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Abstract

The logic of time is one of the most interesting modal logics, and its importance

is widely acknowledged both for philosophical and formal reasons. In this thesis, we

apply the method of internalisation of Kripke-style semantics into the syntax of sequent

calculus to the proof-theoretical analysis of temporal logics.

Sequent systems for different flows of time are obtained as modular extensions of a

basic temporal calculus, through the addition of appropriate mathematical rules that

correspond to the properties of temporal frames: a general and uniform treatment is

thus achieved for a wide range of temporal logics. All the calculi enjoy remarkable

structural properties, in particular are contraction and cut free.

Linear discrete time is analysed by means of two infinitary calculi. The first is

obtained by means of a rule with infinitely many premises, and the second through a

new definition of provability which admits, under certain conditions, derivation trees

with infinite branches.

The first calculus enjoys the desired structural properties, but the presence of an

infinitary rule is harmful for proof analysis. Two finitary systems are identified by

replacing the infinitary rule with a weaker finitary rule, and by bounding the number

of its premises, respectively. Corresponding, somehow complementary, conservativity

results are proved with respect to adequate fragments of the original calculus.

The second calculus stems from a closure algorithm which exploits the fixed-point

equations for temporal operators and gives saturated sets of closure formulas from a

given formula. Finitisation is obtained in the form of an upper bound to the proof-

search procedure, and decidability follows as a major consequence.
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Introduction

According to Augustine of Hippo we know what time is, but we are not able to

communicate our knowledge through an explicit explanation: “Quid est tempus?

Si nemo ex me quaerat, scio; si quarenti explicare velim, nescio”1. Nonetheless,

time has been deeply analysed in its different issues both for its own interest,

and because many disciplines have to some extent to cope with it:

Time is ubiquitous. Look to such diverse fields as literature and
computers, ethics and physics, logic and rhetoric, philosophy and
natural science. If you are studying any of these subjects, profes-
sionally or con amore, you are very likely to come across temporality
as a crucial factor to your studies.

For this reason, people are led into the study of time from a variety
of highly different disciplines. For the same reason, the study of
time is useful and enlightening, both for its own sake and for a large
number of specific purposes. [Øhrstrøm and Hasle (1995), p. vii.
Authors’ italics]

The birth of symbolic temporal logic in the late 1950’s is intimately con-

nected with the name of Arthur Prior and his interest in classical philosophical

problems, such as the conflict between fatalism and free will: even if the logic

of time cannot settle the quarrel, it can elucidate any hidden preconception and

remote consequence of the choice for either rival conception. The study of the

answers given to this question by ancient philosophers, including Aristotle and
1Augustine, Confessiones XI, xiv, 17.
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Diodorus Cronus, and medieval ones such as Ockham and Peter de Rivo sug-

gested him to consider propositions as endowed with temporal characterisations,

and the work of Findlay (1941) gave him the idea to develop a logic of time on

the model of the then nascent modal logic.

Temporal operators for future and for past were then to be formulated in

analogy to the modalities 2 and 3 of necessity and possibility (see also Prior

1957, which bears the significant title “Time and Modality”). Expressions of

the form FA and PA were introduced with the intended meanings ‘it will be

the case that A’ and ‘it has been the case that A’, respectively, whereas the dual

operators G ≡ ¬F¬ and H ≡ ¬P¬ have the intuitive interpretations ‘it will

always be the case that A’ and ‘it has always been the case that A’. Further

operators were later introduced to denote the next and the previous moment

(von Wright 1965, Scott 1965), and the introduction of the ‘Until’ and ‘Since’

operators into linear-time logic in Kamp (1968) allowed the formulation of a

more expressive temporal logic. Several versions of temporal logic have been

considered, each reflecting the properties of the intended flow of time (linearity,

unboundness, discreteness, ... and so on).

In recent years temporal logic has been the focus of a great number of studies

because of its applications in computer science, expecially in the specification

and verification of reactive systems2. However, because of the specific purposes

of such studies, the analysis of the future flow of time has almost always been

privileged, to the detriment of a wholesome approach heeding past events too.
2It is worth noting that the Turing Award 2007 has been won by E. M. Clarke,

E. A. Emerson and J. Sifakis for their contributions in developing Model Checking,
a verification technology in which temporal logic plays a substantial rôle. See also
http://awards.acm.org/homepage.cfm.
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As a consequence of the increasing interest the logic of time has been gain-

ing, semantical analysis of temporal logic has been well investigated both in

its philosophical grounds (Schindler 1970, van Benthem 1984, Goldblatt 1992)

and in its applicative potential (Gabbay et al. 1980, Manna and Pnueli 1981,

Lichtenstein and Pnueli 2000, Huth and Ryan 2004).

On the other hand, a sufficiently developed proof-theoretical analysis for

temporal logic is still lacking, and when syntactic systems are given (as for ex-

ample in Nishimura 1980, Schmitt and Goubault-Larrecq 1997, Schwendimann

1998, Bolotov et al. 2006), different flows of time are dealt with separately, and

not as modular extensions of a basic temporal calculus. A significant excep-

tion is represented by display logic (Belnap 1982, Wansing 1998), that covers

a variety of temporal logics by means of a generalised, but rather complicated,

syntax.

Therefore, we decided to dedicate this thesis to the formulation of appropri-

ate sequent calculi for temporal logic, by means of a general methodology which

allows to deal uniformly with several systems. For the sake of clarity, we recall

here the main issues of sequent calculus.

Sequent calculus was formulated at the beginning of the 1930’s by Gerhard

Gentzen: it exploits a particular notation, which formalises multisuccedent ar-

guments, while keeping track of the open assumptions at any step of the deriva-

tions. A sequent is a syntactic object of the form

A1, . . . , Am ⇒ B1, . . . , Bn

with the same informal meaning as the formula

(A1 & . . .& Am) ⊃ (B1 ∨ · · · ∨Bn)

3



The antecedent A1, . . . , An and the succedent B1, . . . , Bm (also indicated with

the Greek capital letters Γ and ∆, respectively) are in general considered as

multisets of formulas, where the number of occurrences of a given formula is

relevant, but not the order in which the formulas appear.

Sequent calculus consists of logical rules, which introduce logical constant

into the left- and right-hand side of sequents, and are formulated on the base

of a natural correspondence with the intended interpretation. It also contains

the structural rules of Weakening, Contraction and Cut, which, as their name

suggests, do not add logical constants, but modify the structure of the sequents.

The rule of cut is the most important structural rule, and it is generally

explained as follows: the derivation of a theorem is breaken down into two

easier lemmas, which are then chained together according to the scheme of the

rule

Γ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

The main achievement of Gentzen calculus, also called Hauptsatz, states that

it is possible to do without cut rule: as a consequence, the subformula property

is obtained, which says that every formula in a derivation is a subformula of the

formulas in the endsequent.

Sequent calculus affords a fully satisfactory method of structural proof analy-

sis for systems of pure logic (classical and intuitionistic predicate logic), but until

the end of the 1990’s there was a common belief that “the Hauptsatz fails for

systems with proper axioms”3. However, in Negri and von Plato (1998), and in

Negri (2003) a general method was proposed, that permits to transform certain

axiomatic systems into systems of nonlogical (mathematical) rules of inference,
3Girard (1987), p. 125.
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while preserving the Hauptsatz and the other remarkable structural properties

of sequent calculus.

In Negri (2005) the method was generalised to treat normal modal logic as

labelled sequent calculi extended with mathematical rules, in which the usual

Kripke-style semantics becomes part of the formalism. Every formula in a se-

quent is either a labelled formula or a relational atom, which are the syntac-

tic counterparts of the forcing relation and the accessibility relation of Kripke

frames4, respectively: the logical rules for modal operators are formulated on

the base of their semantical explanation, and the conditions characterizing the

accessibility relation are added in the form of mathematical rules.

In this thesis we propose to apply the methodology of the internalisation

of the relational semantics into the syntax of sequent calculus to the proof-

theoretical analysis of the most important systems of temporal logic.

Synopsis

Chapter 1 is dedicated to the illustration of some preliminary issues. First, we

introduce tense logic with reference to its birth at the hands of A. N. Prior,

and discuss the main problems encountered in formulating sequent calculi for

temporal and modal logics. Then, we describe the general methodology of the

internalisation of Kripke semantics into the syntax of sequent calculi, originally

proposed in Negri (2005) for normal modal logics. After a short introduction of

the main notions of relational semantics, we recall the results proved for the ba-

sic modal logic G3K and its extensions with mathematical rules for accessibility

relation R expressible as universal axioms or geometric implications. Finally,
4See below, Section 1.3.
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we discuss philosophical and methodological issues of labelled calculi with inter-

nalised semantics in response to some objections recently raised against them.

In Chapter 2, a labelled calculus is formulated for the basic temporal logic

Kt by justifying the logical rules for the temporal operators G, F, H and P

on the base of their meaning explanations in terms of the inteded relational

semantics. Next, we show how several temporal systems can be obtained as

modular extensions of the basic calculus G3Kt, through the addition of mathe-

matical rules for the frame properties of the accessibility relation. We prove that

the calculus G3Kt and its extensions enjoy remarkable structural properties, as

height-preserving admissibility of the substitution of labels, height-preserving

invertibility of all the rules, and height-preserving admissibility of the struc-

tural rules of weakening and contraction. The syntactic proof of cut elimination

allows to prove the weak subformula property: every formula in a derivation is

a subformula of the endsequent or a relational atom. We also prove subterm

property, stating that every label in a derivation is a label in the endsequent or

an eigenvariable.

In Chapter 3, we consider, as a case study, the sequent calculus G3LT for

Priorean linear discrete time logic. Rules for the next-time and the previous-

time operators, T and Y, are formulated in analogy to those for G and H, and

an infinitary mathematical rule is required corresponding to the definition of the

accessibility relation < for G and H as the transitive closure of the accessibility

relation ≺ for T and Y. Two partial finitisation are then considered, and con-

servativity results are proved with respect to suitable fragments of the infinitary

system G3LT. The labelled approach allows also to formulate temporal rules for

Kamp’s operators Until and Since. Structural properties are proved for G3LT

6



and for its extension with the rules for Until and Since.

In Chapter 4, an alternative formulation of the temporal rules, based on their

fixed-point definition, gives the system G3LTcl. All the rules of the latter are

finitary, but proof are generally constituted by derivation trees with (at least)

an infinite branch. Decidability is then proved by showing that G3LTcl admits

terminating proof search, with an exponential bound calculated on the lenght

of the formula corresponding to the endsequent. The extension with fixed point

rules for Until and Since is also considered. The system is finally compared with

the infinitary calculus of Chapter 3.

The last chapter is dedicated to the conclusions, and to the description of

possible directions for future work.
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Chapter 1

Preliminaries

1.1 Prior’s tense logic

Modern logic generally considers the truth value of a proposition as unchange-

able with time: a statement of the form ‘Socrates is sitting’ has to be considered

incomplete and inappropriate for a logical treatment unless its temporal refer-

ence is specified by an expression of the form ‘at moment x ’. This opinion should

be correlated with the tight connection between modern logic and mathematics,

where any proposition is unalterably true or unalterably false: a mathematical

thesis, once proved, is true forever.

Tenses were then banned from logical statements, and replaced with the

atemporal copula1. Propositions like ‘Socrates was sitting’ were thus rendered

by complicated paraphrases, such as ‘There exists an instant t, such that t

is earlier than now and Socates is sitting at t ’ (where the verbs ‘exists’, ‘is’

and ‘is sitting’ should be interpreted atemporally): tensed propositions were

1Italian readers can find an interesting discussion of this question in the introduction of
Pizzi (1974).

8



transformed into atemporal predicates of instants in a first-order logic with

some kind of earlier-later relation.

This opinion was initially shared by A. N. Prior, who considered “not only

correct but also traditional to think of propositions as incomplete, and not ready

for accurate logical treatment, until all time-references had been so filled in”2.

However, Prior’s deep knowledge of the history of philosophy and his studies

in ancient and medieval logic allowed him to rediscover that according to the

scholastics and to Aristotle

‘statements and opinions’ vary in their truth and falsehood with
the times at which they are made or held, just as concrete things
have different qualities at different times; though the cases are differ-
ent, because the changes in truth value of statements and opinions
are not properly speaking changes in these statements and opinions
themselves, but reflexions of changes in the objects to which they
refer [Prior (1967), p. 16]

Moreover, a short hint by Findlay (1941) suggested him that “the calculus of

tenses should have been included in the modern development of modal logics”3:

Mary Prior has described the first occurrence of this idea: “I remem-
ber his waking me one night, coming and sitting on my bed, and
reading a footnote from John Findlay’s article on Time, and saying
he thought one could make a formalised tense logic”. [Øhrstrøm and
Hasle (1995), p. 170]

Temporal operators F and P were to be introduced with the intuitive mean-

ing of ‘it will be the case that’ and ‘it has been the case that’ respectively, and

with dual operators G ≡ ¬F¬ (‘it will always be the case that’) and H ≡ ¬P¬

(‘it has always been the case that’). In analogy with the modal operators ‘it

is possible that’ and ‘it is necessary that’, tense-forming operators for past
2Prior (1967), pp. 15–16.
3Findlay (1941), p. 233.
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and future should be considered as “expressions that form sentences from sen-

tences”4, whereas the present should be considered as a “zero tense-inflexion”5

corresponding to the empty modality.

Several systems of temporal logic were then formulated according to the

intended properties of the structure of time. The most general tense-logical

system is usually known as Kt, the Hilbert-style axiom schemes of which are

the following:

A1. p is a thesis for every propositional tautology p

A2. G(p ⊃ q) ⊃ (Gp ⊃ Gq)

A3. H(p ⊃ q) ⊃ (Hp ⊃ Hq)

A4. p ⊃ HFp

A5. p ⊃ GPp

Observe that axioms A2 and A3 say that the temporal operators G and H

distribute over the implication, whereas axioms A4 and A5 state that a present

event has been future at a past moment, and will be past at a future one,

respectively. All the axioms are immediately provable for arbitrary well-formed

formulas p, q, . . . , whereas other theses are derivable by means of the following

rules of inference:

R1. If ` p and ` p ⊃ q, then ` q

R2. If ` p, then ` Gp

R3. If ` p, then ` Hp

R1 is the usual modus ponens rule. The rules R2 and R3 are usually called

‘temporal generalisation rules’, and are the tense-logical analogouses of ‘neces-

sitation rule’ in modal logics.
4Prior (1967), p. 15.
5Prior (1967), p. 14.
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The calculus Kt is the basic temporal system in the sense that it does not

make any assumption on the flow of time. Richer systems can be obtained if

special conditions are imposed on the structure of time by adding to the calculus

some supplementary axioms. For example, the axiom

FFp ⊃ Fp (equivalently PPp ⊃ Pp)

corresponds to transitivity (‘if it will be the case that it will be the case that p,

then it will be the case that p’); whereas the axiom

Fp ⊃ FFp (equivalently Pp ⊃ PPp)

corresponds to density (‘if it will be the case that p, then it will be the case that

it will be the case that p’). We can also consider some axioms which produce a

somehow asymmetric behaviour of past and future. For instance, if we add the

thesis

FPp ⊃ (Pp ∨ p ∨ Fp)

corresponding to backwards linearity (‘if it will be the case that it has been the

case that p, then it has been or it is or it will be the case that p’), we obtain a

time structure with a tree shape which is linear towards the past, and possibly

branching towards the future. A linear time structure is obtained by adding

also the axiom of linearity towards the future (‘if it has been the case that it

will the case that p, then it has been or it is or it will be the case that p’)

PFp ⊃ (Pp ∨ p ∨ Fp)

Finally, the axioms for left seriality (‘if it has always been the case that p, then

it has been the case that p’) and right seriality (‘if it will always be the case

that p, then it will be the case that p’)

Hp ⊃ Pp

Gp ⊃ Fp

11



correspond to a time structure without a first and a last instant, respectively.

Prior did not formulate systematically an explicit semantics for tense logic;

however, in a paper dating back to 1958, he suggested that tense logic (also

called PF-calculus after the temporal operators P and F) could be interpreted

within a first-order monadic logic for the earlier-later relation. In the latter

calculus the variables x, y, z, . . . are supposed to range over dates or instants of

time, whereas the propositional variables p, q, . . . are considered as functions of

dates, with the expression px being read as ‘p at time x ’; a binary relation l is

also added, with lxy being read as ‘x is later than y’6. Tense-forming operators

are then interpreted as follows, with z representing “the date at which the

proposition under consideration is uttered” 7:

Fp ≡ ∃x (lxz & px) Gp ≡ ∀x (lxz ⊃ px)

Pp ≡ ∃x (lzx & px) Hp ≡ ∀x (lzx ⊃ px)

The above mentioned proposal of interpreting tense logic within the logic

of earlier and later is regarded by Goldblatt (2005) as a reason for numbering

Prior among the precursors of relational semantics, the birth of which is usually

attributed to Kripke (1959). As observed by Goldblatt (2005), Prior did not

however pursue the implicit relational model theory related to the l-calculus,

“and would not have thought it philosophically worthwhile to do so”8. On the

contrary, Prior argued that

If there is to be any ‘interpretation’ of our calculi in the metaphysical
sense, it will probably need to be the other way round; that is, the
l-calculus should be exhibited as a logical construction out of the
PF-calculus rather then vice versa. [Prior (1958), p. 116. Author’s
italics]

6See Prior (1958), pp. 112–113.
7Prior (1958), pp. 113.
8Goldblatt (2005), p. 27.
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In later works, this idea has been further developed as a major programme:

in analogy with Quine’s ‘three grades of modal involvement’9, Prior (1968)

discussed four grades of tense-logical involvement “by presenting a series of

calculi involving the notion of being true [...] at an instant, making more and

more controversial assumptions at each main stage”10.

In the first and lower grade, tense operators are not assumed as primitive,

but are defined as metalinguistic abbreviations for expressions in the language

of an earlier-later calculus with a binary relation T (a, p), ‘it is the case at the

instant a that p’. The latter calculus is named U-calculus after the symbol

U used for the earlier-later relation, with Uab being read as ‘the instant a is

earlier than the instant b’. Prior (1968) uses a prefix notation; however, for ease

of reading, we shall adopt the infix notation and the usual symbol < for the

precedence relation. The temporal operators are thus defined as follows:

T (a,Gp) ≡def ∀b (a < b ⊃ T (b, p))

T (a,Hp) ≡def ∀b (b < a ⊃ T (b, p))

Only formulas of the form a < b and T (a, p) are complete propositions, the

truth value of which is independent of time; tensed propositions, denoted for

instance by the variable p, are nothing but predicates of instants, and “tense

logic, we might say, is a logic of pure predicates which are artificially torn away

from their subjects and given a spurious indipendence”11. In a sense, the logic

for the earlier-later relation is considered as a proper characterisation of time:

in its framework the basic tense logic (the above mentioned Kt) can be proved

as a mere by-product of the definitions above, whereas special conditions can

be imposed on the flow of time by adding to the U-calculus supplementary
9Quine (1953).

10Prior (1968), p. 116.
11Prior (1968), p. 117.
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axioms corresponding to the properties of the earlier-later relation. In Table 1.1

below the special axioms considered above are compared with the corresponding

properties for the earlier-later relation.

Tense-logical axiom Property for the earlier-later relation

FFp ⊃ Fp ∀a∀b∀c ((a < b & b < c) ⊃ a < c)

Fp ⊃ FFp ∀a∀b (a < b ⊃ ∃c (a < c & c < b))

FPp ⊃ (Pp ∨ p ∨ Fp) ∀a∀b∀c ((b < a & c < a) ⊃ (b < c ∨ b = c ∨ c < b))

PFp ⊃ (Pp ∨ p ∨ Fp) ∀a∀b∀c ((a < b & a < c) ⊃ (b < c ∨ b = c ∨ c < b))

HpPp ∀a∃b (b < a)

GpFp ∀a∃b (a < b)

Table 1.1: Tense-logical axioms and properties of time flow

Nonetheless, the first grade presupposes the existence of a very odd kind of

entities, namely the instants of time, and the time-series they are supposed to

constitute. On the contrary, Prior would have preferred to consider them “as

mere logical constructions out of tensed facts”12: for this reason, he proposed

to go further towards the second grade.

In the second grade of tense-logical involvement atemporal statements of

the form a < b and T (a, p) are treated on a par with the tensed propositions,

thus becoming admissible values for the propositional variables p, q, . . . , and the

latters are not viewed as incomplete propositions anymore, but are admitted as

propositions on their own right. Both T (b, T (a, p)) and p are thus well-formed,

and of the same sort as T (a, p). The equalisation of tensed propositions with

atemporal statements leads to important results: in particular, if the necessity

modal operator Lp is defined as ∀a T (a, p), Gödel’s postulates for the modal

system S5 become provable for L. However, the main conceptual consequence

of the second grade is that

we no longer have merely parallel tense logics and U-calculi; the tense
logics now appear as parts of the U-calculi, and this may prepare

12Prior (1967), p. 118.

14



the way for treating the U-calculi as parts of the tense logics. [Prior
(1968), p. 121. Author’s italics]

In the third grade of tense-logical involvement the instant-variables represent

propositions: any instant is equated with the conjunction of all the propositions

which are true at that instant. These ‘world-state propositions’ are meant to

supply an exhaustive and unique description of the world in a given instant, and

are denoted by the variables a, b, . . . formerly used for instants. Prior admits

that this can seem a “highly artificial procedure”13, but he claims that

‘instants’ are artificial entities anyhow, i.e. that all talk which ap-
pears to be about them, and about the ‘time-series’ which they are
supposed to constitute, is just disguised talk about what is and has
been and will be the case. [Prior (1968), p. 123]

The binary relation T (a, p) is redefined in terms of the necessity operator L,

which is now assumed as primitive; since it does not make sense to say that a

proposition is true at another proposition, the formula T (a, p) is considered as

an abridgement for L(a ⊃ p), and a proposition of the form T (a, b) is held to

be true if and only if a ≡ b. Analogously, the earlier later relation is redifined

in terms of the tense operators F and P, thanks to the provability in the new

systems of the theses

a < b ≡ T (a,Fb)

b < a ≡ T (a,Pb)

Furthermore, special conditions on the earlier-later relation (such as transitivity,

density, and backwards linearity) become provable in the third system if the

corresponding tense-logical axioms are added to the basic temporal calculus.

As a consequence, the U-calculi turns out to be a by-product of the interaction
13Prior (1968), p. 123.
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of the tense-logical operators for past and future with a modal operator for

necessity. All we still have to do for reducing the U-calculi to the tense logics is

to supply a tense-logical definition for the necessity operator L.

We thus reach the fourth and last grade of tense-logical involvement, in

which the only primitive operators are the tense-logical ones. A whole hierarchy

of modal operators Ln is inductively defined as follows

L0p ≡ p

Ln+1p ≡ HLnp & GLnp

Furthermore, quantifiers are introduced for binding the n’s, and the necessity

operator Lp becomes a shorthand for ∀n Lnp. All the postulates of the modal

system S5 can be proved for the above defined operator L, though the derivations

are usually complicated and require induction on n. Most importantly, the

U-calculi are now completely derivable within the purely tense-logical system

corresponding to the fourth grade.

As a final remark, we observe that Prior did not claim to have found the de-

finitive solution to the problems raised by the concept of time; on the contrary,

he believed that the logical analysis of time was not only useful but even indis-

pensable for showing the hidden presuppositions and the remote consequences,

which the proponent of any given conception of time should consider not to

fall into contradiction. With this motivation, Prior formulated tense logic as

the suitable logical theory, in which the necessary analyses can be carried out

while avoiding the most undesirable metaphysical commitments on the nature

of time.
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1.2 Sequent calculi for temporal logics

Early work in proof theory for temporal logic has been developed by means of the

tools offered by Hilbert-style axiomatic calculi: proof systems were constituted

by several axioms and a small number of rules of inference. However, axiomatic

calculi, although being very useful for a formal presentation of what has already

been proved, are inappropriate for the actual search of proofs. To carry out a

derivation, in fact, we first have to find the proper instances of axioms to begin

with, but this work can be very hard, since no guidance is offered by the thesis

to be proved.

At the beginning of the Thirties, Gerhard Gentzen formulated sequent calcu-

lus as an alternative formal deductive system, which allows more natural infer-

ences. Sequent calculi consist of several rules of inference, that introduce logical

constants to the right or to the left of the sequents. Furthermore, Gentzen calculi

have a special notation, which compensates the lack of guidance of Hilbert-style

calculi: at any step of the derivation the antecedent of a sequent shows the open

assumptions on which the formulas in the consequent depend.

Unfortunately, it seems that the logic of time does not fit in the framework

of sequent calculi, insomuch as the chapter on ‘Temporal Logic’ written by

Hodkinson and Reynolds for the recent Handbook of Modal Logic (Blackburn,

van Benthem, and Wolter 2006) does not even consider sequent calculi in any

detail14. It is also noticed that natural deduction and semantic tableau systems

are generally preferred to sequent calculi because “for efficient automation, the

cut rule is problematic”15.

Moreover, the use of the logic of time in computer science introduced a rather
14See Blackburn, van Benthem, and Wolter (2006), p. 702.
15Blackburn, van Benthem, and Wolter (2006), p. 702.
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exasperate fragmentation of temporal systems. The application of temporal log-

ics to the specification and verification of reactive systems has the consequence

that only very specific fragments are considered, which are approporiate for

computer implementation, and different flows of time are dealt with separately,

not as modular extensions of a basic temporal calculus.

Gentzen-style calculi for temporal logics have been proposed in Nishimura

(1980), but the systems do not enjoy syntactic cut elimination, and the temporal

rules there formulated contain some additional difficulties. Two sequent systems

are presented, GKt for the basic temporal logic, and GKt4 for the transitive

time flow. The operators G and H are assumed as the only primitive temporal

operators. The basic system GKt has the following rules for G and H:

Γ ⇒ A,H∆
GΓ ⇒ GA,∆

(⇒G)
Γ ⇒ A,G∆

HΓ ⇒ HA,∆
(⇒H)

where GΓ = {GA|A ∈ Γ} and HΓ = {HA|A ∈ Γ}.

The system GKt4 is obtained by replacing the rules above with

GΓ,Γ ⇒ A,H∆,HΣ
GΓ ⇒ GA,∆,HΣ

(⇒G)4
HΓ,Γ ⇒ A,G∆,GΣ
HΓ ⇒ HA,∆,GΣ

(⇒H)4

Nishimura observes that the rules (⇒ G) and (⇒ H) are admissibile in GKt4;

nonetheless, the latter system is not obtained as a modular extension of the

basic modal calculus GKt, but through a complete reformulation of the temporal

rules. Moreover, no rule is formulated for other properties of time flow, as for

example the already mentioned16 density and backwards linearity.

Further calculi for specific temporal systems are proposed for example in

Gudzhinskas (1982), Kawai (1987), Paech (1988), Szalas (1995).

The problem of finding a uniform method which allows to deal with different
16See Section 1.1.
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systems at once, while preserving important structural properties, does not

concern only temporal logic. Gentzen-style formalisation of modal logics in

general has encountered analogous difficulties: for example, sequent calculi for

the modal system S5 usually lack cut elimination as in Ohnishi and Matsumoto

(1957), or, when cut elimination is preserved, either subformula property is lost

as in Mints (1968), or non-local rules are required as in Braüner (2000). As

pointed out by Wansing, in fact

many normal modal and temporal logics are presentable as ordinary
Gentzen calculi, [...] However, no uniform way of presenting only the
most important normal modal and temporal propositional logics as
ordinary Gentzen calculi is known. Further, the standard approach
fails to be modular : in general it is not the case that a single axiom
schema is captured by a single sequent rule (or a finite set of such
rules). [Wansing (2002), p. 68. Author’s italics]

This situation also led one of the most recent textbooks on modal logic (Black-

burn, de Rijke, and Venema 2001) to complain about the lack of a general

solution:

modal proof theory and automated reasoning are still relatively
youthful enterprises; they are exciting and active fields, but as yet
there is little consensus about methods and few general results.
[Blackburn, de Rijke, and Venema (2001), p. xvi]

In order to overcome the limitations of ordinary sequent calculi, several gen-

eralisations have been considered in the form of higher-level, higher-dimensional,

higher-arity, multiple sequent systems, hypersequents, display logic: Wansing

(2002) offers a survey on those different attempts. In the very last years, deep se-

quent system and tree-hypersequents have been formulated by Brünnler (2006)

and Poggiolesi (2008), respectively. It is worth noting that none of the systems

proposed, with the remarkable exception of display logic, has been systemati-

cally applied to the analysis of temporal logics.
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The temporal and modal calculi proposed in Kashima (1994) and Cerrato

(1996) show an approach which is similar to some extent to that of display logic;

however, the latter has a greater tradition and a broader development. In the

following we shall recall the main features of display calculi for temporal logics.

In addition to the logical operators, display logic considers some structural

connectives, I, ∗, •, ◦, the modal interpretations of which depend on their being

in the antecedent or in the consequent. For the sake of clarity, let us use X, Y

as variables for structures. Display structures are defined by

X ::= A | I | ∗X | •X |X ◦ Y

A display sequent is an expression of the form X ⇒ Y , the intuitive meaning

of which is given by the following translations τ1 for the antecedent and τ2 for

the consequent:

(A)τ1 = A (A)τ2 = A

(I)τ1 = > (I)τ2 = ⊥

(∗X)τ1 = ¬(X)τ2 (∗X)τ2 = ¬(X)τ1

(•X)τ1 = P(X)τ1 (•X)τ2 = G(X)τ2

(X ◦ Y )τ1 = (X)τ1 & (Y )τ1 (X ◦ Y )τ2 = (X)τ2 ∨ (Y )τ2

Display logic rules for temporal operators are then formulated as follows, by

means of the structural connectives ∗ and •

A ⇒ Y
GA ⇒ •Y

(G⇒)
•X ⇒ A
X ⇒ GA

(⇒G)

∗ • ∗A ⇒ Y
FA ⇒ Y

(F⇒)
X ⇒ A

∗ • ∗X ⇒ FA
(⇒F)
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A ⇒ Y
HA ⇒ ∗ • ∗Y

(H⇒)
X ⇒ ∗ • ∗A
X ⇒ HA

(⇒H)

A ⇒ •Y
PA ⇒ Y

(P⇒)
X ⇒ A
•X ⇒ PA

(⇒P)

We are not examining display logic in detail; the interested reader is referred

to the above cited Wansing (2002). We observe here that the calculus enjoy

cut elimination; furthermore, Kracht’s algorithm (Kracht 1996) gives a general

method for obtaining richer temporal systems by modular additions of special

structural rules corresponding to the different properties of time flow. For in-

stance, the above mentioned axioms

FFA ⊃ FA for transitivity

FA ⊃ FFA for density

FPA ⊃ (PA ∨A ∨ FA) for backwards linearity

PFA ⊃ (PA ∨A ∨ FA) for forwards lineatity

HA ⊃ PA for left seriality

GA ⊃ FA for right seriality

correspond to the following display rules:

∗ • ∗X ⇒ Y
∗ • • ∗X ⇒ Y

trans
∗ • • ∗X ⇒ Y
∗ • ∗X ⇒ Y

dens

X ⇒ Y •X ⇒ Y ∗ • ∗X ⇒ Y
∗ • ∗ •X ⇒ Y

linp
X ⇒ Y •X ⇒ Y ∗ • ∗X ⇒ Y

• ∗ • ∗X ⇒ Y
linf

•I ⇒ Y
I ⇒ Y

serp ∗ • ∗I ⇒ Y
I ⇒ Y

serf

However, the calculi do not enjoy subformula property, since the structural

connectives can disappear while moving from the premises to the conclusions of

the rules.

Display logic and the other generalisations cited above require a, sometimes

rather complicated, modification of the syntax of sequent calculi. In addition to

such attempts, a recent approach has been proposed, which exploits the inter-
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nalisation of the relational semantics into the syntax of sequent calculi: semantic

information is thus available at the same level as the syntactic information.

In our treatment of temporal logics we will adopt the method of labelled

sequent calculi proposed in Negri (2005) for the basic modal system K and its

normal extensions. The present chapter is dedicated to the illustration of the

general methodology.

1.3 Relational semantics for modal logic

Relational semantics is generally attributed to Saul Kripke, who, in its first

paper on modal logic (1959), proved the completeness of S5 system with respect

to an appropriate semantics based on relatively possible worlds. Anticipations of

Kripke inventions can be found in the work of many authors (Hintikka, Meredith,

Prior17, among the others), and questions about originality were raised in several

circumstances (see for example Bull and Segerberg 1984, Goldblatt 2005). We

are not discussing the problem of attribution here, neither we are explaining

in detail the widely known issues of relational semantics: on the contrary, we

will introduce here and in the following, whenever necessary, useful notions for

a better understanding. The reader who is interested in going into depth is

referred to the cited works, and to Hughes and Cresswell (1984, 1996).

A Kripke frame is a set of possible worlds K, together with a binary relation

R, saying which worlds can be seen (or are accessible) from every world k ∈ K.

A Kripke model is a Kripke frame, togeher with an evaluation determining

which atomic formulas are true at what world. Evaluation are then extended to

propositional connectives in the usual way, whereas modal operators essentially
17See above, Section 1.1.

22



appeal to relational features:

Definition 1.3.1. Let F = (K, RK) be a Kripke frame with a binary acces-

sibility relation RK. An evaluation of atomic formulas in a frame is a map

V : AtFrm → ℘(K), assigning to any atom P the set of instants in which P

holds. The standard notation for k ∈ V(P ) is k  P . Evaluations are extended

to arbitrary formulas by the following inductive clauses:

For all k ∈ K, it is not the case that k  ⊥ (abbr. k 1 ⊥);

k  A&B if k  A and k  B;

k  A ∨B if k  A or k  B;

k  A ⊃ B if k  A implies k  B;

k  2A if for all k′, kRKk′ implies k′  A;

k  3A if there exists k′ such that kRKk′ and k′  A

The principle of distributivity of necessity over implication

2(A ⊃ B) ⊃ (2A ⊃ 2B)

is the characteristic axiom of the basic modal logic K, and it is valid in any

arbitrary frame, with no condition imposed on the accessibility relation R.

Axiom Frame property

T 2A ⊃ A ∀x xRx reflexivity

4 2A ⊃ 22A ∀x∀y∀z (xRy & yRz ⊃ xRz) transitivity

B A ⊃ 23A ∀x∀y (xRy ⊃ yRx) symmetry

E 3A ⊃ 23A ∀x∀y∀z (xRy & xRz ⊃ yRz) euclideanness

D 2A ⊃ 3A ∀x∃y xRy seriality

2 32A ⊃ 23A ∀x∀y∀z (xRy & xRz ⊃ ∃w(yRw & zRw)) directedness

Table 1.2: Modal axioms and frames properties
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Characteristic axioms for different modal systems correspond to specific frame

properties: Table 1.2 gives a list of Hilbert-style axioms for the principal modal

systems with the corresponding frame properties.

The view, developed after Prior’s work, of temporal logic as a special modal

logic suggests to interpret temporal formulas on appropriate relational frames

F = (K, <K, >K), called Prior frames, characterized by the presence of a pair of

accessibility relations satisfying the equivalence: k <K k′ iff k′ >K k. Different

temporal axioms correspond to special properties imposed on the order relation,

as well as richer systems of modal logic correspond to special properties of the

accessibility relation.

1.4 Sequent calculi for modal logics with inter-

nalised semantics

The idea of internalising semantical notions into the syntax of proof systems

made a fleeting appearance in Kanger (1957), but has been gaining an increasing

pervasiveness in recent years. Deductive systems enriched by the accessibility

relation for possible-world semantics are proposed in the form of tableaux in

Fitting (1983), in Catach (1991) and in Goré (1999), of natural deduction in

Simpson (1994), in Basin et al. (1998) and in Indrzejczak (2003), of sequent

calculi in Mints (1997) and in Castellini (2005). General features of labelled

deductive systems are studied in Gabbay (1996) and in Viganò (2000). As

anticipated, we recall here the method proposed in Negri (2005).
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1.4.1 The basic modal calculus

The starting point is the cut- and contraction-free sequent calculus G3 that was

introduced by Ketonen (1944) and recently systematically presented in Troelstra

and Schwichtenberg (2000). All the rules of G3 are height-preserving invertible,

that is whenever the conclusion is derivable so are the premises, with the same

derivation height. Furthermore, structural rules of weakening and contraction

are height-preserving admissible: their conclusion is derivable whenever the

premise is, without increasing the height of derivation. Finally, cut is eliminated

in a purely syntactical way.

A labelled sequent calculus for the basic modal logic K is formulated through

the internalisation of Kripke semantics into the syntax: every formula in a se-

quent Γ ⇒ ∆ is either a relational atomic formula xRy, or a labelled formula

x : A. Intuitively, relational atoms and labelled formulas are the syntactic coun-

terpart of the accessibility relation and of the forcing relation x  A of temporal

frames, respectively. The rules for the propositional connectives are analogous

to the standard rules, with the active and principal formulas all marked by the

same label x. The rules for the temporal operators are obtained from their

meaning explanations in terms of the relational semantics:

x  2A iff for all y, xRy implies y  A

x  3A iff for some y, xRy and y  A

The left-to-right direction in the inductive definitions of validity for modal for-

mulas justifies the left rules, the right-to-left direction the right rules. Arbitrari-

ness of y becomes the variable conditions that y is not in the conclusion of rules

R2 and L3. The propositional and modal rules for the basic calculus G3K are

given in Table 1.3.
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Initial sequents and L⊥:

x : P, Γ ⇒ ∆, x : P xRy, Γ ⇒ ∆, xRy

x :⊥, Γ ⇒ ∆
L⊥

Propositional rules:

x : A, x : B, Γ ⇒ ∆

x : A&B, Γ ⇒ ∆
L&

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A&B
R&

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆

x : A ∨B, Γ ⇒ ∆
L∨

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆

x : A ⊃ B, Γ ⇒ ∆
L⊃

x : A, Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

Modal rules

y : A, x : 2A, xRy, Γ ⇒ ∆

x : 2A, xRy, Γ ⇒ ∆
L2

xRy, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : 2A
R2

xRy, y : A, Γ ⇒ ∆

x : 3A, Γ ⇒ ∆
L3

xRy, Γ ⇒ ∆, x : 3A, y : A

xRy, Γ ⇒ ∆, x : 3A
R3

Rules R2 and L3 have the condition that y is not in the conclusion.

Table 1.3: The basic modal calculus G3K

Observe that initial sequents are restricted to labelled atomic formulas x : P

or relational atoms. This feature, common to all G3 systems of sequent calculus,

is needed to ensure admissibility of structural properties. A further remark

concerns initial sequents of the form xRy,Γ ⇒ ∆, xRy. As observed by Negri:

no rule removes an atom of the form xRy from the right-hand side
of sequents, and such atoms are never active in the logical rules. [...]
As a consequence, initial sequents of the form xRy,Γ ⇒ ∆, xRy are
needed only for deriving properties of accessibility relation, namely,
the axioms corresponding to the rules for R [...] Thus such initial
sequent can as well be left out from the calculus without impairing
the completeness of the system. [Negri (2005), p. 513]

The calculus G3K corresponds to the basic modal logic K, which is charac-

terized by arbitrary frames: no property is imposed on the accessibility relation

R. Sequent calculi for normal extensions of K, namely the systems T, B, S4, S5

and so on, are obtained by adding to G3K one or more rules for the relational

atoms of the form xRy.
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1.4.2 Mathematical rules

In Negri and von Plato (1998, 2001) and in Negri (2003) a general method

was presented for extending G3-style logical sequent calculus without losing its

remarkable structural properties: axioms for specific theories, expressible by

universal axioms or geometric implications, are suitably converted into infer-

ence rules to be added to the logical sequent calculus while preserving all the

structural properties of the basic sequent system.

