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Abstract

In this work we focused on methods to solve classification problems character-

ized by high dimensionality and low cardinality data. These features are relevant

in bio-molecular data analysis and particularly in class prediction whith microar-

ray data.

Many methods have been proposed to approach this problem, characterized by

the so called ′curse of dimensionality′ (term introduced by Richard Bellman (9)).

Among them, gene selection methods, principal and independent component anal-

ysis, kernel methods.

In this work we propose and we experimentally analyze two ensemble methods

based on two randomized techniques for data compression: Random Subspaces

and Random Projections. While Random Subspaces, originally proposed by T.

K. Ho, is a technique related to feature subsampling, Random Projections is a fea-

ture extraction technique motivated by the Johnson-Lindenstrauss theory about

distance preserving random projections.

The randomness underlying the proposed approach leads to diverse sets of ex-

tracted features corresponding to low dimensional subspaces with low metric dis-

tortion and approximate preservation of the expected loss of the trained base

classifiers.

In the first part of the work we justify our approach with two theoretical results.

The first regards unsupervised learning: we prove that a clustering algorithm min-

imizing the objective (quadratic) function provides a ε-closed solution if applied

to compressed data according to Johnson-Lindenstrauss theory.

The second one is related to supervised learning: we prove that Polynomials ker-

nels are approximatively preserved by Random Projections, up to a degradation
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proportional to the square of the degree of the polynomial.

In the second part of the work, we propose ensemble algorithms based on Ran-

dom Subspaces and Random Projections, and we experimentally compare them

with single SVM and other state-of-the-art ensemble methods, using three gene

expression data set: Colon, Leukemia and DLBL-FL - i.e. Diffuse Large B-cell

and Follicular Lymphoma. The obtained results confirm the effectiveness of the

proposed approach.

Moreover, we observed a certain performance degradation of Random Projection

methods when the base learners are SVMs with polynomial kernel of high degree.
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1.1 Introduction

A relevant research line is the exploration of methods to solve classification prob-

lems characterized by high dimensionality and low cardinality of data. This task

is particularly important in class prediction with microarray data, characterized

by a low ′a-priori′ knowledge on data; a typical problem in gene expression data

is the so called ′curse of dimensionality′ (9): data set are composed by a ′small

number′ of classified examples of ′large dimension′. This problem adds difficulties

to the direct application of learning algorithms to this kind of data because the

cost of an optimal solving algorithm can increase exponentially with the dimen-

sion.

Machine learning algorithms and particularly SVMs (14) (3) (12) (16) repre-

sent the state-of-the-art in gene expression data analysis. Other methods have

been used, such as Bagging and Boosting (48) and feature selection or extrac-

tion methods (see Golub (22)), or feature subsampling proposed by T. K. Ho (21).

Our approach consists in the application of Random Projection (36) ensemble

of SVMs with linear, gaussian and polynomial kernels, with the aim to improve

the accuracy of classification. The ensemble methods have been used in our work

to enhance the classification accuracy and capability. The main idea on which are

based ensemble methods is to train multiple classifiers and to combine them, to

reduce the generalization error of the multi-classifiers system.

We can summarize the main idea as follow:

• we perturbe data by a random projection

• we after apply a learning algorithm on this data (in our case SVMs with

linear, gaussian and polynomial kernels)

• finally we use the majority voting technique to obtain the ′consensus′ classi-

fier.
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A theoretical justification of this approach is related to the Johnson-Lindenstrauss

lemma about distance-preserving random projections. This lemma forms a theo-

retical basis for low-cost topology preserving some feature extraction.

In this context we show two theoretical results: the first one related to unsu-

pervised learning, the second to supervised one. In particular, concerning the

clustering, we prove that, if a clustering algorithm minimizes the ′Sum of squared

error′, then the algorithm applied to compressed data with dimension d′ = 4 lg Nε2

gives, with high probability, a solution ε-closed to the optimal solution. Here N is

the number of the original data.

In the context of supervised learning, we explore the case of the polynomial kernels.

We show that, with high probability, the kernel applied to the compressed data is

ε-closed to the optimal solution if we project in space of dimension d′ = O(α2· lg N
ε2 ),

where α is the degree of polynomial kernel.

This facts allows us to conclude that, for algorithms using some characteristics of

data, such as distances or polynomial kernel, random projections work as injec-

tion of noise into the outputs of the algorithms. Therefore, in these cases, random

projections are suitable for applying ensemble methods.

As consequence, in this work we propose ensemble methods based on two ran-

domized techniques: Random Projections and Random Subspaces. Random Sub-

space, originally proposed by Ho, is a technique related to feature subsampling.

This technique has some analogy with Random Projection; nevertheless, there are

important differences. For instance, Random Subspace do not verify the Johnson-

Lindenstrauss lemma.

Random Projection and Random Subspaces allow to compress the data, therefore

the obtained algorithms are efficient from a computational point of view.

In the second part of the work, we experimentally analyze the quality of the

solutions of the proposed algorithms on real world clinical data. The proposed

ensemble algorithms are compared with single SVMs, with the Golub feature
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selection method and with the BagBoosting method. Particularly, we use three

data set from literature:

1. The Colon adenocarcinoma data set (25).

2. The Leukemia data set, with two variants of leukemia by analyzing the ex-

pression level of 7129 different genes (22).

3. The DLBL-FL data set, treating the problem of recognizing Diffuse Large

B-cell (DLBL) tumor from Follicular Lymphoma (FL) (18).

The results obtained by the application of single SVMs and Feature Selection

Random Subspace ensemble have been compared to those obtained by Random

Subspace and Random Projection (Plus Minus One) ensembles of SVMs, following

the aim of our work.

At least, results on Colon and Leukemia data set obtained with linear kernel, have

been compared to results of Boosting and Bagging methods found in literature.

On the selected data set we performed the methods listed below:

• single SVMs

• Random Subspace projection ensemble of SVMs

• Feature Selection Random Subspace projection ensemble of SVMs

• Random Projection (PMO) ensemble of SVMs

Moreover, a research direction could be the refining of the proposed Projec-

tion methods, working on the parameter settings, to find a correspondence among

parameters settings and the specific data set characteristics. This could be par-

ticularly interesting, considering the application field (DNA analysis), and surely

would involve various competencies, such as specific skill in Genetics and Micro-

biology.
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The thesis is organized as follows.

By a theoretical point of view, we explore the basic concept on wich are based

our hypotesis. At this regard, in the second chapter we recall the main concept

on which is based our research. We recall some notions on Machine Learning,

focusing the attention on the supervised learning.

The discussion about the Perceptron Algorithm, as an example of supervised

learning algorithm, allows us to easily introduce some relevant concepts such as

margin and kernels. These notions are fundamental in the introduction of Support

Vector Machines learning algorithms, particularly important in our work because

we use them as ′base learners′ (with linear, gaussian and polynomial kernels) in

our proposed method.

To support our hypothesis, in the third chapter we recall the basic ideas and

results on the random projections and the JL lemma, from which our approach

originates. The chapter tree introduces the algorithm structure used in our ex-

periments.

In chapter four we describe the three data sets on which we performed all the

experiments in this work. Chapter four also contains the details about the imple-

mentation of the method and the resources used in our experiments.

From chapter five we show the experiments’ results, grouping them by data sets.

For each data set single SVMs and Random Projection ensemble results are after

grouped by kernel type (linear, gaussian or polynomial).

At the end of each chapter we trace a short discussion, preliminary to the final

chapter of this work, in which we debat globally all the experiments. In fact, the

last chapter of this work summarizes all the conclusions and future developments.

14



2 Learning theory and ensemble

methodology.
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2.1 Introduction

In this chapter we recall the main concept useful for understanding the method we

use to perform gene expression data analysis, on which the experimental results

obtained in this work are based.

First of all, we recall some basic notions on supervised learning, discussing in

particular in some detail the Perceptron Algorithm: this allows us to introduce

in a natural and simple way relevant concepts such as margin and kernels. These

notions are basilar in the Support Vector Machines that, with polynomial or gaus-

sian kernel, will be the ′base learners′ we will use in the following.

Typically, gene expression data are composed by a ′small number′ of classified

examples of ′large dimension′: the direct application of learning algorithms to this

kind of data can suffer of the so called ′curse of dimensionality′ (9). This means

that the cost of an optimal solving algorithm can increase exponentially with the

dimension.

Therefore there are welcome the methods for reducing the dimensionality, preserv-

ing the useful informations: we recall feature selection methods, with particular

attention to the Golub’s one, a single method that we will use in the experimental

setting. At the end, we introduce some elements about ensemble methods, whose

main idea is to train multiple classifiers and to combine them, in the possibility

that the ultimate model behaves in every example as the best classifier.

Finally, to complete the overview on ensemble methods, we shortly recall Bag-

ging and Boosting, which are popular methods we will use in our experiments, as

comparison elements.
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2.2 Base theory: the Learning Methodology

The progress in computational intelligence and the availability of performant elec-

tronic machines gave a strong impulse to the construction of mathematical models

and algorithms to analyze data from the real world through a ‘learning experience’,

paraphrasing the human learning mechanisms. Consequently, the development of

learning methodologies currently represents a challenge of strategic importance be-

cause it enhances the possibility to investigate problems characterized by a large

amount of data.

There are typical fields, to which apply machine learning, that are of particular

interest in this thesis: the problem of finding genes in DNA sequences, or the

genes expression level analysis to find patterns and recognize mutation agents or

diseases. This last application is of large interest in machine learning because, for

the large amount of data and the too few a-priori knowledge, it represents the

major challenge that could receive benefits from the new models and algorithms.

The learning methodologies are based mainly on three models:

• the supervised learning, better described in the following sections;

• the unsupervised learning, that consider the case in which there aren’t out-

puts values and the learning task is to gain some understanding of the process

that generated the data:

• the reinforcement learning, in which the algorithm receives, at each state, a

’vote’ that moves actions toward states where they can expect high rewards.

Supervised methods employ the knowledge of class membership for each example

and based on this information they try to learn how to classify (unseen) data as

accurate as possible. In contrast, unsupervised learning algorithms do not know

anything about class labels and hence, they need to learn about data structure

from the data itself. Reinforcement learning algorithms are provided at each

step with the answer of whether classification was correct or not (instead of class

18



membership). This information guides the learning process.

We will not treat the reinforcement learning, and we will mainly concentrate on

supervised learning methodologies.

2.3 Supervised Learning

In Supervised Learning methods a machine learns to solve a practical problem by

a set of examples explicitly described that train the algorithm to recognize other

input sets given to the machine. This is an alternative to the traditional methods

programming, where the algorithm designer have to explicitly give to the machine

the procedure to solve the problem. This task is impossible in most of ’real world’

problems, because of the few specific knowledge about the problem (i.e. in the

DNA analysis).

Through supervised learning, the designer should reconstruct a given function f

having in input, as partial information, a finite subset of f , the so called ′training

data set′.

The solution is chosen among a set of candidate functions which map from the

input space to the output domain; these functions are indicated as hypothesis.

Let us now introduce some notion and some basic observation about supervised

learning more in details. For extensive description on this argument see for in-

stance (15; 30).

A training set D = {(xi, yi)|i = 1, N} is a finite set of labeled examples (xi, yi),

where, typically, xi ∈ Rn and yi ∈ Y : if Y = Rm the learning problem is usually

called ′regression′, if Y = {−1, 1} is called ′classification′. For sake of simplicity,

we suppose there is a function f : Rn → Y such that yi = f(xi), (1 ≤ i ≤ N) (i.e.

19



we do not consider possible noise in the data).

Now we will consider a class of models f (x,w), where w denotes strings codifying

values of a suitable set of parameters. Typical models are Neural Networks (39),

decision trees (35) and so on. The core of the learning procedure is an algorithm

A that associates with every training set D a (parameter) string w = A(D): the

possibility is that f (x) ≈ f(x,A(D)), in great part of the cases.

The analysis of learning algorithms addresses two main questions: performance

and efficiency (see for instance (23; 40)).

1. Performance. Informally, the performance of a learning procedure A could

be state in term of ′generalization error′, i.e. a measure of the distance be-

tween f (x) and f (x,A(D)). Suppose P(x) a probability density on Rn.

Fixed D, in the regression problems the generalization error is the expecta-

tion

err(D) = Ex

[|f(x) − f(x,A(D))|2] =
∫ |f(x) − f(x,A(D))|2P (x)dx

Similarly, in the classification problems the generalization error is

err(D) = Probx {f(x) �= f(x,A(D))}

2. Efficiency. Efficiency is a measure of computational complexity of the learn-

ing procedure A. Following (40), for neural algorithms two measure can usu-

ally considered: space and time complexity. Space complexity of A on input

D is the size |A(D)|; for example, in 2-layer neural network |A(D)| is the

number of hidden units. The time complexity is the expected training time.

Often, an algorithm can be parametrized with respect to a performance re-

quirement, such as the generalization error ε > 0. It is considered efficient

if both time and space complexity are bounded by a polynomial in the size

|D| of the training set and in the inverse 1
ε of the generalization error.
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2.4 Performance: bias and variance dilemma.

The generalization error is affected by two factors: bias and variance.

The bias is the generalization error of the best model. Let

ŵ = argminwEx

[|f(x) − f(x,w)|2]

be the best model, then:

bias = Ex

[|f(x) − f(x, ŵ)|2]

Observe that bias is independent from the particular algorithm A.

With ′variance′ in this context we intend the expected distance between the learn-

ing algorithm output and the best model, for randomly drawn training sets:

var = ED

[
Ex

[|f(x,A(D)) − f(x, ŵ)|2]]

It is well known that generalization error can be decomposed, in the following

sense, as a sum of bias and variance (23):

err ≤ bias + var

Observe that a large bias is due to an inappropriate choice of the class of models

f (x,w).

A large variance is due to two causes.

The first one is related to the size of the training set: if the number of examples

is too low, the training set does not contain ′sufficient information′ on the cor-

rect model. For instance, in the so called ′distribution independent′ PAC (Prob-

abilistically Approximatively Correct) model, introduced by (2), this problem

has a reasonable solution in terms of VC dimension (14): a class of concepts is
′statistically learnable′ iff their VC dimension is a combinatorial parameter of the

class f (x,w) of models (in the case of classification (42; 23)).
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The second limit is due to computational reasons. In fact, the design of many

learning algorithm is reduced to solve optimization problems. In several cases

(see for instance (30) for the case of very simple neural networks) that can be a

computationally difficult task, because of too many local minima of the objective

function to optimize, and the problem is NP-hard. So, we have sufficient informa-

tion but we are not able to produce an adequate model, because of limits to the

computation time!

2.5 The Perceptron algorithm

In 1936 Fisher developed the linear discriminant analysis. This technique is cen-

tral, since now, in supervised learning methods and influenced fundamental al-

gorithms such as the Rosenblatt’s Perceptron and, recently, the Support Vector

Machines. In this section we recall elements about the perceptron algorithm,

showing the relevance of concepts such as ′margin′ and ′kernel′.

First of all we observe that a function f : Rn → R can be interpreted as a boolean

function φ simply thresholding with 0:

φ(x) =

⎧⎨
⎩

1 iff(x) ≥ 0

−1 iff(x) < 0

If f (x ) = wT x + w0 , then φ (x) is said ′ linearly separable′: in fact φ−1(x) is the

semispace
{
x |wT x + w0 ≥ 0

}
described by mean of the hyperplane wT x + w0 = 0 .

Let be D = {(xi , yi )|i = 1 ,N } a set of labeled examples, where xi ∈ Rn and

yi ∈ {−1 , 1}.
The aim of the perceptron algorithm (19) is to construct a plane wx + w0 = 0

that allows to correctly classify the examples D , i.e. such that sgn(wxi + w0 ) = yi ,

with (i = 1, N). In the primal version, the algorithm is:
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PERCEPTRON ALGORITHM (Primal version)

Input: a data set D; a learning rate η>0

R=max ||xi||
w = 0 ;w0 = 0

while (at least an example in D is misclassified) do

(x , y) =a labeled example in D

if y(wx + w0 ) < 0 then

⎧⎨
⎩

w = w + ηyx

w0 = w0 + ηyiR
2

return w,w0

Observe that the coefficients (w ,w0 ) are updated only in presence of a mistake,

i.e. an example (x , y) such that y �= Sgn(wx + w0 ).

If the labeled examples D are linearly separable (Fig 1), then the perceptron

algorithm finds a plane w ,w0 that correctly classifies all labeled examples.

Figure 1: A linear separable classification problem.

Moreover, it is possible to give an upper bound to the number of mistakes
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in terms of the so called ′margin′. Concerning this concept, observe that a plane

w ,w0 , normalized with ||w || =1, correctly classifies D if and only if min
i

yi (wxi + w0 ) > 0 .

The value min
i

yi (wxi + w0 ) is called ′margin of w, w0
′, with respect to D, and the

margin λ of D is the maximum margin (Fig 2) among all the plans w ,w0 normal-

ized with ||w ||=1.

Figure 2: The maximum margin.

The following theorem, proved by Novikov (11) shows the number of examples

misclassified, by executing the perceptron algorithm, is proportional to 1
λ2 :

THEOREM. If D is linearly separable, then the perceptron algorithm makes at

most
(

2R
λ

)2
mistakes.

As we have seen, the Novikov theorem expresses, if D is linear separable, the up

limit of the errors number as a function of the margin. Now we can formulate a

dual form of the perceptron algorithm: if we set η=1, then the primal perceptron

algorithm operates by adding or subtracting misclassified points xi to an initial w

at each step. As a results, we obtain a new representation of the final w as linear
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combination:

w =
∑

k=1,H

αk yk·xk

where αk are positive coefficients equal to the number of times xi is misclassified.

We can interpret the vector αT =(α1α2...αH) as an alternative representation for

w.

The hypothesis obtained by the perceptron becomes:

h(x)=sgn([
∑

αk yk · xk ] ·x + w0)

= sgn(
∑

αk yk (xk · x )+ w0 )

By using this new representation, we obtain the perceptron algorithm in the dual

form:

Input: D={(xi, yi)|i = 1, N}
α = 0, w0 = 0, R=maxi ||xi||
while (at least an example in D is misclassified)

(xj , yj ) = an example in D

if yj (
∑
k

αkykxkxj + w0 ) < 0 then

⎧⎨
⎩

αj = αj + 1

w0 = w0 + yjR
2

return (α1 , ..., αN );w0

An important observation is that the execution of the dual perceptron algorithm

depends on the inner-product xixj between data points, rather than other charac-

teristics of the data points (xi , y1 ), ..., (xN , yN ).

A limit of the perceptron is that it can classify only linearly separable functions.

For instance, the algorithm doesn’t converge if the data represent something like

the exclusive OR (Fig 3). An old trick to overcome this difficulty is to ′embed′

the data in a higher dimensional space (Fig 4). As an example:
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Figure 3: The exclusive or problem.

Figure 4: Data can be embedded in a higher dimensional space.
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(x1 , x2 ) → (x1 , x2 , x1 x2 )

The new data are now linearly separable, so the perceptron can successfully run

on them.

So, the general algorithm becomes:

Input:

D={(xi, yi)|i = 1, N}
1. choose a suitable function φ:Rn→ RM (M>>n);

2. run the perceptron on data D’={(φ(xi), yi)|i = 1, N}.

Since (M >> n), the algorithm could be inefficient. However, at this regard,

observe that the algorithm depends only on the internal product φ(x ) · φ(y): if

we are able to compute efficiently the function K (x , y) = φ(x ) · φ(y), then the

perceptron algorithm (in the dual form) can be efficiently executed. This fact

outlines the importance of functions of the kind:

K(x,y)=φ(x)φ(y)

These functions are called ′Kernel functions′ and next section will be dedicated to

discuss this important concept.

