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In this abstract we will describe research in progress on the problem of extracting

information from proofs. Here we will concentrate our attention on semiconstructive calculi,

which is a kind of calculus that is of interest in the framework of program synthesis and

formal verification. We will discuss the notion of uniformly semiconstructive calculus,

introduce our information extraction mechanism and apply it to two calculi extending

Intuitionistic Arithmetic.

1. Introduction

In previous work (Ferrari 1997; Ferrari et al. 1999a; Ferrari et al. 1999b; Ferrari et al.

2000) the authors have developed a method for extracting information from proofs of

constructive systems that also works in cases where the usual information extraction

techniques based on Normalization, Cut-elimination or Realizability cannot be applied.

In this abstract we describe how our technique can be extended to handle ‘weaker’

systems, which we call semiconstructive. Formally, a system T ⊕ L, where T is a first

order theory (the mathematical part) and L is a super-intuitionistic logic (the deductive

apparatus) is semiconstructive if it satisfies the weak disjunction property (if a closed wff

A ∨ B belongs to T⊕ L, then either A or B belongs to the corresponding classical theory

T ⊕ Cl) and the weak explicit definability property (if a closed wff ∃xA(x) belongs to

T ⊕ L, then A(t) belongs to the corresponding classical theory T ⊕ Cl for some closed

term t). The notion of semiconstructive system is relevant in the context of the authors’

approach to program synthesis, formal verification and Abstract Data Types specification

(Miglioli and Ornaghi 1981; Miglioli et al. 1989; Miglioli et al. 1994; Avellone et al.

1999; Benini 1999). Indeed, if T is a theory completely formalizing an Abstract Data

Type, according to the characterization of Abstract Data Types based on the notion of

isoinitial model (Miglioli et al. 1994), the addition of T to a semiconstructive deductive

apparatus L gives rise to a recursively axiomatizable and semiconstructive system T⊕ L.

† The full version of this paper is available at http://homes.dsi.unimi.it/~ferram
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Therefore, if T⊕ L contains a proof π of a formula ∀x∃!yA(x, y) (respectively, a formula

of the kind ∀x(B(x) ∨ ¬B(x))), then the whole system T ⊕ Cl can be used to compute

the function (respectively, the predicate) associated with such a formula (Miglioli et al.

1989; Miglioli et al. 1994). If the system T ⊕ L does not satisfy further properties, the

algorithm to compute the function (the predicate) is highly inefficient since it does not

use the ‘local’ information contained in the proof π (the proof π is only used to guarantee

the termination of the algorithm). Moreover, in general the usual extraction techniques

based on Normalization and Realizability cannot be applied to these systems. However,

the definition of uniformly semiconstructive calculus guarantees that the function (the

predicate) related to the proof π can be computed by searching a calculus, the extraction

calculus for π, whose proofs are generated starting from the formulas contained in π; the

proofs of the extraction calculus have a bounded logical complexity depending on π.

2. Preliminaries

We use Int (Cl) to denote the set of intuitionistically (classically) valid formulas (wff’s

for short) of the pure first-order language L†. A (first-order) intermediate pseudo-logic

is any set of wff’s L such that Int ⊆ L ⊆ Cl and L is closed under modus ponens

and generalization. An intermediate logic L is an intermediate pseudo logic closed under

predicate substitution, see, for example, Ono (1972). Given an extra-logical alphabet Σ, we

use LΣ to denote the language generated by Σ. IntΣ (ClΣ) is the subset of LΣ obtained

by correctly substituting the predicate variables with wff’s of LΣ in the wff’s of Int (Cl).

A pseudo-logic LΣ will be any subset of LΣ such that IntΣ ⊆ LΣ ⊆ ClΣ and LΣ is closed

under modus ponens and generalization. Finally, if Γ is a set of classically valid wff’s ofLΣ,

we use Γ ⊕ L to denote the smallest set of wff’s (which is an intermediate pseudo-logic)

closed under modus ponens and generalization that contains the intermediate pseudo-

logic L and Γ. Given a Σ-theory T (that is, a recursively enumerable set of classically

consistent wff’s of LΣ), we use (intermediate) T-system to mean any set S ⊆ LΣ such

that T⊕ Int ⊆ S ⊆ T⊕ Cl and S is closed under modus ponens and generalization.