Universal axioms are sentences of the form ∀x1 . . .∀xqA, where A is quan-

tifier free. They can be expressed in conjunctive normal form as the universal

closure of the conjunction of formulas of the form P1& . . . &Pm ⊃ Q1∨· · ·∨Qn,

where Pi, Qj are atomic formulas and the consequent is equal to ⊥ if n = 0.

Each conjunct can be converted into a rule, called regular rule scheme, of the

form

Q1, P1, . . . , Pm,Γ ⇒ ∆ . . . Qn, P1, . . . , Pm,Γ ⇒ ∆
P1, . . . , Pm,Γ ⇒ ∆

Reg

The formulas P1, . . . , Pm in the conclusion are the principal formulas of the rule,

whereas Q1, . . . , Qn in the premises are the active formulas. Observe that the

repetition of the principal formulas in the premises is required for obtaining

admissibility of contraction in the extended calculus (see Section 2.3 below).

The general rule scheme can be specialised into the following rules

P,Γ ⇒ ∆
Γ ⇒ ∆

1
P1, P2,Γ ⇒ ∆

Γ ⇒ ∆
2

Q1,Γ ⇒ ∆ Q2,Γ ⇒ ∆
Γ ⇒ ∆

3

Q,P,Γ ⇒ ∆
P,Γ ⇒ ∆

4
P,Γ ⇒ ∆

5
P1, P2,Γ ⇒ ∆

6

The rules above correspond, respectively, to the axioms P , P1 & P2, Q1 ∨ Q2,

P ⊃ Q, ¬P , and ¬(P1&P2).
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The above mentioned properties of reflexivity, transitivity, symmetry, and

euclideannes are expressed by universal axioms, and can be converted into the

following mathematical rules

xRx,Γ ⇒ ∆
Γ ⇒ ∆

Ref
xRz, xRy, yRz, Γ ⇒ ∆

xRy, yRz, Γ ⇒ ∆
Trans

yRx, xRy,Γ ⇒ ∆
xRy,Γ ⇒ ∆

Sym
yRz, xRy, xRz, Γ ⇒ ∆

xRy, xRz,Γ ⇒ ∆
Eucl

Table 1.4: Regular rules for the accessibility relation R

A geometric implication is a formula of the form ∀x(A ⊃ B) where A and

B do not contain ⊃ or ∀ and x indicates a vector of variables x1, . . . , xp. Any

geometric implication can be converted into a conjuction of formulas

∀x (P1 & . . . & Pm ⊃ (∃y1 M1 ∨ · · · ∨ ∃yn Mn))

where Mj is the conjunction of atomic formulas Qj1 , . . . , Qjkj
and the variables

yi are not free in P1, . . . , Pm.

By using the vector notation for multisets of formulas we write P for P1, . . . ,

Pm and Qj for Qj1 , . . . , Qjkj
. A susbstitution Qj(yj/xj) denotes the substitu-

tion of variables in each of the Qjl
, i.e. Qj1(yj/xj), . . . , Qjkj

(yj/xj). Clearly,

universal axioms can be considered as special cases of geometric implications.

The rule scheme corresponding to geometric implications is

Q1(y1/x1), P ,Γ ⇒ ∆ . . . Qn(yn/xn), P ,Γ ⇒ ∆

P ,Γ ⇒ ∆
GRS

where P and Qj are multisets of atomic formulas P1, . . . , Pm and Qj1 , . . . , Qjkj
,

respectively, and the conclusion satisfies the condition that y1, . . . , yn are not

in P ,Γ,∆. As in the case of the regular rule scheme, also the geometric rule

scheme has the principal formulas repeated in the premises in order to guarantee

admissibility of contraction.
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The frame properties of seriality and directedness are geometric implications.

These are converted into the following mathematical rules

xRw, Γ ⇒ ∆
Γ ⇒ ∆

Ser
yRw, zRw, xRy, xRz, Γ ⇒ ∆

xRy, xRz,Γ ⇒ ∆
Dir

The rules have the condition that w is not in the conclusion.

Table 1.5: Geometric rules for the accessibility relation R

We observe here that, in order to guarantee admissibility of contraction

in case substitution in the atoms produces a duplication among the principal

formulas of a mathematical rule, we have to add to the system the contracted

rule by ensuring that the following closure condition is satisfied:

Closure condition. Given a system with geometric rules, if it has a rule with

an instance of the form

Q1(y1/x1), P1, . . . , Pm−2, P, P, Γ ⇒ ∆ . . . Qn(yn/xn), P1, . . . , Pm−2, P, P, Γ ⇒ ∆

P1, . . . , Pm−2, P, P, Γ ⇒ ∆

then also the rule

Q1(y1/x1), P1, . . . , Pm−2, P, Γ ⇒ ∆ . . . Qn(yn/xn), P1, . . . , Pm−2, P, Γ ⇒ ∆

P1, . . . , Pm−2, P, Γ ⇒ ∆

has to be included in the system.

The condition is not problematic, since the number of rules to be added to a

given system is finite and often the closure condition is even superfluous, because

the contracted rule is already a rule of the system or admissible in it.

Theorem 1.4.1. (Soundness and Completeness) The calculus G3K and

its extensions with mathematical rules for accessibility relation are sound and

complete with respect to the intended class of frames.
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Proof. Proof of soundness is straightforward. Completeness is proved by show-

ing that Hilbert-style calculi for different modal systems can be embedded into

the corresponding extensions of G3K.

A direct proof of completeness for G3K and its extensions, based on the

construction of a countermodel from a failed proof search, has been recently

presented in Negri and von Plato (2008), pp. 201–207.

All the extensions are obtained in a modular way. Therefore, the remarkable

structural properties summarized in the following theorem are established at

once for all systems:

Theorem 1.4.2. All the rules of G3K and of its extensions with mathematical

rules for accessibility relation are height-preserving invertible. Rules of substi-

tution, left and right weakening, left and right contraction are height-preserving

admissible. The calculus G3K and its extensions enjoy cut elimination.

We will prove similar results for our basic temporal calculus and its extensions

with mathematical rules for order relation: the reader who is interested in the

details is referred below, Section 2.3.

Negri (2005) also considers the interesting case of Gödel-Löb provability logic

GL, which is characterized by the axiom

2(2A ⊃ A) ⊃ 2A

The latter corresponds to the frame property that the accessibility relation is

transitive and there are no infinite R-chains. This property is not expressible as a

first-order sentence: as a consequence, it cannot be turned into a mathematical

rule to be added to the basic calculus. However, a contraction- and cut-free

sequent calculus for GL is obtained by a slight modification of the rules for the
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modal operator 2. We are not discussing this result further: we refer to the

cited paper for in-depth explanations.

Although cut elimination generally has subformula property as one of its

immediate consequences, the presence of modal and mathematical rules that

remove relational atoms from the left-hand side of the sequents prevents G3K

and its extensions from having a full subformula property. The following section

is completely dedicated to the discussion of this problem.

1.4.3 Subformula property and subterm property

A given sequent calculus enjoys the subformula property if the following condi-

tion is satisfied: every formula in a derivation is a subformula of the formulas

in the endsequent. Such a property was the main aim of Gentzen’s Hauptsatz :

Intuitively speaking, these properties of derivation without cuts may
be expressed as follows: the S -formulae [formulas in sequents] be-
come longer as we descend lower down in derivation, never shorter.
The final result is, as it were, gradually built up from its constituent
elements. The proof represented by the derivation is not round-
about in that it contains only concepts which recur in the final result
[Gentzen (1935), p. 88]

A suitable version of subformula property is formulated in Negri (2005, p.

21) for system G3K and its extensions with non logical rules. First, the notion

of subformula is modified in order to match the context of labelled calculi:

Definition 1.4.3. For every propositional connective ◦, the subformulas of

x : A ◦ B are x : A ◦ B and all the subformulas of x : A and x : B. For every

modal or temporal operator M, the subformulas of x : MA are x : MA and all

the subformulas of y : A for arbitrary y.
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The weak subformula property is then stated as follows: every formula in a

derivation is either a subformula of the formulas in the endsequent or a relational

atomic formula. The weak subformula property holds for system G3K and its

extension as a consequence of Theorem 1.4.2: in fact only the logical rules for

the modal operators and the mathematical rules for the accessibility relation

can remove formulas from a derivation, and all such formulas are atoms of the

form xRy.

The lack of a full subformula property constitutes a serious obstacle to the

possibility of ensuring decidability of labelled calculi, and some concerns can

be raised about “variables that are an essential part of the formulas and that

disappear from the premises to the conclusion in the special logical rules [math-

ematical rules for the accessibility relation]”18.

However, a more refined result is given in the form of the subterm property :

all labels in a derivation in G3K and its extension with mathematical rules for

accessibility relation are either eigenvariables or labels in the endsequent. No

variable, except for eigenvariables, disappears, and the number of the latter is

bound by the labels in the endsequents and by the number of applications of

modal or mathematical rules with a variable condition.

As a consequence, the subterm property, together with the structural prop-

erties stated in Theorem 1.4.2, makes G3K and its extensions with mathematical

rules suitable for proving decidability in a purely syntactical way, by calculating

an effective bound on proof search19.
18See Poggiolesi (2008), p. 82.
19See Negri (2005), pp. 529–538.

32



1.5 Methodological remarks about the internal-

isation of semantics

It is generally recognised that labelled inference systems are more successful

and easy to use than unlabelled approaches, and allow to deal modularly a wide

class of modal logics20. Furthermore, they are much more expressive and enjoy

remarkable structural properties21. However, some objections have recently

been raised about the internalisation of the semantics into the syntax of sequent

calculi.

The main concerns regard the purity of methods, in the sense that the in-

ternalisation of Kripke semantics contaminates the syntactic purity of sequent

calculi. In our opinion, this question appears a quite otiose one, and it does not

take into account the very origin of modal and temporal logics. The possibility

of a commixture of modal logics with a formal calculus corresponding to their

semantics was already precognised by Prior, in the context of tense logic22:

[...] the laws of PF-calculus will be not only interpretable but prov-
able in the l-calculus if the latter contains

(i) the usual laws and rules for truth operators and quantifiers; and

(ii) a set of special axioms expressing the properties of ‘l’, e. g.
ClxyClyzlxz (the law of transitivity for ‘l’), ClxyNlyx (the law of
asymmetry for ‘l’), AAIxylxylyx (‘Either the date x is identical to
the date y or it is later than y or it is earlier’- the law of trichotomy
for dates). [Prior (1958), p. 113]

Here PF-calculus stands for tense logic, and l-calculus for a monadic first-

order logic with equality and a binary order relation l (‘later than’). Observe

that condition (i) is rendered in the labelled modal calculus G3K and in the

20See Brünnler (2006), p. 107.
21See Poggiolesi (2008), p. 94.
22See also above, Section 1.1
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temporal calculus23 G3Kt by the usual rules for the propositional connectives

and by the variable conditions on modal/temporal rules, which reflect the rôle

of quantifiers in the semantical explanation of the modal/temporal operators;

whereas the mathematical rules for accessibility/order relation allow to obtain

extensions of the basic calculi similarly to the special axioms for the relation l

of condition (ii).

Careful to avoid any metaphysical commitment about the nature of time,

Prior defended the predominance of tense logic with respect to the logic of earlier

and later. Nevertheless, he admitted the usefulness of the method:

This [the possibility of proving of tense-logical theses in the calculus
for earlier-later relation] is what I call the first or lowest grade of
tense-logical involvement. Philosophers who are uneasy about tense
logic will almost certainly find little in this amount of it to worry
about. And there is a nice economy about it; it reduces the minimal
tense logic to a by-product of the introduction of four definitions [of
temporal operators] into an ordinary first-order theory, and richer
systems to by-products of conditions imposed on a relation in that
theory. [Prior (1968), p. 118. Italics mine]

From this point of view, the risk of a metaphysical commitment is somehow

neutralised, in a sense acceptable by Prior, by the internalisation of the logic of

earlier and later as a part of the syntax, since it allows to consider the relational

semantics only as a helpful formal tool, “a device of considerable metalogical

utility”24, and not as “an ‘interpretation’ in the sense of a metaphysical expla-

nation of what we mean by ‘is’, ‘has been’ and ‘will be’ ”25.

On the other hand, the methods proposed as alternatives, namely tree-

hypersequents calculi (Poggiolesi 2008) and deep sequent systems (Brünnler

2006), although absolutely legitimated on their formal base, do not seem to be

23See below, Section 2.1.
24Prior (1958), p. 115.
25Prior (1958), p. 115.
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unaffected by the same criticism. Whereas the semantics notions are explicitly

internalised into the labelled calculi in the form of the syntactical counterparts

of forcing (x : A) and accessibility relation (xRy), tree-hypersequents and deep

sequent systems hide their relational semantics under a more complex syntax, as

shown by the examples below (with Greek capital letters standing for sequents),

which also show a substantial equivalence between the two methods.

Tree-hypersequents Deep sequent systems

∆/(Γ/Σ); (Γ1/(Σ1/Θ);Σ2) ∆, [Γ, [Σ]], [Γ1, [Σ1, [Θ]], [Σ2]]

Both the tree-hypersequent on the left and the deep sequent on the right have

the following intuitive explanation on a tree frame, with every node labelled by

a sequent

∆

Γ

Σ

Γ1

Σ1

Θ

Σ2

Clearly, the root corresponds to the actual world (the world of utterance of a

modal formula), and each child represents a world accessible from its parent.

Observe that this correspondence is explicitly stated by the authors: see in

particular Brünnler (2006, p. 109), and Poggiolesi (2008, pp. 101-102).

Another generalisation of sequents was given in Cerrato (1993), where modal

sequent systems work explicitly on tree frames, which are graphic objects of
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the same kind of the figure above. Given the above mentioned intuitive inter-

pretation of Poggiolesi’s and Brünnler’s formal entities into the intended tree

structures, we do not see any significant difference between tree-hypersequent

and deep sequent systems on the one hand, and Cerrato’s sequent calculi on

the other; nonetheless, the latter are charged with being syntactically impure26.

The formal improvements reached through the methods of Brünnler and Pog-

giolesi are undeniable, but in our opinion their calculi contain explicit Kripke

semantic elements in so far as Cerrato’s ones.

In the final analysis, the problem at stake reduces to state how much of

semantics can be introduced into a formal calculus without compromising the

purity of the calculus. This question does not seem a solvable one, and the

only possible answer concerns the effectiveness of the calculus: from this point

of view, it is worth noting that also in the framework of tree-hypersequents

the incisive presence of semantical elements allows to obtain important results

through a staightforward adaptation27 of the results from Negri (2005).

A further concern about labelled calculi is related to the fact that “a labelled

sequent [...] does not generally have an equivalent modal formula”28. However,

we can easily single out the class of purely logical sequents as those sequents

containing no relational atoms and in which every formula is labelled by one

and the same variable x. A correspondence between a purely logical sequent

Γ ⇒ ∆ and its associated formula A is then defined by putting A ≡ ∧Γx ⊃ ∨∆x,

where Γx (resp. ∆x) consists of the formulas in Γ (resp. ∆) labelled by x. In

general, root-first proof search starts from a purely logical sequents, and the

introduction of sequents without a plain corrispondence with modal formulas is
26See Poggiolesi (2008), p. 65-66.
27See Poggiolesi (2008), Sections 3.6 and 3.7.
28See Brünnler (2006), p. 108
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completely governed by the rules of the calculus.

On the other hand, if we accept the interpretation of modal logic within

the logic of accessibility relation as a useful formal device, then we can yield

a formal meaning to every labelled sequent, although not in the terms of its

corresponding modal formula, but rather in the sense of Prior’s first grade of

tense-logical involvement29.

As a final remark, we observe that, whereas “the application of the tree-

hypersequent method to temporal logics seems quite complicated because of

the tree shape of such a syntactic object”30, the presence in labelled calculi of

sequents with a richer syntax, which cannot be plainly interpreted as modal

formulas, turns out to be an advantage, rather than a drawback, with respect

to their handiness and expressiveness.

29See above, Section 1.1.
30Poggiolesi (2008), p. 184.
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Chapter 2

A labelled calculus for

temporal logic

2.1 The basic temporal calculus

Our labelled system for basic temporal logic is a temporal adaptation of the

basic modal calculus G3K introduced in Negri (2005) and described above in

Section 1.4: every formula in a sequent Γ ⇒ ∆ is either a labelled formula x : A,

intuitively corresponding to the forcing relation x  A of Kripke models, or an

atomic formula x < y, standing for the syntactic counterpart of the accessibility

relation.

The rules for the propositional connectives are analogous to standard propo-

sitional rules, with active and principal formulas all marked by the same label x.

Modal rules for the standard temporal operators G, F, H, and P are obtained

from the meaning explanations in terms of their relational semantics:
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x  GA iff for all y, x < y implies y  A

x  FA iff for some y, x < y and y  A

x  HA iff for all y, y < x implies y  A

x  PA iff for some y, y < x and y  A

As for the modalities 2 and 3, the left-to-right direction in the explanations

above justifies the left rules, the right-to-left direction the right rules. The rôle

of the quantifiers is reflected in the variable conditions for rules RG, LF, RH,

and LP below.

Initial sequents and L⊥:

x : P, Γ ⇒ ∆, x : P x < y, Γ ⇒ ∆, x < y

x :⊥, Γ ⇒ ∆
L⊥

Propositional rules:

x : A, x : B, Γ ⇒ ∆

x : A&B, Γ ⇒ ∆
L&

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A&B
R&

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆

x : A ∨B, Γ ⇒ ∆
L∨

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆

x : A ⊃ B, Γ ⇒ ∆
L⊃

x : A, Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

Temporal rules

y : A, x : GA, x < y, Γ ⇒ ∆

x : GA, x < y, Γ ⇒ ∆
LG

x < y, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : GA
RG

x < y, y : A, Γ ⇒ ∆

x : FA, Γ ⇒ ∆
LF

x < y, Γ ⇒ ∆, x : FA, y : A

x < y, Γ ⇒ ∆, x : FA
RF

y : A, x : HA, y < x, Γ ⇒ ∆

x : HA, y < x, Γ ⇒ ∆
LH

y < x, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : HA
RH

y < x, y : A, Γ ⇒ ∆

x : PA, Γ ⇒ ∆
LP

y < x, Γ ⇒ ∆, x : PA, y : A

y < x, Γ ⇒ ∆, x : PA
RP

Rules RG, LF, RH and LP have the condition that y is not in the conclusion.

Table 2.1: The basic temporal calculus G3Kt

The logical rules of the basic temporal calculus G3Kt are given in Table

2.1. Observe that initial sequents are restricted to labelled atomic formulas

x : P or relational atoms. This feature, common to all G3 systems of sequent
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calculus, is needed to ensure height-preserving invertibility of the rules and

height-preserving admissibility of contraction (see Definition 2.3.3, Lemma 2.3.7,

and Theorem 2.3.8). The rules for negation are special cases of the rules for

implication, by the definition ¬A ≡ A ⊃ ⊥.

Because of the internalisation of the semantics, most labelled sequents cannot

be directly interpreted as temporal formulas. However, we can single out a class

of sequents with a plain correspondence to their associated formulas1:

Definition 2.1.1. A purely logical sequent is a sequent that contains no rela-

tional atoms and in which every formula is labelled by the same variable x.

Observe that no temporal rule removes a relational atom from the right-hand

side of sequents, and such atoms are never active in the propositional rules. As

a consequence, initial sequents of the form x < y,Γ ⇒ ∆, x < y cannot be used

in deriving purely logical sequents, and can be left out from the system2.

2.2 Mathematical rules

The semantics for temporal logic is based on Prior frames. These are special

Kripke frames3 F = (K, <, >) with two accessibility relations inverse of each

other, that is x < y ≡ y > x. The calculus G3Kt corresponds to the logic

for arbitrary Prior frames: no frame property is imposed on the accessibility

relation <. However, we often assume certain properties for the flow of time as,

for example, transitivity - if an instant a precedes an instant b and b precedes c,

then a precedes c -, left and right linearity - if a follows (resp. precedes) b and

a follows (resp. precedes) c, then b precedes c or b is equal to c or c precedes
1A detailed discussion can be found in Section 1.5.
2See also Section 1.4
3See Section 1.4.
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b -, and left and right seriality - every instant is preceded (resp. followed) by

another instant.

Frame properties are added to the system G3Kt in the form of appropriate

mathematical rules that act on relational atoms and follow the mathematical

rule schemes described in Negri and von Plato (1998, 2001) and Negri (2003) for

universal axioms and geometric implications, respectively (see Section 1.4.2).

The above mentioned properties of transitivity, and left and right linearity

for the flow of time are expressed by universal axioms:

Transitivity : ∀x∀y∀z ((x < y & y < z) ⊃ x < z)

Left linearity : ∀x∀y∀z ((y < x & z < x) ⊃ (y < z ∨ y = z ∨ z < y))

Right linearity : ∀x∀y∀z ((x < y & x < z) ⊃ (y < z ∨ y = z ∨ z < y))

These are converted into the following mathematical rules

x < z, x < y, y < z, Γ ⇒ ∆

x < y, y < z, Γ ⇒ ∆
Trans

y < z, y < x, z < x, Γ ⇒ ∆ y = z, y < x, z < x, Γ ⇒ ∆ z < y, y < x, z < x, Γ ⇒ ∆

y < x, z < x, Γ ⇒ ∆
L-Lin

y < z, x < y, x < z, Γ ⇒ ∆ y = z, x < y, x < z, Γ ⇒ ∆ z < y, x < y, x < z, Γ ⇒ ∆

x < y, x < z, Γ ⇒ ∆
R-Lin

Table 2.2: The rules for transitivity, left linearity, and right linearity

The following frame properties are geometric implications:

Density : ∀x∀y(x < y ⊃ ∃z (x < z & z < y))

Left seriality (no first instant): ∀x∃y (y < x)

Right seriality (no last instant): ∀x∃y (x < y)

Left directedness: ∀x∀y∀z ((y < x & z < x) ⊃ ∃w (w < y & w < z))

Right directedness: ∀x∀y∀z ((x < y & x < z) ⊃ ∃w (y < w & z < w))

These are converted into the mathematical rules of Table 2.3
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x < w, w < y, x < y, Γ ⇒ ∆

x < y, Γ ⇒ ∆
Dens

w < x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x < w, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

w < y, w < z, y < x, z < x, Γ ⇒ ∆

y < x, z < x, Γ ⇒ ∆
L-Dir

y < w, z < w, x < y, x < z, Γ ⇒ ∆

x < y, x < z, Γ ⇒ ∆
R-Dir

All the rules have the condition that w is not in the conclusion.

Table 2.3: The rules for density, left and right seriality, left and right directedness

As observed in Section 1.4.2, in order to guarantee admissibility of contrac-

tion, a closure condition must be satisfied stating that, if substitution in the

atoms produces a duplication among the principal formulas of a mathematical

rule, then also the contracted instance of the rule has to be added to the sys-

tem. For example, whenever a system contains the rule for left directedness, it

contains also the following instance

w < y, w < y, y < x, Γ ⇒ ∆

y < x, Γ ⇒ ∆
L-Dir

Unfortunately, not every frame property can be converted into a mathemat-

ical rule by means of the methodology illustrated in Section 1.4.2: for instance,

the properties of discreteness towards the future and towards the past as pre-

sented in van Benthem (1983, p. 161) for a frame without end points

∀x∃y (x < y & ∀z (z < y ⊃ (x = z ∨ z < x)))

∀x∃y (y < x & ∀z (y < z ⊃ (x = z ∨ x < z)))

are expressed neither by a universal axiom nor by a geometric implication.

However, the addition of the immediate successor relation ≺ allows to re-

formulate these properties as a pair of universal axiom stating that any instant

smaller (greater) than the immediate successor (predecessor) of x is equal to or

smaller (greater) than x

∀x∀y∀z ((x ≺ y & z < y) ⊃ (x = z ∨ z < x))
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∀x∀y∀z ((y ≺ x & y < z) ⊃ (x = z ∨ x < z))

In Chapter 3, we shall show that the corresponding mathematical rules, together

with the rules for the immediate successor relation, added to G3Kt+Eq (see

below, Section 2.4) permit to derive the purely logical sequents equivalent to

Hamblin’s formulas for discreteness:

GPA ⊃ (A ∨PA) HFA ⊃ (A ∨ FA)

2.3 Structural properties

In what follows we use G3Kt* to denote an arbitrary temporal calculus obtained

by extending the basic temporal calculus with mathematical rules for the ac-

cessibility relation < described in Section 2.2. We prove here that the calculus

G3Kt* enjoys important structural properties.

Definition 2.3.1. The length l(A) of a temporal formula A is defined induc-

tively as follows:

l(⊥) = 0;

l(P ) = 1 for propositional atoms P ;

l(B ◦ C) = l(B) + l(C) + 1 for conjunction, disjunction, and implication;

l(MB) = l(B) + 1 for temporal operators M.

The length of a labelled formula x : A is defined as the length of A.

Finally, l(xRy) = 1 for arbitrary relational atoms.

Observe that l(¬A) = l(A ⊃ ⊥) = l(A) + 1

Definition 2.3.2. A derivation is either an initial sequent, or an instance of

L⊥, or an application of a logical or mathematical rule to the derivation(s) con-

cluding its premise(s). A sequent Γ ⇒ ∆ is derivable if there exists a derivation
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for it. The height of a derivation is the greatest number of successive applica-

tions of rules in it, where initial sequents and L⊥ have height 0.

Definition 2.3.3. A rule in G3Kt* is height-preserving admissible if, whenever

its premise(s) is (are) derivable, also the conclusion is derivable with the same

derivation height. A rule is height-preserving invertible if, whenever its conclu-

sion is derivable, also the premise(s) is (are) derivable with the same derivation

height.

Substitution of labels is defined in the obvious way as follows for relational

atoms and labelled formulas.

xRy(z/w) ≡ xRy if w 6= x and w 6= y

xRy(z/x) ≡ zRy if x 6= y

xRy(z/y) ≡ xRz if x 6= y

xRx(z/x) ≡ zRz

x : A(z/y) ≡ x : A if y 6= x

x : A(z/x) ≡ z : A

The definition of substitution is extended to multisets of formulas component-

wise. We have:

Lemma 2.3.4. If Γ ⇒ ∆ is derivable in G3Kt*, then Γ(y/x) ⇒ ∆(y/x) is also

derivable with the same derivation height.

Proof. By induction on the height h of the derivation of the sequent Γ ⇒ ∆. If

h = 0, the sequent Γ ⇒ ∆ is an initial sequent or conclusion of L⊥: in either

case the sequent Γ(y/x) ⇒ ∆(y/x) is also an initial sequent or conclusion of L⊥.

Suppose that Γ ⇒ ∆ is derivable with h = n + 1 and that the claim holds for

h = n, and consider the last rule applied in the derivation. If it is a propositional

44



rule, or a temporal or mathematical rule without variable condition, apply the

inductive hypothesis to the premise(s) of the rule, and then the rule. If the last

rule is a temporal or a mathematical rule with variable condition and x is the

eigenvariable of the rule, then the substitution is vacuous and there is nothing

to prove. If neither x nor y is an eigenvariable, we consider here the case of rule

RG, all the other case being analogous. If the principal formula is not labelled

by x, we simply apply the inductive hypothesis to the premise of the rule, and

then the rule. If the principal formula is x : GA, we have

x < z,Γ
...⇒ ∆′, z : A

Γ ⇒ ∆′, x : GA
RG

where ∆ ≡ ∆′, x : GA.

We apply the inductive hypothesis to the shorter derivation of the premise and

then the rule

y < z, Γ(y/x)
...⇒ ∆′(y/x), z : A

Γ(y/x) ⇒ ∆′(y/x), y : GA
RG

If y is the eigenvariable, the derivation ends with

x < y,Γ
...⇒ ∆′, y : A

Γ ⇒ ∆′, x : GA
RG

We first apply the inductive hypothesis in order to replace the eigenvariable

y with a fresh variable w. By the variable condition, the substitution does

not affect Γ,∆′ and we obtain a height-preserving derivation of the premise

x < w,Γ ⇒ ∆′, w : A. Then we apply again the inductive hypothesis to replace

x with y, and then rule RG

y < w, Γ(y/x)
...⇒ ∆′(y/x), w : A

Γ(y/x) ⇒ ∆′(y/x), y : GA
RG
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Lemma 2.3.5. Sequents of the form x : A,Γ ⇒ ∆, x : A are derivable in G3Kt*

for arbitrary formulas A, arbitrary contexts Γ,∆, and arbitrary labels x.

Proof. By induction on the length of the formula A. If A ≡ ⊥, the sequent

x : ⊥,Γ ⇒ ∆, x : ⊥ is a conclusion of L⊥. If A ≡ P , then x : P,Γ ⇒ ∆, x : P is

an initial sequent. If A ≡ ⊥ ⊃ ⊥ ≡ >, we have the derivation

x : ⊥, x : ⊥ ⊃ ⊥,Γ ⇒ ∆, x : ⊥ L⊥

x : ⊥ ⊃ ⊥,Γ ⇒ ∆, x : ⊥ ⊃ ⊥ R⊃

If A ≡ B&C, by inductive hypothesis the sequents x : B, x : C,Γ ⇒ ∆, x : B

and x : B, x : C,Γ ⇒ ∆, x : C are derivable, so we have the derivation

x : B, x : C,Γ ⇒ ∆, x : B

x : B&C,Γ ⇒ ∆, x : B
L&

x : B, x : C,Γ ⇒ ∆, x : C

x : B&C,Γ ⇒ ∆, x : C
L&

x : B&C,Γ ⇒ ∆, x : B&C
R&

If A ≡ B ∨ C, by inductive hypothesis the sequents x : B,Γ ⇒ ∆, x : B, x : C

and x : C,Γ ⇒ ∆, x : B, x : C are derivable, so we have the derivation

x : B,Γ ⇒ ∆, x : B, x : C

x : B,Γ ⇒ ∆, x : B ∨ C
R∨

x : C,Γ ⇒ ∆, x : B, x : C

x : C,Γ ⇒ ∆, x : B ∨ C
R∨

x : B ∨ C,Γ ⇒ ∆, x : B ∨ C
L∨

If A ≡ B ⊃ C, by inductive hypothesis the sequents x : B,Γ ⇒ ∆, x : B, x : C

and x : C,Γ ⇒ ∆, x : B, x : C are derivable, thus we have the derivation

x : B,Γ ⇒ ∆, x : C, x : B x : C, x : B,Γ ⇒ ∆, x : C

x : B ⊃ C, x : B,Γ ⇒ ∆, x : C
L⊃

x : B ⊃ C,Γ ⇒ ∆, x : B ⊃ C
R⊃

If A ≡ GB, by inductive hypothesis x < y, y : B, x : GB,Γ ⇒ ∆, y : B is

derivable, thus we have the derivation

x < y, y : B, x : GB,Γ ⇒ ∆, y : B

x < y, x : GB,Γ ⇒ ∆, y : B
LG

x : GB,Γ ⇒ ∆, x : GB
RG
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where we choose y different from x and not in Γ,∆.

If A ≡ FB, by inductive hypothesis x < y, y : B,Γ ⇒ ∆, x : FB, y : B is

derivable, and we have

x < y, y : B,Γ ⇒ ∆, x : FB, y : B

x < y, y : B,Γ ⇒ ∆, x : FB
RF

x : FB,Γ ⇒ ∆, x : FB
LF

where we choose y different from x and not in Γ,∆.

If A ≡ HB, by inductive hypothesis y < x, y : B, x : HB,Γ ⇒ ∆, y : B is

derivable, and we have

y < x, y : B, x : HB,Γ ⇒ ∆, y : B

y < x, x : HB,Γ ⇒ ∆, y : B
LH

x : HB,Γ ⇒ ∆, x : HB
RH

where we choose y different from x and not in Γ,∆.

If A ≡ PB, by inductive hypothesis y < x, y : B,Γ ⇒ ∆, x : PB, y : B is

derivable; consider the following derivation

y < x, y : B,Γ ⇒ ∆, x : PB, y : B

y < x, y : B,Γ ⇒ ∆, x : PB
RP

x : PB,Γ ⇒ ∆, x : PB
LP

where we choose y different from x and not in Γ,∆.

In what follows, Greek lower case is used for denoting labelled formulas or

relational atoms.

Theorem 2.3.6. The rules of left and right weakening

Γ ⇒ ∆
ϕ, Γ ⇒ ∆

LWk
Γ ⇒ ∆

Γ ⇒ ∆, ϕ
RWk

are height-preserving admissible in G3Kt*.

Proof. By induction on the height of the derivation of the premise. If Γ ⇒ ∆

is an initial sequent or conclusion of L⊥, so are ϕ, Γ ⇒ ∆ and Γ ⇒ ∆, ϕ. The
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cases of rules without variable condition are straightforward. If the last step is

a rule with a variable condition, we first apply Lemma 2.3.4 to avoid a clash

of variables and then the inductive hypothesis and the rule in question. Let us

consider for instance the case with Γ ⇒ ∆ concluded by RG and ϕ ≡ y : B

x < y,Γ ⇒ ∆′, y : A

Γ ⇒ ∆′, x : GA
RG

where ∆ ≡ ∆′, x : GA.

We first apply Lemma 2.3.4 to replace the eigenvariable y with a fresh variable

w; then we apply the inductive hypothesis and the rule RG

y : B, x < w,Γ ⇒ ∆′, w : A

y : B,Γ ⇒ ∆′, x : GA
RG

x < w,Γ ⇒ ∆′, w : A, y : B,

Γ ⇒ ∆′, x : GA, y : B
RG

Lemma 2.3.7. All the rules of G3Kt* are height-preserving invertible.

Proof. By induction on the height of derivation. For the propositional rules we

consider in detail only L ⊃ and R ⊃, all the other cases being analogous.

If x : A ⊃ B,Γ ⇒ ∆ is an initial sequent or conclusion of L⊥, then x : A ⊃ B

is not principal in it and also Γ ⇒ ∆, x : A and x : B,Γ ⇒ ∆ are initial

sequents or conclusions of L⊥. Let us suppose that we have a derivation with

height h = n + 1 and that the claim holds for h = n, and consider the last

rule applied. If the sequent x : A ⊃ B,Γ ⇒ ∆ is the conclusion of L ⊃ with

principal formula x : A ⊃ B, then Γ ⇒ ∆, x : A and x : B,Γ ⇒ ∆ are

derived with h ≤ n. If x : A ⊃ B,Γ ⇒ ∆ is conclusion of a rule different from

L ⊃ or with principal formula other than x : A ⊃ B, we apply the inductive

hypothesis to the premise(s) x : A ⊃ B,Γ′ ⇒ ∆′ (and x : A ⊃ B,Γ′′ ⇒ ∆′′)

thus obtaining derivations with h ≤ n of Γ′ ⇒ ∆′, x : A and x : B,Γ′ ⇒ ∆′
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(Γ′′ ⇒ ∆′′, x : A and x : B,Γ′′ ⇒ ∆′′). Next we apply the rule to Γ′ ⇒ ∆′, x : A

(and Γ′′ ⇒ ∆′′, x : A) and to x : B,Γ′ ⇒ ∆′ (and x : B,Γ′′ ⇒ ∆′′) to conclude

Γ ⇒ ∆, x : A and x : B,Γ ⇒ ∆ in at most n + 1 step.

If Γ ⇒ ∆, x : A ⊃ B is an initial sequent or conclusion of L⊥, then x : A ⊃ B

is not principal in it and also x : A,Γ ⇒ ∆, x : B is an initial sequent or

conclusion of L⊥. Let us suppose now that we have a derivation with height

h = n + 1 and that the claim holds for h = n. If Γ ⇒ ∆, x : A ⊃ B is

conclusion of R ⊃ with principal formula x : A ⊃ B, then x : A,Γ ⇒ ∆, x : B

is derived with h = n. If the last rule is different from R ⊃ or it is R ⊃ with

principal formula other than x : A ⊃ B, we apply the inductive hypothesis to

the premise(s) Γ′ ⇒ ∆′, x : A ⊃ B (and Γ′′ ⇒ ∆′′, x : A ⊃ B) thus obtaining

a derivation with h ≤ n of x : A,Γ′ ⇒ ∆′, x : B (and x : A,Γ′′ ⇒ ∆′′, x : B).

Next we apply the rule to conclude x : A,Γ ⇒ ∆, x : B in at most n + 1 step.

If the last rule is a temporal rule with a variable condition, we consider

in detail only RG, all the other cases being analogous. If Γ ⇒ ∆, x : GA is

an initial sequent or conclusion of L⊥, then x : GA is not principal in it and

also x < y, Γ ⇒ ∆, y : A is an initial sequent or conclusion of L⊥. Let us

suppose now that we have a derivation with height h = n + 1 and that the

claim holds for h = n, and consider the last rule applied. If Γ ⇒ ∆, x : GA is

conclusion of RG with principal formula x : GA, then x < y, Γ ⇒ ∆, y : A has

a derivation with h = n. If Γ ⇒ ∆, x : GA is the conclusion of a rule without

variable condition, we apply the inductive to the premise(s) Γ′ ⇒ ∆′, x : GA

(and Γ′′ ⇒ ∆′′, x : GA) thus obtaining a derivation with h ≤ n of the sequent

x < y, Γ′ ⇒ ∆′, y : A (and x < y, Γ′′ ⇒ ∆′′, y : A). Next, we apply the rule

to conclude x < y, Γ ⇒ ∆, y : A in at most n + 1 step. If the last step is a
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rule with a variable condition, we apply first Lemma 2.3.4 in order to avoid a

clash of variables and then the inductive hypothesis and the rule in question.

Consider the following instance with Γ ⇒ ∆, x : GA concluded by LP and with

Γ ≡ w : PB,Γ′

y < w, y : B, Γ′ ⇒ ∆, x : GA

w : PB, Γ′ ⇒ ∆, x : GA
LP

;

y < w, y : B, Γ′ ⇒ ∆, x : GA

v < w, v : B, Γ′ ⇒ ∆, x : GA
H.-p.Subst

x < y, v < w, v : B, Γ′ ⇒ ∆, y : A
Ind.Hyp.

x < y, w : PB, Γ′ ⇒ ∆, y : A
LP

where v has been chosen different from x, y, w and not in Γ′,∆.

Finally, the temporal rules LG, RF, LH, RP, and the mathematical rules

for the accessibility relation are trivially height-preserving invertible since their

respective premises are obtained by height-preserving weakening from the con-

clusion. As usual, clash of variables is avoided through Lemma 2.3.4.

Theorem 2.3.8. The rules of left and right contraction

ϕ, ϕ,Γ ⇒ ∆
ϕ, Γ ⇒ ∆

LCtr
Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ
RCtr

are height-preserving admissible in G3Kt*.

Proof. By simultaneous induction on the height of derivation for left and right

contraction. For h = 0, note that if ϕ, ϕ,Γ ⇒ ∆ (resp. Γ ⇒ ∆, ϕ, ϕ) is an

initial sequent or conclusion of L⊥, so is ϕ, Γ ⇒ ∆ (resp. Γ ⇒ ∆, ϕ). For

h = n + 1, we distinguish two cases: if none of the contraction formulas is

principal in the last rule, then both occurrences are in the premise(s) and we

apply the inductive hypothesis to the premise(s) and then the rule. If one of the

contraction formulas is principal, we first apply Lemma 2.3.7 to the premise(s),

the inductive hypothesis and then the rule. For the details, we distinguish three

cases: (i) active formulas are proper subformulas of principal formulas, as in

propositional rules; (ii) the principal formula(s) of the rule appear(s) in the
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premise(s), as in LG, RF, LH, RP and in the mathematical rules; (iii) active

formulas are relational atoms and proper subformulas of principal formulas, as

in RG, LF, RH, LP.

In case (i) we consider in detail the rule L&

x : A, x : B, x : A&B,Γ ⇒ ∆
x : A&B, x : A&B,Γ ⇒ ∆

L&

x : A&B,Γ ⇒ ∆
LCtr

We apply Lemma 2.3.7 to obtain x : A, x : B, x : A, x : B,Γ ⇒ ∆ from

the premise of L&. Next, we apply twice the inductive hypothesis to obtain

x : A, x : B,Γ ⇒ ∆, and finally L& to conclude x : A&B,Γ ⇒ ∆ in at most

n + 1 step. The cases of R&, L∨ and R∨ are analogoous.

