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Lecture |

* 1) Empirical information on the dynamical
shell model

» 2) Green functions, Mass operator, Dyson
and Nambu-Gor’kov (superfluid nuclei)
equations, Bell and Squires proof.



OUR KEY EQUATION

* We introduce the Mass Operator,
* Non local in space and TIME!!
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The dependence of # upon f—¢' can be transformed into a frequency dependence. Let us indeed
consider a stationary state with a well-defined frequency:

Y(r, 1)=g.(r)e ™. (2.0.2)

Equation (0.1) then becomes

hZ
hw gu(r) = - v V2 p.(r)+ J dr' M(r, r'; 0) e.(r') (2.0.3)

where M(r, r'; ) is the Fourier transform of #M(r, r'; ¢~ ') over ¢ —t'. The nonlocality in time of the
mean field therefore amounts to a frequency dependence.
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Fig, 2.1, Taken from ref. 11, Th dots show te dependenceupon inidnt energy ofthe neuron ttlaos eton o (Fom botom Lo top)
carbon, aluminium, copper, cadmum, lead and uranium. The old and broken lines are caloulated rom the optical model As discussed in ecton
24, the broken fne are obtained when the depth of the real partof the potenia s not llowed to depend upon energy, while the sl curves
correspond to the energy dependence shown In i, 29,
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Fig. 29, Taken from ref. [11). Dependence upon incident neutron energy of the depth of the real part and of the imaginary part of the optical-model
potential used to generate the solid lines in fig. 2.1. Each empirical point is labelled by the data which led to its determination, i.c. (from left to right)
the location of the second maximum of the total cross section in Pb, the location of the first minimum of the total cross section in Cu, etc. The real
part and the imaginary parts have been assumed to have the same Woods-Saxon radial shape. The fits below 50 MeV are improved if one allows the
shape of the imaginary part to change from a Woods-Saxon to a surface peaked function as the energy decreases,



Energy Dependence

* For positive energy, the depth of the
empirical (WS type) average potential
depends upon the energy according to the
law:

« V,(E)=V0+0.3 E



iW(r)=4iWD§£-iWyf(x), o

with rg=1.295 fm, a =0.59 fm,

WD=4.28+0.4E-1V—/-;—212.8McV

=0 E <15 MeV

Wp=14.0-0.39E —10.4-!-\(-;—g MeV

Wy==4340.38E E515 MeV,




W and LDA

Very often W is obtained from NM
calculations, via LDA.

The agreement between the empirical
optical potential and the theory based
on infinite NM should not be taken too
seriously, because there is no justification

for treating the surface as low-density
NM.

Valerie, may you tell us the true!



Now Bound States

* No more Woods-Saxon empirical s.p.
potential

« HF with effective forces, like Skyrme,
Gogny....
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The phonon coupling has
been known for many years
(@) ©) to be important for the
understanding of s.p. states
around the 2°8Pb core.
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E. Litvinova and P. Ring

» Covariant theory of particle-vibration
coupling and its effect on the single-
particle spectrum

. PRC C73, 044328 (2006)
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EFFECTIVE MASS

« m*(E)/m = 1-dV,(E)/dE



16 C. Mahaux et al., Dynamics of the shell model

The origin of the expression “effective mass”™ will be explained in sections 2.6.3 and 2.8. When the
energy dependence of the potential depth is linear, the effective mass is constant. In general, however,
m* is a function of the energy E.

2.6.2. Empirical energy dependence of the effective mass

The empirical data surveyed in sections 2.3-2.5 indicate that the effective mass depends upon the
single-particle energy. Indeed, they yield m */m = 0.65 for either positive energies or for large negative
energies and m*/m =1 for small negative energies.

Let us be somewhat more quantitative. We define the Fermi energy ¢y as the average between the
energy ¢ of the last occupied orbit and the energy «r of the first unoccupied orbit

r=(eF + €F)/2. (2.6.2)

In the case of neutrons in **Pb for example, one has ¢ = —5.6 MeV (see fig. 2.6). With this definition
we can summarize as follows the empirical evidence:

m*/m =07  for |E— gg| >20MeV (2.6.3)
m*/m =1 for |E — e¢| <10 MeV . (2.6.4)

The property that the effective mass presents a narrow enhancement near the Fermi energy was first
IR N I S SE P I .3, A A el d 1) Y37h Al ducmdm cacceml  ntt it e o %2 albimmcna 1



m*(r; E)m = 1- aV(r; E)JGE.

Let ug assume a linear energy dependence for the potential depth, i.e.

Vo4 (1-mbim)E
FFExp=RVa}

where the index on m indicates the efiective mass for r= (0. One has then

Vir, E)=

m*(r)= 1= mgo/m
m  L+expl(r-R)a,}




Note that the effective mass m* does not depend on E because of the linear energy dependence which
has been assumed for the potential. The single-particle equation

2m ldr r

W d? l(l + 1)] ‘I’,,,(r)+ [8,.1 _ V(f; 8:;1)] ,1,”‘(’,) =) (2720)

then has exactly the same bound and scattering eigenstates as the equation

B [ I+ 1) _ )
iy L 7 | Y0} Lo = VO] ¥alr) =0 121
with the energy-independent potential

-~ mV°m*(r)
V()= 1+exp{(r— R.)/a,}”

(2.7.22)



On Self-Energy, Effective Masses, Level Density
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We obtain also the quasi-particle strength (spectroscopic factor)

Z, = (M,/m)™"

In the Fermi gas model, the level density reads
p(A, E*) x exp(2VaE*)

being
ax Afep ocm”



Green,Wick,Dyson,Lehmann

1)Green’s function:

Ly(z,8) = f(z,1)
LGz -zt —t) =6(xz - z')o(t - t')

2)Propagator (or Green's funct. again), retarded t, > #;
iGY (ko k1, ta — t1) =

=probability amplitude that if at time #; a particle in ¢, (¥) is added to the interacting
system in its ground state, then at time f5 the system will be in its ground state with an
added particle in ¢y, (7).

3) For a free particle
v
 2m Ot

and 1) and 2) give the same result
G = G§ (k,t —t') = —iexp[—iex(t — t')]

The Fourier transform is "

Ga'(k,w) = €x + 10

Then, the (general) conclusion:
The poles of the Fourier transform of the s.p. propagator occur at values w equal to

the energies of the excited states of the interacting (N+1)-particle system minus the g.s.
energy of the interacting N-particle system.

Interacting system?

+00
Gt(k,t—t) =G (k,t-¢)+ / dt"GF (K, t — ")V (K)GT(k,t" — 1)

— 00



Note that if H = I:IO L V, then

1 1 A i}
= — A[w_HO] g
w—H w — Hy w—H
i
= —[1+V <
W — 0[ w——H]
= 1 1,\ % 1’\.
w—Hy w—Hy w—-—H



4)Other definition:

Glka, k1, t2 — t1) = —i < Yol|T{cx, (t2)cl. (1) |0 >
where 1) is the exact w.f. of the g.s. of the interacting system and
ck, (t) = exp [+iHt1]ck, exp [—iHt]
T is the Wick time-ordering operator. For the free particle, we obtain (again!)
G (k,t) = —i0(c—e, 0, exp [—iet]
For a boson (phonon), we write

Do(k,w) = —1[f; exp[—iwgt] + 6_; exp[+iwqt]]

5) Wick’s theorem:
< 0|T{ABC...XYZ}|0 >=

=sum over all possible fully ”contracted products”, |0 > being the Fermi vacuum, and a
"contracted product”
A"B =< 0|T{AB}|0 >

The contraction of the ¢ operators above is just ¢ x the unperturbed propagator.



Lehmann Representation

v s Sha Spa
Gaa_zh:w-—wh-—i(s-*-;w—wp%-i&

being

Sha = | < YA |anlyi® > |2
and

. A

Spa = | < 'll’(() )[aal'ﬁ,(,AH) > |2

that is the spectroscopic factors, that is the residues Z, above!!



