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0.1 Introduction

The aim of this work is to develop the program proposed by S. Bloch, L.
Barbieri-Viale and V. Srinivas ([12],[8]) of generalizing Deligne mixed Hodge
structures providing a new cohomology theory for complex algebraic varieties.
In other words to construct and study cohomological invariants of (proper)
algebraic schemes over C which are finer than the associated mixed Hodge
structures in the case of singular spaces.

Before stating our results we give a brief survey on Mixed Hodge The-
ory, l-motives, extensions of mixed Hodge structures and the generalized
Albanese variety. Then we will explain the guide lines of this work, report
the main results and describe the possible future developments.

0.1.1 Background
Mixed Hodge Theory

Deligne defined a mixed Hodge structure as the data (H, W, F'), where H is
a finitely generated abelian group, W is an increasing filtration of sub-vector
spaces of H®Q and F is a decreasing filtration of H ® C such that F' induces
for each n a decomposition gr’V(H @ C) = @,y =n HP? with HP4 = HP.
By classical Hodge theory, if X is a projective (or Kéhler) manifold, then
H'(Xan,Z) carries a Hodge structure which is pure of weight 4, i.e., with
W, =0 for j < i, W; = H(X,Z) for j > i. More precisely we have the
Hodge decomposition

H'(Xan,C) = @ H(Xan, %), HY(Xan, 0) = H?(Xan, O%)

p+q=i

Moreover if f : X — Y is a morphism of smooth and projective varieties,
then f*: H"(Yan, C) — H™(Xan, C) is a morphism of Hodge structures.
Deligne proved that for every scheme X of finite type over C, H'(X,,,Z)
carries a natural mixed Hodge structure and that there exists a family of
functors

H':(Sch/C)° — MHS X +— H'(X,,,7Z)

where MHS is the category of mixed Hodge structures. (See [17], [18])

1-motives

Let A be complex abelian variety, then a result of Riemann says that the
association A — H;(Aan, Z) induces an equivalence of the category of abelian
varieties with the category of torsion free polarizable Hodge structures of type
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(—1,0),(0,—1). This equivalence can be generalized.

In fact (see [18, §10]) Deligne introduced the notion of a 1-motive generalizing
abelian varieties. A 1-motive over C is a morphism of abelian groups u :
X — G, such that X = 7" is a free and finitely generated abelian group;
G., = G(C) is the group of C-rational points of a semi-abelian algebraic
group G, i.e. G is an extension of an abelian variety by a torus.

Then he generalized the above equivalence by showing that there is a Hodge
realization functor

Thodge : {Deligne 1-motives} — {MHS level <1}

yielding an equivalence between the category of Deligne 1-motives, and the
category of mixed Hodge structures of level < 1, i.e. mixed Hodge structures
H of type (0,0), (=1,0), (0,—1), (=1, —1) such that gr'; H is polarizable
and Hy is free.

In [8] Barbieri-Viale generalized the Hodge realization replacing Deligne

I-motives with effective 1-motives (first introduced by Laumon in [31]): an
effective 1-motive (over C) is a morphism of abelian groups u : X x E — G,
such that X is a finitely generated abelian group; FE is a finitely generated
C-vector space; Go, = G(C) is the group of C-rational points of a connected
commutative algebraic group G.
He provided the category of formal Hodge structures of level < 1 containing
the category of mixed Hodge structures of level <1 (as a full sub-category)
and defined the formal Hodge realization making commutative the following
diagram

THodge

{Deligne 1-motives} —— {MHS level < 1}

i i

{Laumon l-motives} T {FHS level <1}

where the vertical arrows are full embeddings.

The equivalence T has an important geometric counterpart which we are
going to explain later.
The category of mixed Hodge structures of level < 1 is the category of struc-
tures related to the first cohomology group, H'(X,,,Z), of an algebraic com-
plex scheme X. This structure can be obtained via 1-motives: it is possible
to construct algebraically (i.e. over any field) a 1-motive M (X)) starting from
a scheme X; then, using the various realizations of 1-motives, it is possible
to compute the various (i.e. Betti, étale, crystalline, de Rham) first cohomol-
ogy groups of X. For instance if X is proper, by an important theorem of
Grothendieck ([26] or [23], Part 5]), we can consider the connected algebraic
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group Pic’(X). By a theorem of Chevalley it follows that (canonically) there
is an exact sequence of group schemes

0— G, — Pic"(X) =G —0
where G is semi-abelian. Then we get
Hl(XamZ) = Hl(Gam Z’) = THodge([O - G]) .

Note that via Hodge realization we can only detect the semi-abelian quotient
of the Picard group associated to X: in fact only the semi-abelian quotient
of Pic’(X) can be viewed as a Deligne 1-motive.

We know that also the additive part carries a geometric information (related
to the singularities as we will explain later).

This is a motivation to consider effective I-motives (such as [0 — Pic(X)])
and to construct Ty. In fact this last equivalence of categories suggests the
existence of a new cohomology theory, called sharp cohomology, such that
the first cohomology group is in fact a formal Hodge structure of level < 1.
Roughly speaking we endow the first Betti cohomology group of a scheme
with its mixed Hodge structure and some extra data strongly related to

the kind of singularity of the scheme. In case of X proper we will have
H}(X) :=Ty([0 — Pic’(X))).

Extensions of Mixed Hodge Structures

In [I3] Carlson studied mixed Hodge structures E that are extensions of
one Hodge structure A by another B: 0 - B — E — A — 0. Under
the equivalence relation generated by congruences such extensions form a
group, Exty,ys(A, B), which has the structure of a complex torus. When A
has weight < 2p, each such extension determines a group homomorphism
fe: AYP — JPB of the integral (p, p) classes of A to the p-th Jacobian of B,
a complex torus that generalizes the Griffiths intermediate Jacobian. Hence
it is possible to associate a 1-motive fg to the extension F. His philosophy
is that, when the extension comes from geometry, the associated 1-motive
contains interesting geometric informations. He illustrated this with several
examples, notably that in which F is the cohomology of a singular surface.
As an applications he proved a Torelli theorem for such surfaces and showed
how the associated 1-motive gives a Hodge-theoretic necessary and sufficient
condition for a Weil divisor on a normal crossings surface to be a Cartier
divisor.
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Albanese Variety

Let X be a smooth irreducible projective variety of dimension d over an
algebraically closed field k, and fix a base-point zo € X (k). The Albanese
variety of X, Alb(X), is an abelian variety which is the universal regular
quotient of CH?(X )geg—o (i-e. the Chow group of 0-cycles of degree 0 of X).
This means that:

i) there is a commutative diagram

X —2- Alb(X)

N

CHY(X ) deg=0

where « is an algebraic map and y(z) = [z] — [z(]
ii) For any other algebraic group G satisfying (i) there is a map Alb(X) —
G.

Esnault, Srinivas and Viehweg generalized this result to any (non necessar-
ily smooth) reduced projective scheme X (See [20] and [1I] in the case of
semi-abelian groups). In fact they constructed an algebraic group scheme
ESV(X) satisfying (i) and (ii): they gave both an algebraic construction for
projective schemes over an algebraically closed field, and an analytic version
for projective schemes over C.

For the analytic version they considered the Deligne cohomology groups:

HY (X, Z(q)) == H?(Xan, (2m0)7Z — Ox — --- — AL .

where A® is the analytic De Rham complex of X. Then ESV(X) (i.e. the
generalized Albanese of [20]) is defined as the kernel of the natural map

HY(X,Z(n)) — H*"(Xan, 2m0)"Z) 2 Z; n = dim(X).

In the smooth case, this agrees with the classical analytic definition.
If one replaces the naive Deligne cohomology with the more standard
Hodge-theoretic version, one has the semi-abelian variety

H2n—1 X
X) s (Xan: ©)

= ~ Extine (Z(—n), H Y Xon, Z
FnHanl(Xan’(c)+H2n71(Xan’Z(n)) X MHS( ( n)a ( y ))7

and a natural surjection ESV(X) — J"(X). This realizes ESV(X) as an
extension of J"(X) by a product of additive groups. In general, the surjection
ESV(X) — J*(X) is not an isomorphism (e.g. take X a curve with cusps).



The Main Problem

The general plan (according to [8],[7],[12]) is to construct an abelian category,
FHS, and a family of functors

Hé : (Sch/C)° — FHS
such that, at least:

1. The category of formal Hodge structures, FHS, fits in the following
commutative diagram where the arrows are full embeddings

/FHS\

MHS FHS;

~ 7

MHS;

2. There is a forgetful functor f: FHS — MHS.

3. The following diagram is commutative

| FHS
Hy
(Sch/C)° /
R
MHS

where H(X) := H(Xan, Z).

Roughly speaking the sharp cohomology objects Hé(X ) consist of the
singular cohomology groups H*(X,,,Z), with their mixed Hodge structure,
plus some extra structure. Before giving an explicit definition we want to
remark that there is no extra structure in the cohomology of smooth and
projective varieties: in fact H{(X) is different form the underling mixed
Hodge structure only when X is singular or non-projective.
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Let X a proper algebraic scheme over C. Then there is a commutative
diagram

Hi(Xp,C)/Fi — Hi(X,, C)/F! — - - — Hi(X,,,C)/F’

/

Hi(Xar“ Z) Uy Ti—1 T

T

Hz(x’ Q<z)

Hi(X, Q<1 . Hi(X,0x)

where the C-linear maps 7 are surjective. This diagram is the basic example
of formal Hodge structure, and it is in fact Hj(X).

Note that this definition is compatible with the theory of 1-motives. In fact
one can define H}(X) as the generalized Hodge realization of Pic’(X), i.e.
Hi(X) = Tjg(PiCO(X)) which is in fact given by the diagram

HY (X, C)/F!

0.1.2 Results
Formal Hodge structures

We construct a family of categories FHS,, n > 0, of formal Hodge struc-
tures of level < n. The objects of FHS, can be represented by commutative
diagrams of the following type

Hy —S He/F"— > Ho /P! — ... — > H¢ /F!

NI

Vn Vn— 1 ‘/1

Hinf Un U1

where Hz is a mixed Hodge structure of type {(i,7)| 0 < i,j < n}; Hiy, V;
are finite dimensional C-vector spaces. We simply denote this object by the
pair (H, V), where H = Hy X Hiy can be viewed as a formal group over C.

Each of the categories FHS,, satisfies the properties described in §0.1.1] but
the embedding FHS; — FHS, is not full in general. Anyway if we restrict
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to the category of special formal Hodge structures we get a chain of full
embeddings
FHSP® € FHS™ C --- C FHSPC

Extensions in FHS,

We compute the group of classes of extensions, Extpys ((H,V), (H', V")), in
several cases. As a corollary we can express the Albanese variety of Esnault,
Srinivas and Viehweg using ext-groups. Precisely consider X proper, irre-
ducible, algebraic over C. Let d = dim X and denote by H?14(X) the
formal Hodge structure represented by the following diagram

1'_]25#1()(&][17 Z) . H2d71(Xan’ C)/Fd ... H2d71(Xan7 C)/Fl

T T

HQdfl(X’ Q<d) . H2d71(X7 (f)) )

Then there is an isomorphism of complex Lie groups
ESV(X)an 2 Extpys, (Z(—d), ;" (X))

where ESV(X) is the generalized Albanese of [20]. Note that this formula
generalizes the classical one

AIb(X)an = Extyyus(Z(—d), H** (X0, Z)) , d:= dim X

which follows from the work of Carlson.

Higher extensions

It is well known that the groups Ext’(A, B) vanish in category of mixed
Hodge structures for any ¢ > 1. A natural question is the following

Question Do the groups Extiys ((H, V), (H', V")) vanish for i > n (up to
torsion) ¢

In particular Bloch and Srinivas raised a similar question for special formal
Hodge structure (cf. [12]).

We answer this question for n = 1. More generally we prove that the
category of Laumon k-1-motives up to isogeny is of cohomological dimension
1, for any k field of characteristic 0.

It follows that the category FHS; ® Q of formal Hodge structures of level < 1
modulo isogenies is of cohomological dimension 1, i.e. the higher extension
groups are torsion groups only.
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Sharp Cohomology

We prove that there exists a sharp cohomology theory (satisfying the axioms
stated in the Main Problem) if we restrict to the category of proper schemes
over C. In fact via 1-motives we can define the formal Hodge structure Hj (X)
for any algebraic scheme, but we have a good definition of Hg(X ) only for
proper schemes. Moreover we can define relative sharp cohomology groups
Hi(X,Y)for Y C X closed (and X proper) fitting in the long exact sequence

- — H{(X,Y) — H{(X) — H{(Y) = ---

0.1.3 Perspectives
A Conjecture on 1-motives

In [I8] §10.4.1] Deligne conjectured that the largest mixed sub-Hodge struc-
ture of a mixed Hodge structure (resp. the largest quotient mixed Hodge
structure) of level 1 is algebraic. This means that there is a 1-motive in
the sense of Deligne, defined algebraically, with Hodge realization the given
mixed Hodge structure. He also showed, reinterpreting Picard’s classical the-
orem, how it works for mixed Hodge structures arising from cohomology of
curves.

In [6], the authors gave a complete answer to Deligne’s conjecture for
H{(X,Q(1)) (See also [39])

It is quite natural (see [9]) to consider the generalization of this conjec-
ture in the framework of Laumon 1-motives and sharp cohomology objects
(associated to proper schemes).

Conjecture Given a proper scheme over C it is possible to construct alge-
braically a Laumon 1-motive Pic) (X, i) such that

Ty(Pict (X, i) = H{(X): inFHS; ® Q

where H{(X )1 is the biggest sub-structure of H;(X) in FHS;.

In fact we give a transcendental construction of Pic (X,i): the problem is
to provide an algebraic construction of these 1-motives.

0.2 Summary

Chapter [ We give a survey on the theory of 1-motives starting from the
original work of Deligne [I8] §10] (See also [40], [9]). Then we recall the
theory of Laumon 1-motives developed in [31], [§], [5]. In §1.3.3| we prove
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that the cohomological dimension of the category of Laumon 1-motives up
to isogenies is one following the proof of Orgogozo for Deligne 1-motives (see
[37, Prop. 3.2.4]).

Chapter [2] This is the core of this work. We develop the theory of formal
Hodge structures (of level < n) starting from [§]. In particular we extend to
this setting some of the notions of the theory of 1-motives.

We give some results in order to compute the ext-groups of FHS,,.

We recall the constructions of the algebraic group ESV(X) (by [20]) the
generalized Albanese variety of Faltings and Wiistholz FW(K) (See [21]).
Then we use the results on ext-groups to link the groups ESV(X) and FW(K)
with sharp cohomology.

Chapter [3] Again starting from the definitions given in [8] we provide the
sharp cohomology objects for a proper scheme and we prove the functoriality.
We will use some result of cohomological descent: this topic can be found in
[18] or more extensively in [15].

Appendix [A] We recall some fact about the theory of algebraic and formal
groups following [I, Exp. VII B|. Other good and more compact references
are [19] and [14], specially for the theory of formal groups over a field.

Appendix [B] This a survey on the category of mixed Hodge structures
based on the original work of Deligne [I7]. In particular we focus on the
computations of the extensions groups. Many proofs are omitted. In fact all
the results concerning MHS can be found in the book [38] or can be deduced
by the reader adapting the arguments used in the abstract setting [B.2] For
this part we refer to [38]. The books [29] and [28] are good references for a
general discussion on Ext functors.

0.3 Notations

modp, is the category of R-modules, where R is a (commutative and unitary)
ring; Modgr C modp is the full sub-category of finitely generated R-modules.
algy is the category of associative unitary algebras over R. Alg, C algp
is the full sub-category of algebras of finite type over R.
schg is the category of schemes over Spec(R). Schr C schg is the full
sub-category of algebraic (i.e. of finite type) schemes over Spec(R).
affg is the category of affine schemes over Spec(R). Affg C affg is the full
sub-category of affine and algebraic (i.e. of finite type) schemes over Spec(R).
A is used to denote a small abelian category, in particular all the con-
structions we need will be applied to the case of finite dimensional vectors
spaces.



