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Feynman’s model of a quantum computer provides an example of a continuous-time
quantum walk. Its clocking mechanism is an excitation of a basically linear chain of
spins with occasional controlled jumps which allow for motion on a planar graph. The
spreading of the wave packet poses limitations on the probability of ever completing
the s elementary steps of a computation: an additional amount of storage space δ is
needed in order to achieve an assigned completion probability. In this note we study the
END instruction, viewed as a measurement of the position of the clocking excitation: a
π-pulse indefinitely freezes the contents of the input/output register, with a probability
depending only on the ratio δ/s.
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1. Introduction

It has been shown by Feynman1 that it is possible to implement the sequential
application, in the desired order, of a collection A = As−1 · · ·A2A1 of unitary
operators to an input/output register by using s additional program counter sites.
For the sake of definiteness, we will think of each program counter site j = 1, 2, . . . , s
as occupied by a spin-1/2 system τ (j) = (τ1(j), τ2(j), τ3(j)). We will refer to the
collection of such spins, which act in effect as a quantum clocking mechanism, as
to a “program line”.

The input/output register will be, similarly, implemented by a collection of a
certain number µ of spin-1/2 systems σ(i) = (σ1(i), σ2(i), σ3(i)), i = 1, 2, . . . , µ.

The evolution of the complete system, register + program line, will be given by
the Schrödinger equation:

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (1)

where the HamiltonianH is supposed to be time independent and involving at most
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3-body interactions:

H = −1
2


s−1∑

j=1

τ+(j + 1)Ajτ−(j) + hermitian conjugate


 . (2)

We have indicated by τ+(j) and τ−(j) the raising and lowering operators for
the third component of the spin occupying the j-th program counter site. Since it
is requested that each term of the sum is (at most) a 3-body interaction, each Aj

either acts on a single spin of the register or is a constant: as shown in Ref. 1, this
does not restrict the class of functions computable by the model.

We will restrict our considerations to initial conditions of the form:

|ψ(0)〉 = |register0〉 ⊗ |program line0〉 , (3)

where |program line0〉 = |τ3(1) = +1, τ3(j) = −1 for 1 < j ≤ s〉 describes the state
in which only the spin located at program site number 1 is “up”.

It helps the intuition to think of the initial state |register0〉 of the register as
a simultaneous eigenstate of the components of the σ spins in selected directions,
encoding the initial word (or superposition of words) on which the machine is
required to act.

Because of the conservation law [H,N3] = 0, where

N3 =
s∑

j=1

1 + τ3(j)
2

, (4)

the above initial condition has the important consequence that the evolution |ψ(t)〉
takes place in the 2µs dimensional eigenspace of N3 belonging to the eigenvalue +1.

The intuition of “a single clocking excitation travelling along the program line”
emerging from the above conservation law is made precise by introducing the ob-
servable position of the excitation, or position of the cursor:

Q =
s∑

j=1

j
1 + τ3(j)

2
. (5)

It is then easy to convince oneself that the evolution of the overall system is of
the form

|ψ(t)〉 =
s∑

k=1

c(t, k; s)|registerk−1〉 ⊗ |Q = k〉 (6)

where, for 1 ≤ h ≤ s − 1, |registerh〉 = Ah|registerh−1〉. In Feynman’s words
(adapted to our notations), (6) says that, starting from the initial condition (3),
“If at some later time the final site s is found to be in the |τ3(s) = +1〉 state (and
therefore all the others in |τ3(j) = −1〉), then the register state has been multiplied
by As−1 · · ·A2A1 as desired”. It as been shown in Ref. 2 that this is a somewhat
big “If”, under two respects:

(i) at no instant of time the probability |c(t, s; s)|2 is larger than const · s− 2
3 ;
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(ii) the cursor keeps bouncing back and forth between positions 1 and s, thus in
effect making the above upper bound attainable only at selected instants of
time.

The above two statements are reviewed and made quantitative in Section 2.
Section 3 is devoted to the “quantum END problem”: we remove the cursor

in order to prevent it from returning down the program line and “undoing” the
computation. Removing the cursor and storing the result of the computation in the
contents of the register is in effect a measurement procedure, that in Section 3 will
be modelled by a suitable time dependent perturbation (a π-pulse) applied to a
variant of the Hamiltonian (2).

Section 4 is devoted to conclusions and outlook.

2. The Motion of the Cursor

We recall, first of all, that the motion of the cursor does not depend on the operators
acting on the register.1 For the particular case of a sequential program line as the one
described by the Hamilonian (2), this is made evident by the explicit expression3 of
the amplitudes c(t, k; s) in Eq. (6): they are given, independently of the operators
Aj , by

c(t, k; s) =
2

s+ 1

s∑
n=1

exp(it cos(θ(n; s))) sin(θ(n; s)) sin(kθ(n; s)) , (7)

where

θ(n; s) =
nπ

s+ 1
. (8)

Similar results hold in the case, studied in Ref. 4, in which, because of conditional
jumps in the program line (such as the ones needed in the iteration of quantum
subroutines), the cursor performs, in effect, a continuous-time quantum walk5 on a
planar graph. In this note we restrict ourselves to the sequential case.

