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Abstract1 about to represent. Once the membership function has 
been established (estimated or defined), the concept is 
described very precisely as the membership values are 
exact numerical quantities. This seems to raise a certain 
dilemma of excessive precision in describing imprecise 
phenomena. In fact, this concern has already sparked a 
lot of debates starting from the very inception of fuzzy 
sets.”  

Concavoconvex fuzzy set is the result of the com-
bination of the concepts of convex and concave fuzzy 
sets. This paper investigates concavoconvex type-2 
fuzzy sets. Basic operations, union, intersection and 
complement on concavoconvex type-2 fuzzy sets us-
ing min and product t-norm and max t-conorm are 
studied and some of their algebraic properties are 
explored.  

In reality, there are situations in which the grade of 
membership itself is frequently ill-defined [29] and may 
not be determined precisely. This can be explained by 
the fact that on one hand a crisp value, as a result of a 
measurement, is not a suitable representative for a 
membership value [18] and, on the other hand, many 
researchers believe that assigning an exact number to an 
experts’ opinion is too restrictive [10]. Type-2 fuzzy set 
enable capturing the uncertainty on membership func-
tions of fuzzy sets through relating one or more crisp 
numbers as membership values to an entity and that with 
not necessarily equal strengths. This will introduce the 
third dimension in type-2 fuzzy sets. Although once the 
membership function of a type-2 fuzzy set is chosen it is 
totally precise, the additional dimension of type-2 fuzzy 
sets provides a further degree of freedom in handling 
uncertainties in membership degrees. Of course, this in 
turn may raise debates on the deficiencies of type-2 
fuzzy sets and promote the use of higher-order fuzzy sets 
and eventually lead to the idea of type-∞ fuzzy set, 
which is not practically possible. We have to stick to a 
finite-type fuzzy set; the type-2 fuzzy set constitutes a 
sensible trade-off between computational complexity 
and ability to handle uncertainty. Mendel [22] argued: 
“The original F[uzzy ]L[ogic], funded by Lotfi Zadeh … 
is unable to handle uncertainties. By handle, I mean to 
model and minimize the effect of. … The expanded 
FL—type-2 FL—is able to handle uncertainties because 
it can model them and minimize their effect.” John and 
Coupland [12] further noted that “fuzzy logic, as it is 
commonly used, is essentially precise in nature and that 
for many applications it is unable to model knowledge 
from an expert adequately. We argued that the modeling 
of imprecision can be enhanced by the use of type-2 
fuzzy sets – providing a higher level of imprecision. ... 
The use of type-2 fuzzy sets allows for a better repre-
sentation of uncertainty and imprecision in particular 
applications and domains. The more imprecise or vague 
the data are, then type-2 fuzzy sets offer a significant 
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1. Introduction 
 

Zadeh in [41] proposed the concept of type-2 fuzzy 
sets as an extension to the ordinary fuzzy sets (type-1 
fuzzy sets) after examining the association between the 
concept of linguistic truth with truth-values and fuzzy 
sets with linguistic grades of membership. It is argued 
that type-2 fuzzy sets are specifically useful in circum-
stances where determining exact membership function 
for a fuzzy set is difficult; it also permits modeling and 
minimizing the effects of uncertainties in rule based 
fuzzy logic systems [13,22,27,37]. 

Once the membership function of a type-1 fuzzy set is 
determined, which fully describes its underlying fuzzy 
set, then it is certain and does not convey uncertainty, 
however the term fuzzy has the connotation of uncer-
tainty. This is counter-intuitive, i.e. how is it possible to 
represent something that is uncertain with something that 
is certain or, more specifically, how is it possible to de-
termine an exact membership function of a fuzzy set that 
is to represent an uncertain concept [22]. This is recog-
nized by many researchers. Klir and Folger in [17] have 
mentioned, “The accuracy of any MF is necessarily lim-
ited. In addition, it may seem problematical, if not para-
doxical, that a representation of fuzziness is made using 
membership grades that are themselves precise real 
numbers.” Pedrycz in [32] has indicated, “… a member-
ship grade indicates an extent to which a given point in 
the universe of discourse belongs to a concept we are 
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improvement on type-1 fuzzy sets.” 
Before 1990s, only a few researches were carried on 

type-2 fuzzy sets. Amongst the first endeavors on type-2 
fuzzy sets, Mizumoto and Tanaka in [29,30] investigated 
some algebraic properties of fuzzy grades under various 
algebraic and fuzzy operations. Join and meet operations 
on fuzzy numbers using minimum t-norm are studied in 
[9,16]. Nieminen [31] investigated in more detail the 
type-2 fuzzy set algebraic structures. In [7,8,9] fuzzy 
valued logic is discussed and a formula for the composi-
tion of type-2 fuzzy relations for minimum t-norm is also 
proposed. A general algorithm for the extended sup-star 
composition of type-2 fuzzy relations later was proposed 
in [15] where using the algorithm, type-2 fuzzy logic 
system theory was extensively discussed. Practical algo-
rithms for calculating union, intersection and comple-
ment of convex normal type-2 fuzzy sets are studied in 
[13]. Being inspired by computational geometry, Coup-
land and John in [4-6] have proposed a method for per-
forming various type-2 fuzzy set operations specially 
join and meet. The concept of the centroid of a type-2 
fuzzy set and the related algorithms are introduced and 
discussed in [14]. Reference [35] has discussed mathe-
matical treatment of algebras of fuzzy truth values and 
[36] has studied the extension of ordinary t-norms on the 
algebra of truth values of type-2 fuzzy sets. In addition, 
many researches including [1,19,28,34] have been done 
in the field of interval type-2 fuzzy sets. A comprehen-
sive list of publication on the subject could be found in 
(www.Type2fuzzylogic.org) however, Mendel’s book, 
[22] accompanied with [24] also provide valuable bibli-
ographies in the area. 

