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Abstract

We study sequential prediction problems in which,
at each time instance, the forecaster chooses a bi-
nary vector from a certain fixed set S ⊆ {0, 1}d
and suffers a loss that is the sum of the losses of
those vector components that equal to one. The
goal of the forecaster is to achieve that, in the long
run, the accumulated loss is not much larger than
that of the best possible vector in the class. We
consider the “bandit” setting in which the fore-
caster has only access to the losses of the chosen
vectors. We introduce a new general forecaster
achieving a regret bound that, for a variety of con-
crete choices of S, is of order

√
nd ln |S| where n

is the time horizon. This is not improvable in gen-
eral and is better than previously known bounds.
We also point out that computationally efficient
implementations for various interesting choices of
S exist.

1 Introduction
Consider a sequential prediction problem in which a fore-
caster is to choose, at every time instance t = 1, . . . , n, an
element from a set S of N actions. After making a choice,
the forecaster suffers a loss corresponding to the chosen ac-
tion. The goal of the forecaster is to achieve that the accu-
mulated loss is not much larger than that of the best pos-
sible fixed action, chosen in hindsight. The difference be-
tween the achieved and optimal cumulative losses is called
the regret. It is well known (see [6] for a survey) that ran-
domized prediction strategies exist that guarantee that the ex-
pected regret of the forecaster is bounded by a constant times√
n lnN , regardless of the sequence of losses, as long as

they are bounded. The logarithmic dependence on the num-
ber of actions allows one to compete with very large classes
of actions (also called experts). However, large classes of ex-
perts raise nontrivial computational issues. The construction
of computationally efficient forecasters for various cases of
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structured classes of experts is a thoroughly studied problem.
Once again, we refer to [6] for a survey.

An interesting variant of the sequential prediction prob-
lem is the adversarial multi-armed bandit problem in which
the forecaster only observes the loss of the chosen action and
uses the randomized choices to gather information. It was
shown by Auer et al. [2] that an expected regret of the order
of
√
nN lnN is achievable in this case. There has been a

flurry of activity to address versions of the adversarial bandit
problem for large and structured classes of experts, see Awer-
buch and Kleinberg [3], McMahan and Blum [16], Dani and
Hayes [8], György, Linder, Lugosi, and Ottucsák [10], Dani,
Hayes, and Kakade [7], Abernethy, Hazan, and Rakhlin [1],
Bartlett, Dani, Hayes, Kakade, and Tewari [4]. The efforts
have been focused on two main issues: (1) obtaining regret
bounds as small as possible; (2) constructing computation-
ally feasible forecasters.

In this paper we propose a new general methodology for
the cases when the finite class of experts has a certain com-
binatorial structure. The obtained regret bounds improve on
those derived from general on-line optimization results. We
also show that in some interesting cases nontrivial efficient
algorithms exist.

The paper is organized as follows. In Section 2 we for-
mulate the problem. In Section 3 we discuss the relationship
of our results to earlier work. The general prediction strategy
is defined and the main performance bound is established in
Section 4. Various applications are described in Section 6,
including a multitask bandit problem, learning permutations,
learning spanning trees of a complete graph, and learning
balanced cut sets.

2 Statement of the problem

In the combinatorial bandit problem a set S ⊆ {0, 1}d of
elements v(k) for k = 1, . . . , N is given (this is the set of
“experts” or “actions”), and a forecaster plays with the op-
ponent the following repeated game:

For each step t = 1, 2, . . .

1. The opponent secretly chooses a loss vector `t ∈ [0, 1]d
2. The forecaster chooses Kt ∈ {1, . . . , N}
3. The cost `t(Kt) = `>t v(Kt) is announced to the fore-
caster.



The forecaster’s goal is to control the regret

L̂n − min
k=1,...,N

Ln(k) =
n∑
t=1

`t(Kt)− min
k=1,...,N

n∑
t=1

`>t v(k) .

The forecaster is allowed to use randomization. More pre-
cisely, at every time instance t, the forecaster chooses a dis-
tribution pt−1(1), . . . , pt−1(N) over the set {1, . . . , N} (i.e.,
pt−1(k) ≥ 0 for all k = 1, . . . , N and

∑N
k=1 pt−1(k) = 1)

and draws an index Kt = k with probability pt−1(k). Thus,
the regret is a random variable. In this paper we investigate
the behavior of the expected regret

max
k=1,...,N

E
[
L̂n − Ln(k)

]
where the expectation is with respect to the forecaster’s in-
ternal randomization.

The most important parameters of the problem are the
time horizon n, the dimension d, the cardinality N and the
maximum “weight” of any expert B = maxv∈S

∑d
i=1 vi.

Note that B is an upper bound for the loss `t(k) = `>t v(k)
of any expert.

We note here that the combinatorial bandit problem is a
special case of the online linear optimization problem con-
sidered, for example, in [1, 4, 7]. In the online linear opti-
mization problem the expert class is an arbitrary (finite) sub-
set S of Rd and the loss of an expert v ∈ S, at time t, is the
inner product `>t v. The fact that we restrict S to be a sub-
set of the binary hypercube {0, 1}d allows us to exploit the
combinatorial structure of the class of experts in a transpar-
ent way. Arguably, the most interesting examples of online
linear optimization fit in the present framework.

3 Relation to previous work
When d = N and v(1), . . . ,v(N) are the standard basis
vectors, then the model is identical to the adversarial ban-
dit problem introduced by Auer et al. [2], who proved a re-
gret bound of the order of

√
nN lnN that holds not only in

expectation but also with high probability. A well-studied
instance of our general framework is the path planning prob-
lem, in which d is the number of edges of a fixed graph
and v(1), . . . ,v(N) represent all paths between two fixed
vertices of the graph. At each time instance the forecaster
chooses a path and suffers a loss that is the sum of the losses
over the individual edges of the chosen path. Takimoto and
Warmuth [19] and Kalai and Vempala [14] exhibit compu-
tationally efficient forecasters in the “full-information” case,
that is, when the forecaster has access to the losses over ev-
ery edge of the graph.

