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PLAYING WITH THE HADAMARD PRODUCT IN DECOMPOSING GINI, 
CONCENTRATION, REDISTRIBUTION AND RE-RANKING INDEXES 

 
 

ACHILLE VERNIZZI 1 
 
 

Abstract 
 
 Gini and concentration indexes are well known useful tools in analysing redistribution and re-ranking effects of 
taxes with respect to a population of income earners. 
 Aronson, Johnson and Lambert (1994), Urban and Lambert (2008) decompose Gini and re-ranking indices to 
analyse potential redistribution effects and the unfairness of a tax systems. Urban and Lambert (2008) consider 
contiguous income groups which are created by dividing the pre-tax income parade according to the same bandwidth.  
However, earners may be very often split into groups characterized by social and demographic aspects or by other 
characteristics: in these circumstances groups can easily overlap. In this paper we consider a more general situation that 
takes into account overlapping among groups; we obtain matrix compact forms for Gini and concentration indexes, and 
consequently, for redistribution and re-ranking indexes. In deriving formulae the so called matrix Hadamard product is 
extensively used. Matrix algebra allows to write indexes aligning incomes in a non decreasing order either with respect 
to post-tax income or to pre-tax incomes. Moreover, matrix compact formulae allow an original discussion for the signs 
of the within group, across group, between and transvariation components into which the Atkinson-Plotnick-Kakwany 
(Plotnick, 1981) re-ranking index can split. 
 

JEL Classification Numbers: D31, D63, H23, H24. 
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 Introduction 
 
 It is known that, dealing with a transferable phenomenon where units are classifiable into groups, 

Gini index fails to decompose additively into a between and a within component if the group ranges overlap.  

Following Bahattacharya and Mahalanobis (1967), a number of Gini decompositions was proposed ( Rao 

(1969), Pyatt (1976), ), Mookherjee and Shorrocks (1982), Silber (1989), Yitzhaki and Lernan (1991), 

Lambert and Aronson (1993), Ytzhaki (1994), Dagum (1997)) and after Lambert and Aronson (1993), the 

third component of the conventional Gini index decomposition is denoted by overlapping term.  

Monti (2007) shows that the conventional and the Dagum (1997) decomposition are identical, so that 

an alternative way to calculate the overlapping term can be derived from the decomposition suggested by this 

author.  

 Aronson, Johnson and Lambert (1994), Urban and Lambert (2008), use Gini and 

concentration index decomposition to identify and evaluate potential distributive effects and 

unfairness in a tax system.  These authors consider contiguous income groups created by dividing 

                                                 
1 This paper is part of a research project joint with Maria Giovanna Monti (Università degli Studi di Milano and Università degli 
Studi di Milano-Bicocca) and Mauro Mussini (Università degli Studi di Milano-Bicocca). The author thanks his research fellows for 
general discussions, observations and revisions. Moreover the author expresses special gratitude to Mario Faliva, for having 
encouraged the matrix approach adopted in the present paper and for all his precious suggestions, and to Giorgio Pederzoli for his 
precise and helpful comments. Remaining deficiencies and mistakes are exclusively due to author’s responsibility.  
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the pre-tax income parade according to an identical bandwidth, so that the pre-tax income parade 

excludes overlapping by construction. 

 In the present paper we consider incomes gathered into groups characterized by social, 

demographic or income sources characteristics, so that overlapping among groups need not to be 

excluded. Our results are obtained using the Gini index decomposition derived from Dagum decomposition 

(Monti and Santoro 2007, Monti 2008). 

 Making use of the Hadamard product, in the first section we present Gini and concentration 

indexes in compact matrix forms.   In the second section we introduce groups, present Gini and 

concentration indexes and show how within groups, across, between groups and transvariation 

components can be written in matrix compact forms. Links from matrix compact forms and scalar 

forms are reported: some scalar expressions are well known in literature, while others appears as  

modifications of already well known forms.  

 Section 3 presents matrix forms for redistribution and re-ranking indexes, together with their 

within, across, between groups and transvariation components.  

 In the fourth section we show how the signs of Atkinson-Plotnick-Kakwani (Plotnick 1981) 

re-ranking index components can be analysed, thanks to the algebraic tools presented in the paper.  

 
  
1 Matrix forms for concentration and Gini indexes 
 
 Let be X and Y two real non negative statistical variables that describe a transferable 

phenomenon for a population of K units, K ∈N . In this paper we suppose that X represents income 

before taxation and Y after-tax income; not infrequently the pair ( ix , yi) has associated a weight pi 

(i=1,……,K), 
1

K
ii

p N
=

=∑ . Furthermore in measuring concentration we generally need to rank 

either ix  or yi in a non-decreasing order: when the X elements are ranked in a non-decreasing order, 

the sequence of ( ), ,i i ix y p  triplets will be indicated as ( ){ }, ,i i i X
x y p ; analogously ( ){ }, ,i i i Y

x y p  

will denote the sequence of ( ), ,i i ix y p , when the Y elements are ranked in a non-decreasing order. 

 The concentration index 2 for Y, in the ordering ( ){ }, ,i i i X
x y p , is defined as  3  

                                                 
2 The author is in debt with Maria Monti for the suggestion to express the concentration index by differences between incomes: this 
suggestion is at the basis of this paper. In the appendix, §A1, it is shown that in expressions (1) the first formula is equal to the 
second one.  
In the right hand side of (1), the first component calculates the normalized concentration. In the case where the y’s are in a non 

decreasing order, the second one is the normalized mean absolute difference, that is ( )2

1 1
1 2 2

K K

Y Y i j i j Y
i j

G N y y p pµ µ
= =

= − = ∆∑∑ . 

3 The indicator function i jI −  is a particular case of generalized functions considered in Faliva (2000): this article can be consulted 

for i jI −  properties. 
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= =
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= − + = − =  

 

= −
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= − =
− − <

∑ ∑ ∑ ∑∑

∑∑   (1) 

where µY  is the weighed mean of the observations on Y. Obviously in the ordering ( ){ }, ,i i i Y
x y p , 

the concentration index CY|Y coincides with the Gini index GY and, analogously in the ordering 

( ){ }, ,i i i X
x y p , |X X XC G≡  4. Generally, when tax effects are analyzed, one considers the Gini index 

for the pre-tax distribution XG , the Gini index for the post-tax distribution GY, and the 

concentration index for the post tax distributions, |Y XC , with incomes ranked according to the 

( ){ }, ,i i i X
x y p  ordering. 

