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Abstract — This paper deals with the automatic generation 
of computer-driven performances and related audio 
renderings of music pieces encoded in symbolic format. A 
particular XML-based format, namely MX, is used to 
represent the original music information. The first step is 
illustrating how symbolic information can originate music 
performances. The format we have chosen to represent 
performance information is Csound. Then, an audio 
rendering is automatically produced. Finally, we will show 
how the aforementioned computer-generated information 
can be linked to the original symbolic description, in order 
to provide an advanced framework for heterogeneous music 
contents in a single XML-based format. 

I. INTRODUCTION

As regards the process from music symbolic 
information to sound synthesis, two different aspects are 
involved: 
1. the design and implementation of algorithms to obtain 

music performances from symbolic information; 
2. the representation of both the original symbolic 

information and the sound synthesis results in a unique  
suitable format. 

The latter aspect is as relevant as the former one, since 
the description language represents the base algorithms, 
and its characteristics can deeply influence the process.  

As regards music description, let us remark that music 
communication is very rich; as a consequence, the number 
of its possible descriptions is high, both from a qualitative 
and a quantitative point of view. First, the locution “music 
description” itself can embrace a number of different 
meanings: the description of a music work could simply 
mean listing the meta-data about its title, its author(s), its 
performers, its instrumental ensemble, and so on; another 
kind of description is based on the symbols that compose 
the score; finally, also audio/video recordings can be 
considered music descriptions by full right. 

When we refer to the aforementioned qualitative 
standpoint, we are stating that music-related contents 
constitute heterogeneous information. Let us cite the 
examples of opera houses, music publishers, or historical 
archives (see [1], [2]), where a great amount of 
heterogeneous music documents are available, e.g.  scores, 
audio/video recordings, iconographic materials and so on.  

A comprehensive analysis of music richness and 
complexity is provided in [3], where six different levels of 
music description have been identified: General, Logical,
Structural, Notational, Performance, and Audio layers. In 
addition, not only different kinds of media are involved in 
music description, but each heterogeneous content can be 

represented according to different formats. For instance, 
digital audio and graphical information can be saved in 
compressed or uncompressed format, with or without loss 
of information. 

This paper deals with the automatic extraction and 
generation of performance and audio information from a 
symbolic format. Such information is intrinsically 
heterogeneous from a qualitative standpoint, and – for 
each step of the conversion process – it can be encoded in 
different formats.  

For instance, in the application we will present, Csound 
and PCM are employed for performance and audio 
information respectively.  

The whole computer-based process to obtain automatic 
audio generation can be modeled by three steps: 
1. Description of the original music contents in a suitable 

symbolic format; 
2. Translation of the symbolic score into a suitable 

performance language; 
3. Audio rendering coming from the computer-based 

performance. 
It is worth to remark that our approach allows not only 

to perform automatically the second and third step, but 
also to synchronize the heterogeneous contents obtained 
and to encode them within a single file. As we will 
explain in the following, the particular format we use 
allows to start from a score encoded in that format and to 
add performance and audio information to the file itself.  

The result is potentially very rich in multimedia 
contents, as the three-steps process can be performed a 
number of times by using different parameters. 

The process that brings from score to Csound 
performances and finally to audio renderings can be useful 
for many reasons: first, it is possible to generate computer-
based performances of a score encoded in any format (in 
the following, we will introduce an XML-based 
language), in order to verify possible errors and validate 
the score itself; besides, it is possible to perform 
experimentations about timbres and comparisons among 
different aesthetic results, by using both real-world 
synthesized instruments and completely invented ones; 
finally, the automatic generation of performance 
information (possibly enriched by interpretative models or 
real-time interaction) can have also didactic and 
multimedia entertainment implications. 
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II. AN OVERVIEW ON THE MX FORMAT

At LIM,1 a standard language for symbolic music 
description is under development. This language, known 
as MX, is a meta-representation for describing and 
processing music information within a multi-layered 
environment, in order to achieve integration among 
structural, score, interpretative, and digital sound levels of 
representation. Furthermore, the proposed standard should 
integrate music representation with already defined and 
accepted common standards. 

