 

experiments), multipotency (that is the ability to differentiate into the three neural cell 

lineages) and, for GBM CSC, tumorigenicity (by assessing their capacity to give rise to 

tumors in vivo). 

L0627, L0104 and L1210 GBM CSC and Neural Stem cells were terminally 

differentiated in the three major neural cell types (in descending order: astrocytes, 

oligodendrocytes and neurons) by culturing them in mitogen-free medium 

supplemented with 2% FBS. Immunofluorescence for neural antigens was performed 

to assess differentiation. 
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22..33  NNUUCCLLEEIICC  AACCIIDD  AANNDD  PPRROOTTEEIINN  EEXXTTRRAACCTTIIOONN  

Tissue samples: specimens were homogenized and divided in two equivalent parts, 

one was processed for nucleic acid extraction and the other for protein extraction. 

Cell lines: after reaching 80% confluence, cells were harvested and washed in 

PBS15. Three pellets were destined to DNA, RNA and protein extraction, respectively. 

 

I used three separated and specific extraction methods, when possible, to gain the 

best extraction results for DNA, RNA and proteins.  

22..33..11  NNuucclleeiicc  aacciidd  eexxttrraaccttiioonn    

RNA extraction (from cells and tissue samples) and DNA extraction 

(from tissue samples) were performed using the TRIreagent (Total RNA Isolation 

reagent, Sigma), a solution of phenol and guanidine thiocianate that dissolves cell 

components leaving the nucleic acids intact.  

Tissue specimens were homogenized in an appropriate volume of TRIreagent 

(according to their weight) with a ULTRA-TURRAX T25 (Janke & Kunkel, IKA-

Labortechnik, Staufen, Germany) homogenizer; cell pellets were instead resuspended 

in TRIreagent by repetitive pipetting. After 10 min16 incubation, the homogenates were 

supplemented with chloroform, vigorously shaken and centrifuged at 14,000 rpm for 

15 min at 4°C. Following centrifugation the mixture separates into three phases: RNA 

is in the upper-aqueous phase, DNA is in the interphase, while the lower-organic 

phase contains the proteins; RNA and DNA were then extracted as indicated in the 

manufacturer’s protocol.  

DNase I (RNase-free, New England Bio-Labs, Inc., Ipswich, MA, USA) was added to 

RNA to remove residual DNA.  

DNA extraction (from cell lines)  

Cell pellets were resuspended in 100 µl of PBS and DNA extracted using the QIAmp 

DNA mini kit (Qiagen S.P.A., Milano, Italy), according to the manufacturer’s protocol. 

 

RNA and DNA quantity and quality were determined by measuring absorbance at 

230, 260 and 280 nm with the ND-1000 Spectrophotometer (NanoDrop products, 

Waltham, MA, USA, by Thermo Fisher Scientific, Inc.). 

                                                           
15

 Phosphate Buffered Saline. 
16

 Minute/s. 
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22..33..22  PPrrootteeiinn  eexxttrraaccttiioonn    

Cells were counted and incubated in 100 µl lysis buffer/2,000,000 cells; tissue 

samples were homogenized using a ULTRA-TURRAX T25 homogenizer (Janke & 

Kunkel) in 400 µl lysis buffer/50 mg. The suspensions were placed on ice for 30 min 

with occasional inversion to ensure complete lysis. Lysates were then spun at 16,000 

g for 25 min (at 4°C to prevent protein degradation) and the supernatant (whole cell 

lysate) was stored at -20°C.  

Protein concentration was determined using the BCA Protein Assay Kit (Pierce, 

Rockford, IL, USA), according to the manufacturer’s protocol, and the ND-1000 

Spectrophotometer. 

Lysis buffer: 150 mM NaCl, 50 mM Tris pH 7.5, 1% NP-40,  

0.25% deoxycholic acid, protease inhibitor cocktail (Complete EDTA-free,  

from Roche Diagnostic, Manheim, Germany) 

 

MARK4 recombinant proteins 

Recombinant proteins (RP) corresponding to the whole C-terminal of MARK4S and 

MARK4L were produced by GenScript Corporation (Piscataway,  NJ, USA) and Primm 

(Milano, Italy), respectively. MARK4S RP is 66 aa17 long and its theoretical molecular 

weight (MW) is 7 kDa18; conversely, MARK4L RP has a theoretical MW equal to 15.8 

kDa and is 143 aa long. 

 

Whole cell lysates of MARK4L-overexpressing HEK293T cells 

Overexpression experiments were performed by Davide Rovina. Briefly, full-length 

MARK4L cDNA, amplified from the ReNcellCX cell line, was digested and cloned into 

the mammalian expression vector pcDNA4/HisMax (Invitrogen). This vector includes a 

cleavable Xpress™ tag for the detection of the recombinant protein with an anti-

Xpress™ antibody. HEK19293T cells were transfected, by calcium-phosphate 

precipitation, with this plasmid DNA and proteins extracted.  

 

                                                           
17

 Aminoacids.  
18

 Kilo Dalton. 
19

 Human Embryonic Kidney. 
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22..44  MMUUTTAATTIIOONN  AANNAALLYYSSIISS  

Partial analysis of MARK4 genome and transcript sequence was achieved by PCR20 

and direct sequencing of most of the glioma samples under study.  

22..44..11  PPoollyymmeerraassee  CChhaaiinn  RReeaaccttiioonn  ((PPCCRR))    

To amplify MARK4 genomic sequence (NM_031417; UCSC database) we identified 

primers using the OLIGO Primer analysis software (version 4.0; Molecular Biology 

Insights, Inc., Cascade, CO, USA). We looked for primer couples possibly showing a 

similar melting temperature and a balanced AT/GC quantity, avoided repeated 

sequences (e.g. LINE) and regions including SNPs, and excluded primers prone to 

inner secondary structures (hairpin) and/or duplex formation. Identified primers were 

checked with a Blast alignment (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to ensure 

their specificity for MARK4 sequence.  

We analyzed MARK4 exons 2-12 (corresponding to the kinase and UBA domain) and 

exon 13 (in keeping with literature data) with intronic primers, in order to look for 

mutations both in the coding sequence and in the flanking regulatory regions (involved 

in the splicing process). We examined all the intronic and exonic sequences among 

exons 15, 16 and 17, where the alternative splicing between MARK4S and L takes 

place (exon 16 is skipped in MARK4L). We additionally chose exonic primers to analyze 

possible splicing defects in MARK4 cDNA21 (ENST00000262891 for MARK4L, 

ENST00000300843 for MARK4S; Ensembl database), especially between exons 3-4, 5-

6 and 11-12, where the intronic sequence was less than 100 bp22 long and could 

potentially be affected by retention. In this case primers were chosen, when possible, 

on the boundary between flanking exons.  

 Figure 2.1: schematic representation of MARK4 exons and respective protein domains.  

 Colored boxes indicate the analyzed exons. [Boxes are not drawn to scale.]  

                                                           
20

 Polymerase Chain Reaction (PCR) technique enables to produce a huge number of copies from a specific DNA 
sequence, in vitro. 
21

 Complementary DNA. 
22

 Base pair. 
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We determined PCR conditions based on those suggested by the Optimase Protocol 

Writer software (that can be consulted at www.mutationdiscovery.com). Reactions were 

performed using GoTaq polymerase and reagents from Promega (Madison, WI, USA), 

and the 2720 Thermal Cycler, GeneAmp PCR system 9700 (Applied Biosystems, Foster 

City, CA, USA) or My cycler (Bio-Rad, Hercules, CA, USA) thermal cyclers were used.  

PCR products were loaded on a 2% agarose gel and stained by ethidium bromide to 

verify that amplification occurred correctly.  

 

PCR from genomic DNA (gDNA)  

The reaction mix was prepared according to this protocol: 

 H2O      to 25 µl 

 Buffer 5x     5.0 µl 

 MgCl2      1.8 µl 

 dNTPs23 (10 mM)    0.3 µl 

 DMSO24 (for exons 2, 3-4)   0.75 µl 

 Forward (F) primer (11 pmol/µl)  0.3  µl 

 Reverse (R) primer (11 pmol/µl)  0.3  µl 

 Taq polymerase    0.3  µl 

 gDNA      50-80 ng/ µl 

PCR conditions are displayed in figure 2.2: 

  

 Figure 2.2: PCR conditions for exons 2-12 (on the left) and exons 13-17 (on the right). 

Primer sequences, annealing temperatures and PCR fragment sizes are reported in 

table 2.3. 

 

 

 

                                                           
23

 De-oxinucleotide triphosphate. 
24

 Dimethyl Sulfoxide. 

94°C 94°C

2’ 30’’

X°C

30’’

72°C

30’’

72°C

3’

35 cycles

94°C 94°C

2’ 30’’

X°C

30’’

72°C

2’’

72°C

50’’

35 cycles
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PRIMER NAME PRIMER SEQUENCE 
FRAGMENT 

LENGTH 

ANNEALING 

TEMPERATURE 

Exon 2 
F  5’ ggaaggtgggattggatagc 3’ 

310 bp 60°C 

R  5’ aacatacaccgaagacctgg 3’ 

Exons 3-4 
F  5’ caccttgaccgtccctcc 3’ 

320 bp 61.7°C 

R  5’ cctgcccctgctcccatt 3’ 

Exons 5-6 
F  5’ cctttctccctaatgcccta 3’ 

342 bp 59°C 

R  5’ accatgcccagctctcag 3’ 

Exon 7 
F  5’ ggagccacaaataaccaacc 3’ 

283 bp 56.4°C 

R  5’ ctggaggaatttgctggagg 3’ 

Exon 8 
F  5’ gccttgagtcccactttcc 3’ 

430 bp 61.7°C 

R  5’ gacttgaatcctgcccatc 3’ 

Exon 9 
F  5’ agaccccctcctccagtaac 3’ 

362 bp 62.5°C 

R  5’ ggcagagtttaggggagtca 3’ 

Exon 10 
F  5’ agatgatgcggaggaggga 3’ 

360 bp 63°C 

R  5’ tgggtgacaggatggctctc 3’ 

Exons 11-12 
F  5’ gttaaagtttctgggagtctga 3’ 

491 bp 58.8°C 

R  5’ acgtaactgtaagtctgggc 3’ 

Exon 13 
F  5’ gtgcgttggtaatcttgagg 3’ 

455 bp 58.3°C 

R  5’ gaatgagatgaaggcagggc 3’ 