The main purpose of this Section is to give examples of the behaviour recalled
in the observations (i) and (ii) of Section 1.

This we do with the help of the following Hamiltonian:

H = −1
2

(
s−1∑
j=1

τ+(j + 1)Ajτ−(j) + τ+(s+ 1)ρ−τ−(s)

+
s+δ−1∑
j=s+1

τ+(j + 1)τ−(j) + h.c.

)
. (9)

With respect to the Hamiltonian (2), we have introduced an additional control
q-bit ρ = (ρ1, ρ2, ρ3) in the term τ+(s + 1)ρ−τ−(s); this is an example of a con-
ditional jump in the quantum walk performed by the cursor: it acts nontrivially
only in the eigenspace belonging to the eigenvalue +1 of ρ3, enabling the transition
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Fig. 1. |program line0〉 = |ρ3 = −1〉 ⊗ |Q = 1〉; s = 20.

Fig. 2. |program line0〉 = |ρ3 = +1〉 ⊗ |Q = 1〉; s = 20; δ = 10.

|Q = s〉 → |Q = s + 1〉. If this transition is enabled, then the cursor can visit the
additional telomeric sites s+ 1, . . . , s+ δ, else it gets reflected back.

Figures 1 and 2 give examples of the behaviour of the probability

P(s≤Q)(t) = P(s≤Q≤s+δ)(t) =
s+δ∑
j=s

|γ(t, j)|2 (10)

of finding the register in the state A = As−1 · · ·A2A1|register0〉, under two different
initial conditions, which determine two different forms of the amplitudes γ. Figure 1
corresponds to the initial condition |program line0〉 = |ρ3 = −1〉 ⊗ |Q = 1〉: the
motion of the cursor remains confined to the sites 1, . . . , s, as it is γ(t, k) = c(t, k; s)
if 1 ≤ k ≤ s, 0 otherwise. The probability P(s≤Q)(t) of finding the computation
completed satisfies in this case the inequality:2

P(s≤Q)(t) ≤ 8.
s

2
3

(11)
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Figure 2 corresponds to the initial condition: |program line0〉 = |ρ3 = +1〉⊗|Q =
1〉, leading to γ(t, k) = c(t, k; s+ δ) for 1 ≤ k ≤ s + δ. For t just below s+ 2δ the
probability P(s≤Q)(t) of finding the computation completed is close to the much
less severe upper bound:2

P(s≤Q≤s+δ)(t) ≤ 1− 2
π

(
arcsin

(
1

1 + 2δ/s

)
−
(

1
1 + 2δ/s

)√√√√1−
(

1
1 + 2δ/s

)2)
.

(12)

3. The Quantum END Instruction

The abrupt collapse of P(s≤Q)(t) at time t ≈ s+2δ, evident from Fig. 2, corresponds
to the following fact: travelling with average speed close to 1, at time t ≈ s+2δ the
cursor “returns down the active part of the program line”, thus, in effect, undoing
the calculation.

Bringing the computation to an END, and storing the result is not completely
trivial in the case examined here of a reversible quantum clocking mechanism:
“Surely a computer has eventually to be in interaction with the external world,
both for putting data in and for taking it out.”1

A simple model of such interaction is suggested by inspection of the Hamiltonian
(9): starting from the initial condition |ρ3 = +1〉, the transition |Q = s〉 → |Q =
s + 1〉 is enabled by the control term τ+(s + 1)ρ−τ−(s) which, simultaneously,
determines the transition |ρ3 = +1〉 → |ρ3 = −1〉.

The transition |Q = s+1〉 → |Q = s〉, enabled by the hermitian conjugate term
τ+(s)ρ+τ−(s+ 1), will be therefore inhibited if, by external means, we enforce the
transition |ρ3 = −1〉 → |ρ3 = +1〉 at a time, close to t0 = s+ 2δ, when most of the
probability mass is in the region s, . . . , s+ δ.

Fig. 3. The solid line represents the probability of finding the cursor in the telomeric chain using
a π-pulse applied at time t0 = s + 2δ. The dashed lines correspond to Figs.1 and 2.
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Figures 3 (where Figs. 1 and 2 are also reproduced for comparison purpose)
presents the effect of the addition to (9) of the time dependent perturbation

h(t) =
1
2
B(t) · ρ1 (13)

where the “magnetic field” B(t) is non-vanishing only in a unit time interval around
t0, in which it takes the value π.

With a probability depending only on the ratio δ/s (see Eq. (12)) between the
lengths of the active part and the telomeric part of the program line, the π-pulse
(13) definitively prevents the cursor from undoing the computation.

The idea of a π-pulse trap just presented works only if the control q-bit is
initialised in the |ρ3 = +1〉 state. It is immediate to convince oneself that the
following double trap Hamiltonian does not suffer from the above limitation:

H = h(t) +−1
2

(
s−1∑
j=1

τ+(j + 1)Ajτ−(j) +
s+δ−1∑
j=s+1

τ+(j + 1)τ−(j)

+
s+2δ−1∑

j=s+δ+1

τ+(j + 1)τ−(j) + τ+(s+ 1)ρ−τ−(s)

+ τ+(s+ δ + 1)ρ+τ−(s) + h.c.