The partial information setting considered in this paper
was first studied by Awerbuch and Kleinberg [3] who proved
a regret bound of the order n2/3 for the restricted model of
oblivious opponent. McMahan and Blum [16], achieved a
regret bound of the order of n3/4 for the general model.

Both [3] and [16] study the somewhat more general frame-
work of online linear optimization, introduced by Kalai and
Vempala [14]. György et al. [10] considered the problem of
path planning in a less demanding partial information frame-
work, when the loss of every edge on the chosen path is

revealed to the forecaster. They exhibit a computationally
efficient forecaster achieving a regret of order B

√
nd lnN

with high probability. Even though [10] only considers the
path planning problem, it is not difficult to extend their re-
sults to the more general setup of this paper. However, the
model considered here, that is, when the forecaster only re-
ceives information about the total loss of the chosen object,
is more challenging. Dani, Hayes, and Kakade [7] were the
first to prove an expected regret bound with the optimal

√
n

dependence on the time horizon. Their bound is of the form
Bd
√
n lnN . Bartlett, Dani, Hayes, Kakade, Rakhlin, and

Tewari [4] show that this bound also holds with high proba-
bility. The forecaster of [7] is based on exponential weights
and can be computed efficiently whenever efficient imple-
mentations of the exponentially weighted average forecaster
are available. This is certainly possible for the path plan-
ning problem, but there are various other interesting exam-
ples —see the discussion of the examples in Section 6 below.
Abernethy, Hazan, and Rakhlin [1] consider a very different
approach which allows one to construct computationally ef-
ficient forecasters for a large variety of problems and has an
expected regret of the order of Bd

√
nd lnn. This requires

the construction of a self-concordant function tailored to the
problem at hand. Even though the existence of such a func-
tion is guaranteed, its construction may be a nontrivial task
in some applications.

In this paper we take an approach similar to that of Dani,
Hayes, and Kakade [7]. Like [7], we construct unbiased es-
timates of each loss component `t,i, i = 1, . . . , d and define
an exponentially weighted average forecaster based on these
estimates. The main difference is in the exploration part of
the algorithm. Following Awerbuch and Kleinberg [3], Dani,
Hayes and Kakade construct a barycentric spanner of the set
S and ensure exploration by mixing the exponential weights
with the uniform distribution on spanners. Instead, we use
a mixing term derived from the uniform distribution over S.
This allows us to achieve an expected regret bound of the
order of B

√
nd lnN whenever the smallest eigenvalue of a

certain matrix associated with S is not too small. The largest
part of our efforts is dedicated to show that this smallest
eigenvalue can indeed be handled by exploiting the combina-
torial structure of the class of experts in a number of interest-
ing cases. Note that, as shown in [7], the boundB

√
nd ln |S|

is not improvable in general when S ⊆ {0, 1}d.

4 The forecasting strategy
Our algorithm COMBAND (see figure) maintains a weight
vector defined, at each time t, by wt,i = exp

(
−η L̃t,i

)
for

i = 1, . . . , d, where L̃t,i = ˜̀
1,i + · · · + ˜̀

t,i is a cumulative
pseudo-loss (defined below) and η > 0 is a fixed parameter.
These weights define corresponding weights wt ∈ RN over
the elements of S in the obvious way

wt(k) =
∏

i : vi(k)=1

wt,i .

Let W t =
∑N
k=1 wt(k) and let qt(k) = wt(k)/W t. At each

time t, COMBAND plays v(Kt) ∈ S, where Kt is drawn
from the distribution pt−1 = (1−γ)qt−1 +γ µ on 1, . . . , N .



Algorithm COMBAND
Parameters Action set S ⊆ {0, 1}d, prior distribution µ
over S , mixing coefficient γ > 0
Initialization q0 = uniform distribution on S
For t = 1, 2, . . .

1. Let pt−1 = (1− γ)qt−1 + γ µ

2. Draw action Kt from pt−1

3. Incur and observe cost `t(Kt) = `>t v(Kt)
4. Let Pt−1 = E

[
V V >

]
where V has law pt−1

5. Let ˜̀t = `t(Kt)P+
t−1v(Kt)

6. Update probs. qt(k) ∝ qt−1(k) exp
(
−η ˜̀t(k)

)
for

all k = 1, . . . , N .

Here µ is any prior distribution on {1, . . . , N} and γ > 0
is a parameter. In all of our applications we choose µ to
be the uniform distribution, although in principle different
distributions are also allowed. The vector of pseudo-losses˜̀
t =

(˜̀
t,1, . . . , ˜̀t,d) is defined by˜̀

t = `t(Kt)P+
t−1v(Kt) (1)

where P+ is the pseudo-inverse of the d× d correlation ma-
trix E

[
V V >

]
for V ∈ S distributed according to pt−1.

(Throughout the paper, we use an index k = 1, . . . , N and
its corresponding element v(k) ∈ S interchangeably.)

As we said in the previous section, COMBAND can be
viewed as a variant of the GEOMETRICHEDGE algorithm of
Dani, Hayes and Kakade. The only substantial difference is
that we perform exploration by drawing actions from a dis-
tribution µ over the entire set S (Step 1 in figure) instead of
drawing from a spanner. This fact gives us a finer control
on the loss estimates ˜̀t,i in which the factor

∥∥P+
t−1

∥∥ occurs
—see (1) above. Indeed, while [7] only achieves

∥∥P+
t−1

∥∥ ≤
d/γ due to the mix of the barycentric spanners in Pt, we
can afford the more detailed bound

∥∥P+
t−1

∥∥ ≤ 1
/

(γλmin),
where λmin is the smallest nonzero eigenvalue of the correla-
tion matrix of the initial sampling distribution µ. In concrete
cases, the computation of tight lower bounds on λmin allows
us to obtain better regret bounds. An additional feature, ex-
ploited to derive an even tighter estimate on |˜̀t,i|—see (4),
is that we assume a reference coordinate system for S which
the definition of B = maxk ‖v(k)‖1 relies on. In [7], on
the contrary, actions were defined in terms of the nonorthog-
onal basis provided by the spanner, and this is why the cor-
responding bound on |˜̀t,i| is worse.