Observe that if the last rule is a rule for ⊃, simultaneous induction on left

and right contraction is required. In the case of left contraction on x : A ⊃ B,

we have

x : A ⊃ B,Γ ⇒ ∆, x : A x : B, x : A ⊃ B,Γ ⇒ ∆
x : A ⊃ B, x : A ⊃ B,Γ ⇒ ∆

L⊃

x : A ⊃ B,Γ ⇒ ∆
LCtr

We apply Lemma 2.3.7 to obtain Γ ⇒ ∆, x : A, x : A and x : B, x : B,Γ ⇒ ∆

with h ≤ n from the premises of L ⊃. Next, we apply the inductive hypotheses

to obtain Γ ⇒ ∆, x : A and x : B,Γ ⇒ ∆, and finally L ⊃ to conclude

x : A ⊃ B,Γ ⇒ ∆ in at most n + 1 step.

Analogously, in the case of right contraction on x : A ⊃ B, we have

x : A,Γ ⇒ ∆, x : A ⊃ B, x : B

Γ ⇒ ∆, x : A ⊃ B, x : A ⊃ B
R⊃

Γ ⇒ ∆, x : A ⊃ B
RCtr

We apply Lemma 2.3.7 to obtain x : A, x : A,Γ ⇒ ∆, x : B, x : B with h = n

from the premise of R ⊃. Next, we apply twice the inductive hypothesis to
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obtain x : A,Γ ⇒ ∆, x : B, and finally R ⊃ to conclude Γ ⇒ ∆, x : A ⊃ B in at

most n + 1 step.

In case (ii) we consider in detail only the rule LG

x < y, y : A, x : GA, x : GA,Γ′ ⇒ ∆
x < y, x : GA, x : GA,Γ′ ⇒ ∆

LG

x < y, x : GA,Γ′ ⇒ ∆
LCtr

with Γ ≡ x < y,Γ′

By applying the inductive hypothesis on the premise of LG, we obtain the

sequent x < y, y : A, x : GA,Γ ⇒ ∆. Next, we apply rule LG to conclude

x < y, x : GA,Γ ⇒ ∆ in at most n + 1 step. The cases of RF, LH and RP are

analogous.

In case (iii) we consider in detail only the rule LF

x < y, y : A, x : FA,Γ ⇒ ∆
x : FA, x : FA,Γ ⇒ ∆

LF

x : FA,Γ ⇒ ∆
LCtr

We apply Lemma 2.3.7 to obtain x < y, x < y, y : A, y : A,Γ ⇒ ∆ from

the premise of LF. Next, we apply twice the inductive hypothesis to the latter

sequent to obtain x < y, y : A,Γ ⇒ ∆, and finally LF to conclude x : FA,Γ ⇒ ∆

in at most n + 1 step. The cases of RG, RH and LP are analogous.

Observe that the case with both contraction formulas principal in a mathe-

matical rule is taken care by the closure condition (see Section 1.4.2).

Definition 2.3.9. The height of a cut is the sum of the heights of the deriva-

tions of its premises.

Theorem 2.3.10. The rule of cut

Γ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

is admissible in G3Kt*.
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Proof. The proof is by induction on the length of the cut formula, with subin-

duction on cut-height. We consider first the case in which at least one of the

premise of cut is an initial sequent or conclusion of L⊥. Then, we consider three

cases: (i) the cut formula is not principal in the left premise of cut; (ii) the cut

formula is not principal in the right premise; (iii) the cut formula is principal in

both premises.

If the left premise is an initial sequent, and ϕ is not principal in it, also the

conclusion of cut is an initial sequent. Otherwise, we have

ϕ, Γ′′ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

ϕ, Γ′′,Γ′ ⇒ ∆,∆′ Cut

with Γ ≡ ϕ, Γ′′

The conclusion of cut is obtained by weakening on the right premise.

If the left premise is conclusion of L⊥, we have

x : ⊥,Γ′′ ⇒ ∆, ϕ
L⊥

ϕ, Γ′ ⇒ ∆′

x : ⊥,Γ′′,Γ′ ⇒ ∆,∆′ Cut

with Γ ≡ x : ⊥,Γ′

The conclusion of cut is also conclusion of L⊥.

If the right premise is an initial sequent, and ϕ is not principal in it, also

the conclusion of cut is an initial sequent. Otherwise, we have

Γ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′′, ϕ

Γ,Γ′ ⇒ ∆,∆′′, ϕ
Cut

with ∆′ ≡ ∆′′, ϕ

The conclusion of cut is obtained by weakening on the left premise.

If the right premise is the conclusion of an instance of L⊥, and ϕ is not

principal, also the conclusion of cut is conclusion of L⊥. Otherwise, we have

Γ ⇒ ∆, x : ⊥ x : ⊥,Γ′ ⇒ ∆′ L⊥

Γ,Γ′ ⇒ ∆,∆′ Cut
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However, x : ⊥ cannot be principal in the left premise, and the corresponding

transformation is a special case of (i) below.

(i) If the cut formula is not principal in the left premise of cut, cut is per-

muted up with respect to the rule concluding it. We consider here only the case

of LG, all the other cases being analogous.

x < y, y : A, x : GA,Γ′′ ⇒ ∆, ϕ

x < y, x : GA,Γ′′ ⇒ ∆, ϕ
LG

ϕ, Γ′ ⇒ ∆′

x < y, x : GA,Γ′′,Γ′ ⇒ ∆,∆′ Cut

with Γ ≡ x < y, x : GA,Γ′′

We perform the following transformation

x < y, y : A, x : GA,Γ′′ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

x < y, y : A, x : GA,Γ′′,Γ′ ⇒ ∆,∆′ Cut

x < y, x : GA,Γ′′,Γ′ ⇒ ∆,∆′ LG

thus obtaining a cut with less height. Note that this transformation applies

to all the cases in which ϕ is a relational atom, since no rule of G3Kt* can

introduce a relational atom as a principal formula in the succedent. If the rule

concluding the left premise of cut is a rule with a variable condition, we apply

Lemma 2.3.4 in order to avoid a clash of variables.

(ii) If the cut formula is not principal in the right premise of cut, cut is

permuted up with respect to the rule that concludes it. We consider here only

the case of LF, all the other cases being analogous. We have

Γ ⇒ ∆, ϕ

ϕ, x < y, y : A,Γ′′ ⇒ ∆′

ϕ, x : FA,Γ′′ ⇒ ∆′ LF

x : FA,Γ,Γ′′ ⇒ ∆,∆′ Cut

with Γ′ ≡ x : FA,Γ′′

We perform the following transformation

Γ ⇒ ∆, ϕ ϕ, x < y, y : A,Γ′′ ⇒ ∆′

x < y, y : A,Γ,Γ′′ ⇒ ∆,∆′ Cut

x : FA,Γ,Γ′′ ⇒ ∆,∆′ LF
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thus obtaining a cut with less height. As usual, clash of variables is avoided

through Lemma 2.3.4.

(iii) If the cut formula is principal in both premises, we have to consider

several cases, according to the form of the cut formula. As noticed before,

relational atoms cannot be principal in the succedent, so this case is excluded.

If ϕ ≡ A&B, we have

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A&B
R&

x : A, x : B,Γ′ ⇒ ∆′

x : A&B,Γ′ ⇒ ∆′ L&

Γ,Γ′ ⇒ ∆,∆′ Cut

We perform the following transformation

Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A x : A, x : B,Γ′ ⇒ ∆′

x : B,Γ,Γ′ ⇒ ∆,∆′ Cut

Γ,Γ,Γ′ ⇒ ∆,∆,∆′ Cut

Γ,Γ′ ⇒ ∆,∆′ Ctr∗

Thus obtaining two cuts on smaller cut formulas. We use Ctr∗ to denote several

contractions.

If ϕ ≡ A ∨B, we have

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

x : A,Γ′ ⇒ ∆′ x : B,Γ′ ⇒ ∆′

x : A ∨B,Γ′ ⇒ ∆′ L∨

Γ,Γ′ ⇒ ∆,∆′ Cut

We perform the following transformation

Γ ⇒ ∆, x : A, x : B x : B,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x : A
Cut

x : A,Γ′ ⇒ ∆′

Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′ Cut

Γ,Γ′ ⇒ ∆,∆′ Ctr∗

Thus obtaining two cuts on smaller cut formulas.

If ϕ ≡ A ⊃ B, we have

x : A,Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

Γ′ ⇒ ∆′, x : A x : B,Γ′ ⇒ ∆′

x : A ⊃ B,Γ′ ⇒ ∆′ L⊃

Γ,Γ′ ⇒ ∆,∆′ Cut
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We perform the following transformation

Γ′ ⇒ ∆′, x : A

x : A,Γ ⇒ ∆, x : B x : B,Γ′ ⇒ ∆′

x : A,Γ,Γ′ ⇒ ∆,∆′ Cut

Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′ Cut

Γ,Γ′ ⇒ ∆,∆′ Ctr∗

Thus obtaining two cuts on smaller cut formulas.

If ϕ ≡ GA, we have

x < z,Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : GA
RG

x < y, y : A, x : GA,Γ′′ ⇒ ∆′

x < y, x : GA,Γ′′ ⇒ ∆′ LG

x < y,Γ,Γ′′ ⇒ ∆,∆′ Cut

with Γ′ ≡ x < y,Γ′′

We perform the following transformation

x < z, Γ ⇒ ∆, z : A

x < y, Γ ⇒ ∆, y : A
H.-p.Subst

x < z, Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : GA
RG

x < y, y : A, x : GA, Γ′′ ⇒ ∆′

x < y, y : A, Γ, Γ′′ ⇒ ∆, ∆′ Cut

x < y, x < y, Γ, Γ, Γ′′ ⇒ ∆, ∆, ∆′ Cut

x < y, Γ, Γ′′ ⇒ ∆, ∆′ Ctr∗

The first cut has reduced cut-height and the second is on a smaller cut formula.

If ϕ ≡ FA, we have

x < y,Γ′′ ⇒ ∆, x : FA, y : A

x < y,Γ′′ ⇒ ∆, x : FA
RF

x < z, z : A,Γ′ ⇒ ∆′

x : FA,Γ′ ⇒ ∆′ LF

x < y,Γ′′,Γ′ ⇒ ∆,∆′ Cut

with Γ ≡ x < y,Γ′′

We perform the following transformation

x < y, Γ′′ ⇒ ∆, x : FA, y : A

x < z, z : A, Γ′ ⇒ ∆′

x : FA, Γ′ ⇒ ∆′ LF

x < y, Γ′′, Γ′ ⇒ ∆, ∆′, y : A
Cut

x < z, z : A, Γ′ ⇒ ∆′

x < y, y : A, Γ′ ⇒ ∆′ H.-p.Subst

x < y, x < y, Γ′′, Γ′, Γ′ ⇒ ∆, ∆′, ∆′ Cut

x < y, Γ′′, Γ′ ⇒ ∆, ∆′ Ctr∗
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The first cut has reduced cut-height and the second is on a smaller cut formula.

If ϕ ≡ HA, we have

z < x,Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : HA
RH

y < x, y : A, x : HA,Γ′′ ⇒ ∆′

y < x, x : HA,Γ′′ ⇒ ∆′ LH

y < x,Γ,Γ′′ ⇒ ∆,∆′ Cut

with Γ′ ≡ y < x,Γ′′

We perform the following transformation

z < x, Γ ⇒ ∆, z : A

y < x, Γ ⇒ ∆, y : A
H.-p.Subst

z < x, Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : HA
RH

y < x, y : A, x : HA, Γ′′ ⇒ ∆′

y < x, y : A, Γ, Γ′′ ⇒ ∆, ∆′ Cut

y < x, y < x, Γ, Γ, Γ′′ ⇒ ∆, ∆, ∆′ Cut

y < x, Γ, Γ′′ ⇒ ∆, ∆′ Ctr∗

The first cut has reduced cut-height and the second is on a smaller cut formula.

If ϕ ≡ PA, we have

y < x,Γ′′ ⇒ ∆, x : PA, y : A

y < x,Γ′′ ⇒ ∆, x : PA
RP

z < x, z : A,Γ′ ⇒ ∆′

x : PA,Γ′ ⇒ ∆′ LP

y < x,Γ′′,Γ′ ⇒ ∆,∆′ Cut

with Γ ≡ y < x,Γ′′

We perform the following transformation

y < x, Γ′′ ⇒ ∆, x : PA, y : A

z < x, z : A, Γ′ ⇒ ∆′

x : PA, Γ′ ⇒ ∆′ LP

y < x, Γ′′, Γ′ ⇒ ∆, ∆′, y : A
Cut

z < x, z : A, Γ′ ⇒ ∆′

y < x, y : A, Γ′ ⇒ ∆′ H.-p.Subst

y < x, y < x, Γ′′, Γ′, Γ′ ⇒ ∆, ∆′, ∆′ Cut

y < x, Γ′′, Γ′ ⇒ ∆, ∆′ Ctr∗

The first cut has reduced cut-height and the second is on a smaller cut formula.
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As a consequence of cut elimination, every formula in a derivation of the

sequent Γ ⇒ ∆ is either a subformula of the formulas in Γ,∆ or a relational

atomic formula:

Corollary 2.3.11. The calculus G3Kt* enjoys the weak subformula property.

2.4 Equality

In some cases we need the relation of equality to express certain frame properties;

this is the case when the accessibility relation is left and/or right linear

∀x∀y∀z ((y < x & z < x) ⊃ (y < z ∨ y = z ∨ z < y))

∀x∀y∀z ((x < y & x < z) ⊃ (y < z ∨ y = z ∨ z < y))

or left and/or right discrete

∀x∃y (x < y & ∀z (z < y ⊃ (x = z ∨ z < x)))

∀x∃y (y < x & ∀z (y < z ⊃ (x = z ∨ x < z)))

Therefore G3Kt* should be extended with initial sequents, and appropri-

ate rules corresponding to reflexivity of equality and substitution of equals in

relational atoms and as labels for propositional atoms.

x = y, Γ ⇒ ∆, x = y

x = x, Γ ⇒ ∆
Γ ⇒ ∆

EqRef

At(y), x = y, At(x),Γ ⇒ ∆
x = y, At(x),Γ ⇒ ∆

EqSubstAt

y : P, x = y, x : P,Γ ⇒ ∆
x = y, x : P,Γ ⇒ ∆

EqSubst

At(y) stands for an equality or an arbitrary relational atom yRz or zRy, and
P is a propositional atom.

Table 2.4: The rules for equality

Nonlogical rules for equality were introduced in Negri and von Plato (2001),

and extended to labelled modal calculi in Negri (2005).
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Let G3Kt*+Eq be the calculus obtained by adding the rules of Table 2.4 to

G3Kt*. As an application of the results in Section 2.3, we have:

Theorem 2.4.1. All the rules of G3Kt*+Eq are height-preserving invertible.

The rules of substitution, left and right weakening, left and right contraction are

height-preserving admissible. The calculus G3Kt*+Eq enjoys cut elimination.

The relation of equality enjoys the properties of reflexivity, symmetry, and

transitivity. Reflexivity has been transformed into the rule EqRef above,

whereas symmetry and transitivity can be turned into the corresponding rules

y = x, x = y, Γ ⇒ ∆
x = y, Γ ⇒ ∆

EqSym
x = y, x = z, z = y,Γ ⇒ ∆

x = z, z = y, Γ ⇒ ∆
EqTrans

However, the following theorem states that we do not need to assume these rules

explicitly:

Proposition 2.4.2. The rules of symmetry and transitivity for equality are

admissible in G3Kt*+Eq.

Proof. The proof consists of the following derivations:

y = x, x = y, Γ ⇒ ∆

y = x, x = x, x = y, Γ ⇒ ∆
LWk

x = x, x = y, Γ ⇒ ∆
EqSubstAt

x = y, Γ ⇒ ∆
EqRef

x = y, x = z, z = y, Γ ⇒ ∆

z = x, x = y, x = z, z = y, Γ ⇒ ∆
LWk

z = x, x = z, z = y, Γ ⇒ ∆
EqSubstAt

x = z, z = y, Γ ⇒ ∆
EqSym

The rule of substitution of equals EqSubst is restricted to atomic formulas

for the purposes of proof analysis, but the generalisation to arbitrary temporal

formulas

y : A, x = y, x : A,Γ ⇒ ∆
x = y, x : A,Γ ⇒ ∆

EqSubst

is admissible in G3Kt*+Eq.
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Lemma 2.4.3. The sequent x = y, x : A ⇒ y : A is derivable in G3Kt*+Eq

for arbitrary temporal formula A.

Proof. By induction on the length of A. If A ≡ ⊥, then x = y, x : ⊥ ⇒ y : ⊥ is

an instance of L⊥. If A ≡ ⊥ ⊃ ⊥, we have the following derivation

x = y, y : ⊥, x : ⊥ ⊃ ⊥ ⇒ y : ⊥ L⊥

x = y, x : ⊥ ⊃ ⊥ ⇒ y : ⊥ ⊃ ⊥ R⊃

If A is a propositional atom, then x = y, x : P ⇒ y : P is given by the following

derivation

x = y, y : P, x : P ⇒ y : P

x = y, x : P ⇒ y : P
EqSubst

If A ≡ B&C we apply the inductive hypothesis to B and C, and then left and

right rules

x = y, x : B ⇒ y : B

x = y, x : B, x : C ⇒ y : B
LWk

x = y, x : C ⇒ y : C

x = y, x : B, x : C ⇒ y : C
LWk

x = y, x : B, x : C ⇒ y : B&C
R&

x = y, x : B&C ⇒ y : B&C
L&

If A ≡ B ∨ C, we have

x = y, x : B ⇒ y : B

x = y, x : B ⇒ y : B, y : C
RWk

x = y, x : C ⇒ y : C

x = y, x : C ⇒ y : B, y : C
LWk

x = y, x : B ∨ C ⇒ y : B, y : C
L∨

x = y, x : B ∨ C ⇒ y : B ∨ C
R∨

If A ≡ B ⊃ C, we have

y = x, y : B ⇒ x : B

x = y, y = x, y : B ⇒ x : B
LWk

x = y, y : B ⇒ x : B
EqSym

x = y, y : B ⇒ y : C, x : B
RWk

x = y, x : C ⇒ y : C

x = y, y : B, x : C ⇒ y : C
LWk

x = y, y : B, x : B ⊃ C ⇒ y : C
L⊃

x = y, x : B ⊃ C ⇒ y : B ⊃ C
R⊃
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If A ≡ GB, we have

y = x, x = y, x < z, y < z, z : B, x : GB ⇒ z : B

y = x, x = y, x < z, y < z, x : GB ⇒ z : B
LG

y = x, x = y, y < z, x : GB ⇒ z : B
EqSubstAt

x = y, y < z, x : GB ⇒ z : B
EqSym

x = y, x : GB ⇒ y : GB
RG

The sequent y = x, x = y, x < z, y < z, z : B, x : GB ⇒ z : B is derivable by

Lemma 2.3.5.

If A ≡ FB, we have

x = y, y < z, x < z, z : B ⇒ y : FB, z : B

x = y, y < z, x < z, z : B ⇒ y : FB
RF

x = y, x < z, z : B ⇒ y : FB
EqSubstAt

x = y, x : FB ⇒ y : FB
LF

The sequent x = y, y < z, x < z, z : B ⇒ y : FB, z : B is derivable by Lemma

2.3.5.

If A ≡ HB, we have

y = x, x = y, z < x, z < y, z : B, x : HB ⇒ z : B

y = x, x = y, z < x, z < y, x : HB ⇒ z : B
LH

y = x, x = y, z < y, x : HB ⇒ z : B
EqSubstAt

x = y, z < y, x : HB ⇒ z : B
EqSym

x = y, x : HB ⇒ y : HB
RH

The sequent y = x, x = y, z < x, z < y, z : B, x : HB ⇒ z : B is derivable by

Lemma 2.3.5.

If A ≡ PB, we have

x = y, z < y, z < x, z : B ⇒ y : PB, z : B

x = y, z < y, z < x, z : B ⇒ y : PB
RP

x = y, z < x, z : B ⇒ y : PB
EqSubstAt

x = y, x : PB ⇒ y : PB
LP

The sequent x = y, z < y, z < x, z : B ⇒ y : PB, z : B is derivable by Lemma

2.3.5.
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Proposition 2.4.4. The generalised rule of substitution of equals for arbitrary

temporal formula A is admissible in G3Kt*+Eq.

Proof. By Lemma 2.4.3, the sequent x = y, x : A ⇒ y : A is derivable. A

cut with the premise of the generalised rule EqSubst and contractions give the

conclusion x = y, x : A,Γ ⇒ ∆. The result follows by admissibility of cut and

contraction in G3Kt*+Eq.
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Chapter 3

An infinitary calculus for

Priorean linear time

3.1 Linear discrete time

In Chapter 2, we have introduced the basic calculus for temporal logic and its

extensions with mathematical rules for the accessibility relation(s). The present

chapter aims at applying the general results achieved for G3Kt*+Eq to a specific

temporal logic.

Among the different versions of temporal logic proposed by Prior (1967), we

choose here the system 7.3 (p. 178) that characterises linear discrete frames

without a first and a last instant, which are isomorphic to the set of the inte-

gers Z. Our choice is determined both by the intrinsic interest of this class of

temporal frames, and by the importance that this logic has gained in computer

science logic for the specification and verification of reactive systems (see for
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example Gabbay et al. 1980, Manna and Pnueli 1981).

In addition to the standard temporal operators G and H, the next-time

operator1 T and the previous-time operator Y are considered, with the following

semantical readings (with ≺ standing for immediate successor relation):

x  TA iff for all y, x ≺ y implies y  A

x  YA iff for all y, y ≺ x implies y  A

The corresponding temporal rules are given similarly to those for G and H

y : A, x : TA, x ≺ y, Γ ⇒ ∆

x : TA, x ≺ y, Γ ⇒ ∆
LT

x ≺ y, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : TA
RT

y : A, x : YA, y ≺ x, Γ ⇒ ∆

x : YA, y ≺ x, Γ ⇒ ∆
LY

y ≺ x, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : YA
RY

Rules RT and RY have the condition that y is not in the conclusion.

Table 3.1: The rules for T and Y

The relation of immediate precedence, ≺, is characterized by the properties:

Left seriality: ∀x∃y y ≺ x

Right seriality: ∀x∃y x ≺ y

Uniqueness of the immediate predecessor: ∀x∀y∀z((y ≺ x & z ≺ x) ⊃ y = z)

Uniqueness of the immediate successor: ∀x∀y∀z((x ≺ y & x ≺ z) ⊃ y = z)

which are turned into the following initial sequents and mathematical rules

x ≺ y, Γ ⇒ ∆, x ≺ y

y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x ≺ y, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

y = z, y ≺ x, z ≺ x, Γ ⇒ ∆

y ≺ x, z ≺ x, Γ ⇒ ∆
UnPred

y = z, x ≺ y, x ≺ z, Γ ⇒ ∆

x ≺ y, x ≺ z, Γ ⇒ ∆
UnSucc

Rules L-Ser and L-Ser have the condition that y is not in the conclusion.

Table 3.2: The rules for immediate successor
1Temporal operators for the next moment were first studied by Scott (1965) and von Wright

(1965). See also Segerberg (1967).
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The order relation x < y is defined as the transitive closure of the immediate

successor relation x ≺ y, that is,

x < y ≡ ∃n ∈ N+ (x ≺n y) (∗)

The notation means that if x < y, then y is reachable from x by iterating finitely

many times the immediate successor relation: If x is less than y, then x is the

predecessor of y, or it is the predecessor of the predecessor of y, or ... and so

on.

The iterated successor relation is defined inductively by the following clauses:

x ≺1 y ≡ x ≺ y;

x ≺n+1 y ≡ ∃z(x ≺n z & z ≺ y) for n ≥ 1.

The iterated successor relation requires mathematical rules working both on the

left- and on the right-hand side of a sequent

x ≺n y, y ≺ z, Γ ⇒ ∆

x ≺n+1 z, Γ ⇒ ∆
LDef

Γ ⇒ ∆, x ≺n+1 z, x ≺n y Γ ⇒ ∆, x ≺n+1 z, y ≺ z

Γ ⇒ ∆, x ≺n+1 z
RDef

Rule LDef has the condition that y is not in the conclusion.

Table 3.3: The rules for iterated successor

The left-to-right direction of (*) gives a rules with infinitely many premises,

whereas the right-to-left direction gives rules Incn for every n ≥ 1

{x ≺n y, x < y, Γ ⇒ ∆}n∈N+

x < y, Γ ⇒ ∆
T ω

x < y, x ≺n y, Γ ⇒ ∆

x ≺n y, Γ ⇒ ∆
Incn

Table 3.4: The rules for transitive closure

However, in Section 3.2 we will show that we do not need to assume all the

rules of inclusion Incn as primitive and that Inc = Inc1 is sufficient in the

presence of Trans.
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The calculus G3LT for Priorean linear time is obtained by adding to the

basic calculus G3Kt the rules for equality of Table 2.4, rule of transitivity for <

from Table 2.2, and the temporal and mathematical rules of Tables 3.1-3.4.

3.2 Structural properties

Next, we show that the system G3LT enjoys the same structural properties that

hold for the ground system G3Kt and for its extensions G3Kt* as recalled in

Chapter 2. The proofs are omitted when they are straightforward adaptations

of the proofs thereof.

Substitution of labels is defined as in Section 2.3; here observe that the

clauses for the generic relation R can be instantiated to =, ≺, ≺n, or <.

Lemma 3.2.1. If Γ ⇒ ∆ is derivable in G3LT, then also Γ(y/x) ⇒ ∆(y/x) is

derivable, with the same derivation height.

Proof. By induction on the height h of the derivation (see Lemma 2.3.4). If

h = 0, the sequent Γ ⇒ ∆ is either an initial sequent or conclusion of L⊥, in

either case the sequent Γ(y/x) ⇒ ∆(y/x) is also an initial sequent or conclusion

of L⊥. Suppose that Γ ⇒ ∆ is derivable with h = n + 1 and that the claim

holds for h = n, and consider the last rule applied in the derivation. If it

is a propositional rule or a temporal or mathematical rule without variable

condition, apply the inductive hypothesis to the premise(s) and then the rule.

If the last rule is a rule with a variable condition, we need to avoid a clash with

the eigenvariable: in that case, we apply twice the inductive hypothesis to the

premise(s) first to replace the eigenvariable with a fresh variable not appearing

in the derivation and then to perform the desired substitution.
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Lemma 3.2.2. Sequents of the form x : A,Γ ⇒ ∆, x : A are derivable in G3LT

for arbitrary formulas A, arbitrary contexts Γ,∆, and arbitrary labels x.

Proof. By induction on the length of the formula A. For propositional connec-

tives and for the temporal operators G, F, H, and P the proof is analogous

to the proof of Lemma 2.3.5 for G3Kt*: we consider here only the cases of

A ≡ TB and A ≡ YB. If A ≡ TB, by inductive hypothesis, we have that

x ≺ y, y : B, x : TB,Γ ⇒ ∆, y : B is derivable. Consider then the following

derivation

y : B, x ≺ y, x : TB,Γ ⇒ ∆, y : B

x ≺ y, x : TB,Γ ⇒ ∆, y : B
LT

x : TB,Γ ⇒ ∆, x : TB
RT

where we choose y different from x and not in Γ,∆.

If A ≡ YB, by inductive hypothesis and arbitrariness of the contexts and of the

label, we have that y ≺ x, y : B, x : YB,Γ ⇒ ∆, y : B is derivable. Consider

then the following derivation

y : B, y ≺ x, x : YB,Γ ⇒ ∆, y : B

y ≺ x, x : YB,Γ ⇒ ∆, y : B
LY

x : YB,Γ ⇒ ∆, x : YB
RY

where we choose y different from x and not in Γ,∆.

Lemma 3.2.3. Sequents of the form

x ≺n y,Γ ⇒ ∆, x ≺n y

are derivable in G3LT for all n ∈ N+.

Proof. By induction on n. For n = 1, the sequent x ≺ y, Γ ⇒ ∆, x ≺ y is initial.

For n + 1, assume a derivation of x ≺n z, z ≺ y, Γ ⇒ ∆, x ≺n+1 y, x ≺n z with

z different from x, y and not in Γ,∆, and derive the claim as follows
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x ≺n z, z ≺ y, Γ ⇒ ∆, x ≺n+1 y, x ≺n z x ≺n z, z ≺ y, Γ ⇒ ∆, x ≺n+1 y, z ≺ y

x ≺n z, z ≺ y, Γ ⇒ ∆, x ≺n+1 y
RDef

x ≺n+1 y, Γ ⇒ ∆, x ≺n+1 y
LDef

In what follows, Greek lower case is used for denoting labelled formulas or

relational atoms.

Theorem 3.2.4. The rules of left and right weakening are height-preserving

admissible in G3LT.

Proof. By induction on the height of the derivation of the premise (see Theorem

2.3.6). If Γ ⇒ ∆ is an initial sequent or conclusion of L⊥, so are ϕ, Γ ⇒ ∆ and

Γ ⇒ ∆, ϕ. The cases of rules without variable condition are straightforward. If

the last step is a rule with a variable condition, we apply first Lemma 3.2.1 in

order to avoid a clash of variables and then the inductive hypothesis and the

rule in question.

Lemma 3.2.5. All the rules of G3LT are height-preserving invertible.

Proof. The cases of propositional and temporal rules and of the rules for the ac-

cessibility relations are dealt with analogously to the proof of height-preserving

invertibility for G3Kt* (see Lemma 2.3.7): the proof of height-preserving invert-

ibility of the rules for T and for Y goes analogously to that of the rules for G and

H, respectively. We consider here the essentially new cases of rules LDef and

RDef . Rule RDef is trivially height-preserving invertible by height-preserving

admissibility of weakening. For the rule LDef , the proof is by induction on the

height of derivation. If h = 0, then x ≺m+1 y,Γ ⇒ ∆ is an initial sequent or

conclusion of L⊥: in both cases x ≺m z, z ≺ y,Γ ⇒ ∆ is also an initial sequent
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or conclusion of L⊥, since initial sequents of the form x ≺p y, Γ ⇒ ∆, x ≺p y

were not allowed for p > 1. For h = n + 1, we simply apply the inductive

hypothesis to the premise(s) and then the rule; clash of variables is avoided

through Lemma 3.2.1.

Theorem 3.2.6. The rules of left and right contraction are height-preserving

admissible in G3LT.

Proof. Analogous to the proof of height-preserving admissibility of contraction

for G3Kt* (see Theorem 2.3.8). By simultaneous induction on the height of

derivation for left and right contractions. For h = 0, note that if ϕ, ϕ,Γ ⇒ ∆

(resp. Γ ⇒ ∆, ϕ, ϕ) is an initial sequent or conclusion on L⊥, so is ϕ, Γ ⇒

∆ (resp. Γ ⇒ ∆, ϕ). For h = n + 1, we distinguish two cases: if none of

the contraction formulas is principal in the last rule, we apply the inductive

hypothesis to the premise(s) and then the rule; if one of the contraction formulas

is principal, we first apply height-preserving inversion to the premise(s), the

inductive hypothesis and then the rule.

The system G3LT has mathematical rules that act both on the left- and

on the right-hand side of sequents, and a measure of complexity for relational

atoms is needed in the proof of cut elimination, as in Boretti and Negri (2006).

The length of a labelled formula x : A is defined as in Definition 2.3.1. In

addition we have the following:

Definition 3.2.7. The length of relational or equality atoms is defined by:

l(x ≺ y) = l(x < y) = l(x = y) = 1 and l(x ≺n y) = n.

Theorem 3.2.8. The rule of cut is admissible in G3LT.
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Proof. By induction on the length of the cut formula and subinduction on the

sum of the heights of the derivations of the premises of cut. The proof has the

structure of the proof of cut elimination for G3Kt* (see Theorem 2.3.10). We

consider in detail the cases of cut formula x : TA or x : YA principal in both

premises of cut. If the original derivation contains the following instance of cut

x ≺ z,Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : TA
RT

x ≺ y, y : A, x : TA,Γ′′ ⇒ ∆′

x ≺ y, x : TA,Γ′′ ⇒ ∆′ LT

x ≺ y, Γ,Γ′′ ⇒ ∆,∆′ Cut

with Γ′ ≡ x ≺ y, Γ′′

we perform the following transformation

x ≺ z, Γ ⇒ ∆, z : A

x ≺ y, Γ ⇒ ∆, y : A
H.-p.Subst

x ≺ z, Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : TA
RT

x ≺ y, y : A, x : TA, Γ′′ ⇒ ∆′

x ≺ y, y : A, Γ, Γ′′ ⇒ ∆, ∆′ Cut

x ≺ y, x ≺ y, Γ, Γ, Γ′′ ⇒ ∆, ∆, ∆′ Cut

x ≺ y, Γ, Γ′′ ⇒ ∆, ∆′ Ctr∗

If the original derivation contains the following instance of cut

z ≺ x, Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : YA
RY

y ≺ x, y : A, x : YA,Γ′′ ⇒ ∆′

y ≺ x, x : YA,Γ′′ ⇒ ∆′ LY

y ≺ x, Γ,Γ′′ ⇒ ∆,∆′ Cut

with Γ′ ≡ y ≺ x,Γ′′

we perform the following transformation

z ≺ x, Γ ⇒ ∆, z : A

y ≺ x, Γ ⇒ ∆, y : A
H.-p.Subst

z ≺ x, Γ ⇒ ∆, z : A

Γ ⇒ ∆, x : YA
RY

y ≺ x, y : A, x : YA, Γ′′ ⇒ ∆′

y ≺ x, y : A, Γ, Γ′′ ⇒ ∆, ∆′ Cut

y ≺ x, y ≺ x, Γ, Γ, Γ′′ ⇒ ∆, ∆, ∆′ Cut

y ≺ x, Γ, Γ′′ ⇒ ∆, ∆′ Ctr∗

Furthermore, we have to consider an essentially new case, given by the si-

multaneous presence of mathematical rules that act both on the left- and on the

right-hand side of sequents: this is the case with cut formula x ≺n+1 y principal

in both premises of cut
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Γ ⇒ ∆, x ≺n+1 y, x ≺n z Γ ⇒ ∆, x ≺n+1 y, z ≺ y

Γ ⇒ ∆, x ≺n+1 y
RDef

x ≺n w, w ≺ y, Γ′ ⇒ ∆′

x ≺n+1 y, Γ′ ⇒ ∆′
LDef

Γ, Γ′ ⇒ ∆, ∆′ Cut

This derivation is transformed as follows: we first cut the left premise of RDef

with the conclusion of LDef

1.

Γ ⇒ ∆, x ≺n+1 y, x ≺n z

x ≺n w,w ≺ y,Γ ⇒ ∆
x ≺n+1 y, Γ ⇒ ∆

LDef

Γ,Γ′ ⇒ ∆,∆′, x ≺n z
Cut

thus obtaining a cut with shorter height. Then we cut the right premise of

RDef with the conclusion of LDef

2.

Γ ⇒ ∆, x ≺n+1 y, z ≺ y

x ≺n w,w ≺ y, Γ′ ⇒ ∆′

x ≺n+1 y,Γ′ ⇒ ∆′ LDef

Γ,Γ′ ⇒ ∆,∆′, z ≺ y
Cut

thus obtaining another cut with shorter height. Finally, we use the sequents

thus obtained and the premise of LDef as follows

Γ, Γ′
2.⇒ ∆, ∆′, z ≺ y

Γ, Γ′
1.⇒ ∆, ∆′, x ≺n z

x ≺n w, w ≺ y, Γ′ ⇒ ∆′

x ≺n z, z ≺ y, Γ′ ⇒ ∆′ H.-P.Subst

z ≺ y, Γ, Γ′, Γ′ ⇒ ∆, ∆′, ∆′ Cut

Γ, Γ, Γ′, Γ′, Γ′ ⇒ ∆, ∆, ∆′, ∆′, ∆′ Cut

Γ, Γ′ ⇒ ∆, ∆′ Ctr∗

where the two cuts are on formulas with smaller length.

Corollary 3.2.9. The calculus G3LT enjoys the weak subformula property.

Even if the latter is not as strong as the full subformula property, it can be

further refined: the relational atomic formulas that can appear in a derivation

are bounded by the labels appearing in the endsequent. A detailed discussion

on this point can be found in Section 1.4.3.

Definition 3.2.10. In an instance of rule R-Ser (resp. L-Ser) with active

formula x ≺ y (resp. y ≺ x), the label x is called side label.
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Lemma 3.2.11. A derivation in G3LT can be transformed into a derivation

with all instances of R-Ser and L-Ser applied on side labels that appear in the

conclusion of the rule.

Proof. Suppose that we have an application of L-Ser or R-Ser on a side label

z not in its conclusion: we can perform the following transformations

y ≺ z, Γ ⇒ ∆
Γ ⇒ ∆

L-Ser
;

y ≺ z,Γ ⇒ ∆
y ≺ x, Γ ⇒ ∆

H.-p.Subst(x/z)

Γ ⇒ ∆
L-Ser

z ≺ y, Γ ⇒ ∆
Γ ⇒ ∆

R-Ser
;

z ≺ y, Γ ⇒ ∆
x ≺ y, Γ ⇒ ∆

H.-p.Subst(x/z)

Γ ⇒ ∆
R-Ser

Here x has been chosen among the variables in Γ,∆.

Definition 3.2.12. A derivation is minimal when it is not possible to shorten

it through height-preserving admissibility of contraction or other modifications

of the derivation.

Lemma 3.2.13. In a minimal derivation of a sequent Γ ⇒ ∆ in G3LT, all the

labels in atoms of the form x = x removed by EqRef are labels in Γ,∆.

Proof. Consider a minimal derivation of a sequent Γ ⇒ ∆ and suppose there is

a variable x in an atom x = x removed by EqRef . Consider the last occurrence

of x and the step of EqRef removing it

x = x,Γ′
...⇒ ∆′

Γ′ ⇒ ∆′ EqRef

Trace the atom x = x up in the derivation, by following its occurrences from the

sequent x = x, Γ′ ⇒ ∆′ to the leaves of the derivation. If x = x is never principal

in a rule, we trace it up to the initial sequents of the derivation tree. If it is

principal in an initial sequent, the latter has the form x = x,Γ′′ ⇒ ∆′′, x = x,
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and we find x = x in the succedent: since no rule removes x = x from the

right-hand side of a sequent, we find x = x in ∆, contrary to the hypothesis.

If x = x is principal in none of the initial sequents, then it can be removed all

along the derivation together with the instance of EqRef , thus shortening the

derivation, contrary to the hypothesis of minimality.

If x = x is principal in a rule, this can be only EqSubst or EqSubstAt. Thus,

we have an inference of one of the following forms

x = x, x : P, x : P,Γ′′
...⇒ ∆′′

x = x, x : P,Γ′′ ⇒ ∆′′ EqSubst
x = x,At(x), At(x),Γ′′

...⇒ ∆′′

x = x,At(x),Γ′′ ⇒ ∆′′ EqSubstAt

that can be shortened by height-preserving admissibility of contraction, contrary

to the hypothesis of minimality.

Proposition 3.2.14. Let us suppose that Γ ⇒ ∆ does not contain relational

atoms in its succedent. All the labels in a minimal derivation of Γ ⇒ ∆ in

G3LT are eigenvariables or labels in Γ,∆.

Proof. Immediate for the logical rules and the mathematical rules UnSucc,

UnPred, LDef , Tω, Inc, Trans, EqSubst and EqSubstAt. Rule RDef is

excluded by the condition that no relational atom is in ∆. The cases of rules

L-Ser and R-Ser are dealt with in Lemma 3.2.11. The case of rule EqRef is

considered in Lemma 3.2.13.

We will refer to the property stated by Proposition 3.2.14 above as subterm

property.