In order to pass to a matrix representation, we stack the K observations on X, Y and the 

weights P into K×1 vectors: when referring to the ordering ( ){ }, ,i i i X
x y p , the vectors will be 

indicated as x, yX and pX, while, referring to the ordering ( ){ }, ,i i i Y
x y p , the vectors will be labelled 

as xY, y and pY, that is, when elements in a vector are ranked in a non-decreasing order no label will 

be added, conversely, when they are ordered according to a non-decreasing order for another 

variable, this variable will be explicitly indicated. 

We also introduce the following definitions: 

 ,i js =  S  will denote a K×K emi-symmetric matrix with diagonal elements equal to zero, 

super-diagonal elements equal to 1 and sub-diagonal elements equal to ─1;   

 j for a K×1 vector that has entries equal to 1; 

 XD  and YD  will denote the K×K matrices ( )X = −D jx' xj' , ( )Y = −D jy' yj' .  

Then, by making use of the Hadamard product , we can express the indexes YG  and XG  as 

follows 5:  

 ( )2

1
2Y Y Y Y

Y

G
Nµ

= p ' S D p    ( )2

1
2X X X X

X

G
Nµ

= p ' S D p   (2) 

                                                 
4 For definitions concerning concentration indexes and their relations with Gini indexes, see e.g. Kakwani (1980), in particular Ch. 5 
and 8. 
5 The Hadamard product for two matrices A and B is defined if both of them have the same number of rows and the same number of 
columns: , , , ,i j i j i j i ja b a b     = ⋅      . For the definition and properties of the Hadamard product  see, e.g., Faliva (1983, Appendix) 

and (1987, Ch. 3), Schott (2005, Ch. 5).  
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where Yµ  and Xµ  are the weighed mean of the observations on Y and on  X, respectively. 

In addition, by introducing the K×K matrix ( )|Y X X X= −D jy ' y j' , we can write the concentration 

index in compact form as  

    ( )| |2

1
2Y X X Y X X

Y

C
Nµ

= p ' S D p      (3) 

The transformation from vectors y and pY to vectors yX and pX  can be performed by a proper K×K 

permutation matrix E . The reverse transformation from yX and pX  to y and pY  can be obtained 

through the matrix 1−E  which is equal to E' . Formally 

  

,
,
,

X X

Y Y

Y XX Y


 =
 =

y = Ey y = E'y
x Ex x = E'x

p = E'pp Ep
     (4) 

 We shall show that, with some suitable algebraic permutations of the elements of S, it is 

possible to reformulate both the matrices D and the vectors p in (2) and (3) according either to the 

( ){ }, ,i i i X
x y p  or to the ( ){ }, ,i i i Y

x y p  ordering, maintaining both Gini and concentration indexes 

unchanged. This leads to rewrite the expressions of formula (2) as  

 ( )|2

1
2Y X Y X X

Y

G
Nµ

= p ' ESE' D p  and ( )2

1
2X X X X

X

G
Nµ

= p ' S D p   (5) 

or as 

 ( )2

1
2Y Y Y Y

Y

G
Nµ

= p ' S D p   and ( )|2

1
2X Y X Y Y

X

G
Nµ

= p ' E'SE D p   (6) 

where ( )|Y X X X= −D jy ' y j'  and ( )|X Y Y Y= −D jx ' x j' , respectively. 

Moreover, |Y XC  can be given in the following alternative form: 

    ( )| 2

1
2Y X Y Y Y

Y

C
Nµ

= p ' E'SE D p      (7) 

Proof 

 Consider XG  as specified in (2) and (6). As = =EE' E'E I , the following holds: 

( ) ( ) ( )X X X X X X Y X Y= = −p ' S D p p 'EE' S D EE'p p ' E'SE E'D E p  

by keeping in mind the noteworthy property of the Hadamard product, 

( ) ( ) ( )X X=E' S D E E'SE E'D E  (Faliva 1996, property vii, page. 157).  

Noticing that 

( ) ( )X = − = − =E'D E E' jx' xj' E jx'E E'xj' ( ) |Y Y X Y− =jx ' x j' D ,   as  =E'j j  and =j'E j' ,  
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the equivalence of expression (2) and expression (6) for GX is proved.  

 The equivalence of expressions (2) and (5) for GY can be likewise proved.  

Indeed the following holds: 

( ) ( ) ( )|Y Y Y Y Y Y X Y X X= = −p ' S D p p 'E'E S D E'Ep p ' ESE' D p   

upon noticing that  |Y X X Y X= − = − =ED E' jy'E' Eyj' jy ' y j' D .   

 As far as |Y XC  is concerned, expression (3) turns out to be equivalent to expression (7), upon 

noticing that 

|Y X X X Y= − = − =E'D E jy 'E E'y j' jy' yj' D . 

□ 

 

 

2 Introducing groups  
 

 A population of income earners can be partitioned into H groups, H ∈N , which can be 

characterized by income sources or by social and demographic aspects: typical group 

characterizations are family composition, dependent/not-dependent worker, men/women, 

geographic area and so on.  

 Dagum (1997) decomposes the Gini coefficient into within groups (henceforth W) and an 

across groups (henceforth AG) component. Dagum calls this latter component gross between).  

Hence W AG
Y Y YG G G= + . In addition Dagum splits the AG component into a between and a 

transvariation component: AG B T
Y Y YG G G= + . The between component B

YG  is the Gini (weighed) 

index which results when all values within a same group are replaced by their (weighed) average; 

the transvariation component T
YG  measures the overlapping among groups: it is zero when no 

overlapping exists and it is equal to AG
YG  when all group averages are equal 6. Extending Dagum’s 

decompositions to concentration indexes, we can split |Y XC  into the two components W and AG, 

and write | | |
W AG

Y X Y X Y XC C C= + , accordingly with 

   ( )| ,2
1 1

1
2

K K
W
Y X i j i j i j h i j

i jY

C y y p p I I
Nµ ∈ −

= =

= − ⋅ ⋅∑∑     (8) 

   ( ) ( )| ,2
1 1

1 1
2

K K
AG

Y X i j i j i j h i j
i jY

C y y p p I I
Nµ ∈ −

= =

= − ⋅ − ⋅∑∑    (9) 

                                                 
6 For more details on the expression of the Gini components in the Dagum decomposition, see e.g. Monti (2008). 
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In (8) and (9) i jI −  is as defined in (1) above, and ,i j hI ∈  is an indicator function: , 1i j hI ∈ =  if both 

andi jy y  belong to a same group h (h=1,2,...,H), , 0i j hI ∈ =  if andi jy y  do not. 

Similar expressions hold for |
W W
Y Y YC G= , |

AG AG
Y Y YC G=  and |

W W
X X XC G= , |

AG AG
X X XC G= . In particular, 

for what concerns WG  and AGG , the product ( )i j i jy y I −− ⋅  can be replaced by the absolute 

difference i jy y− . 

