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Chapter 1

ASMETA Framework

AsmetaSMV is a based tool of the ASMETA toolset [1]; so, before de-
scribing AsmetaSMV, we briefly introduce the ASMETA toolset.

1.1 ASMETA toolset

ASMETA toolset has been developed starting with the definition of AsmM
[2, 3], a metamodel for ASMs. The ASMETA tool set (see Fig. 1.1) includes
(among other things) a textual concrete syntax, Asmetal 4, 5], to write ASM
models (conforming to the AsmM) in a textual and human-comprehensible
form; a text-to-model compiler, AsmetaLec, to parse Asmetal. models and
check for their consistency w.r.t. the AsmM OCL constraints; a simulator,
AsmetaS [6], to execute ASM models; the Avalla language for scenario-based
validation of ASM models, with its supporting tool, the AsmetaV validator;
the ATGT tool |7, 8] that is an ASM-based test case generator based upon
the SPIN model checker; a graphical front-end called ASMEE (ASM Eclipse
Environment) which acts as IDE and it is an eclipse plug-in.

All the above artifacts/tools are classified in: generated, based, and inte-
grated. Generated artifacts/tools are derivatives obtained (semi-)automatically
by applying appropriate MOF projections to the technical spaces Javaware,
XMLware, and grammarware. Based artifacts/tools are those developed ex-
ploiting the ASMETA environment and related derivatives; an example of
such a tool is the simulator AsmetaS). Integrated artifacts/tools are external
and existing tools that are connected to the ASMETA environment.

3
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1.2 AsmetaSMV

AsmetaSMYV is a based tool of the ASMETA toolset. Its aim is to enrich
the ASMETA toolset with the capabilities of the model checker NuSMV; it
translates a code written in Asmetal. into a NuSMV code.

The user can define the temporal properties he wants to check directly into
the Asmetal. code; he could even don’t know the NuSMV syntax, but just
the Asmetali one. The only thing a user must know to perform model check-
ing over an Asmetal. code is, besides the Asmetal. language, the syntax of
the temporal operators.

In the following sections we suppose that the reader knows the ASM the-
ory [9], the Asmetal. language [10], the model checking theory [11] and the
NuSMV language [12] (however in section 2 we give a brief introduction
of NuSMV). The purpose of this text is to describe how to perform model
checking over an Asmetal. code. We will describe which ASM elements are
supported by the mapping and which are not; an ASM element is supported
by the mapping if the tool is able to translate it into a NuSMV code. An
ASM element, instead, could not be supported because of two reasons:

1. it’s not possible to translate the element: the Integer domain, for ex-
ample, cannot be mapped because NuSMV supports only finite types;

2. the mapping of the element would be too complicated: in future ver-
sions of the tool, many turbo rules could be mapped into NuSMV but,
by now, are not supported by the tool.



Chapter 2
NuSMV

In this chapter we analyze the technique of model checking (section 2.1)
and, in particular, of the model checker NuSMV (section 2.2). We describe
only the concepts that are useful for the reading of the text; for a complete
description of NuSMV you can see [12].

2.1 Model checking

Model checking is a formal verification technique; it permits to create
abstract models of systems and verify that they satisfy properties defined
in a temporal logic. In many situations the use of a model checker can be
useful to the developers that, yet in the design phase, can discover possible
errors of the model; in big projects, in fact, to discover a design error after
the implementation phase can cause a loss of money and time.

A model checker works in three steps:

1. definition of a model M using the Kripke structures (section 2.1.1), a
formalism similar to the finite state machines;

2. definition of a temporal formula ¢, that describes a property that we
want to verify (section 2.1.2);

3. the model checker verifies that M + ¢.

2.1.1 Kiripke structure
A Kripke structure is define by the 4-uple
M - (S, A, S(), L)

where:
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S is a finite set of states;

A (or —) is a transition total relation, that is

Vse S 3¢ €S suchthat s— ¢

So € S is the set of initial states;

o L: S — 247 is a labelling function that links each state with a label;
the label lists the atomic propositions that are true in that state. AP
is a set of atomic propositions.

2.1.2 Computation Tree Logic (CTL)

Temporal logics are divided into:

o Linear time logics (LTL): they represent time as infinite sequences of
instants; you can only declare properties that must be true over all
sequences;

e Branching Time Logics (BTL): they represent time as a tree, where
the root is the initial instant and its children the possible evolutions of
the system; you can declare properties concerning all the paths or just
some of them.

Temporal logics, moreover, can be classified in continuous time logics and
discrete time logics.

In this text we will use Computation Tree Logic (CTL), a discrete time BTL.
CTL permits to express logic formulas concerning paths, that is sequences
of state transitions. Each CTL formula has a path quantifier that says if the
formula must be true in all the paths (A, along All paths) or if must be true
in at least one path (E, FEzists at least one path). Moreover can be used the
temporal operators:

e X p: the property p must be verified in the next state;
e | p: the property p must be verified in a future state;
e G p: the property p must be verified in all the states;

e p U ¢: the property p must be true until the ¢ property becomes true.
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It’s AP{p,q,r,...} aset of atomic formulas; CTL formulas can be expressed
in the following way:

¢ :=T|L[peAP[=¢|oN¢|oVo[d—¢|AXG|EXe|AlpUd] |
E[pU¢] | AGo | EGo | AF¢ | EF¢

where T, 1, =, A, V and — are the connectives of propositional logic and
AX, EX, AG, EG, AU, EU, AF and EF are temporal connectives.

The unary operators have the highest priority; then there are the binary
operators V and A and, at last, the binary operators —, AU and EU.