146 A GUIDE TO FEYNMAN DIAGRAMS [0.7

Table 9.1 Diagram dictionary for interacting many-fermion system with
no external potential (Feynman method)

- Diagram element Factor
Kk, w /H\ er kw H’ iG(k, )
; g i Skoky = +8
ng(k.(U) = w-—ek-H'S,‘, Sk.:k, = —3
with:
i d
k,w } or Ko * ‘Z%:UGOO‘-O))]“ _ob_*
= —1, k< ky
= 0. k> k’.‘

k ' W 08 =¥,
¢ n (use Vi) or Vye) for time-

m n dependent interaction)
Each Example:
fermion (—1)
loop
Each intermediate energy daw

parameter w 2n

Each intermediate mpmentam, k
A A WL RN P AL

d*k
%} or IZZZT)’ (for 2 = 1)

(include sum over spins)




(9.40)
(4) Evaluate graphs by means of the dictionary in Table 9.1, on p- 146.



154 A GUIDE TO FEYNMAN DIAGRAMS [10.2

where is the sum of all proper (irreducible) self-energy parts orf irreducible

. Self-energy’:

oo DB i DD

(10.8)

Translated into functions with the aid of Table 9.1 this becomes:
AT

1
W"€k"*2(k, w)+i3k

—iZk,w) = @ (10.10)

For non-interacting systems, 2'(k, w)=0. Note that in all of these summations,
(10.3) — (10.6), it was necessary to restrict the sum to ]ust reeated
parts. If we had summed over repeated zmgroger parts as well, dlagrasn
woulg have heen.counted twice, since as seen in diagrams 3, 5 of (10. l), the
1mproper parts themselves contam repetltlons

Gk, w) = (10.9)

where

d:ggggms in (9.40) are composed of either proper parts or repetitions o
Wbﬂwgﬁm&li That 1s, the summation

ere 1s complete rather than just partial. But don’t be fooled into thinking
that because it is exact (10.7) is the answer to our problem! All that has been

done is to sum over repegted proper parts; the sum (10.8) over “over the proper proper
parts themselves is still left to do, and has tﬁe unfortunate qua lity of bemg

in.general impossible. I can, however, "be evaluated to various degrees of
approximation. For example, the Hartree-Fock is the lowest-order approxi-

A e —— P

mation for

2 ho) + oy

It is easy to see the physical mterpretatwn of Z(k, w) by comparmg the
exact (10.7) with the Hartree approximation in (10.3), or the Hartree-Fock
in (10.4). By analogy with the argument around (4.73), 2'(k, w) is a generalized

SR

10.2] DYSON’S EQUATION AND LADDER APPROXIMATIONS 155

It is 1mportant t nott | form of the Dyson equation in (10.7) is only

valid in the special case (with which we shall be mainly concerned) of a system
with no external potential and with diagrams calculated in (k,cw)-space.
There is, however, a more general form of the Dyson equation which holds
whenever expansion (9.40) holds; the-general form is

T o R e
ok s 7(10.12)
This may be proved by iteration:
= 4+ =1+(3)# =l+D+ | +E) +--r
=l+}myo+$y++t{>+-.,f §+KJ‘O+{ "
(10.13)

Equation 510 12) b01 down to (10.7) in the above special case because the
alue of each diagram is the ébralc product of the values of its Earts,
thus we have

or

Gl ) = Gofk, )+ Gk, ) Z(k, ) Golk, ), (10.14)




Going beyond the quasi-particle approximation

J. Terasaki et al., Nucl.Phys. A697(2002)126

by extending the Dyson equation. ..

G,'=(G)"-Z,(w)

i




J.S. Bell and E.J. Squires

* Phys. Rev. Lett. 3 (1959) 96

A FORMAL OPTICAL MODEL.:

The propagation of a nucleon in a nucleus is
specified by the proper self-energy 2 of the one-
particle Green function, which is equivalent to
the optical potential.



Denoting by |a) the scattering state and by
i0) the target ground state, we define the model
wave function as

o(r,8) =(013(r, )| @), (1)

where 5 is the Helsenberg [leld operator of secon
quantization. For |a) we take the state

@ e E 00, @

which corresponds to a source of particles of
energy E at the point r’; if »’ is sufficiently larg
only a plane wave actually reaches the target.

In writing, with x=(r, ¢),

é(x) f “dtre " Glx,x"), (3)

G =01 T@x), 3 (x")10), (4)



We construct G by a perturbation theory where
in zero order the real forces are replaced by a
fictitious one-body potential, in general nonlocal,

j a3, 00, TG, 0).
An S matrix is defined by
%su, 1) = -iH1(1)S(, 1),
ity t) =1, B(t)=e o' pre Mt

where H, is the zero-order Hamiltonian and the
total Hamiltonian is H, +H’, In terms of inter-
action representation operators y, the Heisen-
berg operator § can be written

w(x) =S-l(ta O)W)S(f, 0))
and we have the usual expression

{018, 0t g e)8(e, -2)10)
(0 IS(uo, 'w) IO)



G(x) x') =Go(x9 X') -iGo(x,x")W(x", x”’)c(x’"v x')’

(6)
where repeated arguments are integrated over,
G, is the zero-order value, and -iW is the sum
of all proper linked diagrams—omitting factors
for the terminal lines. Then from (3) with ¢ =0,

O(F) = o (F) -G, (E, T, F)W(E, T, T')o ("), (7)
where

iE(t-t)

W(E,T,T')=|d(t-t")e Wix,x"), (8)

and likewise for G,.

Now if u,area complete set of wave functions
for the potential U, with eigenvalues E,,

unoce. “n(f')“n*(f") occ. “n(?)u n‘(f’)

~iGo = E-E +ie '~ E-E -ie
n n

Since all the occupied states are of negative
energy, for positive E the sign of the infinites-
imal i€ is unimportant in the last term. Thus

u @ ")
¢(f)=¢.,(1")+§-E-_En—+“W(E,r',r”)¢(f"). (9)

This is just the integral equation for scattering
by an added potential W, and therefore

V(E,T,T)=U(F,T")+W(E,T,T’) (10)

is the total optical potential. The scattering
amplitude averaged over an interval of energy
can be obtained from V(E +i¢, T, T') with € finite.



Particle-Vibration Coupling

After BM approach, we must remember
the paper by Nicole Vinh-Mau:

Microscopic derivation of the optical potential

in “Theory of Nuclear Structure: Trieste
Lectures 1969”

IAEA, 1970



Green’s Function Approach to Particle-Vibration Coupling.

M. BAaLpo

Istituto di Fisica Teorica dell’ Universita - Calania, Ilalia
Istituio Nazionale di Fisica Nucleare - Sezione dit Catania, Italia

P. . BorTiGNON

Istituto di IMisica dell’ Universita - Padova, Italia
Istituio Nazionale di Fisica Nucleare - Sezione di Padova, Italia

(ricevuto il 3 Ottobre 1975)

In the last few years many attempts (*) have been made to introduce the phonon
degree of freedom in the deseription of both single-particle strueture and collective
excitations of heavy and mean-heavy nuclei (particle-vibration coupling). The main
problem in this type of approach is to separate correctly the particle and the phonon
degrees of freedom, i.e. to avoid Pauli-principle violation and overcounting of terms.
The rules for constructing graphs which include explicitly the phonon lines have been
extracted, on the basis of a solvable model, in ref. (%), and shown to produce an exaect
expansion, in the sense that the complete summation of the graph series reprodueces
the exact results in the model. The general validity of the rules proposed in ref. (2)
was worked out in ref. (3).

In this letter we want to show that it is possible to approach the problem on general
grounds, using tecniques developped by many authors (4) in the framework of the so-
called « conserving » approximations. For the sake of simplicity let us consider a particle
coupled to a core, and define the particle and phonon degrees of freedom respectively
by the single-particle and density-density correlation functions

(1) Gty 1) = ——i(Y’o|T{wk(t1)w:(tz)}lwo) particle degrees of freedom ,
(2) Xrrmn(ly> t2) = — | T {00 ty) g::n(tz)}|‘1’o> phonon degrees of freedom ,

(*) See, for instance, S. T. BELYAEV: Sov. Journ. Nucl. Phys., 1, 3 (1965); B. R. MorreirsoN: Interna-

VN SRR I PNV EE PUAWANVINY ARV ESONE, Y (SRewe SOV LT T N SVEu AN JANS LoVl g N T e TP - - N S g At £ O e s Sl LA L Y T e 'y [ p Ty - [l v D F o R L oY



physws case. The main 1doa is to express the smgle partml(, self-energy in terms of a
funectional derivative of the single-particle Green’s funetion with respeet to a one-body
external potential ¢(¢), which depends explicitly on time. This functional derivative
has to be taken at ¢ = 0, so that in the final result ¢ will not appear.