The main bottleneck of type-2 fuzzy sets backs to the 
computational complexity of exploiting type-2 fuzzy set 
operations [27]. There has been some researches in this 
regard that are mainly focused on convex type-2 fuzzy 
sets, e.g. [6,13]. This paper, however, elaborates on pro-
viding simple and efficient algorithms for calculating 
union and intersection of concavoconvex type-2 fuzzy 
sets which actually reduces to the calculation of join and 
meet of concavoconvex fuzzy grades using min and 
product t-norm and max t-conorm. We have also ex-
plored some algebraic properties of such type-2 fuzzy 
sets. Concavoconvex fuzzy set proposed by Sarkar in [33] 
is the result of the combination of convex and concave 
fuzzy sets. Concavoconvex fuzzy sets are argued to be 
extensively used in modeling linguistic modifiers like 
“true”, “very true”, “more or less true”, “false”, “very 
false”, “more or less false” and so on [11]. Recently 
fuzzy quantifiers have known to play basic roles in un-
certain system modeling and computing with words the-
ory [21]. However, the basis of all relative quantifiers is 
said to be regular increasing monotone (RIM) quantifiers 
[38,39] e.g. “at least half”, “more than 0.4”, etc., which, 

in specific, are very important in many fields like deci-
sion analysis, database query, and computing with words 
theory [20]. Such modifiers and quantifiers are analo-
gous to the fuzzy grades in concavoconvex type-2 fuzzy 
sets. 

The paper is organized as follows. Section 2 provides 
basic notions of type-2 fuzzy sets. The concept of con-
cavoconvex fuzzy sets will be reviewed in the section 3 
where also some related properties are studied. Algo-
rithms for performing union, intersection and comple-
ment on concavoconvex type-2 fuzzy sets under min and 
product t-norm and max t-conorm are explored in sec-
tion 4, where also some algebraic properties of conca-
voconvex fuzzy grades under join, meet and negation are 
discussed. Section 5 concludes the paper. 
 

2. Type-2 Fuzzy Set Notions  
 

Type-2 fuzzy set is a fuzzy set with fuzzy membership 
function; “A fuzzy set is of type n, n=2,3,…,n if its 
membership function ranges over fuzzy sets of type n-1. 
The membership function of a fuzzy set of type 1 ranges 
over the interval [0,1]” [41]. Putting in more formal form, 
a fuzzy set of type-2 A  in a universe of discourse X is 
the fuzzy set which is characterized by a fuzzy member-
ship function : [0,1]J

A Xμ → , with ( )A xμ  being a fuzzy 
set in [0,1] (or in the subset J of [0,1]) denoting the 
fuzzy grade of membership of x in A  [29]. However, 
we adopt the notions and term set used in [26,27], i.e.,  

( , ) ( , )
x

A
x X u J

A x u x uμ
∈ ∈

= ∫ ∫ ( )0 ( , ) 1 , [0,1xA x u u Jμ≤ ≤ ∈ ⊆ ]  

  ( ) / /
x

x
x X u J

f u u x
∈ ∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  ( )( ) [0,1] , [0,1]x xf u u J∈ ∈ ⊆  (1) 

denotes a type-2 fuzzy set A  over X.  Here, x is pri-
mary variable and xJ represents the primary member-

ship of x. In this regard ( ) ( ) /
x

xA
u J

x f u uμ
∈

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦
∫ ⎥  which is 

a type-1 fuzzy set that denotes the fuzzy grade of mem-
bership of x in A , is called secondary membership 
function or secondary set, however throughout the paper 
we simply refer to it as fuzzy grade; ( )xf u is named 
secondary grade. A comprehensive notion of type-2 
fuzzy set and the philosophy behind it would be found in 
the literature for example in [15, 22-27]. 

To perform operations such as complementation, union 
and intersection on type-2 fuzzy sets, naturally, exten-
sion principle takes place [41]. As defined by Zadeh in 
[41], extending the binary operation *  defined in U  
on two type-1 fuzzy sets ( ) /

u U
A f u u

∈
= ∫  and 
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( ) /
w U

B g w
∈

= ∫ w

v

 — that will result in a new type-1 fuzzy 

set — would be, ( ) /
v U

C h v
∈

= ∫

,

* ( ) / * ( ) /

( ( ) ( )) /( * ) ( ) /
u U w U

u w U v U

A B f u u g w w

f u g w u w h v v C
∈ ∈

∈ ∈

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∫ ∫

∫ ∫ =
 (2) 

where equivalently  

*
( ) ( ( ) ( ))

u w v
h v Sup f u g w

=
=  (3) 

that denotes a t-norm. 
It must be noticed that a type-2 fuzzy set is concavo-

convex, given all of its fuzzy grades i.e. secondary 
membership functions, are concavoconvex type-1 fuzzy 
sets. Being normal, also follows the same discipline. 

In what preceded, all notions were with regard to the 
continuous domain. However the similar discussion is 
valid for discrete domain, wherein,  would be re-
placed by . For example, in a fully discrete domain, 
type-2 fuzzy set 

∫
∑

A  would be represented as  

( , ) ( , ) ( ) / /
x x

xA
x X u J x X u J

A x u x u f u u xμ
∈ ∈ ∈ ∈

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑ , 

0 ( , ) 1A x uμ≤ ≤ ( ) [0,1]xf u ∈,  ,     (4) [0,1]xu J∈ ⊆

 
3. Concavoconvex Fuzzy Set  

 
The idea of concavoconvex fuzzy set is based on the 

combination of the concepts of convex fuzzy sets with 
concave fuzzy sets. Convex fuzzy sets introduced by 
Zadeh in his seminal paper [40], are well studied by re-
searchers. Formally, a fuzzy set ( ) /

u U
F f u u

∈
= ∫  is de-

fined to be convex [40], if  
1 2,u u U∀ ∈ , [0,1] λ∀ ∈ ,               

( )1 2 1( (1 ) ) ( ), ( 2 )f u u Min f u  f uλ λ+ − ≥        (5) 

On the other hand, concave fuzzy set, as a complemen-
tary concept to convex fuzzy set was first discussed in [2] 
and [3]. Chaudhuri in [3] has proposed some related 
concepts such as concave hull, concave containment and 
concavity tree. He has argued that concave fuzzy sets 
would be used for decomposing or approximating fuzzy 
sets and for developing fuzzy geometry of space. A 
fuzzy set ( ) /

u U
F f u u

∈
= ∫  is defined to be concave [3], if  

1 2,u u U∀ ∈ , [0,1] λ∀ ∈ , then             
(1 2 1( (1 ) ) ( ), ( )2 )f u u Max f u  f uλ λ+ − ≤   (6) 

Although Chaudhuri in [3] had mentioned that there exist 
fuzzy sets which are both convex and concave, Sarkar in 

[33] formally defined concavoconvex fuzzy sets. 
( ) /

u U
F f u u

∈
= ∫  is concavoconvex fuzzy set, if  

1 2,u u U∀ ∈ , [0,1] λ∀ ∈ , then 
( ) ( )1 2 1 2 1 2( ), ( ) ( (1 ) ) ( ), ( )Min f u  f u f u u Max f u  f uλ λ≤ + − ≤  

 (7) 
In [33] it is proved that if F is a concavoconvex fuzzy set, 
then its complement, F , is also a concavoconvex fuzzy 
set. It is also shown - Theorem 1 - that if the characteris-
tic function of a fuzzy set is monotonic, then the fuzzy 
set is concavoconvex. Moreover the membership func-
tions of all concavoconvex fuzzy sets are monotone 
functions. However, it can be easily deduced that if the 
characteristic function of a concavoconvex fuzzy set is 
monotonically increasing then the characteristic function 
of its complement is monotonically decreasing and vice 
versa. We assume that concavoconvex fuzzy sets are de-
fined on a closed interval of of , in which 
they attain their height and plinth. 