Given Γ,∆ ⊆ LΣ such that Γ ⊆ ∆, we have Γ is semiconstructive in ∆ iff the weak

disjunction property (wDp) and the weak explicit definability property (wEd) hold:

— (wDp): if A ∨ B ∈ Γ and A ∨ B is a closed wff, then either A ∈ ∆ or B ∈ ∆.

— (wEd): if ∃xA(x) ∈ Γ and ∃xA(x) is a closed wff, then A(t/x) ∈ ∆ for some closed

term t of the language.

We simply say that a T-system S is semiconstructive if S is semiconstructive in T⊕ Cl.

The usual characterization of constructive T-system can be obtained by imposing Γ = ∆

in (wDp) and (wEd).

3. The information extraction mechanism

In this section we will provide a short presentation of our mechanism for extracting

information from proofs; for a complete discussion see Ferrari et al. (1999b) and Ferrari

† The set of logical constants is {⊥,∧,∨,→, ∀, ∃} and ¬A is an abbreviation for A→⊥.
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et al. (2000). Our extraction mechanism is based on an abstract definition of the notions

of proof and calculus that allows us to treat extraction from Gentzen, Tableau or Hilbert

style calculi

A (single-conclusion) sequent is an expression Γ ` A, where A is a wff and Γ is a finite

set of wff’s. A proof on LΣ is any finite object π such that:

(1) The (finite) set of wff’s of LΣ occurring in π is uniquely determined and nonempty;

(2) π proves a sequent Γ ` A, where Γ (possibly empty) is the set of assumptions of π,

while A is the consequence of π†.
The notation π : Γ ` A means that Γ ` A is the sequent proved by π, and dg(π) denotes

the degree of π, that is, the maximum among the degrees of the wff’s occurring in π,

where the degree of a wff is defined as usual.

A calculus on LΣ is a pair (C, [·]), where C is a recursive set of proofs on the language

LΣ and [·] is a recursive map associating with every proof of the calculus the set of its

relevant subproofs. We require [·] to satisfy the following natural conditions:

(1) π ∈ [π];

(2) for every π′ ∈ [π], [π′] ⊆ [π];

(3) for every π′ ∈ [π], dg(π′) 6 dg(π).

We remark that any usual single conclusion inference system is a calculus according to

our definition. In particular, the natural deduction calculi we will use in this paper meet

this characterization.

Given Π ⊆ C, Seq(Π) = {Γ ` A | π : Γ ` A ∈ Π} is the set of the sequents

proved in Π; Theo(Π) = {A | ` A ∈ Seq(Π)} is the set of theorems proved in Π, and

[Π] = {π′ | there exists π ∈ Π such that π′ ∈ [π]} is the closure under subproofs of Π in

the calculus C.

In the following we will be interested in characterizing subsets of a calculus that have

some closure properties, and to this end we introduce the notion of generalized rule.

Given a language LΣ, let Ξ be the set of all the sequents on LΣ and let Ξ∗ be the set

of all the finite sequences of sequents in Ξ (ε denoting the empty sequence); a generalized

rule is a relation R ⊆ Ξ∗ × Ξ. We will write σ ∈ R(σ∗) as a shorthand for (σ∗, σ) ∈ R.

Examples of generalized rules that we will use in the following are:

— Substitution rule Subst: its domain is the set of all the sequents, and, for every

substitution θ, θΓ ` θ∆ ∈ Subst(Γ ` ∆).

— Cut rule Cut: its domain contains all the sequences of sequents of the kind Γ1 `
H; Γ2, H ` A, and Γ1,Γ2 ` A ∈ Cut(Γ1 ` H; Γ2, H ` A).