For COMBAND we prove the following regret bound.

Theorem 1 Let S ⊆ {0, 1}d and let M = E
[
V V >

]
where

V ∈ S is a random vector distributed according to an ar-
bitrary distribution µ with support S. If COMBAND is run

with parameters S , µ, and γ = B
√

lnN

λmin

(
B+d λmin

) where

N = |S|, λmin is the smallest nonzero eigenvalue of M , and
B ≥ ‖v‖1 for all v ∈ S , then its expected regret after n
steps satisfies

max
k=1,...,N

E
[
L̂n − Ln(k)

]
≤ 2B

√(
B

dλmin
+ 1
)
nd lnN

Thus, the success of the forecaster crucially depends on the
value of the smallest nonzero eigenvalue λmin of µ’s corre-
lation matrix M . In Section 6 we work out various examples
in which B/dλmin = O(1). So in all these cases we obtain

E
[
L̂n − Ln(k)

]
= O

(
B
√
nd lnN

)
. (2)

Rewriting the above condition as λmin = Ω(B/d), and ob-
serving that M has trace bounded by B, reveals that we
achieve (2) whenever the eigenvalues of M tend to be equal.

Bound (2) improves on the bound of Dani, Hayes, and
Kakade [7] by a factor of

√
d and on the bound of Aber-

nethy, Hazan, and Rakhlin [1] by a factor of d
√

ln(n/N).1
Computationally, both COMBAND and GEOMETRICHEDGE
face the problem of sampling from distributions defined over
S. In many cases this can be done efficiently, as we dis-
cuss in Section 6. The algorithm of [1], instead, works in a
completely different way. It performs a randomized gradient
descent in the convex hull of S, translating each point xt in
the convex hull into a distribution over S. This is done in
such a way that sampling Kt from this distribution ensures
E
[
`>t v(Kt)

]
= `>t xt. The efficiency of this procedure de-

pends on the specific choice of S (for the path planning prob-
lem efficient procedures exist). Moreover, in order to guar-
antee a good regret, gradient descent is implemented using a
self-concordant function tailored to the problem. Even if the
existence of such a function is guaranteed, its construction
may be a non-trivial issue in some applications.

5 Proof of Theorem 1
Before proving Theorem 1, we state and prove some auxil-
iary results.

Lemma 2 Let V be a random vector with range {0, 1}d and
let M = E

[
V V >

]
. Then MM+v = v for all v ∈ {0, 1}d

such that P{V = v} > 0.

Proof: To prove the statement we show that for all x ∈ Rd
such that M x = 0 and for all v ∈ {0, 1}d such that P{V =
v} > 0, it must be the case that x>v = 0. Pick any x ∈ Rd
such that M x = 0. This implies x>M x = 0. Using the
definition of M we obtain

0 = x>M x =
∑

v∈{0,1}d

(
x>v

)2 P{V = v} .

But then it must be the case that x>v = 0 for all v such that
P{V = v} > 0.

LetQt = E
[
V V >

]
where V has law qt. Note thatQt is

always positive semidefinite since it is a convex combination
of positive semidefinite matrices v(k)v(k)>.

Corollary 3 Pt P
+
t v = v for all t and all v ∈ S.

Proof: Weyl’s inequality implies that λi(Pt) ≥ γ λi(M),
where λi(Pt) is the i-th largest eigenvalue of Pt = (1 −
γ)Qt + γM and λi(M) is the i-th largest eigenvalue of M .

1In all applications of Section 6, ln N = O
`√

d ln d
´
. Hence

the improvement on [1] is at least by a factor of d3/4
p

ln(n/d).



Therefore the null space of Pt is included in the null space of
M . This, together with Lemma 2 and the positive semidefi-
nitess of Qt, implies the claimed statement.

Proof of Theorem 1: Let Et be the expectation operator
conditioned on the first t − 1 random draws K1, . . . ,Kt−1

(i.e., expectation w.r.t. the distribution pt−1). For all k =
1, . . . , N let `t(k) = `>t v(k) so that Et `t(Kt)v(Kt) =

Pt−1 `t. Let also ˜̀t(k) = ˜̀>
t v(k). Hence, by Corollary 3,

Et ˜̀t = `t. An adaptation of the proof of [7, Theorem 3.3]
then gives

E

[
n∑
t=1

`t(Kt)− Ln(k)

]
≤ lnN

η
+ γ B n+B2d η n (3)

under the condition η |˜̀t(k)| ≤ 1 for all t and k. In order to
enforce this condition we write

|˜̀t(k)| =
∣∣v(k)>˜̀t∣∣ = `t(Kt)

∣∣v(k)>P+
t−1v(Kt)

∣∣
≤ B

∥∥P+
t−1

∥∥ max
v∈S
‖v‖2 ≤ B2

λmin(Pt−1)
(4)

where λmin(Pt−1) is the smallest nonzero eigenvalue ofPt−1,
and we used `t(Kt) ≤ B and ‖v‖2 = ‖v‖1 ≤ B. Let
λmin = λmin(M). By Weyl’s inequality, λmin

(
Pt−1

)
≥

γ λmin, which in turn implies that |˜̀t(k)| ≤ B
/

(γ λmin).
Hence we choose η = γ λmin

/
B2 and (3) becomes

E

[
n∑
t=1

`t(Kt)− Ln(k)

]
≤ B2 lnN

γ λmin
+ γ
(
B + d λmin

)
n .

Letting γ = B
√

lnN
λmin(B+d λmin) finally yields

E

[
n∑
t=1

`t(Kt)− Ln(k)

]
≤ 2B

√(
B

dλmin
+ 1
)
nd lnN

which ends the proof of Theorem 1.

6 Applications
In order to apply Theorem 1 to concrete classes S we need
to find lower bounds on the smallest eigenvalue λmin =
λmin(M) of the linear transformation

M =
N∑
k=1

v(k) v(k)> µ(k)

restricted to the vector space U spanned by the elements
v(1), . . . ,v(N) of S. Since µ has support S , Lemma 2 im-
plies that this smallest eigenvalue is strictly positive. Thus
we want to bound

λmin = min
x∈U : ‖x‖=1

x>M x .