Two well known examples of kernels are:

1. Polynomial kernel

KP (x, y) = (xy)P

2. Gaussian kernel

Kσ(x, y) = e−
||x−y||2

2σ2

3. Linear kernel

KL(x, y) = x · y
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2.6 Kernels

Kernels provide a general framework to represent data. In the vast majority of

data analysis methods, finding a representation for a data set D = (x1, . . . , xn),

xi ∈ X , means defining a function φ : X → F , where the representation can

be a real-valued vector (φ(x) ∈ R
p), a finite-length string, or some other complex

representation that can be provided in input to an algorithm. So each object xi

is associated with an individual representation φ(xi).

With kernel methods data are not represented individually anymore, but only

through a set of pairwise comparisons. This means that a real-valued “compari-

son function” k : X × X → R is used, so that data set x can be represented by

the n×n matrix of pairwise comparisons ki,j = k(xi, xj). For instance, as we have

seen, algorithms such as perceptron can be executed on the basis of such a matrix.

Some aspects make kernel representations very attractive:

• the representation as a square matrix does not depend on the nature of the

objects to be analyzed;

• the size of the matrix used to represent a data set of n objects is always

n × n, whatever the complexity of the objects is;

• in many cases comparing objects is easier then finding an explicit represen-

tation, especially when data of different nature need to be integrated, like in

computational biology.

Most kernel methods can only process square matrices which are symmetric posi-

tive semi-definite1. This gives rise to the following:

Definition 1. A function k : X × X → R is called a positive definite kernel iff

1This means that cTkc≥ 0 for any c ∈ R
n.
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it is symmetric and positive definite, that is,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (1)

for any n > 0, any choice of n objects x1, . . . , xn ∈ X , and any choice of real

numbers c1, . . . , cn ∈ R.

Two important concepts that characterize the flexibility of positive definite

(p.d.) kernel methods2 are the kernel trick and the representer theorem.

2.6.1 The kernel trick

The kernel trick is a simple and general principle based on the following property

of kernels (53):

Theorem 1. For any kernel k on a space X , there exists a Hilbert space3 F and

a mapping φ : X → F such that

k(x, x′) = 〈φ(x), φ(x′)〉, ∀x, x′ ∈ X , (2)

where 〈u, v〉 represents the dot product in the Hilbert space between any two points

u, v ∈ F .

Hence, kernels can be thought of as dot products in some space F , usually

called feature space. The power of kernels in respect to individual object repre-

sentation is that the representation φ(x) does not need to be computed explicitly

for each point in the data set, since only the pairwise dot products are necessary.

This kernel property gives rise to the following:

2For kernel methods we mean algorithms that take as input the similarity matrix defined by a kernel.
3A Hilbert space is a vector space endowed with a dot product (a strictly positive and symmetric

bilinear form), that is complete for the norm induced.
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Proposition 1 (Kernel trick). Any algorithm for vectorial data that can be ex-

pressed only in terms of dot products between vectors can be performed implicitly

in the feature space associated with any kernel, by replacing each dot product by a

kernel evaluation.

The kernel trick suggests a very convenient way to transform linear methods

into nonlinear ones, by an operation called kernelization, that consists in simply

replacing the classical dot product by a more general kernel, without any computa-

tional additional cost, because the algorithm remains exactly the same. Moreover,

the combination of the kernel trick with kernels defined on non vectorial data per-

mits the application of many classical algorithms on vectors to virtually any type

of data, as long as a kernel can be defined (17) (53) (65).

2.6.2 The representer theorem

Kernels are often presented as measures of similarity, in the sense that k(x, x′) is

“large” when x and x′ are “similar”. In fact, for a general kernel k on a space X ,

the following

k(x, x′) =
||φ(x)||2 + ||φ(x′)||2 − d(φ(x), φ(x′))2

2
, (3)

holds, where d is the Hilbert distance defined by d(u, v)2 = 〈(u − v), (u − v)〉 and

|| · || is the Hilbert norm (||u||2 = 〈u, u〉). Hence, kernel k(x, x′) measures the

similarity between x and x′ as the opposite of the square distance d(φ(x), φ(x′))2

between their images in the feature space, up to the terms ||φ(x)||2 and ||φ(x′)||2.
Kernels are also presented as measures of function regularity. Let k be a kernel

on a space X ; then k is associated with a set of real-valued functions on X ,

Hk ⊂ {f : X → R}, endowed with a structure of Hilbert space, defined by the

set of function f of the form:

f(x) =
n∑

i=1

αik(xi, x) (4)
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for n > 0, a finite number of points x1, . . . , xn ∈ X and a finite number of weights

α1, . . . , αn ∈ R. It can be checked that the norm

||f(x)||2Hk
=

n∑
i=1

n∑
j=1

αiαjk(xi, xj) (5)

is independent of the representation of f in (4). Hk is a Hilbert space, with a dot

product defined for two elements f(x) =
∑n

i=1 αik(xi, x) and g(x) =
∑n

i=1 α′
ik(x′

i, x)

by

〈f(x), g(x)〉 =
n∑

i=1

n∑
j=1

αiα
′
jk(xi, x

′
j). (6)

Interestingly, the value f(x) of a function f ∈ Hk at a point x ∈ X can be

expressed as a dot product in Hk,

f(x) = 〈f, k(x, ·)〉. (7)

In particular, taking f(·) = k(x′, ·), we derive the following reproducing property

valid for any x, x′ ∈ X :

k(x, x′) = 〈k(x, ·), k(x′ , ·)〉. (8)

For this reason, the functional space Hk is usually called the reproducing kernel

Hilbert space (RKHS). Moreover, Hk is one possible feature space associated with

the kernel k, when φ : X → Hk is defined as φ(x) = k(x, ·).
A general property of the norm ||f ||Hk

is that it decreases if the “smoothness” of

f increases, where the notion of smoothness is dual to the notion of similarity pre-

viously discussed: a function is “smooth” when it varies slowly between “similar”

points.

Hk has another interesting property that is shown in the following:

Theorem 2 (Representer Theorem). (56) Let X be a set endowed with a kernel

k, and D = (x1, . . . , xn) ⊂ X a finite set of objects. Let Φ : R
n+1 → R be a
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function of n + 1 arguments, strictly monotonic increasing in its last argument.

Then any solution of the problem

min
f∈Hk

Φ(f(x1), . . . , f(xn), ||f ||Hk
), (9)

where (Hk, || · ||Hk
) is the RKHS associated with k, admits a representation of the

form

∀x ∈ X , f(x) =
n∑

i=1

αik(xi, x). (10)

The representer theorem shows that the regularization of a problem by in-

cluding a dependency in ||f ||Hk
in the function to optimize (penalization that

have sense because it forces the solution to be smooth) has substantial computa-

tional advantages: any solution to (9) is known to belong to a subspace of Hk

of dimension at most n, even though the optimization is carried out over a pos-

sibly infinite-dimensional Hk. This means that (9) can be reformulated as an

n-dimensional optimization problem, by plugging (10) into (9) and optimizing

over (α1, . . . , αn) ∈ R
n. Moreover, one can often explicitly write the functional

that is minimized, which involves a norm in Hk. This observation can serve as

a guide to choosing a kernel for practical applications, if some prior knowledge

exists about the function the algorithm should output. In fact, it is possible to

design a kernel such that a priori desirable functions have a small norm.

2.6.3 Kernel methods in complex data analysis

Thanks to the kernel trick, kernel methods can be applied to the processing of any

kind of data. Consequently, in our case, processing biological sequences becomes

potentially simpler, neither more nor less difficult than processing vectors, graphs,

or more complex objects. Another important fact is that, once a p.d. kernel is

defined, the whole machinery of kernel methods can be applied without further

effort. This characteristic opens the possibility to develop original approaches to
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difficult problems. Moreover, kernel methods offer a rigorous mathematical frame-

work to represent biological data by kernel functions and this is an important first

step toward a theoretical framework to represent knowledge about biological sys-

tems.

Other considerations regard the rich mathematical structure of the set of p.d.

kernels on a given space: it is a convex and pointed cone, closed under point-wise

convergence and Schur product (54).

Representing each biological knowledge (e.g. the data provided by one high-

throughput experiment) as a point in this space – i.e. a p.d. function – various

mathematical operations can be performed in this space, e.g. the integration of

heterogeneous data by taking the center of the corresponding kernels (61), or

by formulating optimization problems in the space of p.d. kernels and using the

strong development of semi-definite programming (65). Finally, but not less im-

portant, kernel methods are considered at the state-of-the-art level of performance

in many real-world applications, so they are able to provide powerful algorithms

useful for biology. Kernel methods, in particular SVM, have indeed invaded the

field of computational biology during the last five years (see a review in (59), and

several recent contributions in (62)).

Differently form other fields, data generated in modern biology are often struc-

tured (for example protein interaction network, gene sequences, evolutionary tree),

high-dimensional and noisy if vectorial (for example gene expression microarrays

data), and heterogeneous (in fact, several types of data can represent the same

biological objects). Kernel methods lend itself particularly well to the study of

these aspects, making it rather suitable for problems of computational biology.

Support Vector Machines, illustrated in the next paragraph, make a large use of

kernels and currently represent the ′State-of-the-art′ in machine learning super-
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vised methodology.

2.7 The Support Vector Machines.

We have seen that perceptron algorithm, having in input a data set of labeled ex-

ample D ={(xi, yi)|i=1,N}, constructs (if possible) a plane (w,w0) that correctly

classifies the data. The idea on which are based the Support Vector Machines

consists in two main steps:

1. map the input data set D ={(xi, yi)|i = 1, N , xi∈R,yi∈{1,−1}}
in D′ ={(φ(xi), yi)|i=1,N} by means of a suitable function φ:Rn →R

M

(M >> n)

2. construct the separation hyperplane of maximum margin (differently by per-

ceptron)

We have already discuss the point 1., which allows to transform the data set D in

a data set S’ linearly separable. With respect to point 2., it can be seen that, by

a suitable normalization, it is reduced to solve the following optimization problem

(67):

Min r(w)=1/2||w||2
Subject to yi(wxi + w0)≥ 1, with i=1,N

This problem, solved by Lagrange multipliers (8), allows to obtain an algorithm

that works in terms of K(xi, yj) when K is the kernel k(x, y) = φ(x), φ(y). The

SVMs, introduced by Vapnik (14), are learning algorithms with a low computa-

tional cost, in terms of time and space.

But what is particularly interesting is their very good generalization capability.

In fact, we have obtained an optimization problem subject to constraints, with

a quadratic objective function and linear constraints. The Statistical Learning

Theory affirms that more the margin is large, more the bounds on the risk don’t
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depend on the space dimension (VC dimension). This fact guarantees good gener-

alization capabilities of SVMs, since they found the maximum margin hyperplane.

Although initially SVM were only used on vectorial data, later they have been

applied also to more complex data representation, due to the fact that kernels

not only increase the class of allowed similarity measures (63), but also allow to

work with non vectorial data, providing automatically a vectorial representation

of whatever data in the feature space. Moreover (64) pointed out that kernels

can be used to construct generalizations of any algorithm that can be specified in

terms of dot products (we will see that a similar operation is known as kerneliza-

tion).

Among the supervised learning methods applied to the analysis of cDNA microar-

rays and high density oligonucleotide chips (13) (16), Support Vector Machines

(SVMs) have been successfully applied to the analysis of DNA microarray gene ex-

pression data in order to classify functional groups of genes, normal and malignant

tissues and multiple tumor (3) (12) (16) (20).

In particular, Kernel methods have been successfully applied to a number of

real-world problems and are now considered the state− of − the− art in various

domain.

2.8 The curse of dimensionality.

In experiments derived by real world, many problems are based on the analysis

of complex and high-dimensional data sets. These high-dimensional problems are

often difficult to solve by means of algorithms, cause their complexity, i.e. the

cost of an optimal solving algorithm, increases exponentially (or at least super-

polinomially) with the dimension. This is proved by showing that the problem

is NP-hard, and that implies that no polynomial time algorithm for solving the
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problem exists (if P �= NP ). This situation is named ′curse of dimensionality′.

Among the problems that suffer of the ‘curse of dimensionality′, we recall numer-

ical integration, optimal recovery (approximation) of many classes of functions,

many global optimization problems.

The term ′curse of dimensionality′ has been introduced by Richard Bellman (9)

to describe the problem caused by the exponential increase in volume, associated

with adding extra dimensions to a (mathematical) space. A way to envisage the
′vastness′ of high-dimensional Euclidean space is to compare the volume of the

unit sphere with the unit cube as the dimension of the space increases: since the

rate is πd

4 · 1
d! , where d is the dimension, as dimension increases, the unit sphere

becomes an insignificant volume relative to that of the unit cube.

The investigation of the curse of dimensionality is one of the main fields of

information-based complexity. Many methods have been elaborated to solve effi-

ciently the high-dimensional problems. The curse of dimensionality typically hap-

pens in the worst-case setting, where the error and cost of algorithms are defined

by their worst performance. One can hope to break the curse of dimensionality

by weakening the worst-case assurance and switching to the randomized setting

(for example with the Monte-Carlo method) or to the average-case setting (in the

Bayesian numerical analysis). However, the curse of dimensionality is a significant

obstacle in machine learning (see paragraph below) problems that involve learning

a ’state-of-nature’ (maybe infinite distribution) from a finite (low) number of data

samples in a high-dimensional feature space.

In this case the accuracy depends exponentially on the dimension d of the

considered problem. In fact, generally we have orders of complexity depending on

the used technique and on the regularity of the considered function. The solution

of the problem is exponential in time and complexity cost, so many methods try
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to approximate the solution selecting a subset of data, reducing in this way the

computational time. Moreover, the computational complexity of the problem re-

mains NP-hard.

This problem is critical in our work, because the major focus of machine learning

research is to extract information from data automatically, by computational and

statistical methods, and dataset, in the bioinformatics field we are interested in,

are generally high dimensioned and affected by the the curse of dimensionality

problem.
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2.9 Overcoming the curse of dimensionality: the fea-

ture selection and the feature extraction

Because of the curse of dimension, the reduction of data dimension is often es-

sential before the application of data analysis methods. This operation can be

performed in many way. First of all, we observe that the reduction is meaningful

if the relevant information on the original data is preserved, according to some

criteria depending on the specific experiment characteristics. To reduce dimen-

sions in pattern recognition and general classification problems, the methods most

used are Principal Component Analysis (PCA), Independent Component Analysis

(ICA) and Fisher Linear Discriminate Analysis, that consists in feature extraction

method..

They allow to find a mapping between the original feature space to a lower di-

mensional feature space: removing most irrelevant and redundant features from

the data, feature selection helps to improve the performance of learning models by

reducing the effect of the curse of dimensionality, enhancing generalization capa-

bility and in general speeding up the learning process. However, feature selection

is a precomputation that can be too computationally expensive: from a theoretical

point of view, optimal feature selection is a NP-complete problem.

For practical application, the search is limited to a satisfactory set of features

instead of an optimal set. Many approaches use greedy hill climbing, that consists

in evaluating a possible set of features and then modifying it to see if it is better

than the original. The evaluation of the new data set can be performed in many

different ways, for example measuring the score of the features or the combination

of them, depending on the chosen feature selection algorithm.

Among the different feature selection methods proposed in literature, one of the
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most simple and used is that defined by Golub (22). Since in our experimental

analysis we select this method to perform feature selection, in the next section we

will discuss this method more into the details.

2.9.1 The Golub method

Suppose to have expression level data relative to n tissues, obtained in n exper-

iments on DNA microarray, each of which produces the expression level of m

preselected genes. The m·n real resulting values could be represented through a

bidimensional matrix D, containing n rows (one for each tissue) and m columns

(one for each gene). We can add to each of the n rows a binary value that iden-

tifies the functional status of the corresponding tissue (safe vs ill, pathology 1 vs

pathology 2 and so on).

Let xj = (x1j , ..., xmj) be the j-row of the matrix D and let yj the binary as-

sociated value: the set {(xj , yj)|1 ≤ j ≤ n} can be seen as a training set of a

classification problem. In general m >> n, so it is useful, to reduce the size of the

problem by individuating a subset F⊆ {1, 2, ...,m}.

In (22), Golub proposed a univariate statistical method that perform the tis-

sue classification starting from gene expression level values. It is proposed to use

as relevance measure of the i-gene its correlation ti with the output variable y,

according to the following relation:

ti =
μi(1) − μi(0))
(σi(1) + σi(0))

(11)

where: μi(c) and σi(c), with c=0,1, are respectively the average and the stan-

dard deviation of the values xi (for the i-gene) calculated on the tissues of the class

c. Fixed a threshold θ, the set of ′relevant′ genes is defined as F = {j|tj > θ}.
The Golub method, with its simplicity, is efficient also if compared to new methods
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as the Switching Neural Network (SNN) (39) or to the procedure SVM-RFE

described by Guyon et al. (12).

If the value of ti is positive, there is a correlation between the i-gene and the

class 1 in output; on the contrary, if the value of ti is negative, there is a correla-

tion between the i-gene and the class 0. Higher is the absolute value of ti, higher

is the correlation so individuated.

2.10 Ensemble methods: combinations of trained mod-

els

The main idea of ensemble methods is to train multiple classifiers and combine

them on an ultimate model. The possibility is that the combined model behaves

in every example as the best classifier (on that example). Effectively, at least for

prediction of binary strings, this result can be obtained (4). A good review on

the subject is (32).

Suppose to have M learning algorithms A1, ..., AM producing M different hypoth-

esis h1(x), ..., hM (x). In the regression problems the combined model fM(x) can

be represented in simple form as a weighted sum

fM (x) =
∑

k=1,M

wk · hk(x)

when the real wk is the weight of the hypothesis k.

In the classification problems, the combined model can be represented as

fM (x) = u(
∑

wkhk(x))

where u(x) = 1 if x ≥ 0, otherwise u(x) = 0.

So, ensemble methods require to solve two order of problems:
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1. How to obtain the hypothesis h1(x), ..., hM (x)

2. How to choose an ′optimal′ set of weights w1, ..., 1M .

With respect to the first question, it needs to obtain highly differentiated hypoth-

esis, i.e. h1(x) and hj(x) should have different mistake patterns for i �= j. That

can be obtained essentially in two different methods. In the first, the hypothesis

are obtained by means of different architectures (for instance neural networks and

decision trees) trained with different algorithms. The possibility is that different

architectures produce different error patterns.

In a second approach, different error patterns are obtained by producing different

hypothesis ′perturbing′ the training process. That can be accomplished by ran-

domizing training procedures or injecting noise in the data.

For instance, in our approach we will perturb the data by a random projection in

a space of lower dimension,as we will explain in next chapter.

Other techniques injecting diversity into predictions include 1) perturbing train-

ing data so that each classifier works with its own training data diggerent from

the data employed by other ensemble members and 2) using different metrics for

different ensemble members.

Concerning the question how to determine the weighs w1, ..., wM , we observe that

the combined model
∑

wkhk(x) enlarges the degree of freedom, therefore in gen-

eral it is not possible to train the weights because of overfitting (55). The simplest

algorithm, called ′majority voting′, requires to use equal weights for all hypothesis

(wk = 1
M ). Clearly, it is not optimal but it is widely used because of its simplicity;

in this work we will follow this solution.

In other more elaborated algorithms (for instance ′Boosting′ (50)) a precise com-

putation of the weights is a critical task.
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A great effort has been done to validate ensemble methods.

As an example, Breiman demonstrated that in regression problems, random ag-

gregation of predictors always give better results than single ones. On the other

hand, in classification problems, if poor base predictors are used (41) not always

we could obtain a performance improvement. These different results depends on

the stability of the base learner. In fact random aggregating and bagging are

performing in case of unstable learning algorithms, in which small changes in the

training set induce large changes in the predictions of the base learners (23). In

his works Breiman also shows that with bagging techniques the variance compo-

nent of the error is reduced (41; 35), improving the accuracy of a single predictor.