In order to formalize compact matrix forms for |
W
Y XC  and |

AG
Y XC , it is worth to introduce a proper 

notation. More precisely, J will denote a K K×  matrix with all elements equal to one, 

, ,
1

H

X X h X h
h=

= ∑W w w '   a K K× matrix in the ( ){ }, ,i i i X
x y p  ordering, where ,X hw  stands for a K×1 

vector with the i-th entry equal to one if the income in the i-th position belongs to group h 
(h=1,2,..,H), whereas it is zero otherwise. The matrix XW , when applied to |Y XS D  in expression 

(3) allows to detect the 2

1

H

h
h

K
=
∑  differences belonging to the same group from the whole K2  

( ),i j i js y y ⋅ −   income differences.  Conversely the matrix ( )X−J W , when applied to |Y XS D , 

allows to detect the 2 2

1

H

h
h

K K
=

 − 
 

∑  differences between incomes belonging to different groups. 

 Consider now the following expressions for the W and AG components of |Y XC : 

    ( )| |2

1
2

W
Y X X X Y X X

Y

C
Nµ

= p ' W S D p      (10) 

    ( )| |2

1
2

AG
Y X X X Y X X

Y

C
Nµ

 = − p ' J W S D p    (11) 

It is immediate to verify that | | |
W AG

Y X Y X Y XC C C= + . Similar expressions for |
W W
Y Y YG C=  and for 

|
AG AG

Y Y YG C=  can be obtained by substituting Xp  with Yp , XW  with YW  and |Y XD  with YD . 

Likewise, the corresponding expressions for |
W W
X X XG C=  and |

AG AG
X X XG C=  are obtained by replacing 

Yµ  with Xµ , and XD  with |Y XD . Observe also  7 that Y X=W E'W E  and X Y=W EW E' . 

 Moreover, Dagum (1997) splits AG
YG  into the components B

YG  and T
YG , bringing subdivision 

to the fore. Let’s now label each subject triplet of observations on X, Y and P by a pair of indexes 

(h,i), instead of one as before: h refers to the group (h=1,2,….,H), whereas i (i=1,2,….,Kh) refers to 

                                                 
7 , ,X h Y h=w Ew  and , ,Y h X h=w E'w . 
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the position that the subject occupies within the h-th group; note that ,
1

hK

h i h
i

p N
=

=∑  and 

,
1 1 1

hKH H

h i h
h i h

p N N
= = =

= =∑∑ ∑ .   

 Dagum’s representations are:  

    , , , ,2
1 1 1 1

1
2

gh
KKH H

Y h i g j h i g j
h g i jY

G y y p p
Nµ = = = =

 
= −  

 
∑∑ ∑∑    (12) 

    , , , ,2
1 1 1

1
2

h hK KH
W
Y h i h j h i h j

h i j
G y y p p

Nµ = = =

= −∑∑∑     (13) 

    , , , ,2
1 1 1 1

1
2

gh
KKH H

AG
Y h i g j h i g jg hh g i jY

G y y p p
Nµ ≠= = = =

 
= −  

 
∑ ∑ ∑∑   (14) 

          , ,2 2
1 1 1 1 1 1

1 1
2 2

gh
KKH H H H

B
Y Yh Yg h i g j Yh Yg h g

h g i j h gY Y
G p p p p

N N
µ µ µ µ

µ µ= = = = = =

 
= − = −  

 
∑∑ ∑∑ ∑∑            (15a) 

where Yhµ  represents the income average of the h-th group (h=1, 2, ....,H).  

      ( )
1

, , , ,2
2 1 1 1

1 gh
KKH h

B
Y h i g j h i g j

h g i jY
G y y p p

Nµ

−

= = = =

 
= −  

 
∑∑ ∑∑              (15b) 

{ }, ,

1

, , , ,2
2 1

2 g h

h i g j

K KH h
T
Y h i g j h i g j

h g i j y yY

G y y p p
Nµ

−

= = <

 
=  − 

 
 

∑∑ ∑∑   (16) 

where ,
1

hK

h h i
i

p p
=

= ∑  and ,
1

gK

g g j
j

p p
=

= ∑ .  

We refer to Monti and Santoro (2007), formula (6) in particular, for the derivation of expression 

(15b). Expressions (12) (13), (14) and the first term on the right hand side in (15a) do not need 

ranking Y values; whereas (15b) and (16) need groups to be ranked according to their averages.   

Let’s now order the Y values (and the related P and, possibly, X values) so that  

(i) within each group they are ranked in a non-decreasing order; 

(ii) groups are aligned in a non-decreasing order with respect to the their averages. 

Then the Y values parade becomes  

  ( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 ,, ,... ,..., , ,... ,..., , ,...

h HA K h h h K H H H Ky y y y y y y y y =  y '   (17) 

, , 1h i h iy y +≤  (i=1,2,…,Kh)  and 1Yh Yhµ µ +≤  (h=1,2,….H) 8. 

                                                 
8 It is not excluded that , , ,h i g jy y g h> > . 
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We shall denote the ordering given by (17) as the ( ){ }, ,i i i AY
x y p  ordering. 

 The ( ){ }, ,i i i AX
x y p  ordering can be introduced likewise: according to this ordering the X 

values, together with the related Y and P values, are distributed into the H groups such that  

(i) within each group the x’s are ranked in a non-decreasing order;  

(ii) groups are in a non-decreasing order with respect to their X averages.  

Thus, for what concerns the X values, the ( ){ }, ,i i i AX
x y p  ordering will appear as 

( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 ,, ,... ,..., , ,... ,..., , ,...

h HA K h h h K H H H Kx x x x x x x x x =  x '    (18) 

, , 1h i h ix x +≤  (i=1,2,…,Kh)  and 1Xh Xhµ µ +≤  (h=1,2,….H) 9. 

The vectors  Ay  in (17) and Ax  in (18) can be expressed as functions of y and x respectively, by 

introducing proper K×K permutation matrices YA  and XA , such that A Y=y A y  and A X=x A x .  

Since YA  and XA  are permutation matrices, the following holds: 1
Y Y
− =A A '  and 1

X X
− =A A ' .   

The Y vector corresponding to the ( ){ }, ,i i i AX
x y p  ordering can be obtained as AX X X=y A y , and 

likewise AX X X=p A p . 

Also AY Y X=x A x  and AY Y X=p A p  contain the Y and the P elements, respectively, aligned 

according to the ( ){ }, ,i i i AY
x y p  ordering.  