We will write lim,, A, (resp. colim, A,) for the projective limit (resp.
inductive limit) of a projective system (of an inductive system) (A, ).
We assume the reader familiar with basics of algebraic geometry and sheaf

theory. (See [27], [30])
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Chapter 1

One motives

1.1 Deligne 1-motives

Definition 1.1.1. Let S be any scheme. A Deligne 1-motive over S (a
1-motif lisse in |18, §10.1.10]; see also [40]) is the data of

i) An S-group scheme X which is locally isomorphic, for the étale topol-
ogy over S, to a finitely-generated and free constant abelian group; an abelian
S-scheme A; an S-torus T'. (See [22, Ch.I| for a survey on abelian schemes
and tori)

ii) An extension of S-group schemes

0—-T—-G—A—0
iii) A morphism of S-group schemes u : X — G.

Note that the above definition for S = Spec k, where k is a perfect field,
is equivalent to the data of an Gal(k*P|k)-equivariant morphism u : X —
G(k**?) where X is a free and finitely-generated Gal(k*P|k)-module and G
is a semi-abelian k-group scheme[l]

In particular if k is an algebraically closed field one recover the definition
given by Deligne in [18] §10.1.2] .

A Deligne 1-motive is endowed with an increasing filtration (of sub-1-

motives) called the weight filtration (|18, §10.1.4|) defined as follows

u: X —-G] i>0

[

wo=war= {0 G e
0— T i=—2
[0 — 0] 1< =3

Following [22, Ch.I Def.2.3] we say that an S-group scheme G (where S is any base)
is semi-abelian if any fiber is an extension of an abelian variety by a torus.

1
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hence we get

0— 0] 1< =3

Example 1.1.2. Let A be an abelian scheme over a field k. Then according to
the Barsotti-Weil formula (See [36] or [42, Ch.VII §3| for the classical case) we
have Ext' (A, G,,) = AY(k), i.e. the group of classes of extensions of A by G,,,
is canonically isomorphic to the group of k-rational points of the dual abelian
variety AY. It follows that for any closed point P € AY(k) different from
the zero-section we find a non-trivial extension 0 — G,,, - Gp — A — 0 of
algebraic group schemes.

Definition 1.1.3. We define the category Mﬁr ¢ whose objects are Deligne-

1-motives over S and the morphisms are commutative squares

x -t x

G g G
where f, g are morphism of S-group schemes.

Let S'fppf be the category of abelian sheaves on the category of S-schemes
w.r.t. the fppf topology. Then (See [40]) MY is the full sub-category of

C®(Sypr) whose objects are Deligne-1-motives M = [u: X — G] with X, G
in degree 0, 1 respectivelyE]

1.1.1 Cartier Duality

Recall that the category S'fppf, of abelian sheaves on the category of S-schemes
w.r.t. the fppf topology, is naturally endowed with an internal Hom: we
denote it by Homgps(—, —)-

Proposition 1.1.4. i) Let X be an S-group scheme which is locally isomor-
phic for the étale topology over S to a finitely generated and free constant

2This is the original convention of Deligne which is compatible with the theory of
Voevodsky ([10]). Anyway is worth wile to mention that for some authors ([40], [37]) X
is in degree —1 and G in degree 0.
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abelian group. Then the sheaf X" := Homgppt (X, Gp,s) is represented by an
S-torus.

i) Let T be an S-torus. Then the sheaf T := Homgp(T, Gy 5) is
represented by an S-group scheme which is locally isomorphic for the étale
topology over S to a finitely-generated and free constant abelian group.

iii) The functor Homgp(—, G, s) induces an anti-equivalence between
the category of S-tori and the category S-group schemes which are locally
1somorphic for the étale topology over S to finitely-generated and free constant
abelian groups.

Proof. See [2, Exp. VIII §3|. O

Definition 1.1.5. Using the notations of the above proposition we call X"
(resp. TV) the Cartier dual of X (resp. T). T" is also called the group of
characters of T'.

Cartier duality is naturally extended to 1-motives over a field(see [I8],
10.2.11] and [IT} §1.5]). For a locally noetherian base see [3]. To do that the
yoga of biextensions is needed (see [2, Exp. VII]).

Definition 1.1.6. Let M; = [u; : X; — G|, i = 1,2, be two 2-terms
complexes of group schemes over S. A biextension (P, 1,0) of My, My by an
abelian sheaf H is given by

i) a Grothendieck biextension P of G; and Gy by H, i.e. an exten-
sion 0 - H - P — G x Gy, — 0 along with a structure of compatible
isomorphisms of torsors Py, ;, Py, 20 = Py 2o and Py o, Py o = Py 0oy,
(including associativity and commutativity) for all points z;, y; € Gy, i = 1, 2.

ii) a pair of compatible trivialization, i.e. a biadditive section 7 (resp. 7o)
of the biextension (1 X ug)*P over Gy x X5 (resp. (u; x 1)*P over X; X G)
such that 7; coincides with 7 when restricted to X; x Xos.

Proposition 1.1.7. Let M = [u: X — G| be a Deligne 1-motive over S (S
locally noetherian). Then the functor

M' e Mﬁrs — Biext(M', M; G,,.5)
is representable, i.e. there exists a Deligne 1-motive MY such that
/ V) ~ : ! .
HomMﬁS(M , M) = Biext(M', M; Gy, 5) .

Proof. See [18, 10.2.11] and [11], 1.5] for the construction of MV, [10, 4.1.1]
for the representability. O
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Remark 1.1.8. Cartier duality of 1-motives extends the duality of abelian
varieties. In fact given an abelian S-scheme A and its dual A", then the
Poincaré G,, s-bundle on A" x A induces a universal biextension P"™" €

Biext(AY, A;G,, s) (see [2, VIIL.3.2])

Remark 1.1.9 (Explicit Cartier Duality). The Cartier dual MY = [u’ : X' —
G'] of a Deligne 1-motive M = [u : X — G] can be described as follows:
consider the canonical exact sequence

0-W. o M=[0—-T]—-M—M/W_M=[X— A]—0

then «' is the boundary map of the long exact sequence generated by Homgps(—, [0 —

Gm,g]), i.e.

MY =[u: z-tomfppf(T, Gm.s) — Emt}ppf([X — Al [0 = Gy,5))]

~\~ -~

X/ Gl

recall that T is an S-torus, hence X’ = TV is its group of characters; more-
over using the exact sequence 0 — grV;, M — M/W_oM — grt/ M — 0 we
get

Extfpi(gry’ M, [0 = G s]) — Exti e (M/W_oM,[0 = Gy s]) — Extypp(gr™) M, Gy s)

where Exty ((er!) M,[0 — G 5]) = AY; Eatyo(grg) M, [0 — G s]) =
Homippt (X, Gy s) = X V; the arrow on the left is injective because Homg,pt (A, Gps) =
0; the arrow on the right is surjective because Ext (gry” M, [0 — Gy s]) =
gIt%ppf(X, ijs) = 0.

Hence there is an exact sequence
0—-X'—-G — A -0

Example 1.1.10. Let S = Speck where k is a field. Then it easy to com-
pute Hom(G,,, G,,) using the Hopf algebra characterization of affine group
schemes. In fact G,, = Speck[zr,1/z] and a morphism of k-algebras f :
klx,1/z] — k[z,1/x] compatible w.r.t. the Hopf algebra structure is of the
form f(z) = 2™ for some n € Z. This gives the natural isomorphism G), = Z
as constant group schemes over Spec k.

1.1.2 Universal Vector Extension

Let S be a scheme. The following results hold for any base, but we will
only need the case S = Spec(k), where k is a field of characteristic 0. An
extension of a Deligne 1-motive (over S) M = [u: X — G| by a connected
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commutative algebraic group scheme H is a commutative diagram of fppf
sheaves

x4 x

0 H E G 0

with exact rows. If we denote such an extension by (E,v) we say that it is
equivalent to (E’,v’) if there exists an isomorphism of extensions of G' by
H, ¢ : E — FE’, such that v' = ¢ ov. Defining the Baer sum in the usual
way we get a group of equivalence classes of extensions of M by H, denoted
by EXthf,s(M’ H).

Note that this can be defined as the group of classes Yoneda extensions in
the abelian category of complexes of fppf sheaves on 9, i.e.

Ext g (M, H) = Exten s, (M, H) (1.1)

Definition 1.1.11. A universal vector extension of M is an extension M? =
[uf : X — G(M?)] (note that this is not a Deligne 1-motive!)

x—4.x

LT

0—= V(M) —GM") —G—=0

where V' (M?) is a vector group over S and such that the push-out homomor-
phism
¢ : Home, (V(M"), W) — Ext e (M, [0 — W)

is an isomorphism for all vector groups W over S, i.e. the functor W +—
Ext e (M,[0 — W]) from the category of vector groups over S to the
category of abelian groups is represented by V (M?") and M? represents the
class e(idy(asa))-
Remark 1.1.12. As explained in [33] if

i) HOmfppf(M, Os) = 0;

ii) Ext}, (M, Og) is a locally free and of finite rank Og-module;
then a universal extension of M exists. Also in this case we have

5:L‘t%ar(M, W) = g?[ft%ar(M, OS) ®os w

for any locally free Og-module of finite rank ¥/. Moreover in this case we
have

V(M?) = Homog(Home (V (MY, Os), Og) = Home (Extza:(M, Og), Og)
(1.2)
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Ezample 1.1.13 (Abelian schemes). Let A" be the abelian scheme dual to
A. Let Pic® be the functor of invertible sheaves in Pic” endowed with an
integrable S-connection (see [33]). The map ¢ which forgets the connection
gives to the functor Picg"hv ) the structure of a functor over A = Pic%y /s -

One proves (see [33, I 2.6 and 3.2.3]) that this functor is representable and
0= wavys — Picl o 5 A =0 (1.3)

is the universal vector extension of A. The kernel of the forgetful map
¢ classifies all possible connections on the structure sheaf of A" and it is
Wav/gs Le. the Og-module of invariant differentials on A".

Also using the log-De Rham complex (in characteristic zero) we get the
following exact sequence

0— f*Q}AV/S — RO — QAV/S) — R'f.0% — 0

Then pulling-back via the inclusion Pic%. /s — Picav/s = R'f,0%. we get
the sequence (|1.3]).

Ezample 1.1.14 (Tori). By explicit computation it is easy to check that the
conditions (7,7) of remark [1.1.12| are satisfied when M = [0 — T and T is
an S-torus. Precisely we get Ext}. (M, Og) = 0, hence M* = [0 — T.

Ezample 1.1.15 (Discrete groups). Consider M = [X — 0]. In this case we
have Exty ¢(M, [0 — W]) = Homg, (X, W), hence V(M?) = X @z, Og

and the universal vector extension is
0—[0— X ®z,0s] = M*=idx®1: X - X ®z, Og] = [X — 0] =0

Proposition 1.1.16. For any Deligne 1-motive M over S, a universal vector
extension exists.

Proof. Tt follows by the general arguments in 33|, [I8]. See [3, 2.3] for an
explicit construction. O

1.2 Laumon 1-motives

In this section k is a field of characteristic 0 and k is its algebraic closure.
As explained in we assume that the categories of formal and algebraic
groups are full sub-category of Aby, i.e. the category of abelian sheaves on
the category aff, w.r.t. the fppf topology.
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Definition 1.2.1. An effective k-1-motive (or an effective Laumon 1-motive
over k cf.[5], 1.4.1]) is the data of

i) A (commutative) formal group F over k, such that Lie F' is finitely
generated and F(k) = limpy.4<o0 F (k') is finitely generated Gal(k|k)-module
(not necessarily torsion-free).

ii) A connected commutative algebraic group scheme G over k.

iii) A morphism u : F' — G in the category Aby of abelian sheaves over

affy for the fppf topology (see|A.3.1)).

As remarked for Deligne 1-motives we can consider an effective k-1-motive
M = [u: F — G] as a complex of sheaves in Aby concentrated in degree 0, 1.
It is known that any formal k-group F' splits canonically as product F'i¢ x Fle;
where F'j, ¢ is the identity component of F' and is a connected formal k-
group, and Fo, = F/F, is étale. Moreover, F admits a maximal sub-
group scheme F', , étale and finite, such that the quotient Fo/Fo, = F'g
is constant of the type Z" over k. One says that F' is without torsion if
Fi, =0.

By a theorem of Chevalley any connected group G is extension of an
abelian variety A by a linear k-group L that is product of its maximal sub-
torus T with a vector k-group V. (See Appendix|A|for a survey on algebraic
and formal groups)

Definition 1.2.2. An effective morphism of effective k-1-motives is a com-
mutative square in the category Ab,. We denote by lt/\/lel"eff = t/\/l?:zﬂ the
category of generalized k-1-motives with effective morphisms, i.e. the full
sub-category of C®(Aby) whose objects are effective k-1-motives.

Let M = [u : F — G] be an effective k-1-motive. Then we have the
following diagram in the category of abelian sheaves Aby

(Keru) N Fyop —Keru

0 Ftor F FerFianO
0 U(Ftor) G G/U(Ftor) —0
0 Coker(u) — Coker(u)

where the rows are exact (in the category Aby). We set
Mfr = [ﬁ' . Ffr X Finf - G/U(Ftor>];
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Mior := [Ker(u) N Fyop — 0]
Mg = [u: F/(Ker(u) N Fio) — G].

Then there are canonical effective morphisms
M — Mtf Mtor — M Mtf - Mfr

Definition 1.2.3. We say that an effective k-1-motive M = [u: F — G is:
free if Fg is free, i.e. M = My;
torsion if F = Fi,, and G =0, i.e. M = M,;,,;
torsion-free if Ker(u) N Fyop = 0, i.e. M = M.

Denote by tMEE 1 pqaeflior tepqaef 416 full sub-categories of FA>T
given by free, torsion and torsion-free effective 1-motives (over k).

The category ‘M>™ is the category of generalized k-1-motives defined
originally by Laumon (cf. [31]).

According to [I0, C.11.1] we generalize the weight filtration of an effective
I-motive M = [u : F — G in the following way

([u: F — G i>0
[Fior — G] i=—1
Wi =W;M =< [Fio; NKerug — L] 0= —2 (1.4)
[For N Keru — 0] i=-3
[0 — 0] i< —4

The above filtration is obtained as follows: first consider a free effective 1-
motive M = [u: F — G] and define the weight filtration by

W,3:0 CW72:[O_>L} CW,1:[O—>G] CW():M
Then the filtration in (|1.4]) is pull back along M — M, of the above filtration.

1.2.1 Localization

By definition the category of effective 1-motives (over k) is a full sub-category
of the category of complexes of sheaves in Ab,. We can say that two effective
1-motives M, M’ are quasi-isomorphism if there is an effective morphism
(f,g9) : M — M’ inducing a quasi-isomorphism of complexes.

Lemma 1.2.4. An effective morphism of 1-motives

F—~G

s

F'— G



CHAPTER 1. ONE MOTIVES 9

is a quasi-isomorphism <= it yields a pull-back diagram (in Aby)

0 A F F' 0

Ll

0 A G G’ 0

where A is a finite étale group scheme.

Proof. See [10, C.2.2] for the classical case. The generalization is straight-
forward. O

Definition 1.2.5. Denote by ‘M$ the category of 1-motives with torsion
obtained localizing the category of effective 1-motives at the multiplicative
class of quasi-isomorphisms.

Proposition 1.2.6. The category ' M$ of 1-motives with torsion is an abelian
category.

Proof. See [10, C.5.3]. O

Corollary 1.2.7. A short exact sequence of 1-motives in * M
0—-M —>M-—>M"—0

can be represented up to isomorphism by an exact sequence of complexes (also
called a strong exact sequence of effective 1-motives).

Proof. See [10, C.5.5]. O

1.2.2 Cartier Duality for free Laumon-1-motives

Proposition 1.2.8. i) Let F be a free formal group over k such that Lie Fy
(resp. Fo(k)) is finitely generated over k (resp. over Z). Then the sheaf
FY := Homap, (F, Gy, ) is represented by a connected affine (commutative)
algebraic group over k.

ii) Let L be a connected affine (commutative) algebraic group over k.
Then the sheaf L" := Homap, (L, G, 1) is represented by a free formal group
over k such that Lie Fyy (resp. Fo(k)) is finitely generated over k (resp.
over 7).