Observe that the restriction to minimal derivations is no way a limiting one,

since, by Definition 3.2.12, those are exactly the kind of derivations usually

aimed to. Furthermore, the condition that no relational atom is in ∆ is not
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restrictive, when considering derivations of purely logical sequents, since, as

noticed in Section 2.1, sequents xRy,Γ ⇒ ∆, xRy (for arbitrary relational atoms

xRy) and even rule RDef are needed only for deriving properties of accessibility

relations, and thus can be left out from the system.

In the following we prove the admissibility of some useful rules.

Lemma 3.2.15. The sequent x = y, x : A ⇒ y : A is derivable in G3LT for

arbitrary temporal formulas A.

Proof. By induction on the length of A. For the propositional connectives and

the temporal operators G, F, H, and P the proof is analogous to the proof of

Lemma 2.4.3 for G3Kt*+Eq. We consider here only the cases of A ≡ TB and

A ≡ YB.

If A ≡ TB, we have

y = x, x = y, x ≺ z, y ≺ z, z : B, x : TB ⇒ z : B

y = x, x = y, x ≺ z, y ≺ z, x : TB ⇒ z : B
LT

y = x, x = y, y ≺ z, x : TB ⇒ z : B
EqSubstAt

x = y, y ≺ z, x : TB ⇒ z : B
EqSym

x = y, x : TB ⇒ y : TB
RT

If A ≡ YB, we have

y = x, x = y, z ≺ x, z ≺ y, z : B, x : YB ⇒ z : B

y = x, x = y, z ≺ x, z ≺ y, x : YB ⇒ z : B
LY

y = x, x = y, z ≺ y, x : YB ⇒ z : B
EqSubstAt

x = y, z ≺ y, x : YB ⇒ z : B
EqSym

x = y, x : YB ⇒ y : YB
RY

Proposition 3.2.16. The generalised rule of substitution of equals for arbitrary

temporal formulas A

y : A, x = y, x : A,Γ ⇒ ∆
x = y, x : A,Γ ⇒ ∆

EqSubst
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is admissible in G3LT.

Proof. By Lemma 3.2.15, the sequent x = y, x : A ⇒ y : A is derivable. A

cut with the premise of the generalised rule EqSubst and contractions give the

conclusion x = y, x : A,Γ ⇒ ∆. The result follows by admissibility of cut and

contraction in G3LT.

Mathematical rules for immediate successor relation can be generalised to

the relation of iterated successor for every n ∈ N+.

y = z, x ≺n y, x ≺n z,Γ ⇒ ∆
y = z, x ≺n y, Γ ⇒ ∆

EqSubstn

y = z, y ≺n x, z ≺n x, Γ ⇒ ∆
y = z, y ≺n x, Γ ⇒ ∆

EqSubstn

x < y, x ≺n y, Γ ⇒ ∆
x ≺n y, Γ ⇒ ∆

Incn

x ≺m y, y ≺n z, Γ ⇒ ∆
x ≺m+n z,Γ ⇒ ∆

LDefn

y = z, y ≺n x, z ≺n x, Γ ⇒ ∆
y ≺n x, z ≺n x, Γ ⇒ ∆

UnPredn

y = z, x ≺n y, x ≺n z,Γ ⇒ ∆
x ≺n y, x ≺n z,Γ ⇒ ∆

UnSuccn

y ≺n x,Γ ⇒ ∆
Γ ⇒ ∆

L-Sern

x ≺n y,Γ ⇒ ∆
Γ ⇒ ∆

R-Sern

Rules LDefn, L-Sern, and R-Sern have the variable condition that y is not in
the conclusion.

Table 3.5: The generalised rules for iterated successor

Proposition 3.2.17. For all n ∈ N+, the rules EqSubstn of substitution of

equals in the relation of iterated successor are admissible in G3LT.

Proof. By induction on n. If n = 1 we simply apply EqSubstAt. Let us assume

that the claim holds for n; the result is given by the following inferences:
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Case 1

y = z, x ≺n+1 y, x ≺n+1 z,Γ ⇒ ∆
y = z, x ≺n w,w ≺ z, x ≺n v, v ≺ y,Γ ⇒ ∆

H.-p.Inv

w = v, y = z, x ≺n w,w ≺ z, w ≺ y, x ≺n v, v ≺ y,Γ ⇒ ∆
LWk∗

w = v, y = z, x ≺n w,w ≺ z, w ≺ y, v ≺ y, Γ ⇒ ∆
EqSubstn

y = z, x ≺n w,w ≺ z, w ≺ y, v ≺ y, Γ ⇒ ∆
UnPred

y = z, x ≺n w,w ≺ z, w ≺ y, Γ ⇒ ∆
L-Ser

y = z, x ≺n w,w ≺ y,Γ ⇒ ∆
EqSubstAt

y = z, x ≺n+1 y, Γ ⇒ ∆
LDef

We choose two new labels v, w different from x, y, z and not in Γ,∆.

Case 2

y = z, y ≺n+1 x, z ≺n+1 x, Γ ⇒ ∆
y = z, y ≺n v, v ≺ x, z ≺n w,w ≺ x, Γ ⇒ ∆

H.-p.Inv

w = v, y = z, y ≺n w, y ≺n v, v ≺ x, z ≺n w,w ≺ x,Γ ⇒ ∆
LWk∗

w = v, y = z, y ≺n w, v ≺ x, z ≺n w,w ≺ x, Γ ⇒ ∆
EqSubstn

y = z, y ≺n w, v ≺ x, z ≺n w,w ≺ x, Γ ⇒ ∆
UnPred

y = z, y ≺n w, z ≺n w,w ≺ x, Γ ⇒ ∆
L-Ser

y = z, y ≺n w,w ≺ x, Γ ⇒ ∆
EqSubstn

y = z, y ≺n+1 x,Γ ⇒ ∆
LDef

Again, we choose two new labels v, w different from x, y, z and not in Γ,∆.

Proposition 3.2.18. For all n ∈ N+, the generalised rule Incn is admissible

in G3LT if Inc is assumed as primitive.

Proof. For n = 1, Incn is just Inc. Let us assume admissibility of Incn and

prove admissibility of Incn+1 as follows

x < y, x ≺n+1 y, Γ ⇒ ∆
x < y, x ≺n z, z ≺ y, Γ ⇒ ∆

H.-p.Inv

x < y, x < z, z < y, x ≺n z, z ≺ y, Γ ⇒ ∆
LWk∗

x < z, z < y, x ≺n z, z ≺ y, Γ ⇒ ∆
Trans

z < y, x ≺n z, z ≺ y, Γ ⇒ ∆
Incn

x ≺n z, z ≺ y,Γ ⇒ ∆
Inc

x ≺n+1 y, Γ ⇒ ∆
LDef

where z has been chosen different from x, y and not in Γ,∆.
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Proposition 3.2.19. For all n ∈ N+, the generalised rule LDefn is admissible

in G3LT.

Proof. By induction on n. For n = 1, the rule is just LDef . Admissibility of

LDefn+1 is reduced to admissibility of LDefn by the following derivation

x ≺m z, z ≺n+1 y, Γ ⇒ ∆
x ≺m z, z ≺n w,w ≺ y, Γ ⇒ ∆

H.-p.Inv.

x ≺m+n w,w ≺ y, Γ ⇒ ∆
LDefn

x ≺m+n+1 y, Γ ⇒ ∆
LDef

where we choose w different from x, y, z and not in Γ,∆ and z was not in the

conclusion by hypothesis.

Proposition 3.2.20. For all n ∈ N+, rules UnPredn and UnSuccn are ad-

missible in G3LT.

Proof. By induction on n. If n = 1, we simply have UnPred and UnSucc.

Admissibility of UnPredn+1 and UnSuccn+1 is reduced to admissibility of

UnPredn and UnSuccn by the following derivations:

y = z, y ≺n+1 x, z ≺n+1 x,Γ ⇒ ∆
y = x, y ≺n v, v ≺ x, z ≺n w,w ≺ x, Γ ⇒ ∆

H.-p.Inv

y = x, v = w, y ≺n w, y ≺n v, v ≺ x, z ≺n w,w ≺ x,Γ ⇒ ∆
LWk∗

v = w, y ≺n w, y ≺n v, v ≺ x, z ≺n w,w ≺ x, Γ ⇒ ∆
UnPredn

v = w, y ≺n v, v ≺ x, z ≺n w,w ≺ x,Γ ⇒ ∆
EqSubstn

y ≺n v, v ≺ x, z ≺n w,w ≺ xΓ ⇒ ∆
UnPred

y ≺n+1 x, y ≺n+1 x,Γ ⇒ ∆
LDef,LDef

y = z, x ≺n+1 y, x ≺n+1 z,Γ ⇒ ∆
y = x, x ≺n v, v ≺ y, x ≺n w,w ≺ zΓ ⇒ ∆

H.-p.Inv

y = x, v = w, x ≺n v, v ≺ y, w ≺ y, x ≺n w,w ≺ zΓ ⇒ ∆
LWk∗

v = w, x ≺n v, v ≺ y, w ≺ y, x ≺n w,w ≺ zΓ ⇒ ∆
UnSucc

v = w, x ≺n v, v ≺ y, x ≺n w,w ≺ zΓ ⇒ ∆
EqSubstAt

x ≺n v, v ≺ y, x ≺n w,w ≺ zΓ ⇒ ∆
UnSuccn

x ≺n+1 y, x ≺n+1 z,Γ ⇒ ∆
LDef,LDef
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Proposition 3.2.21. For all n ∈ N+, the generalised rules L-Sern and L-Sern

are admissible in G3LT.

Proof. By induction on n. For n = 1, we simply have L-Ser and R-Ser. Ad-

missibility of L-Sern+1 and R-Sern+1 is reduced to admissibility of L-Sern and

R-Sern by the following derivations:

y ≺n+1 x,Γ ⇒ ∆
y ≺n z, z ≺ x,Γ ⇒ ∆

H.-p.Inv

z ≺ x, Γ ⇒ ∆
L-Sern

Γ ⇒ ∆
L-Ser

x ≺n+1 y, Γ ⇒ ∆
x ≺n z, z ≺ y, Γ ⇒ ∆

H.-p.Inv

x ≺n z,Γ ⇒ ∆
R-Ser

Γ ⇒ ∆
R-Sern

Choose z different from x, y and not in Γ,∆. The label y was not in the con-

clusion by hypothesis.

The rules of seriality can be generalised also to the order relation <:

y < x,Γ ⇒ ∆
Γ ⇒ ∆

L-Ser<

x < y,Γ ⇒ ∆
Γ ⇒ ∆

R-Ser<

Both rules have the variable condition that y is not in the conclusion.

Table 3.6: The rules of seriality for <

Proposition 3.2.22. The rules of left and right seriality for < are admissible

in G3LT.

Proof. By weakening with y ≺ x and x ≺ y, respectively, and then applying

Inc and L-Ser or R-Ser.

Proposition 3.2.23. The rules of left and right linearity of Table 2.2 are ad-

missible in G3LT.

Proof. By means of two applications of the infinitary rule Tω, with principal

formulas z < x, y < x and x < z, x < y, respectively, and derivability of the

sequents
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z ≺m x, z < x, y ≺n x, y < x,Γ ⇒ ∆

x ≺m z, x < z, x ≺n y, x < y,Γ ⇒ ∆

for every m,n ∈ N+, whenever the premises of L-Lin and R-Lin are derivable.

Further useful mathematical rules connect immediate successor and order

relation:

x ≺ y, x < y, Γ ⇒ ∆ x ≺ z, z < y, x < y, Γ ⇒ ∆
x < y,Γ ⇒ ∆

Mix1

x ≺ y, x < y, Γ ⇒ ∆ x < z, z ≺ y, x < y, Γ ⇒ ∆
x < y,Γ ⇒ ∆

Mix2

x = z, y ≺ x, y < z, Γ ⇒ ∆ x < z, y ≺ x, y < z, Γ ⇒ ∆
y ≺ x, y < z, Γ ⇒ ∆

Discr1

x = z, x ≺ y, z < y,Γ ⇒ ∆ z < x, x ≺ y, z < y,Γ ⇒ ∆
x ≺ y, z < y,Γ ⇒ ∆

Discr2

Rules Mix1 and Mix2 have the variable condition that z is not in the conclusion.

Table 3.7: The rules Mix1, Mix2, and the rules for left and right discreteness

Proposition 3.2.24. Rules Mix1 and Mix2 are admissible in G3LT.

Proof. For Mix1 we have the following inferences

x ≺ y, x < y, Γ ⇒ ∆

x ≺ z, z < y, x < y, Γ ⇒ ∆

x ≺ z, z ≺ y, z < y, x < y, Γ ⇒ ∆
LW k

x ≺ z, z ≺ y, x < y, Γ ⇒ ∆
Inc

x ≺2 y, x < y, Γ ⇒ ∆
LDef

x ≺ z, z < y, x < y, Γ ⇒ ∆

x ≺ z, z ≺2 y, z < y, x < y, Γ ⇒ ∆
LW k

x ≺ z, z ≺2 y, x < y, Γ ⇒ ∆
Inc2

x ≺3 y, x < y, Γ ⇒ ∆
LDef2

. . .

x < y, Γ ⇒ ∆
T ω

where by hypothesis z is different from x, y and not in Γ,∆.

Note that in the derivations of the premises x ≺n y, x < y, Γ ⇒ ∆ for n > 2

applications of LDefn and Incn are needed. The case of Mix2 is analogous.

Proposition 3.2.25. The rules for left and right discreteness are admissible in

G3LT.

79



Proof. The proof consists of the following inferences

x = z, y ≺ x, y < z, Γ ⇒ ∆

x = z, y ≺ z, y ≺ x, y < z, Γ ⇒ ∆
LWk

y ≺ z, y ≺ x, y < z, Γ ⇒ ∆
UnSucc

x < z, y ≺ x, y < z, Γ ⇒ ∆

w = x, y ≺ w, w < z, x < z, y ≺ x, y < z, Γ ⇒ ∆
LWk∗

w = x, y ≺ w, w < z, y ≺ x, y < z, Γ ⇒ ∆
EqSubstAt

y ≺ w, w < z, y ≺ x, y < z, Γ ⇒ ∆
UnSucc

y ≺ x, y < z, Γ ⇒ ∆
Mix1

x = z, x ≺ y, z < y, Γ ⇒ ∆

x = z, z ≺ y, x ≺ y, z < y, Γ ⇒ ∆
LWk

z ≺ y, x ≺ y, z < y, Γ ⇒ ∆
UnPred

z < x, x ≺ y, z < y, Γ ⇒ ∆

w = x, z < w, w ≺ y, z < x, x ≺ y, z < y, Γ ⇒ ∆
LWk∗

w = x, z < w, w ≺ y, x ≺ y, z < y, Γ ⇒ ∆
EqSubstAt

z < w, w ≺ y, x ≺ y, z < y, Γ ⇒ ∆
UnPred

x ≺ y, z < y, Γ ⇒ ∆
Mix2

In both derivations we choose w different from x, y, z and not in Γ,∆

3.3 Adequateness of the calculus G3LT

In order to prove soundness of G3LT, we recall here the notions of Kripke

semantics for temporal logic of Section 1.3.

Definition 3.3.1. A discrete linear temporal frame F = (K,≺K, <K) is a lin-

early ordered set, with the order relation <K defined as the transitive closure of

the immediate successor relation ≺K, functional and unbounded in both direc-

tions.

Definition 3.3.2. Let F = (K,≺K, <K) be a discrete linear temporal frame.

An evaluation of atomic formulas in a frame is a map V : AtFrm → ℘(K),

assigning to any atom P the set of instants in which P holds. The standard

notation for k ∈ V(P ) is k  P . Evaluations are extended to arbitrary formulas

by the following inductive clauses:

For all k ∈ K, it is not the case that k  ⊥ (abbr. k 1 ⊥);

k  A&B if k  A and k  B;
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k  A ∨B if k  A or k  B;

k  A ⊃ B if k  A implies k  B;

k  GA (resp. k  HA) if for all k′, k <K k′ (resp. k′ <K k) implies k′  A;

k  FA (resp. k  PA) if there exists k′ such that k <K k′ (resp. k′ <K k)

and k′  A

k  TA (resp. k  YA) if for all k′, k ≺K k′ (resp. k′ ≺K k) implies k′  A

Definition 3.3.3. Let F = (K,≺K, <K) be a frame with accessibility relations

<K and ≺K satisfying the properties corresponding to mathematical rules of

G3LT. Let W be the set of labels used in derivations in G3LT. An interpretation

of W in K is a function [[·]] : W → K. A sequent Γ ⇒ ∆ is valid for a given

interpretation of labels and evaluation of propositional variables in a frame, if for

all labelled formulas z : A and relational atoms x < y, x ≺ y, x ≺n+1 y, x = y in

Γ, if [[z]]  A and [[x]] <K [[y]], [[x]] ≺K [[y]], ∃k1 . . . kn ([[x]] ≺ k1 & . . .& kn ≺ [[y]]),

[[x]] = [[y]], then for some w : B or relational atom v < s, v ≺ s, v ≺m+1 s, v = s

in ∆, [[w]]  B or [[v]] <K [[s]], [[v]] ≺K [[s]], ∃k′1 . . . k′m ([[v]] ≺ k′1 & . . .&k′m ≺ [[s]]),

[[v]] = [[s]]. A sequent is valid if it is valid for every interpretation and every

evaluation of propositional variables in a frame. A rule is sound if whenever the

premises are valid then the conclusion is valid.

Theorem 3.3.4. (Soundness) If sequent Γ ⇒ ∆ is derivable in G3LT, then

it is valid.

Proof. By induction on the height of the derivation of Γ ⇒ ∆. We simply

have to prove the soundness of G3LT rules. The case of initial sequents and

propositional rules is straightforward. The rules for the temporal operators
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are justified by their meaning explanations in terms of the intended relational

semantics. The mathematical rules correspond to the frame properties for <

and ≺, and to the definition of the iterated successor relation ≺n.

We prove completeness of G3LT with respect to Priorean linear time logic

indirectly, by showing that the Hilbert-style system for Priorean linear time logic

can be embedded into our calculus: the purely logical sequents2 that correspond

to the temporal axioms are derivable, and modus ponens and the temporal

generalisation rules are admissible in our calculus.

Proposition 3.3.5. The following purely logical sequents

x : G(A ⊃ B), x : GA ⇒ x : GB x : H(A ⊃ B), x : HA ⇒ x : HB

x : A ⇒ x : GPA x : A ⇒ x : HFA

x : GA ⇒ x : GGA x : HA ⇒ x : HHA

x : GA ⇒ x : FA x : HA ⇒ x : PA

x : HA, x : A, x : GA ⇒ x : HGA x : HA, x : A, x : GA ⇒ x : GHA

x : GA ⇒ x : TA x : HA ⇒ x : YA

x : ¬T¬A ⇒ x : TA x : ¬Y¬A ⇒ x : YA

x : TA ⇒ x : ¬T¬A x : YA ⇒ x : ¬Y¬A

x : T(A ⊃ B), x : TA ⇒ x : TB x : Y(A ⊃ B), x : YA ⇒ x : YB

x : A ⇒ x : TYA x : A ⇒ x : YTA

x : TA, x : G(A ⊃ TA) ⇒ x : GA x : YA, x : H(A ⊃ YA) ⇒ x : HA

are derivable in G3LT.

Proof. We consider here only the future axioms, the cases of their temporal

mirror images3 being analogous. The proof consists of the following derivations,
2See Definition 2.1.1
3The temporal mirror image of a purely logical sequent is obtained by replacing each

occurrence of a future (resp. past) operator by its past (resp. future) analogue. For example
the temporal mirror image of x : GP ⇒ x : P & TGP is x : HP ⇒ x : P & YHP .
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found by root-first proof search from the sequent to be derived together with

Lemma 3.2.2.

x < y, y : A, . . . ⇒ y : A, y : B x < y, y : B, y : A, . . . ⇒ y : B

x < y, y : A ⊃ B, y : A, x : G(A ⊃ B), x : GA ⇒ y : B
L⊃

x < y, y : A ⊃ B, x : G(A ⊃ B), x : GA ⇒ y : B
LG

x < y, x : G(A ⊃ B), x : GA ⇒ y : B
LG

x : G(A ⊃ B), x : GA ⇒ x : GB
RG

x < y, x : A ⇒ y : PA, x : A

x < y, x : A ⇒ y : PA
RP

x : A ⇒ x : GPA
RG

x < z, x < y, y < z, z : A, x : GA ⇒ z : A

x < z, x < y, y < z, x : GA ⇒ z : A
LG

x < y, y < z, x : GA ⇒ z : A
Trans

x < y, x : GA ⇒ y : GA
RG

x : GA ⇒ x : GGA
RG

x < y, y : A, x : GA ⇒ x : FA, y : A

x < y, y : A, x : GA ⇒ x : FA
RF

x < y, x : GA ⇒ x : FA
LG

x : GA ⇒ x : FA
R-Ser<

z < x, z : A, x : HA, . . . ⇒ z : A

z < x, x : HA, . . . ⇒ z : A
LH

x = z, . . . , z : A, x : A ⇒ z : A

x = z, . . . , x : A ⇒ z : A
EqSubst

x < z, . . . , z : A, x : GA ⇒ z : A

x < z, . . . , x : GA ⇒ z : A
LG

y < z, y < x, x : HA, x : A, x : GA ⇒ z : A
R-Lin

y < x, x : HA, x : A, x : GA ⇒ y : GA
RG

x : HA, x : A, x : GA ⇒ x : HGA
RH

x < y, x ≺ y, y : A, x : GA ⇒ y : A

x < y, x ≺ y, x : GA ⇒ y : A
LG

x ≺ y, x : GA ⇒ y : A
Inc

x : GA ⇒ x : TA
RT

y = z, x ≺ y, x ≺ z, z : A, y : A ⇒ z : A, y : ⊥
y = z, x ≺ y, x ≺ z, y : A ⇒ z : A, y : ⊥

EqSubst

x ≺ y, x ≺ z, y : A ⇒ z : A, y : ⊥ UnSucc

x ≺ y, x ≺ z ⇒ z : A, y : ¬A
R⊃

x ≺ y ⇒ x : TA, y : ¬A
RT

⇒ x : TA, x : T¬A
RT

x : ⊥ ⇒ x : TA
L⊥

x : ¬T¬A ⇒ x : TA
L⊃

x ≺ y, y : A, x : TA, x : T¬A ⇒ x : ⊥, y : A x ≺ y, y : A, x : TA, y : ⊥, x : T¬A ⇒ x : ⊥
L⊥

x ≺ y, y : A, x : TA, y : ¬A, x : T¬A ⇒ x : ⊥
L⊃

x ≺ y, y : A, x : TA, x : T¬A ⇒ x : ⊥
LT

x ≺ y, x : TA, x : T¬A ⇒ x : ⊥
LT

x : TA, x : T¬A ⇒ x : ⊥
R-Ser

x : TA ⇒ x : ¬T¬A
R⊃
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x ≺ y, y : A, . . . ⇒ y : A, y : B x ≺ y, y : B, y : A, . . . ⇒ y : B

x ≺ y, y : A ⊃ B, y : A, x : T(A ⊃ B), x : TA ⇒ y : B
L⊃

x ≺ y, y : A ⊃ B, x : T(A ⊃ B), x : TA ⇒ y : B
LT

x ≺ y, x : T(A ⊃ B), x : TA ⇒ y : B
LT

x : T(A ⊃ B), x : TA ⇒ x : TB
RT

x = z, z ≺ y, x ≺ y, x : A, z : A ⇒ z : A

x = z, z ≺ y, x ≺ y, x : A ⇒ z : A
EqSubst

z ≺ y, x ≺ y, x : A ⇒ z : A
UnPred

x ≺ y, x : A ⇒ y : YA
RY

x : A ⇒ x : TYA
RT

The derivation of the sequent x : TA, x : G(A ⊃ TA) ⇒ x : GA (and of its

temporal mirror image) requires an application of the rule Tω:

{x ≺n y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A}n∈N+

x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A
T ω

x : TA, x : G(A ⊃ TA) ⇒ x : GA
RG

We show therefore derivability of the premises for every n ∈ N+:

n = 1

x ≺ y, x < y, y : A, x : TA, x : G(A ⊃ TA) ⇒ y : A

x ≺ y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A
RT

Next, we show that x ≺n+1 y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A is

derivable whenever x ≺n y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A is derivable

x ≺n y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A

x ≺n z, x < z, x : TA, x : G(A ⊃ TA) ⇒ z : A
H.P.Subst

x < z, x ≺n z, z ≺ y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A, z : A
Wk∗

z ≺ y, y : A, z : TA ⇒ y : A

z ≺ y, z : TA ⇒ y : A
LT

x < z, x ≺n z, z ≺ y, x < y, z : A ⊃ TA, x : TA, x : G(A ⊃ TA) ⇒ y : A
L⊃

x < z, x ≺n z, z ≺ y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A
LG

x ≺n z, z ≺ y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A
Incn

x ≺n+1 y, x < y, x : TA, x : G(A ⊃ TA) ⇒ y : A
LDef

Observe that some side formulas have been omitted in the right premise of L ⊃

for ease of writing.
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Proposition 3.3.6. The rule of modus ponens

⇒ x : A ⇒ x : A ⊃ B
⇒ x : B

MP

is admissible in G3LT.

Proof. Let us consider the following derivation:

⇒ x : A
⇒ x : A ⊃ B
x : A ⇒ x : B

H.-p.Inv

⇒ x : B
Cut

The result follows by admissibility of cut.

Proposition 3.3.7. The temporal generalisation rules for G, H, T and Y

⇒ x : A
⇒ x : GA

GNec
⇒ x : A
⇒ x : HA

HNec
⇒ x : A
⇒ x : TA

TNec
⇒ x : A
⇒ x : YA

YNec

are admissible in G3LT.

Proof. Let us suppose that we have a derivation of ⇒ x : A. By Lemma 3.2.1

we obtain a derivation of ⇒ y : A and by admissibility of weakening we obtain

the sequents x < y ⇒ y : A, y < x ⇒ y : A, x ≺ y ⇒ y : A and y ≺ x ⇒ y : A.

We finally obtain ⇒ x : GA, ⇒ x : HA, ⇒ x : TA and ⇒ x : YA by a single

step of RG, RH, RT and RY, respectively.

Corollary 3.3.8. (Completeness) The calculus G3LT is complete with re-

spect to Priorean linear time logic.

We also prove the following useful propositions:

Proposition 3.3.9. The following purely logical sequents

x : GA ⇒ x : TA & TGA x : HA ⇒ x : YA & YHA
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are derivable in G3LT.

Proof. The proof consists of the following inferences together with Lemma 3.2.2

x < w, w : A, x ≺ w, x : GA ⇒ w : A

x < w, x ≺ w, x : GA ⇒ w : A
LG

x ≺ w, x : GA ⇒ w : A
Inc

x : GA ⇒ x : TA
RT

x ≺ y, x < z, x < y, y < z, z : A, x : GA ⇒ z : A

x ≺ y, x < z, x < y, y < z, x : GA ⇒ z : A
LG

x ≺ y, x < y, y < z, x : GA ⇒ z : A
Trans

x ≺ y, y < z, x : GA ⇒ z : A
Inc

x ≺ y, x : GA ⇒ y : GA
RG

x : GA ⇒ x : TGA
RT

x : GA ⇒ x : TA & TGA
R&

w < x, w : A, w ≺ x, x : HA ⇒ w : A

w < x, w ≺ x, x : HA ⇒ w : A
LH

w ≺ x, x : HA ⇒ w : A
Inc

x : HA ⇒ x : YA
RY

y ≺ x, z < x, z < y, y < x, z : A, x : HA ⇒ z : A

y ≺ x, z < x, z < y, y < x, x : HA ⇒ z : A
LH

y ≺ x, z < y, y < x, x : HA ⇒ z : A
Trans

y ≺ x, z < y, x : HA ⇒ z : A
Inc

y ≺ x, x : HA ⇒ y : HA
RH

x : HA ⇒ x : YHA
RY

x : HA ⇒ x : YA & YHA
R&

Proposition 3.3.10. The following purely logical sequents

x : TA, x : TGA ⇒ x : GA x : YA, x : YHA ⇒ x : HA

are derivable in G3LT.

Proof. By means of rules Mix1 and Mix2, respectively. Consider the following

inferences, where the leaves are obtained by Lemma 3.2.2

x ≺ y, x < y, x : TA, y : A, . . . ⇒ y : A

x ≺ y, x < y, x : TA, . . . ⇒ y : A
LT

x ≺ z, z < y, x < y, x : TA, y : A, z : GA, . . . ⇒ y : A

x ≺ z, z < y, x < y, x : TA, z : GA, x : TGA ⇒ y : A
LG

x ≺ z, z < y, x < y, x : TA, x : TGA ⇒ y : A
LT

x < y, x : TA, x : TGA ⇒ y : A
Mix1

x : TA, x : TGA ⇒ x : GA
RG

y ≺ x, y < x, y : A, x : YA, . . . ⇒ y : A

y ≺ x, y < x, x : YA, . . . ⇒ y : A
LY

y < z, z ≺ x, y < x, x : YA, y : A, z : HA, . . . ⇒ y : A

y < z, z ≺ x, y < x, x : YA, z : HA, x : YHA ⇒ y : A
LH

y < z, z ≺ x, y < x, x : YA, x : YHA ⇒ y : A
LY

y < x, x : YA, x : YHA ⇒ y : A
Mix2

x : YA, x : YHA ⇒ x : HA
RH
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Proposition 3.3.11. The purely logical sequents that correspond to Hamblin’s

formulas for discreteness4 are derivable in G3LT.

Proof. Consider the following inferences, with leaves obtained by Lemma 3.2.2

(some repetitions are omitted)

z = x, x ≺ y, z < y, x < y, x : A, . . . ⇒ x : A

z = x, x ≺ y, z < y, x < y, z : A, . . . ⇒ x : A
EqSubst

x = z, x ≺ y, z < y, x < y, z : A, . . . ⇒ x : A
EqSym

z < x, x ≺ y, z < y, x < y, z : A, . . . ⇒ . . . , z : A

z < x, x ≺ y, z < y, x < y, z : A . . . ⇒ x : PA
RP

x ≺ y, z < y, x < y, z : A, x : GPA ⇒ x : A, x : PA
Discr2

x ≺ y, x < y, y : PA, x : GPA ⇒ x : A, x : PA
LP

x ≺ y, x < y, x : GPA ⇒ x : A, x : PA
LG

x ≺ y, x : GPA ⇒ x : A, x : PA
Inc

x : GPA ⇒ x : A, x : PA
R-Ser

z = x, y ≺ x, y < z, y < x, x : A, . . . ⇒ x : A

z = x, y ≺ x, y < z, y < x, z : A, . . . ⇒ x : A
EqSubst

x = z, y ≺ x, y < z, y < x, z : A, . . . ⇒ x : A
EqSym

x < z, y ≺ x, y < z, y < x, z : A, . . . ⇒ . . . , z : A

x < z, y ≺ x, y < z, y < x, z : A, . . . ⇒ x : FA
RF

y ≺ x, y < z, y < x, z : A, x : HFA ⇒ x : A, x : FA
Discr1

y ≺ x, y < x, y : FA, x : HFA ⇒ x : A, x : FA
LF

y ≺ x, y < x, x : HFA ⇒ x : A, x : FA
LH

y ≺ x, x : HFA ⇒ x : A, x : FA
Inc

x : HFA ⇒ x : A, x : FA
L-Ser

3.4 Partial finitisations

As we have shown in Section 3.2, the calculus G3LT enjoys important structural

properties, most importantly it admits syntactical cut elimination. However, the

presence of an infinitary rule in the system is harmful for the purposes of proof

theory, in particular for proof search.

Proof search is a procedure that permits to construct a derivation starting

from the conclusion: the endsequent is analysed in order to determine a last

possible rule of inference and thus its premise(s), the latters are then analysed

in the same way, and so on. Therefore, we construct a proof-search tree, the root
4See Section 2.2.
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of which is the endsequent and the nodes of which are the sequents successively

introduced as premises: if every leaf is an initial sequent or a conclusion of L⊥,

then the proof search succeeds and we obtain a derivation. On the contrary,

the procedure fails if at least one of the leaves is not an initial sequent or a

conclusion of L⊥ and cannot be further analysed, or if the proof search does

not stop.

Unfortunately, in the presence of an infinitary rule it is in principle impossible

to distinguish whether the procedure does not stop because the endsequent is

underivable or simply because we have to derive the infinitely many premises of

Tω.

Several attempts have been done in the literature in order to obtain a fini-

tary cut-free calculus for LTL, but the inherent presence of induction makes

the development of a finitary proof system problematic: for istance, the nat-

ural deduction calculus for linear time logic described in Bolotov et al. (2006)

is not normalizable, whereas the proof-systems proposed by Brotherston and

Simspon (2007) for inductive definitions require non-local rules, in the form of

global correctness conditions for derivations. A significant indirect contribution

is found in Jäger et al. (2007), where the finite model property is used to give

an upper bound to the number of premises of an infinitary rule in an unla-

belled sequent calculus for the logic of common knowledge; however, the whole

approach appears quite factitious because it relies on model-theoretical rather

than proof-theoretical arguments.

In what follows we consider two finitary versions of the calculus G3LT. The

system G3LTn-s is obtained by replacing the infinitary rule with two finitary

counterparts that permit the splitting of an interval [x, y] with an immediate
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successor of x and an immediate predecessor of y, respectively. The calculus

G3LTn-s is weaker than G3LT, but we identify a fragment of G3LT for which

conservativity with respect to G3LTn-s is proved.

Next, we consider the future-oriented fragment of G3LT and give a finite

bound to the number of premises in the infinitary rule in a purely syntactical

way, by simply counting the number of occurences of the operator T in the neg-

ative part of its premises. We then show that the finitary rule T δ thus obtained

is as strong as the infinitary one for derivations of purely logical sequents that

do not contain G in the negative nor F in the positive part.

Somehow related results were obtained in a different, but qualitatively sim-

ilar case, namely in epistemic logic: a conservativity result, parallel to the one

of Section 3.4.1, is presented by Antonakos (2007) and Artemov (2006). A fi-

nite bound analogous to that of Section 3.4.2 was obtained in Alberucci and

Jäger (2005) for an unlabelled Tait-style calculus with an infinitary rule for the

common knowledge operator. However, our calculus allows for syntactical cut

elimination, whereas the latter work only shows through a semantical argument

that the rule of cut is not needed.

3.4.1 A non-standard system for Linear Time

We define the system G3LTn-s by substituting, in the calculus G3LT, the rules

Tω, LDef and RDef with the rules Mix1, Mix2, L-Lin and R-Lin as primitive.

The standard frame for Priorean linear time logic corresponds to the set of

the integers Z: every instant greater (smaller) than x can be reached from x by

finitely many iterations of the immediate successor (predecessor) relation. This

condition corresponds to the infinitary rule Tω of the calculus G3LT.
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Because of the absence of Tω, the systems G3LTn-s allows non-standard

linear discrete frames that consist of several, possibly infinite, consecutive copies

of the integers, Z ⊕ · · · ⊕ Z: even though every point is the unique immediate

successor of its unique immediate predecessor (and viceversa), it is not always

true that between any two points x, y such that x < y, there are finitely many

other points.

If the rule of right linearity is dropped from the calculus G3LTn-s, a calcu-

lus for the so-called branching time gaps is obtained, the frames of which are

trees made of copies of Z. The first-order temporal logic that corresponds to

branching time gaps (well-founded trees of copies of N) has been investigated

from a model-theoretic point of view by Baaz et al. (1996). Its proof-theoretic

aspects have been investigated through a G3-style unlabelled sequent calculus

by Alonderis (2000).

It is easy to verify that the system G3LTn-s can be embedded in G3LT:

Theorem 3.4.1. If Γ ⇒ ∆ is derivable in G3LTn-s, then Γ ⇒ ∆ is derivable

in G3LT.

Proof. Every rule of G3LTn-s, except Mix1, Mix2, L-Lin, and R-Lin, is a

rule of G3LT, and Mix1, Mix2, L-Lin, and R-Lin are admissible in G3LT, by

Proposition 3.2.24 and Proposition 3.2.23, respectively.

The converse fails because of the infinitary rule: for instance, any proof

search for the induction principle x : TA, x : G(A ⊃ TA) ⇒ x : GA would

require infinitely many applications of rule Mix1. Nevertheless, we identify

a conservative fragment for which derivability in G3LT implies derivability in

G3LTn-s. Our result is confined to purely logical sequents, but this condition is
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not restrictive, since, as we noticed before, only purely logical sequents can be

interpreted as the corresponding modal formulas.

Definition 3.4.2. A labelled formula occurs positively (negatively) in a sequent

if it is contained in the succedent (antecedent). Positive (negative) occurrences

of subformulas of labelled formulas in a sequent are defined as follows:

• Both A and B occur positively (negatively) if A ◦B occurs positively (neg-

atively), for conjunction and disjunction;

• A occurs positively (negatively) if A ⊃ B occurs negatively (positively) and

B occurs positively (negatively) if A ⊃ B occurs positively (negatively);

• A occurs positively (negatively) if MA occurs positively (negatively), for

any temporal operator M.

The positive (negative) part of a sequent consists of the positive (negative)

occurrences of subformulas in it.

Theorem 3.4.3. If a purely logical sequent Γ ⇒ ∆ is derivable in G3LT, and

the operators G, H do not appear in its positive part nor F, P in its negative

part, then Γ ⇒ ∆ is derivable without the use of the infinitary rule.

Proof. We show that all the applications of the infinitary rule can be dispensed

with. Without loss of generality, we assume that the given derivation is minimal

(see Definition 3.2.12). Observe that all the relational atoms x < y, in particular

those concluded by Tω, have to disappear before the conclusion. We consider

one such downmost atom and the rule that makes it disappear: rules RG, RH,

LF and LP are excluded because they would introduce G, H in the positive

part or F, P in the negative part. Thus, the atom can disappear only by means

of Inc or EqSubstAt.
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If the atom concluded by Tω is removed by Inc, we have

{x ≺n y, x < y, Γ′ ⇒ ∆′}n∈N+

x < y,Γ′ ⇒ ∆′ T ω

....
x < y, x ≺ y,Γ′′ ⇒ ∆′′

x ≺ y, Γ′′ ⇒ ∆′′ Inc

The first premise of Tω has the form x ≺ y, x < y, x ≺ y, Γ′′′ ⇒ ∆′, with

Γ′ ≡ x ≺ y, Γ′′′. By height-preserving contraction we obtain x < y, Γ′ ⇒ ∆′

and proceed with the derivation until we reach x ≺ y, x < y, Γ′′ ⇒ ∆′′. Then

we conclude x ≺ y, Γ′′ ⇒ ∆′′ by an application of Inc. Note that the derivation

is shortened, contrary to the assumption of minimality.

If the atom concluded by Tω is removed by applications of Trans followed

by applications of Inc, we have the derivation

{x ≺n y, x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′ ⇒ ∆′}n∈N+

x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′ ⇒ ∆′ T ω

....
x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′ ⇒ ∆′′

x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′ ⇒ ∆′′ Trans×m

....
x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′′ ⇒ ∆′′′

x ≺ z1, . . . , zm ≺ y, Γ′′′ ⇒ ∆′′′ Inc×(m+1)

Let us consider the (m + 1)-st premise of Tω, and transform the derivation as

follows

x ≺m+1 y, x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′ ⇒ ∆′

x ≺ z1, . . . , zm ≺ y, x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′ ⇒ ∆′ I

x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′ ⇒ ∆′ C

....
x < y, z1 < y, . . . , zm−1 < y, x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′ ⇒ ∆′′

x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′ ⇒ ∆′′ Trans×m

....
x < z1, . . . , zm < y, x ≺ z1, . . . , zm ≺ y, Γ′′′ ⇒ ∆′′′

x ≺ z1, . . . , zm ≺ y, Γ′′′ ⇒ ∆′′′ Inc×(m+1)
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Here I stands for m applications of height-preserving invertibility of rule LDef

and C for several application of height preserving contraction. Again, the deriva-

tion is shortened, contrary to the assumption.