The bias-variance decomposition of the error represent at the moment a tool useful

to develop new ensemble methods well-suited to the base learners characteristics

(44). Also Friedman interpreted the generalization capabilities of ensembles of

learning machines through the bias-variance analysis deriving from classical statis-

tics (42; 5).

Other explanation theories have been proposed to explain this ensemble capa-

bility. For example, Allwein et al. analyse it in the framework of large margin

classifiers (6), while Kleinberg derive it from the Stochastic Discrimination The-

ory (52). Some authors, such as Bauer and Kohavi and Zhou, Wu and Tang,

consider bias-variance decomposition of error both in bagging and in other ensem-

ble methods, using decision trees, neural networks of Nave-Bayes as base learners

(10; 43). For SVMs, some authors consider them not suitable base learners for

ensemble methods, because they directly implement the structural risk minimiza-

tion principle (14), but is a fact that several results show the improvement on

results using ensembles of SVMs (57). In his works, Valentini (45) performed the

bias-variance analysis on SVMs ensembles, evaluating quantitatively the variance
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reduction and comparing it to bagging one. The results show that the variance

component of the error has significantly reduced, compared to a single SVM, both

in case of synthetic data sets, both for real-cases data sets. The good results ob-

tained, encouraged the use of SVMs ensembles, so that in this work we chose to

use this method as base learner.

2.11 Boosting and Bagging

To complete the overview on ensemble methods and in general on multivariate

analysis, we have to spend few words on Bagging and Boosting (48), which are

popular methods we will use for our experiments, as comparison elements.

The bagging algorithm creates a classifier using a combination of base classifiers.

However, instead of iteratively reweighing the instances before each call of the

base learner (as boosting), it creates a replicate dataset of the same size as the

original. It does this by sampling from the original dataset with replacement. It

then calls the base learner on the replicate to get a classifier Ct. After doing this

for the set number of iterations, it creates the overall classifier, C*, by combining

the base classifiers with a majority vote. For a given instance x:

Loop over base classifiers Ct

Loop over classes k

Vk = Vk + 1 if Ct(x) = k

C* = k such that Vk is the maximum.

Among the various form of bagging (41; 5; 27), here we will cite the most famous

ones, that are the Non-parametric bootstrap, the parametric bootstrap and the

Convex pseudo-data. The Non-parametric bootstrap (66) is the simplest form of

bagging, in which perturbed learning sets, of the same size as the original one,

are composed with random replacement in the learning set, that is by forming
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non-parametric bootstrap replicates of the learning set. The predictors are built

for each data set and after aggregated with plurality voting method.

The following two methods get around the problem for what, in case of small data

sets, the non-parametric bootstrap show a discreteness of the sampling space. In

the Parametric bootstrap (68), the perturbed learning sets are created according

to a mixture of multivariate normal distribution. In fact, for each class, the mean

vector and the covariance matrix of the multivariate normal distribution are taken

as the class sample mean vector and covariance matrix. Also in this case, the pre-

dictors are aggregated by plurality voting. Indeed, in the Convex pseudo-data

method (49) each perturbed learning set is generating by repeating the selection

of two instances randomly from the learning set; after selecting randomly a num-

ber for the interval given by the data dimension, obtaining in this way the new

two instances.

The Boosting method was proposed firstly by Freund and Schapire (50).

Boosting is a meta-algorithm for improving on the accuracy of a weak learner

while performing supervised machine learning. A weak learner is a machine learn-

ing algorithm that classifies data with accuracy greater than that of chance.

Boosting runs the weak learner iteratively on the training data, rearranging the

probability distribution of the given examples so that subsequent iterations of the

weak learner focus on the ones that have not been accurately learnt yet.

The algorithm then combines the hypothesis generated at each iteration and uses

them to construct a classifier that has greater accuracy than the weak learner.

AdaBoost (short for Adaptive Boosting) was the particular variant of boosting

under study in this project. AdaBoost, like other boosting algorithms, repeatedly

calls a weak learner to construct several base hypotheses. It then combines these

hypotheses using a weighted majority vote to construct a classifier. The pseu-

docode for AdaBoost is:
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Inputs:

• A training set, X, consisting of labeled examples: (x1, y1), ..., (xn, yn)

• A weak learner L.

Algorithm:

Create a probability distribution over the training set, initially setting the proba-

bility weight of each xi, D1(x1), to 1/m.

Iterate T times and for each t from 1 to n

Call L with parameters Dt and X and get a hypothesis ht.

Calculate εt, the weighted error of ht using the formula:

εt′=
m∑

i=1

Dt {yi �= ht(xi)}

Let αt
1
2 log((1 − εt)/εt)

Reweigh the distribution such that

Dt+1(x1) = (Dt(xi) ∗ exp(−αt ∗ yi ∗ ht(xi)))/Zt

where Zt is a normalization factor such that Dt+1 sum to 1.

Output:

H(x)=(
T∑

i=1

αt ∗ ht(x)), the overall hypothesis.

The idea behind bootstrapping is that if the sample is a good approximation

of the population, the sampling distribution of interest may be estimated by gen-

erating a large number of new samples (called resamples) from the original sample.

Put in another way, bootstrapping treats the sample as if it is the population. The

resampling is done using random number generator.

Bootstrapping is therefore a Monte Carlo (i.e., numerical) technique, as opposed

to the analytic techniques. The basic algorithm is a weak one. It varies the proba-

bility distribution on the examples, increasing the probability on the misclassified

examples. The data are re-sampled in an adaptive way, so, with the data obtained,
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the weights are increased to comprehend those cases that often are misclassified.

The predictors are after aggregated by weighted voting. By this description we

can desume that Bagging is a special case of boosting, where the re-sampling

probabilities are uniform at every step and the perturbed predictors give equal

weight in the voting process.

Some works in which authors used bagging and boosting show results on the

same data sets we use for our research, for example Dettling and Bühlman for

Leukemia and Colon data (48), so we will compare our results with those ob-

tained by bagging and boosting methods.
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3 Ensemble methods with random

embeddings.
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3.1 Introduction

In this chapter we introduce the algorithm scheme that will be experimentally

analyzed in the second part of this work.

The main idea can be summarize: to apply ensemble methods, when the hypoth-

esis are produced by applying a leaning algorithm to data perturbed by a random

projection. In this way we hope to obtain feature selection with an algorithm of

low computational cost, reducing the dimension of data according to a well stated

theory.

First of all, we recall the basic ideas and results on the random projections.

Roughly speaking, as random projection we intend a random linear map μ : Rd →
Rd′ that approximatively preserves some characteristic (for instance the distance

between fixed point). The main result, related to projection from Rn to a Random

Subspace of dimension d’, is the so called Johnson-Lindenstrauss lemma: given

N vector {x1, ..., xN} of dimension d, if d′ = O( lg N
ε ) then with high probability

a projection μ on a random subspace of dimension d’ preserves the distances be-

tween x1 and xj, for all i,j, up to a ′distortion′ ε.

Random projections allow to compress the data in an efficient way, from the point

of view of computational complexity, but the question is: how much the new com-

pressed data are meaningful, in the application of a learning algorithm? We give

an answer to this question in two cases: clustering in the context of nonsuper-

vised learning, supervised learning by Support Vector Machines with polynomial

kernels.

In the first case, we prove that, if a clustering algorithm minimizes the ′Sum of

squared error′, then the algorithm applied to compressed data with dimension

d′ = 4 lg Nε2 gives a solution ε-closed to the optimal solution.

In the second case, the kernels evaluated on data and compressed data are ε-closed
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if we project in space of dimension d′ = O(α2 · lg N
ε2

), where α is the degree of poly-

nomial kernel.

These results allows us to interpret random projection as injection of noise in the

answers of the algorithms: this means that Random Projections are suitable for

applying ensemble methods.

We complete the chapter by proposing the algorithmic scheme to be applied to

gene expression data.
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3.2 Random embeddings

Random Projection represents an approach to the dimension reduction of a too

large scale data analysis. The reduction of the dimension may be realized by pro-

jecting a set of points (data) from a high dimensional space to a randomly chosen

low-dimension space or, more generally, by considering random linear map μ : R
d

→ R
d′

, with d’<d, that approximatively preserves, as possible, some characteris-

tics like, for example, the distances among points.

More formally, a randomized embedding between R
d and R

d′
with distortion 1+ε,

(0 < ε ≤ 1/2) and failure probability P is a distribution probability on the linear

mappings μ : R
d → R

d′
such that, for each pair p,q∈ R

d, the following property

holds with probability ≥1-P:

1
1 + ε

≤ ‖μ(p) − μ(q)‖
‖p − q‖ ≤ 1 + ε (12)

(In equation 12 and all other equations involving the norms, the used metric

is the Euclidean one)

The first example of randomized embedding has been pointed out by Johnson

and Lindenstrauss (46), who consider d x d ′ matrices whose rows are orthogo-

nal unit vectors (orthonormal matrices). The random embedding is realized by

uniform random choosing an orthonormal matrix T and scaling. The projected

vector will be:

y =
√

d
d′ · Tx

While T is a matrix, Tx is a vector of d′x1 elements, obtained as T tx, where x is

of dx1 and T is of dxd′.

The main result with randomized embedding is due to Johnson and Linden-

strauss (46), who proved the following: Johnson − Lindenstrauss (JL) lemma:
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given a set {x1, ..., xN} ⊆ Rd, if d′ = Ω( lgN
ε2

) then with probability 1
2 a random

projection T : Rd → Rd′ is such that, for all x1 �= xj :

1
1+ε ≤ ||Txi−Txj ||

||xi−xj || ≤ 1 + ε

Observe that the dimension d’ is weakly dependent from N and independent from

d: so, a random projection realizes in general a compression of data, approxima-

tively preserving the distances.

It has been observed that this is a rather robust phenomenon (15): it is sufficient

to use random matrices and with independent entries Rij , chosen according a dis-

tribution symmetric about the origin (so that the moments of odd order are 0),

with variance 1 and with bounded moments.

For instance, if R is a dxd ′ random matrix where Rij ∈ {1,−1} with prob {Rij = 1} =

prob {Rij = −1} = 1
2 and T = 1√

d′
· R, it holds:

Prob
{

1
1+ε ≤ ||Tx−Ty||

||x−y|| ≤ 1 + ε
}
≥ 1 − 2 · e−(ε2−ε3)· d′

4

A consequence, a simple application of union bound allows to conclude the fol-

lowing lemma, similar to the JL-lemma:

Lemma (72): given a set {x1, ..., xN}d, if d′ = 4 · lgN
ε2

then with probability 1
2 a

random matrix T : Rdd′ is such that, for all xi �= xj :

1
1+ε ≤ ||Txi−Txj ||

||xi−xj || ≤ 1 + ε

For the general case, we have (72):

THEOREM. Let T be a random d x d′ matrix, with each entry r = Tij cho-

sen independently from a distribution D that is symmetric about the origin with

E(r2)= 1. For x ∈ Rd and y = Tx, it holds:

(1) If ∃B>0 such that E(r4)≤B, then for any ε>0,

Prob([||y||2≤(1-ε)||x||2)]≤e−
(e2−e3)k
2(B+1)
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(2)If∃L>0 such that for any integer m>0, E(r2m)≤ (2m)!
2mm!L

2m, then for any ε > 0

Prob([||y||2≥(1+ε)L2||x||2)]≤((1+ε)e−ε)k/2≤e−(e2−e3)
k
4

Examples of randomized map that verifies the hypothesis of the previous theo-

rem are:

1. r distributed as a normal N(0, 1)

2. random matrices from Achlioptas (72)

An example of randomized maps, represented trough d′ xd matrices P such that

the columns of the ‘compressed′ data set Dp=PD have approximatively the same

distance is:

Plus − Minus − One(PMO) random projections: represented by matri-

ces P = 1√
d′

ri.j , where ri,j are uniformly chosen in {−1, 1}, such that

Prob(ri,j=1)=Prob(ri,j=-1)=1/2. In this case the JL lemma holds with

c≈4 (where c is a suitable constant).

In our work, we will consider another class of randomized map, i.e. the so called

Random Subspace (21). In this case Tij = 1√
d′
· rij where ri,j are uniformly cho-

sen with entries in {0, 1}, and with exactly one ′1′ per row and at most one ′1′

per column. It is important to observe that even if RS subspaces can be quickly

computed, they don’t satisfy the JL lemma.

Let us now give a simple ′architectural′ interpretation of a dxd ′ random em-

bedding T, where all entries Tij are independent.

To project a given point x ∈ Rd to a d’-dimensional space, it need to extract d’

vectors T1, ..., T
′
d, at random, and then a vector y1, ..., y

′
d is computed by perform-

ing d’ inner product x · Tj, (1 ≤ j ≤ d′).

As consequence, the task of random embedding can be obtained by a simple 1-

layer neural network, where the weights are assumed to be random independent
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and identically distributed, as in the following figure (Fig 5).

Figure 5: The task or random embedding can be obtained by a simple 1-layer neural

network.

Moreover, observe that the computation of the various components y1, ..., y
′
d can

be achieved in a highly parallel way.

3.3 The problem of the ′correctness′ of algorithms ap-

plied to data compressed by Random Projections

Random Projections preserve the distance between couples in {x1, x2, ..., xn} ∈ Rd

up to a distortion ε, if we project in spaces of dimension d′ = O(lg N/ε2), indepen-

dently from d. If lg N/ε2 << d, a random projection realizes a data compression

of a factor d′/d and, opposite to what happens in feature selection, this compres-

sion can be obtained easily from a computational point of view.

Moreover, one of the main advantages of Random Projections over other feature

selection methods is its relatively low computational cost, because many tradi-

tional feature selection methods are time-consuming, especially those belonging

to the wrapper model.

Now the question is: how much the new compressed data are meaningful? We
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describe the following scenario: let A be an algorithm solving a given task and

D a data set, so that A(D) is the answer obtained by A (for instance in the case

of classification problems, A(D) ∈ {0, 1}). Let P be a random projection trans-

forming the data set D in a compressed data set D′ = P (D). Random projection

works if, with high probability, A(D) = A(P (D)) (at least, roughly speaking,

A(D) ≈ A(P (D))), so that the diagram in Fig 6 commutes:

In this way, we obtain a new randomized algorithm:

Figure 6: The problem of the correctness of data compression with Random Projections.

Input: D

(1) Compress the data as D’=P(D)

(2) Apply A to D’

We can interpret the difference Δ = A(D) − A(P (D)) as a noise applied to the

output of the algorithm. Such a noise could be reduced by applying ensemble

methods, as we will discuss in sections 2.5 and 2.5.

Concerning this point, it is relevant to estimate some characteristics of Δ; in

the following, we suppose that A does not depend directly on the data D, but

through a suitable function λ(D). Moreover, we suppose that A depends with

continuity on λ(D).

The possibility is that λ(D) ≈ λ(P (D)) with high probability, so as a consequence

we have A(D) ≈ A(P (D)).
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In the next two sections we will discuss two cases: The first one related to a

non supervised problem such as clustering; the second one related to supervised

learning by perceptron or SVM.

In the first case, D =< x1, .., xN > is a set of vectors in Rd; the function

λ(D) =< ||xi −xj||2|i �= j > is the set of Euclidean distances between elements in

D; A is an optimal algorithm with respect to the criterium ′Sum of squared error′

(see Section 2.4).

The optimality implies the preservation of the kernel matrix after applying Ran-

dom Projection based dimensionality reduction.

In the second one, D =< x1, .., xN > as before; λ(D) =< K(xi, yj)|i �= j > where

K is a polynomial kernel; A is or the perceptron algorithm or the SVM.

3.4 Random embeddings and clustering

Consider the set {1, 2, ..., N} and the vectors x1, ..., xN ∈ R
d. A H-clustering C is a

partition < C1, ...,CN > of {1, 2, ..., N}, such that
⋃
k

C= {1, 2, ..., N}, Ci∩Ck = ∅
for i �= k, Ci �= ∅ for each i.

Consider a H-clustering C of {1 , 2 , ...,N }, and a set of vectors x1,...,xN in Rd. The

criterium ′Sum of squared error′ (15) is a classical measure obtained considering

the barycenter of the clusters and performing for each the difference among the

points of the cluster and the distances from the barycenter:

J(C , x1, ..., xN ) =
H∑

k=1

(
∑
d∈Ck

||xd − Mk||2) (13)

where Mk =
∑
d∈Ck

xk/|Ck| is the barycenter of the cluster k.

It is well known that J can be expressed in terms of the distances of vectors x1,...,

xN :
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J(C ,x1,...,xN ) = 1
2

H∑
k=1

1
nk

∑
i,d∈Ck

||xi − xd||2

where nk = |Ck|

In particular, observe that J(C ,x1,...,xN ) depends linearly on the distances ||xi -

xd || 2.

A clustering algorithm Alg (for instance (15)) tries to minimize the functional J:

in this section we suppose that Alg will obtain the cluster C realizing the global

minimum (we hypotize to have an optimal global solution to reach our solution),

i.e.:

C = argminC J(C |D) (14)

Let us now consider a random projection μ : R
d → R

d′ according to the Johnson-

Lindenstrauss theory. By applying the cluster algorithm Alg to the projected data

μD ={μx1, ...μxN} we obtain the cluster C μ such that:

C μ = argminC J(C |μD) (15)

Now we want to compare C and C μ. We will to demonstrate that if d is suf-

ficiently high, J(C |D) and J(Cμ|μD) are ′close′.

THEOREM. If d’=Ω(log N /ε2 ) then, with high probability:

1
1 + ε

≤ J(C μ|μD)
J(C |D)

≤ 1 + ε (16)

PROOF. We observe that if d=Ω(logN /ε2 ), since JL lemma, it holds, with high
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probability:

1
1 + ε

||μ(xi) − μ(xj)||2 ≤ ||xi − xj ||2 ≤ (1 + ε)||μ(xi) − μ(xj)||2 (17)

For every C , since the coefficients 1/Nk are positive, we obtain:

(1−ε)
1
2

H∑
k=1

1
nk

∑
i,d∈Ck

||xi−xd||2 ≤ ||μ(xi)−μ(xd)||2 ≤ (1+ε)
1
2

H∑
k=1

1
nk

∑
i,d∈Ck

||xi−xd||2

(18)

that is:

1
1 + ε

≤ J(C |D)
J(C |μD)

≤ 1 + ε (19)

for all H-clusters C .

We recall that, for all C , J(C |D)≤J(C |D) and J(C μ|μD)≤J(C |μD). Therefore:

a) J(Cμ|μD)
J(C |D) = J(Cμ|μD)

J(Cμ|D) · J(C μ|D)
J(C |D) ≥ J(Cμ|μD)

J(C μ|D) ≥ 1
1+ε since J(C μ|D)

J(C |D) is ≥ 1.

b) J(C μ|μD)
J(C |D) = J(Cμ|μD)

J(C |μD) · J(C |μD)
J(C |D) ≤ J(C |μD)

J(C |D) ≤ 1 + ε since J(Cμ|D)
J(C |D) is ≤ 1.

(a) and (b) implies the thesis. �

In conclusion we proved that the sum of squared error criterion is roughly pre-

served by random projections. Since this observation, the random projection can

be viewed as a noise inserted in data (34).

The degradation of the quality is directly related to d′ = O(lg N/ε2).

This result is only indicative. A limit to this approach is, for instance, that the

cluster algorithms do not necessarily determine the absolute minimum of J. More-

over, many cluster algorithms do not use the euclidean metric 	2, but other kinds

of metrics.
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3.5 Random embeddings and polynomial kernels.

Let us now examinate the case of the polynomial kernel, which will be used in our

experiments.

We recall that a polynomial kernel of degree α is kα(x, y) = (x, y)α, where (x,y)

is the inner product between x and y.