Proof. See [1, VII B 2.2.2] O
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Remark 1.2.9. We know that any formal group F' (resp. any connected affine
algebraic group L) is a direct product F = Fi; X Fo (vresp. L=V xT).
The duality between étale formal groups of the above proposition was already
cited, over any base, in Note that there one consider Homgpe(—, Gy s),
which is the internal Hom in the category of abelian sheaves on the category
schg w.r.t. the fppf topology. Here we consider Homap, (—, G;,x) where Aby
is the category of sheaves on aff, with respect to the fppf topology. Hence
we are using two slightly different definitions even though we get the same
result over k.

Ezxample 1.2.10 (Dual of a vector group). Consider the additive group G, .
In order to compute G\afk it is sufficient to note that, for any k-algebra R,
Homapg (Ga,r, G, r) is the set of morphisms of R-algebras Homayg, (R[t, 1/t], R[x])
compatible w.r.t. the Hopf algebra structure. Hence any morphism of this
type is uniquely determined by the image of ¢ in R[z|. This is a polynomial
in z, say ¢(x), subject to the following conditions

i) (co-unit) ¢(0) = 1;

ii) (co-multiplication) ¢(z) ® ¢(z) = ¢(z) ® 1 + 1 @ ¢(z);

iii) ¢(x) is a unit of R[z];

By explicit computation we get ¢(z) = 1 + ax for some a € Nil(R)
nilpotent in R. Hence we get Gy = Gy k-

Now let V' be a k-vector space. Then one can define the vector group
V such that V(R) = V ®; R for any k-algebra R. It is easy to check that
V = Spec Sym(V*) where V* is the dual vector space. For instance if vy, ..., vg
is a basis of V we get V = Speck[v], ..., v}], where (v}); is the basis of V*

dual to (v;);. Generalizing the above computation we get
VY(R) = V*®, Nil(R) VY =V*=Spfk[[vy, ..., vy]]

where V* is the vector group associated to V*.

This duality can be extended to Laumon 1-motives (i.e. free effective
1-motives) using the same arguments of In fact we have the following
definition (see [31], §5]).

Definition 1.2.11. Let M = [u : F — G] be an effective free 1-motive over
k. The Cartier dual of M is the 1-motive MY := [u’ : F' — G'], where

i) F':= LY = Hompp, (L, G,,), where L = W_,M;

ii) G’ := Eatpy, ([F — A] [0 — Gp));

iii) «' is the boundary map

HomAbk(L, Gm) — Extkb/k(M/W_gM, [0 — Gm])

obtained by the short exact sequence 0 — W_oM — M — M/W_oM — 0
via the functor Homap, (—, [0 — G,,]).
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Example 1.2.12. We already know ([{1.1.13)) that the universal vector extension
of an abelian variety A fits in the following exact sequence

0—>c_uAv/k—>Ah—>A—>0

As observed in [31], 5.2.5] the Cartier dual of A, which is a Laumon 1-motive,
is [c: AY — AY], where A is the formal completion at the origin of A"
and c is the canonical map. Note that Lie AY = Lie AY = Wiy Ik where

wWaAY/k = L‘_JAV/k(k)'

1.3 Extensions

1.3.1 The group of n-extensions

Let A be any abelian category (we don’t suppose it has enough injective
objects), then we can define its derived category D(A) and the group of
n-fold extension classes

EXtX(A, B) = HOHID(A)(A, B[n]) A, BeA.

As usual we identify this group with the group of classes Yoneda extensions,
i.e. the set of exact sequences

0—-B—-FE —---—FE,—-—A—0
modulo congruences (See [29] or [25]).

A lemma on 2-fold extensions

Now consider a 2-fold extension v € Extj (M, M), then it is represented by
an exact sequence

0—>M —-FE, —E,—M-—0 (1.5)

This can be written as the product of two 1-fold extensions as follows. Let

E := Ker(Ey — M) = Coker(M' — E)), then let v, € Exty(E, M), 7, €
Extp (M, E) be the classes represented by

0—-M —FE, —-E—0 0—-FE—FE—-M-—0 (1.6)

Then v =71 - 7,.
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As a particular case, consider W_o C W_; C W, a sequence of objects of
A. Then we have the following exact sequences

v 0= W - W =Wy /Wy — Wy /Wy —0
" 0—-Wo—-W, 1 ->W_ /W4 —0
Yo : 00— W_1/W_g— Wy /W_g— Wy /W_4 -0
and v = v, - 7, € Exta(Wo/W_1, W_5). In this particular case we get
Lemma 1.3.1. v = 0 in Exta(Wy/W_1, W_,).
Proof. See |37, Lemma 3.2.5], or [25], p. 184]. O

1.3.2 Universal and sharp vector extension

Definition 1.3.2. Let M be an effective 1-motive over k. A universal vector
extension of M is an effective I-motive M% = [uf : F — G(M")]

id

F
luh lu
0—= V(M) —GM") —G—=0
where V' (M?) is a vector group over k and such that the push-out homomor-

phism

e : Homg, (V/(M"), W) — Extth?,Cﬁ(M, 0 — W) := Extlc(Abk)(M, 0 — W)

is an isomorphism for all vector groups W over k, i.e. the functor

W — EXtC(Abk) (M, [0 — W])

from the category of vector groups over k to the category of abelian groups
is represented by V(M%) and M represents the class e(idy ).

Remark 1.3.3. Assume M is a free effective 1-motive and that the universal
vector extension of M exists (e.g. M = [0 — A]). Then we can consider its
Cartier dual (exactness follows by [5, Prop. 1.3.3|)

0— MY — (M) —= [V(M%)Y - 0] —0
which is the universal object for the functor
W — ExtthTeg([W — 0], M)

from the category of infinitesimal formal groups to the category of abelian
groups. See for a general statement and the proof of this fact.
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Lemma 1.3.4. Let M be an effective k-1-motie and W a k vector group.
Any isomorphism class of extension of M by W (resp. of [W — 0] by M)

in 'M¢ can be represented by a strongly exact extension of M by W (resp.

of [ﬁ\/ — 0] by M ) and the canonical map

EthC(Abk)(Ma 0 — W]) — Extth%(M, [0 — W)

(resp. Extlc(Abk)(ﬁ\/, M) — EXt}M%(ﬁ\/, M) ) is an isomorphism.
Proof. See [0, A.4.2]. O

Proposition 1.3.5. Let M = [u : F — G| be an effective I-motive. Then

the functor . e

W i— ExtthTeﬂ([W — 0], M)
Jrom the category of infinitesimal formal groups to the category of abelian
groups is representable by G, i.e. the formal completion at the origin of G.

Explicitly the universal object is the following extension
0— M — M;:= [(u,¢) : Fx G — G] — [G — 0] =0

where ¢ : G — G is the canonical map.

Proof. Let W be an infinitesimal formal group. If there is an extension
0> M— M —[W =0 —0

then we can assume it is an exact sequence in the category of complexes
of abelian sheaves (by definition and lemma [1.3.4). Hence M’ = [/ :
F' — G]and F' = F x W. It follows that ' is completely determined by its
restriction to ‘/7[7, call it v, and by u. Hence we have the following pull-back
diagram

0—=M—> M —WI[0]—=0

T

0 M M;

]

Definition 1.3.6. Let M be an effective 1-motive. We call M the universal
infinitesimal extension by M EI

3My is denoted by M in [5).
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Let M be an effective 1-motive over k, denote by M, the quotient
0—-0—-V]-M-—M,—0

where M = [FF — Gland 0 - T xV — G — A — 0 is the canonical
extension of G.

Proposition 1.3.7. For any effective 1-motive M, M, has a universal vector
extension Mi .

Proof. See [5, Prop. 2.2.3]. O

Definition 1.3.8. Let M be an effective 1-motive over k. We define the
effective 1-motive M?*, called sharp vector-extension of M, via the following
fiber product

‘J id ‘J
0—=V (M%) M M 0
0—= V(M%) M M, 0

Proposition 1.3.9. Let M be a free effective 1-motive. Then
(MF)Y = (M"); .

Proof. This is a direct consequence of the definitions, see [5, Prop. 2.2.10].
[

1.3.3 Ext of 1-motives up to isogenies

According to [37] we define the abelian category of Laumon k-1-motives (i.e.
effective free 1-motives) modulo isogenies : the objects are the same of t/\/l?’fr;
the Hom groups are Hom, Mz;,fr(M ,M'") ®7 Q. We denote this category by

EM>T @ Q. From now on we call 1-motive an effective free 1-motive over k

and EX'C&(M , M) is the group of classes of i-fold extensions in ‘M>" @ Q.
Moreover we adopt the weight convention used by Orgogozo: i.e. the

weight filtration of an effective 1-motive (up to isogeny) M = [F — G] is

[
W, =W;M = {
[
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Note that this is compatible with the filtration given in (1.4)) because the
torsion part of F' is isogenous to 0.

Theorem 1.3.10. The category 'M>™ @ Q is of cohomological dimension, 1.

Proof. First note that we can restrict to consider pure motives M, M’ (a 1-
motive is pure if it is isomorphic to one of its graded pieces w.r.t. the weight
filtration). In fact given M, M’ 1-motives, not necessarily pure, we have the
canonical exact sequences given by the weight filtration

0— W M — M — gy M'— 0

0— W_oM — W_ M — g, M — 0

Hence applying Homg (M, —) we get two long exact sequences
- Extd (M, W_iM") — Extg(M, M) — Extd(M, gry M')---

-+ Extg (M, W_o,M') — Extd (M, W_iM') — Extg,(M, g™y M) - --

from this follows that we can reduce to prove Extj (M, M') = 0 for M’ pure.
In the same way we reduce to consider M pure.

Step 1. We are going to prove the following: let M, M’ pure of the same

weight, then Extf, (M, M) = 0, for i > 0.
First consider M = F[1], M’ = F'[1] pure of weight 0 (i.e. formal groups).
Let 0 — F'[1] — F — F[1] — 0 an exact sequence of 1-motives modulo iso-
genies. Then FE is also of weight 0 (this follows directly from the definitions).
Hence Extg(F[1], F'[1]) is isomorphic to the group of classes of extensions
in the category of formal groups over k modulo isogenies. We know that
Mod;, is semi-simple, and so is MOdgi(Mk) ® Q by the lemma of Maschke (See
[41, p. 47|, for the representations of finite groups; the case of pro-finite is a
direct consequence). Hence the category of formal groups up to isogeny is of
cohomological dimension 0.

The second case is that of abelian varieties (weight —1). Again using the
definitions we get that Ext(b(A’ , A) correspond to the group of extensions in
the category of abelian varieties modulo isogenies. This group is zero (See
[35, p. 173]).

The third case is that of linear groups (weight —2). This can be reduced
to the first case by Cartier duality or proved explicitly using Ext(b)(L, L')Y=0
if L, L' are commutative linear group.

Step 2. From now on fix a 2-fold extension v € Exté(M , M) represented
by

0—-M —-E —E,— M-—0
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and take 7o € Exty,(M,E), m1 € Extg(E,M’) (as in , such that
v =1 - Y2. Moreover assume that M, M’ are pure.

First we show that Ext?@(M, M’) = 0 if M, M' are pure with weights
w < w.

Suppose —2 < w < w’ < 0. Then we have an exact sequence

Exto(M,W_1E) — Extg(M, E) — Exty (M, gry E)

with M pure of weight —1 or —2, then Ext(l@(M, gro E) = 0 and we can lift 5
to 74 € Extg (M, W_1E). Then let 7{ be the image of v, via Extg(E, M') —
Extg,(W_1E, M'). Now using

Extg(gr_y B, M') — Exty(W_1E, M') — Extg(W_oE, M)

we can reduce to consider F pure of weight —1, in fact Ext}@(W_gE M) =0
because w’ > —2. From this follows that 71 =7, =0

To conclude we have to prove Exté(M ,M') = 0 with M’ of weight less
than the weight of M. There are three cases

o) M =F[1], M= Al0]; b M=F[1], M=L[0]; ¢ M=A[0], M'= L[]

where F' is a formal group, A an abelian variety, L a linear group.
Case (a): now v € Extg(E, A) 72 € Exty(F[1], E). Then E = [F' —
Al is such that W_oF = 0. Consider the exact sequence

0—gr F—FE—gry&—0
applying Homg(F'[1], —) to it we get
Extg(F[1],gr_, E) — Exty(F[1], E) — Extg(F[1], gry E)

We proved that Extg(F[1],gry £) = 0 so we can lift 7, to a class 74 €
Ext(b(F [1], gr_; £) (This lifting is not canonical). Similarly using Homg(—, A)
to it we get an exact sequence

Extg(gro B, A) — Extg(E, A) — Exty(gr_, E, A)

and we can map y, — ) € Extg(gr_, F, A). By standard facts 7{ - 74 =
Y1 - y2 = 7. But we know that Ex‘c}@(grf1 E,A)=0.

Case (c¢): Is similar to case (a).

Case (b): now v € Ext(F[1],L). We want to reduce to the hypothesis
of the lemma. Thus we have to show: we can take E pure of weight 1 (i.e.
an abelian variety); there exists a 1-motive N such that v, € Extg(F, L) is
represented by 0 — W_oN — W_ N — gr ;N — 0; v € Ext(a(F[l},E) is
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represented by 0 — gr_; N — WyN/W_5 — gr, N — 0.

We know that Extg(F[1],gry E) = 0, so like in case (a) we can lift 75 to
a class 74 € Extg(F[1],W_1E). Let 7 the image of v, via Exty(E, L) —
Exto(W_1E, L). Hence 7; - 75 = 71 - 72

Now we can suppose E of weight < —1. Using the same argument we can
lift v; to 7{ € Bxty(gr_y B, L) (because Exty(gr_, E,L) = 0) and send
v — 4 € Extg(F[1],gr_y E). We proved that there exists an abelian
variety A, 71 € Extg(A, A), 12 € Exty(F[1], A), such that 7, - 72 = 7. We
claim that 77,72 can be represented by extensions in the category Laumon-
1-motives. In fact let

" : O—>Lf®—7f>1Gg®i:1A—>0

be an extension in the category of 1-motives modulo isogenies: f, g are mor-
phism of algebraic groups, n,m € Z. Then consider the push-forward by n~!
and the pull-back by m~!, we get the following commutative diagram with
exact rows in M3" @ Q

0—L- g a——0
\Ln_l lid lid
0—L—t>G % A——0
Tid Tid Tm
0—L—t>G@—2-a4—>0

The exactness of the last row is equivalent to the following: Ker f is finite;
let (Ker g)° be the connected component of Ker g, then Imf — (Kerg)® is
surjective with finite kernel K; ¢ is surjective. So after replacing L, A with
isogenous groups we have an exact sequence in M?’fr

0—L—-G—A—=0

Explicitly
0 L—! ~g—2 -4 0
id id
0——L/Ker f G g A 0
0—Imf/K G—2—A 0
id
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With similar arguments we can prove that v, is represented by an exten-

. i
sion in the category M}

0—-A—N-—-F[l]—-0

with N = [u: F — A].
To apply the lemma we need to prove that there is lifting v’ : F — G.
First suppose F' = F': consider the long exact sequence

Homay, (F, G) — Hompy, (F, A) 2 Exth,, (F, L)

We know ([34]) that Extp, (F, L) is a torsion group. So modulo replacing
F with an isogenous lattice we get du = 0 and the lift exists.
In case F' = F';,¢ is a connected formal group we have a commutative diagram
n Abk

F

vl
\G 7r\{A

where 7 is the formal completion at the origin of 7 = G, A (See . The
formal completion is an exact functor so 7 is an epimorphism. The category
of formal groups is of cohomological dimension 0, then we can choose a section
of 7 and lift u. O

G

1.4 Realizations

Let FHSP®(1) (resp. MHSE®(1)) be the category of formal Hodge structures
of level <1 (twisted by Z(1)), (H, V), such that gr_, Hz is polarized (cf. [8]
Def. 1.1.1]). We denote by *M; the full sub-category of ‘M whose objects
are Deligne 1-motives (over k).

Proposition 1.4.1 (Formal Hodge realization). There is a commutative di-
agram of functors

My 2R AHSE (1)

l i“

LMY FHSY()
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where the wvertical arrows ¢, ' are the canonical inclusions and Tg, Thoage
are equivalences of categories.