The development of the MX format follows the 
guidelines of IEEE P15992.  This recommended practice 
deals with applications and representations of Symbolic 
Music Information using the XML language. After 
standardization process, MX will be supported by any 
kind of software dealing with music information, e.g. 
score editing, optical music recognition, music 
performance, musical databases, composition, and 
musicological applications. 

In brief, MX’s distinguishing multi-layer structure is 
composed as follows. The General layer is mainly aimed 
at expressing catalogue information about the piece. The 
Logic layer contains information referenced by all other 
layers. It is composed of two sub-parts: i) the Spine
description, used to mark music events in order to 
reference them from the other layers and ii) the LOS
(Logically Organized Symbols) entity, that describes the 
score from a symbolic point of view (e.g., chords, rests, 
etc.). The Structural layer contains explicit descriptions of 
music objects together with their causal relationships, 
from both the compositional and the musicological point 
of view. It represents how music objects can be described 
as a transformation of previously described music objects. 
The Notational layer links all possible visual instances of 
a music piece. Here MX references the graphical instances 
containing images of the score. The Performance layer 
links parameters of notes to be played and parameters of 
sounds to be created by a computer performance. Finally, 
the Audio layer describes audio information coming from 
recorded performances. 

MX has been treated in detail in many papers (e.g., see 
[3]), and in the following we will describe only the 
characteristics aimed at automatic sound generation. For 
further information, working demos and examples please 
refer to http://www.mx.dico.unimi.it.  

MX strives for an overall description of music, where 
the focal point is the single music piece as conceived by 
its author. MX is intended to describe single pieces, which 
we define as the most elementary but complete parts a 
complex composition can be divided into. To provide 
some examples, a song is an elementary and complete 
music piece, as well as an aria from an opera or a 
movement of a symphony.  

The representation of music is based on those score 
symbols typical of Western musical culture, however also 
non-conventional notations are supported, such as 
neumes, tablatures, and graphical scores; furthermore, the 

                                                          
1 Laboratorio di Informatica Musicale (LIM), Dipartimento di 
Informatica e Comunicazione (DICo), Università degli Studi di 
Milano.
2 Institute of Electrical and Electronics Engineers (IEEE) Project 
Authorization Request 1599 (P1599). In IEEE context, a Project 
Authorization Request is an official document needed to initiate or 
change a standard. 

encoded piece is not required to have a symbolic 
description at all. The latter aspect confers further 
flexibility to MX format. 

The concept of comprehensive description of music 
probably represents the main purpose of MX format. 
Specific encoding formats to represent peculiar music 
features, such as audio or symbolic scores, are already 
commonly accepted and in use; but those formats are 
characterized by an intrinsic limitation: they can describe 
very accurately music data or metadata for score, audio 
tracks, computer performances of music pieces, but they 
are not conceived to encode all these aspects together. On 
the contrary, we are interested in a comprehensive 
description of music, as our purpose is providing a 
symbolic, a performance-oriented and an audio 
representation of the same piece. 

Besides, we want this comprehensive format to support 
complete synchronization among time-based descriptions 
and space-time links towards graphical objects, meaning 
that audio and video contents are kept synchronized with 
score advancing. This should happen also when the user 
switches from a performance to another or from a score 
edition to another. 

In the next section, the main characteristics of MX will 
be discussed, and the reason why our paper is based on 
such format should become clear. 

III. MX AS A FORMAT SUITABLE FOR SOUND SYNTHESIS

Let us recall the subject of this paper, i.e. the process 
that brings from music symbolic information to computer-
based performances and finally to sound synthesis. From 
this perspective, a comprehensive format with the 
aforementioned peculiarities implies a number of positive 
consequences: 

When a music piece is encoded in a suitable symbolic 
format, algorithms can be designed to generate 
computer-driven performances and audio renderings 
automatically. The concepts MX is based on allow the 
extraction of every music event we have to translate or 
to evaluate. If such events correspond to music 
symbols according to CWN, they are described in 
XML format within the Logic layer. 
In general, such a format lets symbolic, performance, 
and audio information be encapsulated within a unique 
document. In our particular case, it is possible to link 
the original symbolic information to the derived 
performance and audio contents.  
Symbolic, performance, and audio information can be 
described in different encoding formats (e.g., WAV 
and MP3, Csound and SASL/SAOL, ... ) and in a 
number of different versions, if needed; 
Symbolic, performance, and audio information can be 
organized according to a single well-structured multi-
layer environment, and they are linked each other. 
Thanks to this structure, it is possible to implement 
both a synchronization among different information 
layers (e.g. between a computer-based performance 
format such as Csound and the audio produced in MP3 
format) and a synchronization among different objects 
within the same layer (e.g. between an MP3 coming 
from a computer-driven performance and a WAV file 
corresponding to a human performance). 
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The features we have cited provide noteworthy 
advantages as regards the manipulation of music contents. 
For our purposes, the most important characteristics of 
this approach are the following: 
1. The possibility to represent and then extract symbolic 