2.2 NuSMV

NuSMYV [12] is a symbolic model checker derived from CMU SMV [11]; it
permits to verify properties written both in Computation Tree Logic (CTL)
and in Linear Temporal Logic (LTL).

The internal representation of the model uses the Binary Decision Diagrams
(BDDs), a particular type of graphs that permit to represent logic formulas
in a compact and efficient way for the satisfiability analysis. A particular
category of BDDs is used, the Ordered Binary Decision Diagrams (OBDDs),
that permit to represent logic formulas in canonical form.

NuSMYV is a transactional system in which the states are determined by the
values of variables; transactions between the states are determined by the
updates of the variables.

A NuSMV model is made of three principal sections:

e VAR: contains the declaration of variables;

e ASSIGN: contains the initialization (instruction init) and the update
mechanism (instruction next) of the variables;

e SPEC: contains the CTL properties that must be verified by the model
checker.

Code 2.1 is a small example of NuSMV model we will refer to in the following
sections.

Code 2.1: NuSMV example

MODULE main
VAR
varBool: boolean;
varNum: 1..5;
varNumSet: {1, 3, 5};
varEnum: {AA, BB, CC};
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ASSIGN
init (varBool) := TRUE;
init (varNum) := 1;
init (varNumSet) := 1;
next (varBool) := !varBool;
next (varNum) := 2;

next (varNumSet) :=
case
varNumSet = 5: 1;
TRUE: varNumSet + 2;
esac;
next (varEnum) :=
case

varNumSet = 1: CC;
varNumSet = 3: BB;
varNumSet = 5: AA;
esac;
SPEC AG(varNumSet=1 <-> AX(varNumSet=3));

2.2.1 Variables
2.2.1.1 Variable type

Variables are declared in the VAR section with the specification of their

types.
The type of a variable can be:

e boolean: it accepts as values the integers 0 and 1 or the equivalent
literals FALSE and TRUE; variable varBool is a boolean variable;

e [Integer; the variable can be defined:

— over a values interval a..b with a < b; such a variable is variable
varNum;

— over a set {a;,...,a;} of values not necessarily contiguous; a vari-
able of such type is variable varNumSet;

e enumeration of symbolic constants; such a variable is variable varEnum.

2.2.1.2 Assign

The initialization and update instructions are executed in the ASSIGN
section.
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Initialization A variable var can be initialized to value vy with the in-
struction

init(var) := vy;

A variable can be either not initialized; an example of that is the variable
var Enum of code 2.1. In such a situation, at the beginning NuSMV creates
as many states as the number of values of the variable type; in each state the
variable assumes a different value.

Update The value of a variable var in the next state is determined with
the instruction

next(var) :=...;

The next value can be determined in a straight way, as variables var Bool and
var Num, or in a conditional way through the case expression, as variables
var NumSet and var Enum. In a case expression conditions are evaluated
in sequence; the first true condition determines the resulting value; you can
set, as last branch of the case instruction, the default condition TRUFE that
is selected if none of the previous conditions is safisfied. In code 2.1 the
next instruction of var NumSet has the default value, the next instruction
of var Enum doesn’t. However we can notice that the conditions of the next
value of variable var Enum are exhaustive and, so, there is no need of the
default value. In code 2.2, instead, the conditions of the next value of var
are not exhaustive.

Code 2.2: Not exhaustive conditions

MODULE main
VAR
var: 1..5;
ASSIGN
init(var)
next (var)
case
var
var
esac;

The execution of code 2.2 signal, with an error message, the absence of
exhaustiveness of the conditions:

[user@localhost code]$ NuSMV notExhaustive.smv

*x*%* This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)
*** For more information on NuSMV see <http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.

xxx Please report bugs to <nusmv@irst.itc.it>.
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file notExhaustive.smv: line 10: case conditions are not exhaustive
NuSMV terminated by a signal

2.2.2 Nondeterminism

In NuSMYV it’ possible to model non deterministic behaviours; they can
be modeled in two ways:

e do not assign any value to a variable that, in such a way, can assume any
value; this is the case of the missing initialization of variable var Enum
in code 2.1;

e to assign to a variable a value randomly chosen from a set, through
the expression {wvaly,...,val,}; code 2.3 shows an example: in each
transaction, the variable var can be 3 or 4.

Code 2.3: Nondeterminism

MODULE main

VAR
var: 1..5;

ASSIGN
init(var) := {3, 4};
next (var) := {3, 4};

2.2.3 Invariant properties

It’s possible to specify invariant conditions, that is properties that must
be true in each state; the syntax of an invariant condition is

INVAR boolEzpr;

where bool Expr is a boolean expression. In code 2.4 we can see how it’s
possible to reproduce the same semantic of code 2.3 through an invariant

property.

Code 2.4: Invariant property

MODULE main
VAR
var: 1..5;
INVAR (var=3 | var=4);

Even in this code, variable var can be only 3 or 4.
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2.2.4 CTL properties

CTL properties are declared, through the keyword SPEC, in the following
way

SPEC ctiForm;

where ctlForm is a CTL formula built in the way seen in section 2.1.2. In
code 2.1 it’s declared a property that verifies that, if in a state var NumJSet
is 1, in the next state is 3.

2.2.5 Example: Lift

In order to show an example of use of NuSMV, in this section we describe
the NuSMV model for the lift problem; in the model we have declared some
properties we want to verify.