[ , ]U u u− +=

Theorem 1 [33]: Let ( ) /
u U

F f u u
∈

= ∫  be a concavocon-

vex fuzzy set, then f is a monotone function and vice 
versa. 

Theorem 2 [33]: Let ( ) /
u U

F f u u
∈

= ∫  and 

 be concavoconvex fuzzy sets, then their 

union, 

( ) /
w U

G g w
∈

= ∫ w

F G∪ , using max t-conorm, is a concavoconvex 
or concave fuzzy set. 
Theorem 3 [33]: Let ( ) /

u U
F f u u

∈
= ∫ and  

be concavoconvex fuzzy sets, then their intersec-
tion,

( ) /
w U

G g w
∈

= ∫ w

F G∩ , using min t-norm, is a concavoconvex or 
convex fuzzy set. 
Corollary 1: Let ( ) /

u U
F f u u

∈
= ∫  be a concavoconvex 

fuzzy set, then F F∪ is a concave fuzzy set and 
F F∩ is a convex fuzzy set. 
Corollary 2: Let ( ) /

u U
F f u u

∈
= ∫  be a concavoconvex 

fuzzy set and be a convex fuzzy set, 

then 

( ) /
w U

G g w
∈

= ∫ w

F G∩ , using min t-norm, is a convex fuzzy set. 
Corollary 3: Let ( ) /

u U
F f u u

∈
= ∫  be a concavoconvex 

fuzzy set and  be a concave fuzzy set, 

then 

( ) /
w U

G g w
∈

= ∫ w

F G∪ , using max t-conorm, is a concave fuzzy set. 

Theorem 4: Let ( ) /
u U

F f u u
∈

= ∫  and  be 

respectively increasing and decreasing concavoconvex 
fuzzy sets defined in the U. There always exists a 

( ) /
w U

G g w
∈

= ∫ w
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v U∈ such that , u v∀ < ( ) ( )f u g u≤ and u v∀ > , 
( ) ( )f u g u≥ . 

Proof: With respect to the property of bounded fuzzy 
sets and the separation theorem of fuzzy sets [40], given 

( ( ( ), ( ))
u U

)M Sup Min f u g u
∈

= , there exists a such that v U∈

( )f u M≤ for all u located on one side of v and 
( )g u M≤ for all u on the other side of v. Since F and G 

are increasing and decreasing concavoconvex fuzzy sets 
respectively, so , u v∀ < ( )f u M≤  and u v′∀ >   

( )g u M′ ≤ , moreover since F and G are concavoconvex,  
, ,u v u v′∀ < > ( ( ), ( )) ( ) ( ( ), ( ))Min f u f u f v Max f u f u′ ′≤ ≤  

that is ( ) ( ) ( )f u f v f u′≤ ≤  and similarly 
( ) ( ) ( )g u g v g u′ ≤ ≤ . Since ( ( ), ( ))Min f v g v M= so 

( )M f v≤ and ( )M g v≤ hence ,u v∀ < ( ) ( )M g v g u≤ ≤  
and , u v′∀ > ( ) ( )M f v f u′≤ ≤ . Putting all together, 

, u v∀ < ( )f u M≤ and ( )M g u≤ , and on the other hand 
, u v∀ > ( )M f u≤ and ( )g u M≤ .■ 

 
4. Operations on Concavoconvex Type-2 Fuzzy 

Sets  
 

Using Zadeh’s extension principle to calculate union, 
intersection and complement of type-2 fuzzy sets 

( ) / / ( ) /
A
x

x A
x X x Xu J

A f u u x x xμ
∈ ∈∈

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

∫ ∫ ∫  and 

 that are defined 

in the universe of discourse X , the membership grades 
of the results are defined [13,29] to be: 

( ) / / ( ) /
B
x

x B
x X x Xw J

B g w w x μ
∈ ∈∈

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

∫ ∫ ∫ x x

,

( ( ) ( ))
( ) / ( ) /

( )BA
xx

BA B A

x x
x x

u ww Ju J

A B (x)= (x) (x)

f u g w
f u u g w w

u w

μ μ μ

∈∈

⇔

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟ ∨

⎝ ⎠⎝ ⎠
∫ ∫ ∫

∪∪

(8) 

,

( ( ) ( ))
( ) / ( ) /

( )BA
xx

BA B A

x x
x x

u ww Ju J

A B (x)= (x) (x)

f u g w
f u u g w w

u w

μ μ μ

∈∈

⇔ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫ ∫ ∫

∩∩

(9) 

( ) /(1 )
A
x

xAA
u J

A (x)= (x)= f u uμ μ
∈

⇔ ¬ −∫   (10) 

where , and denote the so-called join, meet and 
negation operation respectively [29]; stands for a 
t-norm and  represents maximum t-conorm. In (8) 
and (9) it can be clearly seen that calculating the union 
and intersection of two type-2 fuzzy sets reduces to the 
calculation of join and meet of the fuzzy grades – sec-

ondary sets - of the corresponding elements in the uni-
verse. In sections 4.A and 4.B we will study the opera-
tions under min and product t-norm respectively. Toward 
exploring the operations, in the following by concavo-
convex fuzzy set we refer to concavoconvex fuzzy 
grades that are type-1 concavoconvex fuzzy sets defined 
in the unit interval .  

¬

∨

[ , ] [0,1]U u u− += =

A. Join and Meet Under min t-norm and max t-conorm 
 

  Mendel and John in [27] have proposed a novel rep-
resentation theorem based on which union, intersection 
and complementation of type-2 fuzzy sets would be cal-
culated without applying the extension principle, using 
the so called wavy-slices. However since it results in an 
enormous amount of redundancy, is radically inefficient 
and from the computational complexity standpoint is not 
recommended. Focusing on Zedeh’s extension principle 
through using the definitions in (8) and (9) we will ex-
amine in detail the operations join and meet on conca-
voconvex fuzzy sets under min t-norm and max 
t-conorm to drive computationally efficient algorithms.  