Exons 15-16 
F  5’ cctgcctcagtcccccaccc 3’ 

664 bp 69.5 ->62.5 °C 

R  5’ tgcccgcacacacaggtcag 3’ 

Intron 16a 
F  5’ cctgcatgtctgacctgtgt 3’ 

781 bp 57°C 

R  5’ ctgttgccaagactgatgatc 3’ 

Intron 16b 
F  5’ gagcccagaagttcaagacc 3’ 

641 bp 60°C 

R  5’ acacacacactccctcgct 3’ 

Exon 17 
F  5’ gggcaggcctcacgaaggag 3’ 

608 bp 63°C 

R  5’ ggtgcttggggttgggtggg 3’ 

  

 Table 2.3: primer sequences, PCR fragment sizes and annealing temperatures for MARK4 gDNA  

 analysis. A Touchdown PCR protocol was chosen for exons 15-16.  
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PCR from cDNA  

cDNA was obtained by Reverse Transcription PCR (see 2.5.1); the reaction mix was 

prepared and PCR performed according to this protocol: 

H2O    to 25 µl  

Buffer 5x   5.0  µl 

MgCl2   1.5-2  µl 

dNTPs (10 mM)  0.5  µl 

Taq polymerase  0.3  µl 

F primer (11 pmol/µl)  0.4 µl 

R primer (11 pmol/µl)  0.4 µl 

cDNA   20-40 ng 

Primer sequences, annealing temperatures and PCR fragment sizes are reported in 

table 2.4: 

 

PRIMER and 

ANNEALING 

TEMPERATURE 

PRIMER SEQUENCE FRAGMENT LENGTH 

cDNA - exons 2-8 

58°C 

F  5’ ggtcgggaggttgccatc 3’ 316 bp (wild-type) 

406 bp (intron 5-6 retention) 

468 bp (intron 3-4 retention) 

558 bp (retention of both the introns)  

R  5’ ggttctcagccttcaggtcc 3’ 

cDNA - exons 9-13 

53.9°C 

F  5’ ctaaacgctgtactctcg 3’ 

395 bp (wild-type) 

486 bp (intron 11-12 retention)  
R  5’ gccacagaaatcgctatg 3’ 

cDNA - exons 15-18 

62°C 

F  5’ ctgacctccaaactgacccg 3’ 

283 bp (wild-type, MARK4L) 

363 bp (wild-type, MARK4S) 
R  5’ cgaagtgggacaggggctc 3’ 

  

 Table 2.4: annealing temperatures, primer sequences and PCR fragment sizes for MARK4 exons  

 2-8, 9-13, and 15-18 (cDNA).  

 

 

95°C 95°C

2’ 30’’

X°C

30’’

72°C

1’

72°C

5’

35 cycles
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22..44..22  SSeeqquueenncciinngg2255  aannaallyyssiiss  

PCR products were sequenced using the Big Dye Terminator v.3.1 Cycle Sequencing 

Kit (Applied Biosystems), consisting of a 5x saline buffer and a premix with DNA 

polymerase, dNTPs and fluorescine-labelled ddNTPs26 (terminators). For each exon two 

separate reactions were performed, one with the forward primer and one with the 

reverse one.  

Reactions were carried out according to this protocol:  

H2O    5.2 µl  

Buffer 5x   1.5 µl 

Premix    1.0 µl 

Primer (11 pmol/µl)  0.3 µl 

PCR product   2.0 µl (opportunely  

    diluted to have 5-20 ng of DNA) 

Annealing temperature was chosen among 50°C and 60°C in accordance with each 

primer melting temperature. 

Reaction product was precipitated by adding 2.5 volumes of 95% ethanol for 15 min 

and by centrifuging at 13,000 rpm for 15 min. After a wash with cold 70% ethanol, 

sequence reaction was spun at 13,000 rpm for 10 min and air dried.  

Samples were sequenced by Primm (Milano, Italy) and electropherograms aligned 

and analyzed with ChromasPro software (version 1.42; Technelysium Pty Ltd, Tewantin 

QLD, Australia). Sequences were compared with the wild-type MARK4 genomic 

sequence (NM_031417; UCSC database) and cDNA sequence (ENST00000262891 for 

MARK4L, ENST00000300843 for MARK4S; Ensembl database).  

  

                                                           
25

 Based on Sanger method. 
26

 Dide-oxinucleotide triphosphate. 

95°C 95°C

1’ 10’’

X°C

6’’

60°C

3’

25 cycles
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22..55  GGEENNEE  EEXXPPRREESSSSIIOONN  AANNAALLYYSSIISS  

To quantify MARK4 S and L expression levels we carried out Real-time quantitative 

PCR on cDNAs from tissue samples and cell lines under study. cDNA was obtained 

through reverse transcription of extracted RNAs.  

22..55..11  RReevveerrssee  ttrraannssccrriippttaassee  PPCCRR  ((RRTT--PPCCRR))    

Reverse transcriptase PCR (RT-PCR) allows transcribing the messenger RNA (mRNA) 

into its complementary DNA (cDNA) by using the reverse transcriptase enzyme.  

500 ng of RNA extracted from cell lines and 250 ng of RNA from tissue samples were 

processed using the High capacity cDNA reverse transcription kit (Applied Biosystems), 

with random examers, according to the manufacturer’s protocol.  

All mRNAs were reverse-transcribed in two independent reactions; to verify that 

cDNAs were efficiently generated by RT, we performed a PCR amplifying the 

housekeeping gene GAPDH27, using the previously reported PCR conditions and these 

specific GAPDH conditions: 

 forward primer sequence: 5’-ACAACAGCCTCAAGATCATCAG-3’; 

 reverse primer sequence: 5’-GGTCCACCACTGACACGTTG-3’; 

 annealing temperature: 62°C. 

22..55..22  RReeaall--ttiimmee  qquuaannttiittaattiivvee  PPCCRR    

The Real-time PCR enables to measure the cDNA quantity of a target gene with high 

sensitivity, specificity and reproducibility. This technique is based on a traditional 

Polymerase Chain Reaction with the addition of a TaqMan probe that is 

complementary to an inner region of the PCR product (hence it is specific for the target 

gene) and emits a fluorescent signal every time the template is amplified28. Detected 

fluorescence is therefore directly proportional to the accumulation of PCR products.  

Data are analyzed during the PCR exponential phase and revealed by the instrument 

at a particular cycle (named CT = Threshold cycle), at which the amount of PCR 

products generated is directly proportional to the original quantity of the target gene 

cDNA. Data normalization is needed for relative quantification, and control genes, 

which are constitutively expressed endogenous genes, are generally used for this aim. 

Assays, data analysis and statistics were set with Dr. Silvia Tabano and Laura 

Fontana. 

                                                           
27

 GlycerAldehyde 3 Phosphate DeHydrogenase. A housekeeping gene is a constitutively expressed gene. 
28

 TaqMan probe is an oligonucleotide with a Reporter fluorophore on the 5’ end and a Quencher dye on the 3’ 
end. During PCR elongation the DNA polymerase breaks the probe so that the Reporter fluorophore is no longer 
switched off by the Quencher and the emitted fluorescence is recorded. 
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TaqMan assays and Real-time PCR 

We performed Real-time PCR with the TaqMan Fast Universal PCR Master Mix 2x No 

AmpErase UNG (consisting of DNA polymerase, buffer and dNTPs) and TaqMan Gene 

Expression Assays (specific for each target or control gene), all from Applied 

Biosystems. Features of the TaqMan assays are reported in table 2.5:  

 

ASSAY PRIMER SEQUENCE PROBE SEQUENCE 

MARK4L 
F   5’ CCGAAGGGTCGCAGACGAA 3’ 

5’ CCTGAGGTCACAAGTT 3’ 

R  5’ CCGTTTGATCCCAAGGTAGATG 3’ 

MARK4S 
F  5’ GTTACCCTCGATCCCTCTAAACG 3’ 

5’ CAGAACTCTAACCGCTGTGT 3’ 

R  5’ GTTCGTCTGCGACCTGATCTT 3’ 

ACTIN β Inventoried assay reagent; ID: Hs99999903_m1 

GAPDH Pre-developed assay reagent; ID:4333764F 

HPRT29 Inventoried assay reagent; ID: Hs99999909_m1 

RPLPO30 Pre-developed assay reagent; ID:4333761F 

18s31 Inventoried assay reagent; ID: Hs99999901_s1 

 

 Table 2.5: primer and probe sequences for MARK4S and L Assays on demand;  

 ID for control gene assays.  

 

MARK4 probes and primers were identified so as to have specific assays for each of 

the two isoforms and, when possible, we chose them on the boundary between exons, 

to avoid genomic DNA amplification.  

MARK4S forward primer and probe bind exon 16, which is absent in MARK4L 

mRNA, and reverse primer is on the boundary between exons 16 and 17. MARK4L 

forward primer was placed between exon 15 and 17 (adjacent to each other in 

MARK4L mRNA), while the probe and reverse primer bind exon 18. 

 

For each assay the following mix was prepared: 

 H20   2.5 µl    20 µl of cDNA underwent a 1.5 fold  

 Master Mix (2x) 5.0 µl    dilution and 1.5 µl were added to the 

 Assay (20x)  0.5 µl    reaction mix. 

                                                           
29

 Hypoxanthine-guanine PhosphoRibosylTransferase. 
30

 Ribosomal Phosphoprotein Large PO. 
31

 Eukaryotic 18s rRNA. 
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Reactions were performed on the StepOne Real-Time PCR System (a particular 

thermal cycler that also detects and records fluorescent signals; Applied BioSystems), 

under these conditions:  

95°C 95°C

20’’ 3’’

60°C

20’’

40 cycles
 

All samples were reverse transcribed in two independent reactions and loaded in 

triplicate in Real-time experiments.  

sample

cDNA

assay 1

assay 1

assay 1

assay 2

assay 2

assay 2

assay 3

assay 3

assay 3

assay 4

assay 4

assay 4

cDNA

assay 1

assay 1

assay 1

assay 2

assay 2

assay 2

assay 3

assay 3

assay 3

assay 4

assay 4

assay 4
 

Relative quantification analysis 

CT data were recovered from the StepOne Software (v1.2; Applied Biosystems); the 

three values for each assay were averaged (arithmetic mean) and then analyzed using 

two different methods: the 2-ΔΔC
T method (also known as Livak method, [Livak 2001]) 

for cell lines (being more homogeneous, a single control gene was sufficient) and the 

geNorm method (E-ΔC
T) [Vandesompele 2002] for tissue samples and stem cell lines.  