Problem A lift connects four floors of a building, from the ground floor
to the third floor. At each floor a button permits to request the lift. Inside
the lift it’s possible to select the destination floor. In the model, external
callings executed from floor S; and internal callings (executed in the lift) to
stop at floor S; are indiscernible: so we refer to a generic request from floor
S;. The lift must be used in a very tall building (hospitals, skyscrapers, etc.);
the functioning cycle is the following:

e at the beginning the lift is at the ground floor and starts its travel
towards the top;

e if during the ascent the lift receives a call from a floor S, superior to
the current position, when it reaches S, stops (satisfies the request);

e when the lift arrives at the third floor, switches its direction and starts
travelling towards the bottom;

e if during the descent the lift receives a call from a floor Sy inferior to
the current position, when it reaches Sy stops (satisfies the request);

e when the lift arrives at the ground floor, switches its direction and
starts travelling again towards the top.

We want that all the requests are satisfied and that there aren’t situations
in which the lift is in deadlock.
NuSMYV code 2.5 contains the model of the problem.
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Code 2.5: Lift

MODULE main
VAR

cabin: 0..3;

dir: {up, down};
request0: boolean;
requestl: boolean;
request2: boolean;
request3: boolean;

ASSIGN
init (cabin) := 0;
init (dir) := up;
init(request0) := FALSE;
init(requestl) := FALSE;
init(request2) := FALSE;
init(request3) := FALSE;
next (cabin) :=
case
dir=up & cabin<3: cabin + 1; --ascent
dir=down & cabin>0: cabin - 1; --descent
TRUE: cabin;
esac;
next (dir) :=
case
dir=up & next(cabin)=3: down;
dir=down & next(cabin)=0: up;
TRUE: dir;
esac;
next (request0) :=
case
next (cabin)=0: FALSE; --the request is cleared
request0: TRUE; --the request is kept
TRUE: {FALSE, TRUE}; --can decide to make the request
esac;
next (requestl) :=
case
next (cabin)=1: FALSE; --the request is cleared
requestl: TRUE; --the request is kept
TRUE: {FALSE, TRUE}; --can decide to make the request
esac;
next(request2) :=
case
next (cabin)=2: FALSE; --the request is cleared
request2: TRUE; --the request is kept
TRUE: {FALSE, TRUE}; --can decide to make the request
esac;
next (request3) :=
case
next (cabin)=3: FALSE; --the request is cleared
request3: TRUE; --the request is kept
TRUE: {FALSE, TRUE}; --can decide to make the request
esac;

--deadlock absence
SPEC AG(EX(TRUE));

--safety properties
SPEC AG!(dir=up & cabin=3)
SPEC AG!(dir=down & cabin=0)

--liveness properties
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SPEC AG(request0 -> AF'!request0);
SPEC AG(requestl -> AF'!requestl);
SPEC AG(request2 -> AF!request2);
SPEC AG(request3 -> AF!request3);

Variable cabin records the current floor of the lift; variable dir records the
direction of the lift; variables request0, requestl, request2 and request3 are
boolean variables that model the requests from the four floors. We hypoth-
esize that each transaction corresponds to the passage from a floor to the
next.

At the beginning the lift is at the ground floor with direction towards the
top; there are no requests.

Let’s see the update mechanism of variables (instructions nezt). Variable
cabin is incremented when the lift is going towards the top, decremented
when it’s going towards the bottom. Variable dir is modified at the ground
floor, where it becomes up, and at the third floor, where it becomes down.
The four request variables are modified in the following way:

e if there is a request for a floor and the lift is arrived at that floor, the
request is cleared;

o if there is a request for a floor and the lift is not yet arrived at that
floor, the request is kept;

e if there is no request for a floor, nondeterministically a request could
be executed for that floor.

Let’s see some properties we want to verify.

First of all we want to verify that our model doesn’t contains a deadlock, that
is a state in which the system is blocked. The deadlock absence is verified
through the property

AG(EX(TRUE))

that says that, for each state (AG), there is always at least a next state (EX).
Let’s now declare some safety properties, that is properties that must always
(or never) verified. The two properties

AG! (dir=up & cabin=3)
AG! (dir=down & cabin=0)

check that it’s not possible (AG!) that the lift is going towards the top if it’s
at the third floor or that is going towards the bottom if it’s at the ground
floor. Finally we declare some liveness properties, that is properties that
verify that some states are reached. The four properties
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AG(request0 -> AF!request0)
AG(requestl -> AF!requestl)
AG(request2 -> AF!request?2)
AG(request3 -> AF!request3)

check that, if there is a request from a floor, the request sooner or later
(AF) will be satisfied. The NuSMV code execution verifies the properties
correctness:

[user@localhost codel]$ NuSMV lift.smv

*x*%x This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)
**x For more information on NuSMV see <http://nusmv.irst.itc.it>
**x* or email to <nusmv-users@irst.itc.it>.

**x* Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (EX TRUE) 1is true

-- specification AG !(dir = up & cabin = 3) is true

-- specification AG !(dir = down & cabin = 0) is true

-- specification AG (request0 -> AF !request0) is true

-- specification AG (requestl -> AF !requestl) is true

-- specification AG (request2 -> AF !request2) is true

-- specification AG (request3 -> AF !request3) is true
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Supported ASM elements

3.1 Domains

An Asmetal. code that must be mapped into NuSMV can contain only
domains that have a corresponding type in NuSMV.
The only supported domains are: Boolean, Enum domains, Concrete domains
whose type domains are Integer or Natural.
Code 3.1 contains six functions of arity zero whose codomains are six different
domains.