Theorem 5: Let ( ) /
u U

F f u u
∈

= ∫ and be 

concavoconvex fuzzy grades, then using min t-norm and 
max t-conorm  

( ) /
w U

G g w
∈

= ∫ w

( )

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
F GF G

f g f f u g g u

μ θ

θ θ θ θ− −

⇔

= ∨ ∧ ∨ ∧ ∨
(11) 

( )

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
F GF G

f g f f u g g u

μ θ

θ θ θ θ+ +

⇔

= ∨ ∧ ∨ ∧ ∨
(12) 

Proof: We will prove (11); (12) would be proved simi-
larly. Through substituting  in (8) with min t-norm, 
the join of F and G is: 

,

( ( ) ( ))( ) ( )
( )u w u w

f u g wF G f u u g w w
u w

⎛ ⎞ ⎛ ⎞ ∧
= =⎜ ⎟ ⎜ ⎟

∨⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (13) 

The membership grade of  Uθ ∈  in F G , hence 
would be: 

( ) ( ) ( ))(F G
u w

f u g wSup
θ

θμ
∨ =

= ∧  (14) 

By the way, u and w which satisfy u w θ∨ =  would be 
considered as ( ),u wθ θ= ≤  or ( ),u wθ θ≤ = . Thus, 
(14) would be rewritten as: 

( ) ( ) ( )) ( ) ( ))( (F G
u u
w w

f u g w f u g wSup Sup
θ θ
θ θ

θμ
= ≤
≤ =

= ∧ ∨ ∧  

( ) ( ( )) ( ) ( ( ))
w u

f Sup g w g Sup f u
θ θ

θ θ
≤ ≤

⎛ ⎞ ⎛= ∧ ∨ ∧⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

)

 (15) 

Since F and G are concavoconvex fuzzy sets, so 
, ( ) ( ) ( ) ( ) (u   f  f u f u f  f uθ θ θ− −∀ ≤ ∧ ≤ ≤ ∨ , and 
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( ) ( ) ( ) ( ) ( )g  g u g w g  g uθ θ−∧ ≤ ≤ ∨ − , consequently (15) 
would be  

( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )F G f g u g g f u fθ θ θ θ θμ − −= ∧ ∨ ∨ ∧ ∨

II) In the case of increasing f and decreasing g, consid-
ering (19), ( ) ( ) ( )F G f g uθ θμ −= ∧ . Given 1 2,u u U∈ , 

( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

f g g u g g

f f u f g u g f u f

θ θ θ θ

θ θ θ

−

− − −

= ∨ ∧ ∨ ∨ ∧

∨ ∨ ∧ ∨ ∨ ∨ θ

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))f g f f u g g uθ θ θ θ−= ∨ ∧ ∨ ∧ ∨ − ■ (16) 

Comment 1: Theorem 5 provides a general algorithm for 
dealing with all concavoconvex fuzzy grades, however, 
it can be easily proved that in particular cases the join 
and meet of concavoconvex fuzzy grades, (11) and (12), 
would be simplified as follows: 
I) f increasing , g increasing: 

( ) ( ) ( )F G f gθ θμ = ∧ θ  (17) 

( )( ) ( ) ( ) ( ) ( )F G f g f u g uμ θ θ θ += ∨ ∧ ∧ +  (18) 
II) f increasing; g decreasing:  

( ) ( ) ( )F G f g uθ θμ −= ∧  (19) 

( ) ( ) ( )F G f u gμ θ += ∧ θ  (20) 
III) f decreasing; g increasing 

( ) ( ) ( )F G g f uθ θμ −= ∧  (21) 

( ) ( ) ( )F G f g uμ θ θ += ∧  (22) 
IV) f decreasing; g decreasing:  

( )( ) ( ) ( ) ( ) ( )F G f g f u g uθ θ θμ −= ∨ ∧ ∧ −  (23) 
( ) ( ) ( )F G f gμ θ θ= ∧ θ  (24) 

Figure 1, shows two examples of performing the op-
erations join and meet on relatively two increasing and 
increasing-decreasing concavoconvex fuzzy grades using 
Theorem 5 and/or Comment 1. 

Theorem 6: Let ( ) /
u U

F f u u
∈

= ∫  and  

be concavoconvex fuzzy grades, then their join and meet, 

( ) /
w U

G g w
∈

= ∫ w

F G and F G  respectively, are concavoconvex 
fuzzy sets. 

Proof: We will provide the proof for the join operation; 
concavoconvexity of the meet would be proved simi-
larly. 

I) Given f and g be both increasing, with Respect to (17), 
( ) ( ) ( )F G f gθ θμ = ∧ θ 2

2

.  Given , , then, 1 2,u u U∈ 1u u<

1 (( ) )ff u u≤  and 1 (( ) )g 2g u u≤ , consequently 
1 1 2(( ) ( ) ) ( )f 2f u g u u g u≤∧ ∧  that is 

 which indicates that the member-
ship function of 

1( ) ( )F G F Guμ μ≤ 2u

F G is monotonically increasing that 
in accordance with the Theorem 1, signifies F G  to 
be concavoconvex. 

1 2u u< , then 1 (( ) )f 2f u u≤ and consequently 

1 2(( ) ( ) ) ( )ff u g u u g u− −≤∧ ∧ i.e. 1 2( ) ( )F G F Gu uμ μ≤  
which indicates that the membership function of 
F G is monotonically increasing that in accordance 
with the Theorem 1, signifies F G  to be concavo-
convex. 

III) f decreasing; g increasing:  Similar to the Case II, 
it can be shown that F G  is concavoconvex. 
IV) When f and g are both decreasing with respect to 
(23), ( )( ) ( ) ( ) ( ) ( ).F G f g f u g uθ θ θμ −= ∨ ∧ ∧ − Given 

1 2,u u U∈ , 1u u2< , then, 1 (( ) )f 2f u u≥  and 
1 (( ) )g 2g u u≥ , consequently 1 1 2(( ) ( ) ) ( )f 2f u g u u g u≥∨ ∨  

hence 
( ) ( )( )

( ) ( )( )
1 1

2 2(

( ) ( ) ( ) ( )

) ( ) ( ) ( )f

f u g u f u g u

u g u f u g u

− −

− −

≥∨ ∧ ∧

∨ ∧ ∧
 

that is  which indicates that the 
membership function of 

1( ) ( )F G F Guμ μ≥ 2u

F G is monotonically de-
creasing that in accordance with the Theorem 1, signifies 

 to be concavoconvex. ■ F G
 

f(u) 

g(u) 

F Gμ

F Gμ

U 
(a)  

 

f(u) 

g(u) 

F Gμ

F Gμ

U 
(b) 

 
Figure 1. Calculating Join and Meet of  (a) two in-
creasing concavoconvex fuzzy grades, (b) increasing 
and decreasing concavoconvex fuzzy grades. The re-
sults are shown in dashed lines. 
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( ) ( ) ( )( )
( ) ( ) (( )

1 2 1 1 2 2

1 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

f f f f u f f u

f u f u f u f u f u f u

θ θ θ θ− −

− − − − − −

⎛ ⎞∨ ∧ ∨ ∧ ∨ ∨⎜ ⎟
⎜ ⎟

∨ ∧ ∨ ∧ ∨⎜ ⎟
⎝ ⎠

Table 1. Result type of join operation on In-
creasing/Decreasing concavoconvex fuzzy sets. 