contents from a well-defined section of the MX 
encoding.

2. The possibility to add performance and audio 
information to the original symbolic contents encoded 
in MX format in order to provide a richer description 
of the original piece. Multi-layer structure and spine 
allow to link the original music events to one or more 
corresponding representations in performance and 
audio domain, keeping them mutually synchronized. 
In this way we can have a solid representation of 
music from every point of view. 

IV. SCORE ENCODING IN MX

Until now, we have spent many energies to show all the 
details and capabilities of MX. This preliminary effort is 
required in order to understand the approach this format 
can employ to generate sound having only symbolic 
information. The process of sound generation is strictly 
connected to the symbolic formalism at our disposal; 
moreover, if we consider performance as an intermediate 
step between symbolic representation and sound 
generation, also the audio description capabilities of the 
format are interesting from our perspective. MX, thanks to 
the aforementioned characteristics, allows an 
advantageous approach to score description, to translation 
into a performance language and, finally, to audio 
generation.  

From our perspective, score should be intended as an 
ordered set of music-related symbols. As mentioned 
before, the original score of the piece is encoded in XML 
format within the Logic layer.

If present, traditional notation is described through a 
number of music events listed in spine and accurately 
defined in the LOS sub-layer. All the properties of notes 
and rests are described, from the pitch-related, rhythmic 
and graphical perspective. In particular, as regards pitch, 
MX describes both the graphical appearance of a note and 
the sound we expect. 

MX is aimed at a comprehensive representation of 
music, consequently not only CWN  is supported. The 
representational possibilities offered by MX range from 
western “classical” music to non-traditional scores (like 
Indian music or African drumming), from opera to jazz, 
from pop to rock. It would be virtually possible to 
reconstruct audio renderings from symbolic information 
coded also in different notations. In fact, MX supports 
also non-conventional score representations, such as the 
graphical ones described in the Notational layer. 
However, at the moment our efforts have been 
concentrated on the translation of symbols coming from 
CWN. The automatic translation into a performance 
language of non-traditional kinds of representation – 
according to commonly accepted, computer-derived or 
custom rules – will be the subject of our future research 
activity.  

In MX format, scores that employ CWN or other kinds 
of symbolic notation are encoded in the LOS sub-layer of 
the Logic layer.

Of course, this section cannot provide a complete 
reference manual, and only the main characteristics of 
music encoding will be discussed here. However, we think 
that a short overview of notation in MX can help 
understanding our approach. 

CWN literature demonstrates the necessity to employ at 
least two different hierarchical structures in music 
description: i) a structure for staff systems and staves, and 
ii) another hierarchy for parts, voices, measures, and 
finally music contents such as chords and rests. MX DTD 
follows this approach, in order to support the 
representation of different parts/voices sharing the same 
staff (e.g. three horns, violin I and II, piccolo and flute), as 
well as the representation of single parts split on different 
staves (e.g. piano, harp or organ). 

An abstract example of LOS contents is shown in 
Figure 1. 

<los>
  <staff_list> 
    <staff id="sopr_staff">... </staff> 
    <staff id="pf_up_staff"> ... </staff> 
    <staff id="pf_low_staff"> ... </staff> 
  </staff_list> 
  <part id="soprano"> 
    <voice_list> 
 <voice_item id="sopr_voice" 

 staff_ref="sopr_staff"/> 
    </voice_list> 
    <measure number="1">
      <voice ref="sopr_voice"> 
        ... 
      </voice> 
    </measure> 
    <measure number="2">
      ...
    </measure> 
    ... 
  </part> 
  <part id="piano"> 
    <voice_list> 
      <voice_item ref="pf_up_voice" 

 staff_ref="pf_up_staff"/> 
      <voice_item ref="pf_low_voice" 

 staff_ref="pf_low_staff"/> 
    </voice_list> 
    <measure number="1">
      ...
    </measure> 
    ... 
  </part> 
</los>

Figure 1 – The structure of the LOS sub-layer. 