A generalized rule R is an extraction rule for C (e-rule for short) with respect to a positive

integer h and a function φ : N→ N if:

1 For every σ ∈ R(σ1; . . . ; σn) and π1 : σ1,. . . ,πn : σn ∈ C, there exists a proof π : σ ∈ C

such that dg(π) 6 max{dg(π1), . . . , dg(πn), φ(dg(σ1)), . . . , φ(dg(σn)), φ(dg(σ))}.
2 For every σ ∈ R(ε), dg(σ) 6 h. For every σ, σ1, . . . , σn such that σ ∈ R(σ1; . . . ; σn), the

degree of σ is bounded by the degrees of σ1, . . . , σn.

† In general sets of conclusions instead of a single conclusion could be considered.
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It is easy to check that Subst and Cut are e-rules (with respect to a linear function) for

the usual natural deduction calculus for Intuitionistic Logic.

Now, given a recursive e-rule R and a recursive set Π of proofs of C, the extraction

calculus D(R,Π) for Π is defined as follows:

1 If σ ∈ Seq(Π), then τ ≡ σ is a proof-tree of D(R,Π).

2 If τ1 : σ1, . . . , τn : σn are proof-trees of D(R,Π), then, for every σ ∈ R(σ1; . . . ; σn), the

proof-tree

τ ≡
τ1 : σ1 . . . τn : σn

σ
R

belongs to D(R,Π).

It is easy to prove that if Π has a bounded logical complexity, D(R,Π) has a bounded

logical complexity.

Definition 3.1. Let C1 = (C1, [.]1) and C2 = (C2, [.]2) be two calculi on the same language

LΣ. C1 is uniformly semiconstructive in C2 iff there exists an e-rule R for C2 such that,

for every recursive subset Π of C1, Theo([Π]1) is semiconstructive in Theo(D(R, [Π]1)).

Given two calculi C1 and C2 generating, respectively, a T-system S (that is, Theo(C1) =

S) and its classical extension T⊕Cl (that is, Theo(C2) = T⊕Cl), we say that S is uniformly

semiconstructive if C1 is uniformly semiconstructive in C2.

The main feature of uniformly semiconstructive calculi comes from the fact that the

information contained in a proof π can be ‘partially completed’ by the extraction calculus

D(R, [π]1) within a bounded logical complexity. For example, if π : ` ∃xA(x) ∈ C1, then

we can ‘semiconstructively complete’ the information contained in the proof π by means

of the calculus D(R, [π]1) that proves a sequent of the kind ` A(t) for some closed term

t. Since R is admissible in C2, we are guaranteed on the provability of A(t) in C2. On

the other hand, A(t) is provable in C1 if C1 enjoys the stronger property of uniform

constructivity, where a calculus C = (C, [.]) is uniformly constructive if there exists an

e-rule R for C such that, for every recursive Π ⊆ C, Theo(D(R, [Π])) is constructive. A

T-system S is uniformly constructive if it can be generated by a uniformly constructive

calculus C.

Using the latter characterization, the authors have shown in Ferrari et al. (1999b) and

Ferrari et al. (2000) that a wide family of systems S = T + L (where T is a mathematical

theory and L is a superintuitionistic calculus) are uniformly constructive. Namely, in

Ferrari et al. (1999b) it is shown that several systems S involving a Harrop theory

T and superintuitionistic (intermediate) logics L are uniformly constructive. The most

representative principles studied in that paper are: the Grzegorczyk Principle ∀x(A(x) ∨
B)→ ∀xA(x) ∨ B with x 6∈ FV(B), the Kuroda Principle ∀x¬¬A(x)→ ¬¬∀xA(x), the

Extended Scott Principle (∀x(¬¬A(x)→A(x))→∃x(A(x)∨¬A(x)))→∃x(¬A(x)∨¬¬A(x)),

the Kreisel–Putnam Principle (¬A→B ∨C)→ (¬A→B)∨ (¬A→C) and the Independence

of Premises Principle (¬A→∃xB(x))→∃x(¬A→B(x)) with x 6∈ FV(A).