Proof. See [18, 10.1.3] for the original Hodge realization of free 1-motives;
the formal Hodge realization first appears in [§]; see also [5], Prop. 4.3.1]. In
the following remark we give a sketch of the construction. O]

Remark 1.4.2 (Construction of Ty). Let M = [u : F' — G] be an effective
I-motive. The associated formal Hodge structure (H, V') := T¢(M) is defined
as follows. First define Hz to be the fiber product

H F(C)

hzl lu
Lie Gan W) Gan

then let H,¢ := Lie Fi,r and V = Lie G,,. From this one get the commutative
diagram representing (H, V), i.e.

Hinf Lieu
where 7 : V = LieG — H¢/F° = Lie G is the canonical projection (note
that Lie G = Lie G,,).

To construct a quasi-inverse of the formal Hodge realization let (H, V') be
a formal Hodge structure and consider the canonical map of analytic groups
Hy Vv

Hin
W H, T W H

(hz, hint) -

Then let F' be the formal group such that F(C) = Hz/W_,Hz and Lie F =
Hiug; note that V/W_1Hy = G,, for an algebraic group G, in fact there is
an exact sequence

V gI‘_1 H(C
— —
W_1Hz  W_iHz+ F°

0 — V° x Homg(gr_, Hz, C*) —

the last term on the right is an abelian variety because gr_, Hy is assumed
to be polarized and the group on the left corresponds to a linear group.
Hence the quasi-inverse of Ty is induced by the association (H,V)
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= (Z(0),0) is an étale formal Hodge structure.
ii) Tf([@a — 0]) = (Hinr = C,0) is a strictly non homotopic formal Hodge
structure.

iit) T4 ([0 — A]) = (Hi(Aa, Z), H(A,Q")).

iv) T4([0 — Gy]) = (Z(1),C = Lie Gy).
v) T4 ([0 — Ga]) = (0,C).

Proposition 1.4.4 (Sharp De Rham). The following diagram of functors
commutes up to isomorphism

t a Tf pol
Ml —_— FHSl (1)

(—)”l l(—)ﬁ

M = FHSE (1)

Proof. See [9], 4.4.8] O

Remark 1.4.5. The classical De Rham theorem gives the comparison isomor-
phism
Hl(Xam Z) ® C= HllDR(X&n)

In the setting of Deligne 1-motives this result corresponds to the following
isomorphism of complex vector spaces (cf. [I8], §10.1.8])

Te(M) = Tor(M)  Thoage(M) := (Tz(M), W, F)

where Tpr(M) = Lie(W_;(M?)). Hence the above proposition is a general-
ization of this fact. Explicitly let M be a Deligne 1-motive (over C) than

(Ty(M))? =(Tz(M), Lie(W-_1M))} = (Tz(M), Te(M))
(Tﬁ(Mﬁ)) =(Tp(M?), Lie(W_,M?)) = (To(M), Tor(M)) .

For this reason we call the functor M +— Ty_pr(M) := Ty(M?*) the sharp De
Rham realization of M € *M§.



Chapter 2

Formal Hodge structures

2.1 Category of sequences of maps A,

Let A be an abelian category and n > 0 an integer. We define the category
A,, as follows. The objects are diagrams of n — 1 composable arrows of A
denoted by
ViV, 2V "BV, — =
Let V, V! € A,, a morphism f :V — V' is a family f; : V; — V! of
morphisms in A such that

Vigr —=V;
J/fiJrl lfi
Vilﬂ - V;/

is commutative for all 1 < ¢ < n.
Proposition 2.1.1. The category A, is abelian.

Proof. (Zero object) Consider the trivial object 0, then it is initial and final
by construction.

(Group Hom) Let f,g : V. — V’ be two morphisms in A, then we can
define f; + ¢; : V; — V/ because A is an abelian category. Moreover we have

vio(fi+gi) = (viofi)+ (viog) = (fic10v) + (gim10v;) = (fic1 +gi—1) 0v;

Hence the sum f + ¢, defined component-wise, is a morphism in A,. It easy
to check that the set Homa, (V, V') is a group w.r.t. this operation.

(Direct Sum) Let V', V' € A,,. Then the direct sum is defined component-
wise

VoV),=VieV] = (VaeV)_ =V eV, (z2)— (v),v)).

21
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(Ker/Coker) Given a morphism f : V. — V' in A,, then Ker f exists
and it is the following object: (Ker f); = Ker f;; the structural maps are
defined in the obvious way, in fact by definition of morphisms in A, we have
fiovicilkerfi .y = Vi1 0 fici|kerf,, = 0. Hence v;_1|ker s, , factors through
Ker f;. Dually we can show the existence of cokernels.

(Normal mono/epi) Everything is defined component-wise, hence every
monomorphism (resp. epimorphism) is normal because A is an abelian cate-
gory. O

Consider the following functors
t,m:An— A
defined as follows
V) (V)i =V S (V) =V, B0 =
V) : (V) =02 (V) =V, B . -V

Proposition 2.1.2. The functors v,n are full and faithful. Moreover the
essential image of v (resp. n) is a thick sub-category.

Proof. To check that ¢, n are embeddings it is straightforward. We prove that
the essential image of ¢« (resp. 1) is closed under extensions only in case n = 2
just to simplify the notations.

First consider an extension of V" by nV’ in Vecs

0 0 %4 0 0

L

0—Vy —Vy —1,—=0

L]

0 Vll VIH 174 0

then it follows that V3" = 0.
Now consider an extension of tV by (V"' in Vecs

0—Vy —Vy —1,—0

L bk

0—Vy —=Vy —=Vo —=0

L]

0 ‘/'1/ ‘/1/ ! ‘/’1 0
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Then v is an isomorphism (by the snake lemma). It follows that V" is
isomorphic, in Vecs, to an object of tVec,. To check that the essential image
of ¢ (resp. 1) is closed under kernels and cokernels is straightforward. ]

Remark 2.1.3. The category of complexes of objects of A concentrated in
degrees 1, ...,n is a full sub-category of A,, but it is not a thick sub-category
in general. Only for n = 1, 2 there is an equivalence of categories.

Proposition 2.1.4. Let A be an abelian category of cohomological dimension
0 (e.g. the category of finite dimensional vector spaces over a field). Then
there is a canonical isomorphism of groups

¢ : Extp, (V, V') = Homa(Ker v, Coker v')

where V.={v : Vo = Vi} (resp. V' ={v' : V) — V/}).
Ezxplicitly ¢ associate to any extension class the Ker-Coker boundary map
of the snake lemma.

Proof. Note that A, is an abelian category which is equivalent to the full
sub-category C” of C°(A) of complexes concentrated in degree 0,1. Hence
the group of classes of extensions is isomorphic. Now let a : A° — Al
b: B — B! be two complexes of objects of A. Then we have

Exte (A%, B*) = Extgsa) (A®, B*) = Hompa)(A*, B*[1])

because C' is a thick sub-category of C®(A).
By hypothesis A is of cohomological dimension 0, then a : A° — Al is

quasi-isomorphic to Ker a Y Coker a, similarly for B®. It follows that

Hom pia)(A®, B*[1]) = Hom pe(a) (Ker a[0] © Coker a[—1], Ker b[1] & Coker b[0])
= Homa (Ker a, Cokerb) .

[]

Corollary 2.1.5. Let A be an abelian category of cohomological dimension
0. Then the category Ay is of cohomological dimension 1.

Proof. By the proposition it follows that Ext, (V, —) is a right exact functor
and this is a sufficient condition (see |B.2.5)). [

Example 2.1.6. Let A be the category of finite dimensional complex vector
spaces. Denote Vec, = A,. Then Vec, is an abelian category and Vec; is a
category of cohomological dimension 1.
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Remark 2.1.7 (Twist). Let k € Z. We can define the twisted category A, (k)
starting form the category A, and shifting the indexes by —k. This is moti-
vated by the following situation. Le (Hz, W, F') be a mixed Hodge structure
and consider the following diagram

H(C/Fi Hc/FnHHc/Fnil —r e —>H(c/F1

as an object of Vec,. Then the association H +— H ®,,s Z(k) induces a shift
of indexes in the above diagram, i.e.

He(k)/F : He/F"™% — He/Fr= % — ... — He/F'7F

2.2 Generalities

Given a formal group (see |A.2.1JA.2.6) H = He X Hiye over C we identify
the étale component with the abelian group Hz := He(C), the infinitesimal

component with its Lie algebra Lie(Hj).

Let (Hz, F,W) be a mixed Hodge structure such that F**'He = 0 and
F*1He = He. This is equivalent to say that H is of type {(n,m)] a — 1 <
n,m < b} (B.3)). Note that under these assumptions Hy, is a mixed Hodge
structure of level < b+ 1 — a.

We denote the category of mixed Hodge structures of level <[ (I > 0) and
type {(n,m)| 0 < n,m <1} by MHS, = MHS;(0). Also we define the category
MHS;(n) to be the full sub-category of MHS whose objects are H € MHS such
that H ® Z(—n) is in MHS,(0).

Using this notation we get that the category defined by Deligne in [I8]
§10.1.3| is the full sub-category of MHS;(1) whose objects are polarized in
degree —1 and Hy is free.

Definition 2.2.1 (level = 0). We define the category of formal Hodge struc-
tures of level 0 (twisted by k), FHSo(k) as follows: the objects are formal
groups H such that Hyz is a pure Hodge structure of type (—k, —k); mor-
phism are maps of formal groups.

Equivalently FHSy(k) is the product category MHSq(k) x Modc.

Definition 2.2.2 (level < n). Fix n > 0 an integer. We define a formal
Hodge structure of level < n (or a n-formal Hodge structure) to be the data
of

i) A (commutative) formal group H (over C) carrying a mixed Hodge
structure on the étale component, (Hyz, F,W), of level < n. Hence we get
FnJrlH(c =0 and FOH(C = H(C.

ii) A family of fin. gen. C-vector spaces V;, for 1 < i <n.
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iii) A commutative diagram of abelian groups

Hy — He/F" — He /"' —— .. — > He /F!

NI

Ring Vi Vi Vi

Hinf Un, Vn—1

such that 7;, hiy,¢ are C-linear maps.

We denote this object by (H, V') or (H,V,h, 7). Note that V ={V,, — --- —
Vi} can be viewed as an object of Vec, (see [2.1.6)).

The map h = (hz, hint) : H — V,, is called augmentation of the given formal
Hodge structure.

A morphism of n-formal Hodge structures is a pair (f, ¢) such that: f: H —
H' is a morphism of formal groups; f induces a morphism of mixed Hodge
structures fz; ¢; : V; — V/ is a family of C-linear maps; ¢ : V. — V' is a
morphism in Vec,; (f,¢) are compatible with the above structure, i.e. such
that the following diagram commutes

HY, —— H./F

H,~—>H./F~ _Hl,——>V

inf %
hZ in
¢

Hinf Ring \%4

We denote this category by FHS, = FHS,(0).

Remark 2.2.3. Note that the commutativity of the diagram (iii) of the above
definitions implies that the maps 7; are surjective. In fact after tensor by C
we get that the composition m, ohc is the canonical projection Hc — H¢/F™:
hence 7, is surjective. Similarly we obtain the surjectivity of 7; for all i.

Ezample 2.2.4 (Sharp cohomology of a curve). Let U = X \ D be a complex
projective curve minus a finite number of points. Then we get the following
commutative diagram

HY(Ua, Z) HY(U,,,C)/F!

k\ MT

Ker(H'(Xan, O) — H' (Upn, ©)) ——= H' (X, O)

representing a formal Hodge structure of level < 1.
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Remark 2.2.5 (Twisted fhs). In a similar way one can define the category
FHS, (k) whose object are represented by diagrams

HZHH([j/Fn_k*)Hc/Fn_l_k*)'"HHc/Fl_k

hz,
Tn—k Tn—k—1 T1—k

Hinf Vn—k Vn—k—l Uy e VVl—k

hing Un—k k—1

where Hz is an object of MHS, (k).
Hence the Tate twist Hy — Hz®Z(k) induces an equivalence of categories

FHSw(0) — FHSy(k)  (H.V) — (H(k),V (k)

where H(k) = Hyz ® Z(k) x Hiyy¢ and V (k) is obtained by V' shifting the
degrees, i.e. V(k); = Vi, for 1 —k <i<n-—k.

Example 2.2.6 (Level < 1). According to the above definition a 1-formal
Hodge structure twisted by 1 is represented by a diagram

Hy — He ) F°

N

H inf %

inf

where is (Hz, F, W) be a mixed Hodge structure of level < 1 (twisted by
Z(1)), i.e. of type [—1,0] x [—1,0] C Z? (recall that this implies F*He = 0
and F_lH(C = H@)
In particular given a mixed Hodge structure (Hz, F, W) of level < 1 we can
consider the diagram

HZ —_— H@/FO

N

He/FO

Hence any mixed Hodge structure satisfying F'He = 0 and F~1H¢e = He
can be viewed as an object of FHS;(1).
This is in fact the category first defined in [8] if we forget the polarization
on the —1-graded sub-quotient of H.

Note that we can also consider (Hz, F, W) as a n-formal Hodge structure
for any n > 1 and k € Z such that MHS;(1) € MHS,(k): for instance if
a < 0 < b we can consider it as an object of FHS,;_,(1 — a) represented by
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the diagram

g

He H(C/FO

HZ‘)H(C:%*)"'*)HC/FOH"'*)O:%
0

Proposition 2.2.7 (Properties of FHS). i) The category FHS,, is an abelian
category.

ii) The forgetful functor (H,V) — H (resp. (H,V) +— V) is an ezact
functor with values in the category of formal groups (resp. the category Vec, ).

iii) There exists a full and thick embedding MHS(0) — FHS(0) induced
by (Hz, F,W) — (H = Hz, V; = He/F').

iv) There exists a full and thick embedding Vec;(0) — FHS,(0) induced by
Vi— (0,V).

Proof. 1) This follows from the fact that we can compute kernels, co-kernels
and direct sum component-wise. Explicitly we have:

(zero object) The object (0,0) is the zero object.

(kernels/co-kernels) Let (f,¢) : (H,V) — (H',V') be a morphism of for-
mal Hodge structures of level < n. Then we can consider the pair (Ker f, Ker ¢)
(resp. (Coker f,Coker ¢)) with the induced augmentation map. By the
properties of mixed Hodge structures we get F'(Ker f)c = F'Hc N Ker fc
(resp. F'(Coker f)c = F'H[/fc(Hc)). Tt follows that (Ker f,Ker ¢) (resp.
(Coker f, Coker ¢)) is a formal Hodge structure of level < n and satisfies the
universal property of the kernel (resp. cokernel).

Hence kernels and co-kernels can be calculated in the abelian category
FGr x Vec,. From this follows that the canonical morphism Coim — Im is
an isomorphism.

Finally we have to prove the existence of finite direct sums. Again it is
easy to check that (H,V)® (H',V') := (H ® H',V & V') with the obvious
augmentation is the direct sum in FHS,,.

ii) This follows by (i).

iii) Let (f, ¢) : (Hz, Hc/F) — (H}, H/F') be a morphism in FHS,,. Then
by definition for any 1 < i < n there is a commutative diagram

He/Fi -2~ HL/F

| Ju

He/F' —— Hy [T
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where fi(z+ F'Hc) = f(z)+ F'Hf is the map induce by f: it is well defined
because the morphism of mixed Hodge structures are strictly compatible
w.r.t. the Hodge filtration. Hence ¢ is completely determined by f.

iv) Is a direct consequence of the definition of FHS,. []

Lemma 2.2.8. Fizn € Z. The following functor
MHS—>MOdC s (Hz,VV,F)HH(C/Fn

1s an exact functor.

Proof. This follows from (v) of [B.3.2] O

2.3 Sub-categories of FHS,

Recall that a formal Hodge structure of level < n can be visualized as a
diagram

Hy — He/F" — He /"' —— .. — H¢ /F!

NI

Hinf Ring ‘{T’n Un anl V1 ‘f
Vf Vr?fl T V10

where V) := Ker(m; : V; — H¢/F").