Polynomial kernels are useful to transform data, on which after apply linear sep-

arators such as a perceptron algorithm or SVM. In our experiments we use poly-

nomial kernels of various degrees (1-9) for the SVMs used as learning algorithms.

First of all, we observe that in a Hilbert space the inner product can be ob-

tained by means of the norm, as follows:

(x, y) = ||x+y||2−||x−y||2
4

Suppose x,y ∈ Rd. Let P be a random embedding from Rd to Rd′.

For d’= 4
ε2

with high probability it holds:

1 − ε ≤ ||P (x+y)||2
||x+y||2 ≤ 1 + ε

and:

1 − ε ≤ ||P (x−y)||2
||x−y||2 ≤ 1 + ε

So, respectively, we can write:

(1 − ε)||x + y||2 ≤ ||P (x + y)||2 ≤ (1 + ε)||x + y||2

−(1 + ε)||x − y||2 ≤ −||P (x − y)||2 ≤ −(1 − ε)||x − y||2

Continuing, we will have:

||x + y||2 − ||x − y||2 − ε(||x + y||2 + ||x − y||2) ≤
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≤ |P (x + y)||2 − ||P (x − y)||2 ≤
≤ ||x + y||2 − ||x − y||2 + ε(||x + y||2 + ||x − y||2)

that is:

(x, y) − ε ||x||
2+||y||2
2 ≤ (Px,Py) ≤ (x, y) + ε ||x||

2+||y||2
2

For normalized vectors (||x|| = ||y|| = 1) we will have, with high probability,

(x, y) − ε ≤ (Px,Py) ≤ (x, y) + ε, and this implies:

|(Px,Py) − (x, y)| ≤ ε

Setting A = (Px,Py) and B = (x, y):

|Aα − Bα| = |A − B| · |Aα−1 + Aα−2B + ... + ABα−2 + Bα−1| ≤ ε · α
In fact, |A − B| < ε ; moreover by the Schwartz disequality:

|A| = |(Px,Py)| ≤ ||Px|| · ||Py|| ≤ ||x|| · ||y|| = 1, because P is a projection.

Similarly: |B| = |(x, y)| ≤ ||x|| · ||y|| = 1

It follows that, for d′ = 4
ε2

, with high probability:

|Kα(x, y) − Kα(Px, Py)| ≤ ε · α

Equivalently, for d′ = 4α2

ε2
:

|Kα(x, y) − Kα(Px, Py)| ≤ ε (20)

By (20), if we suppose that we have a training set < (x1, y1), ..., (xN , yN ) > on

which to apply a learning algorithm such as perceptron or SVM with kernel Kα,

the degradation of the quality is related to d′ = O(α2 · lg N/ε2), evidentiating a

quadratic dependency in the degree of the polynomial.
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3.6 Ensembles of SVMs

In our work, to improve the accuracy of results, we performed the RS or the PMO

projection through the use of the ensemble method. Suppose we want to solve a

classification problem and that, for a random projection P:

Prob{A(D)=A(P(D))> 1/2

As discussed in Chapter 1, to improve the confidence, we have to:

• repeated the projection more times, independently

• give the result with the major vote

In this way the probability of error decreases.

In conclusion, first of all we construct a set of classifiers by applying a learning

algorithm to random projected data, then a weighted vote of their prediction give

the classification of the considered points (Fig 7).

In this work we will use, as learning algorithms, SVMs, with polynomial kernels

of degrees 1-9 and gaussian kernels.

Figure 7: Proposed ensemble method.
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3.7 Random Projection and ensembles for gene ex-

pression data analysis

DNA microarray data are usually characterized by a small number N of vectors

of high dimension d: high dimensionality and low cardinality of data arise the so

called curse of dimensionality problem.

As we have discussed, ensemble methods based on Random Subspace allow the

reduction of the dimensionality d, in the possibility to obtain a significant reduc-

ing of the generalization error (in the case of classification problems).

A high-level pseudo-code of the random subspace ensemble method which we

will experiment in this work, is the following, shown in next page.
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Random Subspace Ensemble Algorithm

Input:

- A data set D = {(xj , yj)|1 ≤ j ≤ m}, xj ∈ X ⊂ R
d, tj ∈ C = {0, 1}

- a weak learning algorithm L

- subspace dimension n < d

- number of the base learners I

Output:

- Final hypothesis hran : X → C computed by the ensemble.

begin

for i = 1 to I

begin

Di = Projection(D , n)

hi = L (Di)

end

hran(x) = arg maxt∈C card({i|hi(x) = t})
end.

D represents the original d-dimensional training set.

In our experiments, the base learner L used is a SVM with polynomial or gaus-

sian kernels. At the end, the projection used in our experiments are the Random

Subspace ones and the PMO (Plus Minus One) projections.
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4 Experimental environment

In this section we will illustrate the common settings adopted in all the experi-

ments performed during our research work.

In this way, we will not repeat the general characteristics for each of the following

section, each of which will treat a specific experiments (i.e. the comparison among

our methods to others, performed directly in our research work or yet illustrated

in literature).

Here we will also describe the data set on which we have experimented the Random

Projections, the implementation done for our scope and the resources used.
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4.1 Experimental setup

We have experimented the previous described algorithm on 3 bio-medical prob-

lems: 1) Colon adenocarcinoma bio-molecular diagnosis (25) 2) recognition of

two variants of leukemia (22) 3) Biomolecular diagnosis of DLBCL-FL: Diffuse

Large B-cell and Follicular lymphoma (18). All the problems are based on gene

expression profiles of a relatively small group of patients.

We specialized the learning algorithm L using linear Support Vector Machines

(SVMs). Moreover random subspace ensembles seem to give good results with lin-

ear base learners characterized by a decreasing learning curve (error) with respect

to the cardinality (27), and linear SVMs show these characteristics. Furthermore,

in some research experiments preliminary done, we applied 200 base learners and

we observed that yet with 30-40 base learners we obtained good results on large

data sets (up to about 4000 genes). On the basis of these results and considering

the dimensions of the data sets used in this work, we fixed 50 as the number I

of base learners and chose as dimension of subspace every number n = 2k with

1 ≤ k < �log2 d� where d is the dimension of the data. More precisely, we drew 50

random subspaces from the available

⎛
⎝ d

n

⎞
⎠ ones, and we used them to project

the original d−dimensional input data into the obtained 50 n−dimensional sub-

spaces; the resulting samples have been used to train the 50 base SVMs that

belong to the ensemble. On the selected data set we performed the methods listed

below:

• single SVMs

• Random Subspace (RS) projection ensemble of SVMs

• Feature Selection Random Subspace (FSRS) projection ensemble of SVMs

• Random Projection (RP) ensemble of SVMs

For each algorithm we performed the experiments using linear, gaussian and

polynomial kernels.
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In the experiments we did not use the subspace dimensions according to the JL

lemma, since JL is upper bound, moreover, in order to safely compare the RS en-

sembles (that use Random Subspace projections that do not obey the JL lemma)

with RS ensembles.

The results obtained by the application of single SVMs and FS RS ensemble have

been compared to those obtained by RS and RP (PMO) ensembles of SVMs, fol-

lowing the aim of our work.

At least, results on Colon and Leukemia data set obtained with linear kernel, have

been compared to results of Boosting and Bagging methods found in literature.

4.2 Selected data sets

To perform all the experiments in this work, we use three data set from literature:

1. The Colon adenocarcinoma data set, composed of 2000 genes and 62 samples:

40 colon tumor samples and 22 normal colon tissue samples (25).

2. The Leukemia data set, that treats the problem of recognizing two variants of

leukemia by analyzing the expression level of 7129 different genes. The data

set consists of 72 samples, with 47 cases of Acute Lymphoblastic Leukemia

(ALL) and 25 cases of Acute Myeloid Leukemia (AML), split into a training

set of 38 tissues and a test set of 34 tissues.

3. The DLBL-FL data set, treating the problem of recognizing Diffuse Large

B-cell (DLBL) tumor from Follicular Lymphoma (FL)by analyzing the ex-

pression level of 6285 different genes. The data set consists of 77 samples,

divided into two classes, respectively composed by 58 DLBCL and 19 FL.

All the data sets have been treated following the same indication reported in

the respective works in literature.
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4.3 Implementation and resources

Concerning the implementation, we developed new C++ classes and applications

for random subspace ensembles extending the NEURObjects 4 library (accessed

on 30 November 2007), (28), using the SV M − light applications by Joachim

(svm− learn, modified in order to force convergence of the SVM algorithm when

the optimality conditions are not reach in a reasonable time, and svm−classify).

Data have been normalized through the NEURObjects application convert−data−
format and the application dofold and dorsfold were used to extract randomly

training and test sets. The procedures have been developed in Perl, in Linux O.S.

environment. Cause of the cost of computation, the experiments needed strong

computation resources, so they have been executed by means of the C.I.L.E.A.

Avogadro cluster of Xeon dual processor workstations (29).

4The extended new version of the NEURObjects library is freely downloadable for research or teach-

ing purposes from http://www.disi.unige.it/person/ValentiniG/NEURObjects/.
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5 Single SVMs vs Random Subspace and

PMO Random Projection ensemble of SVMs

In this chapter we will show the results of the comparison of two kind of methods

experimented: the Random Projection (in the Random Subspace case and in PMO

case) and single SVMs. The experiments have been performed on all the data set,

so in next pages the results are grouped by data sets.

For each data set single SVMs and Random Projection ensemble results are after

grouped by kernel type (linear, gaussian or polynomial).

At the end of the chapter we will trace a short discussion, preliminary to the final

chapter of this work, in which we will debat globally all the experiments.
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5.1 Goal of the experiments

The main goal that we have pursued in this step of the experiments is the perfor-

mance comparison of single SVMs trained with all the available genes vs. Random

Subspace and PMO Random Projection ensembles. In order to evaluate and to

understand the ensemble behavior, we analyzed also the accuracy of the base

learners, that is the performances of the single base SVMs trained with random

subsets of features (genes).

We computed for all the data sets single SVMs, Random Subspace and PMO

Random Projection ensembles the test error and the training error, by 5-fold cross

validation with 10 repetitions. Moreover we considered sensitivity, specificity and

precision values. Only for the ensembles we also evaluated the error as a function

of the number of the base learners on each fold.

5.2 Results on Colon tumor prediction data set

5.2.1 Experimental setup

We used the same preprocessing technique illustrated in (25). Concerning model

selection, the values of the regularization parameter C of the SVMs have been

selected in the range between 0.01 and 1000. Moreover the dimension k of the

subspaces is each power of 2 in the range between 2 and 210, while the number of

base learners used is 50.

5.2.2 Results obtained with linear kernel

Single SVMs trained using the entire set of gene expression data achieved the

minimum error of 13.14 % according to a 5-fold cross validation evaluation of the

generalization error. As outlined in other works (12), on this task the linear SVMs

are strongly sensitive to the regularization C parameter that controls the trade-

off between the accuracy on the training set and the complexity of the learning
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machine: for many C values (the higher ones) we obtained similar results, except

for C=0.001 for which we obtained the lowest error value. In the following table

(Tab 1) we can see the results achieved for single SVMs with linear kernel on the

entire data set.

Table 1: Colon data set: single SVMs results with linear kernel. Averages values for

each cross validation.

Single SVM

C value Test err St dev Training err St dev Sensitivity Specificity

0.001 0.1310 0.0191 0.0617 0.0043 0.8305 0.8875

0.01 0.1667 0.0178 0.0157 0.0072 0.8392 0.8275

0.1 0.4533 0.0360 0 0.0103 0.9000 0.3625

Also Random Subspace ensembles on this task are quite sensitive

to the regularization parameter: for instance for the 16-dimensional random

subspace ensembles, for many subspace dimensions we achieved better results

with quite large C values, except for subspace dimension 1024, for which, as

shown in next table (Tab 2), we obtained the best result for C=0.001 .
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Table 2: Colon data set: Random Subspace Ensemble of SVMs results with linear

kernel. Averages values for each cross validation obtained for some selected subspace

dimensions.

Linear kernel

Subsp. dim. C value Test err St dev Training err St dev Sensitivity Specificity

1024 0.001 0.1270 0.1164 0.0870 0.0289 0.8696 0.8750

0.01 0.2222 0.1738 0.0157 0.0088 0.7391 0.8000

512 0.001 0.1587 0.1256 0.0988 0.0357 0.8261 0.8500

256 0.1 0.2063 0.1256 0.0157 0.0211 0.8261 0.7750

0.001 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

128 0.1 0.1746 0.1566 0.0157 0.0088 0.8261 0.8250

1 0.3175 0.2684 0 0 0.8696 0.5750

The minimum of the test error is obtained using 1024-dimensional sub-

spaces, but also with 16 to 1024-dimensional subspaces equal or better re-

sults with respect to single SVMs trained on the entire feature space can be

achieved. In table (2) we don’t show all the results, but a choice of the most

interesting values.

Interestingly enough, sensitivity is very high if very low dimensional sub-

spaces are applied, but at the expenses of the specificity. Moreover, the best

general (in the sens of a general low error) performance with Random Sub-

space is achieved with 1024 and with 256 subspace dimension. This result is

shown in following figures and discussion.

The ensembles start to learn when 8 random genes are selected, and if we

apply at least 16 gene-subspaces we achieve yet a reasonable specificity at

the expense of a low decrement of the sensitivity. Both the base learner

training and test error decrease monotonically with the subspace dimension,

as shown in fig. 8(a), in which we can observe the ensemble test error. Hence
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the best general performance with 256-dimensional random subspace ensem-

bles cannot be the effect of a better accuracy of the base learners trained

with 256 random genes.
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Figure 8: (a) Colon data set: Average test error for each subspace dimension for random

subspace ensemble of SVMs with linear kernel (b)Colon data set: test error for number

of base learners for random subspace ensemble of SVMs with linear kernel.

We trained 50 SVMs for each ensemble, but Fig. 8(b) shows that with

about 25 learners we can achieve the same results for Random Subspace

ensembles of SVMs. Indeed the test error on the 5 folds decreases up to

25 base learners, and for larger ensembles the test error stabilizes and no

variations are registered.

We have also performed the PMO Random Projection on the ini-

tial data sets (Colon, Leukemia and DLBL-FL) and after we have applied

the methods with the same specification used with the ’simpler’ Random

Subspace ensemble (i.e. 50 SVMs as base learners and the same subspace
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dimensions selected for the previous experiments). At the end, we have

performed the aggregation by majority voting technique.

As for the previous experiments with single SVM and Random Subspace

ensemble of SVMs, we used the same preprocessing technique illustrated

in (25). The model has been selected setting the values of the regularization

parameter C of the SVMs in the range between 0.001 and 1000. Also in

this case the dimension k of the subspaces is each power of 2 in the range

between 2 and 210. The number of base learners used is 50.

The PMO Random Projections with linear kernel give better results

(Fig 9(a) and (b)) with low values of the regularization C parameter that

controls the trade-off between the accuracy on the training set and the com-

plexity of the learning machine: in fact, we obtained the minimum test error

for the value 0.01 of the parameter C corresponding to the subspace di-

mension 1024. Moreover, in general, for low values of C and high subspace

dimension we obtained results better than Random Subspace Ensemble, that

is low values for the test error, as shown in the table below (Tab 3). The

best result have been achieved for the subspace dimension 1024.

Table 3: Colon dataset: PMO Random Projection Ensemble of SVMs results with linear

kernel. Averages values for each cross validation.

Random Projection ensemble of SVMs with linear kernel

subsp.dim. C value Test err St dev Training err St dev Sensitivity Specificity

1024 0.01 0.1186 0.0720 0.0640 0.0221 0.8164 0.9231

512 0.01 0.1207 0.0738 0.0672 0.0232 0.8159 0.9244

0.001 0.1250 0.0746 0.0690 0.0242 0.8181 0.9246
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Figure 9: (a) Colon data set: Average test error for each subspace dimension for Random

PMO projection ensemble of SVMs with linear kernel (b) Colon data set: test error for

number of base learners for Random PMO projection ensemble of SVMs with linear

kernel.

We have also trained both single SVMs and RS ensemble of SVM using base

learners with gaussian and polynomial kernel, as shown in next paragraphs.

5.2.3 Results obtained with gaussian kernel

For gaussian single SVMs, the learning machine learn less than linear

SVMs, as shown in the table (Tab 4). In fact, the best results are obtained

for C=100 and σ=1000 and for C=1000 and σ=1000 as shown in the follow-

ing table. For the other values of C and σ, the test error resulted equal to

0.3623 that is, even if good, less significant than errors achieved with linear

and polynomial single SVMs.

Also Random Subspace ensemble are less performant with gaussian

kernel comparing to linear and polynomial ones: in next table (Tab 5), we

show the results for random subspace dimension 64, that is the best results
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Table 4: Colon data set: single SVMs results with gaussian kernel.Averages values for

each cross validation.

Single SVM

C value σ value Test err St dev Training err St dev Sensitivity Specificity

100 1000 0.2720 0.0276 0.2048 0.1341 0.4218 0.9000

1000 1000 0.2720 0.0276 0.2048 0.1341 0.4218 0.9000

1000 0.1 0.3623 0.0039 0.3648 0.1722 0.4689 0.9987

1000 500 0.3640 0.0058 0.3400 0.1521 0.4601 0.9975

1000 1000 0.2720 0.0276 0 0 0.4218 0.9000

obtained.

Table 5: Colon data set: Random Subspace Ensemble of SVMs results with gaussian

kernel.Averages values for each cross validation.

Gaussian kernel

Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

64 10 10.1 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

10 0.2 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

10 0.5 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

10 5 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

10 20 0.3651 0.0838 0.2078 0.1015 0.2174 0.8750

10 50 0.1905 0 0 0 0.6957 0.8750

10 200 0.1746 0.1566 0.0157 0.0088 0.2826 0.8250

10 500 0.1429 0.0071 0.0436 0.0127 0.8261 0.8750

10 1000 0.1587 0.1256 0.0988 0.0357 0.7826 0.3250

However, we have to note that random subspace ensemble achieve better

results than single SVMs with a relatively low dimension of the random

subspace (64) and with medium values of C and high values of σ, as could

be viewed graphically in Fig 10 (a), while in Fig 10(b) we show that also in

this case 25 base learners are enough to perform the experiment.
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Figure 10: (a) Colon data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs with gaussian kernel (b) Colon data set: test

error for number of base learners for Random Subspace ensemble of SVMs with gaussian

kernel.

In the case of the gaussian kernel, PMO Random Projections en-

semble give results equal or better than the Random Subspace ensemble

(Fig 11(a) and (b)). Particularly both give the lowest error for the dimen-

sion 64 of the subspace and the minimum test error is reached around the

value 0.1400 (Tab 6).

5.2.4 Results obtained with polynomial kernel

With polynomial single SVMs, the results not depend particularly on

the polynomial degree, but they are better with lower degrees. In fact, even

if the test error is good for degrees 7 and 9, we obtained lower values with

degrees 3 and 2 (respectively, 0.1846 and 0.1596 for C=1, for example), as

80



Table 6: Colon dataset: Random Projection Ensemble of SVMs results with gaussian

kernel. Averages values for each cross validation.

PMO Random Projection ensemble of SVMs with gaussian kernel

Subspace dim C value σ value Test err St dev Training err St dev Sensitivity Specificity

64 10 500 0.1497 0.0146 0.0493 0.0057 0.8130 0.8875

10 100 0.1920 0.0230 0 0 0.6956 0.8725

10 0.1 0.3548 0 0 0 0 1
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Figure 11: (a) Colon data set: Average test error for each subspace dimension for PMO

Random Projection ensemble of SVMs for gaussian kernel (b) Colon data set: test error

for number of base learners for PMO Random Projection ensemble of SVMs for gaussian

kernel.

shown in the next table (Tab 7). (we show also the results for the degree 1

to underline that the best result is achieved with this degree and C=1: this

fact put in evidence the best performance of the linear kernel).