Before describing music contents in detail, a staff list is 
provided (staff_list element), where staves are 
univocally identified. These identifiers will be used later, 
when music contents are described, in order to associate 
symbols to the right staff. The other hierarchical level is 
originated by a number of part elements, each containing a 
number of voices, described measure by measure. 

As regards music notation, for the sake of clarity we 
will consider the most elementary representation of score 
symbols in MX: a single note. The graphical example and 
the corresponding way to encode it in MX are shown in 
Figure 2. In MX every note is coded through notehead 
elements. A notehead defines the name and the octave 
respectively through the attributes step and octave of pitch 
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element. The duration is expressed through num and den 
attributes of duration element, aimed at a fraction 
representation of rhythmical values.  

MX syntax disposes every note within a chord element, 
where a single note is a degenerate case of a chord (such 
as in Figure 2). Rests, encoded through rest element, are 
very similar to chords, but obviously they cannot present 
pitch and accidental information 

Finally, we want to remark that music representation in 
MX is both score-oriented and sound-oriented. A proof is 
given by MX accidental notation. A performance-oriented 
format, such as MIDI, is interested only in how a note 
should sound, i.e. in its frequency. This is the reason why 
– in MIDI – B#, C, and Dbb pitches are represented by the 
same integer value: a computer-driven performance 
language is not aimed at score representation, but at sound 
synthesis. On the contrary, a notation-oriented language, 
such as NIFF, is not interested in the actual note 
inflecting, but only in what should be printed. Trying to 
sum up, a two-tier description of accidentals can be 
outlined: a first aspect implies how a note should sound, 
no matter if the final result is due to key signature, note 
accidentals, or execution praxis; a second aspect clarifies 
which accidental symbols should be printed in a score, no 
matter if they are required, or if they represent courtesy 
accidentals or music misspellings. MX, in order to provide 
a comprehensive description of music, implements both 
the aforementioned approaches. 

V. FROM SYMBOLIC FORMAT TO PERFORMANCE
LANGUAGE

Now we will discuss the second step of the process 
described in the introduction, namely the intermediate 
level between symbolic representation (first step) and 
audio rendering (third step) of a score. The generation of 
audio from symbolic information basically depends both 
on the single notated sounds (e.g. chords, notes and rests) 
and on the employed timbres. Other aspects can be 
evaluated, too: for instance, interpretative models can 
influence both the sounds to be performed and the way 
they are played. 

After the identification of a suitable format to represent 
music contents, we have to choose the tools to be used for 
sound generation and manipulation. From the encoding 
perspective, many languages aimed at computer-driven 
performance can be cited: for example, MIDI [4], and 
SASL/SAOL [5]. It is worth to remark that they all are 
supported in MX multi-layer structure. However, the 
authors decided to employ another performance language, 
namely Csound, because of its complete and powerful 
approach to sound generation.  

Csound, realized by Barry Vercoe at MIT [6], is a 
digital synthesizer that permits the simulation of every 
kind of sound. Music scores encoded in Csound can be 
played with any timbres, both simulations of real 
instruments and user-defined ones. The best simulation of 
existing physical instruments is typically done through 
physical model synthesis. The other most important 
models supported by Csound are: additive, subtractive, 
non-linear distortion, granular, and formant synthesis. 

One of the most interesting features of Csound is 
represented by its intrinsic structure, based on a logical 
and physical distinction between orchestra and score. The 
symbolic contents come from the Logic layer of MX; the 

result of the process will originate Csound code which can 
be synchronized in MX. Csound takes two formatted text 
files in input: the orchestra (file .ORC), describing the 
nature of the instruments, and the score (file .SCO), 
describing notes and other parameters along a timeline.  
Then Csound processes the instructions in these files and 
renders an audio file or a real-time audio stream as output. 
In this section we will analyze the generation of score files 
extracting the necessary information from MX’s Logic
layer. The crucial point is how every symbolic event can 
be translated into sound through Csound instructions 
without loss of information.  