In both cases, MARK4S and L (target genes) expression levels were normalized by 

control genes and then referred to a sample chosen as reference (NHNP for cell lines 

and HNB for tissue specimens and stem cell lines), whose expression value was set as 

1. Values with standard deviation exceeding 0.5% or standard error exceeding 0.3% 

were excluded and experiments repeated.  

According to Livak method, 

 for each sample the target gene expression level = 2-ΔΔC
T  

 where: ΔΔCT = sample ΔCT – reference ΔCT; 

   sample ΔCT = [target gene CT – control gene CT] in the sample; 

   reference ΔCT = [target gene CT – control gene CT] in the reference; 

   (sample and reference ΔCT correspond to the mean value between  

   the ΔCTs of the two independent RT reactions)  

In the geNorm method, instead, multiple control genes are used and the 

amplification efficiency (E, set as 2 in the 2-ΔΔC
T method) is calculated for each assay, 

taking into account the different efficiency of each assay.  
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Briefly, 

1) for each assay, serial dilutions of a pool of cDNAs are processed by Real-time 

PCR and CT values are put in a graph with the respective logarithmic dilution 

values. The amplification efficiency E corresponds to 10-1/S, where S is the 

slope of the line interpolating all the CTs. 

2) for each assay, the relative quantity (Q) is calculated: Q = E-ΔC
T 

  where ΔCT = sample CT – reference CT 

3) for each sample, normalization factor (NF) is set on the basis of the 

geometrical mean (GM) of the relative quantities (Qs) of control genes: 

  NF = GM of control gene Qs for each sample / GM of all the GMs  

4) for each sample, the target gene relative quantity = Q / NF is calculated. 

Final target gene relative quantity corresponds to the mean value between those of 

the two independent RT reactions.  

 

Real-time expression data were expressed as mean ± standard error. 

For statistical analysis the Kruskal-Wallis test (H test) was used. This is a 

nonparametric (distribution free) analysis of variance.  

In H test, null hypothesis (H0) assumes that the samples are from identical 

populations. First, data of both samples need to be arranged in a single series in 

growing order and ranks are assigned to each of them. The following formula allows 

calculating the value of Kruskal-Wallis test (H): 

 

 

 

where n=total number of data in all samples; Ri=rank of each datum 

The StatistiXL 1.8 software for Microsoft Excel (www.statistixl.com) also calculates the 

probability that the differences between the two samples occur by chance. If this value 

is lower than 0.05 (H0 was set as true with 95% probability), the null hypothesis must 

be rejected and you will say that the sample comes from a different population, or, in 

other word, that the differences found in the two data sets are statistically significant.  

The t-test (Student’s test) was also used. 

H = 
12 

n (n + 1) 




Ri2 

3 (n + 1) 

ni 
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22..55..33  TTaaqqMMaann  aassssaayy  vvaalliiddaattiioonn  

Before performing the relative quantification analysis on the samples under study, 

we evaluated amplification efficiency and stability of all the assays (MARK4S, 

MARK4L, actin β, GAPDH, HPRT, RPLPO).  

Assay amplification efficiency 

For each assay, we performed Real-time PCR on serial dilutions of a pool of glioma 

cDNAs. The obtained CT values were put in a graph with the respective logarithmic 

dilution values and were interpolated by a line. Amplification efficiency (E) was 

calculated according to the E=10-1/S formula (S is the slope of the interpolating line) 

and was near 2 for all the assays (table 2.6). A 100% amplification efficiency has the E 

value equal to 2, since ideally PCR product quantity should double at every cycle, 

therefore all the tested assays proved to have a very good amplification efficiency.  

Assay stability 

Assay stability is the ability to amplify the target gene with the same efficiency in a 

broad range of sample dilutions.  

To assess this parameter, we first calculated the relative quantity (Q) of each gene in 

the cDNA serial dilutions, according to the following formula: Q=E-ΔC
T (ΔCT =sample CT 

– reference32 CT) and then used the GeNorm software (version 3.5; 

http://medgen.ugent.be/jvdesomp/genorm/) to sort the assays on the basis of their 

stability (table 2.6). We therefore decided to use GAPDH and actin β as control genes, 

since they were the most stable ones. 

 

GAPDH was used for cell lines (being more homogeneous, a single control gene was 

sufficient) and GAPDH + actin β for tissue samples and stem cell lines. rRNA 18S was 

additionally used for the simultaneous normalization of mouse and human samples 

(GBM CSC and NSC).  

 

 

 

 

 

 

 

                                                           
32

 In this case the reference was the less diluted sample. 
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ASSAY DILUTIONS CT S  E  ΔCt 
RELATIVE 

QUANTITY 
STABILITY 

GAPDH 

1 16.52 -3.30 2.01 0.00 1.00  
more stable 

 

 

 

 

 
 

 

 

 

 
 

 

 

less stable 

1:10 19.73   3.21 0.11 

1.100 23.05   6.52 0.01 

1:1000 26.41   9.89 0.00 

ACTB 

1 16.78 -3.65 1.88 0.00 1.00 

1:10 20.35   3.57 0.11 

1.100 24.02   7.25 0.01 

1:1000 27.71   10.93 0.00 

RPLP0 

1 17.74 -3.28 2.02 0.00 1.00 

1:10 20.85   3.10 0.11 

1.100 24.18   6.44 0.01 

1:1000 27.56   9.82 0.00 

HPRT 

1 21.78 -3.31 2.00 0.00 1.00 

1:10 24.95   3.18 0.11 

1.100 28.20   6.43 0.01 

1:1000 31.74   9.96 0.00 

MARK4L 

1 23.75 -3.40 1.97 0.00 1.00 

1:10 27.00   3.25 0.11 

1.100 30.50   6.75 0.01 

1:1000 33.92   10.17 0.00 

MARK4S 

1 28.00 -3.54 1.92 0.00 1.00 

1:10 31.26   3.25 0.11 

1.100 35.00   6.99 0.01 

1:1000 N.D.   / / 

  

 Table 2.6: assay amplification efficiency (E) and stability. For each assay, CT values  

 (3rd column), corresponding to serial dilutions of a pool of glioma cDNAs (2nd column),  

 are displayed. S=slope of the interpolating line. N.D.=undetermined. 
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22..66  IIMMMMUUNNOOBBLLOOTTTTIINNGG  

The Immunoblotting technique allows to separate proteins, according exclusively to 

their molecular weight, and to identify the presence/absence of a specific protein, its 

size and its relative expression level. 

Equal amounts of the extracted proteins (usually 20 µg) were supplemented with 

reducing SDS33 loading buffer (Blue loading buffer pack, Cell Signaling Technology, 

Inc., Beverly, MA, USA) and denatured at 99°C for 3 min.  

Proteins were separated by 4% (stacking; 100V) and 10% (resolving; 130V) SDS 

PolyAcrylamide Gel Electrophoresis (SDS-PAGE). Proteins were then transferred by 

electroblotting to a PVDF34 membrane (Roche). Mini-PROTEAN Tetra cell and Trans-blot 

semi-dry electrophoretic transfer cell (both Bio-Rad) were respectively used for 

electrophoresis and electroblotting (10V, 30 min) as instructed by the manufacturer. 

The molecular weight standard were Biotinylated protein ladder (Cell Signaling 

Technology) and ColorBurst electrophoresis marker (Sigma).  

Membranes were then washed twice (10 min each) in PBS-T and non-specific binding 

was blocked by incubating the membranes in 5% skimmed milk, PBS-T for 1.5 hours 

at Room Temperature (RT), in agitation. 

 PBS-T: PBS – 0.6% Tween20 

  PBS pH7.5: 100 mM NaCl, 80 mM HNa2O4P, 20 mM NaH2PO4. 

  Tween20 was from Sigma.  

The membranes were incubated with primary antibodies (in PBS-T) at 4°C overnight 

in agitation, washed five times in PBS-T and then incubated with secondary antibodies 

(in PBS-T) at RT for 1.5 hours in agitation.  

Primary antibodies and dilutions: 

Rabbit anti-MARK4L (not commercial; GenScript Corporation) 1:5,000 

Mouse anti-GAPDH (ab8245; Abcam, Cambridge, UK)   1:10,000  

Rabbit anti-MARK4S (not commercial; GenScript Corporation) 1:6,500 

Rabbit pre-immune serum (GenScript)     1:5,000 

 

For quantification, the membranes were cut horizontally immediately after the 

blocking step and incubated with the appropriate antibodies. 

 

                                                           
33

 Sodium Dodecyl Sulphate. 
34

 Polyvinylidene fluoride. 
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Secondary antibodies and dilutions: 

Goat anti-rabbit IgG-HRP (sc-2004; Santa Cruz Biotechnology) 1:10,000  

Goat anti-mouse IgG-HRP (sc-2005; Santa Cruz Biotechnology) 1:10,000 

Anti-biotin, HRP-linked antibody (Cell Signaling)    1: 2,500 

 The secondary antibodies are conjugated to HRP (Horse Radish Peroxidase), 

 the anti-biotin antibody allows detecting the biotinylated protein ladder. 

After four washes in PBS-T and two washes in PBS, the bound antibodies were 

detected by covering the membranes with a peroxide/enhancer solution (Protein 

detection system from GeneSpin, Milano, Italy) for 5 min, exposing an Amersham 

Hyperfilm ECL plate (GE Healthcare, Waukesha, WI, USA) to the membrane, and 

developing the plate by Dental X-Ray developer and Dental X-Ray fixer (Kodak; 

Bagnolet Cedex, France).  

22..66..11  SSeemmii--qquuaannttiittaattiivvee  aannaallyyssiiss  

To compare MARK4L protein expression in different samples we did a relative 

quantification analysis, using GAPDH as normalizer (to correct differences in lysate 

loading, protein transfer and antibody binding). We performed a double 

Immunoblotting experiment for every sample and used the same conditions for all the 

experiments. For quantification, a low exposure time was chosen, so that the signal 

intensity on the plate was directly proportional (in the linear range) to the emitted 

signal intensity.  