If the atom concluded by Tω is removed by an application of EqSubstAt, we

have the following derivation:

{x ≺n y, z = y, x < y, x < z,Γ′ ⇒ ∆′}n∈N+

z = y, x < y, x < z,Γ′ ⇒ ∆′ T ω

....
z = y, x < y, x < z,Γ′′ ⇒ ∆′′

z = y, x < z, Γ′′ ⇒ ∆′′ EqSubstAt

It is possible to permute up rule EqSubstAt with respect to rule Tω. We modify

each premise of Tω as follows:

x ≺n y, x < y, z = y, x < z, Γ′ ⇒ ∆′

x ≺n y, x < y, x ≺n z, z = y, x < z, Γ′ ⇒ ∆′ LWk

....
x ≺n y, x < y, x ≺n z, z = y, x < z, Γ′′ ⇒ ∆′′

x ≺n y, x ≺n z, z = y, x < z, Γ′ ⇒ ∆′ Incn

x ≺n z, z = y, x < z, Γ′′ ⇒ ∆′′ EqSubstn

We can now apply the above considered modifications on the rule removing

x < z. The case of EqSubstAt with active formulas z = x, x < y, z < y is

analogous.

Corollary 3.4.4. If Γ ⇒ ∆ is derivable in G3LTn-s and Γ ⇒ ∆ is as in the

previous theorem, then Γ ⇒ ∆ is derivable in G3LT.

Proof. By Theorem 3.4.3, Γ ⇒ ∆ is derivable in G3LT without using the infini-

tary rule Tω.
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3.4.2 A finite bound for the infinitary rule

Let us now consider the system G3LTf , the future-oriented fragment of the

calculus G3LT, obtained from G3LT by dropping the rules for the past operators

(H, P and Y), and the mathematical rules L-Ser and UnPred.

The calculus G3LTδ is obtained by substituting in G3LTf the infinitary rule

Tω with the following finitary version T δ

{x ≺m y, x < y,Γ ⇒ ∆}1≤m≤δ(Γ,∆)+1

x < y,Γ,Γ′ ⇒ ∆,∆′ T δ

where, δ(Γ,∆) is defined as the number of occurrences of the temporal operator

T in the negative part5 of the sequent x ≺m y, x < y,Γ ⇒ ∆, and, in order to

preserve admissibility of weakening, Γ′ and ∆′ are arbitrary multisets.

Lemma 3.4.5. Let

x ≺m z, z ≺ y, x < y,Γ ⇒ ∆

be a sequent derivable in G3LTf not containing G in the negative part, nor F

in the positive part, nor relational atoms in ∆, and with z different from x, y

and not in Γ,∆, and let m be δ(Γ,∆). Then also the sequent

x ≺m z, z ≺n y, x < y, Γ ⇒ ∆

is derivable in G3LTf for all n ≥ 1.

Proof. (Sketch). We are interested in minimal derivations. Trace up the atom

z ≺ y along the derivation. If it is never principal, it can be replaced by z ≺n y

all along the derivation. It cannot be principal in an axiomatic sequent because

of the condition that no relational atoms are in ∆. Therefore the possibilities

for it to be principal are LT, EqSubstAt, UnSucc, and Inc.
5See Definition 3.4.2.
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If z ≺ y were principal in LT we would have the derivation

z ≺ y, y : A, z : TA,Γ′ ⇒ ∆′

z ≺ y, z : TA,Γ′ ⇒ ∆′ LT

observe that the principal formula z : TA has to disappear because of the

assumption on the label z. It can do so only going through applications of

LT and/or instances of LG or RF with an active relational atom from the

decomposition of the chain x ≺m z (possibly combined with rule Inc). However,

LG and RF are excluded by the condition that G is not in the negative part

and F is not in the positive part of the sequent; on the other hand, applications

of LT would introduce in the negative part of the sequent a number of operators

T greater than m, contrary to the hypothesis that m = δ(Γ,∆). Note that by

the same reason for no label t an atom of the form z ≺ t can be principal in

a left rule for T, whereas the case of z ≺ t active in an instance of RT would

introduce a formula z : TA in the consequent that cannot disappear without

violating the variable conditions on temporal rules or the hypothesis that z is

not in Γ,∆.

For no label t the atom z ≺ t (z ≺ y included) can be principal in EqSubstAt

with equality on z

w ≺ t, z = w, z ≺ t, Γ′ ⇒ ∆′

z = w, z ≺ t, Γ′ ⇒ ∆′ EqSubstAt

In fact, since z is not in Γ,∆, the atom z = w should disappear from the deriva-

tion. It cannot be removed by rule EqRef , because otherwise we could shorten

the derivation by means of height-preserving admissibility of contraction on for-

mulas w ≺ t, z ≺ t (by z ≡ w), contrary to the hypothesis of minimality. The

atom z = w could disappear by UnSucc with principal formulas v ≺ z, v ≺ w,

but both formulas cannot disappear without introducing new relational atoms
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with variable z or logical formulas labelled by z, contrary to the hypothesis that

z is not in Γ,∆.

For the cases with z ≺ y principal in UnSucc or Inc or EqSubstAt, we

observe that we can replace all along the derivation relational formulas of the

form z ≺ t for every label t (z ≺ y included) with z ≺n t and apply the admissi-

ble rules Incn, UnSuccn, EqSubstn and R-Sern (see Table 3.5) whenever Inc,

UnSucc, EqSubstAt and R-Ser are applied in the original derivation.

Theorem 3.4.6. If the purely logical sequent Γ ⇒ ∆ does not contain G in the

negative part nor F in the positive part, then Γ ⇒ ∆ is derivable in G3LTf iff

Γ ⇒ ∆ is derivable in G3LTδ.

Proof. The left-to-right implication is obvious: we simply note here that every

rule of G3LTf except for Tω is a rule of G3LTδ, and we need to consider the

first δ(Γ,∆) + 1 premises of Tω in order to apply T δ whenever Tω is applied in

G3LTf . The right-to-left direction is proved by induction on the height of the

derivation in G3LTδ; we assume that the given derivation is minimal. We need

to consider only the case of T δ, all the other rules being common to G3LTf and

G3LTδ. If T δ is used, the rightmost premise is of the form

x ≺m+1 y, x < y,Γ′ ⇒ ∆′

where m = δ(Γ,∆).

By induction on the height of derivation x ≺m+1 y, x < y,Γ′ ⇒ ∆′ is

derivable in G3LT, and thanks to invertibility of LDef we obtain

x ≺m z, z ≺ y, x < y,Γ′ ⇒ ∆′

with z not in Γ,∆.
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By hypothesis G is not in the negative part of the sequent and F is not in the

positive part, and no relational atom is in ∆: all the conditions of the Lemma

3.4.5 are satisfied. So, every sequent of the form x ≺m z, z ≺n y, x < y, Γ′ ⇒ ∆′

is derivable in G3LTf for all n ≥ 1, and the premises of Tω are obtained by

admissibility of LDefn.

Unfortunately, the results concerning the calculus G3LTδ cannot be extended

to the whole system with past operators because of the possibility of going back

and forth along the chain x ≺m z, z ≺ y by means of the rules for T and Y.

3.5 Adding Until and Since

In Kamp (1968) linear time logic was enriched with two further temporal oper-

ators, intuitively called Until and Since, with the following semantic readings

in irreflexive frames:

x  AUB iff there exists y such that x < y and y  B

and for all z, if x < z and z < y, then z  A

x  ASB iff there exists y such that y < x and y  B

and for all z, if y < z and z < x, then z  A

Kamp proved that linear temporal logic with until and since is considerably

more expressive than the traditional Priorean logic with operators T, G, Y and

H. Sequent calculus rules for Until and Since can be formulated along the lines

of the method employed so far on the base of the following recursive definitions:

AUB ≡ TB ∨ (TA & T(AUB))

ASB ≡ YB ∨ (YA & Y(ASB))

or, equivalently, by distributivity of ∨ over &
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AUB ≡ (TB ∨TA) & (TB ∨T(AUB))

ASB ≡ (YB ∨YA) & (YB ∨Y(ASB))

In addition to initial sequents for propositional and relational atomic formulas,

initial sequents for compound formulas of the form x : AUB and x : ASB are

required by the recursive definition. Moreover, a further condition, x : FB

(resp. x : PB), has to be added to the rules, in order to guarantee that B will

be (has been) satisfied at some point.

Initial Sequents:

x : AUB,Γ ⇒ ∆, x : AUB

x : ASB,Γ ⇒ ∆, x : ASB

Rules for Until:

x ≺ y, y : B,Γ ⇒ ∆ x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆
x ≺ y, x : AUB,Γ ⇒ ∆

LU

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : A

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : FB

Γ ⇒ ∆, x : AUB
RU

Rules for Since

y ≺ x, y : B,Γ ⇒ ∆ y ≺ x, y : A, y : ASB, x : PB,Γ ⇒ ∆
y ≺ x, x : ASB,Γ ⇒ ∆

LS

y ≺ x,Γ ⇒ ∆, x : ASB, y : B, y : A

y ≺ x,Γ ⇒ ∆, x : ASB, y : B, y : ASB

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, x : PB

Γ ⇒ ∆, x : ASB
RS

Rules RU and RS have the condition that y is not in the conclusion.

Table 3.8: The rules for Until and Since
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The calculus G3LT+U+S is obtained by adding the rules of Table 3.8 to G3LT.

The rules for U and S are of a peculiar form, since the complexity of the

active formulas is not strictly less than the complexity of the principal formulas.

A similar situation occurs in the sequent rules for Gödel-Löb logic presented in

Negri (2005) and here, as well, admissibility of the structural rules is shown

through a refined inductive measure based on the notion of range.

The right rules for U and S are height-preserving invertible by height-

preserving admissibility of weakening. By the following lemmas, also the left

rules are invertible, but invertibility does not preserve derivation height.

Lemma 3.5.1. If the sequent x ≺ y, x : AUB,Γ ⇒ ∆ is derivable in the calculus

G3LT+U + S, then also the sequents

x ≺ y, y : B,Γ ⇒ ∆ x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆

are derivable.

Proof. By induction on the height h of the given derivation. If h = 0 and

x : AUB,Γ ⇒ ∆ is an initial sequent with x : AUB not principal, or conclusion

of L⊥, then also the corresponding premises of LU are. If it is an initial sequent

with x : AUB principal, we derive the sequents

x ≺ z, x ≺ y, y : B,Γ ⇒ ∆, z : B, z : A

x ≺ z, x ≺ y, y : B,Γ ⇒ ∆, z : B, z : AUB

x ≺ z, x ≺ y, y : B,Γ ⇒ ∆, z : B, x : FB

by means of Lemma 3.2.2, EqSubst and UnSucc, and then apply RU to obtain

the sequent x ≺ y, y : B,Γ ⇒ ∆, x : AUB. Analogously, we derive the sequents

x ≺ z, x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆, z : B, z : A

x ≺ z, x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆, z : B, z : AUB
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x ≺ z, x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆, z : B, x : FB

and then apply RU to obtain x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆, x : AUB.

In both cases, z is chosen different from x, y and not in Γ,∆.

If x : AUB,Γ ⇒ ∆ is the conclusion of a rule different from LU , apply the

inductive hypothesis to the premise(s) and then the rule. Similarly if it is

conclusion of LU and x : AUB is not principal. If it is conclusion of LU and

AUB is principal we have two cases: (i) if x ≺ y is principal too, simply delete

the last rule to obtain the sequent x ≺ y, y : B,Γ ⇒ ∆ as left premise and the

sequent x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆ as right premise. (ii) If x ≺ y is

not principal we have the following derivation

x ≺ y, z : B, x ≺ z,Γ′ ⇒ ∆ x ≺ y, z : A, z : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆
x ≺ y, x : AUB, x ≺ z,Γ′ ⇒ ∆

LU

with Γ ≡ x ≺ z,Γ′.

The desired sequents are obtained by the following derivations

x ≺ y, z : B, x ≺ z,Γ′ ⇒ ∆
y = z, x ≺ y, z : B, y : B, x ≺ z,Γ′ ⇒ ∆

LWk∗

y = z, x ≺ y, y : B, x ≺ z, Γ′ ⇒ ∆
EqSubst

x ≺ y, y : B, x ≺ z,Γ′ ⇒ ∆
UnSucc

x ≺ y, z : A, z : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆
y = z, x ≺ y, z : A, y : A, z : AUB, y : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆

LWk∗

y = z, x ≺ y, z : A, y : A, y : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆
EqSubst

y = z, x ≺ y, y : A, y : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆
EqSubst

x ≺ y, y : A, y : AUB, x : FB, x ≺ z,Γ′ ⇒ ∆
UnSucc

Lemma 3.5.2. If the sequent y ≺ x, x : ASB,Γ ⇒ ∆ is derivable in the calculus

G3LT+U + S, then the sequents

y ≺ x, y : B,Γ ⇒ ∆ y ≺ x, y : A, y : ASB, x : PB,Γ ⇒ ∆
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are derivable.

Proof. Analogous to Lemma 3.5.1.

The length of labelled formulas is defined as in Definition 2.3.1 with the

following additional clauses:

Definition 3.5.3. The length of Until and Since formulas is defined as follows:

l(AUB) = l(A) + l(B) + 1

l(ASB) = l(A) + l(B) + 1

Observe that l(⊥UB) = l(⊥SB) = 0 + 1 + l(B) = l(FB) = l(PB).

Definition 3.5.4. The right range of x in a derivation D is the (finite) set of

instants y such that either x ≺ y or for some n ≥ 1 and for some x1, . . . , xn, the

atoms x ≺ x1, x1 ≺ x2, . . . , xn ≺ y appear in the sequents of D. The left range

of x is defined analogously as the set of instants y such that either y ≺ x or

for some n ≥ 1 and for some y1, . . . , yn, the atoms y ≺ y1, y1 ≺ y2, . . . , yn ≺ x

appear in the sequents of D. Ranges of variables are ordered by set inclusion.

Theorem 3.5.5. The rules of contraction are admissible in G3LT+U + S and

preserve left and right range of derivation.

Proof. By simultaneous induction for left and right contraction, with induction

on the range and on the length of contraction formula, and subinduction on

derivation height. We consider here in detail only the cases arising from the

addition of the rules for Until and Since. Note that the case of right contraction

with one of the contraction formulas principal in RU or RS is taken care of by

the repetition of the principal formula in the premises: contraction is applied to

the shorter derivation of the premises of the rule, and then the rule is applied.
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For left contraction with contraction formula x : AUB we distinguish the

following cases: if x : AUB, x : AUB,Γ ⇒ ∆ is an initial sequent or conclusion

of L⊥, so is x : AUB,Γ ⇒ ∆. If it is conclusion of a rule different from LU

or with other principal formula than the contraction formula, we apply the

inductive hypothesis to the premise(s) and then the rule.

If the last rule is LU with principal formula x : AUB and A is not ⊥, we

have the sequent x ≺ y, y : B, x : AUB,Γ′ ⇒ ∆ as left premise and the sequent

x ≺ y, y : A, y : AUB, x : FB, x : AUB,Γ′ ⇒ ∆ as right premise, where

Γ ≡ x ≺ y, Γ′. By Lemma 3.5.1, we derive x ≺ y, y : B, y : B,Γ ⇒ ∆ and

x ≺ y, y : A, y : AUB, x : FB, y : A, y : AUB, x : FB,Γ ⇒ ∆, and we obtain

derivations of x ≺ y, y : B,Γ ⇒ ∆ and x ≺ y, y : A, y : AUB, x : FB,Γ ⇒ ∆

by means of the inductive hypotheses applied to shorter formulas (y : B, y : A,

and x : FB) and smaller right range (y : AUB). If A ≡ ⊥, we cannot apply

the induction on the length of formulas to obtain the right premise of LU : in

fact, because of the equivalence l(⊥UB) = l(FB), contraction on x : FB neither

reduces the length nor the right range of of the formula. However, the contracted

instance of the right premise can be obtained by the following derivation

x ≺ y, y : ⊥, y : ⊥UB, x : FB,Γ ⇒ ∆
L⊥

Analogously, if x : ASB, x : ASB,Γ ⇒ ∆ is an initial sequent or conclusion

of L⊥, so is x : ASB,Γ ⇒ ∆. If it is conclusion of a rule different from LS

or with other principal formula than the contraction formula, we apply the

inductive hypothesis to the premise(s) and then the rule.

If the last rule is LS with principal formula x : ASB and A is not ⊥, we

have the sequent y ≺ x, y : B, x : ASB,Γ′ ⇒ ∆ as left premise, and the sequent
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y ≺ x, y : A, y : ASB, x : PB, x : ASB,Γ′ ⇒ ∆ as right premise, where

Γ ≡ y ≺ x,Γ′. By Lemma 3.5.2, we derive y ≺ x, y : B, y : B,Γ ⇒ ∆ and

y ≺ x, y : A, y : ASB, x : PB, y : A, y : ASB, x : PB,Γ ⇒ ∆, and we obtain

derivations of y ≺ x, y : B,Γ ⇒ ∆ and y ≺ x, y : A, y : ASB, x : PB,Γ ⇒ ∆

by means of the inductive hypothesis applied to shorter formulas (y : B, y : A,

and x : PB) and smaller left range (y : ASB). If A ≡ ⊥, we cannot apply the

induction on the length of formulas to obtain the right premise of LS: in fact,

because of the equivalence l(⊥SB) = l(PB), contraction on x : PB neither

reduces the length nor the left range of the formula. However, the contracted

instance of the right premise can be obtained by the following derivation

y ≺ x, y : ⊥, y : ⊥SB, x : PB,Γ ⇒ ∆
L⊥

Finally, we observe that all the other cases are range preserving. The cases

of propositional rules and of the rules with repetition of the principal formula

in the premise(s) are obvious. As for the rules with variable condition, let us

consider for instance the case of contraction formula x : FB introduced by LF:

x < y, y : B, x : FB,Γ ⇒ ∆
x : FB, x : FB,Γ ⇒ ∆

LF

x : FB,Γ ⇒ ∆
LCtr

By applying height-preserving invertibility of rule LF, we obtain the sequent

x < y, y : B, x < y, y : B,Γ ⇒ ∆; we then apply the inductive hypothesis to

obtain x < y, y : B,Γ ⇒ ∆, and the rule LF to conclude x : FB,Γ ⇒ ∆.

Note that although, in general, invertibility of RG, RH, RT, RY, LF, LP,

and LDef introduces a new world, the special instance of invertibility used

here does not, as the world needed in the inversion is already a label used in
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the derivation. It follows that the rules of left and right contraction are range-

preserving admissible in G3LT+U + S.

Theorem 3.5.6. The rule of cut is admissible in the calculus G3LT+U + S.

Proof. By induction on the right and left range of x, on the length of the cut

formula and on the sum of the derivation heights of the two premises of cut.

The proof is organized as the proof of Theorem 2.3.10. We consider here only

the critical cases in which induction on range is needed. Let us suppose that A

is different from ⊥ and the sequent x ≺ z,Γ,Γ′ ⇒ ∆,∆′ is obtained by a cut on

the conclusions of the following instances of RU and LU

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : A

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : FB

Γ ⇒ ∆, x : AUB
RU

x ≺ z, z : B,Γ′ ⇒ ∆′ x ≺ z, z : A, z : AUB, x : FB,Γ′ ⇒ ∆′

x ≺ z, x : AUB,Γ′ ⇒ ∆′ LU

First we apply height-preserving substitution on the premises of RU and obtain

x ≺ z,Γ ⇒ ∆, x : AUB, z : B, z : A

x ≺ z,Γ ⇒ ∆, x : AUB, z : B, z : AUB

x ≺ z,Γ ⇒ ∆, x : AUB, z : B, x : FB

since by the variable condition y is not in the conclusion of RU . Then, the

sequents

x ≺ z, x ≺ z,Γ,Γ′ ⇒ ∆,∆′, z : B, z : A

x ≺ z, x ≺ z,Γ,Γ′ ⇒ ∆,∆′, z : B, z : AUB

x ≺ z, x ≺ z,Γ,Γ′ ⇒ ∆,∆′, z : B, x : FB
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are obtained through lower-height cuts with the conclusion of LU . Next, we use

the latter sequents to obtain

x ≺ z, x ≺ z, x ≺ z,Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′, z : A (1)

x ≺ z, x ≺ z, x ≺ z,Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′, z : AUB (2)

x ≺ z, x ≺ z, x ≺ z,Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′, x : FB (3)

through cuts on reduced cut formula with the left premise of rule LU , that is

x ≺ z, z : B,Γ′ ⇒ ∆′. The sequent

x ≺ z, . . . , x ≺ z, z : AUB, x : FB,Γ, . . . ,Γ′ ⇒ ∆, . . . ,∆′ (4)

is obtained through a cut on a smaller formula, with (1) and the right premise

of LU , x ≺ z, z : A, z : AUB, x : FB,Γ′ ⇒ ∆′, as premises. Next, we obtain

x ≺ z, . . . , x ≺ z, z : AUB,Γ, . . . ,Γ′ ⇒ ∆, . . . ,∆′ (5)

by a cut on a smaller formula, with premises (3) and (4). Finally, the sequent

x ≺ z, . . . , x ≺ z,Γ, . . . ,Γ′ ⇒ ∆,∆, . . . ,∆′ (6)

is obtained through a cut on a formula with smaller right range, with premises

(2) and (5). The conclusion is obtained by admissibility of contraction.

If A ≡ ⊥, the equivalence l(⊥UB) = l(FB) prevents from applying the

induction on the length of formulas, since cut on x : FB neither reduces the

length nor the right range of the formula. However, by pruning the original

derivation, we can assume without loss of generality that the left premise of

LU , namely x ≺ z, z : ⊥, z : ⊥UB, x : FB,Γ′ ⇒ ∆′, is a conclusion of L⊥. We

have the following transformation

x ≺ z, x ≺ z, x ≺ z, Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′, z : ⊥ z : ⊥ ⇒ L⊥

x ≺ z, x ≺ z, x ≺ z,Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′ Cut

x ≺ z,Γ,Γ′ ⇒ ∆,∆′ Ctr∗
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where x ≺ z, x ≺ z,Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′, z : ⊥ is obtained as (1) above and

the derivation of x ≺ z, z : ⊥, z : ⊥UB, x : FB,Γ′ ⇒ ∆′ is substituted with the

derivation of z : ⊥ ⇒, which has the same derivation height.

The case of cut formula x : ASB principal in both premises of cut is dealt

with similarly, with induction on the left range.

Soundness of the calculus G3LT+U+S follows by Theorem 3.3.4 and validity

of the recursive definition of Until and Since in any standard frame for linear

discrete time.

Completeness is given by Corollary 3.3.8 and the following result:

Proposition 3.5.7. The following purely logical sequents

x : AUB ⇒ x : FB x : ASB ⇒ x : PB

x : FB ⇒ x : >UB x : PB ⇒ x : >SB

x : TB ⇒ x : ⊥UB x : YB ⇒ x : ⊥SB

x : ⊥UB ⇒ x : TB x : ⊥SB ⇒ x : YB

x : AUB ⇒ x : TB, x : TA & T(AUB) x : ASB ⇒ x : YB, x : YA & Y(ASB)

x : TB ∨ (TA & T(AUB)) ⇒ x : AUB x : YB ∨ (YA & Y(ASB)) ⇒ x : ASB

are derivable in G3LT+U + S.

Proof. By root-first proof search from the sequent to be derived. We only ob-

serve that for the derivation of x : FB ⇒ x : >UB and of x : PB ⇒ x : >SB

an application of the infinitary rule Tω is needed.

Theorem 3.5.8. (Completeness) A sequent Γ ⇒ ∆ is derivable in the cal-

culus G3LT+U + S iff it is valid.

106



Chapter 4

Decidability through

terminating proof search

4.1 A fixed-point proof system

In Section 3.4, we already noticed that the presence of an infinitary rule in G3LT

constitutes an intrinsic obstacle to the possibility of establishing decidability of

Priorean linear time logic through a terminating proof-search procedure. In

this chapter we present a different labelled calculus G3LTcl for Priorean linear

time. All the rules of the system are finitary, but proofs generally require

arguments by infinite descent in the sense of Brotherston and Simpson (2007).

In a temporal frame for Priorean linear time, between any two points there are

only finitely many other points, therefore any model that appeals to an infinite

increasing or decreasing sequence of points between two instants can be ignored

as contradictory: this situation is reflected in a proof, for instance, when root-
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first applications of the rules do never realise a future formula x : FB in the

antecedent with a labelled formula y : B and a finite chain x ≺ y0, . . . , yn ≺ y.

A particular class of sequents, that correspond to the syntactic counterparts

of countermodels for unprovable purely logical sequents, is identified and used

for giving a sound and complete definition of proof in G3LTcl. Termination of a

proof search is then obtained thanks to the analogy of the rules of the calculus

to the algorithm that produces saturated subsets of formulas.

The basic idea is to formulate a labelled calculus G3LTcl, the rules of which

reflect a natural closure algorithm that exploits the fixed point properties of

temporal operators

GA ⊃⊂ TA & TGA FA ⊃⊂ TA ∨TFA

HA ⊃⊂ YA & YHA PA ⊃⊂ YA ∨YPA

In Coquand (2007), a similar closure algorithm is given for LTL (see Remark

4.8.22, below): a countermodel for an invalid sentence is constructed as a rela-

tional structure where a saturated set of closure formulas ∆ is the immediate

successor of a saturated set of closure formulas Γ if A ∈ ∆ whenever TA ∈ Γ,

and a fairness condition is satisfied, namely that all the eventualities of the form

FA are fulfilled at some point. In this chapter, the notion of (≺-)saturated la-

bel (see Definitions 4.1.5, 4.1.7) will be defined in order to identify the class

of sequents which correspond to syntactical counterparts of countermodels for

invalid sequents.

In initial sequents, φ is either an atomic formula or a formula prefixed by T

or Y. Observe that initial sequents of the form x ≺ y,Γ ⇒ ∆, x ≺ y are not in

G3LTcl; this is not problematic, as explained in Section 1.4.1.
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Initial sequents and L⊥:

x : φ, Γ ⇒ ∆, x : φ x : ⊥, Γ ⇒ ∆
L⊥

Propositional rules:

x : A, x : B, Γ ⇒ ∆

x : A&B, Γ ⇒ ∆
L&

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A&B
R&

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆

x : A ∨B, Γ ⇒ ∆
L∨

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆

x : A ⊃ B, Γ ⇒ ∆
L⊃

x : A, Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

Fixed point rules:

x : TA, x : TGA, Γ ⇒ ∆

x : GA, Γ ⇒ ∆
LGcl

Γ ⇒ ∆, x : GA, x : TA Γ ⇒ ∆, x : GA, x : TGA

Γ ⇒ ∆, x : GA
RGcl

x : TA, x : FA, Γ ⇒ ∆ x : TFA, x : FA, Γ ⇒ ∆

x : FA, Γ ⇒ ∆
LFcl

Γ ⇒ ∆, x : TA, x : TFA

Γ ⇒ ∆, x : FA
RFcl

x : YA, x : YHA, Γ ⇒ ∆

x : HA, Γ ⇒ ∆
LHcl

Γ ⇒ ∆, x : HA, x : YA Γ ⇒ ∆, x : HA, x : YHA

Γ ⇒ ∆, x : HA
RHcl

x : YA, x : PA, Γ ⇒ ∆ x : YPA, x : PA, Γ ⇒ ∆

x : PA, Γ ⇒ ∆
LPcl

Γ ⇒ ∆, x : YA, x : YPA

Γ ⇒ ∆, x : PA
RPcl

Tomorrow and Yesterday rules:

x ≺ y, y : A, x : TA, Γ ⇒ ∆

x ≺ y, x : TA, Γ ⇒ ∆
LT

x ≺ y, Γ ⇒ ∆, x : TA, y : A

x ≺ y, Γ ⇒ ∆, x : TA
RTcl

y ≺ x, y : A, x : YA, Γ ⇒ ∆

y ≺ x, x : YA, Γ ⇒ ∆
LY

y ≺ x, Γ ⇒ ∆, x : YA, y : A

y ≺ x, Γ ⇒ ∆, x : YA
RYcl

Mathematical rules:

y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x ≺ y, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

Rules L-Ser and R-Ser have the condition that y is not in the conclusion.

Table 4.1: The rules of the system G3LTcl

Repetition of the principal formula in the premises of RGcl, LFcl, RHcl and

LPcl is required for the definition of fulfilling sequent (see Definition 4.3.5). The

propositional rules, the left rules for T and Y, and the rules of left and right

seriality are identical to those of G3LT. The right rules for T and Y are instead

different from those of G3LT. If the flow of time is linear and unbounded, the

next-time operator T and the previous-time operator Y satisfy

x  TA iff, for all y, x ≺ y implies y  A

iff there exists y such that x ≺ y and y  A
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x  YA iff, for all y, y ≺ x implies y  A

iff there exists y such that y ≺ x and y  A

Therefore the right rules of G3LTcl can be modified into the form given in Table

4.1, without variable conditions.

The notion of derivability in the calculus G3LTcl is defined in the standard

way, as in Definition 2.3.2. In Section 4.3 we shall introduce a generalised notion

of provability in G3LTcl, which admits derivation trees with infinite branches.

We recall here that every purely logical sequent1 Γ ⇒ ∆ with all its formulas

labelled by x corresponds to a formula ∧Γx ⊃ ∨∆x, where Γx = {A|x : A ∈ Γ},

and similarly ∆x. With this identification, the rules of the system G3LTcl, read

root first, correspond to the algorithm for producing the saturated subsets of

closure formulas from a given formula.

Definition 4.1.1. The set of closure formulas of a formula A, cl(A), of Pri-

orean linear time logic is defined inductively as follows:

• B ∈ cl(A) for every subformula B of A;

• TB and TGB ∈ cl(A) if GB ∈ cl(A);

• TB and TFB ∈ cl(A) if FB ∈ cl(A);

• YB and YHB ∈ cl(A) if HB ∈ cl(A);

• YB and YPB ∈ cl(A) if HB ∈ cl(A).

Lemma 4.1.2. Let |A| be the number of subformulas of A. The cardinality of

cl(A) is linearly bounded by |A|, namely |cl(A)| ≤ 3 · |A|.

Proof. By induction on the length of A:
1See Definition 2.1.1.
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1. |cl(⊥)| = |{⊥}| = 1 ≤ 3;

2. |cl(P )| = |{P}| = 1 ≤ 3;

3. |cl(B◦C)| = |{B◦C}∪cl(B)∪cl(C)| ≤ 1+3|B|+3|C| ≤ 3(|B|+|C|+1) = 3|B◦C|;

4. |cl(TB)| = |{TB} ∪ cl(B)| ≤ 1 + 3|B| ≤ 3(|B|+ 1) = 3|TB|;

5. |cl(YB)| = |{YB} ∪ cl(B)| ≤ 1 + 3|B| ≤ 3(|B|+ 1) = 3|YB|;

6. |cl(GB)| = |{GB,TB,TGB} ∪ cl(B)| ≤ 3 + 3|B| = 3(|B|+ 1) = 3|GB|;

7. |cl(FB)| = |{FB,TB,TFB} ∪ cl(B)| ≤ 3 + 3|B| = 3(|B|+ 1) = 3|FB|;

8. |cl(HB)| = |{HB,YB,YHB} ∪ cl(B)| ≤ 3 + 3|B| = 3(|B|+ 1) = 3|HB|;

9. |cl(PB)| = |{PB,YB,YPB} ∪ cl(B)| ≤ 3 + 3|B| = 3(|B|+ 1) = 3|PB|.

Corollary 4.1.3. The number of subsets of cl(A) is at most 23|A|.

The notion of a saturated set of Priorean linear time formulas is defined as

follows:

Definition 4.1.4. A set S of formulas is saturated if:

• ⊥ is not in S;

• For every formula B, it is not possible that both B and ¬B are in S;

• ¬¬B in S implies that B is in S;

• B&C in S implies that both B and C are in S;

• ¬(B&C) in S implies that either ¬B or ¬C is in S;

• B ∨ C in S implies that B or C is in S;
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• ¬(B ∨ C) in S implies both ¬B and ¬C are in S;

• B ⊃ C in S implies that either ¬B or C is in S;

• ¬(B ⊃ C) in S implies that both B and ¬C are in S;

• GB in S implies that both TB and TGB are in S;

• ¬GB in S implies that either ¬TB or ¬TGB is in S;

• FB in S implies that TB or TFB is in S;

• ¬FB in S implies that both ¬TB and ¬TFB are in S;

• HB in S implies that both YB and YHB are in S;

• ¬HB in S implies that either ¬YB or ¬YHB is in S;

• PB in S implies that YB or YPB is in S;

• ¬PB in S implies that both ¬YB and ¬YPB are in S.

We can now introduce the notion of saturated label in a sequent:

Definition 4.1.5. Let x be a label in Γ ⇒ ∆. We say that x is saturated if:

• x : ⊥ is not in Γ;

• For every formula B, it is not possible that x : B is both in Γ and in ∆;

• x : B&C in Γ (resp. x : B ∨ C in ∆) implies that both x : B and x : C

are in Γ (resp. in ∆);

• x : B ∨ C in Γ (resp. x : B&C in ∆) implies that x : B or x : C is in Γ

(resp. in ∆);

• x : B ⊃ C in Γ implies that x : B is in ∆ or x : C is in Γ;
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• x : B ⊃ C in ∆ implies that x : B is in Γ and x : C is in ∆;

• x : GB in Γ (resp. x : FB in ∆) implies that both x : TB and x : TGB

(resp. x : TFB) are in Γ (resp. in ∆);

• x : FB in Γ (resp. x : GB in ∆) implies that x : TB or x : TFB (resp.

x : TGB) is in Γ (resp. in ∆);

• x : HB in Γ (resp. x : PB in ∆) implies that both x : YB and x : YHB

(resp. x : YPB) are in Γ (resp. in ∆);

• x : PB in Γ (resp. x : HB in ∆) implies that x : YB or x : YPB (resp.

x : YHB) is in Γ (resp. in ∆).

Note that, by the equivalences F ≡ ¬G¬ (resp. P ≡ ¬H¬), a formula

x : GB (resp. x : HB) in the succedent behaves like a formula x : FB (resp.

x : PB) in the antecedent and viceversa.

Saturated sets of formulas and saturated labels in a sequent are linked by

the following lemma:

Lemma 4.1.6. The label x in a sequent Γ ⇒ ∆ is saturated iff the set Γx ∪∆x

is saturated, where Γx{B|x : B ∈ Γ}, ∆x = {B|x : B ∈ ∆}, and B ≡ ¬B if

B 6= ¬C, B ≡ C otherwise.

Proof. Straightforward.

Definition 4.1.7. A label x in Γ ⇒ ∆ is ≺-saturated if it is saturated and:

• x : TB in Γ (resp. in ∆) implies that, if x ≺ y is in Γ, then y : B is in Γ

(resp. in ∆);

• x : YB in Γ (resp. in ∆) implies that, if y ≺ x is in Γ, then y : B is in Γ

(resp. in ∆).
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4.2 Structural properties

Lemma 4.2.1. If Γ ⇒ ∆ is derivable in G3LTcl, then also Γ(y/x) ⇒ ∆(y/x)

is derivable, with the same derivation height.

Proof. By induction on the height h of the derivation. The proof is analogous

to the proof of proof of Lemma 2.3.4. If h = 0, then Γ ⇒ ∆ is either an initial

sequent or a conclusion of L⊥. In both cases, the sequent Γ(y/x) ⇒ ∆(y/x) is

also an initial sequent or a conclusion of L⊥. Suppose that Γ ⇒ ∆ is derivable

with h = n + 1 and that the claim holds for h = n, and consider the last rule

applied in the derivation. If it is a propositional or a temporal rule, apply the

inductive hypothesis to the premise(s) and then the rule. If the last rule is a

rule with a variable condition (L-Ser or R-Ser), we need to avoid a clash with

the eigenvariable: in that case, we apply twice the inductive hypothesis to the

premise, first to replace the eigenvariable with a fresh variable not appearing in

the derivation, and then to perform the desired substitution.

Lemma 4.2.2. Sequents of the form x : A,Γ ⇒ ∆, x : A, with A an arbitrary

temporal formula, are derivable in G3LTcl.

Proof. By induction on the length of the formula A. Note that if A is a temporal

formula prefixed by T or Y, then the sequent x : A,Γ ⇒ ∆, x : A is initial.

In what follows, Greek lower case is used for labelled and relational formulas.

Theorem 4.2.3. The rules of left and right weakening

Γ ⇒ ∆
ϕ, Γ ⇒ ∆

LWk
Γ ⇒ ∆

Γ ⇒ ∆, ϕ
RWk

are height-preserving admissible in G3LTcl.
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Proof. By induction on the height of the derivation (see Theorem 2.3.6). If

Γ ⇒ ∆ is an initial sequent or a conclusion of L⊥, also ϕ, Γ ⇒ ∆ and Γ ⇒ ∆, ϕ

are. The cases of rules without variable condition are straightforward. If the

last step is a rule with a variable condition, we apply first Lemma 4.2.1 to

avoid a clash of variables, and then the inductive hypothesis and the rule in

question.

Lemma 4.2.4. All rules of G3LTcl are height-preserving invertible.

Proof. The proof of height-preserving invertibility for the propositional rules

and for the fixed-point temporal rules is by induction on the height of derivation

(see Lemma 2.3.7). The temporal rules for T and Y, and the rules for seriality

are trivially invertible, since their premise(s) are obtained by weakening from

the conclusion and weakening is height-preserving admissible by Theorem 4.2.3.

As usual, clashes of variables are avoided through the substitution lemma.

Theorem 4.2.5. The rules of left and right contraction

ϕ, ϕ,Γ ⇒ ∆
ϕ, Γ ⇒ ∆

LCtr
Γ ⇒ ∆, ϕ, ϕ

Γ ⇒ ∆, ϕ
RCtr

are height-preserving admissible in G3LTcl.

Proof. Analogous to the proof of Theorem 2.3.8.

Contrary to G3LT, the calculus G3LTcl does not permit syntactic cut elim-

ination. This is because the rules for T and Y are given in a non-harmonious

way, that is, the left and the right rules are justified by different semantical ex-

planations. However, it is precisely because of this particular choice of rules that

the essential properties of G3LTcl hold. We will show, however, that the system
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without cut is complete, and thus prove that G3LTcl is closed with respect to

cut.

Lemma 4.2.6. A derivation in G3LTcl can be transformed into a derivation

with all instances of R-Ser and L-Ser applied on side labels2 that appear in the

conclusion of the rule.

Proof. Analogous to the proof of Lemma 3.2.11.

When considering minimal derivations3, applications of rules that produce

duplications of atoms when read from conclusion to premises can be dispensed

with by height-preserving admissibility of contraction. The same holds if a

duplication occurs modulo fresh replacement of eigenvariables, in particular we

have:

Lemma 4.2.7. In G3LTcl, rule R-Ser (resp. L-Ser) need not be applied on a

relational atom x ≺ y (resp. y ≺ x) if its conclusion contains an atom x ≺ z

(resp. z ≺ x) in the antecedent.

Proof. We consider a minimal derivation and suppose that we have an applica-

tion of R-Ser and an atom x ≺ z in its conclusion: we can perform the following

transformation

x ≺ y, x ≺ z,Γ ⇒ ∆
x ≺ z,Γ ⇒ ∆

R-Ser
;

x ≺ y, x ≺ z,Γ ⇒ ∆
x ≺ z, x ≺ z, Γ ⇒ ∆

H.-p.Subst(z/y)

x ≺ z,Γ ⇒ ∆
H.-p.LCtr

A shorter derivation is obtained, contrary to the hypothesis. We proceed simi-

larly for L-Ser.
2See Definition 3.2.10.
3See Definition 3.2.12.
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Lemma 4.2.8. The rules for left and right seriality permute up with respect to

all the rules of G3LTcl in the case their eigenvariable is not contained in the

active formula(s) of the latter.