In all of our examples we assume µ is uniform over the index
set {1, . . . , N}. It is convenient to consider a random vector
V , uniformly distributed over S. Then we have

λmin = min
x∈U : ‖x‖=1

E x>V V >x .

Since x>V V >x =
(
V >x

)2
we have the following lemma.

Lemma 4

λmin = min
x∈U : ‖x‖=1

E
[(

V >x
)2]

.

In what follows we write any x ∈ U as x =
∑N
k=1 a(k)v(k)

where we let
∑
k a(k) = α.

6.1 A multitask bandit problem

In this first example we consider the case when the decision
maker acts in m games in parallel. For simplicity, assume
that in each one of the m games, the decision maker selects
one of R possible actions (a possibly different action in each
game). After selecting the m actions, only the sum of the
losses suffered in the m games is observed.

Proposition 5 For the multitask bandit, λmin = 1/R.

In this case B = m, d = mR, B/dλmin = 1, and N = Rm.
Therefore the optimal regret bound (2) holds and becomes

E
[
L̂n − Ln(k)

]
≤ 2m2

√
2nR lnR .

Thus, when playing m games in parallel, the price of get-
ting information about the sum of the losses in spite of the
losses suffered separately in each game is just a factor of
m in the regret bound. In this special case COMBAND can
be implemented efficiently since it suffices to sample actions
independently in each one of the R games.
Proof: We can write the elements of S ⊆ {0, 1}d as vectors
v(k) ∈ {0, 1}d, k = 1, . . . , Rm, with components vj,i(k),
j = 1, . . . ,m, i = 1, . . . , R. These vectors satisfy

R∑
i=1

vj,i(k) = 1 (5)

for each j = 1, . . . ,m and k = 1, . . . , N = Rm. Accord-
ing to Lemma 4, we want to lower bound E

[(
V >x

)2]
uni-

formly over x in the span of S, where V is uniformly dis-
tributed over S. We denote the components of V by Vj,i,
j = 1, . . . ,m, i = 1, . . . , R and the corresponding compo-
nents of x by xj,i. We calculate

E
[(

V >x
)2] = VAR

[
V >x

]
+ E2

[
V >x

]
where x =

∑N
k=1 a(k)v(k) is such that ‖x‖ = 1. By (5),

for each j = 1, . . . ,m,

R∑
i=1

xj,i =
N∑
k=1

a(k)
R∑
i=1

vj,i(k) =
N∑
k=1

a(k) = α .

Thus,

E V >x =
m∑
j=1

R∑
i=1

xj,i EVj,i =
m∑
j=1

1
R

R∑
i=1

xj,i =
m

R
α .



On the other hand, since the R-vectors
(
Vj,1, . . . , Vj,R

)
are

independent for j = 1, . . . ,m,

VAR
[
V >x

]
=

m∑
j=1

VAR

[
R∑
i=1

xj,iVj,i

]

=
m∑
j=1

E

( R∑
i=1

xj,iVj,i

)2
− E2

[
R∑
i=1

xj,iVj,i

]
=

m∑
j=1

 1
R

R∑
i=1

x2
j,i −

(
1
R

R∑
i=1

xj,i

)2


=
1
R
− m

R2
α2 .

Thus,

E
[(

V >x
)2] =

1
R

+
m(m− 1)

R2
α2 ≥ 1

R

with equality whenever α = 0.

6.2 Perfect matchings: learning permutations
Consider the complete bipartite graph Km,m and let S con-
tain all perfect matchings. Thus, d = m2 (the number of
edges of Km,m), S has N = m! members, and B = m.
Each v(k) ∈ S may be represented by an m ×m permuta-
tion matrix

[
vi,j(k)

]
m×m; that is, a doubly stochastic zero-

one matrix such that
∑m
j=1 vi,j(k) = 1 for all i = 1, . . . ,m

and
∑m
i=1 vi,j(k) = 1 for all j = 1, . . . ,m. Online learn-

ing of perfect matchings (or, equivalently, permutations) was
considered by Helmbold and Warmuth [11] who introduced a
computationally efficient forecaster with good regret bounds
in the full-information setting. Here we show that COM-
BAND performs well for this problem and point out that it
has a computationally efficient implementation. The next
proposition shows that the term λmin in Theorem 1 is suf-
ficiently large.

Let
[
Vi,j
]
m×m be chosen uniformly at random from the

collection
[
vi,j(k)

]
m×m, k = 1, . . . , N , representing a ran-

dom permutation (i.e., perfect matching).

Proposition 6 For the perfect matchings on Km,m,

λmin =
1

m− 1
.

It follows from the proposition thatB/dλmin ≤ 1, and there-
fore the optimal bound (2) holds and it takes the form

E
[
L̂n − Ln(k)

]
≤ 2m2

√
2n ln(m!) .

The fact that COMBAND can be implemented efficiently fol-
lows from a beautiful and deep result of Jerrum, Sinclair,
and Vigoda [13] who were the first to describe a polynomial-
time randomized algorithm for approximating the permanent
of a matrix with non-negative entries. To see the connection,
observe that the sum of the weights W t =

∑m!
k=1 wt(k) is

just the permanent of a matrix with entries exp
(
−η L̃t,(i,j)

)
,

i, j ∈ {1, . . . ,m} where L̃t,(i,j) is the estimated cumulative

loss of edge (i, j). The algorithm of Jerrum, Sinclair, and
Vigoda is based on random sampling perfect matchings from
the (approximate) distribution given by the wt(k) which is
exactly what we need to draw a random perfect matching ac-
cording to the exponentially weighted average distribution.
Proof: By Lemma 4, we need a lower bound for

E
[(

V >x
)2] = E


 m∑
i=1

m∑
j=1

Vi,jxi,j

2


where x =
∑N
k=1 a(k)v(k) is such that

∑m
i,j=1 x

2
i,j = 1.