The Hamiltonian of the system will read

(3) H'=H + o(t),
where H is a general nuclear Hamiltonian with a two-body residual interaction

(4) H=> e et 2 (KU V|mn) vy v, 90 Vo
k

kimn

£, being the single-particle energies and

(5) o) =3 (ko)1) viv: .

il

Considering the equation of motion of the single-particle Green’s function one gets
(fi=1)

Gl . '
(6) i Oull,t) = 8i18(ty— 1) — iCT | T{Iwi(ty), H' ()] v ()} ¥od =
1
= akld(tl _tz) s Z [Smamk + (kIVE(zl)]m')] Gml(tlr tz) + z Mkm(t1 ’ 23) Gml(zay tz) ]

where, as usual,

(7) zﬂm(tp ty) Grlly, 8} = —14 z Kl |V |mn ) W, IT{tpl (t,) wa(ty) wm(tl)wz(tz)}[g,o>_
m 'nm
— > (k| Valty)m) Gpalty, 1)

is the single-particle self-energy and (k| V g(t)|m) = z Ll’|V|mn)<'I’|1p () 9 (t) ¥, A

bar over a time variable means integration. It can be shown that (see eq. (B8) of
asnds fRY
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tional derivative of U with-respect to c;o—is

(10)

(8 Um(zl)

—) Oy 01, 0(t — 1) — i Z Loanmltes ) [(Em|V]in)— (km|V|nl)] ,
SV’pa(tz) ;nn

where the second term gives rise to the coupling of the fermion degrees of freedom with
the phonons. TUsing the relationships

(11)

3Gruilty,ta) 3G 5ally; 1)

— > Gl Ei) cGoltss ) »
3?’mn(ts) % kp(l 4) Sq’mn(ta) qi\Yp s Y2
3 A 8Um(zz) 2 3
3Pmnlts)  oa Pmally) SUpelly)’

one ecan write eq. (8) in the form

(12)

where

(13)

SU, () 3Gy (Ess 1)
swl’n(tl) 3 Uvrs(t4)
=—1 Z nrkm,rs(tls i;) Gmp(tl ? 23) Ppl:rs(ia’ tz: il) ’

mp
rs

My(ty, 1,) = —i > (KU|V|mn) Gyt 1)
Vimn
prs

U, (1
Wimesllys o) = 3 (1Y fmm) 22 _ (| o) (8, — ty) —
in 8¢ln(t1)
—QI’Z(I"”VImn)Zln;cz:(tvte)[(ml Visg)— (rp|Vlgs)]
inpg

3G (8, 1,)

I bz tasly) = —
pl.fs( 1 2 3) SUrs(ta)

The physical meaning of the last expression of W is clear: the effective interaction
to be used in the caleculation of M involves both the bare interaction and the exchange
of phonons. For the vertex function I the following integral equation is obtained:

(14)

Pkl,mﬂ(tl , tz; ta) == 6;"” 6(71 6(tl e ta) 6(’2— ta) +
S Mza(ty, L)

2 E [m . = i(kQIlel) 6“1_ 24) ‘S(tz— E.s)-l G,,,(ih is) Gsa(i‘lr is) Frs;mn(zs ’ Zv; ta) .



coupling theory, at least for M,,. In fact startmg from the zeroth order value for

Lymn(by, ty5 ty) = O Oy 01, —1,) 6(1,— ;) and iterating these equations, one gets an ex-

pansion for the self-energy M and phonon propagator y which involves only W and G.
For instance the first two terms of the expansion for M read

(17a) —Z (kp| V|l )< W |vy vl o
(17b) —2(101 |V |mn ),(,o,‘ o (tl,t2 [(pp’ [V]lq) (pp’|VIgl)]Gouplty s t3)
: mm oo
™~ ngp’

The term (17a) is the exchange part of the Hartree-Fock field; the term (17b) involves
the contribution from the phonon on field. Tt should be noted that the interaction at time ¢,

includes both the direct and the exchange terms, while the second interaction at time $
includes only the direct one. These two and some higher-order contribution to M are

displayed in fig. 1.

a) b) c)

In particular the diagram ¢) corrects for Pauli-principle violation in the intermediate
states. In all the drawn diagrams a full dot means only the direct matrix element of V,
while a full square the direct minus the exchange one.

Analogously for y one gets

(18) Xxt; malls, ty) = "szmn(tzs;)—‘

— Zkz,eu(te»ts)[("“lms':) (m|V|ta)]Gm(t+, 5) Ganltys t) {0y O, O(ts — T) 8ty — 5) —

parsiv Rt




GREEN'S FUNCTION APPROACH TO PARTICLE-VIBRATION COUPLING 591

cesses like those depicted in fig. 2¢), it follows that the graphs generated by the expan-

sion do not allow any bubble to appear.
We can note that the rules for coupling fermions and phonons we have discussed

seem to be quite similar to the rules which have been found in many references by dif-

N ~— OSM .
o SrA \7/ . v 3 ' 66 +1V

-
-

= N
| z

c)

Fig. 2.

ey

ferent and often empirical approaches and for different physical situations (23) (like
two phonons or particle plus phonons gystems). Then theso rules seem to be quite general
to handle in a self-consistent way particle-phonon coupling problems avoiding over-

counting and Pauli-principle violations.
Finally it should be possible in the formalism to treat also a density-dependent

interaction, as shown in ref. (?) for the particle-hole interaction.

¥ ¥ K

Stimulating discussions with Prof. R. BROGLIA are gratefully acknowledged.
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Role of the surface in the electronic effective mass of metal microclusters

M. Bernath,''2 M. S. Hansen, ° P. F. Bortignon,"2 and R. A. Broglia"z'3
'Dipartimento di Fisica, Universita di Milano, Via Celoria 16, 20133, Milan, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133, Milan, Italy
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The renormalization of the motion of the valence electrons in metal clusters arising from the coupling
to the fluctuations of the cluster surface is calculated. Sizable effects are found, which lead to renormal-
ization coefficients which deviate 30-40 % from unity.
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FIG. 1. First and last columns display the energy levels of
Na,, within the Hartree-Fock and LDA, respectively. The mid-
dle column shows the Hartree-Fock levels corrected by the self-
energy contributions calculated as indicated in the text. In the
lowest part of the figure a schematic graphical representation of
the exchange (first column) and screening terms (middle
column) discussed in the text is shown.



Table 1 Fundamental band gaps of some materials (eV).

Material DFT-LDA [6] GW [6] Experiment [7]

Si 0.5 13 1:2

GaN 2.3 3.5 3.5

Diamond 3.9 5.6 5.5
R, 0 o] o Phys. Stat. Sol. 10, 3365 (2006)
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1t is shown that the graphical perturbation treatment of nuclear fields (particle-vibration theory) converges to the
exact solution, at least in the case of schematic many-body problems. The corresponding rules as well as all the inter-
action vertices required to obtain this convergence are here presented.

The elementary modes of excitations of atomic nu-
clei are found to comprise partly collective (boson)ex-
citations associated with pair addition, shape oscillations,
etc., and partly quasi-particle modes as described appro-
ximately by independent particle motion. The displace-
ment potential associated with the vibrations of the
nuclear density gives rise to the particle vibration coup-
ling. The resulting coupled system of particles and bo-
sons constitutes a-nuclear field theory that is extensi-
vely employed in the study of the mutual interweaving
of these elementary excitations in the physical states
of nuclei, However, both types of excitations are ulti-
mately based on the degrees of freedom of the neutrons
and protons of the nucleus and thus are not strictly
independent. One is thus faced with the problem of
exploring the consequences of the antisymmetry (Pauli
principle) associated with the identity of the nucleons

¥ Research supported in part by AEC grant No. AG (11-1)—
*:3001.
bk F\ellow of the Consejo Nacional de Investigaciones Cienti-
ficas y Tecnicas.

that appear in the collective modes and in the particle
degrees of freedom as well as the features resulting
from the non-orthogonality of the elementary modes.
In some cases, it has been shown that the nuclear field
theory correctly treats these effects in lowest order of
perturbation theory [1]. But the formal basis for this
treatment as well as the systematic demonstration of
its consistency has not been adequately discussed. In
the present note we report on the study of a simplified
model which permits comparison of results of an exact
solution with those obtained from the perturbation ex-
pansion based on the particle-vibration coupling. It is
found that simple and general rules can be formulated
for evaluating the particle-vibration coupling diagrams
and that the systematic application of these rules leads
to the same results as the exact solution, at least within
the model studied. .