TIF images were acquired from plates using a scanner and analyzed with the Image J 

software. Image J is a public domain JAVA image processing program 

(http://rsbweb.nih.gov/ij) and allows analyzing one-dimensional electrophoretic gel or 

membrane using a simple graphical method 

(http://rsbweb.nih.gov/ij/docs/menus/analyze.html). Briefly, each lane (including 

both MARK4L and GAPDH bands) was selected and lane profile plots were generated, 

displaying a two-dimensional graph reporting peaks corresponding to gel bands (on 

the X-axis) and their relative pixel intensities (on the Y-axis). After manually 

subtracting the background (required step to compare different plates), we measured 

the area of each peak of interest in square pixels. In each sample MARK4L area value 

was divided by the respective GAPDH value to normalize data.  

MARK4L expression levels shown in this thesis are referred to a sample chosen as 

reference (NHNP for cell lines and HNB for tissue specimens), whose value was set as 

1. 
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Figure 2.335: [upper] one of the immunoblots analyzed with Image J software. The membrane was cut 

horizontally and incubated with anti-MARK4L (upper) and anti-GAPDH (lower) antibodies. The box 

indicates one of the lanes, selected to generate its profile plot in Image J [lower]. In the profile plot 

MARK4L and GAPDH peaks are indicated and background subtracted by manually defining the peak 

boundaries with a line. M=molecular weight standards. 
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 Only in this digital copy, low-resolution and degraded images are displayed. 
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22..77  IIMMMMUUNNOOFFLLUUOORREESSCCEENNCCEE  

ImmunoFluorescence (IF) enables to visualize the subcellular localization of a 

specific protein in cultured cells; IF experiments shown in this thesis were set by Dr. 

Ivana Magnani. 

For IF analysis cells were seeded on glass chamber slides or round coverslips of Ø 

1cm (for GBM-CSC and NSC) and processed at approximately 70% confluence.  

For the better visualization of centrosomes, cells were washed in microtubule- 

stabilizing buffer36 (0.1% Triton X-100, 80 mM PIPES37, pH 6.9, 5 mM EGTA38, 1 mM 

MgCl2), fixed with methanol for 10 min at -20°C or with 2x paraformaldehyde (PFA) in 

PBS for 30 min on ice, and permeabilized in 0.1% Triton X-100 for 2 min.  

Otherwise cells were washed in PBS, fixed with methanol for 10 min at -20°C or with 

2x paraformaldehyde, and permeabilized in 0.1% Triton X-100 for 10 min. 

Non-specific binding was blocked by incubating the fixed cells with 5% bovine serum 

albumin (BSA) in PBS for 10 min, before incubation with primary antibodies:  

Primary antibodies and dilutions: 

Rabbit anti-MARK4L (not commercial; GenScript)   1:100 

Rabbit anti-MARK4S (M4947, Sigma)     1:200 

Mouse anti-γtubulin (clone GTU-88; Sigma)   1:100/200 

Mouse anti-nucleolin (C23 D-6, Santa Cruz Biotechnology)  1:100 

Mouse anti-nucleophosmin (B23; clone FC82291, Sigma)  1:200 

Antibodies were diluted in PBS with 0.1–0.5% Tween20, 2% BSA and 1% goat 

serum39 (Sigma). MARK4L, MARK4S and γ-tubulin were incubated overnight at 4°C in 

a humidified chamber; nucleolin was incubated for 1 hour at RT.  

After three washes in PBS, the secondary antibodies were incubated for 1 hour at RT 

in a dark humidified chamber:  

Secondary antibodies and dilutions: 

  Goat anti-rabbit IgG-FITC40 (Sigma)  1:200  

  Goat anti-mouse IgG-TRITC41 (Sigma)   1:200 

 

                                                           
36

 Based on the protocol by T. Raemaekers (2003) with little variations. 
37

 1,4-piperazinediethanesulfonic acid. 
38

 Ethylene Glycol Tetraacetic Acid. 
39

 To reduce non-specific binding, the serum of the animal where the secondary antibodies are raised (goat) is 
added. 
40

 Fluorescein IsoThioCyanate. 
41

 TetramethylRhodamine IsoThioCyanate. 
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Antibodies were diluted in PBS with 0.1–0.5% Tween20, 2% BSA and 1% goat serum. 

The slides were then washed three times in PBS, mounted with DAPI in antifade 

(Vector Labs, Burlingame, CA, USA) and examined using an Olympus IX51 inverted 

fluorescence microscope, equipped with an Olympus DP71 super high-resolution 

colour digital camera and U-MNIBA2 excitation 460/490 (FITC), U-MWIG3 excitation 

530/550 (TRITC) and U-MNU2 (DAPI) filters.  

Images were acquired and processed using the F-View II-Bund-cell F software 

(Olympus, Tokyo, Japan). 

 

For RNA digestion, cells were permeated with 0.1% Triton X-100 for 5 min and 

subsequently RNA was digested with 800μ/ml RNase A (Sigma) + 5 μl of RNase 

Cocktail (Ambion) in 1xPBS for 30 min at RT.  
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22..88  IIMMMMUUNNOOHHIISSTTOOCCHHEEMMIISSTTRRYY    

ImmunoHistoChemistry (IHC) allows to visualize, in tissue sections, the 

localization of a target protein (in specific cell types or tissue areas) and to in situ 

qualitatively assess its relative expression levels.  

22..88..11  IIHHCC  oonn  hhuummaann,,  mmoouussee  aanndd  rraatt  bbrraaiinn  ssaammpplleess  

Immunohistochemistry experiments on human, mouse and rat normal brain 

samples were set, performed and interpreted by Dr. Ramona Moroni and Professor 

Carolina Frassoni (Clinical epileptology and experimental neurophysiology unit, 

Istituto neurologico Carlo Besta, Milano). 

Brain specimens were fixed in 4% PFA in 0.1M phosphate buffer (PB; pH 7.2), 

paraffin embedded and sectioned (10 μm) on a microtome.  

After deep anaesthesia, the animals were perfused transcardially with 4% PFA in 

0.1M PB. Their brains were dissected out, post-fixed in 4% PFA for 12 h, embedded in 

paraffin, and sectioned (10 μm). 

The sections were dewaxed in xylene, rehydrated, and treated in a microwave oven 

(in Na-citrate 0.01M, pH 6.0). After three washes in PBS, the endogenous peroxidases 

were blocked with 1% H2O2. The sections were washed again in PBS, incubated in 1% 

BSA (Sigma) with 0.2% Triton X-100 for 1 hour, and then overnight in primary 

antibodies at 4°C in a humid chamber. 

Primary antibodies and dilutions: 

Rabbit anti-MARK4L (not commercial; GenScript)   1:500 

Rabbit anti-MARK4S (not commercial; GenScript)   1:500 

Rabbit anti-MARK4S (M4947, Sigma)     1:1000 

Antibody staining was revealed using a biotinylated goat anti-rabbit IgG (Vector 

Labs) diluted 1:200 with 0.1% BSA in PBS.  

The avidin-biotin-peroxidase protocol (ABC; Vector Labs) was followed, with DAB42 

(Sigma) being used as the chromogen. 
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 3,3 DiAminoBenzidine. 
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22..88..22  IIHHCC  oonn  gglliioommaa  sseeccttiioonnss  

Immunohistochemistry on glioma sections was set, performed and analyzed by 

Delfina Tosi and Professor Dario Bauer (Anatomical pathology, Department of 

Medicine, surgery and dentistry, Università degli studi di Milano, Milano).  

IHC was performed on formalin-fixed paraffin embedded tissue sectioned at 3 mm 

onto positively charged slides (Superfrost plus, Menzel-Glaser, Germany). Paraffin 

sections were subjected to heat-induced epitope retrieval with citrate, pH 6.0. After 

inhibition of endogenous peroxidase, the slides were incubated with primary 

antibodies over night at 4°C. When using the anti-MARK4S antibody by Sigma, slides 

were first blocked with casein in saline phosphate for 45 min; anti-MARK4S antibody 

from GenScript was instead kept 1 hour at RT.  

Primary antibodies and dilutions: 

Rabbit anti-MARK4L (not commercial; GenScript)   1:1000 

Rabbit anti-MARK4S (not commercial; GenScript)   1:600 

Rabbit anti-MARK4S (M4947, Sigma)     1:1000 

Slides were then incubated with a polymer penetration enhancer (Novolink Polymer - 

anti mouse-rabbit IgG-poly-HRP, Leica Mycrosystems and Menarini Diagnostics) 

containing 10% (v/v) animal serum and DAB chromogenic substrate (Dako or Vector 

Labs, Burlingame, CA, USA), counterstained with hematoxylin and coverslipped.  

Labelling intensity and the proportion of immunopositive cells were assessed by light 

microscopy and independently evaluated by two investigators (D.B. and D.T.) with a 

minimum of 100 cells detected in each specimen. Staining intensity was graded 

visually on a scale ranging from 0 to 3 (0 = no staining; 1 = weak immunoreactivity; 2 

= moderate staining; 3 = strong immunoreactivity). Labelling extent was scored 

following the percentage of immunopositive cells: 0 ≤ 5%; 1 = 6-35%; 2 = 36-66%; 3 ≥ 

67%. Intensity and extent scores were multiplied to obtain the composite score, with 

the maximum value being 9 [Chauhan 2007]. 
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Aiming at enriching literature data on MARK4 involvement in neurons and in glial 

tumors in the Central Nervous System, this project further characterizes the role of 

both MARK4 isoforms (L and S) in gliomas and in brain, by means of different 

techniques.  

As mutations in protein kinase genes are often implicated in the initiation and 

development of cancer, we first investigated whether genomic mutations could affect 

MARK4 gene in glial tumors. We then analyzed MARK4L and S localization and 

expression pattern in a wide panel of gliomas, in glioblastoma-derived cancer stem 

cells, in normal brain and in neural stem cells, by Real-time quantitative PCR, 

Immunoblotting, Immunofluorescence and Immunohistochemistry. 

33..11  MMUUTTAATTIIOONN  AANNAALLYYSSIISS  

Results by array-CGH analysis on a representative collection of human glioma cell 

lines, which are included in the current work, showed that MARK4 genomic region is 

not over-represented, with only one exception (MI4 cell line, which is duplicated), 

allowing to rule out increased gene dosage/amplification as underlying cause of 

MARK4 expression in glioma [Roversi 2006]. 