On the other hand, in Ferrari et al. (1999a) the authors have considered systems S

involving Hereditary Harrop Theories, Grzegorczyk Principle and the Descending Chain

Principle ∃xA(x) ∧ ∀y(A(y)→ ∃z((A(z) ∧ z < y) ∨ B))→ B, showing that in such cases

goal-oriented e-rules can be applied to define the extraction calculus.
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4. Uniformly semiconstructive HA-systems

Now, let us use NDHA and NDPA to denote the usual natural deduction calculi for

Intuitionistic and Classical Arithmetic respectively (Troelstra 1973). From now on we will

investigate the uniform semiconstructivity of two calculi including NDHA. The related

HA-systems are particularly interesting since they cannot be extended in fully constructive

HA-systems and they contain principles that, as far as we know, cannot be treated by

the usual information extraction techniques based on Normalization, Cut elimination or

Realizability.

Let HA+ be the system obtained by adding to Intuitionistic Arithmetic HA the prin-

ciples: (Kur) = ∀x¬¬A(x)→¬¬∀xA(x), (KP∨) = (¬A→B ∨ C)→ (¬A→B) ∨ (¬A→C),

(KP∃) = (¬A→ ∃xB(x))→ ∃x(¬A→ B(x)) and (wGrz) = ∀x¬¬A(x) ∧ ∀x(A(x) ∨ B)→
∀xA(x) ∨ B where x 6∈ FV(B). A detailed discussion on the role of such principles

can be found in Troelstra (1973), Miglioli et al. (1994), Ferrari et al. (1999b) and Fer-

rari et al. (2000). We remark that T-systems containing the Kuroda Principle (Kur) are

not in the scope of traditional recursive realizability interpretations such as Kleene’s

1945-realizability (Kleene 1945). The above principles can be expressed by the following

pseudo-natural deduction rules

Γ1··· π1

∀x¬¬A(x)

Γ2··· π2

∀x(A(x) ∨ B)
wGrz∀xA(x) ∨ B

Γ··· π∀x¬¬A(x)
Kur¬¬∀xA(x)

Γ, [¬A]··· π
B ∨ C

KP∨
(¬A→B) ∨ (¬A→C)

Γ, [¬A]··· π∃xB(x)
KP∃∃x(¬A→B(x))

where in the rule wGrz x 6∈ FV(B), while wff’s between square brackets denote assumptions

discharged by the rule application, see Troelstra (1973). Now, let NDHA+ be the pseudo-

natural deduction calculus obtained by adding the above rules to NDHA. Moreover,

let Rha+ be the union of the generalized rules Cut and Subst and of the following

generalized rules
Id : ` x = x ∈ Id(ε) Γ,∆ ` A(t′) ∈ Id(Γ ` A(t); ∆ ` t = t′)
Sum : ` x+ 0 = x ∈ Sum(ε) ` x+ Sy = S(x+ y) ∈ Sum(ε)

Prod : ` x ∗ 0 = 0 ∈ Prod(ε) ` x ∗ Sy = x ∗ y + x ∈ Prod(ε)

Rkp∨ : Γ,∆ ` ¬A→B ∈ Rkp∨(Γ ` B; ∆ ` (¬A→B) ∨ (¬A→C)) with ¬A 6∈ Γ

Γ,∆ ` ¬A→B ∈ Rkp∨(Γ,¬A ` B; ∆ ` (¬A→B) ∨ (¬A→C))

Γ,∆ ` ¬A→C ∈ Rkp∨(Γ ` C; ∆ ` (¬A→B) ∨ (¬A→C)) with ¬A 6∈ Γ

Γ,∆ ` ¬A→C ∈ Rkp∨(Γ,¬A ` C; ∆ ` (¬A→B) ∨ (¬A→C))

¬B ` ¬B ∈ Rkp∨(∆ ` (¬A→¬B) ∨ (¬A→C))

¬C ` ¬C ∈ Rkp∨(∆ ` (¬A→B) ∨ (¬A→¬C))

Rkp∃ : Γ,∆ ` ¬A→B(t) ∈ Rkp∃(Γ ` B(t); ∆ ` ∃x(¬A→B(x))) with ¬A 6∈ Γ

Γ,∆ ` ¬A→B(t) ∈ Rkp∃(Γ,¬A ` B(t); ∆ ` ∃x(¬A→B(x)))

¬B(t) ` ¬B(t) ∈ Rkp∃(∆ ` ∃x(¬A→B(x)))

Rcl : Γ ` ∀xA(x) ∈ Rcl(Γ ` ∀x¬¬A(x))

It is easy to check that Rha+ is an e-rule for NDPA. Let us use DHA+([Π]) to denote the

abstract calculus D(Rha+, Seq([Π])).