Code 3.1: Domains: Asmetalb model

asm domains
import ./StandardLibrary

signature:
enum domain EnumDom = {EL_A | EL_B | EL_C}
domain ConcrDomIl subsetof Integer
domain ConcrDomI2 subsetof Integer
domain ConcrDomN1 subsetof Natural
domain ConcrDomN2 subsetof Natural
dynamic controlled fooB: Boolean
dynamic controlled fooE: EnumDom
dynamic controlled fooCIl: ConcrDomI1l
dynamic controlled fooCI2: ConcrDomI2
dynamic controlled fooCN1: ConcrDomN1
dynamic controlled fooCN2: ConcrDomN2

definitions:
domain ConcrDomIil = {1..5}
domain ConcrDomI2 = {1, 3, 7}
domain ConcrDomN1 = {2n..6n}
domain ConcrDomN2 = {3n, 1n, 8n, 12n}

Code 3.2 shows the result of the mapping.
Code 3.2: Domains: NuSMV model

’MODULE main

17
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VAR
fooB: boolean;
fooCI1l: 1..5;
fooCI2: {1, 3, 73};
fooCN1: 2..6;
fooCN2: {1, 12, 3, 8};
fooE: {EL_A, EL_B, EL_C};

We can see that for each function a NuSMYV variable has been created: in
section 3.2 we’ll describe exactly how it’s executed the mapping of a func-
tion.

Now we are interested in the mapping of the domains. It’s clear that the
mapping of the Boolean domain and of the enum domain (EnumDom) is
straightforward: in NuSMV there are both boolean and symbolic enum types.
Concrete domain of Integer (ConcrDomlI1, ConcrDoml2) and Natural (Con-
crDomN1, ConcrDomN2), instead, become integer enums in NuSMV.

3.2 Functions

An ASM function, in order to be mapped into NuSMV, must be decom-
posed into its locations; each location is mapped into a NuSMV variable.
So, the cardinality of the domain of a function determines the number of
the corresponding variables in NuSMV. The codomain of a function, instead,
determines the type of the variable. Code 3.3 contains three functions of
arity 1.

Code 3.3: Function of arity 1: Asmetal. model

asm arityl
import ./StandardLibrary

signature:
domain SubDom subsetof Integer
enum domain EnumDom = {AA | BB}
dynamic controlled fooB: Boolean -> EnumDom
dynamic controlled fooE: EnumDom -> SubDom
dynamic controlled fooS: SubDom -> Boolean

definitions:
domain SubDom = {1..2}

main rule r_Main =
skip

Code 3.4 is the result of the translation.

Code 3.4: Function of arity 1: NuSMV model

MODULE main
VAR
fooB_FALSE: {AA, BB};
fooB_TRUE: {AA, BB};
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fooE_AA: 1..2;
fooE_BB: 1..2;
fooS_1: boolean;
fooS_2: boolean;

As we can see, for each Asmetal. function two NuSMYV variables have been
created; in fact, since all functions domains have two elements, each function
has two locations.

Variables name is built in the following way:

tdFunc_elDom

where td F'unc is the function name and elDom is an element of the function
domain. In the following table we show the mapping of the three functions:

Asmetal function Asmetall locations | NuSMYV variables
i )| )| b ECL
fooE($e in EnumDom) izggggg)) igzg:‘gg

fooS($s in SubDom) 2238; 222:;

Functions domains whose arity is greater than one must be Product do-
main, that is the cartesian product of a domains set.
The Product domain syntax is:

})TOd(d17 dg,..., dn)

where dy, ..., d, are the domains involved in the cartesian product.
Code 3.5 contains a function of arity two ( foo2) and a function of arity three

(fo03).
Code 3.5: Function of arity 2 and 3: Asmetal. model

asm arity2and3
import ./StandardLibrary

signature:
domain SubDom subsetof Integer
enum domain EnumDom = {AA | BB}
dynamic controlled foo2: Prod(Boolean,
dynamic controlled foo3: Prod(SubDom,

EnumDom) -> SubDom
EnumDom, SubDom) -> Boolean

definitions:
domain SubDom = {1..2}

rule r_Main =
skip

main
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Code 3.6 is the result of the translation.

Code 3.6: Function of arity 2 and 3: NuSMV model

MODULE main
VAR

foo2_FALSE_AA: 1..2;
foo2_FALSE_BB: 1..2;
foo2_TRUE_AA: 1..2;
foo2_TRUE_BB: 1..2;
foo3_1_AA_1: boolean;
foo3_1_AA_2: boolean;
foo3_1_BB_1: boolean;
foo3_1_BB_2: boolean;
foo3_2_AA_1: boolean;
foo3_2_AA_2: boolean;
foo3_2_BB_1: boolean;
foo3_2_BB_2: boolean;

As we can see, the number of variables is equal to the product of the cardi-
nality of the domains involved in the Product domain.

Given a function func with domain Prod(Dy, ..., D,), the variables name
is:

func_elDomy ... elDom,

where elDom € D+, ...,elDom,, € D,,.
In the following table the mapping of the two functions is shown:

AsmetalL function

Asmetal locations

NuSMYV variables

foo2($b in Boolean,
$e in EnumDom)

foo2(false, AA)
foo2(false, BB)
foo2(true, AA)
foo2(true, BB)

foo2 FALSE AA
foo2 FALSE BB
foo2 TRUE AA
foo2 TRUE_BB

(

(

(
foo3(1, AA, 1) foo3 1 AA 1
foo3(1, AA, 2) foo3 1 AA 2
) foo3(1, BB, 1 foo3 1 BB 1
f003($$1 - E“bD‘]’)m’ fooBEl, BB, 23 foo3 1 BB 2
¢ BRMHPOML - r003(2, AA, 1) foo3 2 AA 1
8] in SubDom) f003(2, AA, 2) foo3 2 AA 2
foo3(2, BB, 1) foo3 2 BB 1
foo3(2, BB, 2) foo3 2 BB 2
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3.2.1 Dynamic functions

AsmetaSMV supports only controlled and monitored dynamic functions.
Before describing these functions, let’s see a construction that is not sup-
ported by AsmetaSMV.