Observe that for any fixed i,

m∑
j=1

xi,j =
N∑
k=1

a(k)
m∑
j=1

vi,j(k) =
N∑
k=1

ak = α

and similarly, for any fixed j,
∑m
i=1 xi,j =

∑N
k=1 ak = α.

Since

P
{
Vi,j = 1, Vi′,j′ = 1

}
=


1
m if i = i′ and j = j′,
1

m(m−1) if i 6= i′ and j 6= j′,

0 otherwise

we have

E
[(

V >x
)2] = E


 m∑
i,j=1

Vi,j xi,j

2


=
m∑

i,j=1

m∑
i′,j′=1

xi,j xi′,j′ P
{
Vi,j = 1, Vi′,j′ = 1

}
=

1
m

m∑
i,j=1

x2
i,j +

1
m(m− 1)

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′

=
1
m

+
1

m(m− 1)

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′

The second term on the right-hand side may be written as

m∑
i,j=1

∑
i′ : i′ 6=i

∑
j′ : j′ 6=j

xi,j xi′,j′ =
m∑

i,j=1

m∑
i′,j′=1

xi,j xi′,j′

−
m∑

i,j=1

m∑
j′=1

xi,j xi′,j′ −
m∑

i,j=1

m∑
i′=1

xi,j xi′,j′ +
1
m

m∑
i,j=1

x2
i,j

=

 m∑
i,j=1

xi,j

2

−
m∑
i=1

 m∑
j=1

xi,j

2

−
m∑
j=1

(
m∑
i=1

xi,j

)2

+ 1

=

(
m

N∑
k=1

a(k)

)2

− 2m

(
N∑
k=1

a(k)

)2

+ 1 .



Summarizing, we have that for all x =
∑N
k=1 a(k)v(k) such

that ‖x‖ = 1,

E
[(

V >x
)2] =

1
m

+
1

m(m− 1)

((
mα

)2 − 2mα2 + 1
)

=
1

m− 1
+
m− 2
m− 1

α2

which is at least 1/(m − 1) with equality whenever α = 0.

6.3 Spanning trees
Next we consider an online decision problem in which, at
each time instance, the decision maker chooses a spanning
tree in a graph of m nodes. The loss of a spanning tree is the
sum of the losses over the edges of the tree. Such a problem
is meaningful in certain mobile communication networks, in
which a minimum-cost subnetwork is to be selected at each
time frame to assure connectedness of the whole network.
This problem fits in our general framework if we let S be
the family of all spanning trees of the complete graph Km.
Thus, d =

(
m
2

)
, B = m − 1, and by Cayley’s formula there

are N = mm−2 spanning trees.
In order to estimate λmin for this case, we start with a

general lemma that applies for all sufficiently “symmetric”
classes S. More precisely, we consider the case when the
elements of S ⊆ {0, 1}d are the incidence vectors of certain
subsets of the edges of a complete graph Km (i.e., d =

(
m
2

)
in these cases). If i and j are distinct edges of Km, we write
i ∼ j when i and j are adjacent (i.e., they have a common
endpoint) and i 6∼ j when i and j are disjoint.

We require that S is sufficiently symmetric, so that if V
is drawn uniformly at random from S, then the probability
P{Vi = 1, Vj = 1} can take at most three different values
depending on whether i = j, i ∼ j, or i 6∼ j.

In such cases, if x = (x1, . . . , xd) is any vector in Rd,
then

E
[(

V >x
)2] =

d∑
i=1

d∑
j=1

xi xj P{Vi = 1, Vj = 1}

= C1

d∑
i=1

x2
i + C2

∑
i,j : i∼j

xi xj + C3

∑
i,j : i6∼j

xi xj (6)

where

C1
def= P{Vi = 1} ∀ i = 1, . . . , d

C2
def= P

{
Vi = 1, Vj = 1

}
∀ i, j = 1, . . . , d s.t. i ∼ j

C3
def= P

{
Vi = 1, Vj = 1

}
∀ i, j = 1, . . . , d s.t. i 6∼ j

are quantities independent of i, j.
This property is true for collections S of “symmetric”

subsets of Km, such as spanning trees, balanced cuts, pla-
nar graphs, Hamiltonian cycles, cliques of a certain size, etc.
The following result provides a general lower bound for the
smallest eigenvalue of the associated matrix M .

Lemma 7 If (6) holds and x ∈ Rd has unit norm, then

E
[(

V >x
)2] ≥ C1 − C3 − |C2 − C3|m−

(C2 − C3)2

C3
.

Proof: Since ‖x‖ = 1, we have

E
[(

V >x
)2] = C1 + C2

∑
i,j : i∼j

xi xj + C3

∑
i,j : i 6∼j

xi xj

= C1 − C3 + (C2 − C3)
∑

i,j : i∼j
xi xj + C3

d∑
i,j=1

xi xj .

Denote the summation over all pairs of adjacent edges by

Am =
∑

i,j : i∼j
xixj and let Bm =

(
d∑
i=1

xi

)2

.

With this notation, we have

E
[(

V >x
)2] = C1 − C3 + (C2 − C3)Am + C3Bm . (7)

Next we need an appropriate estimate forAm. By the Cauchy-
Schwarz inequality, and using the fact that ‖x‖ = 1,

|Am| =

∣∣∣∣∣∣
d∑
i=1

xi
∑
j : i∼j

xj

∣∣∣∣∣∣
≤

√√√√√ d∑
i=1

 ∑
j : i∼j

xj

2

=

√√√√√ d∑
i=1

 ∑
j,l : j∼i,l∼i

xj xl


=
√

(m− 2)
∑

i,j : i∼j
xi xj + 4

∑
i,j : i6∼j

xi xj . (8)

The last equality holds because a pair of edges is counted
m − 2 times if they are adjacent (m − 2 is the number of
edges adjacent to both) and 4 times if they are not adjacent.
We may write the argument of the square root in (8) as

(m− 2)
∑

i,j : i∼j
xixj + 4

∑
i,j : i 6∼j

xixj

= (m− 6)
∑

i,j : i∼j
xixj + 4

∑
i,j

xixj − 4

≤ m |Am|+ 4Bm . (9)
Thus, substituting (9) in (8), and using Bm ≥ 0, we get

|Am| ≤
√
m |Am|+ 4Bm .