The problems considered in the present note are
generic to a wide variety of many-body systems in which
collective modes are a significant feature; however, the
problems are encountered in an especially acute form
in the nuclear physics applications due to the relatively
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few particles involved in the nuclear collective degrees
of freedom *1,

The model considered consists of two single-parti-
cle levels, each with degeneracy 22 and with an effec-
tive “monopole’” twoparticle force coupling particles
in the two levels,

Hstp"'I{int 2 1)
where
Hy,=%teN, ,
@)

. +
No - 021 %8 6% ma

m==1,22,,,.
and

e + +
H, = —VQ(A]A +4,47),

3

w1

1 V282 m
The index o labels the two levels while m labels the de-
generate states within each level. The strength of the
monopole coupling is denoted by ¥V and the energy
difference between the two different one-particle levels
is €. The symmetrized form of the interaction leads to
aslight complication of the formula to be obtained
below, but has been employed in (3) in order to exhibit
the manner in which the Hartree contributions of the
interaction are to be included in the definition of the
elementary modes.that are employed in the nuclear *
field theory. The possibility of obtaining an exact so-
lution [2] of the systems described by (1) hinges on
the fact that the basic operators of the model, N, Aq
and A'l* obey the commutation relations of the infinite-
simal generators of the group SU(2).

We now develop an exact solution of the problem
(1) based on the concept of particle degrees of freedom
coupled to collective modes, with the latter defined
by means of the random phase approximation.-We con-
sider configurations with approximately N = 2 {2 parti-
cles. The ground state (vacuum state for.our descrip-

+
am,lam,—l N

#1 The ubiquitous appearance of these questions in nuclear
physics problems has stimulated a great variety of theore-
tical approaches and approximations; see, for example the
references quoted in the review paper of R.M. Dreizler in
Proceedings of the Summer School on Problems in Nuclear
and Solid State Physics, Roumania {(1973), to appear, and
the references quoted in this article.
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tion) of the system with &/ = 22 is given by the Slater
determinant in which all the ¢ = —1 states are occu-
pied (we assume € > 2V (§2 — 1) which is necessary to
ensure the stability of this normal ground state).

The basic particle and hole states are obtained by
adding or removing a single particle from this configu-
ration ¥2 :
im, 1>=a |10, E@n,1)=231(+V),
E(m,—1)=3(e+V).

Thus the unperturbed energy for producing a particle-
hole excitation with respect to the ground state is

e =E(m, 1)+ E@n,—1)=c+ V. )

(@)

im,—D=a, 410>,

With this particle-hole eneyg;',‘”ﬁ:ie random phase
approximation yields for the collective modes

wi=¢e —2VR, w;=¢€’, (i=2,3,...,20), ®)
corresponding to the normal modes
In;=1> =A% 105, )

with 47 given by (3) and the £2 — 1 other normal mo-

desi=12, .., 282, formingan orthogonal basis in the

remaining space of particle-hole excitations |m2,1;m2, —1).
The particle-vibration coupling represents the ma-

trix element.of the Hamiltonian linking the normal

modes with a single particle-hole state @)

p= 1 Hyplm, 1sm' ,—1) = — V2828 2, m' )5, 1),

and is represented by the vertex of fig. 1(a). In the dia-
grammatic rules to be given below we shall also need
to include effects resulting from the four-point vertex
of fig. 1(b), which has the value

m,1;m’, — 1| Hyp lm”, 1; m"™", —1> 2
©)
=—V&Gn,m' Ysen",m'"").

We have found that the results of the exact solution of
the Hamiltonian can be reproduced if we take as the
basic degrees of freedom both the coliective modes (7)

*#2 Note that the energies are measured from the energy of the
vacuum state.

*2 In the present model this is in fact the Tamm — Dancoff ap-
proximation since the Hamiltonian (1) does not contain
any interactions that create two-particle, two-hole configu-
rations.
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angd the particle states (4) coupled through the inter-
actions (8) and (9). The fact that a significant part of
the original interaction has already been included in
generating the collective mode (7), implies that the
rules for evaluating the couplings (8) and (9) involve
a number of restrictions as compared with the rules
that are employed when evaluating the original inter-
action (3): )

(1) In initial and final states, proper diagrams involve
collective modes and particle modes, but not any par-
ticle configuration that can be replaced by a combina-.
tion of collective modes. This restriction permits an
initial state comprising the configuration |m, 1;#;=1)
but excludes {#2, 1;m, — ).

(II) The couplings are allowed to act in all orders to
generate the different diagrams of perturbation lines
of these diagrams.

(IID) The internal lines of diagrams are, however, res-
tricted by the exclusion of diagrams in which a particle-
hole pair is created and subsequently annihilated with-
out having participated in subsequent interactions. As
an illustration of this rule, fig. 2 (a) shows an excluded
diagram, while fig. 2(b) is permitted.

(IV) The energies of the uncoupled particle and
phonon fields are given by (5) and (6) and the contri-
butions of all allowed diagrams are evaluated by the
usual rules of perturbation theory.

We shall now illustrate the application of the above
rules in the evaluation of the different properties of the
system and shall confirm that the results of the exact
solutions are recovered when the resulting perturbation
series is summed.

AWK K ow oy

Fig. 1. Diagrams representing some of
the possible interactions in nucléar sys-
tems which are described in terms of
fermion (arrowed lines) and phonon

(wavy lines) fields. The particle-vibra- {a) (b)

PHYSICS LETTERS

tion coupling and the exchange of one
collective phonon are displayed in (a)
and (c), while (b) represents a particle-
hole scattering through the two-body
bare interaction of the model.

Fig. 2. Hlustration of

rule II. The diagram
(@) is eliminated by
rule I but (b) is al-
lowed.
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Fig. 3. Graphs describing the interaction between a fermion
and a.collective boson «w, . The secular equation is given in
terms of the quantities 4 and «.

i) States comprising one particle, one hole, or a
single particle-hole pair do not suffer interaction effects
and therefore their energies are those of the uncoupled
configuration. Note that the particle-hole configura--
tion |m, 1;m, —1) does enter into interactions accord-
ing to (8) and (9) but this configuration is excluded as
an external line according to the rule I. Similarly a con-
figuration of a single collective mode I72;= 1) does not
suffer any interaction effect since any diagram invol-
ving only such a configuration in initial and final state
is excluded by rule I

ii) The energy of the state comprising a single par-
ticle plus one phonon of the type i = 1 is in zeroth
order (cf. (4) and (6))

E®Gn, 1:n= D=%e " +ew; .

11)

The lowest order correction to this energy is given by
the graph A4 in fig. 3 and the resulting contribution is
the expression given in the figure with the energy in

the denominator E = £©), The summation of the ite-
rates of this graph to all orders yields the same expres-
sion with the energy £ representing the final eigenvalue.
The interaction (9) appears first in the graph 4a of

fig. 3 and the iteration of these interactions can be
summed as indicated in the figure to give

- E(m, 1;n1=l)—E(°)(m,1;n1=I)

- 4Qy? (12)
3¢'—2E(n,lin;=1)+21
which yields the two solutions
3 !
& {E(O)(m,l;nl=1)+V‘ 13)
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On the Small parameter...

The random phase approximation yields for the collective mode

w=¢€ —2VQ.
Therefore, it is
VQ -~ 0(1),
the bare interaction 1
V ~ O(ﬁ)

and the particle-vibration coupling

V\/2_S2~()(%).

"Realistic calculations”, also for 2°9Bi, in
P.F. Bortignon, R.A. Broglia, D.R. Bes, R. Liotta, Phys. Rep. 30 (1977), 305.

P.F. Bortignon, R.A. Broglia, D.R. Bes, Phys. Lett. B 76 (1978) 153.
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o 3vie?
(€ +w-E)(26-E)
v
£+ wrE
¢ = AV (2e+2Va -E)
(e+wrE (26-E)

g-g?=8 §[c§bm]"(1 =)

Fig. 4. Graphs describing the interaction between two collec-
tive phonons w, . The secular equation is given in terms of the
quantities B, b and ¢.