In Asmetal. it’s possible that a location is determined using as an argument
of the function another function; code 3.7 shows an example.

Code 3.7: Dynamic function as argument of another function

asm functionAsArg
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic monitored monArg: EnumDom
dynamic controlled contrArg: EnumDom
dynamic controlled foo: EnumDom -> Boolean
dynamic controlled foo2: EnumDom -> Boolean

definitions:

main rule r_Main
par

contrArg AA

//Not supported by AsmetaSMV
foo(mondArg) := true

//Not supported by AsmetaSMV
foo2(contrArg) := true

endpar

default init sO0:
function contrArg = BB

Such constructions are not supported by AsmetaSMYV, because the tool is not
able to discover what NuSMV variable corresponds to the Asmetal. location.

3.2.1.1 Controlled functions

Controlled functions are the only functions whose value can be updated
in a transaction rule. The initialization and the update of a dynamic location
are mapped in the ASSIGN section through the init and nezt instructions.
Code 3.8 contains the function foo whose locations are initialized and up-
dated.

Code 3.8: Update: Asmetal. model

asm simpleUpdate
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic controlled foo: Boolean -> EnumDom
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definitions:

main rule r_Main =

par
foo(true) := AA
foo(false) := CC
endpar

default init sO:
function foo($b in Boolean) = BB

Code 3.9 is the result of the translation.

Code 3.9: Update: NuSMV model

MODULE main
VAR
foo_FALSE: {AA, BB, CC};
foo_TRUE: {AA, BB, CC};

ASSIGN
init (foo_FALSE) := BB;
init (foo_TRUE) := BB;
next (foo_FALSE) := CC;
next (foo_TRUE) := AA;

In an ASM model the update of a location could be guarded by a boolean
condition; in NuSMYV the next value of a variable can be guarded by the case
expression. In code 3.10 the update of location foo to value AA is guarded
by the condition mon.

Code 3.10: Guarded update: Asmetal. model

asm condUpdate
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic controlled foo: EnumDom
dynamic monitored mon: Boolean

definitions:
main rule r_Main =
if (mon) then
foo := AA
endif

default init sO:
function foo = BB

Code 3.11 is the result of the translation.

Code 3.11: Guarded update: NuSMV model

MODULE main
VAR
foo: {AA, BB, CC};
mon: boolean;
ASSIGN
init (foo) := BB;
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next (foo) :=
case
next (mon): AA;
TRUE: foo;
esac;

In NuSMV the variable foo is updated to value AA if the next value of mon
is true!.

The case expression contains also, at the end, a default condition (TRUE):
if none of the previous conditions is satisfied, the value of the variable is set
at the current value (the variable maintains its value).

Global update set During an ASM run, in each transition, the system
builds the update set, that is the set of updates (couples location-value) that
can be fired. AsmetaSMV, in order to translate the Asmetal. code into a
NuSMYV code, calculates all the update sets that can be generated during
the run of an ASM. These update sets are merged into a global update set;
the "global" update set lists, for each location, all the values to which the
location can be updated. Each value is associated with the boolean condition
that must be satisfied in order to execute the update. Let’s see the update
sets and the "global" update set of Asmetal. code 3.12.

Code 3.12: Example update: Asmetal. model

asm update
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic monitored mon: Boolean
dynamic controlled foo: EnumDom
dynamic controlled fool: EnumDom

definitions:
main rule r_Main =
if (mon) then

par
foo := AA
fool := CC
endpar
else
par
foo := BB
fool := AA
endpar
endif

There are two update sets that can be fired during the run of the ASM . If
the value of monitored function mon is true the update set is:

'Tt’s important to notice that we must check the next value of mon; this fact will be
more clear in section 3.2.1.2
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Location | Value
foo AA
fool CC

If the value of mon is false, instead, the update set is:

Location | Value
foo BB
fool AA

The "global" update set, that is the merge of the two update sets, is:

Location | Condition | Value

foo mon AA
'mon BB

fool mon cC
'mon AA

Code 3.13 is the translation of Asmetal. code 3.12.

Code 3.13: Example update: NuSMV model

MODULE main
VAR
foo: {AA, BB, CC};
fool: {AA, BB, CC};
mon: boolean;
ASSIGN
next (foo) :=
case
next (mon): AA;
! (next(mon)): BB;
TRUE: foo;
esac;
next (fool) :=
case
next (mon): CC;
! (next (mon)): AA;
TRUE: fool;
esac;

As we have seen previously, the "global" update set is reported in the AS-
SIGN section; for each variable (location in Asmetal), the next value is
determined with the case expression where each value is associated with its
condition.

It’s important to underline that NuSMV doesn’t resolve the problem of in-
consistent updates; if the Asmetal. model contains an inconsistent update,
also the NuSMV model will contain it. Code 3.14 contains an inconsistent
update.
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Code 3.14: Inconsistent update example: Asmetal. model

asm notConsistent
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic monitored mon: Boolean
dynamic monitored mon2: Boolean
dynamic controlled foo: EnumDom

definitions:

main rule r_Main =

par
if (mon != mon2) then
foo := AA
endif
if (mon2 !'= mon) then
foo := BB
endif
endpar

If, during a run of the model, the two monitored locations mon and mon2
have two different values, the simulator stops the execution and signals the
inconsistent update. Code 3.15 is the result of the translation.

Code 3.15: Inconsistent update example: NuSMV model

MODULE main
VAR
foo: {AA, BB, CC};
mon: boolean;
mon2: boolean;
ASSIGN
next (foo) :=
case

(next (mon2) != next(mon)): BB;
(next (mon) '= next(mon2)): AA;
TRUE: foo;

esac;

NuSMYV, instead, during the execution of the model doesn’t signal any error;
if monitored variables mon and mon2 are different in the next state, variable
foo assumes the value BB, that is the value associated with the first satisfied
condition. So, before using AsmetaSMV, we must be sure that the AsmetalL
model doesn’t contains any inconsistent updates.