With Random Subspace ensemble, we can show that from subspace

dimension 64 we have many equal or better results than single SVMs, in

general for most of subspace dimensions (Fig 12(a) and (b)) and values of
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Table 7: Colon data set: single SVMs results with polynomial kernel.Averages values

for each cross validation.

Single SVM

Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

1 0.001 0.3623 0.0038 0.3648 0.1722 0 1

1 0.1300 0.0201 0.0910 0.0369 0.8261 0.8900

10 0.1750 0.0270 0.0157 0.0035 0.800 0.8375

2 1 0.1596 0.0200 0.0157 0.0035 0.7739 0.875

3 1 0.1846 0.0221 0.0157 0.0035 0.7130 0.8700

7 0.001 0.3623 0.0038 0.3648 0.1722 0 1

10 0.5166 0.0316 0 0 0.7304 0.3475

9 0.001 0.3623 0.0038 0.2422 0.1111 0 1

10 0.5563 0.0308 0 0 0.7348 0.2875

C and polynomial degrees. Particularly, for random subspace 256 and with

the value 10 of the regularization parameter, we have the best results, for

each polynomial degree, as shown in the following table (Tab 8).

Table 8: Colon data set: Random Subspace Ensemble of SVMs results with polynomial

kernel. Averages values for each cross validation.

Polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

256 2 10 0.1429 0.0123 0.0238 0.0026 0.8696 0.8500

3 10 0.1429 0.0123 0.0157 0.0026 0.8696 0.8500

7 10 0.1429 0.0123 0.0157 0.0026 0.8696 0.8500

9 10 0.1905 0.0327 0.0039 0 0.8696 0.7750

512 2 1 0.1429 0.0123 0.0909 0.0026 0.8261 0.8750

With the polynomial kernel (Tab 9), the PMO Random Projection

method give the better test error result for the dimension 1024 and with
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Figure 12: (a) Colon data set: Average test error for each subspace dimension for Ran-

dom Subspace ensemble of SVMs with polynomial kernel (b) Colon data set: test error

for number of base learners for Random Subspace ensemble of SVMs with polynomial

kernel (degree 3).

low degree of the polynome. The obtained results (Fig 13(a) and (b)) are in

general better than the values obtained with the Random Subspace method

and the lowest test error is 0.1129 with the Random Projection, while it is

0.1429 in the case of the Random Subspace ensemble.

Table 9: Colon data set: PMO Random Projection Ensemble of SVMs results with

polynomial kernel. Averages values for each cross validation.

Polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

1024 1 0.001 0.1129 0.0000 0.0768 0.0000 0.8636 0.9000

3 0.001 0.2903 0.0000 0.0000 0.0000 0.5909 0.7750

64 1 1000 0.1806 0.0068 0.0000 0.0000 0.7182 0.8750
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Figure 13: (a) Colon data set: Average test error for each subspace dimension for PMO

Random Projection ensemble of SVMs for polynomial kernel (b) Colon data set: test

error for number of base learners for PMO Random Projection ensemble of SVMs for

polynomial kernel.

5.3 Results on Leukemia variants recognition data set

The data set consists of 72 samples, with 47 cases of Acute Lymphoblastic

Leukemia (ALL) and 25 cases of Acute Myeloid Leukemia (AML), split into

a training set of 38 tissues and a test set of 34 tissues. Data preprocessing

has been performed according to (22).

5.3.1 Experimental setup

Regarding the model selection, we selected the C values in the range between

10−9 and 103. The dimension k of the subspaces is each power of 2 in the

range between 2 and 211, and the number of the base learners used is 50.
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5.3.2 Results obtained with linear kernel

With this data set single linear SVMs trained using the entire set of gene

expression data are in general not sensitive to the C parameter, but the best

result is achieved choosing a very low value of C (0.001) in order to obtain a

small error value, as shown in the table (Tab 10), according to a 5-fold cross

validation evaluation of the generalization error.

Table 10: leukemia data set: single SVMs results with linear kernel.Averages values for

each cross validation.

Single SVM

C value Test err St dev Training err St dev Sensitivity Specificity

0.001 0.0359 0.0246 0 0 0.9979 0.9000

0.01 0.1373 0.0357 0 0 0.9979 0.6160

0.1 0.1373 0.0357 0 0 0.9979 0.6160

1 0.1373 0.0357 0 0 0.9979 0.6160

10 0.1373 0.0357 0 0 0.9979 0.6160

100 0.1373 0.0357 0 0 0.9979 0.6160

1000 0.1373 0.0357 0 0 0.9979 0.6160

Similarly to the colon data set, in the case of linear kernel and in gen-

eral for every kind of kernel (see following results) also with the Leukemia

data set Random Subspace ensemble outperform single SVMs trained

on the entire set of the gene expression data. With Random Subspace en-

semble of linear SVMs, the minimum of the test error is registered yet with

512-dimensional subspaces, but in this case we need from 1024 to 4096-

dimensional random subsets of genes to achieve general better results than

single SVMs (Tab 11).

As with the colon data set, also in this case the better results obtained

with 1024 and 4096 dimensional subspaces cannot be explained with a better
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Table 11: leukemia data set: Random Subspace Ensemble of SVMs results with linear

kernel. Averages values for each cross validation.

Averages values for each cross validation

Subsp dim C value Test err St dev Training err St dev Sensitivity Specificity

64 0.001 0.3425 0.0002 0.3424 0 1 0

0.01 0.1370 0.0281 0.0683 0 1 0.6000

0.1 0.0822 0.0192 0 0 0.9583 0.8400

1000 0.1096 0 0 0 0.9792 0.7200

512 0.01 0.0274 0.0057 0 1 0.9200 0.9600

1024 0.001 0.0822 0.0192 0.0070 0 1 0.7600

0.01 0.0411 0.0297 0.0070 0 0.9980 0.8800

2048 0.001 0.0411 0.0297 0.0070 0 1 0.8800

0.01 0.0411 0.0297 0.0070 0 1 0.8800

4096 0.001 0.0822 0.0192 0.0070 0 1 0.7600

accuracy of the base learners trained with the selected random genes. Indeed

base learner test error, for the ensemble, generally decrease with the subspace

dimension (Fig 14(a)and (b)).

As shown in the table (Tab 12), for linear kernel, PMO Random Pro-

jections perform better than Random Subspace ensemble (0.0254 vs 0.0411)

(Fig 15(a) and (b)) also if results are quite insensitive to the value of the

regularization parameter c in all the subspace dimensions. Anyway, the best

result has been achieved for the subspace dimension 512 and for medium

values of C.
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Figure 14: (a) Leukemia data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs with linear kernel (b) Leukemia data set: test

error for number of base learners for Random Subspace ensemble of SVMs with linear

kernel.

Table 12: Leukemia data set: PMO Random Projection Ensemble of SVMs results with

linear kernel. Averages values for each cross validation.

Averages values for each cross validation

rs linear Subsp dim C value Test err St dev Training err St dev Sensitivity Specificity

512 0.01 0.0254 0.0169 0.0070 0.0032 1 0.8800

1024 0.1 0.0289 0.0074 0 0 0.9473 0.8357

0.001 0.0320 0 0.9763 0.0120 1 0.8604

5.3.3 Results obtained with gaussian kernel

With gaussian kernel single SVMs doesn’t learn, in fact we obtained the

same results for all values of the regulation parameter C and for all σ values,

that is a value of 0.3435 as Test error. For this reason, we have chosen to

not shown all the results in a specific table.

Indeed, with Random Subspace gaussian SVMs ensemble (Fig 16
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Figure 15: (a) Leukemia data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs for linear kernel (b) Leukemia data set:

test error for number of base learners for PMO Random Projection ensemble of SVMs

for linear kernel.

(a) and (b)) we achieved better results for high subspace dimension (Tab 13),

but yet from 64, and for high σ values. In particular, we obtained the best

results for random subspace dimension 128, C=10 and high values of σ.

Table 13: leukemia data set: Random Subspace Ensemble of SVMs results with gaussian

kernel. Averages values for each cross validation.

Gaussian kernel

Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

128 0.1 10 0.3425 0.002 0.3424 0 1 0

0.5 10 0.3425 0.0023 0.3424 0 1 0

10 10 0.3151 0.0175 0 0 1 0.0800

500 10 0.0822 0.0105 0.0036 0 0.9792 0.8000

1000 10 0.0822 0.0105 0.0036 0 0.9792 0.8000
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Figure 16: (a) Leukemia data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs for gaussian kernel (b) Leukemia data set: test

error for number of base learners for Random Subspace ensemble of SVMs for gaussian

kernel.

Concerning PMO Random Projection with gaussian kernel (Fig 17

(a) and (b)), the minimum test error is higher than the minimum one reached

with Random Subspace ensemble and doesn’t depend on the value of σ, as

is shown in the next table (Tab 14).

Table 14: Leukemia data set: Random Projection Ensemble of SVMs results with gaus-

sian kernel. Averages values for each cross validation.

Gaussian kernel

Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

128 500 100 0.2780 0.0032 0.02012 0.0069 0.98542 0.6680

64 0.1 0.001 0.3472 0.0000 0.3474 0.0000 1.0000 0.0000
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Figure 17: (a) Leukemia data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs for gaussian kernel (b) Leukemia data set:

test error for number of base learners for PMO Random Projection ensemble of SVMs

for gaussian kernel.

5.3.4 Results obtained with polynomial kernel

Polynomial single SVMs give better results for low degrees of the poly-

nome, showing that results itselves are independent from polynomial degree,

as shown in the related table. For degree 3 to 9, we obtained a test error

(Tab 15) about or more than 0.3377.

Also with polynomial kernels Random Subspace ensembles obtain

better results than single SVMs (Fig 18 (a) and (b)). In particular, we

achieved the best result for degrees 3 and 7 with high subspace dimensions

(from 1024 to 4096) and C=10, as shown in the table (Tab 16).

PMO Random Projection with polynomial kernel (Tab 17) give re-

sults quite similar (Fig 19) to those obtained with Random Subspace ensem-
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Table 15: Leukemia data set: single SVMs results with polynomial kernel. Averages

values for each cross validation.

Single SVM

Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

1 0.001 0.3435 0.0030 0.3425 0.0002 1 0

0.01 0.3435 0.0030 0.3425 0.0002 1 0

0.1 0.3435 0.0030 0.3425 0.0002 1 0

1 0.0693 0.0179 0.0096 0.0027 0.9979 0.8000

10 0.0459 0.0267 0 0 0.9979 0.8720

100 0.1373 0.0357 0 0 0.9979 0.6160

1000 0.1373 0.0357 0 0 0.9979 0.6160

2 0.001 0.3435 0.0030 0.3425 0.0002 1 0

0.01 0.3435 0.0030 0.3425 0.0002 1 0

0.1 0.3250 0.0073 0.2325 0.0044 1 0.0560

100 0.1893 0.0249 0 0 0.9979 0.4640

1000 0.1893 0.0249 0 0 0.9979 0.4640

3 1 0.0376 0.0040 0.0060 0.0013 0.9828 0.6120

10 0.1893 0.0249 0 0 0.9979 0.4640

Table 16: Leukemia data set: Random Subspace Ensemble of SVMs results with poly-

nomial kernel. Averages values for each cross validation.

Polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

1024 1 10 0.0685 0.0670 0 0 1 0.8000

2 10 0.0274 0.0712 0 0 1 0.9200

3 10 0.0548 0.0030 0 0 1 0.8400

7 1 0.1233 0.0053 0 0 1 0.6400

4096 1 10 0.0274 0.0712 0 0 1 0.9200

2 10 0.0959 0.3012 0 0 1 0.7200

3 1 0.2740 0.0712 0 0 1 0.2000
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Figure 18: (a) Leukemia data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs for polynomial kernel (b) Leukemia data set: test

error for number of base learners for Random Subspace ensemble of SVMs for polynomial

kernel.

ble, both for the test error values obtained (about 0.02 in both cases) and

for the regularization parameter c (in fact we obtained the best results for

medium values of c).

Table 17: Leukemia data set: PMO Random Projection Ensemble of SVMs results with

polynomial kernel. Averages values for each cross validation.

Polynomial kernel

rs poly Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

1024 1 10 0.0230 0.0140 0.0072 0.0100 1 0.7980

2 10 0.1320 0.1002 0 0 1 0.9200

4096 1 10 0.2530 0.0078 0.0103 0.0020 1 0.1930

2 10 0.2637 0 0 0 1 0.6820

92



2 4 8 16 32 64 128 256 512 1024 2048 4096

0.1

0.15

0.2

0.25

Subspace Dimension

A
ve

ra
ge

 T
es

t E
rr

or

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Base Learners

B
as

e 
Le

ar
ne

rs
 E

rr
or

(a) (b)

Figure 19: (a) Leukemia data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs with polynomial kernel (b) Leukemia data

set: test error for number of base learners for PMO Random Projection ensemble of

SVMs with polynomial kernel.

5.4 Results on DLBL-FL data set

The data set consists of 77 samples, divided into two classes, respectively

composed by 58 DLBCL and 19 FL. Data preprocessing has been performed

according to (18).

5.4.1 Experimental setup

Also in this case we selected the C values in the range between 10−9 and 103.

The dimension k of the subspaces is each power of 2 in the range between 2

and 211, and the number of the base learners used is 50.

5.4.2 Results obtained with linear kernel

With this data set single linear SVMs trained using the entire set of gene

expression data aren’t sensitive to the C parameter, but the best result is
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achieved choosing a very low value of C (0.001) in order to have a small error

value, as shown in the table (Tab 18), according to a 5-fold cross validation

evaluation of the generalization error.

Table 18: DLBL-FL data set: single SVMs results with linear kernel. Averages values

for each cross validation.

Single SVM

C value Test err St dev Training err St dev Sensitivity Specificity

0.001 0.0311 0.0068 0.0123 0.0030 0.9811 0.9316

0.01 0.0496 0.0138 0 0 0.9742 0.8789

0.1 0.0496 0.0138 0 0 0.9742 0.8789

1 0.0496 0.0138 0 0 0.9742 0.8789

10 0.0496 0.0138 0 0 0.9742 0.8789

100 0.0496 0.0138 0 0 0.9742 0.8789

1000 0.0496 0.0138 0 0 0.9742 0.8789

Similarly to the Leukemia and the Colon data sets, in the case of linear

kernel and in general for every kind of kernel (see following results) also with

the DLBL-FL data set Random Subspace ensembles outperform single

SVMs trained on the entire set of the gene expression data (Fig 20 (a) and

(b)). With Random Subspace ensemble of linear SVMs, the minimum of the

test error is registered with 2048 and 4096-dimensional subspaces (Tab 19),

but in this case we just need from 64-dimensional random subsets of genes

to achieve better results than single SVMs.

As with the previous analyzed data sets, we show the graphics for the

error of the base learner in function of the subspace dimension (Fig 20(a)).

DLBL-FL dataset treated with linear kernel and PMO Random Pro-

jection gives better result than Random Subspace ensemble, even if very
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Table 19: DLBL-FL data set: Random Subspace Ensemble of SVMs results with linear

kernel. Averages values for each cross validation.

Averages values for each cross validation

Subsp dim C value Test err St dev Training err St dev Sensitivity Specificity

2048 0.001 0.1169 0.0162 0.0323 0.0200 0.9828 0.5789

0.01 0.0260 0.1005 0.0194 0.0031 0.9828 0.9474

100 0.0390 0.0621 0.0129 0.0027 0.9828 0.8947

4096 0.001 0.0260 0.1005 0.0194 0 0.9828 0.9474

0.01 0.0519 0 0 0 0.9655 0.8947
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Figure 20: (a) DLBL-FL data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs for linear kernel (b) DLBL-FL data set: test error

for number of base learners for Random Subspace ensemble of SVMs for linear kernel.

similar for many values of subspace dimension and in both the cases for low

values of the regularization parameter c. The results for Random Projection

are shown in the table below (Tab 20). In figures (Fig 21 (a) and (b)) we

show respectively the graphics of the test error as a function of the subspace

dimensions and of the number of base learners.
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Table 20: DLBL-FL data set: Random Projection Ensemble of SVMs results with linear

kernel. Averages values for each cross validation.

Averages values for each cross validation

rs linear Subsp dim C value Test err St dev Training err St dev Sensitivity Specificity

1024 10 0.0245 0.0129 0.0068 0.0124 0.9828 0.8947

2048 10 0.0390 0.0371 0.0168 0.0205 0.9828 0.8947
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Figure 21: (a) DLBL-FL data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs for linear kernel (b) DLBL-FL data set:

test error for number of base learners for PMO Random Projection ensemble of SVMs

for linear kernel.

5.4.3 Results obtained with gaussian kernel

As for Leukemia data set, also in the case of DLBL-FL data, with gaussian

kernel single SVMs doesn’t learn. In fact we obtained the same results

for all values of the regulation parameter C and for all σ values, except for

the highest value of σ and C as shown in the next table (Tab 21) for some
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selected values.

Table 21: DLBL-FL data set: single SVMs results with gaussian kernel. Averages values

for each cross validation.

Single SVM

C value σ value Test err St dev Training err St dev Sensitivity Specificity

0.001 0.1 0.2468 0.0019 0.2468 0.0001 1 0

0.001 5 0.2468 0.0019 0.2468 0.0001 1 0

0.001 50 0.2468 0.0019 0.2468 0.0001 1 0

0.001 500 0.2468 0.0019 0.2468 0.0001 1 0

0.001 1000 0.2468 0.0019 0.2468 0.0001 1 0

10 500 0.1161 0.0155 0 0 0.9862 0.5684

100 1000 0.0521 0.0082 0 0 0.9828 0.8421

100 500 0.1161 0.0155 0 0 0.9862 0.5684

1000 1000 0.0521 0.0082 0 0 0.9828 0.8421

1000 500 0.1161 0.0155 0 0 0.9862 0.5684

1000 1000 0.0521 0.0082 0 0 0.9828 0.8421

Indeed, with Random Subspace gaussian SVMs ensemble we achieved

better results for high subspace dimensions, but results are acceptable yet

from the subspace dimension 128, and for high σ values. In particular, we

obtained the best results for random subspace dimension 512, C=10 and

high values of σ (Tab 22). See also figures (Fig 22 (a) and (b)) for the the

graphics of test error results.

In the case of PMO Random Projection with gaussian kernel,

applied on DLBL-FL dataset we obtained surely better results compared to

Random Subspace (see also Fig 23 (a) and (b)). For the dimension 512, and

also in this case for low values of c and σ, we obtained the best result of

0.1170 for the test error, as shown in the following table (Tab 23).
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Table 22: DLBL-FL data set: Random Subspace Ensemble of SVMs results with gaus-

sian kernel. Averages values for each cross validation.

Gaussian kernel

Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

512 0.1 0.001 0.2468 0 0.2468 0 1 0

50 0.001 0.2468 0 0.2468 0 1 0

50 1 0.1169 0 0 0 0.9828 0.5789

1000 1 0.2208 0 0.2337 0 1 0.1053

1000 10 0.0390 0 0.0129 0 0.9655 0.9474

Table 23: DLBL-FL data set: Random Projection Ensemble of SVMs results with

gaussian kernel. Averages values for each cross validation.

Gaussian kernel

rs gaussian Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

512 50 1 0.1170 0.0029 0 0 0.9828 0.5789

2048 0.01 0.1 0.2468 0.0103 0.2468 0 1 0
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Figure 22: (a) DLBL-FL data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs for gaussian kernel (b) DLBL-FL data set: test

error for number of base learners for Random Subspace ensemble of SVMs for gaussian

kernel.
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Figure 23: (a) DLBL-FL data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs for gaussian kernel (b) DLBL-FL data set:

test error for number of base learners for PMO Random Projection ensemble of SVMs

for gaussian kernel.
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5.4.4 Results obtained with polynomial kernel

Polynomial single SVMs give better results for high degrees of the poly-

nome, as shown in the related table (Tab 24), in which we reported a subset

of selected significant values.