Only the second solution goes to £ for vanishing
coupling and thus represents the value that would have
been obtained from a mote straightforward term by
term summation of the perturbation series. The result
obtained can be expressed by saying that the non-
linearity of the problem in the elementary modes of the
system give rise to an effective particle-phonon inter-
action of magnitude V. The magnitude of this correc-
tion agrees with that obtained from the exact solution.
It is characteristic that these correction terms are of
order 2! compared with the collective shift, 2V, of
the phonon with respect to the unperturbed particle-
hole energy.
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iii) The energy of the two phonon state ny = 2 in-
volves summing three series of graphs (see fig. 4); the
resulting equation yields three different eigenvalues of
which only the one

E(ny=2)=2w; +2V, (14)

isin the neighbourhood of the unperturbed two-phonon
state. Again the eigenvalue obtained from the summa-
tion of the particle-vibration diagrams corresponds to
that obtained from the exact solution. The expression
(14) exhibits an anharmonicity in the collective vibra-
tional motion that can be expressed as a phonon-pho--
non interaction energy of magnitude 2V. '
The examples given above are representative of a
rather large variety of properties which we have eva-
luated and found to be in agreement with the corre-
sponding exact solutions. Based on this empirical evi--
dence, it is our belief that the above rules represent
a general prescription for evaluating all the coupling
and anharmonicity effects involved when superposing
particles and phonons. ’

Discussions with Aage Bohr are gratefully acknow-
ledged. :
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The phonon coupling has
been known for many years
(@) ©) to be important for the
understanding of s.p. states
around the 2°8Pb core.
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C.Mahaux et al., Phys. Rep., 1985 = PV coupling increases m*
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On Self-Energy, Effective Masses, Level Density
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Self-energy and effective mass
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Nucleons are coupled to phonons, mainly density vibrations (2*,3). In
other words, the nuclear mean field undergoes fluctuations which are felt
by the particles.

To deal with these phenomena, a nuclear field theory has been developed
by the Copenhagen group. Phenomenological particle-vibration coupling of
the type

<a|Vpy|B>=[druyr)CdUidr)uyr) x <p|lY_llp >

One can work out the particle-vibration coupling with effective forces and
microscopic phonons:

(ol (r)u(r) YL (F)|8)

Removal of simple approximations (assumption of good isospin for
vibrations).



Spin-orbit splitting 152
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CAVEAT

No t, and t, terms
No bubble correction

Pauli Principle is a correction of O(1/Q? ),
that is there are factors 1/(2j+1) more in
each term.

In 298 Pb, Q= 75!
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Average numbers to remember

« 208Ph average w-mass/m
« Skyrme and similar +PVC:

For neutrons 1.2—1.4
For protons 1.3—1.6

- RMF+PVC  1.26, 1.41



Tensor term of the Skyrme forces

* Role of the triplet-even and triplet-odd
tensor forces on the spin-orbit splitting
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The contribution of the tensor to
the total energy is not very large;

SH = %a(,];f e J2 e BT

In the Skyrme

framework... however, it may be relevant for the

spin-orbit splittings.

W dp dp, J .
) — "8 fo te q y—2 4 3L ) .
o 2r ( dr ¥ dr ) ¥ (a r TP ) |

1
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() = o 220+ 1) [5G+ 1)~ 1+ 1 = 3| R

7

The contribution of the tensor force to the spin-orbit splittings can
be seen ONLY through isotopic or isotonic dependencies. Not in
40Ca !



Neutrons on N=82 core
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Different works

» G. Colo’, H. Sagawa, S. Fracasso and
P.F. Bortignon, PLB 646 (2007) 227
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Tensor correlations and evolution of single-particle energies in medium-mass nuclei
Wei Zou,">* Gianluca Cold,! Zhongyu Ma,> Hiroyuki Sagawa,* and Pier Francesco Bortignon'
! Dipartimento di Fisica, Universita degli Studi and INFN, Sezione di Milano, via Celoria 16, 1-20133 Milane, Italy
2China Institute of Atomic Energy (CIAE), Beijing 102413, Peaple’s Republic of China
*Physics Department, Jilin University, Changchun 130012, People’s Republic of China
‘Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan
(Received 26 September 2007; published 22 January 2008)

We analyze the evolution of the spin-orbit splittings in the Ca isotopes and in the N = 28 isotones. We also
focus on the reduction of the spin-orbit splittings associated with f and p orbits from *Ca to **Ar. We conclude
that adding the tensor contribution can qualitatively explain in most cases the empirical trends, whereas this is
not the case if one simply employs existing Skymme parametrizations without the tensor force.
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but

* Lesinski, Bender, Bennaceur, Duguet,
Meyer in PRC 76 (2007) 014312

showed that ....the overall agreement
of the s.p. spectra in double-magic
nuclei is deteriorated by tensor coupling,
if refit is done...

Minimum for 3=0



LESINSKI, BENDER, BENNACEUR, DUGUET, AND MEYER

(£ = 0), bat for the parametrizations T/2, only the proton-
neutron term in M contributes (o = O). Note that the earlier
parametrizations T6 and Z. have a pure like-particle J* terms
as a consaquence of the constraint x;, = x; = 0 employed
for both (and most other early parametrizations of Skyrme’s
interaction).

B. The fit protocol and procedure

The list of observables used to construct the cost function
x> minimized during the fit (see Eq.(4.1) in Ref. [51]) reads
as follows: binding energies and charge radii of *°Ca, *Ca,
**Ni, Zr, *2Sn, and ®*Pb; the binding energy of '“'Sn;
the spin-orbit splitting of the neutron 3p state in *“$Pb; the
empirical emergy per particle and density at the saturation
point of symmetric nuclear matter; and the equation of state of
neutron matter as pradicted by Wiringa 7 al. [ 16].

Furthermore, some properties of infinite nuclear matter
are constrained through analytic relations between coupling
constants in the same manner as they were in Refs. [51,52]:
The incompressibility modulus K is kept at 230 MeV,
and the volume symmetry energy coefficient a. is set to
32 MeV. The isovector effective mass. expressed through
the Thomas-Reiche-Kuhn sum rule enhancement factor &,
is taken such that &, = 0.25.

When using a single density-dependent term in the central
Skyrme force [Eq. (10)], the isoscalare ffective mass mj cannot
be chosen independently from the incompressibility modulus
for a given exponent o of py. We follow here the prescription
used for the SLy parametrizations [51.52] and use o = 1/6,
which leads to an isoscalar effective mass close to 0.7 in units
of the bare nucleon mass for all T/J parametrizations. This
value allows for a cormrect description of dynamical properties,
as for example the energy of the giant quadrupole resonance
[83]. Using such a protocol we cannot reproduce the isovector
effective mass consistent with recent ab infrio predictions [84].
Regarding the present exploratory study of the tensor terms this
is not a critical limitation, in particular as the influence of this
quantity on static properties of finite nuclei tums out to be
small

There are three modifications of the fit protocol compared
to that of Refs. [51,52]. The obvious one is that the values
for CJ and C{ are fixed beforehand as the parameters that
will later on label and classify the fits. The second is that
we have added the binding epergies of "Zr and '™Sn to
the set of data. Indead. we observed that the latter nucleus
is usually significantly overbound when not included in the fit.
The third is that we have dropped the constraint x> = —1 that
was imposed on the SLy parametrizations [51.52] to ensure
the stability of infinite homogeneous neutron matter against

a framcitiar trtes a Ffarvrrmrmammaties oftata Thic ctalhilitwr it SOritasm
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FIG. 2. Values of the cost function x* as defined in the ft
procedure, for the set of parametrizations TIJ. The label “TI117
indicates the position of this parametrization in the (o, 8) plane as
obtained from Egs (36). Coatour lines are drawn aty*= 1112 15,
20, 25, and 30. The minimum value is found for T21 (x* = 10.05),
and the maximum for T61 (x* = 37.11)

conceming the stability in polarized systems in the presence of
a tensor force to future work that will also address finite-size
instabilities [84]. It also has to be stressed that the acthal
stability criterion, as with all properties of the time-odd part
of the Skymme energy functional, depends on the choices
made for the interpretation of its coupling constants (i.e.,
antisymmetrizaed vertex or density functional [76]).