Solving the above for |Am| and overapproximating gives

|Am| ≤ m+ 2
√
Bm

which, substituted into (7) yields

E
[
(V >x)2

]
≥ C1−C3−|C2−C3|

(
m+ 2

√
Bm

)
+C3Bm .

Observing that

C3Bm − 2|C2 − C3|
√
Bm

=
(√

C3Bm −
|C2 − C3|√

C3

)2

− (C2 − C3)2

C3

≥ − (C2 − C3)2

C3



concludes the proof.

Interestingly, the proof above does not use that fact that
x in the space spanned by the incidence vectors of S . Thus,
the matrix E

[
V V >

]
is positive definite whenever the lower

bound of Lemma 7 is positive. This also implies that the
matrix Pt, which is used to define the pseudo-losses (1), is
positive definite, and thus P+

t can be replaced by P−1
t .

Now we may use Lemma 7 to bound λmin in the case of
spanning trees of the complete graph Km. All we need is to
calculate the values of C1, C2, and C3. We do it by applying
the theory of electric networks.

Lemma 8 If V is the incidence vector of a uniform random
spanning tree of Km, then

P{Vi = 1} =
2
m

P
{
Vi = 1, Vj = 1

}
=

3
m2

if i ∼ j

P
{
Vi = 1, Vj = 1

}
=

4
m2

if i 6∼ j .

Proof: Since every spanning tree has m− 1 edges,
P{V1 = 1}+ · · ·+ P{Vd = 1} = m− 1

where d =
(
m
2

)
. By symmetry, P{Vi = 1} = 2/m for all

i = 1, . . . , d. The other two cases can be handled by the
“Transfer Current” theorem of Burton and Pemantle [5], see
also Lyons and Peres [15], which implies that for any i 6= j,

P
{
Vi = 1, Vj = 1

}
=

4
m2
− Y (i, j)2

where Y (i, j) is the voltage difference across the edge j
when a unit current is imposed between the endpoints of
edge i. (For the basic notions of electric networks we re-
fer, e.g., to the books of Doyle and Snell [9] and Lyons and
Peres [15].)

First note that if i and j are not adjacent then Y (i, j) = 0.
This is simply because, by symmetry, every vertex not be-
longing to edge i has the same voltage, so there is no current
flowing through edge j. Thus, P{Vi = 1, Vj = 1} = 4/m2

in this case.
In order to address the case when edges i and j are adja-

cent, i ∼ j, note that, by a result of Kirchoff (1847), the volt-
age difference between the endpoints of i equals the proba-
bility 2/m that i belongs to a random spanning tree (see, e.g.,
the remark to Corollary 4.4 in [15]). By the above considera-
tions, there is current flow only along paths of length two be-
tween the endpoints of i, that is paths that go through edges
j ∼ i. Hence the voltage difference between the endpoints
of j is half the voltage difference between the endpoints of i,
that is |Y (i, j)| = 1/m

Corollary 9 For the spanning trees of Km,

λmin ≥
1
m
− 17

4m2
.

Since d =
(
m
2

)
and B = m−1, the inequality above implies

that B/(dλmin) < 7 whenever m ≥ 6, and therefore the op-
timal bound (2) holds. Since N = mm−2, the performance
bound of COMBAND in this case implies

E
[
L̂n − Ln(k)

]
≤ 4m5/2

√
n lnm for m ≥ 6.

Finding computationally efficient algorithms for generating
random spanning trees has been an intensive area of research.
Although some of these algorithms may be successfully used
in practical implementations, we are not aware of any algo-
rithm that guarantees an efficient implementation of COM-
BAND under all circumstances. Instead of surveying the vast
literature, we mention the celebrated method of Propp and
Wilson [17], who present an algorithm that, given a graph
with non-negative weights w(i,j) over the edges, samples a
random spanning tree from a distribution such that the prob-
ability of any spanning tree k is proportional to wt(k) =∏

(i,j)∈k w(i,j). The expected running time of the algorithm
is bounded by the cover time of an associated Markov chain
that is defined as a random walk over the graph in which the
transition probabilities are proportional to the edge weights.
If we apply Propp and Wilson’s algorithm with weightsw(i,j)

= exp
(
−η L̃t,(i,j)

)
over the complete graph Km, then we

obtain an implementation of the exponentially weighted av-
erage forecaster. Unfortunately, there is no guarantee that
the cover time is bounded by a polynomial of m, though in
practice we expect a fast running time in most cases. It is an
interesting open problem to find an efficient sampling algo-
rithm for all possible assignments of weights.

6.4 Cut sets
In this section we consider balanced cuts of the complete
graph K2m. A balanced cut is the collection of all edges
between a set of m vertices and its complement. Thus, each
balanced cut has B = m2 edges and there are N =

(
2m
m

)
balanced cuts.

Our starting point in estimating λmin is (7). First, we
compute C1, C2, and C3.

Lemma 10 If V is the incidence vector of a uniform random
m-cut in K2m, then

P{Vi = 1} =
m

2m− 1

P
{
Vi = 1, Vj = 1

}
=

m(m− 1)
(2m− 1)(2m− 2)

if i ∼ j

P
{
Vi = 1, Vj = 1

}
=

2m(m− 1)2

(2m− 1)(2m− 2)(2m− 3)
if i 6∼ j .

Proof: The sample space is all choices of m-subsets of 2m
vertices (note that each m-cut is counted twice). Fix an edge
i = (i−, i+). Then the number of m-subsets that contain i−
and do not contain i+ is clearly

(
2m−2
m−1

)
. By symmetry, this

is also the number of m-subsets that contain i+ and do not
contain i−. Therefore

P{Vi = 1} = 2×
(
2m−2
m−1

)(
2m
m

) =
m

2m− 1
.