In Csound syntax, every line of a score file represents a 
single sound event. In particular – for every sound to be 
produced – the instruments to use, the start time, the 
duration, the amplitude and the frequency can be 
specified. Other parameters could be employed, but for 
our purposes this approach is sufficient. As regards 
measurement units, time can be expressed in seconds, 
amplitude in an absolute value and the pitch according to 
octave-point-pitch-class notation. Once again, other 
approaches are possible, but this is the best choice for our 
purposes. 

<chord event_ref="v1_e1"> 
  <duration num="1" den="1"/> 
  <notehead> 
    <pitch step="C" octave="5"/> 
  </notehead> 
</chord>

Figure 2 – A single note encoded in MX. 

To make the comprehension easier, first we will study a 
trivial example, and then we will present more complex 
ones. As regards the simple case shown in Figure 2, 
Csound translation is the following: 

i1 0 4 10000 8.00 

Now we can illustrate a more complex example. The 
figure below shows a C major chord together with its MX 
encoding.

   
<chord event_ref="v1_e1"> 
 <duration num="1" den="1"/> 
    <notehead> 
     <pitch step="C" octave="5"/> 
    </notehead> 
    <notehead> 
     <pitch step="E" ctave="5"/> 
    </notehead> 
    <notehead> 
     <pitch step="G" octave="5"/> 
    </notehead> 
    <notehead> 
     <pitch step="C" octave="6"/> 
    </notehead> 
</chord>

Figure 3 – A chord encoded in MX. 
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The same events, coded in Csound according to the 
aforementioned conventions, have the following structure: 

i1 0 4 10000 8.00 
i1 0 4 10000 8.04 
i1 0 4 10000 8.07 
i1 0 4 10000 9.00 

In MX every chord is an element which contains a 
number of sub-elements coding the notes of the chord. On 
the other hand, in Csound every line represents a single 
sound event. In this case there are four different sounds 
whose start time and duration time are the same. More 
complex cases, i.e. chords composed by notes with 
different rhythmic values, could be managed by encoding 
sound events with the same start time for all the notes and 
different durations. 

We will now consider the problem of rest encoding. 
The figure below illustrates a music example and its XML 
counterpart.  

<rest event_ref="v1_e1"> 
  <duration num="1" den="4"/> 
</rest>

Figure 4 – A rest encoded in MX. 

Usually, in a performance-oriented language, only 
sounds are coded, so rests are implicitly represented 
through the start time and the duration time of sound 
events. In other words, rests are included by the absence 
of sound. 

As a consequence, the Csound code of the above figure 
results as follows: 

i1 0 1 10000 8.08 
i1 2 2 10000 8.08 

The different coding of rests in MX and in Csound is a 
typical example of the different approaches of symbolic 
and performance languages: in MX rests are explicitly 
notated by XML elements, whereas in Csound rests result 
from the absence of sound. In fact, in a symbolic language 
(like MX) usually we want to code every music symbol of 
the score. On the other hand, in a performance language 
(like Csound) we are interested in the information strictly 
related to the sounds that have to be produced. 

The notes of a chord are only some of the contemporary 
objects used in a score. For example, we can consider 
simultaneous notes from different parts and voices. In 
order to translate this in Csound, the algorithm has to reset 
the counter of the start time whenever a new part/voice 
begins. The conversion algorithm we have implemented 
follows the same sequence employed in MX to encode 
events: parts, measures and voices are managed in this 
exact order. Our choice implies that the translation in 
Csound of music symbols belonging to a voice within a 
measure can be straightforward. Please remember that – 
according to MX approach – single notes are always 
considered as degenerate chords, and the translation of 
simultaneous symbols belonging to a chord (see Figure 3) 

is achieved by setting the same start time and the same 
duration for all the notes. 

On the other hand, simultaneous events can occur also 
because they belong to other voices. When there are 
different simultaneous parts/voices, the translation is 
performed measure by measure and the start time of the 
measure is saved in a variable. As soon as the translation 
of the single voice ends, the counter is reset to the initial 
value previously saved.  

Figure 5 – A polyphonic score where different voices are present. 