The properties of the finite nuclei entering the fit are
computed by using a Slater determinant without taking pairing
into account. The cost function x> was minimized by using
a simulated annealing algorithm. The anmealing schedule
was an exponential one, with a characteristic time of 200
iterations (also referred to as “simulated quenching™). Thus,
assuming a reasonably smooth cost function, we strive to
obtain satisfactory coovergence to its absolute minimum
in a single run, allowing a systematic and straightforward
production of a large series of forces. The coupling constants
for all 36 parametrizations can be found in the Physical Review
archive [85].

Figure 2 displays the value of x2 after minimization as a
function of the recoupled coupling constants o and 2. The first
striking feature is the existence of a “valley at g2 = 0O, that is,
a pure like-particle tensor term ~ (J2 + J2). The abrupt rise of
x = around this value can be attributed to the termn depending
on nuclear binding epergies, as sharp variations of energy
residuals can be seen between neighboring magic nuclei with
functionals of the T6J series ( 2 = 240). For example, Ca
and ™Zr tend to be significantly overbound in this case. We
will retum later to a discussion of the implications for the
quality of the functionals.



Pairing renormalization
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The weak-coupling approximation:

1 oy aV(BE)
Q=g ) % g 0w

Let us make two approximations for k a2 kp:

h2k2 2
Ep ~ (, - —GF) F A2
ZMm

. ~ In <—) dxr—1)
\/(.’1?2 —1)2 4 a? Q

4

Then

a # k N
A s iy V(k, kp)Ag
b 3 .Ak F

2 - 2m2h? - l
A, = 8 exp N exp
A ! m*kpVikp.kr) ] NOW kg, kr)
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Going beyond mean field: medium polarization etfects

Self-energy

Qs
Kol
Qg
\3
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Induced interaction
(screening) v . s
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V(a,0A) = h(a,0A)(uquy — vavp)
W(a,bA)

_.h(a'g DA )('U'anb + 'Uaub)



Pairing from exchange of vibrations (induced interaction)

‘Two time orderings

2

V-
2e.~ (e e+ha;)

c)

V'.? ~ V-'-
e —(e,+hw,) fl(x)z
Vw = 2~ -0.3MeV




Going beyond the quasi-particle approximation

J. Terasaki et al., Nucl.Phys. A697(2002)126

by extending the Dyson equation. ..

G,'=(G)"-Z,(w)

i




We first perform a BCS calculation with the bare force,
obtaining the quasiparticle amplitudes u,,v, We then
couple the quasiparticle to the 1gp,1ph states.
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Projecting on the single-particle configuration, we obtain an equation for the
normal and abnormal energy-dependent self-energies (Nambu-Gor’kov):

(% Sa)+ (28 BeEN) (2= 5 ()

Vi W2, ]
2 E — J!J + Js]

Y1 (E;) = —X(—E;)

1 1
Sl ) e S Wi W s =
B ?‘—; PR G [Ej—(Ej,-;-hwg) Ej+(Ej:+hw’/\)]

Renormalized pairing gap: A, =2E, ———
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Renormalization of quasiparticles 120Sn

57—
24
"
1 '.l—\ _7:2
I ,, — 52"
11 _
T m— n* |
e’ —e—
O A1ty e -
32 a2 232" 112 a2°

HF. Vis  Renom Exp-119 Bxp-121

.

Argonne Argonne + induced interaction

F. Barranco et al., EPJA21(2004)57




—
—
I
o
o
1

Effective masses

LILJLJLLLALLJJA
3 4 5 6 7 8 9 10

25 !
o—e SGII|
L
1| oo Sivd
Bare gaps
15} ;
:—I A::q; S " A S
z
4
5 a |
\\‘/ \\.\\“\ -
\‘\\
\.
03
4
0 ] ]
10 -3

e [MeV]



Renormalization of pairing gaps
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Figure 5 The nucleus '™Sn. The semiclassical matrix elements of the
induced interaction, calculated according to Eq. (9)(dash-dotted curve), are
compared with the matrix elements of the Gogny force (solid curve, cf. Fig. 3)
and with those of the vy, _; interaction (dashed curve). Calculations are
performed with my = m and with the same Woods-Saxon potential used in
Figs. 1 and 3.

F. Barranco....P.Schuck et al., PRC 72



<n(A+D]e, |057=U")  |<n(A-D]c, [0>}=F")

The calculated distribution of quasi particle strength can be
compared with spectroscopic factors from transfer reactions
like 129Sn(d,p)™?'Sn or 2°Sn(p,d)'1°Sn.

Theoretical spectra appear to be too fragmented, but one
should also consider that the (rather old) available
experimental data have low resolution and cover a small
interval in excitation energy.

120Sn(d,p)'?'Sn: M.J. Bechara and O. Dieztch, Phys. Rev. C12
(1975)90

120Sn(3He,a)'9Sn: E. Gerlic et al., Phys. Rev. C21(1980)124
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Paul Bonche et al.

* Let us emphasize that this study was done at the
mean-field (HF) level. However, NO ingredient in
our protocol prevents further studies beyond the
mean field approximation. If needed be, further
correlations can be explored and it is quite
legitimate to use these interactions for RPA or
configurations mixing (GCM) calculations. This
would NOT has been the case if we had
included in our protocol detailed information
such as s.p. energies of some selected nuclel.



Dependence of single-particle energies on coupling constants of the nuclear energy
density functional

M. Kortelainen.! J. Dobaczewski,!*? K. Mizuvama.! and J. Toivanen!

_ ' Department of Physics, P.O. Box 35 (YFL), FI-}001} University of Jyviskyld, Finland
“Institute of Theoretical Physics, University of Warsaw, ul. HoZa 69, 00-681 Warsaw, Poland.
(Dated: March 18, 2008)

We show that single-particle energies in doubly magic nuclei depend almost linearly on the cou-
pling constants of the nuclear energy density functional. Therefore. they can be very well char-
acterized by the linear regression coeflicients, which we calculate for the coupling constants of the
standard Skvrme functional. We then use these regression coeflicients to refit the conpling constants
to experimental values of single-particle energies. We show that the obtained rms deviations from
experimental data are still quite large, of the order of 1.1 MeV. This suggests that the current stan-
dard form of the Skyvrme functional cannot ensure spectroscopic-quality deseription of single-particle
energies, and that extensions of this form are very much required.
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FIG. 1. Spectroscopy of “*Sc from the **Ca(*He,d )**Sc reaction,
measured by Erskine, Marinov, and Schiffer (1966). The
ground state has practically all of the f5,; strength, while for
higher orbits the strength is spread over several states.
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FIG. 2. The energy spectrum of *He in the proton pickup reac-
tion, *Zr(d, He)*Y, from Stuirbrink er al. (1980). The shaded
bump shows an angular dependence and analyzing power
characteristic of the f,, hole orbit.

Gamma(s.p.)=0.5 (E-E_F)



How to proceed?

* Add a small imaginary part in the energy
denominators:
1/(w-€ +IA)



Giant Resonances

» Centroid and strength reproduced
by (Q)RPA, as well as escape width.
What about spreading width?



Low-lying dipole strength in
unstable nuclei
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Blue line = theory of 3) (dashed line) convoluted with the dete

by A. Klimkiewicz to compare with the experiment of 2) (gre
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TABLE I.  Summary of the parameters deduced for the PDR
and GDR peaks. The parameters for '**Sn are from [18].

PDR GDR
L. FWHM [o y E... FWHM o 4
[MeV]  [MeV]  [mb MeV] [MeV] [MeV] [mb MeV]

1215 e “e .. 153 438 2080
B3eSn 10147y <34 [30035)  159(5) 48(1.7) 2680(410)
328n  9.8(7) <25 75570 16Ty 4T21) 2330(590)

Theory: 15.5 5.8



Spreading width in GR

* G.F. Bertsch, P.F. Bortignon, R.A.
* Broglia, Rev. Mod. Phys. 55

 Gamma(GR)=7? Gamma(part.)+Gamma
(hole) NO!N!
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FIG. 22. Perturbation graphs for the damping of a vibration.
On the top is shown the coherent sum of amplitudes for door-
way coupling via the particle and the hole. They give rise to the
four contributions to the imaginary part of the self-energy of
the vibration. The two graphs on the left arise from the in-

dependent damping of the particle and the hole, and the two
remaining graphs give an interference.