)
 

Join Increasing Decreasing 
Increasing Increasing Increasing 
Decreasing Increasing Decreasing 

( )3 3( ) ( )f f uθ −∧ ∨  (29) 

( ) ( )1 2 3 1 1 3( ) ( ) ( ) ( ) ( ) ( )f f f f f u fθ θ θ θ θ−= ∨ ∨ ∧ ∨ ∨ ∧

( )2 2 3( ) ( ) ( )f f u fθ θ−∨ ∨ ∧  Table 2. Result type of meet operation on In-
creasing/Decreasing concavoconvex fuzzy 

sets. ( ) ( ) ( )( )
( )

1 2 1 1 2 2

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

f f f f u f f u

f u f u

θ θ θ θ− −

− −

⎛ ⎞∨ ∧ ∨ ∧ ∨⎜ ⎟
⎜ ⎟
⎜ ⎟∧⎝ ⎠

∨
 

Meet Increasing Decreasing 
Increasing Increasing Decreasing 
Decreasing Decreasing Decreasing ( )3 3( ) ( )f f uθ −∧ ∨  (Absorption Law) (30) 

( ) ( )1 2 3 1 1 3( ) ( ) ( ) ( ) ( ) ( )f f f f f u fθ θ θ θ θ−= ∨ ∨ ∧ ∨ ∨ ∧        
Tables 1 and 2 that are based on the Comment 1 and 

Theorem 6, depicts the type of resulting concavoconvex 
fuzzy grades with respect to the type of involving con-
cavoconvex fuzzy grades in join and meet operations.  

( )2 2 3( ) ( ) ( )f f u fθ θ−∨ ∨ ∧ ( )1 2 1( ) ( ) ( )f f f uθ θ −∨ ∨ ∧      

( ) ( )1 1 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )f f u f u f f u f uθ θ− − − −∨ ∨ ∧ ∨ ∨ ∧     

( )1 2 2( ) ( ) ( )f f f uθ θ −∨ ∨ ∧ ( )1 1 2( ) ( ) ( )f f u f uθ − −∨ ∨ ∧     Theorem 7: Let ( ) /
u U

F f u u
∈

= ∫  be an increasing (de-

creasing) concavoconvex fuzzy grade, then 
(( ) / 1

u U

( )2 2 2( ) ( ) ( )f f u f uθ − −∨ ∨ ∧ ( 3 3( ) ( )f f uθ −∨ )        (31) 

( ) ( )( )1 2 3 1 1 3( ) ( ) ( ) ( ) ( ) ( )f f f f f u fθ θ θ θ θ−= ∨ ∨ ∧ ∨ ∨)F f u u
∈

¬ = −∫ is a decreasing (increasing) conca-

voconvex fuzzy grade. 

∧      

( )( )2 2 3( ) ( ) ( )f f u fθ θ−∨ ∨ ∧ ( )( )1 1 2( ) ( ) ( )f f u fθ θ−∨ ∨
Proof: Obvious. ■ 
Theorem 8: Let ( ) /i i

u U
F f u u

∈
= ∫ ,  be n conca-

voconvex fuzzy grades, then using min t-norm and max 
t-conorm,  

1,...,i = n

⎞

⎝ ⎠ ⎝

⎞
⎟
⎠

3

∧

 ( )( ) ( )( )1 2 2 1 2 2( ) ( ) ( ) ( ) ( ) ( )f u f f u f f f uθ θ θ− −∨ ∨ ∧ ∨ ∨ − ∧  

( )( ) ( )1 1 2 1 1( ) ( ) ( ) ( ) ( )f f u f u f f uθ θ− − −∨ ∨ ∧ ∨ ∧  

( )11 ... 1 1
... ( ) ( ) ( ) ( )

n

n n

n F F i i ii i
F F f f f uμ θ θ θ −

= =

⎛ ⎞ ⎛
⇔ = ∨ ∧ ∧ ∨⎜ ⎟ ⎜ ⎟

⎠

( ) ( )2 2 3 3( ) ( ) ( ) ( )f f u f f uθ θ− −∨ ∧ ∨   (32) 
 

( ) ( )1 2 3 1 1( ) ( ) ( ) ( ) ( )f f f f f uθ θ θ θ −

(25) 

( )11 ... 1 1
... ( ) ( ) ( ) ( )

n

n n

n F F i i ii i
F F f f f uμ θ θ θ +

= =

⎛ ⎞ ⎛
⇔ = ∨ ∧ ∧ ∨⎜ ⎟ ⎜

⎝ ⎠ ⎝
 

(26) 
Proof: We will prove (25) for the case of , it can be 
easily extended to the case of . Proof for the meet 
operation (26) is similar.  

3n =
3n >

Since fuzzy grades under join satisfy associative law 
[29], so ( )1 2 3 1 2F F F F F F= . Using Theorem 5, 

( )

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
F GF G

f g f f u g g u

μ θ

θ θ θ θ−

⇔

= ∨ ∧ ∨ ∧ ∨ −
(27) 

that is proved in Theorem 6 to be a concavoconvex fuzzy 
set. So 
( ) ( )1 2 3 1 21 2 3 ( ) 3( ) ( ) ( )F F F F FF F F fμ θ μ θ θ⇔ = ∨ ∧

1 2 1 2 3 3( ) ( ) ( ) ( )F F F F u f f uμ θ μ θ− −∧ ∨ ∧ ∨

∧

 

( ) ( )  (28) 

( ) ( ) ( )( )( )1 2 1 1 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f u f f u fθ θ θ θ θ− −= ∨ ∧ ∨ ∧ ∨ ∨  

= ∨ ∨ ∧ ∨ ∧  

( ) ( )2 2 3 3( ) ( ) ( ) ( )f f u f f uθ θ−∨ ∧ ∨ − ■ (33) 