For instance, in Figure 5 a piano score is shown. While 
the first measure contains only two voices, corresponding 
to right hand and left hand respectively, in the third 
measure three rhythmically independent voices can be 
recognized. Our algorithm scans the score part by part 
(but here only piano part is present), measure by measure 
and finally voice by voice. Consequently, the events in the 
third measure are encoded in Csound according to the 
following process: first, the global start time of the 
measure is saved, then the events belonging to the upper 
voice are encoded with the proper start time, and when a 
new voice of measure 3 has to be parsed, the global start 
time is re-used to synchronize the very first event of that 
voice. 

Basic rhythm information can be retrieved and 
translated as we have shown in the previous examples, on 
the base of the information coded in MX. Such 
information allows a trivial conversion in terms of start 
time and duration time. However, a detailed management 
of more complex information, such as different kinds of 
articulation, tie symbols and irregular groups, implies a 
more difficult approach. For brevity we are going to treat 
only the last case, namely tuplets; other examples are 
shown in the documentation available on-line.  

MX specifies the actual duration for every element in 
an irregular group. Tuplets can be represented considering 
both the aggregate duration of all the music objects of the 
group and the single notated duration of every element. 
For instance, it is possible to represent a situation where 3 
quavers take the place of 2 quavers, as shown in the 
following example. The attributes of tuplet_ratio
reflect the sentence: “enter 3 quavers in the space of 2 
quavers”. 

<chord event_ref="p1v1_0"> 
  <duration num="1" den="8"> 
    <tuplet_ratio enter_num="3"

enter_den="8" in_num="2" in_den="8"/> 
  </duration>  
  <notehead> 
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    <pitch step="D" octave="7"/> 
  </notehead> 
</chord>

Figure 6 – The encoding of a note in a tuplet. 

Thanks to the accurate information provided by MX 
format, it is possible to convert tuplets and other complex 
rhythmical layouts into Csound, as shown by the 
following code example, corresponding to Figure 6. 

i1 0 0.5 10000 9.00 
i1 0.5 0.5 10000 9.04 
i1 1 0.33 10000 9.02 
i1 1.33 0.33 10000 9.04 
i1 1.66 0.34 10000 9.05 

In conclusion, we have explained how Csound can 
generate sound events through a symbolic approach based 
on MX elements. On the other hand, we have also 
demonstrated that MX can provide sufficient information 
to a performance language, supplying an intuitive and 
effective organization of music contents. Soon other 
applications will be illustrated. 

VI. INTERPRETATIVE MODELS

During sound generation, it can be necessary to 
consider also those aspects that are not (and cannot be) 
encoded in the original symbolic format. In other words, 
the previous section has illustrated some techniques to 
translate the original symbolic information into a 
performance language; however, the execution by a 
human performer is achieved not only by reading the 
score, but also by interpreting the piece in a unique 
manner according to the performer’s taste and experience.

An approach that takes into account also the human 
interpretation can be very complex. In this context we 
only want to point out how many shadings can be 
produced in an automatic execution to make it credible, 
and consequently how many parameters should be 
considered during the design of algorithms suitable to 
generate sound from symbolic contents. These parameters 
can be many and various. Now we will only mention the 
most immediate and basic ones.  

At first, we can consider the dynamics notated in the 
score. These signs typically represent hints for the 
interpretation and can provide either absolute (e.g. p, mf, f, 
sfz) or relative (e.g. crescendo, diminuendo) indications. 
The executor himself can reproduce dynamic symbols in a 
different manner depending on the role employed in the 
whole musical piece, historical context, musical genre, 
personal preferences, etc. Obviously, relative indications 
cannot be executed in a way independent from the 
context, since they are related to something else by 
definition. Please note that even absolute indications 
usually do not correspond to standard values. 

To cite other similar cases, also the metronome of the 
whole score can be re-interpreted by every performer and 
usually changes during the piece. We can find similar 
problems as regards the execution of grace notes, 
articulations and – in general – every symbol without a 
fixed rendering in music. 

As said before, sound synthesis can be used for 
different purposes, and not only to generate score 
renderings similar to human performance. However, in the 
case we are discussing, we would like that music 
automatically generated can resemble human 
performance. As a consequence, the aforementioned 
problems are relevant and have to be considered in order 
to create “credible” audio from symbols.  