We then performed mutation analysis of the functionally relevant MARK4 regions 

and of exons whose alterations are described in literature (exons 5, 8, 9, 12, 13), 

screening the kinase domain (exons 2-10), the ubiquitin-associated (UBA) domain 

(exons 10-12) and exon 13 (a schematic representation of the analyzed regions is 

reported in figure 3.1). By direct sequencing we looked for mutations both in the 

coding regions and in the flanking regulatory sequences. A subset of 12 glioma cell 

lines and 12 glioma tissue samples of different malignancy grade were tested. 

 

 Figure 3.1: schematic representation of MARK4 exons and respective protein domains.  

 The colored boxes indicate the analyzed exons, covering 70% of MARK4 coding sequence.  

 [Boxes are not drawn to scale.]  
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We only found a synonymous substitution in a glioblastoma cell line (GBM) cell line 

which carries the c1101G>C variation in exon 11, occurring at the third base position 

of codon 367 and specifying the same amino acid (leucine). We couldn’t find out 

whether this mutation occurred in culture or was present in the original tumor, or it 

was of somatic or germinal origin. Anyway, the variation does not affect the splicing 

process, as confirmed by cDNA analysis. 

 

  

Figure 3.243: GBM exon 11 electropherogram displaying the C>G variation.  

 

MARK4 gene is characterized by the presence of short introns that could potentially 

be retained in the mature mRNA. Intron retention between exons 3-4 (152 bp), 5-6 (90 

bp) and 11-12 (91 bp) was tested by performing PCR (and occasionally direct 

sequencing) on cDNA, but no splicing errors were detected.  

Since MARK4 undergoes alternative splicing (exon 16 is skipped in MARK4L), we 

examined all the genomic sequence between exons 15 and 17. We only found a yet 

unreported single nucleotide alteration, 

c1878-61G>A, in intron 16, which was 

present in 5/19 cell lines and in 3/12 

tissue samples. This variation does not 

affect the splicing process, as confirmed 

by cDNA analysis.  

 

Figure 3.3: intron 16 electropherograms.  Tissue 

sample 219, carrying the A>G alteration, is shown 

in the upper panel; wild-type sequence of tissue 

sample 112 is displayed in the lower panel. 
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 Only in this digital copy, low-resolution and degraded images are displayed. 
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33..22  MMAARRKK44  AANNTTIIBBOODDYY  VVAALLIIDDAATTIIOONN  

Anti-MARK4 antibodies used in our experiments were obtained by immunizing 

rabbits with different antigens from MARK4 C-terminal sequence, so as to have 

isoform-specific antibodies. 

 

 

Figure 3.4: schematic representation of MARK4S and MARK4L proteins.  

The two isoforms differ in the C-terminal region: protein sequences are reported and antigens used to 

raise antibodies are indicated by the bars.  

 

For MARK4L (GenScript) and MARK4S (Sigma) antibodies short peptides (15 aa) 

were used as immunogens, while anti-MARK4S antibody from GenScript was raised 

against a recombinant protein corresponding to MARK4S whole C-terminal sequence. 

Anti-MARK4L antibody (Primm), raised against a short peptide which does not overlap 

GenScript peptide, was used in immunolabelling experiments in our previous report 

[Magnani 2009]. 

Human and mouse MARK4 protein sequence share an identity of about 97%. 

33..22..11  MMAARRKK44LL  aannttiibbooddyy  vvaalliiddaattiioonn  

To validate the new and non-commercial anti-MARK4L antibody (GenScript), we 

assessed its specificity (that is, the ability to give a signal only in the presence of the 

target) by several immunoblotting assays.  

To verify that the strongest band, visible around 80 kDa in the blot, was specific 

for MARK4L antigen and not due to non-specific interactions, we performed the 

peptide-competition assay. Briefly, we carried out SDS-PAGE on six identical samples, 

transferred the proteins and, after the blocking step, cleaved the membrane in six 

strips, corresponding to the six samples. Each strip was then incubated respectively 

with (1) anti-MARK4L antibody and (2-5) anti-MARK4L antibody pre-adsorbed against 
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progressively higher peptide quantities. The peptide was the 15-aa-long antigen used 

to raise the anti-MARK4L antibody and thus competed for the antibody binding with 

MARK4L proteins present in the lysate. MARK4L specific band (around 80 kDa) was 

more intense in the membrane incubated only with the antibody and became fainter at 

higher peptide quantities (data not shown). Equal protein loading and transferring was 

checked by blotting the same membrane with anti-GAPDH antibody. 

Non-specific bands were also detected by incubating the membrane with the pre-

immune rabbit serum (drawn from the animal before immunization), highlighting a 

secondary antibody non-specific band close to the one corresponding to MARK4L.  

To verify that the antibody recognized MARK4L, we produced a fusion protein 

consisting of MARK4L protein and a N-terminal Xpress™ tag and assessed that both 

anti-MARK4L and anti-Xpress™ antibodies stained this fusion protein (figure 3.5). We 

also checked that the antibody was isoform-specific and did not cross-react with 

MARK4S: actually this antibody binds the recombinant protein corresponding to 

MARK4L whole C-terminal region but does not recognize MARK4S recombinant 

protein (figure 3.6).  

 

Figure 3.5: HEK293T cells 

transfected with a plasmid 

DNA producing the fusion 

protein MARK4L + Xpress 

tag (T24 and T48) and non-

transfected HEK293T cells 

(NT). The membrane was 

incubated with anti-Xpress 

antibody (on the left) and 

anti-MARK4L antibody (on 

the right). The fusion protein 

was present only in 

transfected cells (T24 and 

T48) and was recognized by both the anti-Xpress antibody (left) and the anti-MARK4L antibody (right, 

upper band) which also stained endogenous MARK4L protein (right, lower band). The fusion protein had a 

higher molecular weight due to Xpress tag and histidine tail. M=molecular weight standards. 
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Figure 3.6: immunoblots of MARK4S (S) and MARK4L 

(L) recombinant proteins. Anti-MARK4S antibody 

recognizes the S recombinant protein (left) but not the 

L protein (middle); anti-MARK4L antibody does not 

cross react with the S recombinant protein, while it 

binds the L protein (right). M=molecular weight 

ladders. Tex=tissue sample.  

 

 

 

The specificity of MARK4L antibody (Primm) was instead assessed by Mass 

Spectrometry (figure 3.7) [Magnani 2009]. 

 

Figure 3.7: MALDI-mass spectrum (ranging from 600 to 2600 Dalton) of the digested peptides from the 

immunoprecipitated MARK4L protein band. Of the 29 signals assigned to MARK4L, only 20 (arrowed) are 

visible because of the compactness of the mass spectrum  
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33..22..22  MMAARRKK44SS  aannttiibbooddyy  vvaalliiddaattiioonn  

Anti-MARK4S antibody from GenScript was tested by peptide-competition assay 

(data not shown) and was checked for its ability to recognize MARK4S recombinant 

protein and to not cross react with MARK4L (figure 3.6).  

Both anti-MARK4S antibodies, from Sigma and GenScript, give a near identical 

staining in Immunofluorescence and these data establish specificity for both of them. 

Indeed, the feature by which two antibodies raised against different and non-

overlapping epitopes of the same protein show the same staining pattern is considered 

a strong indicator of specificity of the observed staining [Holmseth 2006; Bjorling 

2008].  
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33..33  MMAARRKK44LL  AANNDD  MMAARRKK44SS  EEXXPPRREESSSSIIOONN  AANNAALLYYSSIISS  

Following mutation analysis, which did not reveal any genomic alteration (as did not 

the array-CHG analysis previously performed on most of the glioma cell lines [Roversi 

2006]), we analyzed MARK4L and MARK4S relative gene and protein expression in the 

gliomas under study (21 cell lines, 35 tissue samples and 6 glioblastoma-derived 

cancer stem cells – GBM CSC).  

To expand literature data [Beghini 2003; Moroni 2006], a wider panel of tissue 

samples and also GBM-derived CSC (which reproduce the genotypic and phenotypic 

features of GBM more faithfully than standard glioma cell lines [Lee 2006]) were 

examined. Moreover, a quantitative approach (Real-time PCR) was applied for mRNA 

analyses and protein expression was tested too, by Immunoblotting and by 

Immunohistochemistry (which allows to distinguish between tumor and normal cells).  

33..33..11  MMAARRKK44  mmRRNNAA  eexxpprreessssiioonn  pprrooffiillee  iinn  gglliioommaa  cceellll  lliinneess    

Real-time PCR analyses on 9 non-GBM and 12 GBM cell lines (figure 3.8) indicate 

that MARK4L is the main isoform and is overexpressed in 16/21 samples as compared 

to Normal Human Neural Progenitor cells (t-test; p<0.05). In a previous study [Beghini 

2003], a direct correlation between MARK4L levels and malignancy grade in glioma cell 

lines was found by using a semi-quantitative approach. Differently, quantitative PCR 

does not reveal significant differences in MARK4L levels between the two glioma 

subgroups.  

Furthermore, the S isoform of MARK4 is expressed concomitantly to MARK4L, 

although it shows a significant decrease in expression levels when compared to NHNP 

(t-test: p=0.002 versus non-GBM, p=0.00014 versus GBM).  

It can also be noted that both isoforms have a heterogeneous expression within and 

across the two subgroups.  
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Figure 3.8: relative expression (2-ΔΔC
T) of MARK4L and MARK4S in non-GBM (top) and GBM (bottom) cell 

lines by Real-time quantitative PCR. Expression levels in glioma samples are referred to Normal Human 

Neural Progenitor cells (NHNP), chosen as reference and whose values were accordingly set as 1. 

Expression data are shown as mean ± standard error. 
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33..33..22  MMAARRKK44  mmRRNNAA  eexxpprreessssiioonn  pprrooffiillee  iinn  gglliioommaa  ttiissssuuee  ssaammpplleess    

Real-time PCR analyses (figure 3.9) on 16 Oligodendrogliomas (WHO II grade), 7 

Astrocytomas (II/III grade) and 12 Glioblastomas (IV grade), confirm the MARK4L 

prevalence and the heterogeneous expression of both MARK4 isoforms also seen in cell 

lines.  

As regards MARK4L, there are no statistically significant differences among the three 

subgroups, although a slight decrease is observed when considering the 2-ΔΔCT mean 

values (A=1.41; O=1.09; GBM=0.86; HNB set as 1).  