Theorem 9: Let ( ) /
u U

F f u u
∈

= ∫ ,  and ( ) /
w U

G g w
∈

= ∫ w

( ) /
z U

H h z z
∈

= ∫  be concavoconvex fuzzy grades, then the 

distributive laws are satisfied, i.e. 
( ) ( ) ( )F G H F G F H=  (34) 
( ) ( ) ( )F G H F G F H=  (35) 

Proof: We will investigate (34) using (17)-(24) in the 
following cases. Proving the other law, (35) obeys the 
similar method. For the sake of simplicity, in the follow-
ing we will use fuzzy sets and their membership func-
tions interchangeably. 
I) f increasing; g increasing; increasing: h

( )F G H  =
( ( ) ( ))F g hθ θ= ∧  

( )( )( ) ( ) ( ) ( ) ( ) ( )f g h f u g u h uθ θ θ + += ∨ ∧ ∧ ∧ ∧ +  
( )G H increasing  
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )f g f h f u g u h uθ θ θ θ + += ∨ ∧ ∨ ∧ ∧ ∧ +

⎠

(36) 
( ) ( )F G F H =  

( )( )
( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g f u g u

f h f u h u

θ θ

θ θ

+ +

+ +

⎛ ⎞∨ ∧ ∧
⎜ ⎟= ⎜ ⎟⎜ ⎟∨ ∧ ∧⎝

 

( ) ( )( )
( ) ( )

,( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f u g f u h

f u g u f u h u

θ θ+ +

+ − + −

⎛ ⎞∧ ∨ ∧ ∧⎜ ⎟= ⎜ ⎟
⎜ ⎟∧ ∧ ∧⎝ ⎠

F G F H
decreasing

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( ) ( ) ( )g h f u g u h uθ θ + −= ∨ ∧ ∧ ∧ −  (43) 

( )( )
( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g f u g u

f h f u h u

θ θ

θ θ

+ +

+ +

⎛ ⎞∨ ∧ ∧ ∧
⎜ ⎟= ⎜ ⎟⎜ ⎟∨ ∧ ∧⎝ ⎠

 ,F G F H
increasing

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

V) f decreasing; g  increasing;  increasing: h
( ) ( ( ) (F G H F g h ))θ θ= ∧  

( ) ( ) ( )f g u h uθ + += ∧ ∧    (44) ( )G H increasing
( ) ( )F G F H =  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )f g f h f u g u h uθ θ θ θ + += ∨ ∧ ∨ ∧ ∧ ∧ +  (37) 
( ) ( )( ) ( ) ( ) ( )f g u f h uθ θ+ += ∧ ∧  

II) f increasing; g increasing; decreasing: h

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g u f h u

f u g u f u h u

θ θ+ +

− + − +

⎛ ⎞∧ ∨ ∧⎜ ⎟= ⎜ ⎟
⎜ ⎟∧ ∧ ∧⎝ ⎠

∧ ,F G F H
decreasing

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
( ) ( ( ) ( ))F G H F g h uθ −= ∧  

( )( )( ) ( ) ( ) ( ) ( ) ( )f g h u f u g u h uθ θ − + += ∨ ∧ ∧ ∧ ∧ −  

( )( ) ( ) ( ) ( ) ( ) ( )f g u h u f u g u h uθ + + − += ∧ ∨ ∧ ∧ ∧( )G H increasing  +  
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )f g f h u f u g u h uθ θ θ − + += ∨ ∧ ∨ ∧ ∧ ∧ −  

( )( ) ( ) ( ) ( ) ( )f g f u g u h uθ θ + += ∨ ∧ ∧ ∧ −

( ) ( ) ( ) ( ) ( ) ( )f g f u g u f u h

 (38) 
( ) ( ) ( ) ( )f f u g u h uθ − += ∧ ∧ ∧ +  (Absorption law) 
( ) ( ) ( )f g u h uθ + += ∧ ∧     (f decreasing) (45) 

( ) ( )F G F H =  

( )( ) ( )θ θ θ+ + += ∨ ∧ ∧ ∧

( ) ( ) ( ) ( ) ( ) ( )f g f u g u f u h uθ θ + + + −= ∨ ∧ ∧ ∧ ∧

VI) f decreasing; g increasing; decreasing: h
 

( )( ) ( )  

( )F G increasing, F H decreasing  

( )( ) ( ) ( ) ( ) ( )f g f u g u h uθ θ + += ∨ ∧ ∧ ∧ −            (39) 

III) f increasing; g decreasing; increasing: h

( ) ( ( ) (F G H F g u h ))θ−= ∧  

( )( )( ) ( ) ( ) ( ) ( ) ( )f g u h f u g u h uθ θ− + −= ∨ ∧ ∧ ∧ ∧ +  

( )G H increasing  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )f g u f h f u g u h uθ θ θ− + −= ∨ ∧ ∨ ∧ ∧ ∧ +   

( )( ) ( ) ( ) ( ) ( )f h f u g u h uθ θ + −= ∨ ∧ ∧ ∧ +            (40) 
( ) ( )F G F H =  

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )f u g f h f u h uθ θ θ+ + += ∧ ∨ ∧ ∧  

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )f u g u f h f u h uθ θ+ − + += ∧ ∧ ∨ ∧ ∧  
( , )F G decreasing F H increasing  

( )( ) ( ) ( ) ( ) ( )f h f u g u h uθ θ + −= ∨ ∧ ∧ ∧ +            (41) 

IV) f increasing; g decreasing; decreasing: h

( )( ) ( ( ) ( )) ( ) ( )F G H F g h g u h uθ θ − −= ∨ ∧ ∧  

( ( ) ( )) ( ) ( ) ( )g h f u g u h uθ θ + −= ∨ ∧ ∧ ∧ −

)

 (42) 
   ( )  G H decreasing

( ) ( )F G F H =  

( ) (( ) ( ) ( ) ( )f u g f u hθ θ+ += ∧ ∧  

( ) ( ( ) ( ))G H F g h uθ −= ∧

( ) ( ) ( )

 F

f g u h uθ + −= ∧ ∧    (46) ( )G H increasing

( ) ( )( ) ( ) ( ) ( ) ( ) ( )F G F H f g u f hθ θ θ+= ∧ ∧  

( ) ( )( )
( ) ( )

θ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g u f h

f u g u f u h u

θ θ+

− + − −

⎛ ⎞∧ ∨ ∧⎜ ⎟= ⎜ ⎟
⎜ ⎟∧ ∧ ∧⎝ ⎠

,∧
 F G F H

decreasing
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( ) ( ) ( ) ( )f g u h f u g u h uθ θ+ − += ∧ ∨ ∧ ∧ ∧ −  