3.2.1.2 Monitored functions

Monitored functions are functions whose value is set by the environment.
In NuSMV, monitored variables are declared but they are neither initialized
nor updated.
When NuSMYV meets a monitored variable it creates a state for each value of
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the variable; code 3.16 contains the monitored variable mon that can assume
four different values.

Code 3.16: Monitored variable in NuSMV

MODULE main
VAR
mon: 1..4;

Let’s execute NuSMV with the option "-r" that prints the number of reach-
able states:

[user@localhost tosmv]$ NuSMV -r numStatiMon.smv

%% This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)
*x** For more information on NuSMV see <http://nusmv.irst.itc.it>
*%* or email to <nusmv-users@irst.itc.it>.

*xx Please report bugs to <nusmv@irst.itc.it>.

system diameter: 1

reachable states: 4 (272) out of 4 (272)

We can see that there are four reachable states that correspond to the four
values that the variable mon can assume.

It’s important to describe how the monitored variables are used in a NuSMV
model. When a monitored variable is used in the ASSIGN section (this
means that, in Asmetal,, the corresponding monitored location it’s used in a
transition rule) its value is obtained through the next expression. Let’s see
an example (code 3.17).

Code 3.17: Monitored function - Asmetal.

asm mon
import ./StandardLibrary
import ./CTLLibrary

signature:
dynamic monitored mon: Boolean
dynamic controlled foo: Boolean

definitions:

//axiom for simulation
axiom over foo: foo = mon

//property to translate into NuSMV
//axiom over foo: ag(foo = mon)

main rule r_Main =
foo := mon

default init sO:
function foo = mon

Thanks to the axiom, during the simulation of the Asmetal. model, we can
check that the controlled function foo is always (in each state) equal to the
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monitored function mon. In fact, we must remember that the values of
monitored locations are set at the beginning of the transaction, that is before
the execution of the transition rules (in this case an update rule); this means
that transition rules deal with the monitored locations values of the current
state and not of the previous one.

A CTL property, equivalent to the axiom, has been written to check that
NuSMV model keeps the same behaviour of the Asmetal. model.

We could think that the correct translation into NuSMV should be that
shown in code 3.18.

Code 3.18: Monitored function - Wrong NuSMV code

MODULE main
VAR
foo: boolean;
mon: boolean;
ASSIGN
init(foo) := mon;
next (foo) := mon;
SPEC AG(foo = mon);

But in code 3.18 the variable foo assumes, in the next state, the value of the
variable mon in the current state: that is not the desired behaviour.
If we run NuSMV, in fact, we find a counterexample to the specification.

[user@localhost code]$ NuSMV monWrong.smv

**¥x This is NuSMV 2.4.1 (compiled on Sat Jun 13 10:57:42 UTC 2009)
*** For more information on NuSMV see <http://nusmv.irst.itc.it>
**x* or email to <nusmv-users@irst.itc.it>.

**x* Please report bugs to <nusmv@irst.itc.it>.

-- specification AG foo = mon is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
foo =1
mon = 1
-> Input: 1.2 <-
-> State: 1.2 <-
mon = 0

NuSMYV shows a state where mon is not equal to foo.
Code 3.19 shows the correct translation of Asmetal. code 3.17.

Code 3.19: Monitored function - Correct NuSMV code

MODULE main
VAR
foo: boolean;
mon: boolean;
ASSIGN
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init (foo) := mon;
next (foo) := next(mon);
SPEC AG(foo = mon);

Now, if we run NuSMV, we can see that the specification is satisfied.

[user@localhost codel]$ NuSMV mon.smv

*x*%x This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)
*** For more information on NuSMV see <http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.

**x* Please report bugs to <nusmv@irst.itc.it>.

*xx This version of NuSMV is linked to the MiniSat SAT solver.
*** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
*x** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

-- specification AG foo = mon 1is true

3.2.1.3 Static and derived functions

Static and derived functions cannot be updated neither by an update rule
nor by the environment; their value is set in the definitions section and never
changes during the execution of the machine. Static functions do not depend
on the state machine, derived functions, instead, do. AsmetaSMV doesn’t
distinguish between static and derived functions: their mapping is the same.
In NuSMYV static and derived functions are expressed through the DEFINE
statement. Code 3.20 contains a static and a derived function.

Code 3.20: Static and derived functions: Asmetal. model

asm staticDerived
import ./StandardlLibrary

signature:
domain MyDomain subsetof Integer
dynamic monitored monl: Boolean
dynamic monitored mon2: Boolean
static stat: MyDomain
derived der: Boolean

definitions:
domain MyDomain = {1..4}

function stat = 2
function der = monl and mon2

main rule r_Main =
skip

Code 3.21 is the result of the translation.

Code 3.21: Static and derived functions: NuSMV model

’MODULE main
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VAR

monl: boolean;

mon2: boolean;
DEFINE

stat:= 2;

der:= (monl & mon2);

Static function stat and derived function der have been mapped into two
definitions in the NuSMV code.

To obtain a correct NuSMV code, the static and derived functions must be
fully specified (i.e. specified in all the states of the machine). Let’s see
Asmetal. code 3.22.