Table 24: DLBL-FL data set: single SVMs results with polynomial kernel. Averages

values for each cross validation.

Single SVM

Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

2 0.001 0.2468 0.0019 0.2468 0.1141 1 0

10 0.0509 0.0134 0 0 0.9724 0

1000 0.0509 0.0134 0 0 0.9724 0

3 0.001 0.2468 0.0019 0.2468 0.1141 1 0

1 0.0376 0.0040 0.0006 0.0013 0.9828 0.8100

1000 0.0469 0.0132 0 0 0.9776 0

7 0.001 0.2468 0.0019 0.2468 0.1141 1 0

100 0.0456 0.0076 0 0 0.9811 0

1000 0.0456 0.0076 0 0 0.9811 0

9 0.001 0.1471 0.0267 0.0511 0.0159 0.9828 0.4579

100 0.0469 0.0071 0 0 0.9811 0

1000 0.0469 0.0071 0 0 0.9811 0

Also in polynomial case Random Subspace ensemble give in general

results equal or better than single SVMs ones. In particular, we achieved

better results for degrees 3 and 7 for all subspace dimensions and the best

results with 512-dimensional subspaces and C=10, as shown (Tab 25). See

also figures showing the test error respect the subspace dimensions (Fig 24

(a)) and respect the number of base learners (Fig 24 (ba)).
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Table 25: DLBL-FL data set: Random Subspace Ensemble of SVMs results with poly-

nomial kernel. Averages values for each cross validation.

Polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

512 1 10 0.2208 0.0261 0.2339 0.0123 1 0.1053

2 10 0.1558 0.0075 0.0419 0.0250 0.9655 0.4737

3 10 0.0779 0.0102 0.0290 0 0.9655 0.7895

7 10 0.0260 0.0030 0.0065 0.0176 0.9655 1

9 10 0.0130 0 0.0065 0.0079 0.9828 1
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Figure 24: (a) DLBL-FL data set: Average test error for each subspace dimension for

Random Subspace ensemble of SVMs for polynomial kernel (b) DLBL-FL data set: test

error for number of base learners for Random Subspace ensemble of SVMs for polynomial

kernel.

PMO Random Projection with polynomial kernel on DLBL-FL

dataset is less performant than Random Subspace ensemble. In fact we

obtained good results for low-medium values of c and low polynomial degrees

(Tab 26) but in any case the test error is higher than that obtained with

Random Subspace ensemble (Fig 25 (a) and (b)).
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Table 26: DLBL-FL data set: PMO Random Projection Ensemble of SVMs results with

polynomial kernel. Averages values for each cross validation.

Polynomial kernel

rs poly Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

2048 1 0.001 0.0779 0.0057 0.0323 0.0052 0.9828 0.7368

1 10 0.0390 0.0128 0 0 0.9828 0.8947

512 3 0.001 0.0390 0.0207 0.0105 0.0024 0.9828 0.8947

2 4 8 16 32 64 128 256 512 1024 2048 4096
0.01

0.05

0.1

0.15

0.2 

0.25
0.3 
0.35

Subspace Dimension

A
ve

ra
ge

 T
es

t E
rr

or

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Number of Base Learners

B
as

e 
Le

ar
ne

rs
 E

rr
or

(a) (b)

Figure 25: (a) DLBL-FL data set: Average test error for each subspace dimension for

PMO Random Projection ensemble of SVMs for gaussian kernel (b) DLBL-FL data set:

test error for number of base learners for PMO Random Projection ensemble of SVMs

for gaussian kernel.

5.5 Discussion

The most significant result is that Random Projection (Subspace or PMO,

depending on data set) ensembles outperform single SVMs on all the consid-
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ered classification tasks. The null hypothesis that the Random Projection

ensemble has the same error rate as single SVMs is rejected at 0.05 signifi-

cance level according to the 5-fold cross validated paired t-test (30) for the

Colon, the Leukemia and DLBL-FL data sets. Results of comparison per-

formed on the adopted methods are shown in next tables, for Colon (Tab 27),

Leukemia (Tab 28) and DLBL-FL (Tab 29) data sets.

Table 27: Colon data set: comparison between Single SVMs, Random Subspace and

PMO Random Projection ensembles of SVMs results obtained with linear, gaussian and

polynomial kernel.

COLON data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 0.001 0.1310 0.0191 0.0617 0.0043 0.8305 0.8875

RS ens(subsp dim 1024) 0.001 0.1270 0.1164 0.0870 0.0289 0.8696 0.8750

RP ens (1024) 0.01 0.1186 0.0720 0.0640 0.0221 0.8164 0.9231

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 1000 100 0.2720 0.0276 0 0 0.4218 0.9000

RS ens(s. dim 64) 500 10 0.1429 0.0071 0.0436 0.0127 0.8261 0.8750

RP ens (sbsp dim 64) 500 10 0.1497 0.0146 0.0493 0.0057 0.8130 0.8875

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 2 1 0.1596 0.0200 0.0157 0.0035 0.7739 0.8750

RS ens(subsp dim 256) 2 10 0.1429 0.0123 0.0238 0.0026 0.8696 0.8500

RP ens (sbsp dim 1024) 1 0.001 0.1129 0 0.0768 0 0.8636 0.9000

3 0.001 0.2903 0.0000 0.0000 0.0000 0.5909 0.7750

We achieve better results with Random Projection ensembles for a quite

large choice of the subspace dimension, both for Random Subspace and for

PMO methods. This fact confirm the goodness of the Random Projections,

while the little differences between the results of the two projection algo-
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Table 28: Leukemia data set: comparison between Single SVMs, Random Subspace and

PMO Random Projection ensembles of SVMs results obtained with linear, gaussian and

polynomial kernel.

LEUKEMIA data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 0.001 0.0359 0.0246 0 0 0.9979 0.9000

RS ens(subsp dim 512) 0.01 0.0274 0.0057 0 1 0.9200 0.9600

RP ens (s. dim 512) 0.01 0.0254 0.0169 0.0070 0.0032 1 0.8800

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 1000 1000 0.0521 0.0082 0 0 0.9828 0.8421

RS ens(s. dim 512) 1000 10 0.0390 0 0.0129 0 0.9655 0.9474

RP ens (sbsp dim 128) 500 100 0.2780 0.0032 0.0201 0.0069 0.9854 0.6680

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 3 1 0.0376 0.0040 0.0006 0.0013 0.9828 0

RS ens(subsp dim 512) 9 10 0.0130 0 0.0065 0.0079 0.9828 1

RP ens (s. dim 1024) 1 10 0.0230 0.0140 0.0072 0.0100 1 0.7980
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Table 29: DLBL-FL data set: comparison between Single SVMs, Random Subspace and

PMO Random Projection ensembles of SVMs results obtained with linear, gaussian and

polynomial kernel.

DLBL-FL data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 0.001 0.0311 0.0068 0.0123 0.0030 0.9811 0.9316

RS ens(subsp dim 2048) 0.01 0.0260 0.1005 0.0194 0.0031 0.9828 0.9474

RP ens (s. dim 1024) 10 0.0245 0.0129 0.0068 0.0124 0.9828 0.8947

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 1000 1000 0.0521 0.0082 0 0 0.9828 0.8421

RS ens(s. dim 512) 1000 10 0.0390 0 0.0129 0 0.9655 0.9474

RP ens (sbsp dim 512) 50 1 0.1170 0.0029 0 0 0.9828 0.5789

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

Single SVMs 3 1 0.0376 0.0040 0.0006 0.0013 0.9828 0.8203

RS ens(subsp dim 512) 9 10 0.0130 0 0.0065 0.0079 0.9828 1

RP ens (sbsp dim 512) 3 0.001 0.0390 0.0207 0.0105 0.0024 0.9828 0.8947
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rithms depends on the characteristics of gene expression data, so in some

cases Random Subspace performs better than PMO or vice versa. Only if

too small subspaces are used, we cannot obtain good results, because the

base learners are not able to learn when the data are too uninformative.

The best average accuracy of the base learners, comparable with the accu-

racy of the single SVM trained with the entire set of features (genes), is

achieved with medium and high dimensions with the Colon data set, with

the DLBL-FL and with the Leukemia data set. In all the cases there is

no statistical significant difference between the average accuracy of the base

learners and the accuracy of the SVMs trained with all the available gene

expression data. As outlined in other works (1; 33), this fact highlights that

the information carried out by many genes is highly correlated, and no dis-

crimination gain is achieved when we double the number of genes for the

considered data sets. On the other hand these results can also be explained

by the fact that many genes are not correlated with the discrimination of

the functional classes.

Anyway the significant performance differences between Random Projec-

tions and single SVMs cannot be only explained through the accuracy of the

base learners, as in general the best ensemble performance are obtained with

512 and 1024-dimensional subspaces, whilst the best base learner accuracy is

achieved with higher-dimensional subspaces. Hence we need a deeper under-

standing of the ensemble behavior to explain the better results of Random

Projection methods.

Observe that in this (and in all other experimental results), an SVM with

a linear kernel shows the best results, compared to SVMs with Gaussian

and Polynomial kernels. This (wel-known) fact can be explained considering
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that in high dimensional space such as that of gene expression data, a small

group of examples can be easily divided by a hyperplane into two classes,

even though some inter-class distances can be smaller that intra-class ones.

In such a case, Gaussian and Polynomial kernels (with degree higher than

1), often distort this situation, and the data linearly separable in the original

space become nonlinearly separable in the feature space, leading to a more

complex classification problem that the original one. As a result, SVM with

Gaussian/Polynomial kernels show often inferior results to those of the linear

SVM.

Moreover, it seems that if a dataset such as Leukemia is ′easy′ to classify for

a single SVM, an SVM ensemble cannot significantly improve the result of

a single SVM. Leukemia and DLBL-FL datasets seems ′easy′ to classify and

this fact can explain the small difference in classification performance of a

single SVM and an SVM ensemble for these datasets.
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6 Random Subspace ensembles vs Feature

Selection RS ensembles

The main goal that we have pursued in the experiments showed in this chap-

ter is the performance comparison of ′simple′ Random Subspace projection

ensembles vs Random Subspace ensembles performed on data obtained by

the application of Golub Feature Selection method. We aim to verify if, as

expected, feature selection could furthermore improve the results.

We have, so, selected 512 genes from each data set, by means of the Golub’s

method, and we then applied Random Subspace ensembles on these genes.

The results are grouped by data sets and then by kernel type.
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6.1 Experimental environment

We have experimented the Random Subspace projection ensemble

with Feature Selection (performed with the Golub method, (22)). on

the same data sets on which we have applied the Random Subspace ensem-

ble algorithm without any kind of feature selection, so we have previously

selected 512 genes from each initial data sets.

We used the same settings of previous experiment with random subspace

ensemble also for feature selection random subspace ensemble.

Also in this case, we used the C++ classes and applications for random

subspace ensembles developed extending the NEURObjects library (28). The

experiments have been again executed by means of the C.I.L.E.A. Avogadro

cluster because of the computational cost of the algorithm. The procedures

have been written in Perl as for previous experiments.

The main goal that we have pursued in the experiments is the

performance comparison of ′simple′ Random Subspace projection ensembles

vs random subspace ensemble performed on data obtained by the application

of Golub Feature Selection method to verify if, as expected, feature

selection could furthermore improve the results.

As for the previous experiments, we computed for all the data sets Feature

Selection random subspace ensembles the test error and the training error, by

5-fold cross validation with 10 repetition. Moreover we considered sensitivity,

specificity and precision values. Only for the ensembles we also evaluated

the error as a function of the number of the base learners on each fold.
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6.2 Results on Colon tumor prediction data set

6.2.1 Experimental setup

We used the same preprocessing technique illustrated in (25). Concerning

model selection, the values of the regularization parameter C of the SVMs

have been selected in the range between 0.01 and 1000. Moreover the di-

mension k of the subspaces is each power of 2 in the range between 2 and

29, and the number of base learners used is 50. Before applying Random

Subspace ensemble method, we performed the feature selection using the

Golub method, selecting 512 genes of the data set.

6.2.2 Results obtained with linear kernel

With Random Subspace projection ensemble performed on data ob-

tained with a previous feature selection of 512 genes, operated according

to Golub method, we obtained good results, as expected, in general more

interesting than ′simple′ Random Subspace ensemble ones (except per those

obtained with the Leukemia data set, but this fact could depend on the data

nature itself). The following table (Tab 30) shows the obtained results, by

which we can note that Random Subspace ensemble with feature selection

(Fig 26 (a) and (b)) outperform the simple Random Subspace. In fact, the

best value for the test error (0.0968) is achieved for the dimension 32 and for

C = 0.1 that is lower than the minimum test error (0.1270) obtained with

Random Subspace ensemble corresponding to the subspace dimension 1024

with C=0.001. As an example, in the table (Tab 30) are shown selected good

results for some subspace dimensions.

We trained 50 SVMs for each ensemble, but Fig. 26 shows that with

about 25 learners we can achieve the same results both for random subspace
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Table 30: Colon data set: Feature Selection Random Subspace Ensemble of SVMs

results with linear kernel. Averages values for each cross validation.

Golub feature selection RS with linear kernel

Subspace dim C value Test err St dev Training err St dev Sensitivity Specificity

32 0.1 0.0968 0.0913 0.0580 0.0155 0.8636 0.9250

64 0.01 0.1129 0.1264 0.0767 0.0221 0.8182 0.9250

128 0.01 0.1081 0.1159 0.0687 0.0185 0.8318 0.9250

512 0.01 0.1129 0.0745 0.0688 0.0243 0.8182 0.9250

ensembles of SVMs and for RS ensembles with feature selection. Indeed

the test error on the 5 folds decreases up to 25 base learners. For larger

ensembles the test error decrease more, but we can judge enough to consider

25 for the good results obtained.
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Figure 26: Colon data set: test error for number of base learners for Golub Features

Selection Random Subspace ensemble of SVMs with linear kernel.

The ensembles start to learn when 16 random genes are selected, in fact,

if we apply at least 16 gene-subspaces we achieve a reasonable specificity at

the expense of a low decrement of the sensitivity.
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Both the base learner training and test error decrease monotonically with

the subspace dimension. Hence the best performance with 32-dimensional

random subspace ensembles cannot be the effect of a better accuracy of the

base learners trained with 32 random genes.

We have also trained both RS ensemble of SVM and FS RS ensemble

using base learners with gaussian and polynomial kernel, as in the previous

experiments, using also in this case a subset of 512 genes, selected by Golub’s

method.

6.2.3 Results obtained with gaussian kernel

For gaussian SVMs, the learning machine learn less than linear ones and

than polynomial SVMs, as shown in the reported table.

In general, gaussian kernel doesn’t improve test error value. In any case,

the lower test error value is obtained with the dimension 64 and particularly

with C=1000 and σ = 200, as shown in the corresponding table (Tab 31).

Also in this case, with about 25 learners we can achieve good results (Fig. 27).

In fact, the test error on the 5 folds decreases up to 25 base learners, and

for larger ensembles the test error stabilizes and only small variations are

registered.

6.2.4 Results obtained with polynomial kernel

The results obtained with Golub Feature Selection, performed before ap-

plying the Random Subspace ensemble method, show that the test error is

lower with polynomial degrees 1-3 and medium-high values of C from the

subspace dimension 64. After, the best results are obtained for high polyno-

mial degrees and medium-high C values. The best value is obtained for the

Random Subspace dimension 64 and the polynomial degrees 2, with C = 10.
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Table 31: Colon data set: Feature Selection Random Subspace Ensemble of SVMs

results with gaussian kernel. Averages values for each cross validation (RS with feature

selection).

Golub feature selection RS with gaussian kernel

Subspace dimension C value σ value Test err St dev Training err St dev Sensitivity Specificity

64 1000 200 0.1065 0.0083 0 0 0.8364 0.9250

1000 100 0.0917 0.0224 0.0493 0.0057 0.9791 0.7720

1000 500 0.1129 0 0 0 0.8636 0.9000

128 1000 500 0.1226 0.0083 0 0 0.8182 0.9100
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Figure 27: Colon data set: test error for number of base learners for Golub Feature

Selection Random Subspace ensemble of SVMs with gaussian kernel
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However, the application of Random Subspace ensembles in association with

Golub Feature Selection outperform the simple application without feature

selection. The table (Tab 32), reported for polynomial kernel results as an

example, shows the values obtained for the Random Subspace dimensions

64 and 256 corresponding to the most significant values achieved for some

polynomial degrees and C = 10 and 1000. Also for the 50 base learners used

to perform the method with polynomial kernel, the Fig 28 shows that with

25 base learners we could achieve the same results.

Table 32: Colon data set: Feature Selection Random Subspace Ensemble of SVMs

results with polynomial kernel. Averages values for each cross validation (RS with

Feature Selection).

Golub feature selection RS with polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

64 2 10 0.0968 0.0913 0 0 0.8636 0.9250

3 10 0.1032 0.1053 0 0 0.8454 0.9250

1 10 0.1129 0.1264 0.0687 0.0185 0.8182 0.9250

2 10 0.1129 0.1264 0.0323 0.0113 0.8182 0.9167

256 1 10 0.1290 0.0950 0 0 0.8636 0.8750

2 10 0.1290 0.0950 0 0 0.8182 0.9000

2 1000 0.1290 0.0950 0 0 0.8182 0.9000

6.3 Results on Leukemia variants recognition data set

In the case of Leukemia data set, Golub Feature Selection Random Sub-

space doesn’t give better results than ′ simple′ Random Subspace projection

ensemble, as we could expect. Indeed, to explain this result, we have to

observe that in gene expression level analysis, data can be highly correlated

and often the methods are strongly influenced by the nature of the data set.
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Figure 28: Colon data set: test error for number of base learners for Random Subspace

ensemble of SVMs with features selection with polynomial kernel

So this exception doesn’t cancel the other results, so, in general, we could

equally affirm that the feature selection improve in general the projection

methods.

6.3.1 Experimental setup

As for Colon data set, we performed the Golub method selecting 512 genes

by the original data set. Regarding the model selection, we selected the C

values in the range between 10−9 and 103. The dimension k of the subspaces

is each power of 2 in the range between 2 and 29, and the number of the

base learners used is 50.

6.3.2 Results obtained with linear kernel

With Golub Feature Selection, performed before applying the Random Sub-

space ensemble method on the 512 genes, the results outperform those ob-

tained with simple Random Subspace ensemble for some values obtained
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corresponding to the subspace dimension 512 and with more values of C. As

shown in the related table (Tab 33), in general the obtained results aren’t

better than those reached with the simple Random Subspace ensemble, from

the dimension 32 to higher ones. In the figure Fig 29 is shown the test error

by the number of base learners, yet good for 25 ones.

Table 33: Leukemia data set: Feature Selection Random Subspace Ensemble of SVMs

results with linear kernel. Averages values for each cross validation.

Golub feature selection RS with linear kernel

Subsp dim C value Test err St dev Training err St dev Sensitivity Specificity

512 0.1 0.0417 0.2001 0.0506 0.0162 0.9787 0.9200

128 1000 0.0556 0.0058 0 0 0.9787 0.8800

0.01 0.0556 0.0129 0.0138 0.0294 0.9787 0.8800

16 10 0.0500 0.0072 0 0.9787 0.8960 0.9466
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Figure 29: Leukemia data set: test error for number of base learners for Random Sub-

space ensemble of SVMs with features selection with linear kernel
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6.3.3 Results obtained with gaussian kernel

For the gaussian kernel the results obtained with Golub Feature Selection,

performed before applying the Random Subspace ensemble method, are in

general better (but only for little differences) than the simple Random Sub-

space ensemble with the dimension 64. However, the minimum test error

value, reached for the dimension 128, with C = 10 and s = 1000, is greater

than the minimum value obtained for the test error with Random Subspace

ensemble without Feature Selection. The table Tab 34, as an example, shows

the results obtained for the Random Subspace dimension 64 corresponding

to the most significant values obtained for some polynomial degrees and

some values of C. The table shows also the better result obtained for the

dimension 128. Also for gaussian kernel with the Feature Selection Random

Subspace method, 25 base learners, instead of the 50 used, are enough to

obtain good performances, as shown with the graphic in figure Fig 30.