Now fix two edges i and j that share a vertex, say i− = j−.
The number of m-subsets that contain i− = j− and do not
contain neither i+ nor j+ is

(
2m−3
m−1

)
. This is the same as

the number of m-subsets that do not contain i− = j− and
contain both i+ and j+. Hence, if i ∼ j,

P
{
Vi = 1, Vj = 1

}
= 2×

(
2m−3
m−1

)(
2m
m

) =
m(m− 1)

(2m− 1)(2m− 2)
.



Finally, fix two disjoint edges i and j. The number of m-
subsets that contain i+, j+ and do not contain neither i− nor
j− is

(
2m−4
m−2

)
. By symmetry, this is also the number of m-

subsets that contain i−, j− and do not contain neither i+ nor
j+, which is the same as the number of those that contain
i−, j+ and not i+ or j−, etc. Hence, for i 6∼ j,

P
{
Vi = 1, Vj = 1

}
= 4×

(
2m−4
m−2

)(
2m
m

)
=

2m(m− 1)2

(2m− 1)(2m− 2)(2m− 3)
concluding the proof.

Now we may make use of the fact that each balanced cut has

the same number of edges. Thus, if x =
∑(2m

m )
k=1 a(k)v(k) is

a linear combination of the incidence vectors of all balanced
cuts with ‖x‖ = 1, we have

∑
i xi = m2α where α =∑(2m

m )
k=1 a(k), which implies that Bm = m4α2.
To compute Am, observe that for any fixed i, the number

of edges in any balanced cut adjacent to i is 2m if the cut
doesn’t contain i and 2(m− 1) otherwise, that is,∑

j : j∼i
vi(k) =

{
2(m− 1) if vi(k) = 1
2m if vi(k) = 0

so∑
j : j∼i

xj =
N∑
k=1

a(k)
∑
j : j∼i

vi(k) =
N∑
k=1

a(k) (2m− 2vi(k))

= 2mα− 2
N∑
k=1

a(k)vi(k) = 2mα− 2xi .

Therefore, we have

Am =
∑

i,j : i∼j
xixj =

∑
i

xi
∑
j : j∼i

xj = m3α2 − 2 .

Substituting these values in (7), we have, for m ≥ 2,

E
[(

V >x
)2] =

1
4

+
8m− 7

4(2m− 1)(2m− 3)

+ α2 m
4(m− 1)

(
2m2 − 2m− 1

)
(2m− 1)(2m− 2)(2m− 3)

.

The minimum is achieved for α = 0, which proves the fol-
lowing.

Proposition 11 For the balanced cuts in K2m, if m ≥ 2
then

λmin =
1
4

+
8m− 7

4(2m− 1)(2m− 3)
.

In this case we have d =
(
2m
2

)
, B = m2, and N =

(
2m
m

)
≤

4m. By Proposition 11 we clearly have B/(dλmin) ≤ 2 for
all m ≥ 2, and therefore the optimal bound (2) applies and it
takes the form

E
[
L̂n − Ln(k)

]
≤ 2m7/2

√
6n ln 4 .

In this case computationally efficient implementations also
exist. Such an implementation may be based on an algorithm
of Randall and Wilson [18] who, building on Jerrum and Sin-
clair [12], show how to sample efficiently spin configurations
of a ferromagnetic Ising model. The straightforward details
are omitted.

6.5 Hamiltonian cycles
In our next examples we consider the set S of all Hamil-
tonian cycles in Km, that is all N = (m − 1)!/2 cycles
that visit each vertex exactly once and returns to the starting
vertex. The corresponding randomized prediction problem
may be thought of as an online version of the traveling sales-
man problem. This problem is computationally notoriously
difficult and one cannot expect polynomial-time implemen-
tations. Nevertheless, we show that small regret bounds are
achievable by COMBAND. To this end, we calculate λmin.

Proposition 12 If m ≥ 4, then for the class of all Hamilto-
nian cycles in Km λmin = 2/(m− 1).

Since d =
(
m
2

)
, N = (m − 1)!/2, and B = m, we have

B/(dλmin) = 1. Thus the optimal bound (2) applies achiev-
ing

E
[
L̂n − Ln(k)

]
≤ 2m2

√
n ln(m!) .

Proof: Once again, our analysis is based on (7). First we
calculate the values of the constants C1, C2, C3. Since each
Hamiltonian cycle has m edges, if V is a random Hamilto-
nian cycle, then C1 = P{Vi = 1} = 2/(m− 1). Also, since
the degree of every vertex in a Hamiltonian cycle is 2, for
any two adjacent edges i ∼ j, C2 = P{Vi = 1, Vj = 1} =
1
/(
m−1

2

)
. On the other hand, if i 6∼ j, then

P{Vi = 1, Vj = 1} = P{Vi = 1}P
{
Vj = 1|Vi = 1

}
=

2
m− 1

× m− 3(
m
2

)
− 2(m− 2)− 1

because there are
(
m
2

)
− 2(m − 2) − 1 edges in Km that

are not adjacent to i and all of them are equally likely to be
any of the remaining m − 3 edges of the cycle V . Thus,
C3 = 4/(m− 1)(m− 2).

Now let x =
∑N
k=1 a(k)v(k) be a linear combination

of the incidence vectors of all Hamiltonian cycles such that
‖x‖ = 1. The crucial observation is the following: since ev-
ery v(k) has m edges, and the degree of every vertex equals
2, we have ∑

i

xi =
N∑
k=1

a(k)
∑
i

vi(k) = mα .

This implies that

Bm =

(
d∑
i=1

xi

)2

= m2α2 .

Observe that for any fixed i, the number of edges in any
Hamiltonian cycle adjacent to i is 4 if the cycle doesn’t con-
tain i and 2 otherwise, that is,∑

j : j∼i
vi(k) =

{
2 if vi(k) = 1
4 if vi(k) = 0

Thus,∑
j : j∼i

xj =
N∑
k=1

a(k)
∑
j : j∼i

vi(k) =
N∑
k=1

a(k) (4− 2vi(k))

= 4α− 2
N∑
k=1

a(k)vi(k) = 4α− 2xi .



Using this, we have

Am =
∑
i

xi
∑
j : j∼i

xj =
∑
i

xi (4α− 2xi)

= 4mα2 − 2
∑
i

x2
i = 4mα2 − 2 .