Code 3.22: Not exhaustive derived function: Asmetal. model

asm derivedNotExhaustive
import ./StandardLibrary

signature:
domain MyDomain subsetof Integer
dynamic controlled foo : MyDomain
dynamic monitored monl: Boolean
dynamic monitored mon2: Boolean
derived der: Boolean

definitions:
domain MyDomain = {1..4}

function der =
if (monl) then
if (mon2) then
true
else
false
endif
endif

main rule r_Main =
if (der) then
foo := 1
endif

Derived function der is not defined when monl is false; in that case, during
the valuation of der, simulator throws an exception and stop the simulation.
Code 3.23 is the translation of code 3.22.

Code 3.23: Not exhaustive derived function: NuSMV model

MODULE main

VAR
foo: 1..4;
monl: boolean;
mon2: boolean;
DEFINE

der:=
case
(monl) & (!(mon2)): FALSE;
(monl) & (mon2): TRUE;
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esac;
ASSIGN
next (foo) :=
case
der & 1 in 1..4: 1;
TRUE: foo;
esac;

The execution of NuSMV code gives the following error:

[user@localhost tosmv]$ NuSMV derivedNotExhaustive.smv

**%x This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)
**x For more information on NuSMV see <http://nusmv.irst.itc.it>
*%* or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

file derivedNotExhaustive.smv: line 17:
type error: value = FAILURE("case conditions are not exhaustive", line 11)
Expected a boolean expression

NuSMV terminated by a signal

NuSMYV signals that the conditions of definition der are not exhaustive.

3.3 Rules

In this section we’ll describe which rules are supported by AsmetaSMV.

3.3.1 Mapping process

Let’s now briefly describe how it works the translation of the rules:

e the tool starts the translation in the main rule and continues executing
a depth visit of the rules it encounters;

e the tool pushes the boolean conditions it encounters (e.g. if, switch,
..) on the global stack Conds; it removes the condition from stack
Conds when it leaves the scope of the condition;

e when the tool encounters a location update, memorizes it in the "global"
update set (section 3.2.1.1) with the right condition: the condition that
must be satisfied, in order to perform the update, is the logical product
of the conditions of stack Conds.

Let’s see how it works the built of stack Conds and of the "global" update
set over Asmetal. code 3.24.
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Code 3.24: "Stack of conditions" example

31

asm stackConds
import ./StandardLibrary

signature:
enum domain EnumDom

dynamic monitored mon:

dynamic monitored mon2:
dynamic controlled foo:
dynamic controlled fool:

definitions:
main rule r_Main =
par
fool := AA
if (mon) then
if (mon2)
foo
else
foo
endif
endif
endpar

{AA | BB | CC}
Boolean
Boolean
EnumDom
EnumDom

then

:= BB

1= AA

In the following table we show the contents of the stack and of the "global"
update set during the visit of the Asmetal. model; the order of the rules in
the table reflects the order of visit.

Rule Stack "Global" update set
Location ‘ Condition ‘ Value
fool := AA
TRUE fool ‘ TRUE ‘ AA
mon2 Location | Condition Value
foo := BB mon foo TRUE and mon and mon2 | BB
TRUE fool TRUE AA
Imon? Location | Condition Value
foo - AA W foo TRUE and mon and !mon2 | AA
00— TR([)JE TRUE and mon and mon2 | BB
fool TRUE AA

When the tool encounters the update of location fool, the stack contains
only the default condition T'RU E; the update is recorded in the update set
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with the condition TRUFE.

When it encounters the first update of location foo, the stack contains two
more conditions, mon and mon?2, belonging to the two nested if rules that
precede the update. The update of foo to value BB is recorded with the
condition TTRUE and mon and mon?2.

When the tool encounters the second update of foo, the stack contains con-
ditions TRUE, mon and !mon2 (because it’s in the else branch of the second
if); the update of foo to value AA is recorded with condition TRUE and
mon and !'mon2.

We can notice that, when the tool visits the second update of foo, on the
stack there is no more the condition mon: when the tool leaves the then
branch, the condition has been removed from the stack. So a condition re-
mains on the stack only during the visit of the rules that are in its visibility
scope.

We have described in detail this little example to introduce the concepts that
guide the mapping of all the rules.

Supported rules Supported rules are: update rule, macrocall rule, block
rule, conditional rule, case rule, let rule, forall rule, choose rule. In the next
section we describe the translation of all of them, except for the macrocall
rule and the let rule: their mapping is trivial.

3.3.2 Update rule

The update rule syntax is:
l:=t

where [ is a location and ¢ a term.
All the updates of an Asmetal. model are collected in the "global" update
set that is reported in the ASSIGN section of the NuSMV model.

3.3.3 Block rule

The block rule syntax is:
par

Ry
Ry

endpar
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where Ry, Rs,..., R, are transition rules. In a block rule all the rules
Ry, Ry, ..., R, are executed in parallel.

AsmetaSMV translates each rule individually. The contents of the stack
Conds, at the beginning of each rule, is always the same.

3.3.4 Conditional rule

The conditional rule syntax is:

if cond then
]%then
else
}%else
endif

where cond is a boolean condition and Ry,., and R, are transition rules.
It’s executed Rypep if cond is true, R otherwise.
The translation process into NuSMV is:

e cond is put on stack Conds and rule Ry, is visited; in such a way all
the updates contained in Ry, are executed only if cond is true;

e cond is removed from stack Conds.
e If else branch is not null:

— condition notCond (with notCond :=!cond) is put on stack Conds
and rule R, is visited; in such a way all the updates contained
in R, are executed only if cond is false;

— notCond is removed from stack Conds.
Asmetal, code 3.25 contains an example of conditional rule.