Table 34: Leukemia data set: Feature Selection Random Subspace Ensemble of SVMs

results with gaussian kernel. Averages values for each cross validation (RS with Feature

Selection).

Golub feature selection RS with gaussian kernel

Subsp dim σ value C value Test err St dev Training err St dev Sensitivity Specificity

64 50 10 0.14933 0.0379 0 0 0.98334 0.596

1000 10 0.1233 0.0289 0.02012 0.0069 0.98542 0.668

50 100 0.13837 0.0362 0 0 0.98126 0.632

1000 100 0.09179 0.0224 0 0 0.97917 0.772

50 1000 0.15344 0.0272 0 0 0.97709 0.596

1000 1000 0.10549 0.0233 0 0 0.97083 0.748

128 1000 10 0.08631 0.0296 0.00034 0.0011 0.9896 0.768
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Figure 30: Leukemia data set: test error for number of base learners for Random Sub-

space ensemble of SVMs with features selection for gaussian kernel.

6.3.4 Results obtained with polynomial kernel

In the case of polynomial kernel, with Golub Feature Selection, performed

before applying the Random Subspace ensemble method, the test error de-

creases with the increase of the subspace dimension and yet from the dimen-

sion 64 we obtained good result with C in the interval (10, 1000) and for low

polynomial degrees (from 1 to 3), even if the best results are registered for the

dimensions 256 and 512. The results significantly outperform those obtained

with simple Random Subspace ensemble. In fact, as shown in the following

table (Tab 35), the obtained results aren’t better than those reached with

the simple Random Subspace ensemble. The figure Fig 31 shows that with

25 base learner we could obtain good results for the test error, without using

50 base learners.
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Table 35: Leukemia data set: Feature Selection Random Subspace Ensemble of SVMs

results with polynomial kernel. Averages values for each cross validation (RS with

Feature Selection).

Golub feature selection RS with polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

256 1 1000 0.0417 0.0162 0 0 0.9787 0.9200

2 1000 0.0487 0.0073 0 0 0.9787 0.9000

3 1000 0.0556 0.0360 0 0 0.9787 0.8800

512 2 1000 0.0417 0.0151 0 0 0.9787 0.9200
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Figure 31: Leukemia data set: test error for number of base learners for Random Sub-

space ensemble of SVMs with features selection for polynomial kernel.
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6.4 Results on DLBL-FL data set

6.4.1 Experimental setup

Also in this case we performed the Golub method selecting 512 genes of

the original data set, on which we applied the Random Subspace method,

choosing the C values in the range between 10−9 and 103. The dimension k

of the subspaces is each power of 2 in the range between 2 and 512, and the

number of the base learners used is 50.

6.4.2 Results obtained with linear kernel

With linear kernel and Golub Feature Selection, performed before applying

the Random Subspace ensemble method, the results give values similar to

those obtained with simple Random Subspace ensemble, for many subspace

dimensions. In fact, by the corresponding table (Tab 36), in which, as an

example, we show the results obtained for the dimension from 16 to 128, we

can see that the value for the minimum error is 0.0260 related to the value

C=1 and to the dimension 32.

In the figure (Fig 32 is shown the test error for number of base learners

for Random Subspace Ensemble of SVMs performed on the genes selected

by the Golub method. We can see that we need at least 40 base learners to

obtain good results.

6.4.3 Results obtained with gaussian kernel

The case of gaussian kernel shows that the results obtained with Golub Fea-

ture Selection, performed before applying the Random Subspace ensemble

method, are in general better than the simple Random Subspace ensemble

for dimensions larger than 64. The minimum test error value, reached for
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Table 36: DLBL-FL data set: Feature Selection Random Subspace Ensemble of SVMs

results with linear kernel. Averages values for each cross validation (RS with Feature

Selection).

Golub feature selection RS with linear kernel

Subspace dim C value Test err St dev Training err St dev Sensitivity Specificity

16 10 0.0338 0.0067 0.0113 0.0017 0.9828 0.9158

1 0.0364 0.0134 0.0290 0 0.9828 0.9053

32 1 0.0260 0 0.0239 0.0017 0.9828 0.9474

64 0.1 0.0364 0.0055 0.0258 0 0.9828 0.9052

128 0.1 0.0260 0 0.0239 0.0017 0.9828 0.9153
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Figure 32: DLBL-FL data set: test error for number of base learners for Random

Subspace ensemble of SVMs with features selection for linear kernel.
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the dimension 64, with C = 1000 and σ = 50. Tab 37, as an example, shows

the results obtained for the Random Subspace dimension 512 corresponding

to the most significant values obtained for some values of C and σ.

Table 37: DLBL-FL data set: Feature Selection Random Subspace Ensemble of SVMs

results with gaussian kernel. Averages values for each cross validation (RS with Feature

Selection).

Golub feature selection RS with gaussian kernel

Subspace dimension C value σ value Test err St dev Training err St dev Sensitivity Specificity

64 1000 50 0.0321 0.0057 0.0137 0.0129 0.9828 0.8947

128 1000 1000 0.0378 0.0069 0 0 0.9828 0.8947

512 1000 1000 0.0390 0.0172 0.0206 0.0079 0.9828 0.8947

We used 50 base learners but, yet with 25 base learners we could obtain

the same results, as shown in figure Fig 33.
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Figure 33: DLBL-FL data set: test error for number of base learners for Random

Subspace ensemble of SVMs with features selection for gaussian kernel.
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6.4.4 Results obtained with polynomial kernel

In the polynomial kernel case, with Golub Feature Selection, performed be-

fore applying the Random Subspace ensemble method, the test error de-

creases compared to Random Subspace method and from the dimension 64

we obtained general good result with C in the interval (10, 1000) and for

various polynomial degrees (from 1, 2, 7). The results in general outper-

form those obtained with simple Random Subspace ensemble for almost the

totality of the subspace dimensions, even if the minimum value (0.0260)

is higher than the minimum obtained with the simple Random Subspace

ensemble without feature selection (0.0130), as you can see in the following

table (Tab 38) for some subspace dimensions. The figure (Fig 34) shows that

25 base learners are enough (as in the other cases) to obtain good results.

Table 38: DLBL-FL data set: Feature Selection Random Subspace Ensemble of SVMs

results with polynomial kernel. Averages values for each cross validation (RS with

Feature Selection).

Golub feature selection RS with polynomial kernel

Subsp dim Polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

64 2 10 0.0390 0.0320 0.0258 0.0210 0.9828 0.8947

256 1 10 0.0260 0.0107 0.0145 0.0017 0.9828 0.9474

7 1000 0.0372 0.0092 0 0.0105 0.9828 0.8947

7 0.001 0.0649 0.0078 0.0295 0.0024 0.9828 0.7895

51 7 1000 0.0354 0.0152 0 0 0.9828 0.8947

6.5 Discussion

Random Subspace ensemble, performed with Golub method, outperform

Random Subspace ones, except for the minimum test error for the DLBL-FL
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Figure 34: DLBL-FL data set: test error for number of base learners for Random

Subspace ensemble of SVMs with features selection for polynomial kernel.

data set in the case of the Polynomial kernel, in which Random Subspace give

a better minimum result than Feature Selection Random Subspace. Anyway

the general results are quite better, also in this last case. This results,

with togheter to all the others, confirm the efficiency of the Ran-

dom Subspace ensemble algorithm enhanced, as attended, by the

feature selection of the 512 genes. This result occurs for Colon and

DLBL-FL data sets and not for Leukemia, but we have yet discussed about

the characteristics of expression gene data that strongly influence the per-

formances of different methods. For both RS and Feature Selection RS, the

dimensions for which we obtained the best results are the medium or higher

ones, but considering the Feature Selection Random Subspace, the best per-

formant dimensions are low. For the procedure parameters we can outline

that there is a correspondence between the values of c and of σ. In fact, for

both we obtained the best results with Random Subspace ensemble and with

Golub Feature Selection using in general low values of the regularization pa-

rameter c (0.001, 0.01 and 10, only in few cases C=1000) and higher values
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of the σ parameter for the gaussian kernel (500 and 1000). Moreover, the

best performances have been obtained with linear kernels, and this results

is confirmed also by the application of polynomial ones for which, in fact,

we reached the lowest test error value in most of the cases for the degree 1

of the polynome, reconducing the procedures to the linear case. As for the

Random Subspace ensemble, also for the Golub Feature Selection Random

Subspace ensemble the learning machines don’t learn with low dimensions

(i.e. 2, 4, 8, and 16 in some cases) due to the low contributes of information

in these dimensions.

All these considerations are outlined in next tables, in which we summa-

rized, for Colon (Tab 45), Leukemia (Tab 46) and DLBL-FL (Tab 47) data

sets, the results obtained by the application of the two methods.

Table 39: Colon data set: Comparison between Golub Feature Selection Random Sub-

space ensemble and Random Subspace Ensemble of SVMs results obtained with linear,

gaussian and polynomial kernel.

COLON data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 1024) 0.001 0.1270 0.1164 0.0870 0.0289 0.8696 0.8750

FS RS ens(s. dim 32) 0.01 0.0968 0.0913 0.0580 0.0155 0.8636 0.9250

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(s. dim 64) 500 10 0.1429 0.0071 0.0436 0.0127 0.8261 0.8750

FS RS ens(subsp dim 64) 200 1000 0.1065 0.0083 0 0 0.8364 0.9250

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 256) 1 10 0.1429 0.0123 0.0831 0.0026 0.8696 0.8500

FS RS ens(s. dim 64) 2 10 0.0968 0.0913 0 0 0.8636 0.9167
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Table 40: Leukemia data set: Comparison between Golub Feature Selection Random

Subspace ensemble and Random Subspace Ensemble of SVMs results obtained with

linear, gaussian and polynomial kernel.

LEUKEMIA data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 512) 0.01 0.0274 0.0057 0 1 0.9200 0.9600

FS RS ens(s. dim 512) 0.1 0.0417 0.2001 0.0506 0.0162 0.9787 0.9200

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(s. dim 128) 500 10 0.0822 0.0105 0.0036 0 0.9792 0.8000

FS RS ens(subsp dim 128) 1000 10 0.0863 0.0296 0.00034 0.0011 0.9896 0.768

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 1024) 2 10 0.0274 0 0 0 1 0.9200

FS RS ens(s. dim 256) 2 1000 0.0417 0.0073 0 0 0.9787 0.9000

128



Table 41: DLBL-FL data set: Comparison between Golub Feature Selection Random

Subspace ensemble and Random Subspace Ensemble of SVMs results obtained with

linear, gaussian and polynomial kernel.

DLBL-FL data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 2048) 0.01 0.0260 0.1005 0.0194 0.0031 0.9828 0.9474

FS RS ens(s. dim 128) 0.1 0.0260 0 0.0239 0 0.9828 0.9158

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(s. dim 512) 1000 10 0.0390 0 0.0129 0 0.9655 0.9474

FS RS ens(subsp dim 64) 50 1000 0.0321 0.0057 0.0137 0.0129 0.9828 0.8947

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 512) 9 10 0.0130 0 0.0065 0 0.9828 1

FS RS ens(s. dim 256) 1 10 0.0260 0.0107 0.0145 0.0017 0.9828 0.9474
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7 Comparison of Random Projections and

other methods in literature: Boosting and

Bagging

For Leukemia and Colon data set it is possible to trace a comparison among

results obtained with our experiments using Random Projection (Random

Subspace and PMO) ensemble and those obtained in literature by Diettling

and Bühlman, using the Boosting and the BagBoosting methods.

In this chapter we compared results obtained with our experiment for Colon

and Leukemia data sets with Boosting and BagBoosting results.
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7.1 Compared results

For Leukemia and Colon data set it is possible to trace a comparison among

results obtained with our experiments using Random Projection (Random

Subspace and PMO) ensemble and those obtained in literature by Diettling

and Bühlman. This is the scope of next paragraphs, in which we will show

the results of this comparison among Random Projection ensembles and the

Boosting and the BagBoosting methods.

7.2 Comparison between RP ensemble and BagBoost-

ing

Diettling and Bühlman. in their works (48) applied Boosting and Bagging

methods to Leukemia and Colon data sets. As seen in previous paragraphs,

boosting is a class prediction method developed in the machine learning

framework, particularly useful in high-dimensional prediction problems. It

consists in producing a classification from a sequential ensemble of base

learners, fitted with an adaptively reweighed version of the data set. In

the specific experiments conducted by Diettling and Bühlman, they used

a particular combination called BagBoosting because it uses bagging as

a module for the boosting algorithm applied to the microarray considered

data. In this approach, in each boosting iteration, the technique doesn’t rely

just on a single base learner, but aggregates the output from several ones,

generated from bootstrap samples, each obtained performing a replacement

from the reweighed training data.

Even if there are some differences in experiments set up, we will compare

the results obtained by Diettling and Bühlman on Leukemia and Colon data

set with those obtained with Random Projection ensemble (both from Ran-
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dom Subspace and from PMO), considering comparable the results on the

basis of the following considerations:

• BagBoosting incorporates a multivariate feature selection, so the results

don’t depend strongly on preliminary data filtering;

• the test error reported by Diettling and Bühlman show the outcome

with 200 genes and we will compare it to values obtained with a similar

subspace dimension, that is 256.

Moreover, the splitting of the original data sets into learning and test sets

has been done in both our experiments and in Diettling and Bühlman ones

in the same way, that is as in (13). For the Random Subspace projection

ensemble the compared results are reported in table 42 for the subspace

dimension 256, and in table 43 for the bast results obtained from Random

Subspace ensemble.

Table 42: Colon and Leukemia data set: Boosting and BagBoosting (on 200 selected

genes) test error compared with Random Subspace ensemble with linear, gaussian and

polynomial kernels and Subspace Dimension 256.

Boosting BagBoosting RS ens linear RS ens gaussian RS ens polynomial

Colon data set 0.1286 0.1610 0.1270 0.1746 0.1429

Leukemia data set 0.0567 0.0408 0.0822 0.0959 0.0685

Notwithstanding the differences in the two experimental environments, it

is evident by the results that in general Random Subspace ensemble outper-

form both Boosting and BagBoosting algorithm. This fact is well underlined

if we consider the best results obtained with Random Subspace ensemble

(Tab. 43), but is quite true also considering the results obtained with the

Subspace Dimension 256 (Tab. 42), comparable to the 200 genes selected
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Table 43: Colon and Leukemia data set: Boosting and BagBoosting (on 200 selected

genes) test error compared with the best results obtained with Random Subspace en-

semble with linear, gaussian and polynomial kernels.

Boosting BagBoosting RS ens linear RS ens gaussian RS ens polynomial

Colon data set 0.1286 0.1610 0.1270 (dim 1024) 0.1429(dim 64) 0.1429 (dim 256)

Leukemia data set 0.0567 0.0408 0.0254(dim 512) 0.0822 (dim 128) 0.0274 (dim 1024)

by Diettling and Bühlman. Particularly, in the case of Leukemia data set,

we obtained quite similar results, while for the Colon data set the Random

Subspace ensemble perform always better than Boosting and BagBoosting

methods. These considerations are consistent for all the kind of kernels, ex-

cept for gaussian ones that doesn’t improve the results.

We can state that also Random Projection PMO ensemble gives better re-

sults on Colon and Leukemia data set. In fact, as shown in table 44 Random

Projection PMO ensemble with linear kernel outperforms also Random Sub-

space Projection ensemble and, consequently, both BagBoosting and the

′simple′ Boosting results.

It is known that Boosting tends to overfit on gene expression data during

training. BagBoosting can inherit the same effect since it is based on Boost-

ing. Hence, both algorithms may not well generalize and classification errors

could be large. It could be the explanation of why an SVM ensemble can

outperform them, though an SVM may be also prone to overfitting on very

high dimensional data.
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Table 44: Colon and Leukemia data set: Boosting and BagBoosting (on 200 selected

genes) test error compared with the best results obtained with Random Subspace en-

semble and Random Projection with linear kernel.

Boosting BagBoosting RS ens linear RP ens linear

Colon data set 0.1286 0.1610 0.1270 0.1186

Leukemia data set 0.0567 0.0408 0.0254 0.0254
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8 Conclusions
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8.1 Discussion summary and further analyses

Results of comparison among Random Projection ensemble, single SVMs and

Golub Feature Selection RS ensemble showed that in general the proposed

Random Projection approaches outperforms or give equal results than the

other cited methods (see summary tables 45, 46, 47). In some cases the better

results are achieved using Random Subspace projection ensemble, in other

cases with PMO Random Projection ensemble, as stated depending on the

nature of data, even if the differences among the results obtained with these

two projection methods are quite unsignificant. In the table below we report

the results for linear kernel that outline that with Random Projection the

best results are achieved for a quite large choice of the subspace dimension,

particularly:

• on Colon data set with subspace dimension 1024 (that is for high sub-

space dimension) and c=0.001 (i.e. for low values of the regularization

parameter c) and with the PMO Random Projection ensemble method

(table 45);

• on Leukemia data set with subspace dimension 512 and c=0.01, with

Random Subspace Projection ensemble method;

• on DLBL-FL data set with subspace dimension 1024 and c=10, with

PMO Random Projection ensemble method.

Moreover, also with lower dimensions, results from Random Projection (RS

or PMO) ensemble with linear kernel are better than those from single SVMs,

and in some cases than the results obtained with the Feature Selection RS

ensemble.

Similar considerations could be done for gaussian kernel, even if with this
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kernel the learning machines learns less than with linear one, as shown in

the reported summary table. We have largely explained this behaviour of

the Gaussian kernel, by the theoretical point of view, at the beginning of

this chapter.

With Gaussian kernels, in fact, Random Projection ensembles do not im-

prove significatively the test error obtained with the other methods, even

with high σ values (see table 45 for summary results on Colon, table 46 for

Leukemia data set and table 47 for DLBL-FL data set).

Table 45: Colon data set: Comparison between Golub Feature Selection Random Sub-

space ensemble and Random Subspace Ensemble of SVMs results obtained with linear,

gaussian and polynomial kernel.

COLON data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 1024) 0.001 0.1270 0.1164 0.0870 0.0289 0.8696 0.8750

Single SVMs 0.001 0.1310 0.0191 0.0617 0.0043 0.8305 0.8875

FS RS ens(s. dim 128) 0.01 0.1081 0.1159 0.0687 0.0185 0.8318 0.9250

PMO RP ens (1024) 0.01 0.1186 0.0720 0.0640 0.0221 0.8164 0.9231

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens (s.dim 64) 500 10 0.1429 0.0071 0.0436 0.0127 0.8261 0.8750

Single SVMs 1000 100 0.2720 0.0276 0 0 0.4218 0.9000

FS RS ens(subsp dim 64) 100 1000 0.0917 0.0224 0.0493 0.0057 0.9791 0.7720

PMO RP ens (sbsp dim 64) 500 10 0.1497 0.0146 0.0493 0.0057 0.8130 0.8875

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 256) 2 10 0.1429 0.0123 0.0831 0.0026 0.8696 0.8500

Single SVMs 1 1 0.1300 0.0201 0.0910 0.0369 0.8261 0.8900

FS RS ens(s. dim 64) 2 10 0.0968 0.0913 0 0 0.8636 0.9167

PMO RP ens (sbsp dim 1024) 1 0.001 0.1129 0 0.0768 0 0.8636 0.9000
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Table 46: Leukemia data set: Comparison between Golub Feature Selection Random

Subspace ensemble and Random Subspace Ensemble of SVMs results obtained with

linear, gaussian and polynomial kernel.