Substituting these values in (7), we have

E
[(

V >x
)2]

=
2(m− 4)

(m− 1)(m− 2)
+

2
(
2m2α2 − 4mα2 + 2

)
(m− 1)(m− 2)

=
2

m− 1
+

4mα2

m− 1
≥ 2
m− 1

.

with equality achieved for
∑
k a(k) = 0.

6.6 Stars
A star is a subgraph of Km which contains all m − 1 edges
incident on a fixed vertex. Thus, there arem different stars in
Km. Consider the set S of all stars and let V be the incidence
vector of a random star, chosen uniformly.

Proposition 13 For the stars in Km,

λmin =
m− 3

2(m− 2)
+

1
m
.

Here d =
(
m
2

)
, N = m, and B = m − 1. Thus we have

B/(dλmin) ≤ 1
2 and the optimal bound (2) applies with

E
[
L̂n − Ln(k)

]
≤ m2

√
3n lnm .

The implementation of COMBAND is trivially efficient in
this case.
Proof: Clearly, P{Vi = 1} = 2/m, P{Vi = 1, Vj = 1} =
1/m if i ∼ j and P{Vi = 1, Vj = 1} = 0 if i 6∼ j. There-
fore,

E
[(

V >x
)2] =

2
m

+
1
m
Am

where Am =
∑
i,j : i∼j xixj . Let x =

∑m
k=1 akvk be such

that ‖x‖ = 1. This means that

1 =
d∑
i=1

(
m∑
k=1

akv
(k)
i

)2

=
m∑
k=1

m∑
k′=1

akak′

d∑
i=1

v
(k)
i v

(k′)
i .

Since
d∑
i=1

v
(k)
i v

(k′)
i =

{
1 if k 6= k′

m− 1 if k = k′,

we have

(m− 2)
m∑
k=1

a2
k +

(
m∑
k=1

ak

)2

= 1 . (10)

Now

Am =
∑

i,j : i∼j

(
m∑
k=1

akv
(k)
i

)(
m∑
k=1

akv
(k)
j

)

=
m∑

k,k′=1

akak′

 ∑
i,j : i∼j

v
(k)
i v

(k′)
j

 .

Observe that∑
i,j : i∼j

v
(k)
i v

(k′)
j =

{
2(m− 1) if k 6= k′(
m−1

2

)
if k = k′,

so

Am =
((

m− 1
2

)
− 1
) m∑
k=1

a2
k + 2(m− 1)

(
m∑
k=1

ak

)2

Expressing
∑m
k=1 a

2
k from (10), and substituting in the ex-

pression above, we obtain

Am =
m(m− 3)
2(m− 2)

+

(
m∑
k=1

ak

)2(
2(m− 1)− m(m− 3)

2(m− 2)

)
≥ m(m− 3)

2(m− 2)
.

In conclusion,

λmin ≥
2
m

+
m− 3

2(m− 2)

with equality for
∑
k ak = 0.

6.7 m-sized subsets
Consider S to be the set of all v ∈ {0, 1}d such that

∑d
i=1 vi =

m for some fixed m with 1 ≤ m < d.

Proposition 14 For the m-sized subsets,

λmin =
m(d−m)
d(d− 1)

.

We have B = m, N =
(
d
m

)
. Then

B

dλmin
=

d− 1
d−m

.

Thus the optimal bound (2) applies whenever m = o(d). In
this case the regret bound has the form

E
[
L̂n − Ln(k)

]
= O

(
m3/2

√
nd ln d

)
.

Note that also in this case COMBAND can be implemented
efficiently using dynamic programming (see, e.g., Takimoto
and Warmuth [19]).
Proof: Pick x ∈ U such that ‖x‖ = 1. Note that

d∑
i=1

xi =
N∑
k=1

a(k)
d∑
i=1

vi(k) = m

N∑
k=1

a(k) = mα .

Since for any i,

P
{
Vi = 1

}
=

(
d−1
m−1

)(
d
m

) =
m

d

and for any i 6= j

P
{
Vi = 1, Vj = 1

}
=

(
d−2
m−2

)(
d
m

) =
m(m− 1)
d(d− 1)



we can write

E
[(

V >x
)2] =

d∑
i=1

d∑
j=1

xixj P{Vi = 1, Vj = 1}

=
m

d

d∑
i=1

x2
i +

m(m− 1)
d(d− 1)

∑
i,j : i 6=j

xixj

=
(
m

d
− m(m− 1)

d(d− 1)

) d∑
i=1

x2
i +

m(m− 1)
d(d− 1)

∑
i,j

xixj

=
(
m

d
− m(m− 1)

d(d− 1)

)
+
m(m− 1)
d(d− 1)

m2α2

=
m(d−m)
d(d− 1)

+
m3(m− 1)
d(d− 1)

α2 ≥ m(d−m)
d(d− 1)

with equality whenever α = 0.

7 Conclusions
In this work we have investigated the problem of bandit on-
line linear optimization when the action set S is a finite sub-
set of {0, 1}d, the action vectors v ∈ S satisfy ‖v‖1 ≤ B,
and the loss vectors `t satisfy ‖`t‖∞ ≤ 1. Our setting is
a special case of both [1] and [7], as in these papers v and
`t need only satisfy the condition |`>t v| ≤ 1, which does
not refer to any system of coordinates. We take advantage
of the additional assumptions to prove better expected re-
gret bounds for several concrete choices of S. These im-
provements are obtained through a new randomized fore-
casting strategy, COMBAND, closely related to the GEOMET-
RICHEDGE algorithm of [7].

Although the regret of COMBAND can not be improved
in general, in some interesting cases (like the path planning
problem) COMBAND has a suboptimal performance because
a uniform initial sampling distribution µ causes the small-
est nonzero eigenvalue λmin to get too small. In general,
µ can be chosen in order to maximize λmin by solving a
semidefinite program. We conjecture that for the path plan-
ning problem this choice of µ is polytime computable, and
COMBAND, run with this µ, has optimal regretB

√
nd ln |S|.
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