In line with cell lines data, MARK4S is expressed concomitantly to MARK4L, and its 

expression levels are reduced in glioma samples as compared to Human Normal Brain 

(HNB; 2-ΔΔCT value set as 1): in detail II grade oligodendrogliomas show a 2-ΔΔCT mean 

value of 0.42, II/III grade astrocytomas a 2-ΔΔCT mean value of 0.16 and IV grade 

glioblastomas a 2-ΔΔCT mean value of 0.09. Interestingly, in astrocytic tumors (A and 

GBM) the decrease of MARK4S levels inversely correlates with tumor grade, as 

confirmed by the statistical analysis using the Kruskal-Wallis test (KW p=0.043 A 

versus GBM). Samples deriving from different cell types (oligodendrogliomas and 

astrocytomas) also show statistically different MARK4S expression levels (KW p=0.033 

A versus O). 

There are no correlations between MARK4 levels and the molecular diagnostic and 

prognostic markers (mMGMT, 1p and 19q deletions and closeness of the tumor to the 

Sub-Ventricular Zone) by using the KW test. 
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Figure 3.9: [top] relative expression (2-ΔΔC
T) of MARK4L and MARK4S in astrocytic tumors by Real-time 

quantitative PCR. MARK4S expression levels show a significant decrease that correlates with tumor grade 

(from II/III grade astrocytomas - left - to IV grade glioblastomas - right). [Bottom] relative expression (2-

ΔΔC
T) of MARK4L and MARK4S in oligodendroglioma tissue samples by Real-time quantitative PCR.  

Expression levels are referred to Human Normal Brain (HNB), which displays similar amounts of MARK4S 

(CT=23.7) and MARK4L (CT=24.5) mRNAs, and whose values were set as 1. Expression data are shown as 

mean ± standard error. 
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33..33..33  MMAARRKK44LL//SS  iimmbbaallaannccee  ttaaggss  tthhee  uunnddiiffffeerreennttiiaatteedd  

pphheennoottyyppee  ooff  GGBBMM,,  GGBBMM--ddeerriivveedd  ccaanncceerr  sstteemm  cceellllss  aanndd  nneeuurraall  

sstteemm  cceellllss    

To further investigate the MARK4 imbalance found in the most malignant and 

undifferentiated tumoral subgroups, we analyzed MARK4 expression profile in 6 

glioblastoma-derived Cancer Stem Cell lines (GBM CSC) and in a mouse sub-

ventricular Neural Stem Cell line.  

Quantitative PCR results indicate that MARK4L, though heterogeneous, is the 

predominant isoform in both GBM CSCs and neural stem cells, whereas MARK4S is 

hardly detectable (figure 3.10).  

 

Figure 3.10: relative expression (2-ΔΔCT) of MARK4L and MARK4S in GBM CSC and NSC by Real-time 

quantitative PCR. Expression levels are referred to Human Normal Brain (HNB), chosen as reference and 

whose values were set as 1. Expression data are shown as mean ± standard error. 

 

The relative expression pattern of MARK4 isoforms in GBM CSC resembles that of 

glioblastomas, showing a prevalent MARK4L expression and low MARK4S levels. By 

comparing the profile of astrocytic tumors (A and GBM) and GBM-derived cancer stem 

cells, it can be seen that, following the strong MARK4S reduction (figure 3.11), the 

ratio between MARK4L and MARK4S gets progressively higher in parallel to the 

increase of malignancy and of the un-differentiated state (figure 3.12).  
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Figure 3.11: relative expression (2-ΔΔCT) of MARK4L and MARK4S in astrocytomas, glioblastomas (GBM) 

and GBM-derived cancer stem cells (GBM CSC) by Real-time quantitative PCR. Expression levels are 

referred to Human Normal Brain (HNB), chosen as reference and whose values were set as 1. Expression 

data are shown as mean ± standard error. 

 

 

Figure 3.12: ratio between MARK4L and MARK4S mRNA in Human Normal Brain (HNB), astrocytomas, 

glioblastomas (GBM) and GBM CSC by Real-time quantitative PCR.  
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33..33..44  MMAARRKK44LL  pprrootteeiinn  eexxpprreessssiioonn  pprrooffiillee  iinn  gglliioommaa  cceellll  lliinneess    

Immunoblotting experiments, achieved only for the L isoform (Immunoblotting for 

MARK4S is currently in progress), on the same glioma cell lines analyzed by Real-time 

PCR, show increased MARK4L expression in both non-GBM and GBM subgroups 

compared to NHNP, in agreement with mRNA data (figure 3.13):  

 

 

Figure 3.13: MARK4L protein relative expression in non-GBM (top) and GBM (bottom) cell lines by 

Immunoblotting experiments. Expression levels in glioma samples are referred to Normal Human Neural 

Progenitor cells (NHNP), chosen as reference and whose value was set as 1. Expression data are shown as 

mean ± standard deviation. 
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33..33..55  MMAARRKK44  pprrootteeiinn  eexxpprreessssiioonn  pprrooffiillee  iinn  gglliioommaa  ttiissssuuee  

ssaammpplleess  

MARK4L semi-quantitative Immunoblotting results (figure 3.14), matching the same 

tissue samples analyzed by Real-time PCR, confirm mRNA data showing a slight 

MARK4L decrease in GBM samples when compared to Astrocytomas (mean values: 

O=1.01; A=1.56; GBM=0.8), although the differences are not statistically significant. 

 

Figure 3.14: distribution of 

MARK4L protein relative 

expression values in 

oligodendroglioma (O), astrocytoma 

(A) and glioblastoma (GBM) tissue 

samples, by Immunoblotting 

experiments. Expression levels are 

referred to Human Normal Brain 

(HNB), chosen as reference and 

whose value was set as 1. Boxes 

indicate the median and the 25th 

and 75th percentiles. 

 

 

 

By Immunohistochemistry we evaluated the localization and the expression levels 

(semi-quantitatively) of both MARK4 proteins in paraffin-embedded glioma sections 

matching the same tissue specimens. The resulting profiles are reported in table 3.1. 

The assigned expression values, concordantly with Immunoblotting data, pinpoint 

the heterogeneous expression of both MARK4 isoforms among and within glioma 

subgroups. 

In detail, it can be seen that anti-MARK4L antibody labels all the oligodendrogliomas 

and astrocytomas under study and among glioblastomas only one sample out of 12 is 

negative. The anti- MARK4S antibody is instead detectable in 12 samples out of 14 

analyzed O, 6 samples out of 10 tested GBM and in all the evaluated astrocytomas.  
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STAINING 

INTENSITY

LABELLING 

EXTENT

COMPOSITE 

SCORE

STAINING 

INTENSITY

LABELLING 

EXTENT

COMPOSITE 

SCORE

4 2 2 4 1 2 2

6 3 3 9 N.E N.E. N.E.

42 3 3 9 1 1 1

71 3 2 6 0 0 0

98 2 3 6 1 2 2

106 3 2 6 0 0 0

107 2 2 4 3 2 6

112 2 2 4 2 2 4

118 2 1 2 1 1 1

186 3 1 3 1 1 1

190 2 2 4 1 2 2

193 3 1 3 2 2 4

196 3 2 6 N.E N.E. N.E.

200 2 1 2 1 1 1

217 1 2 2 1 2 2

219 2 2 4 2 2 4

1 3 3 9 2 3 6

41 N.E. N.E. N.E. N.E. N.E. N.E.

64 3 2 6 N.E. N.E. N.E.

94 N.E. N.E. N.E. N.E. N.E. N.E.

108 3 1 3 1 1 1

164 2 1 2 1 1 1

216 3 2 6 2 2 4

21 2 3 6 2 2 4

81 2 2 4 1 2 2

96 1 1 1 1 1 1

100 3 3 9 0 0 0

113 2 2 4 1 1 1

117 2 1 2 0 0 0

121 2 2 4 1 1 1

132 3 1 3 0 0 0

144 0 0 0 N.E. N.E. N.E.

194 1 1 1 0 0 0

207 1 2 2 N.E. N.E. N.E.

218 1 2 2 2 2 4

TISSUE SAMPLE

MARK4L MARK4S

O

L

I

G

O

D

E

N

D

R

O

G

L

I

O

M

A

S

A

S

T

R

O

C

G

L

I

O

B

L

A

S

T

O

M

A

S

 

Table 3.1: MARK4L (left) and MARK4S (right) protein expression values in Oligodendroglioma, 

Astrocytoma and Glioblastoma tissue sections by Immunohistochemistry.  

For each protein, staining intensity was graded visually on a scale ranging from 0 to 3 (0= no staining; 1= 

weak, 2= moderate and 3= strong staining). The percentage of immunopositive cells (labelling extent) was 

scored in four categories (0≤ 5%; 1= 6–35%; 2= 36–66%; 3≥ 67%). Intensity and extent scores were 

multiplied to obtain the composite score. N.E.=not evaluated.  

 

 

Figure 3.15 depicts few representative immunohistochemistry images; it also shows 

that both MARK4S and MARK4L antibodies label few differentiated neurons entrapped 

in the tumor mass (arrowed). 
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Figure 3.15: representative IHC images of MARK4L (left) and MARK4S (right) immunostaining. The arrow 

indicates one neuron. a: tissue sample 196 (Oligo), MARK4L; b: tissue sample 107 (Oligo), MARK4S. 



Results 

 

 76 

33..44  DDIISSTTRRIIBBUUTTIIOONN  OOFF  MMAARRKK44LL  AANNDD  MMAARRKK44SS  

IISSOOFFOORRMMSS  IINN  BBRRAAIINN  SSEECCTTIIOONNSS  

We analyzed MARK4L and S protein localization on both human and rodent tissues 

from adult and embryonic brain. We found no significant differences between the two 

species.  

The overall distribution of the two isoforms is similar in the cortical grey and white 

matter. In the cerebral cortex, both the new MARK4L and MARK4S antibodies detect, 

in agreement with previous data [Moroni 2006], most but not all of the neurons 

distributed throughout the cortical layers, and some glial cells, with different staining 

intensities (figure 3.16 a, b). Moreover, also in the white matter, some glial cells appear 

intensely immunolabelled for MARK4L and fewer cells are MARK4S-positive (figure 

3.16 c, d). 

On the contrary, the distribution of the two isoforms differs in the embryonic 

ventricular zone and in the adult subventricular zone, known germinal region in the 

adult brain. In embryos, MARK4L is expressed in some cells located in the ventricular 

zone (figure 3.17 a), likely neural stem cells, and in some postmitotic neurons in the 

intermediate zone and in the cortical plate (data not shown). MARK4S, though 

expressed in the embryonic postmitotic neurons, is not expressed in the ventricular 

zone (figure 3.17 b). Interestingly, in the adult rodents MARK4L is expressed in some 

cells of the subventricular zone, whereas MARK4S is not expressed (figure 3.17 c,d).  
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 Figure 3.16: expression of MARK4L (a,c) and MARK4S (b,d) proteins in human adult brain. 