Definition 2.3.1. Fix n > 0. Given (H,V) € FHS, we can define the
following objects of the same category

1) (H,V)e := (Hz, Hc/F"), called the étale part of (H,V).

ii) (H,V)x := (H,V/V?), where the augmentation H — H¢/F™ =V, /V!
is the composite m, o h.

We say that (H,V) is étale (resp. strictly non-homotopic) if (H,V) =
(H,V)et (resp. (H,V)e = 0).

Also we say that (H,V) is special if hyys : Hinp — V;, factors through V2.

Proposition 2.3.2. i) Let (H,V) € FHS, (n > 0), then there are two
canonical exact sequences

0— (0,V) = (H,V) = (H,V)y =0 ;0— (H, V)t — (H,V)x — (Hi,0) — 0

it) The augmentation hiy,s : Hine — V,, factors trough Vf < there is a
canonical exact sequence

0 — (H,V)an = (Hng, V®) — (H,V) — (H, V)t — 0
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Proof. i) Let (0,60) : (0,V° — (H,V) be the canonical inclusion. By
Coker(0,6) can be calculated in the product category FGr x Vec,,
i.e. Coker(0,6) = Coker0 x Cokerf = H x H¢/F and the augmentation
H — Hc/F™ is the composition H LN V, ™ He/F™

For the second exact sequence consider the natural projection pi,¢ : H —
Hiy¢. This induces a morphism (pint,0) : (H,V)x — (Hin, 0). Using the
same argument as above we get Ker(pint, 0) = Ker piys X Ker0 = Hz x H/F
as an object of FGr x Vec,. From this follows the second exact sequence.

ii) By the definition of a morphism of formal Hodge structures (of level
< n) we get that the canonical map, in the category FGr x Vec,, (pz, ) :
H xV — Hyz x H¢/F induces a morphism of formal Hodge structures <=
the following diagram commutes

Hi>Hz

|

ie. mh(z,y) =y mod F"Hc for all z € Hyyg, y € Hy <= hine(z) =0. O

Remark 2.3.3. Using the notation of the proof one can consider the map
(Ping, 0) : H X V' — Hiye x 0. Note that this is a morphism of formal Hodge
structure <= V=0 < (H,V)=(H,V)x.

Remark 2.3.4. For n = 0 we can also use the same definitions, but the
situation is much more easier. In fact a formal structure of level 0 is just a
formal group H, hence there is a split exact sequence

0_>Hinf_>H_>Het_>0

in FHS,(0).

2.3.1 Adjunctions

Proposition 2.3.5. The following adjunction formulas hold

’l) HOIDMH5<H27H%) = I‘IOIII[:HSH((['[7 V),(H%,H(IC/F)) fOT all (H, V) S
FHSP<, H), € MHS,,.

ZZ) HOHlFHSn((Hin, V), (H/7 V’)) = HomFHsn((Himc, V), (Hl

inf? (V/)O)) fOT’ all
(Hins, V) € FHS™, (H', V') € FHSY*.

Proof. The proof is straightforward. Explicitly: i) Let (H, V') € FHSP<, H), €
MHS,,. By definition a morphism (f,¢) € Homgps, ((H,V), (H}, H:/F)) is
a morphism of formal groups f : H — H’ such that f7 is a morphism of
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mixed Hodge structures, hence f = fz, and ¢ : V' — H{/F is subject to the
condition f/Fom = ¢. Then the association (f, ) — fz € Homuns(Hz, H)
is an isomorphism.

ii) Let (Hiy, V) € FHS™™ (H', V') € FHS®c. A morphism (f,¢) €
Homgps, ((Hing, V'), (H', V")) is of the form f = finr : Hing — Hlp, ¢ : V. — V/
must factor through (V')? because 7' o ¢p = mo f/F = 0. O

2.4 Different levels

Any mixed Hodge structure of level < n (say in MHS,,(0)) can also be viewed
as an object of MHS,,(0) for any m > n. This give a sequence of full embed-
dings

MHSy, € MHS; C --- € MHS
Now we want to investigate the analogous situation in the case of formal
Hodge structures.

Ezample 2.4.1 (FHS; C FHS,). The basic construction is the following: let

(H,V) be a 1-ths, we can associate a 2-ths (H’, V') represented by a diagram
of the following type

HY — H/F? —— HL./F'
PN
Hl,nf n V; ’ ‘/1/

inf Vg

Take H}, := Hy, then H{./F? = H¢, Hi./F' = Hc/F' and the augmentation
h7, is the canonical inclusion; let V' := Vi, 7} := m; and define V;, w5, v} via
fiber product

!
Ty

Vy—— Hc
i
Vi —= Hc/F!
Hence VJ fits in the following exact sequences
0— F'He =V, —=Vi—0 ; 0=V —=V,— Hec—0.
Finally we define h{  : H]

! — V5 again via fiber product

/

Hllnf mf ‘/2/
Lo
Hinf - Vi

hing
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hence we get the following exact sequence

0— F'He — H!

inf_>Hinf_>0 .

By induction is easy to extend this construction. We have the following
result.

Proposition 2.4.2. Let n,k > 0. Then there exists a faithful functor
L= : FHS, — FHS, 1«

Moreover 1 induces an equivalence between FHS, and the sub-category of
FHS, .« whose objects are (H,V') such that

a) Hz is of level < n. Hence F""'He =0 and F°Hc = He.

b) Vn-‘,—i = Vn+1 fO?" 1 S 1 S k.

c¢) There exists a commutative diagram with exact rows

Fm Hc Hc/F™

N

Un+1
FTL Vn+1 Vn

e

H inf

where o 18 a C-linear map.
And morphisms are those in FHS, 1 compatible w.r.t. the diagram in (c).

Proof. The construction of ¢4 is a generalization of that in 2.4.1] We have
Lp = 11 0 Lg_1, hence it is enough to define ¢; which is the same as in m up
to a change of subscripts: n =1, n+1=2.

To prove the equivalence we define a quasi-inverse: Let (H', V') € FHS, 1
and satisfying a,b, c and o : F"H{. — H/ ; as in the proposition.
Define (H,V') € FHS, in the following way: H = H'/a(F"H(); V; = V! for
all 1 <i<mn;h:H/a(FrHL) 25 V!, 25V =V, where I/ = (hl,, hly
mod F™). O

Proposition 2.4.3. Let n,k > 0 and denote by 1,,FHS,, C FHS, « the essen-
tial image of FHS, (See the previous proposition). Then 1,,FHS, C FHS,« is
an abelian (not full) sub-category closed under kernels, cokernels and exten-
SLONS.
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Proof. Note that it is sufficient to prove the result for k£ = 1, the other cases
follow by induction. In order to simplify the notations we just consider n = 1.
Let (H,V), (H',V') be two objects of ¢t;FHS; and (f,¢) : (H,V) —
(H',V') a morphism in FHS,. Then Ker fz (resp. Coker fz) is a mixed
Hodge structure of level < 1, because gr'¥ is an exact functor and the type
just depend on the bi-grading of gr'¥ Hc. By the exactness of (H,V) — V,
with values in the category Vecy, it follows that (H,V) — V? is also an
exact functor. Hence Ker ¢° (resp. Coker ¢°) is of the form id : K — K as
expected.
It remains to prove the condition that F'* Ker fc C Ker fiy¢ (resp. F'* Coker fc C
Coker fiy¢) and that the augmentation induces the identity on this sub-object.
This follows by the commutativity of the following diagram of C-vector spaces

F'Hg F'H

\ %

Vo—=V; o
hing
mf 1nf

Finally we have to show that ¢,FHS; is closed under extensions, i.e. for
any exact sequence in FHS;

finf

0— (H,V')— (H,V)— (H", V") =0

with (H', V"), (H”,V") in ¢;FHS;, then (H,V) is also an object of ¢1FHS;.
Again the conditions on Hy; and V follow by the exactness of gr'V and
(H,V) + V (See 2.1.2). Moreover recall that if Hy € Extis(HY, H)
we can suppose He = Hg @ H{ and that the weight filtration is also given
component-wise; but the Hodge filtration of Hy, is of the form F'+¢(F")@ F"
where: ¢ : H¢ — Hg is a C-linear map compatible w.r.t. the weight filtra-
tions; F' (resp. F") is the Hodge filtration of H{. (resp. H{). Hence we have
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a commutative diagram with exact rows and columns

0 0 0
0 F'H FYH! + ¢(F'H!) @ F'H!! F'H! —=
0 vy Vs vy 0
0 — HL/FH He/F'He HY,/F'Hl — 0
0 0 0

Then after choosing (non canonically) a splitting of the exact sequence

0— H!

inf

- Hinf - H”

inf_>0

we can define a map F'Hc — Hi, compatible with the given extension. [J

Remark 2.4.4. Note that (,FHS, C FHS, .« it is not closed under sub-objects.

Remark 2.4.5. Let FHSP™ be the full sub-category of FHS,, whose objects are
formal Hodge structures (H,V') with Hi, = (E] Then ¢;, induces a full and
faithful functor

L = 1, - FHSE® — FHSP™,

Moreover ¢FHSP™ C FHSPF, is an abelian thick sub-category.

Ezample 2.4.6 (Special structures). For special structures it is natural to
consider the following construction, similar to ¢, (Compare with [2.4.1)). Let
(H,V) be a formal Hodge structures of level < 1. Define 7(H,V) = (H, V')
to be the formal Hodge structure of level < 2 represented by the following
diagram

Hy, He —$ He/F!
Hinf B ‘/2/ B ‘/1
hine Ch)

!The superscript prp stands for proper. In fact the sharp cohomology objects (3.1.3)
of a proper variety have this property.
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where Vj, v}, h{ are defined via fiber product as follows

i

‘/17>H@/F1

Note that the commutativity of the external square is equivalent to say that
(H,V) is special. Hence this construction cannot be used for general formal
Hodge structures.

Proposition 2.4.7. Let n,k > 0 integers. Then there exists a full and
faithful functor

T =75, : FHS;P® — FHS"S,

Moreover the essential image of 1, T:FHSP, is the full and thick abelian

sub-category of FHSY, with objects (H, V) such that
a) Hz is of level < n. Hence F""'He =0 and F°Hc = He.
b) Vn-l—i = Vn+1 fO?" 1 S 1 S k.

C) Vn+1 = HC XHC/Fn Vn

Proof. Note that 7, = 7 o 7,1, hence is enough to construct 7. Let (H,V)
be a special formal Hodge structure of level < n, then 7 (H, V) is defined as
in [2.4.6) up to change the sub-scripts n =1, n+1 =2,

To prove the equivalence it is enough to construct a quasi-inverse of 7.
Let (H',V') be a special formal Hodge structure of level < n satisfying the
conditions a, b, ¢ of the proposition, then define (H,V) € FHS, as follows:
H:=H;V,:=V/foral1<i<n;h=v, 0N

Thickness follows directly from the exactness of the functors

(H, V) Hy, (H, V)V,
O

Remark 2.4.8. The functors 7y, agree on the full sub-category of FHS,
formed by (H, V') with H, = 0.
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2.5 Extensions of FHS

Example 2.5.1. Let A be an abelian variety over C. Then we can consider
the formal Hodge structure of level <1 (H;(Aan, Z)(—1),Lie A) (See|[1.4.3).
Then there is an extension in FHS;

0— (0, H(AY , QYY) — (Hi(Aun, Z)(—1), Hi(Aun, C)) — (Hy(Aupn, Z)(—1),Lie A) — 0

an’

corresponding to the universal vector extension
0—wy — A= A—0

via the formal Hodge realization Ty.

The above construction has been generalized to Laumon 1-motives and
formal Hodge structures of level < 1 in [5]. This motivates the following
definition.

Definition 2.5.2 (Sharp envelope). Let (H,V) € FHS,. We define a new
sharp structure (H, V)% := (H, V") where V! = He x Hyy and the augmenta-
tion h: H — V! = H¢ X Hiye is induced by the identity. Moreover we define
the sharp envelope (H,V)* of (H, V) via the following fiber product

(H> V)ﬂ4><H7 V)

| I

(H7 v)hx T>(H> V)X

where p is the canonical projection (see D and ¢ : (H, V)% — (H, V) is
induced by the canonical epimorphisms : H — H¢/F*, for 1 <i < n.

Proposition 2.5.3. The association (H,V) — (H,V)* induces a covariant
functor

(—)* : FHS, — FHS,

Proof. We already know that the association (H, V') — (H,V)y is functorial
(see[2.3.2)). Hence given a morphism of formal Hodge structures of level < n
we get a commutative diagram

(i, v) L2 (v

| l

/ /
(V) G55 (H V)
To conclude the proof note that (H, Hc/F) — (H, Hc) induces a functor
form FHS, « to FHS: here FHS,, . is the full sub-category of FHS, with objects
(H,V) such that V° = 0. O
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Definition 2.5.4. Let (H,V) € FHS,. We define (H,V); := (H x V,,V)
with augmentation (hi,id) : Hine X V,, — V5. We call it the universal
extension of an infinitesimal structure by (H,V'): in fact it is characterized
by the following universal property.

Proposition 2.5.5 (Universal property of (H,V);). Let E be a finite dimen-
sional C-vector space and (H,V') € FHS,,. Then there is a isomorphism

e : Home(E, V,,) — Extiys, ((E,0), (H,V))

functorial in E.
Explicitly € is obtained via the pull-back of the following extension

0—(HV)— (HV);— (V,,0) = 0.

Proof. Let 0 — (H,V) — (H',V') — (F,0) — 0 be an extension of formal
Hodge structures of level < n. By the exactness of the forgetful functors (see
we get H' = H x E, V' = V. Hence the (H', V') is determined by
the augmentation h' : H' — V,,. By definition of morphism of formal Hodge
structures we get h'(x + vy, 2) = h(x,z) + e(y) for z,€ Hy, y € E, z € Hy
for some e : E — V,,. It easy to check that for different choices of e we get
different equivalence classes. [

It follows by the proposition above that the association (H, V) — (H,V);
is functorial.

Remark 2.5.6. In FHS (1) we get the following formula
((H V)Y = ((H,V)"),

where (H,V) — (H,V)Y is the functor induced by Cartier duality on free
1-motives. This can be proven directly or using the formal Hodge realization
[L.4.1] and [L.3.91

Note that the universal property of (H,V); generalizes to any level the
result known for 1-motives (see [1.3.5).

Proposition 2.5.7. Let Hy; be a mixed Hodge structure of level < n: we
consider it as an €tale formal Hodge structure. Let (H', V') be be a formal
Hodge structure of level < n (forn >0). Then

i) There is a canonical isomorphism of abelian groups

Extiys(Hz, Hp) = Extlys, (Ha, (H,V//V")) .
it) For any i > 2 there is a canonical isomorphism

Bxtes, (Hz, (H',V'/V"")) 2 Bxtis, (Hz, (Hy, 0) -
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Proof. This follows by the computation of the long exact sequence obtained
applying Homgys, (Hz, —) to the short exact sequence

0— (H Ve — (H, V") — (H]

inf»

0)—0
In fact the associated long exact sequence is the following

0 — Hom(Hz, H}) — Hom(Hz, (H',V'/V'")) — Hom(Hz, (Hl,0)) 2>

m

2, Ext!(Hy, H)) — Ext'(Hz, (H',V'/V'0)) — Ext(Hy, (H/.;,0))

First note that Hom(Hz, (Hl;,0)) = 0 and Extpys (Hz, Hy) = Extyys(Hz, H)

inf»
by construction. Then we have to show that Ext'(Hz, (H!,,0)) = 0. Let
0) in FHS,. It is easy to see that

RN inf?
(H,V) be an extension of Hyz by (Hj
(H,V) is represented by a diagram of the following type

inf>

Hy — He/F" — He /P! — .. — H¢ /F!

N |

H{nme?Hc/FnHHc/Fnilﬁ"'HHc/Fl
and (Hy, 0) C (H, V), hence the augmentation h! , = 0. We can conclude
that (H,V) = (H!;,0) & He is the trivial extension.