Proof. We consider here only the case of rule R-Ser, the case of L-Ser being

analogous. If L-Ser is applied after L&, we can perform the following transfor-

mation

x ≺ y, z : B, z : C,Γ ⇒ ∆
x ≺ y, z : B&C,Γ ⇒ ∆

L&

z : B&C,Γ ⇒ ∆
R-Ser

;

x ≺ y, z : B, z : C,Γ ⇒ ∆
z : B, z : C,Γ ⇒ ∆

R-Ser

z : B&C,Γ ⇒ ∆
L&

with z different from x, y and not in Γ,∆. The permutation is similar for all

the other cases.

Lemma 4.2.9. Temporal rules permute down with respect to all the rules of

G3LTcl in the case their principal formulas are not active in the latter.

Proof. We consider here only rule LT, all the other cases being analogous. The

permutation is straightforward in the case of one-premise rule. For instance, for

L& we have

x ≺ y, y : A, x : TA, z : B, z : C,Γ ⇒ ∆
x ≺ y, x : TA, z : B, z : C,Γ ⇒ ∆

LT

x ≺ y, x : TA, z : B&C,Γ ⇒ ∆
L&

that can be transformed into

x ≺ y, y : A, x : TA, z : B, z : C,Γ ⇒ ∆
x ≺ y, y : A, x : TA, z : B&C,Γ ⇒ ∆

L&

x ≺ y, x : TA, z : B&C,Γ ⇒ ∆
LT

The permutation is similar for all the other one-premise rules. In the case of a

two-premise rule, use of height-preserving admissibility of weakening is needed:

for instance, the derivation

x ≺ y, y : A, x : TA,Γ ⇒ ∆, z : B

x ≺ y, x : TA,Γ ⇒ ∆, z : B
LT

x ≺ y, x : TA,Γ ⇒ ∆, z : C

x ≺ y, x : TA,Γ ⇒ ∆, z : B&C
R&
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is transformed into

x ≺ y, y : A, x : TA,Γ ⇒ ∆, z : B

x ≺ y, x : TA,Γ ⇒ ∆, z : C

x ≺ y, y : A, x : TA,Γ ⇒ ∆, z : C
LWk

x ≺ y, y : A, x : TA,Γ ⇒ ∆, z : B&C
R&

x ≺ y, x : TA,Γ ⇒ ∆, z : B&C
LT

The permutation is similar for all the other two-premise rules.

Lemma 4.2.10. On any branch of a minimal derivation in G3LTcl, a given

temporal rule with the repetition of the principal formula(s) in the premise(s)

need not be applied more than once on the same formulas.

Proof. We consider here only rule LT, all the other cases being analogous. If

rule LT has been applied twice with principal formulas x ≺ y, x : TA, by

Lemma 4.2.9 we have without loss of generality a derivation of the following

form, that can be transformed as indicated:

x ≺ y, y : A, y : A, x : TA, Γ ⇒ ∆

x ≺ y, y : A, x : TA, Γ ⇒ ∆
LT

x ≺ y, x : TA, Γ ⇒ ∆
LT

;

x ≺ y, y : A, y : A, x : TA, Γ ⇒ ∆

x ≺ y, y : A, x : TA, Γ ⇒ ∆
H.-p.Ctr

x ≺ y, x : TA, Γ ⇒ ∆
LT

4.3 Proofs in G3LTcl

In this Section we shall define G3LTcl proofs through the identification of a

particular class of sequents, as finite syntactical counterparts of countermodels

for invalid sequents.

Given a purely logical sequent Γ ⇒ ∆, we start a proof search by applying

root-first the rules of G3LTcl for the propositional connectives and for G, F,

H, and P, whenever possible. When x becomes saturated, we apply once R-

Ser and L-Ser with side label x, thus introducing new labels y and y′ and the
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accessibility relations x ≺ y and y′ ≺ x: by Lemma 4.2.8 we are allowed to

postpone the application of the rules for seriality until no more logical rule can

be applied, and by Lemmas 4.2.6 and 4.2.7 we do not need to apply a seriality

rule with side label z, if z is not a label in the sequent or the antecedent already

contains an atom z ≺ z′ (resp. z′ ≺ z). Next, we apply the rules LT and RTcl

(resp. LY and RYcl) on the formulas with T (resp. Y) as their outermost

operator until x becomes ≺-saturated. Note that by Lemma 4.2.10, we need

not apply more than once a temporal rule on the same principal formula(s). We

repeat the procedure with the formulas marked by y and y′. We continue as

before with all the labels possibly introduced by R-Ser and L-Ser, and so on.

In what follows, we use x to denote the label that marks all the formulas in the

purely logical sequent the proof search starts with.

Definition 4.3.1. A pre-proof of a purely logical sequent in G3LTcl is a (pos-

sibly infinite) tree obtained by applying root-first the logical and mathematical

rules of the calculus, whenever possible.

Before giving the definition of a proof in G3LTcl, we need some preliminary

definitions. As said, our aim is to construct the syntactic counterpart of a

countermodel from a failed proof search. For the sake of clarity, we define

syntactic entities through their intuitive correspondence to the semantic features

of a model for Priorean linear time.

The notions of Kripke semantics for temporal logic were introduced in Sec-

tion 3.3. The definition of evaluation of formulas is as in Definition 3.3.2; the

definition of validity for labelled formulas and relational atoms in a discrete lin-

ear temporal frame is as in Definition 3.3.3. The notion of a countermodel for

a sequent is defined as follows:

119



Definition 4.3.2. A countermodel to a sequent Γ ⇒ ∆ is a discrete linear

temporal frame (K,≺K, <K) together with an interpretation and an evaluation

that validates all the formulas and relational atoms in Γ and no formula in ∆.

The semantic explanations for possibility-like temporal operators F and P

and the definition of the order relation <K as the transitive closure of the im-

mediate successor relation ≺K justify the following notion of future and past

witness.

Definition 4.3.3. Given a labelled formula z : FB in the antecedent of a sequent

Γ ⇒ ∆ (resp. z : GB in the succedent), we say that a label z′ is a future witness

for z : FB (resp. z : GB) if z′ : B is in Γ (resp. z′ : B is in ∆) and the relational

atoms z ≺ z0, . . . , zn−1 ≺ zn ≡ z′ are in Γ for some n.

Given a labelled formula z : PB in the antecedent of a sequent Γ ⇒ ∆ (resp.

z : HB in the succedent), we say that a label z′ is a past witness for z : PB

(resp. z : HB) if z′ : B is in Γ (resp. z′ : B is in ∆) and the relational atoms

z′ ≺ z0, . . . , zn−1 ≺ zn ≡ z are in Γ for some n.

In costructing a Priorean linear time model from our syntactic object, we

have to ensure that every possibility-like formulas in it is realised by some label:

Definition 4.3.4. A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i+1) in a sequent

Γ ⇒ ∆ is a future loop if zj marks exactly the same formulas as the label zi,

for no label y the relational atom zj ≺ y is in Γ, and, for every labelled formula

zq : FB in Γ (resp. zq : GB in ∆) with i ≤ q ≤ j, there exists zk such that

i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zj the future looping label

with respect to zi.

A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent Γ ⇒ ∆ is a
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past loop if zi marks exactly the same formulas as the label zj, for no label y

the relational atom y ≺ zi is in Γ, and, for every labelled formula zq : PB in

Γ (resp. zq : HB in ∆) with i ≤ q ≤ j, there exists some variable zk such that

i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zi the past looping label

with respect to zj.

A root-first proof search succeeds when a derivation is found, namely all the

leaves of the derivation tree are initial sequents or instances of L⊥. However,

a failed proof search does not in general assure that an endsequent Γ ⇒ ∆ is

invalid unless an adequate countermodel can be constructed from it. Here comes

into play the notion of fulfilling sequent for a purely logical sequent Γ ⇒ ∆:

Definition 4.3.5. Let us suppose that the sequent Γ∗ ⇒ ∆∗ has been obtained

by root-first proof search from the purely logical sequent Γ ⇒ ∆ (with all its

formulas labelled by x). Then, Γ∗ ⇒ ∆∗ is a fulfilling sequent if the following

conditions are satisfied:

(i) Every label in it is ≺-saturated;

(ii) It contains a chain of relational atoms z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x,

z0 ≺ z1, . . . , zn−1 ≺ zn, such that for some −m < i ≤ 0 the subchain

z−m ≺ z−(m−1), . . . , zi−1 ≺ zi is a past loop, and for some 0 ≤ j < n, the

subchain zj ≺ zj+1, . . . , zn−1 ≺ zn is a future loop;

(iii) Every labelled formula z : FB in the antecedent (resp. z : GB in the

succedent) is either witnessed by a future witness label z′, or has z inside

a future loop;

(iv) Every labelled formula z : PB in the antecedent (resp. z : HB in the
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succedent) is either witnessed by a past witness label z′, or has z inside a

past loop.

Intuitively, a fulfilling sequent corresponds to a structure constituted by

a (possibly empty) linear chain with two simple loops at the ends, as in the

following figure, where the left and the right loop are obtained by identifying

the first and the last label of the past and of the future loop, respectively.

In Section 4.4 we shall prove that, given a model for Priorean linear time, it

is possible to extract the corresponding fulfilling sequent, and in Section 4.5 we

shall show how to linearise the future and the past loop in order to obtain an

appropriate model.

Proposition 4.3.6. Let Γ′ ⇒ ∆′ be obtained by applying root-first the rules of

G3LTcl from the purely logical sequent Γ ⇒ ∆ with x as the uniform label that

marks all the formulas in the latter. Then Γ′ ⇒ ∆′ contains a unique chain

z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn with zi different

from zj for i 6= j.

Proof. Since the root sequent Γ ⇒ ∆ is purely logical, the result follows by

Lemmas 4.2.6, 4.2.7 and the fact that only seriality rules can introduce relational

atoms.

While searching for a fulfilling sequent, we want to find one as small as

possible. Therefore we should try to avoid useless circles, namely those explor-
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ing instants reachable as well through a more direct path. This motivates the

following definition:

Definition 4.3.7. Let Γ′ ⇒ ∆′ be obtained by applying root-first the rules of

G3LTcl from the purely logical sequent Γ ⇒ ∆ with x as the uniform label that

marks all the formulas in the latter. A chain x ≡ y0 ≺ y1, . . . , yn−1 ≺ yn (resp.

y−n ≺ y−(n−1), . . . , y−1 ≺ y0 ≡ x) in Γ′ ⇒ ∆′ is roundabout if it contains

labels yi, yj with 0 ≤ i < j ≤ n such that yi and yj mark the same formulas,

yi ≺ yi+1, . . . , yj−1 ≺ yj is not the future loop (resp. the past loop) and either

j = i + 1 or for every yk with i < k < j there exists some yl such that l > j

(resp. l < i) and yk and yl mark the same formulas. We say that the subchain

yi ≺ yi+1, . . . , yj−1 ≺ yj is dispensable. A fulfilling sequent is reduced if it does

not contain dispensable subchains.

Note that by Definition 4.3.7 a chain can be roundabout also in the case

that yi and yj mark no formulas.

Theorem 4.3.8. If a proof search for a purely logical sequent Γ ⇒ ∆ (with all

its formulas labelled by x) leads to a fulfilling sequent Γ∗ ⇒ ∆∗, then it also

leads to a reduced fulfilling sequent.

Proof. (Sketch) Note that for every label z introduced by R-Ser (resp. L-Ser)

a labelled formula z : C in Γ∗ ⇒ ∆∗ either is introduced by applying root-first

rules LT and RTcl (resp. LY and RYcl) or is the result of root-first application

of the other rules on a formula thus introduced. If the chain x ≡ z0 ≺ z1,

. . . , zn−1 ≺ zn contains a dispensable subchain zi ≺ zi+1, . . . , zj−1 ≺ zj , then

the labels zi and zj mark the same formulas: therefore zj+1 : B is introduced

by LT (resp. RTcl) with principal formulas zj ≺ zj+1, zj : TB iff zi+1 : B can
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be introduced by LT (resp. RTcl) with principal formulas zi ≺ zi+1, zi : TB.

Given a set of formulas marked by a label z, the rules of G3LTcl explore different

subsets of closure formulas that possibly ≺-saturate z: while applying root-first

the rules of G3LTcl we have to continue along the branch in which the label

zi+1 is ≺-saturated by the same subset of closure formulas that ≺-saturates

zj+1 in the original fulfilling sequent. By choosing the appropriate premise of a

branching rule whenever a roundabout chain is met, we finally reach the desired

reduced fulfilling sequent. Let us consider for instance the following simple case

of a proof-search tree

x : TA, x : FA

.

.

.⇒

y′ ≺ x, x ≺ y, y ≺ z, z : A, y : TA, . . . ⇒
y′ ≺ x, x ≺ y, y ≺ z, y : TA, . . . ⇒

LT

y′ ≺ x, x ≺ y, y : TA, y : FA, . . . ⇒
R-Ser

y′ ≺ x, x ≺ y, y ≺ v, v ≺ w, w : A, v : TA, . . . ⇒
y′ ≺ x, x ≺ y, y ≺ v, v ≺ w, v : TA, . . . ⇒

LT

y′ ≺ x, x ≺ y, y ≺ v, v : TA, v : FA, . . . ⇒
R-Ser

. . .

y′ ≺ x, x ≺ y, y ≺ v, v : FA, y : TFA, . . . ⇒
LFcl

y′ ≺ x, x ≺ y, y ≺ v, y : TFA, . . . ⇒
LT

y′ ≺ x, x ≺ y, y : TFA, y : FA, . . . ⇒
R-Ser

y′ ≺ x, x ≺ y, y : FA, x : TFA, . . . ⇒
LFcl

y′ ≺ x, x ≺ y, x : TFA, x : FA ⇒
LT

x : TFA, x : FA ⇒
R-Ser,L-Ser

x : FA ⇒
LFcl

Clearly, the fulfilling sequent

y′ ≺ x, x ≺ y, y ≺ v, v ≺ w, w : A, v : TA, y : TFA, x : TFA, v : FA, y : FA, x : FA ⇒

contains the dispensable subchain x ≺ y: we can reach the reduced fulfilling

sequent

y′ ≺ x, x ≺ y, y ≺ z, z : A, y : TA, x : TFA, y : FA, x : FA ⇒

by following the branch in which y is ≺-saturated by the subset of closure

formulas that ≺-saturates v in the former sequent. The case of roundabout

chain z−n ≺ z−(n−1), . . . , z−1 ≺ z0 ≡ x is analogous.
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We are now in possess of all the notions required to give a definition of proof

in the calculus G3LTcl.

Definition 4.3.9. A pre-proof of a purely logical sequent Γ ⇒ ∆ is a proof if

no branch in it leads to a fulfilling sequent. A sequent Γ ⇒ ∆ is provable if

there exists a proof for it.

Clearly, every G3LTcl derivation is a G3LTcl proof, but the converse does not

hold.

We observe here that, contrary to the definition of cyclic calculi for induction

and infinite descent of Brotherston and Simpson (2007), our definition of proof

in G3LTcl is completely local, i.e. there is no need of keeping information on

previous parts of the derivation tree: at any step of the proof search we simply

have to consider the sequents introduced by root-first application of the rules

and check if they are initial sequents, fulfilling sequents, or neither.

4.4 Soundness

Contrary to the calculus G3LT, soundness cannot be proved for G3LTcl by

showing that the initial sequents and the rules of the system are sound: by

Definition 4.3.9, proofs in G3LTcl can contain infinitely long branches, so the

validity of a sequent in a tree cannot, in general, be founded on the validity of

initial sequents or instances of L⊥.

Therefore, we prove soundness by contraposition: if there exists a counter-

model for Γ ⇒ ∆, then the corresponding proof search should contain a fulfilling

sequent and so Γ ⇒ ∆ is unprovable in G3LTcl. As a consequence, the absence

of any fulfilling sequent from a derivation tree turns to be a global soundness
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condition for the proofs.

Before proving soundness, some preliminary results concerning standard

models are needed. In particular, we have to prove that, given a countermodel

M for A, it is possible to extract a fulfilling sequent all the labels of which

mark ≺-saturated sets of closure formulas of A: the Lemmas below show how

to construct a future and a past loop from M. In the following, we use s6 Ks′

to denote the fact that s = s′ or s <K s′ in a model M = (K,≺K, <K,).

Lemma 4.4.1. Let M = (K,≺K, <K,) be a model for Priorean linear time

and suppose that, for some instant w, w 1 A. Then for some s such that w6 Ks,

there exists s′ such that s <K s′, s and s′ satisfy the same subset H ⊂ cl(A),

and for every t if s6 Kt6 Ks′ and t  FB and FB ∈ cl(A) (resp. t 1 GB and

GB ∈ cl(A)) there exists u such that s6 Ku6 Ks′ and u  B (resp. u 1 B).

Proof. Since every model for Priorean linear time is isomorphic to the integers,

we can assume without loss of generality that M is the standard model, namely

K corresponds to Z. So, there are infinitely many instants greater than w. How-

ever, by Corollary 4.1.3, there are only 23|A| subsets of cl(A): as an application

of Ramsey’s Theorem, for some instant(s) greater than w there exist infinitely

many instants satisfying the same subset H of closure formulas of A. Let s be

the first instant of the infinite set of instants

s0 <K s1 <K s2 <K s3 <K . . .

all satisfying the same subset H ⊆ cl(A) and such that w6 Ks. Let s6 Kt and

t  FB and FB ∈ cl(A) (resp. t 1 GB and GB ∈ cl(A)). If there exists a u

such that u  B and s6 Ku6 Kt, we are done. Otherwise, since t  FB (resp.

t 1 GB), there exists some u such that t <K u and u  B (resp. u 1 B). Since,
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by hypothesis, there are infinitely many instants greater than s satisfying H,

but u can be reached from t by finitely many iterations of the relation ≺K, for

some i = 1, 2, . . . , we have s <K u6 Ksi. For every i there are only finitely many

closure formulas of A of the form FB (resp. GB) validated (resp. invalidated)

by an instant t such that s6 Kt6 Ksi, and for every such t we can find a k and

a u such that s6 Ku6 Ksi+k and u  B (resp. u 1 B). Since the set of closure

formulas of A is finite, the process eventually ends with the determination of a

s′ such that s <K s′ and for every t if s6 Kt6 Ks′ and t  FB and FB ∈ cl(A)

(resp. t 1 GB and GB ∈ cl(A)) there exists u such that s6 Ku6 Ks′ and u  B

(resp. u 1 B).

Lemma 4.4.2. Let M = (K,≺K, <K,) be a model for Priorean linear time

such that for some instant w, w 1 A. Then for some instant s such that s6 Kw,

there exists s′ such that s′ <K s, s and s′ satisfy the same subset H ⊂ cl(A)

and for every t if s′6 Kt6 Ks and t  PB and PB ∈ cl(A) (resp. t 1 HB and

HB ∈ cl(A)) there exists u such that s′6 Ku6 Ks and u  B (resp. u 1 B).

Proof. Analogous to the proof of Lemma 4.4.1.

Lemma 4.4.3. All the rules of G3LTcl are sound.

Proof. The case of the initial sequents and the propositional rules is straight-

forward. The rules for G, F, H and P are sound by definition, since they are

justified by their fixed point interpretations. Similarly, the rules for the next-

time operator T and the previous-time operator Y are justified by their semantic

explanations, and the mathematical rules correspond to the frame properties of

left and right seriality for ≺.
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Theorem 4.4.4. If a purely logical sequent Γ ⇒ ∆ (with all its formulas labelled

by x) has a countermodel, then it is not provable in G3LTcl.

Proof. Let us suppose that there exists a countermodel M = (K,≺K, <K,) for

the purely logical sequent Γ ⇒ ∆, namely there exists w ∈ K such that [[x]] = w

and w 1 ∧Γ ⊃ ∨∆. By Lemma 4.4.3, every countermodel for the conclusion of

any of the rules of G3LTcl is a countermodel for (at least one of) the premise(s):

by choosing the appropriate branch we eventually find a sequent with a chain

z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn

every label of which matches an instant in the corresponding position in M.

We want to show that such sequent is a fulfilling sequent for Γ ⇒ ∆. We have

to consider several cases according to the conditions characterising a fulfilling

sequent in Definition 4.3.5:

(i) We show that evey label z appearing in the tree can be ≺-saturated by

applying root-first the rules of the calculus. First observe that for no formula B,

z : B can be both in the antecedent and in the succedent, otherwise by definition

of countermodel [[z]]  B and [[z]] 1 B, which is impossible. Analogously, if z : ⊥

were in the antecedent, [[z]]  ⊥, which is impossible. If the formula z : A&B

(resp. z : A ∨ B) is in the antecedent (resp. succedent), a single application

of L& (resp. R∨) introduces both z : A and z : B in the antecedent (resp.

succedent) of the premise. If the formula z : A ∨ B (resp. z : A&B) is in the

antecedent (resp. succedent), a single application of L∨ (resp. R&) introduces

z : A in the antecedent (resp. succedent) of the left premise and z : B in the

antecedent (resp. succedent) of the right premise. If the formula z : A ⊃ B is in

the antecedent, a single application of L ⊃ introduces z : A in the succedent of
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the left premise and z : B in the antecedent of the right premise. If the formula

z : A ⊃ B is in the succedent a single application of R ⊃ introduces both z : A

in the antecedent and z : B in the succedent of the premise. If the formula

z : GA (resp. HA) is in the antecedent, a single application of LG (resp.

LH) introduces both z : TA and z : TGA (resp. z : YA and z : YHA) in the

antecedent of the premise. If the formula z : GA (resp. HA) is in the succedent,

a single application of RG (resp. RH) introduces z : TA (resp. z : YA) in the

succedent of the left premise and z : TGA (resp. z : YHA) in the succedent

of the right premise. If the formula z : FA (resp. z : PA) is in the antecedent,

a single application of LF (resp. LP) introduces z : TA (resp. z : YA) in the

antecedent of the left premise and z : TFA (resp. z : YPA) in the antecedent

of the right premise. If the formula z : FA (resp. z : PA) is in the succedent, a

single application of RF (resp. RP) introduces both z : TA and z : TFA (resp.

z : YA and z : YPA) in the succedent of the premise. If the relational atom

z ≺ z′ is in the antecedent and z : TA is in the antecedent (resp. succedent), a

single application of LT (resp. RTcl) introduces z′ : A in the antecedent (resp.

succedent) of the premise. If the relational atom z′ ≺ z is in the antecedent and

z : YA is in the antecedent (resp. succedent), a single application of LY (resp.

RYcl) introduces z′ : A in the antecedent (resp. succedent) of the premise.

(ii) The presence of a future and a past loop follows from Lemmas 4.4.1 and

4.4.2, and the fact that we can go on applying right and left seriality rules and

introduce new labels until a future and a past loop are met;

(iii) If the formula z : FB (resp. z : GB) is in the antecedent (resp. succe-

dent), then [[z]]  FB (resp. [[z]] 1 GB). Therefore, either there exists an

instant s such that [[z]] <K s and s  B (resp. s 1 B), and for some z′, [[z′]] = s
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and z′ is the future witness of z : FB (resp. z : GB), or [[z]] falls under the

conditions of Lemma 4.4.1, and thus z is inside a future loop;

(iv) If the formula formula z : PB (resp. z : HB) is in the antecedent (resp.

succedent), then [[z]]  PB (resp. [[z]] 1 HB). Therefore, either there exists

an instant s such that s <K [[z]] and s  B (resp. s 1 B), and for some z′,

[[z′]] = s and z′ is the past witness of z : PB (resp. z : HB), or [[z]] falls under

the conditions of Lemma 4.4.2, and so z is inside a past loop.

4.5 Completeness

We prove completeness by contraposition: if the sequent Γ ⇒ ∆ is not provable

in G3LTcl, that is if the root-first proof search leads to a fulfilling sequent, then

a countermodel for Γ ⇒ ∆ can be constructed.

Our completeness proof has been suggested by the proof presented in Ne-

gri and von Plato (2008, pp. 201–207). However, the definition of fulfilling

sequents allows to consider only finite objects, and not (possibly) infinite re-

duction tree; furthemore, the presence of the fixed-point rules for the temporal

operators requires additional work in proving the inductive steps for temporal

formulas, since we cannot appeal directly to the semantic explanations for the

corresponding operators.

Let us consider the standard frame F = (K,≺K, <K) for Priorean linear

time, with K = {si|i ∈ Z}, si ≺K si+1 and si <K sj for i < j. Given a

fulfilling sequent Γ∗ ⇒ ∆∗ for the purely logical sequent Γ ⇒ ∆, we construct a

countermodel M by defining an appropriate interpretation for the set of labels

in Γ∗ ⇒ ∆∗ into the domain K as follows: we put [[x]] = s0 if x is the label that
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marks all the formulas in Γ ⇒ ∆, and for every label z if the relational atoms

x ≡ z0 ≺ z1, . . . , zn−1 ≺ zn ≡ z are in Γ, we put [[z]] = sn. Analogously, if

z ≡ z−n ≺ z−(n−1), . . . , z−1 ≺ z0 ≡ x are in Γ, we put [[z]] = s−n. We evaluate

the atomic formulas by putting [[z]]  P if z : P is in Γ∗ and [[z]] 1 P if z : P

is in ∆∗. Furthermore, if zn+l is the future looping label with respect to zn,

[[zn+l]] = sn+l and [[zn]] = sn, then for every instant sn+m·l+q (with m ≥ 0 and

0 ≤ q ≤ l − 1) we put sn+m·l+q  P if zn+q : P is in Γ∗ and sn+m·l+q 1 P if

zn+q : P is in ∆∗. Analogously, if z−(n+l) is the past looping label with respect

to z−n, [[z−(n+l)]] = s−(n+l) and [[z−n]] = s−n, then for every instant s−(n+m·l+q)

(with m ≥ 0 and 0 ≤ q ≤ l − 1) we put s−(n+m·l+q)  P if z−(n+q) : P is in Γ∗

and s−(n+m·l+q) 1 P if z−(n+q) : P is in ∆∗. Observe that this interpretation can

be made consistently because a fulfilling sequent is neither initial nor contains

⊥ in the antecedent.

Lemma 4.5.1. M is a countermodel for Γ∗ ⇒ ∆∗.

Proof. By definition, if z ≺ z′ is in Γ∗, then [[z]] ≺K [[z′]]. We have to show that,

for arbitrary formulas B, if z : B is in Γ∗, then [[z]]  B, and if z : B is in ∆∗,

then [[z]] 1 B . We proceed by induction on the length of the formula B.

1. If B is an atomic formula P and z : P is in Γ∗, then [[z]]  P by construction.

If z : P is in ∆∗, then [[z]] 1 P by construction. Since z is ≺-saturated, z : P

cannot be both in Γ∗ and in ∆∗.

2. If B ≡ ⊥, then it cannot be in Γ∗ by definition of fulfilling sequent. If z : ⊥

is in ∆∗, then [[z]] 1 ⊥ by Definition 3.3.2.

3. If B ≡ C&D and z : C&D is in Γ∗, then, since z is ≺-saturated, both z : C

and z : D are in Γ∗. By inductive hypothesis [[z]]  C and [[z]]  D, and therefore

[[z]]  C&D. If z : C&D is in ∆∗, then, since z is ≺-saturated, either z : C
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or z : D is in ∆∗. By inductive hypothesis [[z]] 1 C or [[z]] 1 D, and therefore

[[z]] 1 C&D.

4. If B ≡ C ∨D and z : C ∨D is in Γ∗, then, since z is ≺-saturated, either z : C

or z : D is in Γ∗. By inductive hypothesis [[z]]  C or [[z]]  D, and therefore

[[z]]  C ∨D. If z : C ∨D is in ∆∗, then, since z is ≺-saturated, both z : C and

z : D are in ∆∗. By inductive hypothesis [[z]] 1 C and z 1 D, and therefore

[[z]] 1 C ∨D.

5. If B ≡ C ⊃ D and z : C ⊃ D is in Γ∗, then, since z is ≺-saturated, either

z : C is in ∆∗ or z : D is in Γ∗. By inductive hypothesis [[z]] 1 C or [[z]]  D,

and therefore [[z]]  C ⊃ D. If z : C ⊃ D is in ∆∗, then, since z is ≺-saturated,

we have z : C in Γ∗ and z : D in ∆∗. By inductive hypothesis [[z]]  C and

[[z]] 1 D, and therefore [[z]] 1 C ⊃ D.

6. If B ≡ TC and z : TC is in Γ∗ (resp. ∆∗), then we have two cases: (i)

if the label z is not the future looping label zf , then it is connected to it by

a chain z ≡ zn+l−i ≺ zn+l−(i−1), . . . , zn+l−1 ≺ zn+l ≡ zf and, since the label

zn+l−i is ≺-saturated, we have zn+l−(i−1) : C in Γ∗ (resp. ∆∗). Therefore,

by construction, we have [[zn+l−i]] ≺K [[zn+l−(i−1)]] and by inductive hypothesis

[[zn+l−(i−1)]]  C (resp. [[zn+l−(i−1)]] 1 C). So [[z]]  TC (resp. [[z]] 1 TC).

(ii) If z is the future looping label, then by definition for no label z′ the atom

z ≺ z′ is in Γ∗. However, we have some label zn such that x ≡ z0 ≺ z1,

. . . , zn−1 ≺ zn, zn ≺ zn+1, . . . , zn+l−1 ≺ zn+l ≡ z are in Γ∗ for l > 0 and zn

marks the same formulas as z; in particular zn : TC is in Γ∗ (resp. ∆∗). Since

zn is ≺-saturated, zn+1 : C is in Γ∗ (resp. ∆∗). By construction [[z]] = sn+l,

so [[z]] ≺K sn+l+1 and, by construction and inductive hypothesis, sn+l+1  C

(resp. sn+l+1 1 C). Therefore [[zn+l]]  TC (resp. [[zn+l]] 1 TC).
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7. If B ≡ GC and z : GC is in Γ∗, then, since z is ≺-saturated, both z : TC

and z : TGC are in Γ∗, and, if the label z ≺ z′ is in Γ∗, both z′ : C and z′ : GC

are in Γ∗. Therefore, by repeating this argument, we have that for every z′′,

if z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′′ are in Γ∗ for some i, j ≥ 0, then z′′ : C and

z′′ : GC are in Γ∗. Note that, if z is the future looping label or z′′ is inside a

future loop zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : C and zk : GC

are in Γ∗ for every m ≤ k ≤ n. By inductive hypothesis for every s if [[z]] <K s

then s  C, therefore [[z]]  GC.

If z : GC is in ∆∗ then, by Definitions 4.3.4 and 4.3.5, we have two cases:

(i) there exists some future witness label z′ such that z′ : C is in ∆∗ and the

atoms z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′ are in Γ∗ for some i, j ≥ 0. So, by

construction and inductive hypothesis there is some s = [[z′]] such that [[z]] <K s

and s 1 C, therefore [[z]] 1 GC. (ii) label z is inside a future loop zn ≺ zn+1,

. . . , zn+i−1 ≺ zn+i ≡ z, zn+i ≺ zn+i+1, . . . , zn+l−1 ≺ zn+l (with l ≥ i). Then

there exists some label z′ such that either zn ≡ z′ or the relational atoms

zn ≺ zn+1, . . . , zn+q−1 ≺ zn+q ≡ z′ are in Γ∗ for 0 ≤ q ≤ i and the labelled

formula z′ : C is in ∆∗. By construction [[z′]] = sn+q, so [[z]] <K sn+l+q and, by

inductive hypothesis, sn+l+q 1 C. Therefore [[z]] 1 GC.

8. If z : FC is in Γ∗ then, by Definitions 4.3.4 and 4.3.5, we have two cases: (i)

there exists some future witness label z′ such that z′ : C is in ∆∗ and the atoms

z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′ are in Γ∗ for some i, j ≥ 0. So, by construction

and inductive hypothesis there is some s = [[z′]] such that [[z]] <K s and s  C,

then [[z]]  FC. (ii) z is inside a future loop zn ≺ zn+1, . . . , zn+i−1 ≺ zn+i ≡ z,

zn+i ≺ zn+i+1, . . . , zn+l−1 ≺ zn+l (with l ≥ i). Then there exists z′ such

that either zn ≡ z′ or the atoms zn ≺ zn+1, . . . , zn+q−1 ≺ zn+q ≡ z′ are in
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Γ∗ for 0 ≤ q ≤ i and the labelled formula z′ : C is in Γ∗. By construction

[[z′]] = sn+q, so [[z]] <K sn+l+q and, by inductive hypothesis, sn+l+q  C.

Therefore [[z]]  FC.

If z : FC is in ∆∗, then, since z is ≺-saturated, both z : TC and z : TFC are in

∆∗, and, if z ≺ z′ is in Γ∗, both z′ : C and z′ : FC are in ∆∗. Then, by repeating

this argument, we have that for every z′′, if z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′′ are

in Γ∗ for some i, j ≥ 0, then z′′ : C and z′′ : FC are in ∆∗. Note that, if z is

the future looping label or z′′ is inside a future loop zm ≺ zm+1, . . . , zn−1 ≺ zn

(with n > m) both zk : C and zk : FC are in ∆∗ for every m ≤ k ≤ n. By

inductive hypothesis for every s if [[z]] <K s then s 1 C, therefore [[z]] 1 FC.

9. If z : YC is in Γ∗ (resp. ∆∗), then we have two cases: (i) if z is not the

past looping label zp, it is connected by a chain zp ≡ z−(n+l) ≺ z−(n+l−1),

. . . , z−(n+l−(i−1)) ≺ z−(n+l−i) ≡ z and, since z−(n+l−i) is ≺-saturated, we have

z−(n+l−(i−1)) : C in Γ∗ (resp. ∆∗). Therefore, by construction and inductive hy-

pothesis, we have [[z−(n+l−(i−1))]] ≺K [[z−(n+l−i)]] and [[z−(n+l−(i−1))]]  C (resp.

[[z−(n+l−(i−1))]] 1 C). Therefore [[z]]  YC (resp. [[z]] 1 YC). (ii) If z is the past

looping label, then by definition for no label z′ the atom z′ ≺ z is in Γ∗. However,

we have some label z−n such that z ≡ z−(n+l) ≺ z−(n+l−1), . . . , z−(n+1) ≺ z−n,

z−n ≺ z−(n−1), . . . , z−1 ≺ z0 ≡ x are in Γ∗ for l > 0 and z−n marks the

same formulas as z; in particular z−n : YC is in Γ∗ (resp. ∆∗). Since the

label z−n is ≺-saturated, z−(n+1) : C is in Γ∗ (resp. ∆∗). By construction

[[z]] = s−(n+l), therefore s−(n+l+1) ≺K [[z]] and, by construction and inductive

hypothesis, s−(n+l+1)  C (resp. s−(n+l+1) 1 C). So [[z−(n+l)]]  YC (resp.

[[z−(n+l)]] 1 YC).

10. If B ≡ HC and z : HC is in Γ∗, then, since z is ≺-saturated, both z : YC
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and z : YHC are in Γ∗, and, if z′ ≺ z is in Γ∗, both z′ : C and z′ : HC

are in Γ∗. Then, by repeating this argument, we have that for every z′′, if

z′′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for some i, j ≥ 0, then z′′ : C and

z′′ : HC are in Γ∗. Note that, if z is the past looping label or z′′ is inside a past

loop zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : C and zk : HC are in

Γ∗ for every m ≤ k ≤ n. By inductive hypothesis for every s if s <K [[z]] then

s  C, therefore [[z]]  HC.

If z : HC is in ∆∗ then, by Definitions 4.3.4 and 4.3.5, we have two cases:

(i) there exists some past witness label z′ such that z′ : C is in ∆∗ and the

atoms z′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for some i, j ≥ 0. By construc-

tion and inductive hypothesis there is some s such that s <K [[z]] and s 1 C,

therefore [[z]] 1 HC. (ii) the label z is inside a past loop z−(n+l) ≺ z−(n+l−1),

. . . , z−(n+i+1) ≺ z−(n+i) ≡ z, z−(n+i) ≺ z−(n−(i−1)), . . . , z−(n−1) ≺ z−n (with

l ≥ i). Then there exists a label z′ such that z−n ≡ z′ or the relational atoms

z′ ≡ z−(n+q) ≺ z−(n+(q−1)), . . . , z−(n+1) ≺ z−n are in Γ∗ for 0 ≤ q ≤ i and the

labelled formula z′ : C is in ∆∗. By construction [[z′]] = s−(n+q), and therefore

s−(n+l+q) <K [[z]] and, by inductive hypothesis, s−(n+l+q) 1 C. So, [[z]] 1 HC.

11. If z : PC is in Γ∗ then, by Definitions 4.3.4 and 4.3.5, we have two cases:

(i) there exists some past witness label z′ such that z′ : C is in ∆∗ and the

atoms z′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for some i, j ≥ 0. So, by

construction and inductive hypothesis there is some s such that s <K [[z]] and

s  C, therefore [[z]]  PC. (ii) z is inside a past loop z−(n+l) ≺ z−(n+l−1),

. . . , z−(n+i+1) ≺ z−(n+i) ≡ z, z−(n+1) ≺ z−(n−(i−1)), . . . , z−(n−1) ≺ z−n (with

l ≥ i). Then there exists a label z′ such that z−n ≡ z′ or the relational atoms

z′ ≡ z−(n+q) ≺ z−(n+(q−1)), . . . , z−(n+1) ≺ z−n are in Γ∗ for 0 ≤ q ≤ i and
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the labelled formula z′ : C is in Γ∗. By construction [[z′]] = s−(n+q), therefore

we have s−(n+l+q) <K [[z]] and, by inductive hypothesis, s−(n+l+q)  C. So,

[[z]]  PC.

If B ≡ PC and z : PC is in ∆∗, then, since z is ≺-saturated, both z : YC

and z : YPC are in ∆∗, and, if z′ ≺ z is in Γ∗, both z′ : C and z′ : PC

are in ∆∗. Then, by repeating this argument, we have that for every z′′, if

z′′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for some i, j ≥ 0, then z′′ : C and

z′′ : PC are in ∆∗. Note that, if z is the past looping label or z′′ is inside a past

loop zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : C and zk : PC are in

∆∗ for every m ≤ k ≤ n. By inductive hypothesis for every s if s <K [[z]] then

s 1 C, therefore [[z]] 1 PC.

By the following result, every countermodel for the fulfilling sequent Γ∗ ⇒ ∆∗

is a countermodel for the corresponding endsequent Γ ⇒ ∆:

Lemma 4.5.2. All the rules of G3LTcl preserve countermodels, that is, a coun-

termodel for (at least one of) the premises is also a countermodel for the con-

clusion.

Proof. Immediate for the rules for T and Y and for the rules of seriality. For the

propositional rules, by definition of validity for the propositional connectives.

For the rules for G, F, H and P, by their fixed-point interpretation.

Theorem 4.5.3. If the purely logical sequent Γ ⇒ ∆ has no standard counter-

models, then it is provable in G3LTcl.

Corollary 4.5.4. Provability of purely logical sequents in G3LTcl is closed with

respect to cut.

Proof. By soundness of the cut rule and completeness of G3LTcl.
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4.6 Termination of proof search

While applying root-first the rules of G3LTcl along a branch, there can be two

cases: (i) the proof search terminates because we find a fulfilling sequent or

every branch leads to an initial sequent or an instance of L⊥; otherwise (ii) the

proof search does not terminate and, by König’s Lemma, there is at least one

infinite branch.

However, we show how to truncate a potentially infinite proof search. By

Theorem 4.3.8, if Γ ⇒ ∆ is not provable, then the proof search leads to a reduced

fulfilling sequent. Whenever a branch leads to a sequent with a roundabout

chain, we can drop that branch and start a new one: if every branch in the

proof search for Γ ⇒ ∆ leads either to an initial sequent or to a sequent with a

roundabout chain, then Γ ⇒ ∆ is provable in G3LTcl.