 Both the isoforms are expressed in several neurons (dotted arrows) and in glial cells (arrows) in  

 the cerebral cortex (a,b) and in some glial cells (arrowed) in the white matter (c,d).  

 

Figure 3.17: expression of MARK4L (a,c) and MARK4S (b,d) proteins in human embryo (a,b) and  

in adult mouse (c,d). wm=white matter; svz=subventricular zone.   
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33..55  MMAARRKK44LL  AANNDD  MMAARRKK44SS  IISSOOFFOORRMM  SSUUBB--CCEELLLLUULLAARR  

LLOOCCAALLIIZZAATTIIOONN    

In early experiments we assessed MARK4L localization in glioma cell lines, by 

Immunofluorescence (IF) with an isoform-specific antibody by Primm [Magnani 2009]; 

these published results are here reported for a better comprehension of the present 

data. 

We found MARK4L association with interphase centrosomes and also with the 

aberrant centrosomes frequently observed in gliomas (figure 3.18 A). Co-labelling with 

MARK4L and γ-tubulin antibodies revealed two kinds of abnormal perinuclear 

distribution in the investigated glioma cell lines: a clustered (top) and a random one 

(bottom).  

We also demonstrated that MARK4L localizes in the nucleolus, by means of the silver 

colloid method (figure 3.18 B; left) and dual IF staining with anti-nucleolin antibody 

(figure 3.18 B; right).  

MARK4L localization throughout cell division showed that the kinase was also 

associated to mitotic centrosomes, being concentrated at the spindle poles in 

prometaphase and metaphase; at anaphase it was detected in the midzone and at late 

anaphase it was repositioned outside the nucleus (figure 3.18 C). In addition, MARK4L 

protein gave a bright fluorescent signal in the centre of the midbody at the contact 

point between the two daughter cells during cytokinesis (figure 3.18 D). 

 

 

In the present work, the above Immunofluorescence results were confirmed in glioma 

cell lines by using the new, not-commercial anti-MARK4L antibody (GenScript), which 

does not overlap that by Primm (figure 3.19; top).  

We also extended the analyses to the subcellular localization of MARK4 S isoform in 

glioma cell lines: the results show that MARK4S, like the L isoform, localizes in 

centrosomes and midbodies but, in contrast, does not label the nucleolus (figure 3.19 

bottom), thus delineating MARK4L protein as a specific isoform associated with the 

nucleolus.  

We then investigated the localization of both MARK4 isoforms in different normal 

cells, including the neural progenitor cells ReNcellCX, fibroblasts and myoblasts. We 

found that MARK4L and S share the same centrosome and midbody staining pattern, 

as in glioma cell lines; conversely both of them are undetectable in the nucleolus 

(figure 3.20). 
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Figure 3.18 [Magnani 2009]: [A] dual IF staining with MARK4L (green; left) and γ-tubulin (red; middle) in 

MI-60 interphase cells. The nuclei are counterstained with DAPI (blue; right). The two main 

configurations of amplified centrosomes are shown: a large clustered signal (top) and multiple random 

signals (bottom). [B; left] anti-MARK4L antibody (green; left) and silver colloid method (middle) showing 

MARK4 nucleolar localization in G-91, MI-60 and MI-4 cells (top to bottom). [B; right] double 

immunostaining of MARK4L (green, top) and nucleolin (red, middle) showing co-localization in Mi-60 cells.  

[C] dual IF labelling with MARK4L (green; top) and γ-tubulin (red; middle) in all mitotic phases of MI-60 

cells. Merge of the two signals is shown in the lower panels. [D] localization of MARK4L (green) to the 

midbody formed during cytokinesis in MI-60 cells. 
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Figure 3.19: localization of MARK4L (top) and MARK4S (bottom) proteins in G91 glioma cell line.  

Both the isoforms associate with centrosomes (left; light blue arrow) and midbodies (middle; yellow 

arrow), but only MARK4L localizes in the nucleolus (right; red arrow). MARK4L and S antibodies were 

revealed by a FITC-secondary antibody (green signal), while γtubulin and nucleolin antibodies by a 

TRITC-secondary antiserum (red signal). Colocalization results in a yellow signal. Nuclei are 

counterstained with DAPI. 

 

Figure 3.20: localization of MARK4L isoform in ReNcellCX cell line (top) and of MARK4S protein in  

fibroblasts (bottom). Both the isoforms associate with centrosomes (left; light blue arrow) and midbodies 

(middle; yellow arrow), but none of the two proteins localizes in the nucleolus (right; in the fibroblast 

image MARK4S localization in the midbody but not in the nucleolus is shown). MARK4L and S antibodies 

were revealed by a FITC-secondary antibody (green signal), while γ-tubulin and nucleolin antibodies by a 

TRITC-secondary antiserum (red signal). Colocalization results in a yellow signal. Nuclei are 

counterstained with DAPI. 
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We finally analyzed MARK4L protein in Neural Stem Cells (NSC) and glioblastoma-

derived cancer stem cells (GBM CSC). By double-IF with anti-MARK4L and anti-

nucleolin antibodies we found a specific nucleolar association of the kinase in two out 

of three GBM CSC samples (figure 3.21 a), which in their differentiated progenies 

exhibit even stronger MARK4L signals in the nucleoli (figure 3.21 b). Conversely, 

MARK4L was not detected in both undifferentiated and differentiated mouse sub-

ventricular Neural Stem Cells (figure 3.21 c,d). Hence, the nucleolar association 

appears a specific feature of the sole L isoform of MARK4, exclusively visible in tumor 

cells. 

[Specific signals as those described above were never found when using the pre-

immune serum or the secondary antibody in the absence of primary antibodies (data 

not shown).] 

 

Figure 3.21: MARK4L IF in human GBM CSC (top) 

showing a faint labelling of the kinase in the nucleoli 

of undifferentiated GBM CSC (a) and increased signals 

in differentiated cells (b). Notably, MARK4L is not 

visible both in undifferentiated and differentiated 

mouse NSC nucleoli (bottom; c, d). MARK4L antibody 

signals were revealed by a FITC-secondary antibody 

(green), while nucleolin antibody by a TRITC-

secondary antiserum (red signal). Colocalization 

results in a yellow signal. Nuclei are counterstained 

with DAPI. 

 

We finally texted if RNase treatment, removing RNA from the nucleoli, affected the 

nucleolar retention of MARK4L. By IF on fixed MI-4 GBM cells, we found that both 

MARK4L and nucleophosmin (an abundant nucleolar protein) are absent in nucleoli of 

RNase-treated cells (figure 3.22 a), compared to the untreated cells (figure 3.22 b). 

This result suggests that MARK4L is physically associated with either ribosomal RNA 

or proteins bound to RNA in nucleoli.  

 

Figure 3.22: RNA depletion by RNase treatment affects MARK4L 

retention, as showed by the absence of MARK4L signal in nuclei and its 

presence in the midbody in MI4 cell line (a). The untreated cells show 

MARK4L co-localizing with the nucleolar protein nucleophosmin (b).                      

. 
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The duplication of MARK4 gene in a glioblastoma cell line and the up-regulation of 

the alternatively spliced MARK4L isoform in gliomas [Beghini 2003] and in 

hepatocarcinoma cells [Kato 2001] suggested that MARK4L could be implicated in 

proliferating cells. Differently, MARK4S predominance in normal brain has been 

related to a putative role in neuronal differentiation [Moroni 2006].  

To further investigate MARK4 up-regulation in glial tumors, we analyzed a panel of 

35 glioma tissue samples and 21 glioma cell lines in addition to 6 glioblastoma-derived 

cancer stem cell populations (GBM CSC). Human neural progenitors, total human 

normal brain and mouse neural stem cells (NSC, isolated from the sub-ventricular 

zone) were also included in the study. A quantitative approach (Real-time PCR) was 

applied for mRNA analyses, whereas MARK4 protein levels and localization were tested 

by Immunoblotting, Immunohistochemistry (IHC) and Immunofluorescence (IF).  

The current mutational analysis of the main MARK4 domains did not detect any 

alteration and the previously performed array-CGH analysis did not evidence any loss 

or gain of the MARK4 containing region [Roversi 2006], thus ruling out two potential 

causes of kinase activation. However, CpG methylation and/or promoter amplification 

have not yet been investigated. Few MARK4 alterations are reported in literature data, 

and among 91 analyzed GBM only a splice-site mutation in exon 13 affected MARK4 

gene [The Cancer Genome Atlas Research Network 2008].  

Current Real-time PCR results highlight MARK4L as the prevalent isoform in all 

the glioma samples, strengthening previous published data achieved through semi-

quantitative analysis [Beghini 2003], and a dysregulated L/S ratio in the most 

malignant and undifferentiated tumors/cell lines (Glioblastomas–GBM and GBM 

CSCs) as compared to normal brain and low grade gliomas. Thus MARK4L appears the 

most abundant isoform, whereas MARK4S mRNA levels show a significant decrease in 

parallel to the increase of malignancy and undifferentiated state. IHC results on 

matched glioma sections confirm Real-time PCR data, showing that 4 out of 10 GBM 

are negative for the S isoform. Concordantly with the cellular heterogeneity 

characterizing gliomas, MARK4L and MARK4S gene and protein expression appear 

very heterogeneous within and among different glioma subtypes.  

All the above findings, namely the fact that either Neural Stem Cells of the SVZ, 

GBM CSC and GBM are characterized by MARK4L predominant expression and 

undetectable MARK4S levels (Real-time data), together with the observation that in 

normal brain only the L isoform localizes in the embryonic ventricular zone (VZ) and 

adult sub-ventricular zone (SVZ) where undifferentiated cells reside, associates 

exclusively the L isoform to stem cells and suggests that some Glioblastomas of our 
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panel may have a stem-cell origin, also supported by the evidence that many of the 

analyzed glioblastomas were contacting the SVZ. In contrast, the concomitant 

expression of both MARK4 isoforms in cells of the white matter, containing both 

differentiated glial cells and many cycling cells that belong to early glial lineages also 

thought to generate gliomas, could explain the origin of the Oligodendrogliomas, 

Astrocytomas and of some GBM here studied, which express both MARK4L and 

MARK4S.  