GREEN'S FUNCTION APPROACH TO PARTICLE-VIBRATION COUPLING 591

cesses like those depicted in fig. 2¢), it follows that the graphs generated by the expan-

sion do not allow any bubble to appear.
We can note that the rules for coupling fermions and phonons we have discussed

seem to be quite similar to the rules which have been found in many references by dif-

N ~— OSM .
o SrA \7/ . v 3 ' 66 +1V

-
-

= N
| z

c)

Fig. 2.

ey

ferent and often empirical approaches and for different physical situations (23) (like
two phonons or particle plus phonons gystems). Then theso rules seem to be quite general
to handle in a self-consistent way particle-phonon coupling problems avoiding over-

counting and Pauli-principle violations.
Finally it should be possible in the formalism to treat also a density-dependent

interaction, as shown in ref. (?) for the particle-hole interaction.

¥ ¥ K

Stimulating discussions with Prof. R. BROGLIA are gratefully acknowledged.




TABLE III. Particle-hole interference in the vibration self-
energy. The sign of the quantity Eq. (44) is shown for all possi-
ble values of the quantum numbers associated with the initial
vibration and with the intermediate doorway vibration. Note
that if either vibration is purely scalar, the interference is des-
tructive.

Ny
n'O n"o 00

10 01 11
00 —_ — — —
10 - + - +
01 = — - -
1 - + + -




due to mixing with more complex configurations

Renormalization of the properties of 2+ low-lying state

hwge (MeV) | B(E2 1) (2° fm*)
RPA {Gogny) 29 660
RPA (Slyd) 1.5 8O0
RPA + renorm. [23] 0.9 2150
Exp. 12 2030
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Figure 2. Diagrams which correspond to the coupling of the p — I components of a
oiant resonance with phonon states.



In the last decade we have developed, within a Milano-
Orsay collaboration, a microscopic model aimed to a
detailed description of GR excitation and decay [G.
Colo et al. Phys. Rev. C50, 1496 (1994)].

The model includes the coupling with 1p-1h plus 1
phonon configurations and with the continuum
(allowing the description of particle decay).

The model has been able to reproduce the total width
of the GMR, and total and partial decay widths of GTR
and IAR in 208Ph.

Recently, we have extended the model to include
pairing correlations (without the continuum coupling).

Universita /‘)
Srudl di Ml‘l’:ng(':l




1 1
w— PHP + ic w—QzHQ3+icQ2HQ1’

‘lL Jl' ,lL (2.2)

H(w) = QHQy + Wi(w) + WH(w) = QuHQ: + Q. HP PHQ, + Q:1HQ,

RPA  continuum 1p-1h-1
coupling phonon
coupling

This effective Hamiltonian can be diagonalized and from
its eigenvalues and eigenvectors one can extract the
response function to a given operator O,

1 S(w) = —-;ImR(w).
R(w) = (0|O* —0]0).

s 1 . 1
w H(W) =+ 1€ S(w) — _;ImZ(()'O‘u)Jw—Q +l£u
v v 2

It is possible to extract at the same time to calculate
the branching ratios associated with the decay of the
GR to the A-1 nucleus in the channel c (hole state).

ac(w) — ZV.V' Sv'v"/u'y,c(w 5 QV T i%&)—l(w - le + i-l:zL')_l

B.(w) = = i ¥
( ) chC(w) —2Im 2",", Svly(F‘FT)y"' (w e Qw - iggi)—l




The IAS:

a stringent test

r_
/TN
—e— | —O—

(a) Discrete TDA (b) RPA + 5! (c)RPA + 5[+ 5}
EIR % of o ELAR I % of mo EIAR Iior r! % of m o
1 0.268 999 E . g 0.267 24 24 99.7
1I 18.50 85 18.50 124 97 18.36 194 70 97
18.28 16
m 18.64 80 18.65 128 96 18.54 228 100 96
18.39 11

Z N

The measured total width (I

exp

=230 keV) is well reproduced. The

accuracy of the symmetry restoration (if V.,,=0) can be

established. B
Theory

Decay Only W1 w4 wt Experiment
channel (a) (b) (c) (4]
P12 0.472 0.346 0.253 0.237 0.22+0.02
P32 0.396 0.287 0.238 0.196 0.34+0.04
i13/2 0.015 0.011 0.008 0.010 -
fosa 0.117 0.086 0.065 0.061 included in p3/;
friz <107* <107? <107° < 107? 0.015+0.007
he /2 <107 <1077 < 107° <107° -
2. B 1.0 0.730 0.564 0.504 0.575+0.07
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Figure 4. Basic diagram which gives rise to the spreading width of one-phonon states

in the QPM.
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Figmre 6. Fragmentation of the low-lyving electric dipole strength in “*Ba.
Calenlations are performesd in the one-phonon approximation (top panel). and taking
into account the coupling to two-phonon configurations (middle panel), or to two- and
three-phonon configurations (bottom panel ).
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A I 20) 22 24

Shell model [90] 0.06 0.11 0.10 0.09
continuum (QRPA [91] 0.07 011 016 0.21
QRPA-PC [92] 0.07 0.09 0.07
RHB + RQRPA(DD-ME2) 0.04 006 015 0.18
Exp. [85] 0.08 0.12 0.07
Exp. [04] 0.11

Table 1. Sum of the energy-weighted dipole strength for "™72'0 up to 15 MeV
excitation energy, in units of the TRK sum rule.
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Figure 14. Photoabsorption cross section for '#¥Sn, calenlated with the RPA and
RPA-PC models. The effective interaction is Skyrme SIIL



Low-lying state at 9.7 MeV
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At low energy, there is not a single “collective’ pygmy stale
8.44 MeV 3s,,— 3pyp 0.2%

8.61 MeV 2d3,2"") 3p1,2, 35"2“")3‘)1/2 0.5%
9.53 MeV 0.3%
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Problem of the 2d3/2 -1h11/2 position, wrong in all mean-field
Not cured by coupling to vibrations (see below , G. Colo and PI

But tensor contribution may help: G. Colo et al., PLB 646 (200
However see also T. Lesinski et al., nucl-th7 0704.07 31



2 B(E1) in e*fm?
<6 MaV <8 MeV
Exp.* (.53 0.80

Th. 0.52 1.27
*N. Ryezayeva et al., PRL 89 (2002) 272502




Table 1

Centroid energies Eg = mi1/mg obtained within RPA or QRPA (to-
gether with the unperturbed HF or HF-BCS result in parenthesis).
compared with the empirical prediction 80 A~1/3 (4147173 )

Nucleus SIII SLy4 80413 (41 A71/3)

208pp 149(94) 13.4(9.8) 13.5(6.9)
120gn (RPA)  17.1(10.9) 15.0(11.0) 16.2(8.3)
12050 (QRPA) 17.3(11.3) 15.1(11.6) 16.2(8.3)
1329n 17.0(10.7) 15.2(11.0) 157 (8.1)

Table 2

Centroid energies Ep = my/mqg in MeV. obtamned in the (Q)RPA
and (Q)RPA-PC calculations. Only n the case of 208pyy we observe
an appreciable shift when the phonon coupling 1s introduced. In the
other two cases the downward shift 1s smaller than 100 keV

Nucleus (QIRPA (QRPA-PC
208py, 149 144

1205, 17.1 17.1

132¢4 17.0 17.0

Table 3

Values of the peak energy (width) in MeV calculated 1in (Q)RPA-
PC (calculated by means of a Lorentzian fit to the cross sections) in
comparison with the experimental values

Nucleus (Q)RPA-PC Exp.
208 py, 13.1 3.7) 13.46 (3.9)
1209, 15.7 (5.3) 15.4 (4.9)

132g, 15.5 (5.8) o +«—— 16.1(4.7)
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Fig. 1. Exhaustion of the dipole EWSR 1n the three nucler con-

sidered in the present Letter. The full line refers to the complete
(Q)RPA calculation. while the dashed line to the (Q)RPA calcula-

tion.
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Relative abundances
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Coulomb excitation of 8Ni at 600 MeV A |,y

RISING

Dipole strength shifts at low
energy.