)
. (14)

With any initial condition for the control q-bit, under the action of the above
Hamiltonian, the |ρ3 = +1〉 component of the state gets definitively trapped in the
first telomeric region {s+1, . . . , s+ δ}, the |ρ3 = −1〉 component in the second one
{s+ δ + 1, . . . , s+ 2δ}.

As a final remark of this section, we observe that, acting in effect as a Stern–
Gerlach apparatus providing space separation between two different spin states, the
term

switch = (τ+(s+ 1)ρ−τ−(s) + τ+(s+ δ + 1)ρ+τ−(s)) + h.c. (15)

can be used also to model the preparation (“putting the data in”) of a register q-bit
in a given spin state.

4. Conclusions and Outlook

Feynman’s time honoured model of a quantum computer and its modern stream-
lined version, the continuous-time quantum walk5 paradigm (in which the quantum
motion of the cursor on a graph is the computation, irrespective of any action on
the register), provide a fascinating physical context in which to think of “time”
under a quantum perspective and are rich sources of open problems.

Inequality (11) is, for istance, a simple consequence of the spreading of the wave
packet in the inertial motion (7) of the cursor on a finite lattice. Is inequality (11)
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strictly dependent on the model adopted here or is it a hint of a model independent
“probability versus computational complexity” uncertainty relation?

Inequality (12) and the related discussion of Section 3 set bounds on the min-
imun amount of additional space needed in order to have a preassigned probability
of storing the result of the complete calculation. Similarly, the preparation of a given
input requires time and space in order to perform the required “Stern–Gerlach”
preparation. Is it realistic to neglect this costs as it is done in the conventional
analysis of performance of quantum algorithms?

As a concluding remark, we wish to point out a case, Grover’s algorithm,6 in
which the nature, classical or quantum, of the clocking agent that successively
applies the required primitives does make a difference. Grover’s algorithm poses
the problem of estimating the parameters

a = (a1, . . . , aµ) ∈ {−1,+1}µ

appearing in the transformation A = 1 − 2Pa that an oracle is able to apply to
the register. Here we have indicated by Pa the projector on the state |σ3(i) = ai,
i = 1, . . . , µ〉 ≡ |a3〉.

The estimation procedure of a starts from

|register0〉 = |σ1(i) = +1, i = 1, . . . , µ〉 ≡ |11〉
and proceeds by alternating the action of A with the action of B = 1 − 2|11〉〈11|.
It can be shown7 that:

|〈a3|(B ·A)n|11〉|2 = sin2((2n+ 1)ϑ) , with ϑ = arcsin(2−µ/2) . (16)

The sharp maximum of (16) at n = noptimal ≈ π
4 2

µ/2 keeps reappearing periodically
if the computation proceeds indefinitely after noptimal steps. In Refs. 8 and 9, the
oscillatory nature of the overlap (16) between the target state |a3〉 and the current
state (B · A)n|11〉 has been nicely explained in terms of the spectral gap of an
analogue Hamiltonian of the form −γ|a3〉〈a3|−|11〉〈11| acting on the register viewed
as an isolated system.

In the context of the model considered in the previous sections, Grover’s algo-
rithm corresponds to the execution of a program line of the form (2) with Aj = A
for odd j, Aj = B for even j.

Starting form the initial condition |ψ(0)〉 = |11〉 ⊗ |Q = 1〉, and taking, for the
sake of definiteness, an odd value of s, s = 2g+1, it is easy to check that the overlap
probability is, in this case, given by

〈ψ(t)|Pa|ψ(t)〉 =
g∑

n=0

sin2((2n+ 1)ϑ)(|c(t, 2n+ 1; s)|2 + |c(t, 2n+ 2; s)|2)

=
s∑

x=1

|c(t, x; s)|2 sin2(ϑxodd) , (17)

where xodd is the largest odd number not larger than x. Direct inspection of (17)
shows that (16) gives the conditional probability of finding the register in the target
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Fig. 4. µ = 5; s = 2µ+1 + 1 = 65.

state, given that the cursor is in the state |Q = 2n+1〉; in loose terms: the oscillatory
behaviour (16) describes the overlap probability as a function of the “machine time”,
namely the position Q of the clocking excitation.

The right hand side of (17) gives, instead, the overlap probability as a function
of the “Galilean time” t, the independent variable in (1).

Figure 4 shows the behaviour of 〈ψ(t)|Pa|ψ(t)〉 as a function of t: the coupling
of the register with the many clocking degrees of freedom has a damping effect on
the oscillation of the state of the register.

In the example just discussed we have used, in fact, a number of clocking degrees
of freedom growing exponentially with µ. It is shown in Refs. 4 and 10 that the
above pseudo-dissipative effect can still be observed if, by a careful use of quantum
subroutines, the number of program line sites is reduced to a polynomial in µ.
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