From the above discussion we get (i). To prove (ii) just continue the long
exact sequence and use that Extjy,s(Hz, Hy) = 0 for i > 2 (B.3.5). O

Remark 2.5.8. With similar arguments we can show that there exists an exact
sequence

0 — Extiys, (Hz, (0.V")) — Extiys, (Hz, (H', V")) — Extis(Hz, Hy) — Extiys, (Hz, (0.V")) .
In fact just apply Hom(Hz, —) to the short exact sequence

0— (0,V"°) — (H', V') — (H',V'/V") - 0
and use the previous proposition.

Proposition 2.5.9. The forgetful functor (H,V') — Hy induces a natural
and surjective morphism of abelian groups

v+ Exteys, (H, V), (H',V')) — Extyys(Hz, H) .



CHAPTER 2. FORMAL HODGE STRUCTURES 38

Proof. Recall the extension formula for mixed Hodge structures is (see|B.3.4))

WoHOTfL(Hz, H%)(C
FONWy(Hom(Hyz, H))c) + WoHom(Hz, H))z

Exthws(Hz, )

more precisely we get that any extension class can be represented by Hy =
(H}, @ Hz, W, Fp) where the weight filtration is the direct sum W;H}, ® W, Hy,
and F} := F"H}), + 0(F'Hy) & F'"Hy, for some 6 € WyHom(Hz, Hy)c. Tt fol-
lows that He/F} = H./F'@® Hc/F'. Then we can consider the formal Hodge
structure of level < n (H,V) defined as follows: Hy = (H} @ Hy, W, Fp)
as above; Hiys = H! ; ® Hiu; V, = VeV, v = (v,v); h = (W', h).
Then it easy to check that (H,V) € Extiyg (H', V'), (H,V)) and v(H,V) =
(Hy @ Hz, W, Fp). u

Ezample 2.5.10 (Infinitesimal deformation). Let f : X — SpecCle]/(€?) a
smooth and projective morphism. Write X/C for the smooth and projective
variety corresponding to the special fiber, i.e. the fiber product

I

Spec C — Spec Cle]/(€?)

then (see [12, 2.4]) for any i,n there is a commutative diagram with exact
rows

0—= H" Y X, Q7Y —— H™( X0, Q<) H™(Xon, C)/F' ——0
) | |
0—— H""2( Xy, Q%) — H"(Xpp, Q971) — H"(Xo, C)/F"1 —0
Hence there is an extension of formal Hodge structures of level < n
0— (0,V) = (H"(Xan, Z), H*(Xan, @) —= (H"(Xan, Z), H*(Xan, C)/F) — 0

with V; = H"™(X,,, Q1) and v; = 0.

2.5.1 Formal Carlson theory

Proposition 2.5.11. Let A, B torsion-free mized Hodge structures. Suppose
B pure of weight 2p and A of weights < 2p — 1. There is a commutative
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diagram of complex Lie group

Extyps (B, A) —> Homy(BL?, J7(A))

T ]

Extiys(B2”, A)

-k

where 7 is an isomorphism; 1
i: By — B.

15 the surjection induced by the inclusion

Proof. This follows easily from [B.3.5] The construction of v, ¥ is given in
the following remark. Then choosing a basis of By” it is easy to check that
7 is an isomorphism. [

Remark 2.5.12. i) Let {by, ..., b, } a Z-basis of BY”, then Homgz(BL?, JP(A)) =
@ ,JP(A) which is a complex Lie group.

ii) Explicitly v can be constructed as follows. Let x € Extyus(B,A)
represented by the extension

0—-A—H—-B—0

then apply Hommus(Z(—p), —) to the above exact sequence and consider the
boundary of the associated long exact sequence

- — Homps (Z(—p), B) 25 Extips(Z(—p), A) — ---

Note that 0, does not depend on the choice of the representative of z;
Homuns(Z(~p), B) = BEP; JP(A) = Extiys (Z(—p), A).
Hence we can define (z) := 0, € Homg(B5?”, JP(A)).
iii) If the complex Lie group JP(A) is algebraic then Homg(B5”, JP(A))
can be identified with set of one motives of type
u: By — JP(A)

Definition 2.5.13 (formal-p-Jacobian). Let (H, V') be a formal Hodge struc-
ture of level < n. Assume Hy is a torsion free mixed Hodge structure. For
1 < p < n the p-th formal Jacobian of (H,V') is defined as

J(H,V) = V,/Hj.

where Hz acts on V), via the augmentation h. By construction there is an
extension of abelian groups

0=V, — J(HV)— J(HV)—0
where we define JP(H,V) := JP(Hy) = He/(F? + Hy).
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By lemma it follows that J/(H,V') is a complex Lie group if the
weights of Hy are < 2p — 1.
Proposition 2.5.14. There is an extension of abelian groups
0 — V) — Exteys, (Z(—p), (H,V)) — Extyups(Z(=p), Hz) — 0

for any (H,V') formal Hodge structure of level < p+ 1. In particular if Hy,
has weights < 2p — 1 there is an extension

0 — V) — Exteys, (Z(—p), (H,V)) — J*(Hz) — 0 . (2.1)
Proof. By [2.5.9] there is a surjective map
v EthleSp(Z<_p)7 (H7 V)) - EXtI{/IHS(Z(_p)v HZ) :

Recall that Z(—p) is a mixed Hodge structure and here is considered as a
formal Hodge structure of level < p represented by the following diagram

T () — - -

00—
It follows directly from the definition of a morphism of formal Hodge struc-

tures that an element of Kerv is a formal Hodge structure of the form
(H x Z(—p), H/ F') represented by

Hy % 7— He/F" —> He JF"™ ' — > . — > H¢ /F!

hy
Tn Tn—1 1

H inf Vn ‘/1

hing

where the augmentation hy(z, z) = hz(z) + 6(z) for some 6 : Z — V). The
map 0 does not depend on the representative of the class of the extension
because V), and Z(—p) are fixed. O

Example 2.5.15. By the previous proposition for p = 1 we get

0 — (Vi)" — Exteys, (Z(=1), (H,V)) — Extyns(Z(—1), Hz) — 0 .
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2.6 Albanese varieties

2.6.1 The generalized Albanese of Esnault-Srinivas-Viehweg

Let X be proper and irreducible algebraic scheme of dimension d over C.
Then there exists an algebraic group, say ESV(X), such that ESV(X)., =
H*=1(X, Q%) /H*~1(X,,,Z) and it fits in the following commutative dia-
gram with exact rows

0 —— Kere Pl —S JA(HX Y (X, Z)) — 0
Lp \La id
2d—1 d
0——Kerd M) —% JUH* (X on, Z)) — 0

where « is induced by de canonical map of complexes of sheaves C — Q<.
(See |20, Theorem 1, Lemma 3.1|)

Recall that the formal Hodge structure of level < 2d —1 Hﬁ2 =Ld(X) can
be viewed as ths of level < d (see represented by the following diagram

H2d_1<Xan7 Z) . H2d_1(Xana (C)/Fd ... HQd_l(Xany (C)/Fl

T T

sz_l(X, Q<d) . HQd_l(X, O) )

Proposition 2.6.1. There is an isomorphism of complex connected Lie groups
(not only of abelian groups!)

ESV(X)an & Exthys, (Z(~d), B2 (X))

where Z(—d) is the Tate structure of type (d,d) viewed as an étale formal
Hodge structure.

Proof. Step 1. By [§] there is a canonical isomorphism of Lie groups
BSV 0, (X) 2 Extlys (2 — 0], [0 — ESV(X)]) 2 Exthys, 1) (Z(0), TH(ESV(X)))

(recall that in [8] FHS;(1) is simply denote by FHS;) where T4 (ESV(X)) is
the formal Hodge structure represented by

HN (X g, 2(d) —> H? (X, C(d))/F?

T |

H2d—1 (Xan’ Q<d)
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Step 2. Up to a twist by —d we can view Ty(ESV(X)) diagram as an
object of FHSy, say (H,V) with H = H*1(X,,,Z), Vq = H?** (X, 2<%,
V; =0for 1 <i < d. Thisisasub-object of Hﬁzd_l’d(X) and ExtéHSl(l)(Z(O), Ty(ESV(X))) =
Exteys, (Z(—d), (H,V)). Then applying Extpys, (Z(—d), —) to the canonical
inclusion (H,V) C Hfd_l’d(X) we get a natural map

Exths,u(Z(0), Ty(ESV(X))) — Exthys, (Z(—d), F2(X))
which is an isomorphism by (2.1]). O

2.6.2 The generalized Albanese of Faltings and Wiistholz

Let U be a smooth algebraic scheme over C. Then it is possible to construct
a smooth compactification, i.e. 35 : U — X open embedding with X proper
and smooth. Moreover we can suppose that the complement Y := X \ U is
a normal crossing divisor ]

Remark 2.6.2. There is a commutative diagram (See [32] §3])

00— H(Xun, Q' (logY)) — H'(Upsp, C) —— HY(X,0) ——0

: L

0—— HY(T(Uyn, Q%)) H (Upn, C) —= HY (U, O)

hence, by the snake lemma, Ker b = Coker a. We identify these two C-vector
spaces and we denote both by K.

For any Z C K sub-vector space we define the C-linear map az : H'(X, 0)* —
Z* as the dual of the canonical inclusion Z C H'(X, O).

Definition 2.6.3 (The generalized Albanese of Serre). We know that
H'(Unn Z)(1) = Titoaye (D3 (X) — Pic’ (X))

and that the generalized Albanese of Serre is the Cartier dual of the above
1-motive, i.e.
[0 — Ser(U)] = [Div)(X) — Pic’(X)]"
Note that by construction Ser(U) is a semi-abelian group scheme corre-
sponding to the mixed Hodge structure H' (Uan, Z)(1)* := Hommus (H* (Uan, Z)(1), Z(1)).
The universal vector extension of Ser(U) is

0 — Wpieo(x) — Ser(U)* — Ser(U) — 0

2Tt is possible to replace C with a field k of characteristic zero. In that case we must
assume that there exists a k rational point in order to have FW(Z) defined over k.
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this follows by the construction of Ser(U) as the Cartier dual of [Divy(X) —
Pic’(X)] and [5] lemma 2.2.4.
Recall that Lie(Pic’(X)) = H*(X, O), then wpieox)(C) = H'(X,0)".

Definition 2.6.4 (The gen. Albanese of Faltings and Wiistholz). We define
an algebraic group FW(Z) (depending on U and the choice of the vector
space Z) to be the vector extension of Ser(U) by Z* defined by

az € Home(HY (X, 0)*, Z*) = Homg (wpieo(x), £°) = Ext!(Ser(U), Z*)
i.e. FW(Z) is the following push-forward

0— HY(X,0)* —Ser(U)* —Ser(U) —=0

-

0 Z* FW(Z) ——Ser(U) —=0

Proposition 2.6.5. With the above notation consider the formal Hodge
structure (Hz, V') € FHS; represented by

H(Uan, Z)(1)* — H( X, Q(log V))*

HY(T(Uan, %))

(This diagram is the dual of the left square in remark . Recall that
K =Kera. Then

FW (K )an = Extiys, (Z(—1), (Hz, V)

Proof. 1t is a direct consequence of [2.5.14] O
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Sharp Cohomology

3.1 Generalities

Let X be a scheme over C, then we denoted by A® (resp. €2°*) the holomorphic
(resp. algebraic) De Rham complex, i.e. A° (resp. Q°) is the structural sheaf
of the complex analytic space X,, (resp. of the scheme X); and A' (resp.
Q') is the sheaf of holomorphic (resp. algebraic) 1-forms and A? := AP A!
(resp. QF = AD,Q).

Remark 3.1.1 (GAGA). Let X be a proper scheme over C. Then the sheaf
QP is coherent Ox-module and the associated analytic sheaf is AP.

Ezample 3.1.2 (Motivating ex.). EI Let X be a proper but possibly singular
complex variety. According to the basic construction of [18], we may find
7 Xe — X a proper and smooth hypercover (See [15]) such that 7* is an
isomorphism on Betti cohomology and such that the Hodge structure coming
from X, is canonically defined depending only on X . On the other hand we
can consider the naive holomorphic De Rham complex A*® associated to the
singular variety X . It is contravariant functorial and receives the constant
sheaf C on X, so we get a splitting in cohomology

H'(Xan, €©) = H' (Xon, A°) & H'((Xen), A*) = H (X, C)
The Hodge filtration on H = H*(X,,, C) is the image of the stupid filtration:
ie. FPH = im(H*(Xqam,02PA%) — H(Xa,C)). So we define the Hodge
filtration on H'(Xay,.A*) in the same way

FPH (Xan, A®) i= im(H (Xap, 0°PA%) — H'(X,n, A%))

1See the introduction of [12].

44
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there is a commutative diagram

H H/FiH H/Fi—'H H/F'H

H (X, A%) — HI(Xon, 050 A%) —= H (X, 051 A*) —> - — HI(X, 0)

|

H (X, C)

Definition 3.1.3. Let X be a proper scheme over C, n > 0 and 1 < k < n.
We define the sharp cohomology object H;L’k(X) to be the n-formal Hodge
structure represented by the following diagram

H"(Xan, Z) —= H"(Xan, C)/F" —= -+ ——= H"(Xon, C)/F"

T~ ] |

Vi (X) a Vi (X)

where

H"(Xan, 05" A®) if1<i<k

V;nd(X) = n 3 n <k pe : ;
H (Xan,(C)/F X H"(Xan,C)/F* H (Xan,O' A ) ifk<i<n

In the case n = k we will simply write H]'(X) = H;""(X). This object is
represented by

H"(Xun, Z) —= H'"(Xan, C)/F" —= H™"(Xpn, C)/F" ' — -+ —— {"(X,,, C)/F?

I ! |

H"(X, o.<nQo) . Hn(X, 0.<n7190) ce H”(X’ QO)

Ezample 3.1.4. Let X be a proper scheme of dimension d (over C). Then
H?71(X,,,Z) is a mixed Hodge structure satisfying F4*! = 0 and the sharp
cohomology object Hf dil’d(X ) is represented by

H* (X, Z) —= H* (X, C) —> - H*7(X,,, C) —> H*Y(X,,,,C)/F*. ..

T~ ] |

V(X)X = B2 (X, 000

and

P (X, ©) € VEH(X) = VETHH(X) = o = VETYH(X)
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Hence, according to Proposition , Hﬁ2 dil’d(X ) can be viewed as a formal
Hodge structure of level < d.

Proposition 3.1.5. For anyn and 1 < p < n, the association X — Hgl’p(X)
induces a contravariant functor H;"" : Proper — FHS,.

Proof. 1t is enough to prove the claim for p = n. We know that H"(X) :=
H"™(Xan, Z) along with its mixed Hodge structures is functorial in X, so for
any f: X — Y we have H"(f) : H"(Y) — H"(X). Also by the theory
of Kéhler differentials there exist a map of complexes of sheaves over X,
Pe : fFO — QF%, inducing

a: HY(X, 757 Q%) — H"(X,757Q%)

Moreover there exists 5 : H*(Y,77Q%) — H™(X,7<"f*Q%,). For it is suffi-
cient to construct a map 3 : H*(Y,7"Q%) — H*(X,7<"f71Q%). So let I*
(resp. J*) an injective resolution?| of 7<"Q}, (resp. 7<"f71Q3,). Using that
f~! preserves quasi-isomorphisms, we have the commutative diagram

_ quis
f 17_<TQ;/ > J®

s
ffllo
where the existence of v follows from the fact that J® is injective. So we have
defined a map 1, : H"(Y,757Q°*) — H"(X,7<"Q°).
Now choosing I*, J? for any r it’s easy to see that the maps 1, fit in the

ryer

commutative diagram
o ——H"(Y,77Q°) ——= H"(Y, 7= 1Q%) —— - -

| |

o — H"(X,77Q°) —— H"(X,757Q*) —— - - -
Now it is straightforward to check that H;""(go f) = H;""(f) o H;""(g), for
any [ X =Y, qg:Y — Z. O]

Ezample 3.1.6 (No Kiinneth). Let X,Y be complete, connected, complex
varieties. Then by Kiinneth formula follows

H (X XY)a,?) = H{( Xan, )@ H' (Yan,?) ?7=17, 0

so that H}(X x Y,Z) = H}(X,Z) ® H}(Y,Z).