A possible solution consists in allowing a priori, real-
time or a posteriori human intervention to influence the 
results of score performance. On the contrary, in this 
context we are interested in computer-based automatic 
solutions, with the implementation of ad hoc algorithms to 
solve interpretation ambiguity during sound generation. 
This solution is preferable in order to achieve a 
completely automatic translation. The application 
described in the last section implements some basic 
algorithms to provide a more detailed and credible 
computer-generated performance. For instance, the 
absolute dynamic indications are translated by assigning 
default values within the allowed range, and hairpins (and 
their equivalents) are realized through appropriate 
interpolations. The interpretation of time indications and 
agogics would be a far more complex task. It is sufficient 
to consider the way tempo markings are encoded: even 
when standard indications are used, their definition may 
consist in basic markings (e.g. Allegro, Andante, Adagio), 
common qualifiers (e.g. Assai, Con moto, Con brio),
mood markings (e.g. Vivace, Maestoso, Sostenuto), and 
even terms for change in basic tempo (e.g. Ritenuto, 
Stretto, Rubato). All this information is encoded in MX, 
but in general its semantic content cannot be inferred 
automatically. 

As regards all the aspects whose meaning is not 
codified or it is difficult to be interpreted by a machine, a 
credible human-like performance can be simulated by 
formalizing some typical human behaviors. 

VII. AUDIO RENDERING AND SYNCHRONIZATION

In the previous sections we have analyzed how to 
encode some performance parameters from the symbolic 
information of MX format. The last step of the process, 
namely the transformation from computer-based 
performance to sound, can be based on Csound itself: in 
fact, this software tool allows to reproduce and save the 
results of sound synthesis in digital format.  

As said before, there exist well-known and commonly 
accepted standards to represent both performance and 
audio information. In particular, for our purposes we have 
employed Csound as the reference language for 
performance and PCM format for audio. Let us recall that 
such formats are supported by MX, in the sense that they 
are linkable from the proper MX layers. In other words, 
thanks to MX characteristics, it is possible to enrich the 
original file (that presented only symbolic information) 
with the results of the process that has originated a 
computer-based performance and finally an audio 
rendering. 

As regards synchronization, we have affirmed that 
different layers can be connected each other through the 
spine structure; as a consequence, every music event 
(described from a symbolic perspective in the Logic layer) 
can be linked to its representation in the layers devoted to 
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computer-driven performance and audio [7]. 
Synchronization implies: 
1. the recognition of each music event listed in spine 

inside performance and audio files; 
2. the update of the original MX file in order to encode 

also synchronization information. 
In general, when we want to create an MX file where 

not only symbolic information is present, but performance 
and audio contents as well, a problem arises: it is still 
difficult to obtain automatic synchronization in 
performance files and audio tracks, even if the complete 
score is known.  

Such problem can be easily overcome when 
performance and audio information are automatically 
generated by a computer system that parses the original 
score. In fact, in this case it is sufficient to keep trace of 
the process to have all the information required. For 
example, in a Csound score the start time and the duration 
of each sound event are clearly identified. An algorithm 
that keeps trace of these values and associates them to the 
corresponding audio events easily achieves a correct 
synchronization.  

According to MX multilayer structure, the three steps 
constituting the automatic generation process are 
represented in the Logic, Performance, and Audio layers 
respectively. All these representations have to be 
connected to spine; in this way, each music event is linked 
to its logical, performance and audio rendering.  

As regards the Performance layer, it is sufficient to 
relate the identifier of spine events to the corresponding 
line in Csound score file. An example is provided in 
Figure 7. 

<performance> 
  <csound_instance> 
    <csound_score file_name="C:\adagio.csd"> 
      <csound_spine_event line_number="3"  

event_ref="p1v1_1" /> 
      <csound_spine_event line_number="4"  

event_ref="p1v1_2" /> 
      ... 
    </csound_score> 
  </csound_instance> 
</performance> 

Figure 7 – Synchronization of a Csound score in MX. 

After obtaining a Csound score and associating timbres 
to parts/voices through a Csound orchestra, finally a 
waveform can be generated. In Csound score the start time 
and the duration of each sound event is known, so this 
information can be used to achieve synchronization 
between the music symbols in the Logic layer and their 
rendering in the Audio layer. For every track event – 
namely events mapped in audio tracks – MX encodes the 
current reference to spine and the absolute time expressed 
in absolute terms (see Figure 8). 