LEUKEMIA data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 512) 0.01 0.0274 0.0057 0 1 0.9200 0.9600

Single SVMs 0.001 0.0359 0.0246 0 0 0.9979 0.9000

FS RS ens(s. dim 512) 0.1 0.0417 0.2001 0.0506 0.0162 0.9787 0.9200

PMO RP ens (s. dim 512) 0.01 0.0254 0.0169 0.0070 0.0032 1 0.8800

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens (s.dim 128) 100 10 0.0822 0.0105 0.0036 0 0.9782 0.8000

Single SVMs 1000 0.001 0.3435 0.0030 0.3425 0.0002 0.9828 0.8421

FS RS ens(subsp dim 128) 1000 10 0.08631 0.0296 0.00034 0.0011 0.9896 0.768

PMO RP ens (sbsp dim 128) 500 100 0.2780 0.0032 0.0201 0.0069 0.9854 0.6680

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 512) 2 10 0.0274 0.0712 0 0 1 0.9200

Single SVMs 3 1 0.0376 0.0040 0.0006 0.0013 0.9828 0.6120

FS RS ens(s. dim 512) 1 1000 0.0417 0.0151 0 0 0.9787 0.9260

PMO RP ens (s. dim 1024) 1 10 0.0230 0.0140 0.0072 0.0100 1 0.7980
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Table 47: DLBL-FL data set: Comparison between Golub Feature Selection Random

Subspace ensemble and Random Subspace Ensemble of SVMs results obtained with

linear, gaussian and polynomial kernel.

DLBL-FL data set: averages values for each cross validation

SVMs with LINEAR kernel

C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 2048) 0.01 0.0260 0.1005 0.0194 0.0031 0.9828 0.9474

Single SVMs 0.001 0.0311 0.0068 0.0123 0.0030 0.9811 0.9316

FS RS ens(s. dim 128) 0.1 0.0260 0 0.0239 0 0.98282 0.9153

PMO RP ens (s. dim 1024) 10 0.0245 0.0129 0.0068 0.0124 0.9828 0.8947

SVMs with GAUSSIAN kernel

σ value C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(s. dim 512) 1000 10 0.0390 0 0.0129 0 0.9655 0.9474

Single SVMs 1000 1000 0.0521 0.0082 0 0 0.9828 0.8421

FS RS ens(subsp dim 64) 50 1000 0.0321 0.0057 0.0137 0.0129 0.9828 0.8947

PMO RP ens (sbsp dim 512) 50 1 0.1170 0.0029 0 0 0.9828 0.5789

SVMs with POLNOMIAL kernel

polynomial degree C value Test err St dev Training err St dev Sensitivity Specificity

RS ens(subsp dim 512) 9 10 0.0130 0 0.0065 0.0079 0.9828 1

Single SVMs 3 1 0.0376 0.0040 0.0006 0.0013 0.9828 0.8100

FS RS ens(s. dim 256) 1 10 0.0260 0.0107 0.0145 0.0017 0.9828 0.9474

PMO RP ens (sbsp dim 512) 3 0.001 0.0390 0.0207 0.0105 0.0024 0.9828 0.8947
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As highlighted at the beginning of this chapter, summary tables 45, 46,

47, show that the results confirm that the best choice for the kernel type

is that based on a low polynomial degree. In fact, we obtained the best

results with low polynomial degrees (1-3) on all the data sets, except for the

DLBL-FL one (polynomial degree 9).

Moreover, for about the DLBL-FL data set, this behaviour is due to the

nature of data, particularly sparsed. In fact, in this case, also gaussian

kernels give better results, compared to the analogue cases on the two other

data sets.

The results, outlined in the summary tables, show that:

• On Colon data set we achieved the best results for polynomial degree

1 and regularization parameter c=10 for Random Subspace Projection

method and c=0.001 for PMO Random Projection method, in this case

with a statistical significance lower than 5%.

• On Leukemia data set we obtained the minimum test error for the

polynomial degree 2 (but also with the degree 1) and c=10 with PMO

Random Projections, but the best results have been achieved with poly-

nomial degree 9 and with Random Subspace Projection method, with

c=10, also in this case with a statistical significance lower than 5%;

• On DLBL-FL data set the minimum test error is achieved for polyno-

mial degree 9, with c value 10 and Random Subspace Projection, even if

also PMO method gives good performances, with a polynomial degree

3 (statistical significance of 5%).

The comparison between the results obtained by the application of Random

Subspace and PMO Random Projection ensemble on Leukemia and Colon

data sets and results in literature obtained with Boosting and BagBoosting
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(48) methods (see table 48), confirms the effectiveness of Random Projec-

tion ensemble. In fact, also in this case we obtained similar (Leukemia data

set) or better (Colon data set) results for all the kinds of applied kernels.

Considering the differences among our experimental setup and the gene se-

lection performed by Diettling and Bühlman (200 genes), we compared these

results from literature both to results obtained with Random Subspace en-

semble with subspace dimension 256, and to the best results by Random

Subspace ensemble with higher subspace dimension.

Table 48: Colon and Leukemia data set: Bagging and BagBosting (on 200 selected genes)

results compared with the best results obtained with Random Subspace ensemble and

with the results obtained for the subspace dimension 256, both for linear, gaussian and

polynomial kernels.

best results Boosting BagBoosting RS ens linear RS ens gaussian RS ens polynomial

Colon data set 0.1914 0.1610 0.1270 (dim 1024) 0.1429(dim 64) 0.1429 (dim 256)

Leukemia data set 0.0567 0.0408 0.0274(dim 512) 0.0822 (dim 128) 0.0274 (dim 1024)

subsp dim 256 Boosting BagBoosting RS ens linear RS ens gaussian RS ens polynomial

Colon data set 0.1914 0.1610 0.1587 0.1746 0.1429

Leukemia data set 0.0567 0.0408 0.0822 0.0959 0.0685

For each experiment we performed also other kind of analysis on the ob-

tained results. In fact, we used data sets from clinical field, so we considered

important to analyse also some parameters usually observed in the biomed-

ical analysis.

As an example of the other performed investigations, see figures 36, showing,

for the Colon data set, the test and the training error with respect to the

subspace dimensions, and the curves for sensitivity, specificity and precision

related to subspaces dimensions.
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• sensitivity (values between 0 and 1), represents how many true positive

(TP); are recognized by the machine

• specificity, complementary to the sensitivity, how many true negative

(TN) are recognized.

In biomedical field, TP (true positive) indicates, relatively to the diagnosis

criteria, the ′true ill′, that is the true positive, predicted and effectively

ill. TN (true negative), indicates the safe subjects, individuated, among

all, by the learning machine. Finally, FN (false negative) represent the false

negative, that is the predicted not ill that after result ill (errors of the learning

machine). About precision, it is defined through the following formula:

TP

TP + FP
(21)

that is the report between true positives and the sum of it with the false

positives.

Single linear SVMs trained using the entire set of gene expression data

achieved an error of 12.70±1.91 % according to a 5-fold cross validation eval-

uation of the generalization error. With random subspace ensembles of linear

SVMs, we obtained the minimum of the test error using 1024-dimensional

subspaces, but also with 16 to 1024-dimensional subspaces results are equal

or better than single SVMs trained on the entire feature space (Fig 35 a).

Interestingly enough, sensitivity is very high if very low dimensional sub-

spaces are applied, but at the expenses of the specificity (Fig 35 b). Indeed

using 2 or 4-dimensional subspaces the base SVMs learn nothing, predicting

that all samples are malignant, without any distinction between normal and
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Figure 35: SVM random subspace ensembles results on the colon data set (5-fold cross

validation). (a) Test and training error with respect to the dimension of the subspace

(b) Sensitivity, specificity and precision (c) Test error curve with standard deviation

values (d) Training error curve with standard deviation values .

cancerous tissues. The ensembles start to learn when 8 random genes are

selected, and if we apply at least 16 gene-subspaces we achieve a reasonable

specificity at the expense of a low decrement of the sensitivity (Fig 35 b).
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Fig. 36 (a) shows that both the base learner training and test error de-

crease monotonically with the subspace dimension. Similar consideration are
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Figure 36: Colon data set: (a) Average training and test error of the base learners

(component predictors) with respect to the subspace dimension (b) Test error of the

1024 dimensional SVM random subspace ensemble with respect to the number of the

base learners on the 5 folds.

valid for the Leukemia and for the DLBL-FL data sets, for which Random

Subspace Ensemble achieve similar general results.

Similar inspections have been done for the other data sets and with gaussian

and polynomial kernels, obtaining graphics confirming all the results showed

in previous specific chapters of this work.

To deep understand the ensemble behaviors, we measured also the rela-

tive error reduction (ERRred) for all the conducted comparisons, relatively

to each data set, done respect to random Subspace (due to the better general

results obtained with this Random Projection method).

The relative error reduction has been computed in the following way:
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ERRred =
(ERRRS) − (ERRM )

MAX(|ERRM |, |ERRRS|) (22)

Where:

• ERRRS stands for the Random Subspace minimum test error;

• ERRM stands for the minimum test error for the considered method.

Table 49: Colon data set: Relative error reduction with the considered methods com-

pared with Random Subspace ensemble (RS). The negative sign indicates that the con-

sidered method outperform the RS ensemble by the indicated quantity.

Colon data set: Relative Error Reduction

SVMs with LINEAR kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.0305 RS

RS vs FS -0.2378 FS

RS vs RP -0.0947 RP

RS-Boost 0.3364 RS

RS-BagBoost 0.2111 RS

SVMs with GAUSSIAN kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.4746 RS

RS vs FS -0.0224 FS

RS vs RP 0.0390 RS

RS-Boost 0.2534 RS

RS-BagBoost 0.1124 RS

SVMs with POLYNOMIAL kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs -0.0903 SINGLE

RS vs FS -0.3226 FS

RS vs RP -0.2099 RP

RS-Boost 0.2534 RS

RS-BagBoost 0.1124 RS
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For the Colon data set (table 49), the computation of the percentage

of Relative Error Reduction highlights that the best performance of the

Random Projection ensemble have been obtained with the linear kernel.

Considering the theoretical results obtained and showed in the third chapter

of this work, also the relative error reduction results underlines the weakness

of the polynomial with high degree, and even more of the gaussian kernel,

compared to results achieved with linear kernels.

Table 50: Leukemia data set: Relative error reduction with the considered methods

compared with Random Subspace ensemble (RS). The negative sign indicates that the

considered method outperform the RS ensemble by the indicated quantity.

Leukemia data set: Relative Error Reduction

SVMs with LINEAR kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.2368 RS

RS vs FS 0.3429 RS

RS vs RP -0.2991 RP

RS-Boost 0.5168 RS

RS-BagBoost 0.3284 RS

SVMs with GAUSSIAN kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.7607 RS

RS vs FS 0.0476 RS

RS vs RP 0.7043 RS

RS-Boost -0.3102 Boosting

RS-BagBoost -0.5036 BagBoosting

SVMs with POLYNOMIAL kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.4031 RS

RS vs FS 0.3429 RS

RS vs RP -0.1605 RP

RS-Boost 0.5168 RS

RS-BagBoost 0.3284 RS
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Table 50 and table 1 show the relative error reduction estimated respec-

tively for Leukemia and for DLBL-FL data sets.

Table 51: DLBL-FL data set: Relative error reduction with the considered methods

compared with Random Subspace ensemble (RS). The negative sign indicates that the

considered method outperform the RS ensemble by the indicated quantity.

DLBL-FL data set: Relative Error Reduction

SVMs with LINEAR kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.1640 RS

RS vs FS 0 FS

RS vs RP -0.2122 RP

SVMs with GAUSSIAN kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.2514 RS

RS vs FS -0.0307 FS

RS vs RP 0.6667 RS

SVMs with POLYNOMIAL kernel

Compared methods % Rel. err. reduct. Best method

RS vs single SVMs 0.6543 RS

RS vs FS 0.5000 RS

RS vs RP 0.8331 RS
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8.2 Conclusions and future developments

The research work has been conducted with a double approach: in a deduc-

tive way, from theory, demonstrating the hypothesis initially originated by

the Johnson-Lindenstrauss Lemma about distance-preserving random pro-

jections (see chapter 3), and in an inductive way, performing the experiments

on gene expression level data sets, to find a confirmation of the theoretical

assumptions. The goodness of the method have been demonstrated both the-

oretically and experimentally: we obtain an ε-closed solution, i.e. low distor-

tion solutions. Particularly, Polynomial Kernels are appreciatively preserved

by Random Projections, up to a degradation proportional to the square of

the degree of the polynomial. Because of the randomness of elements in

Random Projections, we could bring diversity to member prediction, com-

bining, through the use of the ensemble methods, more random projections

on different sets of features.

The two ways to approach the ′curse of dimensionality′ problem conduced

both to the same conclusion, reinforcing one each other the research results.

As shown by experimental conclusions, in fact, Random Subspace Projection

Ensemble generally outperform the other methods, with statistical signifi-

cance. For about the PMO Random Projection, the experimental results

mainly show that in some cases we have an improvement with respect to the

RS projections, with statistical significance, but in other we obtain worse re-

sults, without statistical significance. There are two possible interpretations

of these results:

• one concerns the nature of the data,

• the other one directly descends from the theoretical results obtained in
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our research.

In fact, for about the considered data sets, gene expression level data are ex-

tremely sparse, and this fact easily generates overfitting. This consideration

is evidenced especially by results on experiments made with Gaussian ker-

nels. Referring to the summary tables 45, 46, 47, shown in this paragraph,

we can note that we have better results with high values of σ. The high val-

ues of σ is translated into the ′smoothness′ of the resulting fitting curve, and

this is strongly related to the nature of data, for which too complex learning

machines do not give good results. We can note, in fact, that we obtained

the better results applying linear and low polynomial degree kernels.

As the work has been conducted with a double approach, also the theoreti-

cal results confirm the goodness of the experimental evaluation. Concerning

this point, we have to recall that in paragraph 3 we proved that, applying

the Random Projection method, we have a degradation proportional to the

square of the degree of the polynomial. The theoretical results originated

by Johnson-Lindenstrauss Lemma (paragraph 3.2). We discussed two cases:

the first (see paragraph 3.4) related to a non supervised problem (i.e. clus-

tering); the second related to supervised learning (i.e. perceptron or SVM).

In the case of Clustering algorithms, we proved the following theorem:

THEOREM. If d’=Ω(log N /ε2 ) then, with high probability:

1

1 + ε
≤ J(C μ|μD)

J(C |D)
≤ 1 + ε (23)

The theorem shows that the sum of squared error criterion is preserved

by Random Projections, and this observation allows to interpret Random

Projection as a noise inserted in the data. The degradation of the quality is

directly related to d′ = O(lg N/ε2).
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This results is confirmed also in the second case, i.e. considering the Poly-

nomial kernels, used in our experiments. For the polynomial kernels we

prove that, by (20) in paragraph 3.5, if we suppose to have a training set

< (x1, y1), ..., (xN , yN) > on which to apply a learning algorithm such as

perceptron or SVM with kernel Kα, the degradation of the quality is related

to d′ = O(α2 · lg N/ε2), evidentiating a quadratic dependency in the degree

of the polynomial.

Notwithstanding the ensemble method applied improved the goodness of the

results, we can observe that we obtained, as assumed in theory, the best re-

sults for linear kernels and low degree polynomial kernels (1-3), as evidenced

in tables 45, 46, 47.

We can conclude that:

• in general, with all the kind of kernels, Random Projection (Random

Subspace or PMO, depending on the characteristics of the considered

data set) ensemble of SVMs outperform all the other methods for many

choice of the subspace dimensions.

• For all the kinds of kernels, only if too small subspaces are used we

cannot obtain good results, because data are too uninformative.

• For linear kernel the best accuracy is achieved for medium/high dimen-

sions of the subspaces and for low values of the regularization parameter

c (0.001/0.01) for all the selected data sets.

• Gaussian kernel Random Projection ensemble outperform single SVMs

for all the selected data sets and in many cases outperform or give equal

results of compared to Feature Selection Random Subspace ensemble,

but the learning machines learn less than in the case of linear kernels.
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The procedures are quite insensitive to the values of the regularization

parameter c, but sensitive to the σ values. In fact, best results have

been achieved for many values of c, particularly with c=10, but for high

values of σ (500 or 1000) in all the considered data sets.

• For polynomial kernel, we obtained the best results with in general low

polynomial degrees (1 or 2 in some cases) in all data sets, except for the

DLBL-FL one (polynomial degrees 9). Also in this case, procedures are

quite insensitive to the value of the regularization parameter c, even if

the lowest test error have been achieved with c=10 (a medium value).

This fact underline also the goodness of the theoretical results and

justifications for the use of Random Projections, discussed in the first

chapters of this work.

• The comparison between results obtained on Leukemia and Colon data

sets and those at disposition in literature on the same data, showed that

Random Projection ensemble outperform also Boosting and BagBoost-

ing methods, even considering the differences among the experiments.

• All this considerations highlight that the information carried out by

many genes is highly correlated. This results can also suggest than

many genes are not correlated with the discrimination of the functional

classes.

• As expected, the aggregation of more base learners, that is the en-

semble methods, enhance the results, improving the accuracy of the

Random Projection methods.

The significant differences of the performances of the Random Projection

ensemble compared with single SVMs, Feature Selection Random Subspace

ensemble, Boosting and BagBoosting, cannot be only explained by the accu-
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racy of the base learners, because in general the best ensemble performance

is yet obtained with medium subspace dimensions (from 256-512 subspace

dimensions) while the best base learner accuracy is achieved with high di-

mensional subspaces.

Concluding, all the experiments confirmed the theoretical hypothesis done on

the effectiveness of the application of Random Projections to gene expression

level data and the theoretical results have shown a strong correspondence in

experimental evidences, and vice-versa.

Next steps in this research field will concern the exploration of unsupervised

Random Projection methods, that gives good results for DNA data analy-

sis. In general, Random Projections seem to be well-suited for a large kind

of applications on data characterized by a low a priori knowledge on data

structures. This is the case, for example, of food origin classification, toxi-

cogenomics and some application of mass-spectrometry.

Moreover, another research direction could surely be the refining of the pro-

posed Projection methods, working on the parameter settings, to find a cor-

respondence among the parameters settings and the specific data set charac-

teristics. In fact, our work showed that the results depends not only on the

values of parameters such as the regularization parameter C, the σ value and

the polynomial degree, but also on the projected subspace dimension. In this

work the random projection have been performed on dimensions obtained

with a bisections method, but we aim to relate more strictly the character-

istic of the data set structure, or of the data set dimensions, to the choice

of the dimensions for the projected subspaces, on the basis of the theorem

that shows the dependence on the polynomial degree.

Similarly, also the base learner number is a parameter to refine, trying to

link it to some charachteristics of a considered data set. In this way, saving
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the goodness of the test error, we could obtain a best performance for the

computational cost in term of elaboration time and in term of requirements

for the computational resources.

For about the ensembles, we will study the method through the Bias-variance

analysis (71). In fact, Bias-variance analysis can be used to design ensemble

methods well tuned to the properties of a specific base learner. Bias-variance

analysis provides a characterization of the error decomposition, by means of

the analysis of the relationships between bias, variance, SVMs kernel type

and its parameters. As shown in significant works in literature (69), (70),

the bias-variance decomposition offers a rationale to develop ensemble meth-

ods using SVMs as base learners, and this is interesting expecially in the case

of the polynomial kernels, generally characterized by complex relationships.

The method could be surely applied with a large confidence probability

to clinical and diagnostic problems and it could be also applied to other

research fields affected by the problem of data sets characterized by high di-

mensions and few certain knowledge. This is the case of fraud detection, food

classification, data from spectrometry and bio-molecular analysis problems.
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