2By injective resolution of a complex of sheaves A® we mean a quasi isomorphism
A® — I°®, where I® is a complex of injective objects.
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Now we consider the cohomology groups in degree 2. With the same
notation we get

H*((X X Y)an, Q) = H*(Xan, Q) & H'(Xan, Q) @ H' (Yan, Q) ® H*(Yan, Q)

which is the usual decomposition of singular cohomology. Let p : X xY — X,
q: X XY — Y the two projections; note that

Oxxy — Q%{xY = o< (p*(OX - Q%{) ®q*(Oy — Q%,))
hence there is a canonical map
HY(X XY, p*(0<2Q%)2q¢" (0°2Q%)) = @2 H* (X, 0°2Q%)@H (Y, 0<?Q%}) — H*(XxY,0<2Q°)

which is not necessarily an isomorphism. From this follows that we cannot
have a Kunneth formula for Hf (X xY).

Definition 3.1.7 (relative cohomology). Let f : X — Y be a morphism
of proper algebraic schemes over C. Let Hdg(—) be the C-mixed Hodge
complex of (—) (See [4, §2|). Then we can consider the following diagram of
complexes

F\Zy =2 108 — 2 1 HAg(Y)

b |

Zyx — > Q% — " Hdg(X)c

. |

Cone(a,o )~e Cone(8,5'
T "0 T e (Hdg( 1))

where Zx.y := Cone(f~'Zy — Zx), Q%.y = Cone(f*) .
We define H;I "(X;Y) to be the formal Hodge structure represented by

Hn(Xan; Y;ma Z) - Hn(Xan; Yana C)/Fn I Hn(Xan; Yam C)/Fl

I |

Hn(X7 O-<nQ;(;Y) Hn(Xu O<lQ;{;Y)

Moreover let 1 < k < n. We define

H™(X,050% ) if1<i<k

VPRXY) = . <kCre : :
H™(Xan, Cx v )/ F* X gn(Xan Cxop )it HH (X, 055Q% ) ifk<i<n
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3.1.1 Sharp cohomology for curves

Definition 3.1.8. Let U/C be a curve and X be a compactification such
that X \ U =Y is a finite set of smooth points. Then we define the first
g-cohomology object of U as the sharp-structure Hﬁl(U) € FHS; represented
by the diagram

H(Usy, Z) —= H"(Unn, C) [ F*

T~

Hl (Xal'U OXan)
where FE(U) := Ker(H'(Xan, Ox,,.) — H (Uan, Ov,,))-

E(U)

This is in fact defined in order to agree with the f-Hodge realization of
the 1-motive Pic; (U) defined in [32]: we denote it by M, (U) and it is defined
as follows -

MAU) = [E(U) » Divd(X) —% Pic®(X)

where E/(E) is the infinitesimal formal group with Lie algebra E(U); Divy(X)
is defined via fiber product as

Div) (X)) — HY (X, K*/O¥)

| l

Pic’(X) — HY(X,0%)

and the morphism w is defined in the obvious way by this diagram and the
canonical inclusion F(U) C H'(X,,, O).



Appendix A

Algebraic and formal groups

A.1 Algebraic groups

Definition A.1.1. A (commutative) algebraic group over k is a scheme G,
separated and of finite type over k, which is a group object in the category
of schemes over k, i.e. the associated functor of points factors through the
category of abelian groups

hG . SChk — mOdz, hG(T) = I‘IOIIlSChIC (T, G)

A morphism of algebraic group is a morphism of schemes which induces a
morphism of group functor.

Remark A.1.2. Equivalently an algebraic group scheme is a quadruple (G, e, m, 1),
where G € Schy, and

Spec(k) G  Gx, G2 G GLHG

are morphisms in Schy, such that the following diagrams commute
mXidG

GXkGXkG GXkG
Gol idg xm m
GXkG o G

49



APPENDIX A. ALGEBRAIC AND FORMAL GROUPS 50

G xj Spec(k)

G %<, G
pri

Go2 G —G X, G G —— Spec(k) “—— @G Go3

pr2

Spec(k) X, G G x;, G

where pr; are the canonical projections and G — Spec(k) the canonical map.

Ezxample A.1.3 (Constant group). Let H be a finite (abstract) group and
consider the k-algebra B := kf of all maps f : H — k; there is a natural
identification

BB ETT fege {HxH> (z,y) — f(x)g(y) € k}

One defines a group structure on H = Spec(B) by
e# m
B=k e#(f)=f(n) B B&xB m*(f)(wy) = f(ry)}

BEB  it(f)) = f@ )
These affine group schemes are called constant finite groups over k.

Ezxample A.1.4 (The additive group scheme). Let G, = Spec(k[t]): we have
Homgep, (T, G,) = Homugyg, (K[t], Or(T)) = Op(T) VT € schy,

which has naturally the additive group structure of Or (7). It’s easily verified
that
) =0 mFt)=txl+let #(t)=—t

Ezample A.1.5 (Multiplicative group schemes). Let M be an arbitrary com-
mutative (abstract) group; consider its group algebra B := k[M]| which is
commutative. Then

Homy,g, (B, A) = Homgz(A*, M)

which is again an abelian group. So Dy (M) := Spec(k[M]) is a commutative
affine group scheme. Explicitly we have Vo € M

n(x) =0 prz)=z@z (z)=a""

There are two interesting groups of this kind

Lk[M] is the algebra of polynomials where the variables are the elements of M.
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a) M = Z. Dy(Z) = Spec(k[t,t7]), usually written G,,, and
Homgen, (T, Spec(k[t,t'])) = Homayg, (k[t,t '], Or(T)) = Or(T)*
b) M = 7Z/nZ. We have the group scheme of n-roots of unity over k and
t, = Di(Z/nZ) = Spec(k[t] /(1" — 1))

If the characteristic p of k not divides n, the k-algebra k[Z/nZ)] is isomorphic
to a direct sum of n copies of k; if n = p, p,, is a scheme with only one point,
but the local ring at that point has nilpotent elements.

Ezample A.1.6 (Vector groups). Let V' be a finite dimensional k-vector space.
Let Sym(V*) be the symmetric algebra on the dual vector space of V. Ex-
plicitly, if vy,...,v, is a basis of V and v is the associated dual basis, we
have

Sym(V*) = k[vf,...,v*] and m¥(v;) =v; @1+ 1@

Then V' := Spec(Sym(V*)) is an affine algebraic group and
hv(T) = Homschk (T, V) = OT(T) Rk \%4

Proposition A.1.7. Let k be a field of characteristic 0.

i) Let G be an algebraic group over k, then G is smooth and equidimen-
sional over k.

it) The category of (commutative) algebraic group schemes is an abelian
category.

iii) (Chevalley’s Theorem) Let G be an algebraic group over k, the there
are two exact sequences

0= Geon — G — Gg — 0 0—-L—Gen—A—0

where Geon 1S the connected component of the unit section e : Spec(k) — G;
G, = G/Goy, i étale over k; L is the smallest algebraic subgroup of Geon
such that Geon/ L is proper over k.

Moreover L is canonical isomorphic to a product T X,V , where V' is a vector
group and T a torus.

Proof. See |24, Ch. 1 6.6, §7]. See also [16] for a modern proof of the
Chevalley theorem. m
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A.2 Formal groups

Recall that according to [I, VII B] a formal scheme over k is the formal
spectrum Spf(A) of a pro-finite k-algebra A, i.e. A =lim, A, is a projective
limit of finite dimensional algebras A, over k.

Definition A.2.1. A (commutative) formal group over k is a formal scheme
F = Spf(A) which is a group object in the category of formal schemes.

Remark A.2.2. Equivalently F' = Spf(A) is a formal group if the functor of
points (from the category of affine schemes)

h : aff, — Set  hp(Spec(R)) := Hom$;*(A, R) (= continuous homomorphisms)

factors through the category of abelian groups.

Ezample A.2.3 (Formal Lie group). The formal Lie group G associated to
G (also called the formal completion at the origin). Let G be an algebraic
group. Let m : G x G — G be the multiplication morphism and e be
the closed point of G given by the unit section. Then consider the local
homomorphism mf : Og.e — Ogxa,(e,e) and, completing w.r.t. the maximal
ideals, the continuous extension of m#

mf
OG,@ — OGX G,(e.e)

L

Oc.e — OGxG,(e)
By an algebraic group over a field is smooth, so

OG’,@ = k[[tl) sy tn]] OGXG,(@,@) = k[[th <oy tna Uy, .-, un]] .
From the associativity property of m follows that m, is a co-multiplication

satisfying the (dual) axioms for a group object.

Ezample A.2.4. Let G = G,,G,,. Of course we have (’3G76 = k[[t]] and the
co-multiplication m™ is

4 t+u G =G,
m”(x) =
t+u+tu G =G,

Ezample A.2.5. Let V be a finite dimensional k-vector space, then F'(Spec R) :=
Nil(R) ®; V is a vector group functor represented by the formal group

Spf(Sym(V*)), where

Sym(V*) = lim XY

— ]n

I:=V - -SymV*
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Explicitly, if v, ..., v, is a basis of V' and v} is the associated dual basis, we
have -

Sym(V*) 2 k[[v},...,vX]] and m¥*(v;) =v; @1+ 1@ v,
Note that this formal group is the completion at the origin (or the formal
Lie group) of the vector group V' = Spec(Sym(V*)).

Let T' := Gal(k|k) be the absolute Galois group of k. A T-module is a pair
(M, ), where M is an abelian group and « : I' — Endz(M) is a continuous
action?}] We write Modr for the category of I'-modules, where a morphism
from (M,a) to (M',a’) is a morphism of abelian groups f : M — M’ such
that o/ = foa.

A formal group F' = Spf(A) is étale if for every open maximal ideal of
A we have A, is a separable finite extensions of k| F is infinitesimal if
F (k) =0.

We will write FGre; (resp. FGrin¢) for the full subcategory of FGr with objects
the étale formal groups (resp. infinitesimal formal groups).

Proposition A.2.6. i) The category of formal groups (over k) is an abelian
category.
ii) Let k be a perfect field. If F is a formal group (over k) there is a split
exact sequence
O_)Finf—)FHFet_)O

where the Fiy is the connected component of the unit section e : Spec(k) —
F; F is étale.

Proof. See [1, Exp. VII B §2.4.2 - 2.5.2|. O

A.2.1 Etale formal groups

Proposition A.2.7. i) The category of étale formal groups over a field k is
equivalent to the category Modr via

FGre > F — F(k) := colim _F(k') € Modr

[k":k]<oco, K'Ck

where k is an algebraic closure of k.
zg) Any étale formal group F decomposes canonically as Fg X Fo where

Fy.(k) is a free Z-module and F'.. (k) is torsion.
Proof. See [1, Exp. VII B §2.5]. O

2

i.e. a is continuos if it factorizes through Gal(k’|k) for some k' C k finite over k.
3By the structure theorem A is étale <= A =[] 1 ki product of finite separable
extensions of k.
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A.2.2 Infinitesimal formal groups

Theorem A.2.8 (Cartier). Let F = Spf(A) be a formal group over k,
chark = 0. The followings are equivalent -

i) There exists V € Mody, such that F = Spf(Sym(V*)) (See .

it) F is infinitesimal.

In this case Lie(F') =V (where the Lie brackets are 0).

Proof. See [1, p. 548]. O

Corollary A.2.9. Letk be a field of characteristic 0. The Lie functor induces
an equivalence from the category of infinitesimal formal group to the category

of vector spaces over k
Lie : FGrinf — MOdk .

A.3 fppf sheaves

Let schy be the category of schemes over k and aff, be the full sub-category
of affine schemes. According to [I, Exp. IV §6.3] the fppf topology on schy
is the one generated by: the families of jointly surjective open immersions in
schy; the finite families of jointly surjective, flat, of finite presentation and
quasi-finite morphisms in affy.

Recall that Aby is the category of abelian sheaves on aff, w.r.t. the fppf
topology.

Proposition A.3.1. i) The category of commutative group schemes over k is
a full sub-category of Aby via the functor of points G — hg := Homeep, (—, G).

ii) Let chark = 0. The category of formal group schemes (see definition
M) is a full sub-category of of Aby via the functor of points F' = Spf(A) —

hg := Hom§* (A, —) (i.e. the set of continuous homomorphisms of algebras).

Proof. By a result of Grothendieck (|23 Part I, §2.3.6]) every scheme (over
k) is a sheaf (on sets) w.r.t. the fppf topology on schy. Hence it is also
a fppf-sheaf on affy C schy. From this follows (i) and (ii) for étale formal
groups.

By[A.2.6]it remains to prove that any infinitesimal formal group is a sheaf.
It is sufficient to note that

G, colim Spec(k[t]/ ("))

which is a direct limit of affine schemes, hence a direct limit of sheaves on
sets w.r.t. the fppf topology. O]



Appendix B

Mixed Hodge structures

B.1 Opposed Filtrations and f-structures

In this section A is a small abelian category. In fact we are interested in the
case when A is category Modc of finitely generated vector spaces over C. We
define two equivalent categories.

i) Let n € Z. An object A € A is bigraded of weight n if there exists a
finite family of object AP € A such that

A=Parien, A"=0ifp+q#n
b,q

(e.g. the complex cohomology groups of a compact Kéhler manifolds). We
denote by A’ the category of pairs (A,n) where A is bigraded of weight n;
the morphism are morphisms in A compatible with the bigrading, i.e.

Homa/ ((A,n), (B,m)) = {f € Homa(A, B)| f(A™?) C B"?Y p,q}
which is empty if n # m.

ii) Let A” the category whose objects are systems (A, F, F.,n), where
n € Z; A€ A; F,F are two n-opposite filtrations of A, i.e.

gt gru(A)=0  ifp+g#n
A morphism in A” is a morphism in A compatible w.r.t. both filtrations, i.e.

HOHIA//((A, n)? (B,m)) = {f € HOInA(A?B)‘ _ . _ .
f(F(A)) € FI(B), f(F’(A)) C F/(B)Vj}

95
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Proposition B.1.1. There is an equivalence of categories

A
oA A (A _ @ Ap,q7n> — { P — @thAt,q
ptq=n F1-— @tzq Apit

and a quasi-inverse is given by
(A,F,F n) — (A= @AM n), AP?:= orh, gri(A)
Proof. See the following remark or [17, 1.2.6.] for a complete proof. O

Remark B.1.2. i) An important ingredient of the proof is the Zassenhaus
lemma: let F, F two (finite) filtrations of A € A, then there is a canonical
isomorphism

grp grp(A) = griy gri(A4)

ii) It is worth noting that the category of filtered objects of A is not
abelian. In fact this category has kernels and cokernels, but the canonical
morphism Coim — Im is not an isomorphism in general.

iii) An useful characterization of n-opposed filtration is the following:

grigrli(A) =0 Vp+q#n < FPoF' >~ Aifp+qg=n+1
So in that case grh gri(A) = FP N F7 if p+q=n.

Definition B.1.3. We define now a category A" whose objects are systems
(A, F,F,W) such that A € A and F, F, W are opposed filtrations, i.e.

grperhen, (A) =0ifp+q#n (B.1)

where F, F are finite decreasing filtrations and W is an increasing filtration
of A. A morphism is an A-morphism f : A — B compatible with respect to
all the three filtrations.

Given (A, F, F,W) in AT we have the following
Ax=Pare AP0 = [gr) AP (B.2)

As the components on the right hand side are only sub-quotients, this is not
a bigrading.
Let I C Z2, we say that A is of type I if the following holds

APT 40 «— (p,q) €l (B.3)
Moreover we define the level of (A, F, F, W) by
level(A) := max{|p — ¢q| : AP? # 0}
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Ezample B.1.4. i) The category of bigraded objects (B.1.1)) is fully embedded
in AT,

ii) Let Z € A. We can always consider it as bigraded of bidgree (p,p).
We will denote it by Z(—2p).

Lemma B.1.5. If f : A — B is a morphism in AT, then it is strict with
respect to all filtrations.

Proof. The result follows if we can construct, for any (A, F, F,W), two family
P4 P9 C Wy, such that

e The canonical projection W),,4(A) — gr, (A) induces an isomorphism
of I»% and 177 with AP, i.e.