Code 3.25: Conditional rule example: Asmetal. model

asm conditionalRule
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC}
dynamic controlled guard: EnumDom
dynamic controlled foo: EnumDom

definitions:

main rule r_Main =
if (guard CC) then
foo := AA
else
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foo := BB
endif

default init sO:
function guard = CC

Code 3.26 is the translation into NuSMYV of Asmetal. code 3.25.
Code 3.26: Conditional rule example: NuSMV model

MODULE main
VAR
foo: {AA, BB, CC};
guard: {AA, BB, CC};
ASSIGN
init (guard) := CC;
next (foo) :=
case
!(guard = CC): BB;
guard = CC: AA;
TRUE: foo;
esac;
next (guard) := guard;

We can see that, correctly, variable foo is updated to value AA only if
guard = CC' is true (then branch); otherwise the variable is updated to
BB (else branch).

3.3.5 Case rule

The case rule syntax is:

switch ¢
caset; : Ry

caset, : R,
[otherwise Ry,
endswitch

where t,t1,...,t, are terms and Rq,..., R,, Roner are transition rules. The
case rule is equal to the switch statement of Java.
For each branch, the translation process into NuSMV is:

e condition t = t; is put on stack Conds;
e rule R; is visited;
e condition ¢ = t; is removed from stack Conds.

If default branch is not null:
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e condition t! =¢; & ... & t! =t, is added to stack Conds and
rule Ryiper 18 visited;

e the previous condition is removed from stack Conds.
Asmetal. code 3.27 contains an example of case rule.

Code 3.27: Case rule example: Asmetal. model

asm caseRule
import ./StandardLibrary

signature:
enum domain EnumDom = {AA | BB | CC | DD}
dynamic controlled sw: EnumDom
dynamic controlled foo: EnumDom

definitions:

main rule r_Main
switch(sw)

case AA:

foo := CC
case BB:

foo := BB
otherwise

foo := AA

endswitch

default init sO:
function sw = CC

Code 3.28 is the translation into NuSMYV of Asmetal. code 3.27.
Code 3.28: Case rule example: NuSMV model

MODULE main

VAR
foo: {AA, BB, CC, DD};
sw: {AA, BB, CC, DD};
ASSIGN

init(sw) := CC;
next (foo) :=
case
(sw '= AA) & (sw !'= BB): AA;
sw = BB: BB;
sw = AA: CC;
TRUE: foo;
esac;
next (sw) := sw;

The two case branches have been transformed into two equalities (sw = AA
and sw = BB). Otherwise branch has been transformed into the and of two
disequalities (sw! = AA & sw! = BB).

3.3.6 Forall rule

The forall rule syntax is:
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forallv, in Dy, ... v, in D, with G,, _, do
]%vh”‘v

»Un

where vy,...,v, are variables and Dy, ..., D, their domains. G, _,, is a
boolean condition over vy, ..., v,. Ry, ., is a rule that contains occurrences
of vi,...,v,.

The purpose of the forall rule is to execute the rule R,, . with all the values
of variables vy, ..., v, that satisty the condition G,, . ,,. The number nR of

branches to evaluate is equal to the product of the cardinalities of domains
l)l,... ,l)nl
n
nk=[]|Dil
i=1

The translation process into NuSMV, for each values tuple d{l, oo, dIn with
d}* € Dy,...,d’" € D,, executes the following operations:

e variables vy, ..., v, assume values d]', ..., d/r;

are the condition and the rule where the vari-

G agn and Byp o

ables have been replaced with the current values d]f, ey

condition G J1_ gn 18 put on stack Conds;
1 2 ¥n

o rule R ; i 18 visited;
&,

is removed from stack Conds.

condition G P gin
1 9 ¥n

Asmetal. code 3.29 contains an example of forall rule.

Code 3.29: Forall rule example: Asmetal. model

asm forallRule
import ./StandardLibrary

signature:
domain ConcrDom subsetof Integer
dynamic controlled foo: ConcrDom -> ConcrDom

definitions:
domain ConcrDom = {1..4}

main rule r_Main =
forall $x in ConcrDom with $x < 3 do
foo($x) := 1

default init sO:
function foo($x in ConcrDom) = $x

Code 3.30 is the translation into NuSMV of Asmetal. code 3.29.
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Code 3.30: Forall rule example: NuSMV model

MODULE main
VAR
foo_1:
foo_2:
foo_3:
foo_4:
ASSIGN
init(foo_1) := 1
init(foo_2) := 2;
init(foo0_3) := 3;
init(foo_4) := 4
next (foo_1) :=
case
(1 < 3) &1 in 1..4: 1;
TRUE: foo_1;
esac;
next(foo_2) :=
case
(2 < 3) &1 in 1..4: 1;
TRUE: foo_2;
esac;
next (foo_3) :=
case
(3 <3) &1 in 1..4: 1;
TRUE: foo_3;
esac;
next (foo_4) :=
case
(4 < 3) &1 in 1..4: 1;
TRUE: foo_4;
esac;

1
1..
1.
1

PN NERNINS

We can see that the forall rule has been decomposed into four instructions
that corresponds to the four values of variable $x.

3.3.7 Choose rule

The choose rule syntax is:

choosev; in Dy, ..., v, in D, withG,, , do

]%vh“qvn

[ifnone R; frone]
where vy,...,v, are variables and D;,..., D, their domains. G,, ,, is a
boolean condition over vy, ...,v,. Ry, ., is arule that contains occurrences
of vi,...,v,.
The purpose of the choose rule is to execute one time the rule R,, ., with
some variables vy, ..., v, that satisfy G, . ,,. The number nR of branches
to evaluate is equal to the product of the cardinalities of domains Dy, ..., D,:

nR = ]%[|1)A
=1
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Optional branch ifnone contains the rule R;f,one that must be executed if
there aren’t values for variables vy, ..., v, that satisty G,, -

In the mapping process, each choose rul