 If  we work out  (3), (10) and (11), by making use of the property X X =A 'A I , we get  

   ( )| |2

1
2Y X AX X X Y AX AX

Y

C
Nµ

= p ' A SA ' D p       (19) 

 ( ) ( )| | |2 2

1 1
2 2

W
Y X AX AX X X Y AX AX AX AX Y AX AX

Y Y

C
N Nµ µ

= =p ' W A SA ' D p p ' W S D p  (20) 

   ( )| |2

1
2

AG
Y X AX AX X X Y AX AX

Y

C
Nµ

 = − p ' J W A SA ' D p    (21) 

where AX X X X=W A W A '  and ( ) ( )|Y AX X X X X AX AX= − = −D jy 'A ' A y j' jy ' y j' .  

 For what concerns |
W
Y XC  in (21), it is shown in Appendix A2 that 

AX X X AX=W A SA ' W S . 

 

 Focusing on |
AG

Y XC  decomposition, notice that:  

                                                 
9 Here also it is not excluded that , , ,h i g jx x g h> > . 
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   ( )| |2

1
2

B
Y X AX AX Y AX AX

Y

C
Nµ

 = − p ' J W S D p     (22) 

   ( ) ( )| |2

1
2

T
Y X AX AX X X Y AX AX

Y

C
Nµ

 = − − p ' J W A SA ' S D p   (23) 

Summing (22) and (23) yields (21). 

Should |Y Y YC G≡ , |
W W
Y Y YC G≡ , |

AG AG
Y Y YC G≡ , |

B B
Y Y YC G≡  and |

T T
Y Y YC G≡ , then (19), (20), (21), (22) and 

(23) would take the following forms: 

   ( )2

1
2Y AY Y Y AY AY

Y

G
Nµ

= p ' A SA ' D p       (24) 

 ( ) ( )2 2

1 1
2 2

W
Y AY AY Y Y AY AY AY AY AY AY

Y Y

G
N Nµ µ

= =p ' W A SA ' D p p ' W S D p  (25) 

   ( )2

1
2

AG
Y AY AY Y Y AY AY

Y

G
Nµ

= −  p ' J W A SA ' D p    (26) 

   ( )2

1
2

B
Y AY AY AY AY

Y

G
Nµ

= −  p ' J W S D p     (27) 

   ( ) ( )2

1
2

T
Y AY AY Y Y AY AY

Y

G
Nµ

= − −  p ' J W A SA ' S D p    (28) 

where  ( ) ( )AY Y Y A A= − = −D jy'A ' A yj' jy ' y j'  and AY Y Y Y=W A W A ' . 

The matrix compact forms (24), (25), (26) (27) and (28) correspond to the scalar expressions (19), 

(20), (21), (22) and (23), respectively. 

We conclude this section by providing closed-form expressions for |
B
Y XC  and |

T
Y XC , by 

bearing in mind |
AG

Y XC , as specified in (11), under the ( ){ }, ,i i i X
x y p  ordering:  

   ( )| |2

1
2

B
Y X X X X X Y X X

Y

C
Nµ

 = − p ' J W A 'SA D p    (29) 

 

   ( ) ( )| |2

1
2

T
Y X X X X X Y X X

Y

C
Nµ

 = − − p ' J W S A 'SA D p    (30) 
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3 Redistribution and  re-ranking indexes  
 
 The redistributive effect of a tax system can be measured by the difference between the Gini 

index for the pre-tax income distribution X and the Gini index for the post- tax income distribution 

Y 10: following e.g. Urban and Lambert (2008), we shall denote difference by the acronym RE.   

 The Atkinson-Plotnick-Kakwani index is generally applied to measure the re-ranking effect 

generated by a tax system; it is defined as the difference between the Gini index for the post-tax 

income distribution and the concentration index for net incomes Y in the ( ){ }, ,i i i X
x y p  ordering 11. 

The Atkinson, Plotnick; Kakwani index is usually denoted by the acronym R. 

 In considering the effects of a tax, it may be interesting to evaluate how RE and R act within 

and across groups and, eventually, also how they modify both group average positions and group 

intersections. This can be attained by splitting either RE or R into the within groups, across groups, 

between groups and transvariation components, introduced in the previous section. 

 One of the advantages of the compact expressions introduced in the previous sections is that 

all indexes can be calculated either aligning incomes according to the pre-tax or according to the 

post-tax ranking. 

 
 
3.1  The RE index 

 
From the definition of RE we can write 

( ) ( ) ( ) ( )W AG W AG W B T W B T
X Y X X Y Y X X X Y Y YRE G G G G G G G G G G G G= − = + − + = + + − + +  

Rearranging terms we get  

  ( ) ( )W W AG AG W AG
X Y X YRE G G G G RE RE= − + − = +      (32) 

Here, in what concerns AGRE , bearing in mind that AG B TG G G= + , we get 

  ( ) ( )AG B B T T B T
X Y X YRE G G G G RE RE= − + − = +      (32’) 

We will present the RE index and its decompositions by writing D matrices and p vectors either 

according to the ( ){ }, ,i i i X
x y p  or the ( ){ }, ,i i i Y

x y p  orderings, when individual income units are 

considered as well, either according to the ( ){ }, ,i i i AX
x y p  or the ( ){ }, ,i i i AY

x y p  orderings, when 

group subdivision is made explicit.  

 

 

                                                 
10 See e.g. Lambert (2001, Ch. 2, Section 2.5). 
11 Plotnick (1981), Lambert (2001, Ch. 2, Section 2.5). 
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Representing RE by individual units 

From (5) ad (6) it follows that 

 X YRE G G= − =  

  ( ) ( )|2
1

2 X Y X X Y X X
X Y N

µ µ
µ µ

 = − p ' S D ESE' D p              (33a) 

  ( ) ( )|2

1
2 Y Y X Y X Y Y

X Y N
µ µ

µ µ
 = − p ' E'SE D S D p              (33b) 

The REW components can be written, according to (32) and bearing in mind (10) as 

 W W W
X YRE G G= − =  

  ( ) ( ){ }|2
1

2 X X Y X X Y X X
X Y N

µ µ
µ µ

 = − p ' W S D ESE' D p             (34a) 

  ( ) ( ){ }|2
1

2 Y Y Y X Y X Y Y
X Y N

µ µ
µ µ

 = − p ' W E'SE D S D p             (34b) 

Likewise the  REAG components can be written as 

 AG AG AG
X YRE G G= − =  

  ( ) ( ) ( ){ }|2
1

2 X X Y X X Y X X
X Y N

µ µ
µ µ

 = − − p ' J W S D ESE' D p            (35a) 

  ( ) ( ) ( ){ }|2
1

2 Y Y Y X Y X Y Y
X Y N

µ µ
µ µ

 = − − p ' J W E'SE D S D p            (35b) 