The proof of uniform semiconstructivity can be carried out using the notion of Neg-

evaluation. Let Π be a set of proofs onLA, and let Neg and A be a set of closed negated
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wff’s and a wff in the languageLA, respectively. A is Neg-evaluated in Π iff the following

conditions hold:

1 Either A ∈ Neg or there exists a proof π : Γ ` A ∈ Π with Γ ⊆ Neg.

2 For every closed instance θA of A, one of the following conditions holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C , and both B and C are Neg-evaluated in Π;

(c) θA ≡ B ∨ C , and either B is Neg-evaluated in Π or C is Neg-evaluated in Π;

(d) θA ≡ B → C , and, for every set Neg′ of closed negated wff’s of LA such that

Neg′ ⊇ Neg, if B is Neg′-evaluated in Π, then C is Neg′-evaluated in Π;

(e) θA ≡ ∃xB(x), and B(t/x) is Neg-evaluated in Π for some closed term t of LA;

(f) θA ≡ ∀xB(x), and, for every closed term t of LA, B(t/x) is Neg-evaluated in Π.

A set Γ of wff’s is Neg-evaluated in a set of proofs Π if every wff A ∈ Γ is Neg-evaluated

in Π. The main step towards the proof of uniform semiconstructivity of NDHA+ is given

by the following lemma, which can be proved by induction on the depth of the proofs in

NDHA+ .

Lemma 4.1. Let Π be any recursive set of proofs ofNDHA+ and let Neg be a set of closed

negated wff’s ofLA. For any proof π : Γ ` H belonging to the closure under substitution

of [Π], if Γ is Neg-evaluated in DHA+([Π]), then H is Neg-evaluated in DHA+([Π]).

If A ∨ B is a closed wff in Theo([Π]), there exists a proof π : ` A ∨ B in the closure

under substitution of [Π]. Since the empty set of premises is 6-evaluated in DHA+([Π]),

by Lemma 4.1, it follows that A ∨ B is 6-evaluated in DHA+([Π]), and this immediately

implies that one between the sequents ` A and ` B is provable in DHA+([Π]). With a

similar argument one can prove that Theo([Π]) has the (wEd) property with respect

to Theo(DHA+([Π])). Hence, we can conclude that Theo([Π]) is semiconstructive in

Theo(DHA+([Π])). Finally, since Rha+ is an e-rule for NDPA, we get the following

theorem.

Theorem 4.2. NDHA+ is a uniformly semiconstructive calculus in NDPA.

Hence, HA+ = Theo(NDHA+) is a uniformly semiconstructive HA-system. We remark

that the notion of evaluation plays only a technical role in proving the uniform semi-

constructivity of the above calculus and it is not related to the extraction mechanism.

Finally, to conclude the presentation of this example, we note that the above calculus

is uniformly semiconstructive but it is ‘essentially’ non-constructive. Indeed, we have the

following theorem.

Theorem 4.3. There exists no consistent and recursively axiomatizable constructive

T-system S such that HA ⊆ T and HA+ ⊆ S.

Now, let HA++ be the HA-system obtained by adding to Intuitionistic Arithmetic the

Markov Principle (Mk) = ∀x(A(x)∨¬A(x))∧¬¬∃xA(x)→∃xA(x) (Troelstra 1973; Miglioli

and Ornaghi 1981) and (DT) = ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B).