( ) ( ) ( ) ( )f f u g u h uθ − += ∧ ∧ ∧ −

( ) ( ) ( )

  (Absorption law) 
f g u h uθ + −= ∧ ∧    (f  decreasing) (47) 

VII) f decreasing; g decreasing; increasing: h

( ) ( ( ) (F G H F g u h ))θ−= ∧  
( ) ( ) ( )f g u h uθ − += ∧ ∧ ( )G H increasing   (48) 

( ) ( )F G F H =  

( ) ( )( ) ( ) ( ) ( )f g f h uθ θ θ += ∧ ∧  

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g f h u

f u g u f u h u

θ θ θ +

− − − +

⎛ ⎞∧ ∨ ∧⎜ ⎟= ⎜ ⎟
⎜ ⎟∧ ∧ ∧⎝ ⎠

,∧
 F G F H

decreasing
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( ) ( ) ( ) ( )f g h u f u g u h uθ θ + − −= ∧ ∨ ∧ ∧ ∧ +  

( ) ( ) ( ) ( )f f u g u h uθ − −= ∧ ∧ ∧ +  (Absorption law) 
( ) ( ) ( )f g u h uθ − += ∧ ∧   (f  decreasing) (49) 

VIII) f decreasing; g decreasing; decreasing: h
( )F G H =  

( )( ( ) ( )) ( ) ( )F g h g u h uθ θ − −= ∨ ∧ ∧  
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( )( ) ( ) ( ) ( ) ( )f g h g u h uθ θ θ − −= ∧ ∨ ∧ ∧  
(G H decreasing)

)

  (50) 
( ) ( )F G F H =  

( ) (( ) ( ) ( ) ( )f g f hθ θ θ= ∧ ∧ θ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g f h

f u g u f u h u

θ θ θ θ
− − − −

⎛ ∧ ∨ ∧ ∧
⎜=
⎜⎜ ∧ ∧ ∧⎝

,

 

( ) ( )( )
( ) ( )

⎞
⎟
⎟⎟
⎠

 F G F H
decreasing

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( ) ( ) ( ) ( )f g h f u g u h uθ θ θ − −= ∧ ∨ ∧ ∧ ∧ −  

( )( ) ( ) ( ) ( ) ( )f g h g u h uθ θ θ − −= ∧ ∨ ∧ ∧  
(f  decreasing)■    (51) 

Investigating the absorption laws on concavoconvex 
fuzzy sets, we reached the following results,  
I) f increasing;  g increasing; 
  ( ) ( ) ( ) ( )F F H F F H f g uθ += = ∧  (52) 

II) f increasing; g decreasing; 
  ( ) ( ) ( ) ( )F F H F F H f g uθ −= = ∧  (53) 

III) f decreasing; g increasing; 
  ( ) ( ) ( ) ( )F F H F F H f g uθ += = ∧  (54) 

IV) f decreasing; g decreasing; 
  ( ) ( ) ( ) ( )F F H F F H f g uθ −= = ∧  (55) 

It can be easily observed that if the maximal grade of 
membership in F is smaller than or equal to the maximal 
grade of membership in G, then absorption laws are sat-
isfied by concavoconvex fuzzy grades. This is the same 
result as [29] had reached for convex fuzzy grades. 
Theorem 10: Concavoconvex fuzzy grades form a com-
mutative semiring under join and meet. 
Proof: According to the Theorem 6, Concavoconvex 
fuzzy grades are closed under  and , and with re-
spect to [29], concavoconvex fuzzy grades are also asso-
ciative and commutative under  and . Moreover, 
regarding the Theorem 9, concavoconvex fuzzy grades 
are distributive with respect to  and . In [29] it is 
proved that identity laws are satisfied by arbitrary fuzzy 
grades and hence concavoconvex fuzzy grades which 
conclude the proof. ■ 
Theorem 11: Normal concavoconvex fuzzy grades form 
a distributed lattice under join and meet where  and 

 as greatest and least elements. 
1/1

1/ 0

Proof: Obvious. ■ 

B. Join and Meet under product t-norm and max 
t-conorm 

Join and meet operations under product t-norm in 
general, are not as straightforward as under minimum 
t-norm. There has been some endeavors in this regard 
[13,29,30,35]. In [13] although a closed form formula 

for join of normal convex fuzzy grades under product 
t-norm and max t-conorm is proposed it is also men-
tioned that “it is very difficult to obtain a closed-form 
expression for the result of the meet operation” under 
product t-norm [13].  

In this section we will study join and meet operations 
on concavoconvex fuzzy grades under product t-norm 
and max t-conorm. In specific, we will consider meet 
under product-product t-norm i.e. replacing all t-norms 
in (8) with product, and under product-min t-norms sep-
arately. In a formal form, given ( ) /

u U
F f u u

∈
= ∫  and 

 be fuzzy grades, then we define  (join 

under product t-norm and max t-conorm),  (meet 
under product-min t-norm) and  (meet under prod-
uct-product t-norm), 

( ) /
w U

G g w
∈

= ∫ w

,

( ( ). ( ))( ) / ( ) /
( )u U w U u w

f u g wF G f u u g w w
u w∈ ∈

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

∨⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ (56) 

,

( ( ). ( ))( ) / ( ) /
( )u U w U u w

f u g wF G f u u g w w
u w∈ ∈

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

∧⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ (57) 

,

( ( ). ( ))( ) / ( ) /
( . )u U w U u w

f u g wF G f u u g w w
u w∈ ∈

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ (58) 

Theorem 12: Let ( ) /
u U

F f u u
∈

= ∫  and  be 

concavoconvex fuzzy grades, then 

( ) /
w U

G g w
∈

= ∫ w

I) f increasing, g increasing 
( ) ( ). ( )F GF G f gμ θ θ θ⇔ =  (59) 
( ) ( ( ). ) ( . ( ))g fF GF G f h h gμ θ θ⇔ = ∨ θ  (60) 

II) f increasing,  g  decreasing 
( ) ( ).F G gF G f hμ θ θ⇔ =  (61) 
( ) . ( )fF GF G h gμ θ⇔ = θ  (62) 

III) f decreasing,  g  decreasing 
( ) ( ( ). ) ( . ( ))F G g fF G f h h gμ θ θ θ⇔ = ∨  (63) 

( ) ( ). ( )F GF G f gμ θ θ⇔ = θ  (64) 