Resorting to  (29) and (30), BRE and TRE  can be rewritten as 

 B B B
X YRE G G= − =

 ( ) ( )2 2

1 1
2 2X X X X X X Y Y Y Y Y Y

X YN Nµ µ
= − − −      p ' J W A 'SA D p p ' J W A 'SA D p  

( ) ( ) ( ){ }|2

1
2 X X Y X X X X Y Y Y X X

X Y N
µ µ

µ µ
 = − − p ' J W A 'SA D EA 'SA E' D p        (36a) 

( ) ( ) ( ){ }|2

1
2 Y Y Y X X X Y X Y Y Y Y

X Y N
µ µ

µ µ
 = − − p ' J W E'A 'SA E D A 'SA D p          (36b) 

 

 T T T
X YRE G G= − =

( ) ( ) ( ) ( )2 2

1 1
2 2X X X X X X Y Y Y Y Y Y

X YN Nµ µ
= − − − − −      p ' J W S A 'SA D p p ' J W S A 'SA D p

     ( ) ( ) ( ){ }|2

1
2 X X Y X X X X Y Y Y X X

X Y N
µ µ

µ µ
 = − − − − p ' J W S A 'SA D E S A 'SA E' D p       (37a) 
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    ( ) ( ) ( ){ }|2

1
2 Y Y Y X X X Y X Y Y Y Y

X Y N
µ µ

µ µ
 = − − − − p ' J W E' S A 'SA E D S A 'SA D p         (37b) 

 

Representing RE by units gathered into groups 

If we wish to explicit group subdivision, we can work out (33a) and (33b). By making use of 

the equalities X X =A 'A I and Y Y =A 'A I , simple computations yield 

 B B B
X YRE G G= − =  

          ( ) ( )|2
1

2 AX Y X X AX X X X Y AX AX
X Y N

µ µ
µ µ

 = − p ' A SA ' D A ESE'A ' D p            (38a) 

          ( ) ( )|2

1
2 AY Y Y Y X AY X Y Y AY AY

X Y N
µ µ

µ µ
 = − p ' A E'SEA ' D A SA ' D p            (38b) 

 

From (34a) and (34b) one gets 

( )W W W
X YRE G G= − =  

 ( ) ( ){ }|2
1

2 AX AX Y X X AX X X X Y AX AX
X Y N

µ µ
µ µ

 = − p ' W A SA ' D A ESE'A ' D p         (39a) 

 ( ) ( ){ }|2
1

2 AY AY Y Y Y X YA X Y Y AY AY
X Y N

µ µ
µ µ

 = − p ' W A E'SEA ' D A SA ' D p            (39b) 

 

Likewise,  from (35a) and (35b), the AG component can be worked out as follows 

 AG AG AG
X YRE G G= − =  

     ( ) ( ) ( ){ }|2
1

2 AX AX Y X X AX X X X Y AX AX
X Y N

µ µ
µ µ

 = − − p ' J W A SA ' D A ESE'A ' D p       (40a) 

      ( ) ( ) ( ){ }|2
1

2 AY AY Y Y Y X YA X Y Y AY AY
X Y N

µ µ
µ µ

 = − − p ' J W A E'SEA ' D A SA ' D p         (40b) 

 

 For what concerns the between groups component, from (36a) and (36b), we obtain 

 B B B
X YRE G G= − =  

      ( ) ( ) ( ){ }|2

1
2 AX AX Y AX X X Y Y X Y AX AX

X Y N
µ µ

µ µ
 = − − p ' J W S D A EA 'SA E'A ' D p        (41a) 

( ) ( ) ( ){ }|2

1
2 AY AY Y Y X X Y X AY X AY AY

X Y N
µ µ

µ µ
 = − − p ' J W A E'A 'SA EA ' D S D p        (41b) 
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Finally, for what concerns the transvariation component, from (37a) and (37b) it follows that 

 T T T
X YRE G G= − =  

( ) ( ) ( ){ }|2

1
2 AX AX Y X X AX X X Y Y X Y AX AX

X Y N
µ µ

µ µ
 = − − − − p ' J W A SA ' S D A E S A 'SA E'A ' D p  

(42a) 

( ) ( ) ( ){ }|2
1

2 AY AY Y Y X X Y X AY X Y Y AY AY
X Y N

µ µ
µ µ

 = − − − − p ' J W A E' S A 'SA EA ' D A SA ' S D p  

(42b) 

 

 

3.2  The R (Atkinson-Plotnick-Kakwani) index 

 
From the definition of R  we can write 

 ( ) ( ) ( ) ( )| | | | | |
W AG W AG W B T W B T

Y Y X Y Y Y X Y X Y Y Y Y X Y X Y XR G C G G C C G G G C C C= − = + − + = + + − + +   

Rearranging the terms we get 

    ( ) ( )| |
W W AG AG W AG
Y Y X Y Y XR G C G C R R= − + − = +      (43) 

and in particular, for what concerns AGR , we have 

   ( ) ( )| |
AG B B T T B T

Y Y X Y Y XR G C G C R R= − + − = +                (43’) 

 

Representing R by individual units 

When considering income units individually, from (2), (3), (5) and (7) the index R, and its 

components, can be written as follows  

( ) ( )| |2 2

1 1
2 2Y Y X Y Y Y X Y X X

Y Y

R G C
N Nµ µ

= − = −p ' S D p p ' S D p     

 ( )2

1
2 Y Y Y

Y Nµ
= −  p ' S E'SE D p                (44a) 

 ( ) |2

1
2 X Y X X

Y Nµ
 = − p ' ESE' S D p               (44b) 

 

From (10) and (44) it follows that 
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 |
W W W

Y Y XR G C= − ( ) ( )|2 2

1 1
2 2Y Y Y Y X X Y X X

Y YN Nµ µ
= −p ' W S D p p ' W S D p  

      ( )2

1
2 Y Y Y Y

Y Nµ
= −  p ' W S E'SE D p               (45a) 

      ( ) |2

1
2 X X Y X X

Y Nµ
 = − p ' W ESE' S D p              (45b) 

 

From (11) and (44) it follows that  

|
AG AG AG

Y Y XR G C= − ( ) ( ) |2 2

1 1
2 2Y Y Y Y X X Y X X

Y YN Nµ µ
 = − − −    p ' J W S D p p ' J W S D p  

           ( ) ( )2

1
2 Y Y Y Y

Y Nµ
= − −  p ' J W S E'SE D p              (46a) 

           ( ) ( ) |2

1
2 X X Y X X

Y Nµ
 = − − p ' J W ESE' S D p              (46b) 

 

From (29) the component BR  of R  can be expressed as 

 |
B B B

Y Y XR G C= − =

 ( ) ( ) |2 2

1 1
2 2Y Y Y Y Y Y X X X X Y X X

Y YN Nµ µ
 = − − −    p ' J W A 'SA D p p ' J W A 'SA D p  

  ( ) ( )2

1
2 Y Y Y Y X X Y Y

Y Nµ
= − −  p ' J W A 'SA E'A 'SA E D p          (47a) 