Lemma 4.6.1. Consider a purely logical sequent Γ ⇒ ∆ with all the formulas

in it labelled by x. Let us suppose that the proof search for Γ ⇒ ∆ leads to a

sequent Γ′ ⇒ ∆′: if the chain y−m ≺ y−(m−1), . . . , y−1 ≺ y0 ≡ x and the chain

x ≡ y0 ≺ y1, . . . , yn−1 ≺ yn in it are not roundabout then the number of labels

has an exponential bound on the order of the length of A ≡ ∧Γx ⊃ ∨∆x, namely

m,n ≤
∑23|A|

i=1 i.

Proof. (Sketch) We recall here that the rules of G3LTcl reflect the closure algo-

rithm that from a formula A gives the set of its closure formulas and, by Corol-

lary 4.1.3, the number of subsets of closure formulas of A is at most 23|A|. Let

us consider the longest case of a non-roundabout chain y0 ≺ y1, . . . , yn−1 ≺ yn

such that for every k with 0 ≤ k ≤ n, yk labels a subset of closure formulas of

A. It contains a first subchain y0 ≺ y1, . . . , yi−2 ≺ yi−1 such that i = 23|A| and
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every subset of closure formulas of A is labelled by some yk, for 0 ≤ k ≤ i− 1.

Then we have a second subchain yi ≺ yi+1, . . . , yi+j−2 ≺ yi+j−1, such that

j = 23|A|− 1 and every subset of closure formulas of A except one is marked by

yk for i ≤ k ≤ i+j−1. Analogously, the subchain in the l+1st position contains

j = 23|A| − l labels, that mark the same subsets of closure formula marked by

the members of the chain in the lth position, except one. Summing up the num-

bers of the members of each subchain, we finally obtain that n =
∑23|A|

i=1 i. The

same argument applies to the chain y−m ≺ y−(m−1), . . . , y−1 ≺ y0, therefore

m =
∑23|A|

i=1 i.

Theorem 4.6.2. Proof search for G3LTcl terminates.

Proof. Let us suppose that the proof search for the purely logical sequent Γ ⇒ ∆

(with all its formulas labelled by x) does not terminate. Since every rule of

G3LTcl has a finite number of premises, any derivation tree is finitely branching,

so by König’s Lemma there is at least one infinite branch. Obviously it cannot

lead to an initial sequent, nor to a conclusion of L⊥, nor to a fulfilling sequent,

because otherwise it would be finite. We have to show that it contains a sequent

with a roundabout chain. Note that the endsequent contains a finite number

of formulas: the logical rules for connectives and for temporal operators can

introduce only a finite number of new formulas, and by Lemma 4.2.10 temporal

rules cannot be applied more than once with the same principal formula(s).

Furthermore, by Lemmas 4.2.6 and 4.2.7 we need not apply a seriality rule

with side label z, if z is not a label in the sequent or the antecedent already

contains an atom z ≺ z′ (resp. z′ ≺ z). Consequently, an infinite branch should

contain a sequent with an infinite ≺-chain. However, by Lemma 4.6.1 if a chain

is not roundabout, then it is finite and exponentially bounded on the order of
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the length of the formula corresponding to the endsequent Γ ⇒ ∆. Therefore,

any potentially infinite branch can be truncated as soon as a sequent is met

containing a chain z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn

with m >
∑23|∧Γx⊃∨∆x|

i=1 i or n >
∑23|∧Γx⊃∨∆x|

i=1 i.

4.7 Comparison of G3LTcl with G3LT

Lemma 4.7.1. All the rules of G3LTcl are admissible in G3LT.

Proof. The rules of seriality, L⊥, the propositional rules and the left rules for

T and Y are identical to those of G3LT. The initial sequents x : φ,Γ ⇒ ∆, x : φ

are derivable in G3LT by Theorem 2.3.5. For the other rules, the result follows

by admissibility of cut and contraction in G3LT and the following derivations.

Rule LGcl:

x : GA ⇒ x : TA

x : GA ⇒ x : TGA x : TA, x : TGA, Γ ⇒ ∆

x : TA, x : GA, Γ ⇒ ∆
Cut

x : GA, x : GA, Γ ⇒ ∆
Cut

x : GA, Γ ⇒ ∆
LCtr∗

The sequents x : GA ⇒ x : TGA and x : GA ⇒ x : TA are derivable in G3LT

(see Proposition 3.3.9).

Rule RGcl:

Γ ⇒ ∆, x : GA, x : TGA

Γ ⇒ ∆, x : GA, x : TA x : TA, x : TGA ⇒ x : GA

x : TGA, Γ ⇒ ∆, x : GA, x : GA
Cut

Γ, Γ ⇒ ∆, ∆, x : GA, x : GA, x : GA
Cut

Γ ⇒ ∆, x : GA
Ctr∗

The sequent x : TA, x : TGA ⇒ x : GA is derivable in G3LT (see Proposition

3.3.10).
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Rule LFcl:

x : FA ⇒ x : TA, x : TFA x : TFA, x : FA, Γ ⇒ ∆

x : FA, x : FA, Γ ⇒ ∆, x : TA
Cut

x : TA, x : FA, Γ ⇒ ∆

x : FA, x : FA, x : FA, Γ, Γ ⇒ ∆, ∆
Cut

x : FA, Γ ⇒ ∆
Ctr∗

The sequent x : FA ⇒ x : TA, x : TFA is obtained by the following derivation

(the repetition of the principal formulas is omitted)

y = z, z : A, y : A ⇒ z : A, x : TFA

y = z, y : A ⇒ z : A, x : TFA
EqSubst

x ≺ z, x ≺ y, y : A ⇒ z : A, x : TFA
UnSucc

x ≺ y, y : A ⇒ x : TA, x : TFA
RT

w < y, y : A ⇒ x : TA, w : FA, y : A

w < y, y : A ⇒ x : TA, w : FA
RF

v = w, v < y, y : A ⇒ x : TA, w : FA
EqSubstAt

x ≺ w, x ≺ v, v < y, y : A ⇒ x : TA, w : FA
UnSucc

x ≺ v, v < y, y : A ⇒ x : TA, x : TFA
RT

x < y, y : A ⇒ x : TA, x : TFA
Mix1

x : FA ⇒ x : TA, x : TFA
LF

Rule Mix1 is admissible in G3LT by Proposition (see Proposition 3.2.24).

Rule RFcl:

Γ ⇒ ∆, x : TA, x : TFA x : TFA ⇒ x : FA

Γ ⇒ ∆, x : FA, x : TA
Cut

x : TA ⇒ x : FA

Γ ⇒ ∆, x : FA, x : FA
Cut

Γ ⇒ ∆, x : FA
RCtr∗

The sequents x : TA ⇒ x : FA and x : TFA ⇒ x : FA are obtained by the

following derivations

x < y, x ≺ y, y : A, x : TA ⇒ x : FA, y : A

x < y, x ≺ y, y : A, x : TA ⇒ x : FA
RF

x ≺ y, y : A, x : TA ⇒ x : FA
Inc

x ≺ y, x : TA ⇒ x : FA
LT

x : TA ⇒ x : FA
R-Ser

x ≺ y, x < z, x < y, y < z, z : A, x : TFA ⇒ x : FA, z : A

x ≺ y, x < z, x < y, y < z, z : A, x : TFA ⇒ x : FA
RF

x ≺ y, x < y, y < z, z : A, x : TFA ⇒ x : FA
Trans

x ≺ y, y < z, z : A, x : TFA ⇒ x : FA
Inc

x ≺ y, y : FA, x : TFA ⇒ x : FA
LF

x ≺ y, x : TFA ⇒ x : FA
LT

x : TFA ⇒ x : FA
R-Ser
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Rule LHcl:

x : HA ⇒ x : YA

x : HA ⇒ x : YHA x : YA, x : YHA, Γ ⇒ ∆

x : YA, x : HA, Γ ⇒ ∆
Cut

x : HA, x : HA, Γ ⇒ ∆
Cut

x : HA, Γ ⇒ ∆
LCtr∗

The sequents x : HA ⇒ x : YHA and x : HA ⇒ x : YA are derivable in G3LT

(see Proposition 3.3.9).

Rule RHcl:

Γ ⇒ ∆, x : HA, x : YHA

Γ ⇒ ∆, x : HA, x : YA x : YA, x : YHA ⇒ x : HA

x : YHA, Γ ⇒ ∆, x : HA, x : HA
Cut

Γ, Γ ⇒ ∆, ∆, x : HA, x : HA, x : HA
Cut

Γ ⇒ ∆, x : HA
Ctr∗

The sequent x : YA, x : YHA ⇒ x : HA is derivable in G3LT (see Proposition

3.3.10).

Rule LPcl:

x : PA ⇒ x : YA, x : YPA x : YPA, x : PA, Γ ⇒ ∆

x : PA, x : PA, Γ ⇒ ∆, x : YA
Cut

x : YA, x : PA, Γ ⇒ ∆

x : PA, x : PA, x : PA, Γ, Γ ⇒ ∆, ∆
Cut

x : PA, Γ ⇒ ∆
Ctr∗

The sequent x : PA ⇒ x : YA, x : YPA is obtained by the following derivation

(the repetition of the principal formulas is omitted)

y = z, z ≺ x, y ≺ x, z : A ⇒ z : A, x : YPA

y = z, z ≺ x, y ≺ x, y : A ⇒ z : A, x : YPA
EqSubst

z ≺ x, y ≺ x, y : A ⇒ z : A, x : YPA
UnPred

y ≺ x, y : A ⇒ x : YA, x : YPA
RT

y < w, y : A ⇒ x : YA, w : PA, y : A

y < w, y : A ⇒ x : YA, w : PA
RF

v = w, y < v, y : A ⇒ x : YA, w : PA
EqSubstAt

y < v, w ≺ x, v ≺ x, y : A ⇒ x : YA, w : PA
UnPred

y < v, v ≺ x, y : A ⇒ x : YA, x : YPA
RY

y < x, y : A ⇒ x : YA, x : YPA
Mix2

x : PA ⇒ x : YA, x : YPA
LP

Rule Mix2 is admissible in G3LT by Proposition (see Proposition 3.2.24).
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Rule RPcl:

Γ ⇒ ∆, x : YA, x : YPA x : YPA ⇒ x : PA

Γ ⇒ ∆, x : PA, x : YA
Cut

x : YA ⇒ x : PA

Γ ⇒ ∆, x : PA, x : PA
Cut

Γ ⇒ ∆, x : PA
RCtr∗

The sequents x : YA ⇒ x : PA and x : YPA ⇒ x : PA are obtained by the

following derivations

y < x, y ≺ x, y : A, x : YA ⇒ x : PA, y : A

y < x, y ≺ x, y : A, x : YA ⇒ x : PA
RP

y ≺ x, y : A, x : YA ⇒ x : PA
Inc

y ≺ x, x : YA ⇒ x : PA
LY

x : YA ⇒ x : PA
L-Ser

z < x, z < y, y < x, y ≺ x, z : A, x : YPA ⇒ x : PA, z : A

z < x, z < y, y < x, y ≺ x, z : A, x : YPA ⇒ x : PA
RP

z < y, y < x, y ≺ x, z : A, x : YPA ⇒ x : PA
Trans

z < y, y ≺ x, z : A, x : YPA ⇒ x : PA
Inc

y ≺ x, y : PA, x : YPA ⇒ x : PA
LP

y ≺ x, x : YPA ⇒ x : PA
LY

x : YPA ⇒ x : PA
L-Ser

Rule RTcl:

x ≺ y, Γ ⇒ ∆, x : TA, y : A

y = z, x ≺ z, x ≺ y, y : A, z : A ⇒ z : A

y = z, x ≺ z, x ≺ y, y : A ⇒ z : A
EqSubst

x ≺ z, x ≺ y, y : A ⇒ z : A
UnSucc

x ≺ y, y : A ⇒ x : TA
RT

x ≺ y, x ≺ y, Γ ⇒ ∆, x : TA, x : TA
Cut

x ≺ y, Γ ⇒ ∆, x : TA
Ctr∗

Rule RYcl:

y ≺ x, Γ ⇒ ∆, x : YA, y : A

y = z, z ≺ x, y ≺ x, z : A, y : A ⇒ z : A

y = z, z ≺ x, y ≺ x, y : A ⇒ z : A
EqSubst

z ≺ x, y ≺ x, y : A ⇒ z : A
UnPred

y ≺ x, y : A ⇒ x : YA
RY

y ≺ x, y ≺ x, Γ ⇒ ∆, x : YA, x : YA
Cut

y ≺ x, Γ ⇒ ∆, x : YA
Ctr∗

Theorem 4.7.2. If Γ ⇒ ∆ is derivable in G3LTcl then it is derivable in G3LT.
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The converse does not hold: let us consider, in fact, the following proof-

search tree for the purely logical sequent x : TA, x : G(A ⊃ TA) ⇒ x : GA

corresponding to the induction principle towards the future

x : TA ⇒ x : TA

y : A, . . . ⇒ . . . y : A x ≺ y, z ≺ x, y : A, y : TA, y : G(A ⊃ TA), · · ·

.

.

.⇒ . . . , y : GA

x ≺ y, z ≺ x, y : A, y : A ⊃ TA, y : G(A ⊃ TA), . . . ⇒ . . . , y : GA
L⊃

x ≺ y, z ≺ x, x : TA, x : T(A ⊃ TA), x : TG(A ⊃ TA) ⇒ . . . , x : TGA
RTcl,LT

x : TA, x : T(A ⊃ TA), x : TG(A ⊃ TA) ⇒ x : GA, x : TGA
R-Ser,L-Ser

x : TA, x : T(A ⊃ TA), x : TG(A ⊃ TA) ⇒ x : GA
RGcl

x : TA, x : G(A ⊃ TA) ⇒ x : GA
LGcl

Clearly, x : TA, x : G(A ⊃ TA) ⇒ x : GA is not derivable in G3LTcl, since

the proof search produces an infinite derivation tree, which is incompatible with

Definition 2.3.2. However, by proceeding along the open branch containing

x ≺ y, z ≺ x, y : A, y : TA, y : G(A ⊃ TA), x : TA, x : T(A ⊃ TA), x : TG(A ⊃ TA)

⇒ x : GA, x : TGA, y : GA

we eventually find a proof (see Definition 4.3.9): the derivation tree, in fact,

cannot contain a fulfilling sequent for x : TA, x : G(A ⊃ TA) ⇒ x : GA,

since every branch either terminates in an initial sequent or leads to a sequent

in which the formula x : GA in the succedent is not witnessed, contrary to

Definition 4.3.5.

Soundness and completeness of G3LT together with Theorems 4.4.4 and

4.5.3 give the following result:

Theorem 4.7.3. The purely logical sequent Γ ⇒ ∆ is derivable in G3LT iff it

is provable in G3LTcl.
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4.8 Adding Until and Since

The calculus G3LTcl+U+S is obtained by adding to G3LTcl the initial sequents

and the rules of Table 4.2.

Initial sequents:

x : AUB, Γ ⇒ ∆, x : AUB x : ASB, Γ ⇒ ∆, x : ASB

Rules for Until:

x : TB, x : AUB, Γ ⇒ ∆ x : TA, x : T(AUB), x : AUB, Γ ⇒ ∆

x : AUB, Γ ⇒ ∆
LUcl

Γ ⇒ ∆, x : AUB, x : TB, x : TA Γ ⇒ ∆, x : AUB, x : TB, x : T(AUB)

Γ ⇒ ∆, x : AUB
RUcl

Rules for Since

x : YB, x : ASB, Γ ⇒ ∆ x : YA, x : Y(ASB), x : ASB, Γ ⇒ ∆

x : ASB, Γ ⇒ ∆
LScl

Γ ⇒ ∆, x : ASB, x : YB, x : YA Γ ⇒ ∆, x : ASB, x : YB, x : Y(ASB)

Γ ⇒ ∆, x : ASB
RScl

Table 4.2: Fixed point rules for Until and Since

As in Section 3.5, the rules for Until and Since are justified by following

recursive definitions

AUB ≡ TB∨(TA&T(AUB)) (equivalently, AUB ≡ (TB∨TA)&(TB∨T(AUB)))

ASB ≡ YB∨(YA&Y(ASB) (equivalently, ASB ≡ (YB∨YA)&(YB∨Y(ASB)))

Observe, however, that in the calculus G3LTcl there is no need of the additional

conditions x : FB and x : PB.

A straightforward adaptation of the proofs in Section 4.2 gives the following

results:

Theorem 4.8.1. All the rules of G3LTcl + U + S are height-preserving in-

vertible. The rules of substitution, left and right weakening, and left and right
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contraction are height-preserving admissible.

Lemma 4.8.2. The temporal rules permute down with respect to all the rules of

G3LTcl +U +S in the case their principal formulas are not active in the latter.

Corollary 4.8.3. On any branch of a minimal derivation in G3LTcl + U + S,

a given temporal rule need not be applied more than once on the same principal

formula(s).

Definition 4.8.4. The Definition 4.1.1 of a set of closure formulas is aug-

mented with the following inductive clauses when the until and since operators

are added:

• TA, TB and T(AUB) ∈ cl(AUB);

• YA, YB and Y(ASB) ∈ cl(ASB).

Correspondingly, the notion of saturated label in a sequent Γ ⇒ ∆ has to

be generalised to until and since formulas:

Definition 4.8.5. A label x in a sequent Γ ⇒ ∆ is saturated if it is as in

Definition 4.1.5 and the following clauses are satisfied:

• x : AUB (resp. x : ASB) in Γ implies that x : TB or both x : TA and

T(AUB) (resp. x : YB or both x : YA and x : Y(ASB)) are in Γ;

• x : AUB (resp. x : ASB) in ∆ implies that both x : TB and x : TA or

both x : TB and T(AUB) (resp. both x : YB and x : YA or both x : YB

and x : Y(ASB)) are in ∆.

The notion of ≺-saturated label is as in Definition 4.1.7.

Lemma 4.8.6. Let |A| be the number of subformulas of A. The cardinality of

cl(A) is linearly bounded by |A|, namely |cl(A)| ≤ 3 · |A|+ 1.
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Proof. By Lemma 4.1.2 and the following

10. |cl(BUC)| = |{TC,TB,T(BUC)}∪{BUC}∪cl(B)∪cl(C)| ≤ 3+1+3|B|+3|C| =

3(|B|+ |C|+ 1) + 1 = 3|BUC|+ 1;

11. |cl(BSC)| = |{YC,YB,Y(BSC)} ∪ {BSC} ∪ cl(B) ∪ cl(C)| ≤ 3 + 1 + 3|B| +

3|C| = 3(|B|+ |C|+ 1) + 1 = 3|BSC|+ 1.

Corollary 4.8.7. The number of subsets of cl(A) is at most 23|A|+1.

Definition 4.8.8. Evaluation in a model for linear discrete time logic (see De-

finition 3.3.2) is extended to until and since formulas by the following inductive

clauses:

k  AUB iff there exists k′ such that k <K k′ and k′  B

and for all k′′, if k <K k′′ and k′′ <K k′, then k′′  A;

k  ASB iff there exists k′ such that k′ <K k and k′  B

and for all k′′, if k′ <K k′′ and k′′ <K k, then k′′  A.

Note that the semantic explanations for AUB and ASB require that the

subformula B is satisfied at some point, in analogy to FB and PB respectively.

This justifies the definitions below of future and past witness for until and since

formulas:

Definition 4.8.9. Given a labelled formula z : AUB in the antecedent of a

sequent Γ ⇒ ∆, we say that a label z′ is a future witness for z : AUB if z′ : B

is in Γ and the atoms z ≺ z0, . . . , zn−1 ≺ zn ≡ z′ are in Γ for some n.
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Given a labelled formula z : ASB in the antecedent of a sequent Γ ⇒ ∆, we say

that a label z′ is a past witness for z : ASB if z′ : B is in Γ and the atoms

z′ ≺ z0, . . . , zn−1 ≺ zn ≡ z are in Γ for some n.

We modify correspondingly the notion of future and past loop:

Definition 4.8.10. A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a

sequent Γ ⇒ ∆ is a future loop if zj marks exactly the same formulas as the

label zi, for no label y the relational atom zj ≺ y is in Γ, and, for every labelled

formula zq : FB, zq : AUB in Γ (resp. zq : GB in ∆) with i ≤ q ≤ j, there

exists zk such that i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zj the

future looping label with respect to zi.

A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent Γ ⇒ ∆ is a past

loop if zi marks exactly the same formulas as the label zj, for no label y the

relational atom y ≺ zi is in Γ, and, for every labelled formula zq : PB, zq : ASB

in Γ (resp. zq : HB in ∆) with i ≤ q ≤ j, there exists some variable zk such

that i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zi the past looping label

with respect to zj.

Similarly, we modify also the notion of fulfilling sequents:

Definition 4.8.11. Let us suppose that the sequent Γ∗ ⇒ ∆∗ has been obtained

by root-first proof search from the purely logical sequent Γ ⇒ ∆ (with all its

formulas labelled by x). Then, Γ∗ ⇒ ∆∗ is a fulfilling sequent if the following

conditions are satisfied:

(i) Every label in it is ≺-saturated;

(ii) It contains a chain of relational atoms z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x,

z0 ≺ z1, . . . , zn−1 ≺ zn, such that for some −m < i ≤ 0 the subchain
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z−m ≺ z−(m−1), . . . , zi−1 ≺ zi is a past loop, and for some 0 ≤ j < n, the

subchain zj ≺ zj+1, . . . , zn−1 ≺ zn is a future loop;

(iii) Every labelled formula z : FB, z : AUB in the antecedent (resp. z : GB

in the succedent) is either witnessed by a future witness label z′, or has z

inside a future loop;

(iv) Every labelled formula z : PB, z : ASB in the antecedent (resp. z : HB

in the succedent) is either witnessed by a past witness label z′, or has z

inside a past loop.

Definition 4.8.12. A pre-proof of a purely logical sequent in G3LTcl + U + S

is a (possibly infinite) proof-search tree obtained by applying root-first the logical

and mathematical rules of the calculus, whenever possible. A pre-proof of a

purely logical sequent Γ ⇒ ∆ is a proof if no branch in it leads to a fulfilling

sequent. A sequent Γ ⇒ ∆ is provable if there exists a proof for it.

The proof of soundness of G3LTcl + U + S is given by a straightforward

adaptation of the proofs of Lemmas 4.4.1 and 4.4.2 and of Theorem 4.4.4:

Lemma 4.8.13. Let M = (K,≺K, <K,) be a model such that for some instant

s0, s0 1 A. Then for some s such that s06 Ks, there exists an instant s′ such

that s ≡ si ≺K si+1, . . . , sj−1 ≺K sj ≡ s′ (with j ≥ i + 1), s and s′ satisfy the

same subset of closure formulas of A and for every t if s6 Kt6 Ks′ and t  FB

or t  CUB, (resp. t 1 GB) there exists u such that s6 Ku6 Ks′ and u  B

(resp. u 1 B).

Proof. Analogously to the proof of Lemma 4.4.1.

Lemma 4.8.14. Let M = (K,≺K, <K,) be a model such that for some s0,

s0  A. Then for some s such that s6 Ks0, there exists an instant s′ such that
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s′ ≡ si ≺K si+1, . . . , sj−1 ≺K sj ≡ s (with j ≥ i + 1), s and s′ satisfy the same

subset of closure formulas of A and for every t if s′6 Kt6 Ks and t  PB or

t  CSB (resp. t 1 HB) there exists u such that s′6 Ku6 Ks and u  B (resp.

u 1 B).

Proof. Analogously to the proof of Lemma 4.4.2.

Theorem 4.8.15. If the purely logical sequent Γ ⇒ ∆ is provable in the calculus

G3LTcl + U + S, then it has no standard countermodels.

Proof. Analogously to the proof of Theorem 4.4.4.

The costruction of the countermodel M is obtained by defining an appropri-

ate interpretation of the fulfilling sequent into the standard frame for Priorean

linear time F = (K,≺K, <K), as in Section 4.5.

Lemma 4.8.16. M is a countermodel for Γ∗ ⇒ ∆∗.

Proof. By the proof of Lemma 4.5.1, and the following inductive clauses:

12. If B ≡ CUD and z : CUD is in Γ∗, by definition of fulfilling sequent we

have two cases: (i) there exists some future witness label z′ such that z′ : D is

in Γ∗ and the atoms z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′ are in Γ∗ for some i, j ≥ 0.

Let us consider the leftmost future witness z′: By construction and inductive

hypothesis there is some s = [[z′]] such that [[z]] <K s and s  D. Furthermore,

since z is ≺-saturated, either z : TD or both z : TC and z : T(CUD) are Γ∗,

and, if z ≺ z′′ is in Γ∗, then either z′′ : D or both z′′ : C and z′′ : CUD are

Γ∗. By repeating this argument, we have that for every label y, if the atoms

z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ y, y ≺ zi+j+1, . . . , zi+j+l−1 ≺ zi+j+l ≡ z′ are in

Γ∗ for some i, j, l ≥ 0, then y : C and y : CUD are in Γ∗. By construction
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and inductive hypothesis, for every instant s′ if [[z]] <K s′ <K s, then s′  C.

Therefore, [[z]]  CUD. (ii) the label z is inside a future loop zn ≺ zn+1,

. . . , zn+i−1 ≺ zn+i ≡ z, zn+i ≺ zn+i+1, . . . , zn+l−1 ≺ zn+l (with l ≥ i). Then

there exists z′ such that either zn ≡ z′ or zn ≺ zn+1, . . . , zn+q−1 ≺ zn+q ≡ z′

are in Γ∗ for 0 ≤ q ≤ i and the labelled formula z′ : D is in Γ∗: Let us consider

the leftmost such z′. By construction [[z′]] = sn+q, so [[z]] <K sn+l+q and, by

inductive hypothesis, sn+l+q  D. Furthermore, since z is ≺-saturated, either

z : TD or both z : TC and z : T(CUD) are Γ∗, and, if z ≺ z′′ is in Γ∗, then

either z′′ : D or both z′′ : C and z′′ : CUD are Γ∗. By repeating this argument,

we have that for every label y, if the atoms z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ y are

in Γ∗ for some i, j, l ≥ 0, then y : C and y : CUD are in Γ∗. Since zn and

zn+l mark the same formula, zn : C and zn : CUD are in Γ∗ and, from the

previous argument follows that for every i if n ≤ i < n + q, then zi : C and

zi : CUD are in Γ∗. By construction and inductive hypothesis, for every s′, if

[[z]] <K s′ <K sn+l+q, then s′  C. Therefore, [[z]]  CUD.

If B ≡ CUD and z : CUD is in ∆∗, then, since z is ≺-saturated, both z : TC

and z : TD or both z : TD and z : T(CUD) are in ∆∗. In the former case, by

point 6 of Lemma 4.5.1, there exists an instant s s.t. [[z]] ≺K s, s 1 C, s 1 D

and, by discreteness, for every s′ such that [[z]] <K s′ and s′  D, if any, s <K s′.

Therefore, [[z]] 1 CUD. In the latter case, since z is ≺-saturated, if z ≺ z′ is

in Γ∗, then both z′ : D and z′ : CUD are in ∆∗. By repeating this argument,

we have that for every label z′′, such that z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′′ are

in Γ∗ for i, j ≥ 0, both z′′ : D and z′′ : CUD are in ∆∗. Note that, if z is

the future looping label or z′′ is inside a future loop zm ≺ zm+1, . . . , zn−1 ≺ zn

(with n > m) both zk : D and zk : CUD are in ∆∗ for every m ≤ k ≤ n. By
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inductive hypothesis for every s if [[z]] <K s then s 1 D, therefore [[z]] 1 CUD.

13. If B ≡ CSD and z : CSD is in Γ∗, by definition of fulfilling sequent we

have two cases: (i) there exists some past witness label z′ such that z′ : D is

in Γ∗ and the atoms z′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for some i, j ≥ 0.

Let us consider the rightmost past witness z′: By construction and inductive

hypothesis there is some s = [[z′]] such that s <K [[z]] and s  D. Moreover, since

z is ≺-saturated, either z : YD or both z : YC and z : Y(CSD) are Γ∗, and,

if z′′ ≺ z is in Γ∗, then either z′′ : D or both z′′ : C and z′′ : CSD are Γ∗. By

repeating this argument, we have that for every y, if the relational atoms z′ ≺ zi,

. . . , zi+j−1 ≺ zi+j ≡ y, y ≺ zi+j+1, . . . , zi+j+l−1 ≺ zi+j+l ≡ z are in Γ∗ for some

i, j, l ≥ 0, then y : C and y : CSD are in Γ∗. By construction and inductive

hypothesis, for every s′ if s <K s′ <K [[z]], then s′  C. Then, [[z]]  CSD. (ii)

label z is inside a past loop z−(n+l) ≺ z−(n+l−1), . . . , z−(n+i+1) ≺ z−(n+i) ≡ z,

z−(n+1) ≺ z−(n−(i−1)), . . . , z−(n−1) ≺ z−n (with l ≥ i). There exists z′ s.t.

either z−n ≡ z′ or the atoms z′ ≡ z−(n+q) ≺ z−(n+(q−1)), . . . , z−(n+1) ≺ z−n are

in Γ∗ for 0 ≤ q ≤ i and the labelled formula z′ : D is in Γ∗: Let us consider the

rightmost such z′. By construction [[z′]] = s−(n+q), so s−(n+l+q) <K [[z]] and,

by inductive hypothesis, s−(n+l+q)  D. Furthermore, since z is ≺-saturated,

either z : YD or both z : YC and z : Y(CSD) are Γ∗, and, if z′′ ≺ z is in

Γ∗, then either z′′ : D or both z′′ : C and z′′ : CSD are Γ∗. By repeating this

argument, we have that for every label y, if y ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are

in Γ∗ for some i, j, l ≥ 0, then y : C and y : CSD are in Γ∗. Since zn and

zn+l mark the same formula, z−n : C and z−n : CSD is in Γ∗ and, from the

previous argument follows that for every i, if −(n + q) < i ≤ −n, then zi : C

and zi : CSD are in Γ∗. Therefore, by construction and inductive hypothesis,
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for every s if s−(n+l+q) <K s <K [[z]], then s  C. Therefore, [[z]]  CSD.

If B ≡ CSD and z : CSD is in ∆∗, then, since z is ≺-saturated, both z : YC

and z : YD or both z : YD and z : Y(CSD) are in ∆∗. In the former

case, by point 9 of Lemma 4.5.1, we have that, there exists an instant s s.t.

s ≺K [[z]], s 1 C, s 1 D and, by discreteness, for every s′ such that s′ <K [[z]]

and s′  D, if any, s′ <K s. Therefore, [[z]] 1 CSD. In the latter case, since

z is ≺-saturated, if z′ ≺ z is in Γ∗, then both z′ : D and z′ : CSD are in

∆∗. By repeating this argument, we have that for every label z′′, such that

z′′ ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z are in Γ∗ for i, j ≥ 0, z′′ : D and z′′ : CSD

in ∆∗. Note that, if z is the past looping label or z′′ is inside a past loop

zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : D and zk : CSD are in

∆∗ for every m ≤ k ≤ n. By inductive hypothesis for every s if [[z]] <K s then

s 1 D, therefore [[z]] 1 CUD.

Again, a straightforward adaptation of the results in Section 4.6 gives the

following results:

Lemma 4.8.17. Consider a purely logical sequent Γ ⇒ ∆ with all the formulas

in it labelled by x. Let us suppose that the proof search for Γ ⇒ ∆ leads to

a sequent Γ′ ⇒ ∆′: if the chain y−m ≺ y−(m−1), . . . , y−1 ≺ y0 ≡ x and the

chain x ≡ y0 ≺ y1, . . . , yn−1 ≺ yn in it are not roundabout then the number

of labels has a bound on the order of the length of A ≡ ∧Γx ⊃ ∨∆x, namely

m,n ≤
∑23|A|+1

i=1 i.

Theorem 4.8.18. Proof search for G3LTcl terminates.

We conclude this section with a comparison of G3LTcl + U + S with the

calculus G3LT+U + S.
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Lemma 4.8.19. The rules LUcl, RUcl, LScl and RScl are admissible in the

calculus G3LT+U + S.

Proof. The proof consists in the following derivations, together with admissibil-

ity of cut in G3LT+U + S. Notice that some repetitions are omitted and y is

chosen different from x and not in Γ,∆.

Rule LUcl:

x ≺ y, y : B, x : AUB, Γ ⇒ ∆ x ≺ y, y : A, y : AUB, x : FB, x : AUB, Γ ⇒ ∆

x ≺ y, x : AUB, x : AUB, Γ ⇒ ∆
LU

x ≺ y, x : AUB, Γ ⇒ ∆
LCtr∗

x : AUB, Γ ⇒ ∆
R-Ser

where the premises of LU are derived as follows

x ≺ y, y : B ⇒ x : TB x : TB, x : AUB, Γ ⇒ ∆

x ≺ y, y : B, x : AUB, Γ ⇒ ∆
Cut

x ≺ y, y : AUB ⇒ x : T(AUB)

x ≺ y, y : A ⇒ x : TA x : TA, x : T(AUB), x : AUB, Γ ⇒ ∆

x ≺ y, y : A, x : T(AUB), x : AUB, Γ ⇒ ∆
Cut

x ≺ y, x ≺ y, y : A, y : AUB, x : AUB, Γ ⇒ ∆
Cut

x ≺ y, y : A, y : AUB, x : AUB, Γ ⇒ ∆
LCtr∗

x ≺ y, y : A, y : AUB, x : FB, x : AUB, Γ ⇒ ∆
LWk

Notice that the sequents x ≺ y, y : B ⇒ x : TB and x ≺ y, y : A ⇒ x : TA,

and the sequent x ≺ y, y : AUB ⇒ x : T(AUB) are obtained by rules EqSubst,

UnSucc and RT.

Rule RUcl:

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : A

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : FB

Γ ⇒ ∆, x : AUB
RU

where the premises of RU are derived as follows

Γ ⇒ ∆, x : AUB, x : TB, x : TA

x ≺ y, y : B ⇒ y : B

x ≺ y, x : TB ⇒ y : B
LT

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : TA
Cut

x ≺ y, y : A ⇒ y : A

x ≺ y, x : TA ⇒ y : A
LT

x ≺ y, x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : A
Cut

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : A
LCtr∗
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Γ ⇒ ∆, x : AUB, x : TB, x : T(AUB)

x ≺ y, y : B ⇒ y : B

x ≺ y, x : TB ⇒ y : B
LT

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : T(AUB)
Cut

x ≺ y, y : AUB ⇒ y : AUB

x ≺ y, x : T(AUB) ⇒ y : AUB
LT

x ≺ y, x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB
Cut

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB
LCtr∗

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, y : AUB

y : AUB ⇒ y : FB

x < z, z : B ⇒ z : B

x < z, z : B ⇒ x : FB
RF

x < y, y < z, z : B ⇒ x : FB
T rans

x < y, y : FB ⇒ x : FB
LF

x ≺ y, y : FB ⇒ x : FB
Inc

x ≺ y, y : AUB ⇒ x : FB
Cut

x ≺ y, x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : FB
Cut

x ≺ y, Γ ⇒ ∆, x : AUB, y : B, x : FB
LCtr∗

and the sequent y : AUB ⇒ y : FB is derivable in G3LT+U +S by Proposition

3.5.7.

Rule LScl:

y ≺ x, y : B, x : ASB, Γ ⇒ ∆ y ≺ x, y : A, y : ASB, x : PB, x : ASB, Γ ⇒ ∆

y ≺ x, x : ASB, x : ASB, Γ ⇒ ∆
LS

y ≺ x, x : ASB, Γ ⇒ ∆
LCtr∗

x : ASB, Γ ⇒ ∆
L-Ser

where the premises of LS are derived as follows

y ≺ x, y : B ⇒ x : YB x : YB, x : ASB, Γ ⇒ ∆

y ≺ x, y : B, x : ASB, Γ ⇒ ∆
Cut

y ≺ x, y : ASB ⇒ x : Y(ASB)

y ≺ x, y : A ⇒ x : YA x : YA, x : Y(ASB), x : ASB, Γ ⇒ ∆

y ≺ x, y : A, x : Y(ASB), x : ASB, Γ ⇒ ∆
Cut

y ≺ x, y ≺ x, y : A, y : ASB, x : ASB, Γ ⇒ ∆
Cut

y ≺ x, y : A, y : ASB, x : ASB, Γ ⇒ ∆
LCtr∗

y ≺ x, y : A, y : ASB, x : PB, x : ASB, Γ ⇒ ∆
LWk

note that the sequents y ≺ x, y : B ⇒ x : YB and x ≺ y, y : A ⇒ x : YA,

and the sequent y ≺ x, y : ASB ⇒ x : Y(ASB) are obtained by rules EqSubst,

UnPred and RY.

Rule RScl:

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : A

y ≺ x,Γ ⇒ ∆, x : ASB, y : B, y : ASB

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, x : PB

Γ ⇒ ∆, x : ASB
RS
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where the premises of RS are derived as follows

Γ ⇒ ∆, x : ASB, x : YB, x : YA

y ≺ x, y : B ⇒ y : B

y ≺ x, x : YB ⇒ y : B
LY

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, x : YA
Cut

y ≺ x, y : A ⇒ y : A

y ≺ x, x : YA ⇒ y : A
LY

y ≺ x, y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : A
Cut

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : A
LCtr∗

Γ ⇒ ∆, x : ASB, x : YB, x : Y(ASB)

y ≺ x, y : B ⇒ y : B

y ≺ x, x : YB ⇒ y : B
LY

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, x : Y(ASB)
Cut

y ≺ x, y : ASB ⇒ y : ASB

y ≺ x, x : Y(ASB) ⇒ y : ASB
LY

y ≺ x, y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : ASB
Cut

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : ASB
LCtr∗

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : ASB

y : ASB ⇒ y : PB

z < x, z : B ⇒ z : B

z < x, z : B ⇒ x : PB
RP

z < y, y < x, z : B ⇒ x : PB
T rans

y < x, y : PB ⇒ x : PB
LP

y ≺ x, y : PB ⇒ x : PB
Inc

y ≺ x, y : ASB ⇒ x : PB
Cut

y ≺ x, y ≺ x, Γ ⇒ ∆, x : ASB, y : B, y : ASB
Cut

y ≺ x, Γ ⇒ ∆, x : ASB, y : B, x : PB
LCtr∗

and the sequent y : ASB ⇒ y : PB is derivable in G3LT+U +S by Proposition

3.5.7.

Theorem 4.8.20. If the purely logical sequent Γ ⇒ ∆ is derivable in the cal-

culus G3LTcl + U + S, then it is derivable in G3LT+U + S.

Finally, soundness and completeness of derivability in G3LT+U + S and of

provability in G3LTcl + U + S give the following result:

Theorem 4.8.21. The purely logical sequent Γ ⇒ ∆ is derivable in the calculus

G3LT+U + S iff it is provable in G3LTcl + U + S.

Remark 4.8.22. What is commonly known as propositional linear time logic

(LTL) is the future-oriented reflexive version of Priorean linear time logic: only

the future operators G, F, T, and U are considered in LTL, and G and F

have the intuitive meanings of ‘it is and will always be the case’ and ‘it is or

will be the case’, respectively. Note that the last condition corresponds to the
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substitution of the irreflexive relation < with the reflexive relation 6 in the

intended explanations in terms of the relational semantics.

Linear time logic is known to be decidable (Sistla and Clarke 1985). De-

cidability has been stated in several papers (Wolper 1985, Kesten et al. 1993,

Lichtenstein and Pnueli 2000) through 2-phase tableau systems: in such sys-

tems, after the construction of the tableau graph, a second phase is required in

order to check whether every eventuality formula has been satisfied. In Schmitt

and Goubalt-Larrecq (1997) a tableau system has been proposed, in which the

termination of the proof-search procedure can be determined locally, but the

system covers only a limited fragment of LTL. In Schwendimann (1998) a deci-

sion procedure for the whole logic has been achieved through a tableau calculus

in which the second phase is local and incorporated into the rules by annotat-

ing sets of formulas with history information. However, the system contains a

non-local closing rule, which terminates a branch whenever a loop is met: thus,

information should be kept on previous parts of a derivation in order to check

if an earlier node (prestate) is reachable from the current one.