APT = [P0 = P17 mod Wy, 1(A)

e We can recover the filtrations of A from 179, I»? in the following way

=, (i

Wn(A) = @p-ﬁ-qénlp’q = 69ertISnIp’qv FP = @p’ZPIp o

=

Fq = @q’Zq]p q
o If f: A — B is a morphism in Af, then
fIPI(A)) C IP(B)  f(I™(A)) C I(B)

We claim that we can take
IP9(A) = (Z WiyigiD F) N <Z WiyigiD F%)
i>0 i>0

where (x;,y;):>0 is the following sequence of double indexes

(zo,%0) = (,q), (i, y:)) = (p,g—i+1)i>0

and 79 is defined by the same formula after replacing the indexes with

(37073/0>:<p7Q)7 (mzayl):(p_l+17Q)Z>0 .
]

Theorem B.1.6. i) The kernel (resp. cokernel) of a morphism f: A — B
in AT is the kernel (resp. cokernel) of f in A endowed with the induced (resp.
quotient) filtrations from A (resp. from B).

ii) The morphism gty (f) : erfy (A) — griy, (B) is a morphism of pure
A-structures.

iii) The category AT, defined above, is abelian.

iv) All the following functors from AT to A are exact: the forgetful functor
(A, F,F,W) +— A; the graded functors grp, gz, gry,; the bigraded functors

gy 8rp = 8lp 8lyy = GUEelp 8y = grp gy = 8y Sp
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Proof. Tt follows easily by the previous lemma. m
Let A, B, C be abelian categories and
r,l:AxB—C

two additive functors. Assume that r (resp. 1) is right (resp. left) exact. Let
A € A, B € B be filtered objects, then we can define a filtration on r(A, B)
(resp. I(A, B))

F*r(A, B) := @, Im(r(F™(A), F*"™(B)) — r(A, B))

FFI(A, B) := Ny, Ker(I(A, B) — I(A/F™, B/F*=™)))
Ezample B.1.7. For any abelian category A we have that Homa(—, —) is a

left exact functor. Hence if A, B € A are filtered we can define the following
filtration on the abelian group Homa (A, B)

F*(Homa(A, B)) = Ny, Ker(Homa (A4, B) — Hom(F™A, B/F**™ B))
={f:A— B|f(F}y) C Fy**, Vm € Z}

Fixed level /support

Let [a,b] C Z. We denote by AL b] the full subcategory of AT whose objects
are of type [a,b]?: i.e. A € AT such that AP4 #£0 <= (p,q) € [a,b]*.

Proposition B.1.8. i) Aga b] 15 an abelian category and is a thick subcategory
of AT.
i) Let [a',b] C [a,b]. There exist two covariant functors

such that S(A) = S%(A) (resp. Q(A) = Q% (A)) is the mazimal T-sub-
structure (resp. the mazimal quotient) of A of type [a,V)* (resp. [a’,]?).
iii) There is a commutative diagram of functors

N N
Al = Al

o |o

t T
Alarb) 57 Al
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Proof. 1) Bythe graded functor gr'¥ are exact. The type of a {-structure
depends only on the associated bigraded object gr'V'(A). Hence ALb] is closed
under kernels, cokernels and extensions.

iiff] Let ¢ € [a,b]. We want to construct B = S%(A) (resp. Q%(A)), i.c.
the maximal sub-structure of W.A of type [a, c]* (resp. the maximal quotient
of A/W._1A of type [c,b]?).

Let ¢ : A — gr'V(A) the canonical isomorphism as objects of A. We can
define

B=¢'| @ A | ca(A)= fH 4
p.q€fa,] p,q€lab]
B C A as objects of A. We can consider B as a tri-filtered object w.r.t. the
filtrations induced by those of A. From it follows that B is in fact an
object of AT and the canonical inclusion is a morphism of f-structures.
The case B = Q%(A) so we just limit ourselves to define B

B:=A/¢? (@ AM) I:=[a,c—1] x[a,b]Ula,b] x [a,c—1]
p,q€l
The functoriality follows from the above construction and [B.1.6
iii) Follows by the constructions and the fact that there is a unique way
to induce a filtration on a sub-object. O

Definition B.1.9. It follows from the proposition that there is a functor
SQ : ALy — Al such that SQ(A) = (SQ)ah(A) is the maximal sub-
quotient of A of type [@/,b]%.

Adjunction’s formulas w.r.t. @,S Let a < d <V < b integers. By
construction the following adjunctions follow

Homgt (A, B) = Homat (A, S% B) Ae ALb,

a

T
L B e A[a,b]
Hompi (Qu,A, B) = Homai(A,B)  A€Al, BEAL

Note that, in the situation of the first row, we have in general Homa: (B, A) #
Homai (5% B, A): in fact take A := S% B, then on right side we have
the identity morphism. If the equality holds we will have an element of
Homp: (B, A) which is a section of the canonical inclusion A C B. But in
general this section does not exists as we shall see in the next section where
we classify the extensions in Af.

Dually we find the same obstruction in the case of Q.

'A meno di mettersi in una categoria di moduli, la dimostrazione é diretta, ma va
controllata
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Level <1 Consider the case b—a = 1, for instance take b =1, a = 0. We
call AI = AEO 1 the category of f-structures of level < 1. Such structures can

be characterized as follows: (A, F, F, W) is an object of AI if
0=W4JACWy ACWACW,A=A
and
0=F*ACF'ACF’A=A 0=F?ACF’ACF’A=A

where all the above considered inclusions are not supposed to be strict.
In the same way we can define the category of f-structures of level < n
for any n < 0 by
AT
Al = Al (B.4)

Note that the category of t-structures of level 0 is just the category A.

B.2 Extensions in Af

Let A be any abelian category (we don’t suppose it has enough injective
objects), then we can define its derived category D(A) and the group of
classes of n-fold extensions

Extp(A, B) := Hompa)(A, B[n]) A, BeA

As usual we identify this group with the group of classes of Yoneda exten-
stons, i.e. the set of exact sequences

0-B—-F"—>...oE!1 5450
modulo congruences, where the group law is the Baer sum.

Proposition B.2.1 (Extension Formula). Let A, B objects of AT. If A has
cohomological dimension 0 (e.g. A is the category of vector spaces over a
field), then there is a canonical isomorphism of groups

W()C
(Wo N FO)(C) + (Wo N FO)(C)

Exty: (A, B) C = Homa(A, B) (B.5)

(See[B.1.7 for the filtrations defined on C).



APPENDIX B. MIXED HODGE STRUCTURES 61

Proof. Consider an exact sequence in A

B
(*) 0 B E——A 0
by definition it is in the class of the trivial extension <= there exist a
commutative diagram

Ba A
with ¢ compatible w.r.t. all the 3 filtrations. This also is equivalent to have
a section of a: just take o = iy 0 ¢, where i, : A — B @ A is the canonical
inclusion.

Suppose that the extension () is not trivial, hence we cannot find a
section of a compatible w.r.t. all filtration but we can always find (non
canonically) a section o (resp. ;) strictly compatible w.r.t. W, F' (resp.
W, F). This follows by the proof of lemma . Note that if we make a
different choice, say o9 (resp. d2) we find that o3 — 09 € Homa (A, B) and it
is compatible with respect to W, F' i.e.

o1 — a9 € (W N F)(Hom(A, B)) o1 — a9 € (Wo N F)(Hom(A, B))

so the difference o1 — 77 is an element of Wy Hom(A, B) and its equivalence
class
WoHom(A, B)
Wo N FO + FO
is independent by the choices of the sections.

From the above discussion we can define a map from Ext/l“(A,B) to
WoHom(A, B)/(WoN F°+WyN F°). To conclude the proof we need to show
that this map is surjective. Consider ¢ € Wy Hom(A, B) and define the map

[0'1 — 0'2] <

go: B®A—-Bad A (b,a) — (b+0(a),a)
then g, is compatible w.r.t. W. Define the following filtrations on B @ A
FFMB® A) .= g,(FFB® F*B)  F¥B® A) :=g¢,(F*B® F*B)
and write E, for the object of A given by the B & A and the filtrations W
(i.e. Wy =W, B W, A), F,, F,. O

Corollary B.2.2. Suppose furthermore that for some m we have W,,B = B
while W, A =0 (i.e. the weights of B are less than the weights of A). There
is a natural isomorphism of groups

~ Homa(A, B)
. 1 A\,
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Proof. By the hypothesis on the distribution of weights we have Wy Hom(A, B)
Hom(A, B). O

Corollary B.2.3. With the same hypothesis of [B.2.1}, the functor Exty: :
AT — Mody is right exact for any A € A'.

Proof. We know that Homa(A, —) is right exact. From this follows that
Wy Hom(A, —) is right exact, in fact we can use the definition

WoHom(A,B) ={f: A — B| f(W,(A)) C W,.(B), Vn}
Then the result follows from the previous theorem and [B.1.6] O

Corollary B.2.4. If A is of cohomological dimension 0, then Al is a category
of cohomological dimension 1, i.e. Exti;(A,B) =0 if n < 2.

Proof. Just use the following lemma and the previous corollary. ]

Lemma B.2.5. Fiz A € A. If Extk(A, —) is right exact for all A € A =
Extx(A, B) =0 for alln > k and for all A, B € A.

Proof. To calculate the Yoneda-class of an n-fold extension £ of A by B
0—-B—E,—FE,1— - —E —A—-0(

we may splice E from an k-fold extension of X by B and an (n — k)-fold
extension of A by X

[O—>B—>En—>En71—>~~~—> n7k+1ﬁX—>O]

0—-X—FE,y—E, 11— —F —A-=0].

It suffices therefore to prove that Ext*™ (A, B) = 0. Now we view a (k + 1)-
fold extension of A by B as spliced from a simple extension

0—-—B—-H—-C-—=0

and a k-fold extension of A by C'. We consider the connecting homomorphism
Ext*(A,C) — Ext*"'(A, B) from the long exact sequence for Hom(A, —)
with respect to the preceding short exact sequence. Since Ext"(A, —) is right
exact, this connecting homomorphism is zero. Now we apply this to the
Yoneda class f € Ext*(A, C) of the second extension. If the Yoneda-class
of the short exact sequence is e, the connecting homomorphism is given by
taking the composition product with e. But this gives the Yoneda class e - f
of the extension we started with. This class is therefore zero. ]
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B.3 Hodge structures

Definition B.3.1. Let R C R be a noetherian sub-ring and let K be its
fraction field (e.g. R = Z,Q,R). A (mized) Hodge structure over R is
given by: a finitely generated R-module Ag, called the R-residue; an object
(A, F,F,W) € Mod/. (See [B.1.3). Such that

1. A(c = AR®RCgA

2. The weight filtration W is defined over K, i.e. W,, = (W, NAk)®x C.
Where Ag == Ap @p K

3. The filtration F is the complex conjugate of F, i.e. F' = ¢(FP) where
c: A= Ar ®r C — A = Ag ®g C is induced by the complex conjugation on
C.

A morphism of mixed Hodge structure over R is an R-linear map f : A —
Bpr such that fx := f ® idg is compatible w.r.t. W and fc := f ® id¢ is
compatible w.r.t. F.

We denote by MHSR the category of mixed Hodge structure over R. In
case R = 7Z we simply write MHS = MHS;.

Proposition B.3.2 (Properties of MHS). i) If f : A — B is a morphism in
MHS, then it is strict with respect to all filtrations.

it) The kernel (resp. cokernel) of a morphism f : A — B in MHS is
the kernel (resp. cokernel) of f in Modyz endowed with the induced (resp.
quotient) filtrations from A (resp. from B).

iii) The morphism gryy, (f) = gty (A) — g}y (B) is a morphism of pure
MHS (i.e. a morphism of bigraded objects).

iv) The category MHS is abelian.

v) All the following functors from MHS are exact: the forgetful functor
(A, F,F,W) — Ay € Mody; the graded functors grp, gr, gty ; the bigraded
functor

gy 8lp = Iy gy, = Erp8lp 8y = gry 8y = 8y S

Proof. Part (i) is a consequence of |B.1.5| From this follows the other prop-
erties as in [B.1.6 O

B.3.1 Extensions in MHS

Remark B.3.3 (Torsion Part). A mixed Hodge structure on Az is completely
determined specifying a mixed Hodge structure on the free quotient Az /t :=
Az /[t Az, where t Ay is the torsion part of Az. In particular, first of all, the for-
getful functor induces an isomorphism Extyps(tAz, t(Bz)) ~ Extz(tAz, tBz).
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Secondly, there is a forgetful functor Extyps(Az, Bz) — Extz(Az, Bz) =
Exty(tAz, tBz) which can be shown to be a retraction for the natural exact
sequence

0— Eth<tAz, th) — EXtMHs(Az, Bz) - EXtMHs(Az/t, Bz/t) — 0.

So this sequence is split and there is no loss of information if we work with
mixed Hodge structures on torsion free modules.

Proposition B.3.4. Let A,B € MHSg such that Agr, Br are free. Then
there is a canonical isomorphism

12 Extyys, (A, B) & Hom{ (Ac, Be)/(F° Hom{ (Ac, Be)+Hompy (Ag, Br))

Proof. The proof is similar to the one of [B.2.1] in particular one proves that
that if H € Exty,ys(A, B) we can suppose He = Be @ Ac and that the weight
filtration is also given component-wise; but the Hodge filtration of H is of
the form F + ¢(Fa) @ F4 where: ¢ : A — B is a C-linear map compatible
w.r.t. the weight filtrations; Fy (resp. Fp) is the Hodge filtration of A (resp.
B). The details are given in [38]. O

Corollary B.3.5. i) Extyys, (A, —) is a right ezact functor for any A €
MHSkg.

it) Extyyys, (A, B) =0 for any i > 2.

ii1) Let A and B be mized Hodge structures with Ag and Bg torsion free.
Suppose that for some m we have W,, B = B while W,, A = 0 (i.e. the weights
of B are less than the weights of A, one says that A and B are separated
mixed Hodge structures). There is a natural isomorphism of groups

o EXtI{/IHSR(A7 B) = Hom(c(A(c, B((:)/(FO Hom@(A(c, B(c) + HomR(AR, BR))

Proof. This follows by the previous proposition as the corollaries of
(see there for details). O

Definition B.3.6 (p-Jacobian). Let A be a mixed Hodge structure over Z
with Az torsion free. For p € Z the p-th Jacobian of A is defined as

Jp(A) = Ac/(Fp —I— Az)
Since FYA(p) = FP A we have

JP(A) ~ J"Hommus(Z(0), A(p)) = J"Hommus(Z(—p), A).
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Lemma B.3.7. If W5, 1Ag = Ag the group
JP(A) = Extyus(Z(—p), A) = Extyys(Z, A(p))

is a complex Lie group. If moreover A is polarized JP(A) can be viewed as a
semi-abelian complex algebraic group.

Proof. The condition implies that FPAc N FPAc = 0 and hence FPH¢ does
not meet the image of Az in Ac. In particularly, Az embeds discretely in
Ac/FP. O

Ezample B.3.8. i) If A and B are separated, the group Ext'(A, B) has the
structure of a complex Lie group. Indeed, separateness is equivalent to saying
that Hommps(A, B) has only negative weights, i.e.

W_lHomMHS(A, B)Q == HomMHs(A, B)Q

and the result follows upon applying Lemma [B.3.7]to the mixed Hodge struc-
ture Hommns (A4, B).

ii) For m < n the group Extyps(Z(m), Z(n)) is isomorphic to C/(27i)"™Z,
a twist of C*.

iii) Let H be a pure Hodge structure of weight 2m — 1. Then J™(H) is
a compact complex torus. Indeed, we have a direct sum decomposition

He:=H,@C=F"@Fm

and any real element © € Hz ® R belonging to one of these summands

also belongs to the other one and so must be zero. Moreover J"H =~
JOHommus(Z(—m), H) and hence

J"H = EXtMHs(Z(—m), H),

this is useful for an algebraic description of the Abel-Jacobi map.

iv) Let X be any smooth projective manifold. Take A = Z and B =
H*(X a0, Z)(d) where d is chosen so that k < 2d (for instance k = 2d — 1).
Then the weights are separated and by [B.3.6] we have

Extwus(Z, H*(X, Z)(d)) = J° Hom(Z, H*(X, Z)(d))
~ JUH*((X,Z)) = H*(X:C)/H*(X) ® FIH*(X).
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