  ( ) ( ) |2

1
2 X X Y Y X X Y X X

Y Nµ
 = − − p ' J W EA 'SA E' A 'SA D p         (47b) 

 

From  (30) the component TR  can be expressed as 

 |
T T T

Y Y XR G C= − =

( ) ( ) ( ) ( ) |2 2

1 1
2 2Y Y Y Y Y X X X X X Y X X

Y YN Nµ µ
 = − − − − −    p ' J W S A 'SA D p p ' J W S A 'SA D p

           ( ) ( ) ( ){ }2

1
2 Y Y Y Y X X Y Y

Y Nµ
= − − − −  p ' J W S A 'SA E' S A 'SA E D p            (48a) 

           ( ) ( ) ( ){ }|2

1
2 X X Y Y X X Y X X

Y Nµ
= − − − −  p ' J W E S A 'SA E' S A 'SA D p          (48b) 

Either from the definitions of AGR and BR or by rearranging the terms in (48a) and (48b), TR  can be 

given the following representations: 
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 ( )T AG BR R R= − =  

         ( ) ( ) ( ){ }2

1
2 Y Y Y Y X X Y Y

Y Nµ
= − − − −  p ' J W S E'SE A 'SA E'A 'SA E D p            (48c) 

         ( ) ( ) ( ){ }|2

1
2 X X Y Y X X Y X X

Y Nµ
= − − − −  p ' J W ESE' S EA 'SA E' A 'SA D p       (48d) 

 

Representing R by units gathered into groups 

Bearing in mind (19) and  (44), the representation by groups for R  is given by 

( ) ( )| |2 2

1 1
2 2Y Y X AY Y Y AY AY AX X X Y AX AX

Y Y

R G C
N Nµ µ

= − = −p ' A SA ' D p p ' A SA ' D p  

     ( )2

1
2 AY Y Y AY AY

Y Nµ
= −  p ' A S E'SE A ' D p              (49a) 

     ( ) |2

1
2 AX X Y Y AX AX

Y Nµ
 = − p ' A ESE' S A ' D p              (49b) 

 

From (20), (25), (45) and (49) it follows that 

 |
W W W

Y Y XR G C= −

 
( ) ( )

( ) ( )

|2 2

|2 2

1 1
2 2

1 1
2 2

AY AY AY AY AX AX Y AX AX
Y Y

AY AY Y Y AY AY AX AX X X Y AX AX
Y Y

N N

N N

µ µ

µ µ

= −

= −

p ' W S D p p ' W S D p

p ' W A SA ' D p p ' W A SA ' D p
 

  ( )2

1
2 AY AY Y Y AY AY

Y Nµ
= −  p ' W S A E'SEA ' D p             (50a) 

  ( ) |2

1
2 AX AX X X Y AX AX

Y Nµ
 = − p ' W A ESE'A ' S D p             (50b) 

 

Likewise from (21), (26), (46) and (49) it follows that 

( )|
AG AG AG

Y Y XR G C= − =

( ) ( ) |2 2

1 1
2 2AY AY Y Y AY AY AX AX X X Y AX AX

Y YN Nµ µ
 = − − −    p ' J W A SA ' D p p ' J W A SA ' D p

  ( ) ( )2

1
2 AY AX Y Y Y Y AY AY

Y Nµ
= − −  p ' J W A SA ' A E'SEA ' D p             (51a) 

  ( ) ( ) |2

1
2 AX AX X X Y Y Y AX AX

Y Nµ
 = − − p ' J W A ESE'A ' A SA ' D p            (51b) 
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The quantity AGR  can then be split into BR  and TR . By resorting to (22), (27), (47) and (51) we 

obtain 

 |
B B B

Y Y XR G C= − =

 ( ) ( ) |2 2

1 1
2 2AY AY AY AY AX AX Y AX AX

Y YN Nµ µ
 = − − −    p ' J W S D p p ' J W S D p  

    ( ) ( )2

1
2 AY AY Y X X Y AY AY

Y Nµ
= − −  p ' J W S A E'A 'SA EA ' D p            (52a) 

    ( ) ( ) |2

1
2 AX AX X Y Y X Y AX AX

Y Nµ
 = − − p ' J W A EA 'SA E'A ' S D p            (52b) 

 

Besides, by keeping in mind (23), (28), (48), and (51), we get 

 |
T T T

Y Y XR G C= − = ( ) ( )2

1
2 AY AY Y Y AY AY

Y Nµ
= − − +  p ' J W A SA ' S D p  

     ( ) ( ) |2

1
2 AX AX X X Y AX AX

Y Nµ
 − − − p ' J W A SA ' S D p  

 ( ) ( ) ( ){ }2

1
2 AY AY Y Y Y X X Y Y AY

Y Nµ
= − − − −  p ' J W A SA ' S A E' S A 'SA EA ' D p              (53a) 

 ( ) ( ) ( ){ }|2

1
2 AX AX X Y Y X X X Y AX AX

Y Nµ
= − − − −  p ' J W A E S A 'SA E'A ' A SA ' S D p    (53b) 

 

 

 

4 The issue of the signs of R and its components  
 

 We will now analyse the signs of R and of its decompositions, by making use of the matrix 

tools introduced in the previous sections. Although most of the results presented in this section are 

available in the specialized literature 12, we think that our reappraisal of the issue through a tailor-

made matrix toolkit provides some additional insights on the matter. Demonstrations will be carried 

out by inspecting the quadratic form which the R index and its decompositions are proportional to. 

 

 

 
                                                 
12  Mussini (2008, Ch. 6, § 6.1, page 92) discusses the signs of R and its components RW, RB and RT. The author observes also that RT  
can be positive, null or negative in the framework of non contiguous pre-tax income groups: the proofs reported here complete the 
author’s statements, especially in what concerns RT. See also Vernizzi (2007) for considerations on G and C components especially 
for pre-tax non overlapping groups. 
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R 

 It is well known that for the concentration C index the property ─G≤C≤+G holds 13, from 

which it follows that | 0Y Y XR G C= − ≥ . This result will be proved considering expression (44a). 

 

Statement 1 

 The quadratic form ( )Y Y−  p ' S E'SE D p  is non-negative definite. 