In summary, Real-time PCR shows that a higher MARK4L prevalence in parallel to 

low levels of MARK4S characterizes highly undifferentiated cells, such as Neural Stem 

Cells, and highly malignant cells, such as GBM-derived Cancer Stem Cells and 

glioblastomas, favouring the hypothesis that the ratio between the two MARK4 

isoforms is strictly regulated along neural differentiation and may be subverted in 

gliomagenesis. Furthermore, both MARK4 isoforms are concomitantly expressed in 

glial cells and in neurons (including those entrapped in oligodendrogliomas and 

neurons in normal brain) extending published data of MARK4S as a neuron-specific 

marker in mouse CNS [Moroni 2006]. Nevertheless, MARK4S role in differentiation is 

confirmed, but is not exclusive of neurons: the S isoform levels decrease along with 

dedifferentiation of glial cells and MARK4S protein is not found in the VZ and SVZ, 

where stem cells reside. 

Different studies have been demonstrated that stem cells can undergo both 

symmetric and asymmetric division, the latter leading to a stem daughter cell and to a 

differentiation-committed daughter cell. Asymmetric division can be induced by an 

extrinsic signal (stem cell position relative to the niche and exposure to external 

factors) or by an intrinsic signal (asymmetric partitioning of cell components that 

determine cell fate, such as cell polarity factors) [Morrison 2006]. Genes regulating 

polarity, such as Par, Miranda and aPKC in C. elegans and D. melanogaster, may be 

responsible for the asymmetric division of stem cells [Clevers 2005]. Notably, MARK 

kinases have been implicated in both establishing cell polarity, by inducing 

asymmetric division in the D. melanogaster and C. elegans embryos [Tomankak 2000], 

and regulating polarization processes in epithelial and neuronal cells [Bohm 1997; 

Matenia 2009]. Many hypotheses have been raised suggesting that loss of asymmetry 

and switch to a prevalent symmetric division would lead to unrestrained growth of 

cells with stem features, and to expansion of cancer stem cells. It has been recently 

observed that the presence of extra centrosomes in flies’ larval neural stem cells 

causes a non correct alignment of the spindles, leading to an increase in symmetric 

divisions and an expansion in the number of stem cells in larval brains. A correlation 
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between these defects in the asymmetric divisions and the ability of injected mutant 

brain tissue to form tumors has been also indicated [Basto 2008]. Supernumerary 

centrosomes are a common feature of different tumors, including gliomas, and may 

lead to the formation of a multipolar spindle which distributes chromosomes to more 

than two daughter cells, generating aneuploidies. Interestingly, we previously found 

MARK4 protein in association with the aberrant centrosomes observed in glioma, 

suggesting a possible role of the kinase in the abnormal mitotic processes of human 

glioma [Magnani 2009]. On the other hand, symmetric division, besides promoting the 

expansion of stem cell numbers, may also be permissive for secondary events leading 

to aneuploidies, since the machinery that controls asymmetric division also regulates 

the orientation of mitotic spindles and of centrosomes [Morrison 2006].  

As already mentioned, the two MARK4 isoforms differ in their C-terminal region, 

suggesting different functions that could be directly mediated by the protein structure 

or depend on interactor proteins. In this study, at completion of MARK4 sub-cellular 

localization, we found by Immunofluorescence that both MARK4 S and L localize in 

centrosomes and midbody of normal and glioma cell lines, whereas the sole L isoform 

is associated with the nucleolus and exclusively in glioma cells, defining MARK4L as a 

tumor marker through its nucleolar association.  

Several proteins are functionally involved in the nucleolus: some are requested for 

building and maintenance of this organelle, others may regulate cell growth, acting on 

ribosome biogenesis that affects protein synthesis needed for cell proliferation [Zhang 

2010]. Besides the “traditional” ribosome biogenesis activity, the nucleolus is indeed 

involved in the response to cellular stress, in the regulation of cell cycle [Visintin 2000] 

and cell growth [Zhang 2010], and in post-translational modifications 

(phosphorylation and sumoylation) of proteins. It is worth noting that MARK4 activity 

is regulated by post-translational modifications, such as phosphorylation and 

ubiquitinylation at specific sites: its activation may hence account for the different 

functional states of the two isoforms in glioma, notwithstanding their different 

expression pattern. Many proteins are instead sequestered in the nucleolus and then 

released according to a temporally regulated activity, since they must exert their 

function in certain phases of the cell cycle [Visintin 2000]. The nucleolar localization of 

a protein may also influence its stability, protecting the protein from proteasomal 

degradation, since proteasomes are present throughout the nucleoplasm but not in 

nucleoli [Wojcik 2003]. We also hypothesize that MARK4L association to the nucleolus 

in glioma could be due or be a consequence of the dysregulation of MARK4 isoforms 

expression as we mentioned above.  
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It is important to recall that the L isoform of MARK4 results by an alternative 

splicing. Alternative splicing is a mechanism for increasing protein diversity and 

splicing choices are spatially and temporally regulated, for example by tissue-specific 

factors or by nuclear transcription factors. Specific splice variants (or splicing 

regulatory factors) are found differentially expressed in the Central Nervous System, 

both in subsequent steps of physiological processes and in pathologic or cancer 

tissues compared to normal tissue [Chen M. 2009].  

As examples, PTB and nPTB are isoforms of a brain-specific factor: PTB is expressed 

in neural progenitors (and also found in glial cells and in the sub-ventricular zone) but 

is down-regulated in differentiated neurons, where nPTB is instead up-regulated (in 

addition to the brain, nPTB is also prevalent in testis). In neuronal cells, the PTB-to-

nPTB switch provides a post-translational mechanism important for programming 

neuronal differentiation and is responsible for about 25% of nervous-system specific 

alternative splicing (in addition, it’s likely that PTB and nPTB target genes affect 

cytoskeletal rearrangements and vesicular or protein transport) [Boutz 2007; Chen 

2009]. Aberrations in Tau splicing regulation (physiologically producing spatially and 

temporally specific isoforms) directly cause several neurodegenerative diseases 

[Andreadis 2005], while myotonic dystrophy and spinal muscular atrophy are caused 

by an imbalance of the activities of splicing regulators [Hartmann 2009]. In addition, 

the “Survivin” protein, regulating apoptosis and microtubule dynamics, exists in two 

variants whose balance controls a pro-apoptotic versus anti-apoptotic signal in 

vascular smooth muscle cells [Small 2009]. As regards cancer, a role for the 

transcription factor C/EBP44β isoforms has been suggested in breast cancer: the ratio 

between these isoforms is crucial for the maintenance of normal growth and 

development (one variant is a transcriptional activator and is associated with 

differentiation, the other one is elevated in proliferative tissues and acts as an 

inhibitor of transcription) and increases in this ratio lead to aggressive form of breast 

cancer [Zahnow 2009]. The long (Q2L) and short (Q2S) splice variants of the KCNQ2 

gene, encoding a K+ channel, differ in the C-terminal tail and in their expression 

profile: Q2L is preferentially expressed in differentiated neurons, whereas Q2S is 

prominent in fetal brain, undifferentiated neuroblastoma cells and brain tumors 

[Smith 2001].  

In keeping with this body of literature, the differential expression of MARK4 isoforms 

in undifferentiated and glial malignant cells expands the concept of MARK4 splice 

variants dysregulation in mediating tumor initiation and progression. 

                                                           
44

 CCAAT/Enhancer-Binding Proteins. 
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PPeerrssppeeccttiivveess  

Based on the achieved results, further advances will be focused to the following 

aims: 

 investigate MARK4S and MARK4L functions by isoform-specific overexpression 

and siRNA-mediated depletion (this topic is already in progress in our 

laboratory); 

 analyze MARK4 activation state (phosphorylation; ubiquitinylation) in glioma 

samples; 

 unravel the mechanisms by which alternative splicing is “altered” in 

undifferentiated and malignant cells compared to normal differentiated cells 

(by analyzing the expression and phosphorylation profile of splicing factors, 

both enhancers and silencers); 

 verify MARK4 localization in other cancers (already in progress); 

 shed light on the functional relevance of MARK4L nucleolar association in 

cancer cells by: 

  further investigating MARK4L targeting to the nucleolus (probably 

mediated through association with ribosomal RNA or proteins 

bound to RNA in nucleoli, as suggested by RNA-depletion 

experiments), 

  establishing whether nucleolus-targeting occurs at a specific cell 

cycle phase, 

 assessing whether C-terminal sequence alterations and post-

translational modifications or interactor expression might 

account for the different localization pattern in tumor and 

normal cells, 

 assessing MARK4L protein stability by inhibiting proteasomes 

(already in progress). 
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The data here reported are part of a manuscript in preparation and have been also 

subject of oral communications and poster presentations at national and international 

conferences (corresponding abstracts are published). 

MARK4L subcellular localization in glioma is described in a published paper:  

 Magnani I, Novielli C, Bellini M, Roversi G, Bello L, Larizza L.  

 “Multiple localization of endogenous MARK4L protein in human glioma”. 

 Cellular oncology 2009; 31: 357-70. 

 Magnani I, Novielli C, Tabano S, Fontana L, Moroni RF, Colombo EA, Monti L, 

Bello L, Bauer D, Mazzoleni S, Galli R, Porta G, Frassoni C, Larizza L.  

“MARK4: a tricky balance of L and S isoforms rules glial differentiation and 

glioma progression”. 

Presented at the International Society for Cellular Oncology (ISCO) Congress 

(Dresden; March 2010) and published in Cellular Oncology 2010; 32(3): 175. 

 Magnani I, Novielli C, Tabano S, Fontana L, Moroni RF, Colombo EA, Monti L, 

Bello L, Bauer D, Mazzoleni S, Galli R, Porta G, Frassoni C, Larizza L.  

“Dysregulated ratio between MARK4L and S isoforms during glioma 

progression”.  

 Magnani I, Novielli C, Rovina D, Monti L, Larizza L.  

“The centrosomal protein MARK4 exhibits specificity of the L isoform through 

nucleolar association in tumor cell lines”. 

Both abstracts have been presented at the XII European Workshop on 

Cytogenetics and Molecular Genetics of Solid Tumors (Nijmegen; June 2010) and 

are in the press in Cancer Genetics and Cytogenetics. 
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