<audio>
  <track file_name="C:\adagio.wav" … > 
    <track_indexing timing_type="seconds"> 
      <track_event timing="0"  

event_ref="p1v1_1" /> 

      <track_event timing="0.1875"  
event_ref="p1v1_2" /> 

      ... 
    </track_indexing> 
  </track> 
</audio>

Figure 8 – Synchronization of an audio clip in MX. 

As we have said before, thanks to MX it is possible to 
implement both a synchronization among different 
information layers (e.g. between a computer-based 
performance format such as Csound and the audio 
produced in MP3 format) and a synchronization among 
different objects within the same layer (e.g. between an 
MP3 coming from a computer-driven performance and a 
WAV file corresponding to a human performance). We 
can refer to the former as inter-layer synchronization and 
to the latter as intra-layer synchronization, where inter-
layer synchronization is characterized by linking 
heterogeneous media contents, whereas intra-layer one 
creates mappings among different encodings of contents 
of the same type. As a consequence, we can obtain one or 
more computer-based performances from the original 
symbolic information, and one or more audio renderings 
of such performances, and everything will be kept 
synchronized. 

In conclusion, our approach establishes both a 
quantitative and a qualitative enrichment of the original 
music information contained in an MX file. The 
qualitative enrichment is achieved by adding 
heterogeneous types of multimedia information, whereas 
the quantitative enrichment is due to a number of media 
objects of each type that are virtually linkable to the 
original file. 

VIII. A CASE STUDY

Thanks to its characteristics, MX format is extremely 
flexible: it can be applied to classical music as well as  
Indian raga, to jazz as well as contemporary music, to 
neumes as well as non-conventional music notations [8]. 

In order to apply all the concepts shown in this paper 
and to demonstrate their implementability, at LIM we 
have designed and developed an application which carries 
out the translation from symbolic to audio information by 
using an intermediate performance language and focusing 
on CWN. This application loads an MX file and shows it 
in the left part of the interface. Therefore, the user has to 
choose a Csound file that contains the orchestra and the 
score. This file is visualized in the right part of the main 
window. For the sake of easiness, we have chosen the 
single Csound file format based on XML (namely .cds), so 
that both the orchestra and the score are managed within 
one document. 

A number of human interventions and user settings is 
allowed. For instance, we can cite the choice of 
instruments and their association to parts/voices, the 
choice of base dynamics, the fixing of the execution time, 
the decision to write or not data about synchronization in 
the original file.  

Before starting the process, two files are required: the 
MX file containing a valid score (which corresponds to 
the first step of the aforementioned process) and a .csd file 
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with the Csound orchestra to be completely or partially 
used.

The application performs the second and the third step 
mentioned in the introduction: when the MX score is 
loaded, it is translated  into a Csound score and added to 
the .csd file that contains the timbres. The synchronization 
information between symbolic and performance is added 
to the original MX, and the MX view is refreshed. 
Therefore, the .csd file is rendered by CsoundAV.exe and 
the resulting PCM file can be listened to through a special 
button. The further synchronization data are added to MX. 

This software, besides demonstrating the concepts we 
have illustrated, has some practical implications. First, it 
permits every kind of timbre experimentation, with any 
piece of any music genre. Experimentations were made 
during the past years with classic pieces or with pieces 
purposely written with aesthetic goals. In this sense, our 
application supports an easy, direct and immediate 
approach that electronic musicians can adopt to study 
timbre manipulation. Besides, the application can also 
become a useful didactic instrument to learn the basics of 
timbre study or to experiment synthetic sound effects. 
Finally, this instrument supports the validation of scores 
directly written in XML or converted in MX by filters, as 
it makes symbolic scores sound with no human 
intervention. 

IX. RELATED WORKS AND CONCLUSIONS

MX format provides an innovative and comprehensive 
way to describe music information. As regards the 
content types treated in this paper, of course there exist 
many other formats able to convey score, performance 
and audio information, but they all provide only a 
partial view of the big picture and their data are often 
uncorrelated. On the contrary, the MX format can 
describe heterogeneous information in a unique 
document and in a synchronized fashion. This is the 
main reason why MX-based applications can be 
effective tools to perform the process that brings form 
score to performance and audio. 
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