Proof 

Recall that (i) matrix ,i js =  S  has all super-diagonal elements equal to +1 and sub-

diagonal ones equal to ─1; (ii) the elements of ,
e
i js =  E'SE  may not necessarily respect the same 

repartition as in S , due to permutations performed by E . So, for all entries of S  and E'SE  which 

present the same values, , , 0e
i j i js s− = , otherwise for i<j we would have , , 2e

i j i js s− =  and, for i>j, 

, , 2e
i j i js s− = − . Bearing in mind that for i<j, the matrix ,

Y
Y i jd =  D  has super-diagonal elements 

non-negative and sub-diagonal ones non-positive, the product ( ), , ,
e Y

i j i j i js s d− ⋅  will in any case result 

to be non-negative, which proves the Statement. 

□ 

 

 

RW and  RAG 

We will prove that | 0W W W
Y Y XR G C= − ≥  and | 0AG AG AG

Y Y XR G C= − ≥ , by considering expressions 

(45a) and (46a) respectively. 

 

Statement 2 

The quadratic forms 

( )Y Y Y Y−  p ' W S E'SE D p  and ( ) ( )Y Y Y Y− −  p ' J W S E'SE D p   are non-negative 

definite. 

Proof  

Statement 2 is a corollary of Statement 1. Bearing in mind the considerations reported to 

prove Statement 1, the entries that are in the super-diagonal part of ( )Y −  W S E'SE  and 

( ) ( )Y− −  J W S E'SE  are either 0 or 2, while in the sub-diagonal part of both matrices they are 

                                                 
13 Kakwani (1980, Corollary 8.7, page 175).  
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either 0 or -2; since in ( )Y Y−  W S E'SE D  and in ( ) ( )Y Y− −  J W S E'SE D , super-

diagonal elements of ,
Y

Y i jd =  D , which are non-negative, are multiplied either by 0 or by 2, while 

sub-diagonal elements of ,
Y

Y i jd =  D , which are non-positive, are multiplied either by 0 or by 2− , 

the Statement is shown to hold true. 

□ 

 

GT 

 In the present context T
YG  is not a re-ranking index: however, TR  coincides with T

YG  in the 

particular framework considered by Aronson, Johnson and Lambert and Urban  14, because pre-tax 

groups do not overlap by construction and, consequently,  0T
XG =  and | 0T

Y XC = .  

That 0T
YG ≥  will be shown by inspection of expression (30). 

 

Statement 3 

The quadratic form 

( ) ( )Y Y Y Y Y Y− −  p ' J W S A 'SA D p   is  non-negative definite. 

Proof  

From expression (30) ( ) ( )T
Y Y Y Y Y Y YG ∝ − −  p ' J W S A 'SA D p , which is quite 

analogous to AGR   expression, except for the term Y YA 'SA , where YA  substitutes E . When 

applied to S, the effect of YA  is quite analogous to the effect created by E  even if it involves 

elements which belong to different groups. When permutations are applied, they still consist in 

permuting sub-diagonal entries  (that are ─1) with their symmetric super-diagonal ones (that are 

+1), so that ,
a

Y Y i js =  A 'SA  may present some super-diagonal elements equal to ─1 and some sub-

diagonal entries equal to +1: so when permutations are applied the ( ) , ,
a

Y Y i j i js s − = − S A 'SA  

matrix presents , , 2a
i j i js s− =  if i<j, and , , 2a

i j i js s− = −  if i>j.  As elements ,
a
i js  that do not permute 

from lower diagonal entries to upper ones and vive-versa cancel out the corresponding ,i js  in S , it 

follows that the non-zero entries of matrix ( )Y Y−S A 'SA   can be but +2, if super-diagonal, ─2 if 

sub-diagonal. 

                                                 
14 Aronson and Lambert (1993, 1994), Aronson, Johnson, and Lambert (1994), Urban and Lambert (2008); Urban and Lambert 

define T T
YG R=  as  AJLR . 
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Bearing in mind the considerations put forward for previous statements, as super-diagonal 

( ), , 2a
i j i js s− =  multiplies super-diagonal entries of ,

Y
Y i jd =  D  which are non-negative, and sub-

diagonal ( ), , 2a
i j i js s− = −  multiplies sub-diagonal entries of ,

Y
Y i jd =  D  which are non-positive,  

the Statement is proved.  

□ 

 

RB 

We now prove that  | 0B B B
Y Y XR G C= − ≥ . In order to carry out the proof as for the previous 

Statements, it is convenient to consider a matrix compact form that corresponds in a straightforward 

manner to the second term in the right hand side of (15a). Let’s define the H×1 vector 

[ ]1 2, ,... 'Y Y Y YHµ µ µ=µ  of group averages, 1Yh Yhµ µ +≤  (h=1,2,….H), the H×1 vector 

[ ]1 2, ,... 'Y Hp p p=p  of group weights ,
1

hK

h h i
i

p p
=

= ∑  and the H×H  matrix ( )Y Y Y= −D 1µ ' µ 1'  of group 

average differences. Then  

  . .2 2
1 1

1 1
2 2

H H
B
Y Y h Y g h g Y Y Y

h gY Y
G p p

N N
µ µ

µ µ= =

= − =   ∑∑ p ' S D p    (54) 

where  S is now an H×H  matrix. 

After having defined |Y Xµ  and Xp , respectively, as the H×1 vector of Yhµ  and the H×1 vector of 

hp , aligned according to the ( ){ }, ,i i i AX
x y p  order, and the H×H  matrix ( )| | |Y X Y X Y X= −D 1µ ' µ 1' , 

(22) can be rewritten in this way: 

    |2
1

2
B
Y X Y X X

Y
C

Nµ
 =  p ' S D p      (55) 

Finally, by denoting by E  the H×H  full rank permutation matrix such that 

| |,Y X Y Y Y X=µ = Eµ µ E'µ , X Yp = Ep  and Y Xp = E'p , (52) can be rewritten as 

   ( )2
1

2
B B B

Y Y Y Y Y
Y

R G C
Nµ

 = − = − p ' S E'SE D p     (56) 

 

Statement 4 

The quadratic form 

( )Y Y Y − p ' S E'SE D p    is  n. n. definite. 
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Proof  

Considerations analogous to those reported above hold for ( ) Y−S E'SE D . In YD  the super-

diagonal entries are non-negative, the sub-diagonal entries are non-positive: while the former are 

multiplied either by 0 or by +2 entries which are in the super-diagonal part of ( )−S E'SE , the latter 

by 0 or by ─2 entries which are in the are sub-diagonal part of ( )−S E'SE , and hence it is proved 

that  RB≥0.  

□ 

 

RT 

 Differently from R, RW, GT and RB, that are all non negative, RT can be either positive or 

negative, and, obviously, equal to zero.  

 

Statement 5 

 In expression (48a) the quadratic form 

( ) ( ) ( ){ }Y Y Y Y X X Y Y− − − −  p ' J W S A 'SA E' S A 'SA E D p  can be zero, positive or negative. 