As noticed above in Section 4.3, the definition of proofs in G3LTcl is com-

pletely local, and termination can be determined with no need of keeping infor-

mation on previous parts of derivations. Furthermore, the use of labels supplies

an immediate and simple construction of a countermodel for an unprovable se-

quent. Finally, the calculus G3LTcl and its extension (Section 4.8) contains

also past temporal operators, analogously to the LTL counterpart considered

in Lichtenstein and Pnueli (2000), but our decision procedure is given in the

stronger form of an explicit bound on proof search, although the absence of a

global condition on derivations imposes an exponential size on it.
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Conclusion and further

work

In this thesis, we applied the method of the internalisation of Kripke-style se-

mantics into the syntax of sequent calculus to the proof-theoretical analysis of

temporal logics.

The choice of the methodology was motivated both by philosophical reasons,

connected to the very birth of tense logic at the hand of Prior, and by the

consideration of its generality with respect to several temporal systems. From

the first point of view, the adopted method exploits the natural interpretation

of temporal logics into a first-order monadic logic for the accessibility relation,

and we claimed that, if the elements from the latter are considered as parts

of the syntax, relational semantics can be considered as a useful formal device

rather than a metaphysical commitment on the real nature of time.

As far as effectiveness is concerned, we showed that labelled calculi with

internalised semantics allow to deal with uniformly a wide range of temporal

logics for different flows of time: the logical rules for the temporal operators G,

F, H, and P were formulated on the base of their meaning explanations in terms
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of the intended relational semantics, and several different systems were obtained

modularly as extensions of the basic temporal calculus G3Kt by means of the

mathematical rules corresponding to the frame properties for the accessibility

relation <. As a consequence, important structural properties were proved at

once for all such systems: all the calculi enjoy height-preserving admissibility

of the substitution of labels, all the rules are height-preserving invertible, the

structural rules of weakening and contraction are height-preserving admissible,

and cut elimination is proved in a purely syntactical way.

The calculus G3Kt and its extensions enjoy the weak subformula property,

that is, every formula in a derivation is a subformula of the endsequent or a

relational atomic formula. The lack of a full subformula property is somehow

compensated by the subterm property, that states that every label in a deriva-

tion is a label in the endsequent or an eigenvariable, and thus guarantees a strict

control over the labels progressively introduced in a derivation by root-first ap-

plication of the rules.

The case of Priorean linear discrete time was considered in detail through

the analysis of two infinitary calculi. The calculus G3LT is an extension of

G3Kt with the logical rules for temporal operators T and Y for the next and

the previous moment, and with the mathematical rules for equality and for the

accessibility relations ≺ and <. In particular, an infinitary rule was required,

which defines the order relation < as the transitive closure of the immediate

successor relation ≺: if x is less than y, then y is the immediate successor of x,

or the immediate successor of the immediate successor of x, or ... and so on.

As an application of the general results, G3LT has all the remarkable structural

properties cited above: since the calculus contains mathematical rules that act
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on atomic formulas both in the left- and in the right-hand side of the sequents,

syntactic cut elimination was obtained by means of a measure of complexity for

relational atoms.

The calculus G3LT was proved sound with respect to Kripke semantics

thanks to the correspondence of the logical rules with the notion of validity

in a Kripke model, and of the mathematical rules with the properities of the

intended class of frames. Completeness followed from the fact that the Hilbert-

style system for Priorean linear time can be embedded into the calculus G3LT.

Two partial finitisations for G3LT were achieved through conservativity re-

sults. A weaker system G3LTn-s was formulated by substituting the infinitary

rule with a pair of finitary rules that permit the splitting of an interval [x, y]

with an immediate successor of x, and an immediate predecessor of y, respec-

tively. Proof-theoretical analysis allowed to identify an appropriate fragment of

G3LT for which conservativity with respect to G3LTn-s was proved: if a sequent

does not contain relational atoms and the operators G, H do not appear in its

positive part, nor F, P in its negative part, then it is derivable in G3LT if and

only if it is derivable in G3LTn-s.

Next, the system G3LTδ was obtained by replacing in the future fragment

G3LTf of G3LT the infinitary rule with a finitary one, in which the number

of the premises is bounded in a purely syntactical way, by simply counting the

occurrences of the operator T in them. We showed that the finitised rule is as

strong as the infinitary rule for the derivation of a sequent, if the latter does

not contain relational atoms and the operator G does not appear in its negative

part nor F in its positive part.

The second infinitary calculus, G3LTcl, was obtained through a different
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formulation of the rules for temporal operators, reflecting a natural closure

algorithm that exploits the fixed-point properties of G, F, H, and P. All the

rules of the system G3LTcl are finitary, however, proofs are generally constituted

by derivation trees containing (at least) an infinite branch.

Then, we stated soundness and completeness of G3LTcl with respect to an

appropriate notion of provability, defined by imposing an adequate condition

on derivation trees: a sequent is provable in G3LTcl if and only if no branch

leads to a so-called ‘fulfilling sequent’, which is the syntactical counterpart of a

countermodel for an invalid sequent. Thanks to the use of labels such condition

is completely local, and there is no need of keeping information on previous

parts of the derivation tree.

Decidability was also proved through a terminating proof-search procedure,

in the form of an exponential upper bound to the branches of derivation trees for

valid sequents, calculated on the length of the temporal formula corresponding

to the endsequent.

Finally, extensions with logical rules for the temporal operators Until and

Since were considered both for G3LT and for G3LTcl, and the main results

adapted to the calculi thus obtained.

Linear discrete time unbounded in both directions was considered in the

present work as the privileged case study because of its interest and importance

in the literature. Further temporal systems are worth being analised through

the methodology illustrated. For example, the idea that time had a first instant

is maintained for metaphysical reason by those who believe in Creationism, but

has technical application in the specification and verification of reactive systems.

160



The temporal formula describing this situation is

H⊥ ∨PH⊥

Since no instant can force falsity, the formula above means that a given instant

either has no predecessor or is preceded by an instant without any predecessor.

In a left-linear time flow, the axiom corresponds to the frame property

∃x∀y (x = y ∨ x < y)

which is not expressible through a universal axiom, and not even through a

geometric implication. However, we can denote the initial instant by a constant

0 and reformulate this frame property by means of a universal axiom and a

geometric implication:

1. ∀x∀y¬ (x = 0 & y < x)

2. ∀x (x = 0 ∨ ∃y (y = 0 & y < x))

Condition 1 states that no instant precedes the first one, whereas condition 2 is

a weak form of left seriality: every instant, except for the first one, is preceded

by at least another instant (namely, the initial one).

The corresponding mathematical rules are formulated as follows:

x = 0, y < x, Γ ⇒ ∆
Initial

x = 0,Γ ⇒ ∆ y = 0, y < x, Γ ⇒ ∆
Γ ⇒ ∆

WkL-Ser

The rule WkL-Ser has the condition that y is not in the conclusion.

The characteristic sequent ⇒ x : H⊥, x : PH⊥ is easily derivable if the rules

for the initial instant are added to G3Kt

z < x, x = 0 ⇒ z : ⊥, x : PH⊥
Initial

x = 0 ⇒ x : H⊥, x : PH⊥
RH

y = 0, w < y, y < x ⇒ x : H⊥, x : PH⊥, w : ⊥
Initial

y = 0, y < x ⇒ x : H⊥, x : PH⊥, y : H⊥
RH

y = 0, y < x ⇒ x : H⊥, x : PH⊥
RP

⇒ x : H⊥, x : PH⊥
WkL-Ser
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If linear discrete time is considered, we can modify the axioms expressing the

properties for the initial instant by replacing the order relation < with the

immediate successor relation ≺:

1′. ∀x∀y¬ (x = 0 & y ≺ x)

2′. ∀x (x = 0 ∨ ∃y (y ≺ x))

These are turned into the mathematical rules

x = 0, y ≺ x,Γ ⇒ ∆ Initial′
x = 0,Γ ⇒ ∆ y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆ WkL-Ser′

The rule WkL-Ser′ has the condition that y is not in the conclusion.

The rule WkL-Ser′ typically produces proofs by infinite descent: an interesting

question is then whether results similar to those of Chapter 4 can be proved

for linear discrete time with a first instant (temporal frames isomorphic to N)

through the calculus obtained by substituting in G3LTcl the rule for left seriality

L-Ser with the rules Initial′ and WkL-Ser′.
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Riassunto in italiano

La logica del tempo

La fecondità dell’analisi logica del tempo è testimoniata dalla lunga tradizione

filosofica che, a partire dalle riflessioni aristoteliche sui futuri contingenti (il

cosiddetto argomento della battaglia navale) e dall’Argomento vittorioso di

Diodoro Crono a sostegno del determinismo, si è poi dipanata nelle riflessioni

che su questi e altri problemi connessi alla concezione del tempo e del suo scor-

rere sono state condotte a più riprese con motivazioni e soluzioni diverse da

pensatori medievali come Pietro da Rivo, Buridano e Ockham.

È proprio dallo studio della filosofia e della logica medievale che il padre

della moderna logica temporale, Arthur N. Prior, trasse impulso e ispirazione

per lo sviluppo della nuova disciplina. Il giovane Prior, educato alla religione

protestante (metodista prima, presbiteriana in seguito), credeva che la dottrina

della prescienza divina fosse incompatibile con l’indeterminismo, ma non era

per questo disposto a rinunciare al libero arbitrio e aveva cercato nella teologia

medievale una soluzione al suo dilemma. Prior riteneva che, sebbene la scelta

tra determinismo e indeterminismo fosse in qualche modo una questione di incli-
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nazione personale, tuttavia l’analisi logica del tempo costituisse uno strumento

indispensabile per esplicitare i presupposti nascosti e le più remote conseguenze,

che i sostenitori dell’una o dell’altra posizione dovevano essere disposti ad ac-

cettare per non cadere in contraddizione.

In quei testi riscopr̀ı l’idea che il valore di verità di una proposizione come

‘Socrate è seduto’ può mutare al variare dei riferimenti di tempo. Questa po-

sizione era unanimemente (anche se implicitamente) condivisa dai pensatori

antichi e medievali, ma lo stretto legame della logica moderna con la matemati-

ca, in cui le proposizioni sono valutate in maniera atemporale, aveva prodotto in

tempi moderni l’emergere di una diversa concezione, secondo la quale una propo-

sizione è considerata incompleta ai fini della determinazione del suo valore di

verità, a meno di specificare eventuali riferimenti temporali tali da garantire che

sia inalterabilmente vera o inalterabilmente falsa.

Il lavoro di Findlay (1941) sugger̀ı, inoltre, a Prior di studiare la logica del

tempo per mezzo degli strumenti offerti dalla nascente logica modale, cosa che

puntualmente fece a partire dal libro del 1957, che non a caso reca il titolo

di Time and Modality. In analogia con la logica modale del possibile e del

necessario, Prior introdusse un operatore temporale futuro F, ‘si darà il caso

che’ e un operatore temporale passato P, ‘si è dato il caso che’, con i rispettivi

duali G e H (‘sarà sempre il caso che’ ed ‘è sempre stato il caso che’). Dal punto

di vista semantico, tali operatori vengono interpretati in opportune strutture di

tipo kripkiano, chiamate Prior Frames, in cui i mondi possibili rappresentano

gli istanti temporali e le relazioni di accessibilità sono relazioni d’ordine parziale.

La logica temporale è pertanto una logica bimodale, in cui cioè sono presenti

due sistemi di operatori modali, ciascuno dotato di una propria relazione di ac-
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cessibilità. D’altra parte, una caratteristica fondamentale della semantica tem-

porale è rappresentata dal fatto che le due relazioni non sono indipendenti, ma

sono l’una la conversa dell’altra. Tale caratteristica è espressa dall’equivalenza

x < y ≡ y > x e si traduce nella validità in tutte le strutture di Prior delle

formule p ⊃ GPp e p ⊃ HFp.

Come nel caso della logica modale, infatti, anche nella logica temporale

è possibile trovare una corrispondenza tra (molte delle) proprietà della re-

lazione d’ordine e assiomi caratteristici della logica corrispondente: ad esempio

la proprietà della transitività corrisponde alla formula FFp ⊃ Fp (o, equiva-

lentemente, PPp ⊃ Pp). Esistono tuttavia notevoli eccezioni, come nel caso

dell’ariflessività, ∀x¬ (x < x), che non può essere espressa per mezzo di una

formula temporale.

Lo studio della logica temporale ha ricevuto in tempi recenti un enorme

impulso a seguito del suo impiego in ambito informatico nella specificazione e

nella verificazione dei sistemi reattivi. Tuttavia, l’enfasi sull’aspetto applicativo

in questo contesto favorisce in genere l’analisi del solo tempo futuro, a discapito

di un approccio più completo che tenga in considerazione anche gli eventi passati.

Il crescente interesse manifestato nei confronti della logica del tempo ha fatto

s̀ı che l’analisi semantica della logica temporale sia stata approfondita sia nei

suoi fondamenti filosofici (Schindler 1970, van Benthem 1984, Goldblatt 1992)

che nelle sue potenzialità applicative (Gabbay et al. 1980, Manna and Pnueli

1981, Lichtenstein and Pnueli 2000, Huth and Ryan 2004).

Al contrario, una soddisfacente analisi sintattica della logica temporale si

segnala tuttora per la sua assenza nell’ambito della teoria della dimostrazione

e i sistemi formali che sono stati finora proposti (Nishimura 1980, Schmitt and
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Goubault-Larrecq 1997, Schwendimann 1998, Bolotov et al. 2006, per fare

qualche esempio) trattano i diversi flussi temporali separatamente e non come

estensioni modulari di un calcolo temporale di base. L’unica eccezione degna di

nota è costituita dalla display logic (Belnap 1982, Wansing 1998), la quale però

deve fare i conti con una sintassi decisamente complessa.

Per questo motivo, ho deciso di dedicare la mia tesi allo sviluppo di cal-

coli dei sequenti per la logica temporale tramite una metodologia generale che

consenta di trattare in maniera uniforme una molteplicità di sistemi per i di-

versi flussi temporali. Per amor di chiarezza, ricordo brevemente di seguito le

caratteristiche principali del calcolo dei sequenti.

Il calcolo dei sequenti è stato formulato intorno al 1930 da Gerhard Gentzen:

esso utilizza una notazione particolare, che consente di segnalare ad ogni passo

della derivazione l’insieme delle assunzioni aperte da cui dipende un certo nu-

mero di conclusioni. Un sequente è un’espressione del tipo

A1, . . . , Am ⇒ B1, . . . , Bn

il cui significato informale è identico a quello della formula

(A1 & . . .& Am) ⊃ (B1 ∨ · · · ∨Bn)

L’antecedente A1, . . . , Am e il conseguente B1, . . . , Bn del sequente (spesso ab-

breviati con le maiuscole greche Γ e ∆, rispettivamente) sono da intendersi come

multiinsiemi di formule, ovvero liste in cui conta il numero di occorrenze di una

stessa formula ma non l’ordine in cui le formule compaiono.

Il calcolo dei sequenti è costituito dalle regole logiche, che introducono le

costanti logiche nella parte sinistra e destra dei sequenti, e dalle regole strutturali

di indebolimento, contrazione e taglio, che, come il nome stesso suggerisce, non
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riguardano le costanti logiche, ma agiscono sulla struttura dei sequenti. Tra

queste regole la più importante è senza dubbio quella del taglio (Cut), per mezzo

della quale un teorema complesso viene scomposto in due lemmi più semplici

da dimostrare, che vengono poi riuniti secondo lo schema della regola stessa:

Γ ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

Si tratta di un procedimento molto comune nella pratica matematica in quanto

permette di ottenere dimostrazioni più corte e, in un certo senso, più com-

prensibili. Tuttavia tale procedura non è del tutto innocua dal punto di vista

dell’analisi della dimostrazione, in quanto introduce nella derivazione un ele-

mento in qualche modo estraneo (la formula di taglio ϕ), che non appartiene cioè

alla conclusione, e perciò non può essere pienamente controllato. Al contrario,

da un punto di vista puramente logico, è auspicabile che in una derivazione com-

paiano esclusivamente i concetti richiesti dalla sua conclusione: questa istanza

corrisponde, in termini formali, alla proprietà della sottoformula, secondo cui

ogni formula che compare nella derivazione deve essere sottoformula del sequente

conclusivo. Per questo motivo l’Hauptsatz, il (meta)teorema fondamentale del

calcolo dei sequenti, stabilisce precisamente che di tale regola si può fare a meno

e fornisce un procedimento effettivo per trasformare una derivazione che fa uso

del taglio in una derivazione che non lo contiene.

Sfortunatamente al di fuori dell’ambito della logica pura classica e intui-

zionista la formulazione di calcoli dei sequenti che soddisfino buone proprietà

strutturali (prima tra tutte l’eliminazione del taglio) si configura come un au-

spicio spesso disatteso: per molto tempo infatti è stata opinione comune che

“l’Hauptsatz fallisce nel caso di sistemi dotati di assiomi propri”4. Tuttavia
4Girard (1987), p. 125. Traduzione mia.
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Negri e von Plato (1998) e Negri (2003) hanno proposto un metodo generale

per trasformare i sistemi assiomatici, che godono di determinate proprietà, in

sistemi di regole non-logiche (o matematiche), che preservano l’Hauptsatz.

Tale metodo è stato in seguito generalizzato in Negri (2005) al fine di trattare

le logiche modali come calcoli dei sequenti indicizzati, eventualmente estesi con

regole matematiche, in cui la semantica di Kripke diviene parte del formalismo.

In base alle considerazioni precedenti, la metodologia dell’internalizzazione della

semantica relazionale nella sintassi del calcolo dei sequenti può essere applicata

all’analisi della dimostrazione nella logica temporale.

Sequenti indicizzati per la logica temporale

Il punto di partenza del mio lavoro è costituito dalla formulazione di un calcolo

dei sequenti per la logica temporale di base G3Kt a partire dal noto calcolo

G3 per la logica classica proposizionale. La sintassi del calcolo viene arricchita

da indici e relazioni: ciascuna formula in un sequente Γ ⇒ ∆ è una formula

indicizzata (labelled) x : A o una formula atomica relazionale x < y. Intuiti-

vamente, gli indici corrispondono agli istanti di tempo e gli atomi relazionali

rappresentano a livello della sintassi la relazione d’ordine tra di essi.

Le regole per i connettivi proposizionali possono agire soltanto su formule

indicizzate dalla stessa variabile e non coinvolgono gli atomi relazionali, mentre

le regole per gli operatori temporali sono giustificate sulla base della corrispon-

dente interpretazione semantica:

x  GA sse per ogni y, x < y implica y  A

x  FA sse per qualche y, x < y e y  A
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x  HA sse per ogni y, y < x implica y  A

x  PA sse per qualche y, y < x e y  A

La tabella seguente riporta le regole del calcolo G3Kt:

Sequenti iniziali e L⊥:

x : P, Γ ⇒ ∆, x : P x :⊥, Γ ⇒ ∆
L⊥

Regole proposizionali:

x : A, x : B, Γ ⇒ ∆

x : A&B, Γ ⇒ ∆
L&

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A&B
R&

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆

x : A ∨B, Γ ⇒ ∆
L∨

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆

x : A ⊃ B, Γ ⇒ ∆
L⊃

x : A, Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

Regole temporali

y : A, x : GA, x < y, Γ ⇒ ∆

x : GA, x < y, Γ ⇒ ∆
LG

x < y, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : GA
RG

x < y, y : A, Γ ⇒ ∆

x : FA, Γ ⇒ ∆
LF

x < y, Γ ⇒ ∆, x : FA, y : A

x < y, Γ ⇒ ∆, x : FA
RF

y : A, x : HA, y < x, Γ ⇒ ∆

x : HA, y < x, Γ ⇒ ∆
LH

y < x, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : HA
RH

y < x, y : A, Γ ⇒ ∆

x : PA, Γ ⇒ ∆
LP

y < x, Γ ⇒ ∆, x : PA, y : A

y < x, Γ ⇒ ∆, x : PA
RP

Le regole RG, LF, RH e LP sono soggette alla condizione che y non compaia

nella conclusione.

Quando una classe di strutture gode di proprietà della relazione d’ordine

esprimibili per mezzo di assiomi universali o di implicazioni geometriche, tali

proprietà possono essere trasformate in opportune regole di inferenza matema-

tiche secondo gli schemi introdotti in Negri e von Plato (2001) e Negri (2003).

Ad esempio il calcolo per la logica del tempo lineare senza inizio né fine si

ottiene aggiungendo al calcolo G3Kt le regole per la transitività, la linearità

verso il passato e verso il futuro e la serialità in entrambe le direzioni:
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x < z, x < y, y < z,Γ ⇒ ∆
x < y, y < z,Γ ⇒ ∆

Trans

y < z, y < x, z < x, Γ ⇒ ∆ y = z, y < x, z < x, Γ ⇒ ∆ z < y, y < x, z < x, Γ ⇒ ∆

y < x, z < x, Γ ⇒ ∆
L-Lin

y < z, x < y, x < z, Γ ⇒ ∆ y = z, x < y, x < z, Γ ⇒ ∆ z < y, x < y, x < z, Γ ⇒ ∆

x < y, x < z, Γ ⇒ ∆
R-Lin

y < x,Γ ⇒ ∆
Γ ⇒ ∆

L-Ser
x < y,Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

con la condizione per L-Ser e R-Ser che y non compaia nella conclusione.

Si noti in particolare che le prime tre regole corrispondono ad assiomi uni-

versali, mentre le ultime due ad implicazioni geometriche:

∀x∀y∀z ((x < y & y < z) ⊃ x < z)

∀x∀y∀z ((y < x & z < x) ⊃ (y < z ∨ y = z ∨ z < y))

∀x∀y∀z ((x < y & x < z) ⊃ (y < z ∨ y = z ∨ z < y))

∀x∃y (y < x)

∀x∃y (x < y)

Le regole matematiche agiscono nella parte sinistra del sequente esclusiva-

mente sulle formule atomiche di relazione, introducendo l’atomo principale e

rimuovendo quelli attivi; inoltre, gli atomi principali delle regole matematiche

(e delle regole per gli operatori temporali) sono ripetuti nelle premesse. La par-

ticolare formulazione di tali regole garantisce che i calcoli estesi per loro tramite

godano delle proprietà strutturali di ammissibilità (height-preserving admissi-

bility) delle regole di sostituzione degli indici, di indebolimento e di contrazione.

L’eliminazione sintattica della regola del taglio garantisce una forma indebolita

della proprietà della sottoformula, secondo cui ogni formula che compare nella

derivazione è sottoformula del sequente finale oppure un atomo relazionale.

Quest’ultima è in un certo senso rafforzata dalla proprietà del sottotermine,

170



che stabilisce che ogni indice che appare in una derivazione ricompare come in-

dice nella conclusione oppure è un’eigenvariable (cioè un indice che scompare in

seguito all’applicazione di una regola soggetta alla condizione sulla variabile).

Qualora si considerino proprietà che, come la linerità sinistra e destra, richie-

dono la relazione di uguaglianza, occorre aggiungere anche le regole matematiche

per la relazione di uguaglianza, corrispondenti alla riflessività e alla sostituibilità

degli identici in atomi relazionali e in quanto indici di formule:

x = x, Γ ⇒ ∆

Γ ⇒ ∆
EqRef

At(y), x = y, At(x), Γ ⇒ ∆

x = y, At(x), Γ ⇒ ∆
EqSubstAt

y : P, x = y, x : P, Γ ⇒ ∆

x = y, x : P, Γ ⇒ ∆
EqSubst

La regola EqSubst è ristretta agli atomi proposizionali per gli scopi dell’analisi

della dimostrazione, ma si dimostra facilmente che può essere generalizzata a

formule arbitrarie.

Il tempo lineare discreto

La logica del tempo lineare discreto senza inizio né fine (corrispondente al Si-

stema 7.3 di Prior 1967, p. 178) è il caso di studio privilegiato del mio lavoro.

Le proprietà della discretezza

∀x∃y (y < x & ∀z(y < z ⊃ (x = z ∨ x < z)))

∀x∃y (x < y & ∀z(z < y ⊃ (x = z ∨ z < x))

non sono tuttavia esprimibili né mediante assiomi universali né mediante impli-

cazioni geometriche e pertanto non possono essere trasformate direttamente in

regole matematiche. Introducendo l’ulteriore relazione di successore immediato

x ≺ y ho potuto trattare la logica del tempo lineare discreto con la metodologia

sopra descritta. La relazione x ≺ y rappresenta la relazione di accessibilità degli
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operatori di Scott per l’istante immediatamente successivo e immediatamente

precedente, T (tomorrow) e Y (yesterday):

x  TA sse per ogni y, x ≺ y implica y  A

x  YA sse per ogni y, y ≺ x implica y  A

È pertanto possibile formulare le regole corrispondenti giustificandole in maniera

analoga a quelle per G e H, rispettivamente:

y : A, x : TA, x ≺ y, Γ ⇒ ∆
x : TA, x ≺ y, Γ ⇒ ∆

LT
x ≺ y, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : TA
RT

y : A, x : YA, y ≺ x,Γ ⇒ ∆
x : YA, y ≺ x, Γ ⇒ ∆

LY
y ≺ x, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : YA
RY

con la condizione per RT e RY che y non compaia nella conclusione.

La relazione di successore immediato x ≺ y gode delle proprietà della seri-

alità sinistra e destra ed è funzionale in entrambe le direzioni (ogni istante ha

un unico predecessore e un unico successore):

∀x∃y (y ≺ x)

∀x∃y (x ≺ y)

∀x∀y∀z ((y ≺ x & z ≺ x) ⊃ y = z)

∀x∀y∀z ((x ≺ y & x ≺ z) ⊃ y = z)

Inoltre la relazione d’ordine “minore di” è definita come la chiusura transitiva

della relazione di predecessore immediato:

x < y ≡ ∃n ∈ N+ (x ≺n y) (∗)

dove la relazione di successore iterato x ≺n y è definita induttivamente come

segue:

x ≺1 y ≡ x ≺ y;

x ≺n+1 y ≡ ∃z (x ≺n z & z ≺ y) per n ≥ 1.
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Il verso da sinistra a destra dell’equivalenza (∗) può essere ricondotto al fatto

che x è minore del suo successore:

∀x∀y (x ≺ y ⊃ x < y)

mentre il verso opposto corrisponde alla condizione che, se x è minore di y, allora

x è predecessore di y, oppure x è predecessore del predecessore di y, oppure ...

e cos̀ı via. La proprietà della chiusura transitiva nasconde però una difficoltà

sostanziale, costituita dal fatto che il conseguente della seconda implicazione

è una disgiunzione infinita, e può essere tradotta in una regola di inferenza

matematica solo ammettendo che essa abbia un numero infinito di premesse:

{x ≺n y, x < y, Γ ⇒ ∆}n∈N+

x < y,Γ ⇒ ∆
T ω

Il calcolo G3LT si ottiene aggiungendo al calcolo di base G3Kt le regole per T e

Y, la regola infinitaria Tω, la regola della transitività per < e le regole seguenti

per la relazione ≺ e per il successore iterato:

y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x ≺ y, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

x < y, x ≺ y, Γ ⇒ ∆

x ≺ y, Γ ⇒ ∆
Inc

y = z, y ≺ x, z ≺ x, Γ ⇒ ∆

y ≺ x, z ≺ x, Γ ⇒ ∆
UnPred

y = z, x ≺ y, x ≺ z, Γ ⇒ ∆

x ≺ y, x ≺ z, Γ ⇒ ∆
UnSucc

x ≺n y, y ≺ z, Γ ⇒ ∆

x ≺n+1 z, Γ ⇒ ∆
LDef

Γ ⇒ ∆, x ≺n+1 z, x ≺n y Γ ⇒ ∆, x ≺n+1 z, y ≺ z

Γ ⇒ ∆, x ≺n+1 z
RDef

con la condizione per L-Ser, R-Ser e LDef che y non compaia in Γ,∆.

Si noti che ai fini dell’eliminazione del taglio, la presenza di regole matema-

tiche che agiscono su entrambi i lati del sequente rende necessaria una misura

di complessità delle formule atomiche definita in maniera analoga a Boretti e

Negri (2006).

Il calcolo G3LT caratterizza la classe di strutture standard per il tempo

lineare discreto, isomorfe all’insieme dei numeri interi Z, e permette di derivare
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i due principi di induzione sugli istanti futuri e passati:

TA ⊃ (G(A ⊃ TA) ⊃ GA)

YA ⊃ (H(A ⊃ YA) ⊃ HA)

La validità del calcolo segue dal fatto che le regole logiche sono state giustifi-

cate sulla base della nozione di validità in un modello relazionale, e che le regole

matematiche corrispondono alle proprietà godute dalle relazioni di accessibilità

nelle corrispettive strutture. La completezza è stata dimostrata indirettamente

dimostrando che gli assiomi del calcolo hilbertiano per il tempo lineare discreto

sono derivabili in G3LT, e le regole della generalizzazione temporale e del modus

ponens sono ammissibili.

Sebbene il calcolo G3LT goda di buone proprietà strutturali, prima tra tutte

l’eliminazione sintattica del taglio, tuttavia la presenza di una regola infinitaria

non è innocua per gli scopi dell’analisi della dimostrazione, e in particolare per

la ricerca delle dimostrazioni. La ricerca delle dimostrazioni è una procedura

cosiddetta bottom-up, mediante la quale si analizza il sequente che si desidera

dimostrare al fine di individuare l’ultima regola di inferenza applicata nella sua

derivazione; una volta rintracciata, la regola viene applicata a ritroso ricavan-

done le premesse. Ripetendo la procedura su queste ultime, si costruisce un

albero la cui radice è il sequente di partenza e i nodi sono i sequenti ricavati

di volta in volta come premesse: se tutti i rami dell’albero conducono a se-

quenti iniziali, la ricerca ha successo e il risultato, letto top-down, corrisponde

alla derivazione desiderata. Al contrario la procedura fallisce se una delle foglie

è un sequente non ulteriormente scomponibile diverso da un sequente iniziale,

oppure se la ricerca non si arresta.

Ovviamente, in un tempo finito possono essere sottoposti a questa procedura
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solo un numero finito di sequenti, e in particolare solo un numero finito di

premesse della regola della chiusura transitiva: la ricerca di una dimostrazione

che coinvolga tale regola è di conseguenza destinata a continuare all’infinito,

senza che si possa a priori distinguere il caso in cui la procedura non si arresta

perché il sequente di partenza non è derivabile, dal caso in cui la procedura non

si arresta perché semplicemente necessita di un numero infinito di passaggi. A

livello metateorico, è naturalmente possibile ricorrere al principio di induzione

per ottenere un’eventuale dimostrazione della derivabilità delle infinite premesse

di Tω, tuttavia le metaderivazioni cos̀ı introdotte non possono essere a loro

volta formalizzate nel calcolo senza dover rinunciare alle proprietà strutturali

del sistema.

Per questo motivo ho giudicato interessante individuare un frammento della

logica del tempo lineare discreto, che sia sufficientemente significativo, e in un

certo senso naturale, ma che possa essere trattato per mezzo di un calcolo fini-

tario.

La condizione che, se x è minore di y, allora y possa essere raggiunto a

partire da x iterando un numero finito di volte la relazione x ≺ y è stata

sostituita dalle due condizioni più deboli che se x è minore di y, allora x è

predecessore immediato di y oppure x è minore del predecessore immediato di

y (rispettivamente, il successore di x è minore di y)

∀x∀y (x < y ⊃ (x ≺ y ∨ ∃z (x < z & z ≺ y)))

∀x∀y (x < y ⊃ (x ≺ y ∨ ∃z (x ≺ z & z < y)))

Il sistema G3LTn-s si ottiene sostituendo in G3LT la regola infinitaria e le regole

per il successore iterato con le regole corrispondenti alle proprietà precedenti,

unite alle regole per la linearità destra e sinistra. Tale calcolo ammette strutture
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discrete non-standard costituite da molteplici copie di interi giustapposte le une

alle altre, Z⊕ · · · ⊕ Z.

Ho potuto tuttavia dimostrare un interessante risultato di conservatività

parziale, secondo il quale, se un sequente non contiene l’operatore G nella parte

positiva né F nella parte negativa e non contiene atomi relazionali, allora è deri-

vabile nel calcolo infinitario G3LT se e solo se è derivabile nel calcolo G3LTn-s.

Inoltre, ho dimostrato che nel frammento di G3LT orientato solo al futuro

(privo cioè delle regole per H, P e Y, e delle regole matematiche L-Ser e

UnPred), è possibile limitare ad un numero finito le premesse della regola della

chiusura transitiva nel caso in cui il sequente che si intende derivare non contenga

atomi relazionali e non presenti G nella parte negativa né F nella parte positiva.

Tale limite è calcolato in maniera puramente sintattica, contando semplicemente

il numero di T che compaiono nella parte negativa dei contesti delle premesse.

Una differente formulazione delle regole per gli operatori temporali mi ha

permesso inoltre di studiare il tempo lineare discreto per mezzo del calcolo

G3LTcl. Quest’ultimo riflette un naturale algoritmo di chiusura, che sfrutta le

proprietà di punto fisso degli operatori G, F, H, and P:

GA ≡ TA & TGA FA ≡ TA ∨TFA

HA ≡ YA & YHA PA ≡ YA ∨YPA

Inoltre le regole per T e Y sono giustificate sulla base del fatto che, nel caso del

tempo lineare discreto senza estremi, valgono le equivalenze seguenti:

x  TA sse per ogni y, x ≺ y implica y  A

sse esiste y, tale che x ≺ y e y  A

x  YA sse per ogni y, y ≺ x implica y  A

sse esiste y, tale che y ≺ x e y  A
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Le regole proposizionali per il calcolo G3LTcl sono le stesse che per G3Kt,

mentre le formule principali dei sequenti iniziali sono atomi proposizionali o

formule prefisse da G, F, H e P. Le regole per gli operatori temporali e per la

relazione di successore immediato sono illustrate nella tabella seguente:

Regole temporali di punto fisso:

x : TA, x : TGA, Γ ⇒ ∆

x : GA, Γ ⇒ ∆
LGcl

Γ ⇒ ∆, x : GA, x : TA Γ ⇒ ∆, x : GA, x : TGA

Γ ⇒ ∆, x : GA
RGcl

x : TA, x : FA, Γ ⇒ ∆ x : TFA, x : FA, Γ ⇒ ∆

x : FA, Γ ⇒ ∆
LFcl

Γ ⇒ ∆, x : TA, x : TFA

Γ ⇒ ∆, x : FA
RFcl

x : YA, x : YHA, Γ ⇒ ∆

x : HA, Γ ⇒ ∆
LHcl

Γ ⇒ ∆, x : HA, x : YA Γ ⇒ ∆, x : HA, x : YHA

Γ ⇒ ∆, x : HA
RHcl

x : YA, x : PA, Γ ⇒ ∆ x : YPA, x : PA, Γ ⇒ ∆

x : PA, Γ ⇒ ∆
LPcl

Γ ⇒ ∆, x : YA, x : YPA

Γ ⇒ ∆, x : PA
RPcl

Regole per T e Y:

x ≺ y, y : A, x : TA, Γ ⇒ ∆

x ≺ y, x : TA, Γ ⇒ ∆
LT

x ≺ y, Γ ⇒ ∆, x : TA, y : A

x ≺ y, Γ ⇒ ∆, x : TA
RTcl

y ≺ x, y : A, x : YA, Γ ⇒ ∆

y ≺ x, x : YA, Γ ⇒ ∆
LY

y ≺ x, Γ ⇒ ∆, x : YA, y : A

y ≺ x, Γ ⇒ ∆, x : YA
RYcl

Regole per ≺ :

y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x ≺ y, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

Con la condizione per L-Ser e R-Ser che y non sia nella conclusione.

Tutte le regole di G3LTcl sono finitarie, ma le dimostrazioni sono in genere

costituite da alberi di derivazioni che contengono (almeno) un ramo infinito.

Imponendo un’adeguata condizione di validità sugli alberi di derivazione in-

finiti, ho definito una nuova nozione di dimostrabilità all’interno del calcolo: un

sequente è dimostrabile in G3LTcl qualora nessun ramo conduca ad un partico-

lare tipo di sequente, chiamato ‘sequente realizzante’ (fulfilling sequent), che può

essere considerato la controparte sintattica di un contromodello per un sequente
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non valido. L’uso degli indici fa s̀ı che tale condizione sia squisitamente locale:

non occorre cioè tenere conto delle parti precedenti dell’albero di derivazione,

ma ad ogni passo è sufficiente prendere in considerazione solo il sequente in

esame.

Il calcolo G3LTcl è valido e completo rispetto alla suddetta condizione di

dimostrabilità, nel senso che una formula è valida rispetto alla classe di strut-

ture temporali isomorfe a Z se e solo se nessun ramo dell’albero di derivazione

per il sequente corrispondente conduce ad un sequente realizzante. Ho inoltre

dimostrato che è possibile imporre un limite superiore alla procedura di ricerca

delle dimostrazioni per i sequenti validi, calcolata sulla base della lunghezza

della formula corrispondente al sequente conclusivo (terminating proof-search

procedure). Da quest’ultima la decidibilità di G3LTcl segue come conseguenza

principale.

Infine, ho preso in considerazione anche gli operatori temporali binari Until

e Since, che, nel caso in cui la relazione < sia ariflessiva, hanno il seguente

significato intuitivo:

x  AUB sse esiste y tale che x < y e y  B,

e per ogni z, se x < z e z < y, allora z  A

x  ASB sse esiste y tale che y < x e y  B,

e per ogni z, se y < z e z < x, allora z  A

Come si può notare, le interpretazioni semantiche per U e S non sono esprimibili

per mezzo di assiomi universali o implicazioni geometriche; tuttavia le seguenti

definizioni ricorsive

AUB ≡ TB ∨ (TA & T(AUB))

ASB ≡ YB ∨ (YA & Y(ASB))
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hanno permesso di formulare opportune regole logiche da aggiungere ai cal-

coli G3LT e G3LTcl. Sfruttando l’internalizzazione della semantica relazionale,

ho facilmente adattato i risultati citati precedentemente al caso dei calcoli

G3LT+U + S e G3LTcl + U + S.

In conclusione, l’internalizzazione della semantica relazionale nel formalismo

del calcolo dei sequenti mi ha permesso di trattare in maniera uniforme una

varietà di sistemi temporali. I calcoli sono ottenuti come estensioni modulari di

un calcolo temporale di base per mezzo di regole matematiche corrispondenti

alle proprietà delle relazioni di accessibilità esprimibili sotto forma di assiomi

universali o implicazioni geometriche.

Tutti i calcoli godono di notevoli proprietà strutturali e di una forma inde-

bolita della proprietà della sottoformula, mentre la proprietà del sottotermine

garantisce un buon controllo degli indici introdotti nelle derivazioni dall’appli-

cazione a ritroso delle regole del calcolo.

L’efficacia della metodologia adottata nell’analisi della dimostrazione è stata

verificata nello studio del tempo lineare discreto. Quest’ultimo è stato analiz-

zato per mezzo due calcoli infinitari, che richiedono rispettivamente una regola

con infinite premesse e una definizione di dimostrabilità che ammette alberi di

derivazione che contengono rami infiniti.

Nel primo caso, ho ottenuto una finitizzazione parziale identificando due

diversi sistemi finitari, per ciascuno dei quali ho dimostrato un risultato di

conservatività rispetto ad un opportuno frammento del calcolo originale.

Nel secondo caso, ho dimostrato la finitizzazione del calcolo sotto forma

della terminazione della procedura di ricerca delle dimostrazioni e, quindi, di

una adeguata procedura di decisione.
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