Collective or non-collective
nature of the transitions?

Stable nuclei = photoabsorption

Exotic nuclei

Virtual photon breakup

LAND experiment
Aldrich PRL95(2005)132501

Virtual photon scattering
RISING experiment

Search for pygmy Dipole Resonance o

In neutron rich coulomb excited %3Ni
a structure centered at ~ 10.5 MeV
has been measured in the y-ray
spectra

Measured y-ray spectra

Geant
Simulations
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G. Colo private communications




E. Litvinova et al. Nucl/th/06090¢
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FIG. 1; Bethe-Salpeter equation for the p-h wesponse funetion in the graphical representation, Solid

lines with arrows denote one-body propagatars through the particle, hale or antiparticle states
weavy [ines denate phanon propagators, emply eircles are the particksphanon eoupling amphtudes

and the small black cirele means the static part of the msidual p-h interaction,
Lit
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Fig. 1. E1 photoabsorption cross section for 2®Ph and 3¥2Sn. calenlated with the
relativistic RPA (dashed). and with the RRPA extended by the inclusion of parti-
cle-phonon coupling (solid).
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Fig. 3. Same as in Fig. 2. but for 13261, The proton and nentron transition densities
correspond to the PDR peaks at 7.54 MeV (RRPA) and 7.16 MeV (RRPA-PC).



Table 3
Same as in Table 2, but for the states at 7.54 MeV (calulated with the RRPA),

and at 7.16 MoV (caleulated with the RRPA-PC) in YSn,

RRPA, 7.0d MaV

RRPA-PC, 7.16 MV

5.6 % (3s1/2 — 3p3/2)
16.5 9% (3s1,2 — 3pl/2)
a7 % (243/2 — 3p1/2)
7.3 % (2d3/2 — 3p32)
AT % (Ih11/2 - 11132}
09 % (1g7/2 — 1h9/2)
03 % (2d5/2 — 3p3/2)
0.2% (1gv/2 — 245/2)
0.1 % (1gh/2 — 207/2)
0.1 9% (2432 — 4pl/2¥)

Q.4 %

495 % (3512
(3s1/2
6.4 9% (2d3/2 — 3pl/2)
4.1 9% (1h11/2 — 1i13/2)
4.0 9% (2432 — 3p3/2)

« 3p3/2)
+ 3p1y2)

215 %

0.5 % (1g7 /2 — 1h9/2)
0.1 9% (1g7/2 — 2n/2)
0.1 9% (2d5/2 — 3p3/2)
0 9% (2d3/2 — 4p1/2*)
0.1 % (1g7/2 — 2I7/2)
0.1 % (X172 — 4p1/2%)
0.1 % (31/2 — 4p3/2*)

’
S5 %

Tahlo 4
Integral phatcabsorption eross sactions for the PDR and GDR, and their ratios

calculated with the RRPA and RRPA-PC, in comparison with the experimantal
values. Sco text for deseription.

O roR) Canry,  Tirowr! Tiane
(mb MeV)  (mb MeV)
RRPA 133 3005 oLy
*Ph RRPA-PC 1% XV 0160
Exp. 2] M7
RRPA Ln 2152 003
¥58Sn  RRPA-PC il aST 0044

Exp. [5] anyy  2330(280) 0.0G()

-
.
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40~ 24Mg 40~ “gj

30— 30

'=1,T=1

% EWSR
% EWSR

—K'-_-O

20'_ S—— K'= 1
- | orentzian

10 20 20 40 (MeV) 10 20 20 40 (MeV)

Figure 3. Fraction of the EWSR carried by isovector J™ = 17 in *'Mg and *Si. K™ =0~
and A7 = 17 components are indicated in black and grey respectively.

S. Péru et al., Comex2



Effective mass at finite temperature

« Symmetry energy, stars

 P.Donati, P.M. Pizzochero, PFB, R.A.
Broglia, PRL 72 (1994) 2838

¢ ... and G.E. Brown



A lot of fun

emperature as imaginary time, thank you
to Matsubara



Fermi System at Finite Temperature

The average of any operator O is given by

trOp
trp

<O >=)" < |0l > pi =

being p the distribution operator
p = exp[—B(H — uN)]

obeing the Bloch’s equation

dp
98 —(H — pN)p

Imaginaty time it <+ 8 =1/T!
Imaginary Time Gree’s Function:
Glk,ma—m)=-1< T{(:k(Tg)CI(Tl) >

where
ck, (T) = exp [(H — uN)7]ck, exp[—(H — uN)T]



Table 14.1 Diagram dictionary for interacting fermion system at finite temperature (no external potential)

(k’ T)-Space (k’ wn)'space
Diagram element Factor Diagram element Factor
T 0 .
kAH or k H i9(k,7) K, wa ﬁ or Hr i9(k,w,)
0 T
%ok, w,) = 1
4 0 | %ok, 7) = [0,/ —0_ fi]x o) = T et
k + or k + o« gt Kk, wn or Cn+t Dy
0 T W, = , B=1/kT
B
or 2, —1 W’/ or O e -1
\;j 9 Je = etBle—m 4 | k k k +B(ex—p) 4
k 1 k 1
=2 V mn
>m q "“< a Vklmn mWNq /v\/vs{n Xl
fermion loop fermion loop
Ex: Ex:
B 4 ®
‘ 1
Intermediate k, 7 > j dr lf Intermediate k, w, Z . B z
X o k n=—0oo

01z

SIWVHOVIA NVIANATL OL 3dIND V

£vil



14.4} FERMI SYSTEMS AT FINITE TEMPERATURE 211
Dyson’s equation has the same graphical form as in (10.7), so that

i
4.
W,y iw,—ex+p— 2k, w,) Usa)

A_s;mp* examgle of this is the finite temperature Hartree-Fock approxi-
wation in which the irreducible self-energy, s given n by UU T1).“Evaluating
this with the aid of Table 14.1 produces

- Z(k, wn) = M P +
P
S Z ( Vkpkp £ Vpkkp) f;—- (14.34)

Substituting this in (14.33) shows that we have the finite temperature
analogue of the Hartree-Fock quasi i particle, with energy

> 6 = &+ 2 Vigtp= Vo) (eﬂ<¢»-#>+1)- (14.35)

'[b_e_eﬁ'ectwc ﬁeld seen by the particle in k is modlied by the fact that some of
S thxsﬁeld‘g ¢ now above the Fermi surface on account

QLM—‘*‘LEEIE’EE‘%TM is reflected in the statistical factor on the
right. Thus the quasi-particle energies have acquired a dependence on
temperature through the B=1/k7-factor—a good example of the rather
bizarre-sounding concept of ‘temperature-dependent energy levels’ in
quantum mechanics. (The true levels are not temperature dependent, of
ourse. A

The above energy expression may be made ‘self-consistent’ by replacing
€, by €, on the right of (14.35), giving us a messy equation to be solved for e;.
Graphically, this means that for the irreducible self-energy we are using the
first two terms of (11.3), i.e.:

S~ @ ~ M«@ + &Y . (1436)

14.4 The finite temperature vacuum amplitude
The zero temperature vacuum amplitude was defined by

R(t) = {Do| U(t) | Doy ¥, (14.37)

For our present purposes we need the explicit expression for this in terms of
the operator, U, as it appears in appendix (E.13), with #,=0:

R(t) = (Po| T() |Po>
= <‘p0| e‘Hore_‘H’ I¢o> (14.38)
where appendix (D.1) has been used.
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TABLE 1. Values of the ratio my(7)/m as a function of the
temperature for three different nuclei. The last column gives
the best value of the parameter 7o for the exponential fit
Me{T)=m+ [my(0) = mlexp(—=T/Ty).

T=0MeV T=|MeV T=2MeV Ty (Mev)

%Mo 1.7 1.36 1.26 1.89
4Zn |.8 |.45 1.3 1.97
4N .45 1.2 1.2 2.05




Effects on stars

« Smaller effective mass, larger Symmetry

Energy (the kinetic part of it), smaller
neutronization.......



DAMPING OF COLLECTIVE MODES

Hierarchy of couplings for damping of giant resonances :
from mean field states to Compound Nucleus

In the chaotic regime

<v2> ~u?/N