 

Proof  

Both in matrix ( ) ,Y Y Y i jω − =  S A 'SA  and in matrix ( ) ,X X X i jω − =  S A 'SA  non zero super-

diagonal entries are +2, non zero sub-diagonal are ─2.  Due to permutation performed by E'  and 

E ,  ( ) ,
e

X X X i jω − =  E' S A 'SA E  can present some  ─2 as super-diagonal entries and, 

symmetrically, some +2 as sub-diagonal entries: hence, not considering the cases when both ,Y i jω  

and ,
e

X i jω  are zero, the super-diagonal differences in 

( ) ( ) { }, ,
e

Y Y X X Y i j X i jω ω  − − − = −      S A 'SA E' S A 'SA E  may assume values [ ] [ ]2 2 0− = , 

[ ] [ ]2 0 2− = , [ ] [ ]2 2 4− − = , [ ] [ ]0 2 2− − = , [ ] [ ]0 2 2− = − . It follows that non-negative super-

diagonal entries of YD  can be multiplied by a negative value. Symmetrically, sub-diagonal entries 

of ( ) ( )Y Y X X− − −  S A 'SA E' S A 'SA E  can now be equal non only to [ ] [ ]2 0 2− − = − , 

[ ] [ ]2 2 4− − = − , and to [ ] [ ]0 2 2− = − , but also to [ ] [ ]0 2 2− − = , so that non-positive sub-diagonal 

entries of YD  can be multiplied by a positive value, which proves the Statement.  

□ 
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Conclusions 

 

 By use of the Hadamard product, an elegant compact representation in matrix notation has 

been obtained not only for Gini, concentration indexes and for their decompositions, but for 

redistribution and re-ranking indexes and their decompositions as well. The matrix toolkit 

introduced in this paper paves the way to obtain informative expressions for both the said indexes 

and their components, with incomes aligned either according to the pre-tax non-decreasing order or 

to the post-tax non-decreasing order.  

 Moreover, the compact representation introduced in this paper leads to establish in a 

straightforward manner the signs of the Atkinson-Plotnick-Kakwani index and of its components. 

We prove that R, RW, RAG and RB are non-negative quantities, both when pre-tax income groups do 

overlap and when do not. In the latter case RT≡ GT  (RT≡ RAJL, following Urban and Lambert, 2008, 

notation) is non negative, whereas in the former case we show RT can be either positive or negative. 

Even if it is well known that R  and GT≡ RAJL are non-negative, the proofs presented in this paper 

are new. 
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APPENDIX 

 

 In his Appendix we will establish two results that proved useful in Section  1 and in Section 

2, respectively. 

 

A1  The concentration index by differences 

 

 In formula (1) we expressed the concentration index both as the normalized concentration 

area and as differences between incomes: we shall now proof that the latter approach leads to the 

same result as the former.  

Given the sequence of incomes X associated to weights P 

  ( ) ( ) ( )1 1 2 2, , , ,....., ,K Kx p x p x p   ,      
1

K
ii

p N
=

=∑ , 
1

K
i ii

x p Nµ
=

=∑             (A1) 

with the ( )1,2,...,ix i K=  not necessarily in a non decreasing order, for the concentration index C 

the following relation holds: 

 ( )
1

2
1 1 1 1 1

11
K i i K i

j j j j i
i j i j

i j j i j

x p x p pC x x p p
N N N Nµ µ µ

−

= = = = =

 
= − + = −  

 
∑ ∑ ∑ ∑∑              (A2) 

The former term in the right hand side of expression (A1) is the normalized concentration area 

which is delimited by the equidistribution line and the concentration line, the latter having 

coordinates 

( )
1 1

1 1; 1,2,...,
i i

j j j
j j

p x p i K
N Nµ= =

 
= 

 
∑ ∑  

 
while the latter would be the average absolute normalized differences, in the case the sequence (A1) 

presented the ix ’s in a non decreasing order. 

 
Proof 

The proof follows the demonstration that Landenna (1994, Ch. 4, § 4.4.), gives for the Gini 

index, namely 

1 1 1

1 1 1 1 1 1 1 1
1 1

K i i K i i i i
j j j j j j j j j ji

i j j i j j j j

x p x p x p x p p ppC
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2 1 1
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K i i
j j j j i

i j j

x p x px p p p
N N N N Nµ µ µ

−

= = =

  
= − ⋅ + + =      
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( ) ( )

( )
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Observe now that 
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After having erased the 1 outside the parenthesis with the −1 generated inside after division by 
2N µ ,  by multiplying by −1 and then reordering what remains, C can be written as 

2 2
1 1 1 1 1 1 1

1 1K i K i K i i

i i j i j j i i j j j
i j i j i j j

C x p p p x p p x p x p
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Observing that  

( )2 2
1 1 1 1 1

1 1K i K i i

i j i j i i j j j
i j i j j

C x x p p p x p x p
N Nµ µ= = = = =

 
= − = −  
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it can be easily seen that expression (A1) and (A2) coincide.  

□ 
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A2  On simplifying CW 

 
We will prove the simplification used in formula (20), that is  
 
    AX X X AX=W A SA ' W S                 (A3) 
Proof 

The elements ,i jw  of matrix XW  and the elements ,
a
l m l X mw = 'a W a  of matrix AXW  are equal 

to 1 if the associated pair of incomes, ix  and jx , belong to a same group, they are zero otherwise. 
As all super-diagonal elements in matrix S  are plus 1 and sub-diagonal elements are ─1, we have to 
prove that all super-diagonal elements of matrix X XA SA ' , that are selected by AXW , are 1, and all 
sub-diagonal elements of X XA SA '  selected by AXW  are ─1. 
Observe that incomes belonging to a same group remain ranked in a non decreasing order within 
each group, also according to the ( ){ }, ,i i i AX

x y p  ordering: thetrfore 

(i) if in the ( ){ }, ,i i i X
x y p  ordering ix  occupies the i-th  position and jx  the j-th one, with 

i<j, in the ( ){ }, ,i i i AX
x y p  ordering, ix  will occupy the l-th  position and jx  the m-th one 

with l<m; 
(ii) symmetrically, in the ( ){ }, ,i i i X

x y p  ordering, all pairs of incomes i jx x> , belonging to a 

same group, will respectively be in positions i and j, i>j , and in the ( ){ }, ,i i i AX
x y p  

ordering, in positions l and m, l>m, respectively. 
This implies that the entry ,i js   of S  will be shifted to the entry ,

a
l ms  of X XA SA ' , with l<m if i<j, 

and l>m if i>j, so that in the super-diagonal part of AX X XW A SA '  all elements will be equal to 1, 
and in the sub-diagonal part, all elements will be equal to ─1, which proves (A3). 

□ 