NDHA++ will denote the calculus for HA++ obtained by adding to NDHA the zero-

premises rule DT and the Markov Rule below:

http://journals.cambridge.org
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DT∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B)

Γ··· π1

¬¬∃xA(x)

Γ··· π2

∀x(A(x) ∨ ¬A(x))
Mk∃xA(x)

Now, let us use Rha++ to denote the union of the generalized rules Cut and Subst, of the

generalized rules Id, Sum, Prod described above and of the generalized rules

Rdt1 : ` ∃xA(x) ∈ Rdt1(` A(t);` ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B))

Rdt2 : ` ∀x(A(x)→B ∨ ¬B) ∈ Rdt2(` ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B))

Rdt3 : ` A(x)→B ∨ ¬B ∈ Rdt3(` ∃xA(x) ∨ ∀x(A(x)→B ∨ ¬B))

It is easy to check that Rha++ is an e-rule for NDPA. Let us use DHA++([Π]) to denote

the abstract calculus D(Rha++, Seq([Π])). The proof of uniform semiconstructivity of

NDHA++ inNDPA follows the line of the proof given forNDHA+ but using the following

notion of closed evaluation. Let Π be a set of proofs on LA and let A be a wff in the

language LA. A is evaluated in Π iff the following conditions hold:

1 There is a proof π : ` A ∈ Π.

2 For every closed instance θA of A, one of the following conditions holds:

(a) θA is atomic or negated;

(b) θA ≡ B ∧ C , and both B and C are evaluated in Π;

(c) θA ≡ B ∨ C , and either B is evaluated in Π or C is evaluated in Π;

(d) θA ≡ B→C , and either B is not evaluated in Π or C is evaluated in Π;

(e) θA ≡ ∃xB(x), and B(t/x) is evaluated in Π for some closed term t of LA;

(f) θA ≡ ∀xB(x), and, for every closed term t of LA, B(t/x) is evaluated in Π.

A set Γ of wff’s is evaluated in a set of proofs Π if every wff A ∈ Γ is evaluated in Π.

Hence the main lemma is as follows.

Lemma 4.4. Let Π be any recursive set of proofs of NDHA++ . For any proof π : Γ ` H
belonging to the closure under substitution of [Π], if Γ is evaluated in DHA++([Π]), then

H is evaluated in DHA++([Π]).

From the previous lemma, Theo([Π]) is semiconstructive in Theo(DHA++([Π])) and, since

Rha++ is an e-rule for NDPA, we get the following theorem.

Theorem 4.5. NDHA++ is a uniformly semiconstructive calculus in NDPA.

Hence HA++ = Theo(NDHA++) is a uniformly semiconstructive HA-system.

We should point out that the well-known Scott Principle (St) = ((¬¬A→A)→A∨¬A)→
¬A ∨ ¬¬A (Rose 1953) is derivable from (DT). On the other hand, the addition of both

(St) and (KP∃) to HA gives rise to an HA-system that is not semiconstructive (Ferrari et al.

1999b), which implies that there is no semiconstructive HA-system that contains both the

semiconstructive HA-systems HA+ and HA++ (in particular, HA+ 6⊆ HA++ and HA++ 6⊆
HA+). We remark that we can add toNDHA++ the rule Kur without affecting its uniform

semiconstructivity (and without extending the generalized rule Rha++). However, we can

prove that HA++ cannot be extended into a recursively enumerable and constructive

T-system with HA ⊆ T.
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Theorem 4.6. There exists no consistent and recursively axiomatizable constructive

T-system S such that HA ⊆ T and HA++ ⊆ S.

We conclude by remarking that the extraction mechanism described in this paper is

rather general. It can be applied to a wide family of T-systems including theories with

isoinitial model (Miglioli et al. 1994) and logical and mathematical principles of interest

in the framework of program synthesis and formal verification (Thompson 1991; Avellone

et al. 1999). Finally, we would like to remark that the notion of uniformly semiconstructive

formal system does not collapse into the notion of semiconstructive formal system; in

fact, in Ferrari et al. (1999b) the authors exhibit a formal system obtained by adding

to Intuitionistic Arithmetic a single axiom schema that is semiconstructive but is not

uniformly semiconstructive.
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