Proof: We will prove terms related to F G ,i.e. (59),(61) 
and (63), however F G  would be proved similarly. 
With respect to (56), the membership of θ  in F G  is 

( )

( ) ( )

( ) ( ). ( )

( ). ( ) ( ). ( )

F G
u w

u u
w w

F G f u g w

f u g w f u g w

Sup

Sup Sup
θ

θ θ
θ θ

μ θ
∨ =

= ≤
≤ =

⇔ =

= ∨  

( ) ( )( ). ( ) ( ). ( )
w u

f g w g f uSup Sup
θ θ

θ θ
≤ ≤

⎛ ⎞ ⎛
= ∨⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠
 (65) 
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I) ( ) ( )( ) ( ). ( ) ( ). ( )F G
w u

f g w g f uSup Sup
θ θ

μ θ θ θ
≤ ≤

⎛ ⎞ ⎛
= ∨⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

( ). ( ) ( ). ( )f g g f

 
In the case of 0θ =  then 

( ) ( )(0) (0). (1) (1). (0)F G f g f gμ = ∨ , however, (0,1]u∀ ∈ , 

( ) ( )θ θ θ= ∨ θ ( ). ( )f gθ θ=  (66) (0). (1) ( ). (1)f g f u g≤  and (1). (0) (1). ( )f g f g≤

II) ( ) ( )( ) ( ). ( ) ( ). ( )F G
w u

f g w g f uSup Sup
θ θ

μ θ θ θ
≤ ≤

⎛ ⎞ ⎛ ⎞
= ∨⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

u .  This 
indicates that  (0) ( )F G F G uμ μ≤ , . (0,1]u∈

⎠
 For the case of 0θ ≠ let , such that 1 2, (0,u u ∈ 1]

1 2u u≤ . For any 3 2[ ,1]u u∈ , 1

3 3

u u
u u

≤( ) ( )( ). ( ) ( ). ( )f g u g fθ θ θ−= ∨  

( )( ). ( )f g uθ −=      ( )( ) ( )g u g θ− ≥  

( ). gf hθ=     (67) ( )( ) ( )g
u

h g u g uSup −⎛
= =⎜

⎝ ⎠

⎞
⎟

2  and since g is in-

creasing so 1

3 3

u u
g g

u u
⎛ ⎞ ⎛

≤⎜ ⎟ ⎜
⎝ ⎠ ⎝

2 ⎞⎟
⎠

consequently 

III) ( ) ( )( ) ( ). ( ) ( ). ( )F G
w u

f g w g f uSup Sup
θ θ

μ θ θ θ
≤ ≤

⎛ ⎞ ⎛ ⎞
⎟
⎠

1 2
3 3

3 3
( ). ( ).

u u
f u g f u g

u u
⎛ ⎞ ⎛ ⎞

≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  On the other hand, for any 

3 1 2[ , ]u u u∈ , then  3( ) ( )
= ∨⎜ ⎟ ⎜
⎝ ⎠ ⎝

)

 
2f u f u≤ and 1

3
( ) (1)
u

g g
u

≤ . 

Consequently  1
3 2

3
( ). ( ) ( ). (1)

u
f u g f u g

u
≤ . This shows that 

for any 1[ ,1]u u∈ , 2[ ,1]u u′∃ ∈ , 

1 2( ). ( ).
u u

f u g f u g
u u

⎛ ⎞ ⎛′≤⎜ ⎟ ⎜

( ) ( )( ). ( ) ( ). ( )f g u g f uθ θ− −= ∨  

( ) (( ). . ( )g ff h h gθ θ= ∨  ■  (68) 

Theorem 13: Concavoconvex fuzzy grades are closed 
under  and . 
Proof: With respect to the Theorem 12 the proof is ob-
vious. ■ 

⎞
⎟′⎝ ⎠ ⎝ ⎠

and so 

1 2

1 2

1 1
( ). ( ) ( ). ( )

u u u u

u u
f u g f u g

u u
Sup Sup

′≤ ≤ ≤ ≤

⎛ ⎞ ⎛ ′≤⎜ ⎟ ⎜ ′⎝ ⎠ ⎝

⎞
⎟
⎠

1]

.  In Theorem 14, we will proved that join under prod-
uct-product t-norm ( ) is closed on concavoconvex 
fuzzy grades, however, we could not found a closed form 
formula for it, except when one of the involving conca-
voconvex fuzzy grades is increasing and the other is de-
creasing, more exactly, let  f  be increasing and  g de-
creasing,  

Putting all together indicates that 1 2, [0,u u∀ ∈ , 
1u u2≤  then 1( ) ( )F G F Gu 2uμ μ≤  that signifies F Gμ  

to be  increasing , hence with respect to the Theorem 
1, F G is concavoconvex fuzzy grade. ■ 
 ( )

( ) ( )
.

1
1

. .

( ) ( ). ( )

( ). ( ) ( ). ( )

F G
u w

u u
w w

u w u w

F G f u g w

f u g w f u g w

Sup

Sup Sup
θ

θ θ θ
θ θ θ

θ θ

μ θ
=

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤
= =

⇔ =

= ∨  

5. Conclusions 
 

( ) ( )( ). ( ) (1). ( )f g f gθ θ θ= ∨    

( , (1) ( ), ( ) ( )f f g g )θ θ θ θ≥ ≥ ≥ θ  

Basic operations on concavoconvex fuzzy grades were 
explored and simplified algorithms for performing join 
and meet on concavoconvex fuzzy grades were proposed. 
Regarding the fact that algebraic structures of type-2 
fuzzy sets under union, intersection and complement, 
depend on the algebraic structures of fuzzy grades under 

,  and ¬ , we showed that concavoconvex fuzzy 
grades under ,  form a commutative semiring and 
also normal concavoconvex fuzzy grades form a distrib-
uted lattice. We also proposed a closed form formula for 

 and . Although we could not find a closed form 
formula for  we proved that concavoconvex fuzzy 
grades are closed under , and . 

(1). ( )f g θ=   (69) 

Theorem 14: Concavoconvex fuzzy grades are closed 
under . 
Proof: Let ( ) /

u U
F f u u

∈
= ∫  and  be con-

cavoconvex fuzzy grades. If f and g are increasing and 
decreasing respectively, with respect to (69),

( ) /
w U

G g w
∈

= ∫ w

F Gμ  is  
decreasing that due to the Theorem 1, F G  is a con-
cavoconvex fuzzy set. What remain is while f and g are 
both increasing or decreasing. We will prove for f and g 
be both increasing, the proof of the other case is similar.  
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