
From Music Symbolic Information to Sound
Synthesis: An Xml-Based Approach

Goffredo Haus , Luca A. Ludovico and Elisa Russo
Laboratorio di Informatica Musicale (LIM),

Dipartimento di Informatica e Comunicazione (DICo),
Università degli Studi di Milano,

{haus, ludovico, russo}@dico.unimi.it

Abstract — This paper deals with the automatic generation
of computer-driven performances and related audio
renderings of music pieces encoded in symbolic format. A
particular XML-based format, namely MX, is used to
represent the original music information. The first step is
illustrating how symbolic information can originate music
performances. The format we have chosen to represent
performance information is Csound. Then, an audio
rendering is automatically produced. Finally, we will show
how the aforementioned computer-generated information
can be linked to the original symbolic description, in order
to provide an advanced framework for heterogeneous music
contents in a single XML-based format.

I. INTRODUCTION

As regards the process from music symbolic
information to sound synthesis, two different aspects are
involved:
1. the design and implementation of algorithms to obtain

music performances from symbolic information;
2. the representation of both the original symbolic

information and the sound synthesis results in a unique
suitable format.

The latter aspect is as relevant as the former one, since
the description language represents the base algorithms,
and its characteristics can deeply influence the process.

As regards music description, let us remark that music
communication is very rich; as a consequence, the number
of its possible descriptions is high, both from a qualitative
and a quantitative point of view. First, the locution “music
description” itself can embrace a number of different
meanings: the description of a music work could simply
mean listing the meta-data about its title, its author(s), its
performers, its instrumental ensemble, and so on; another
kind of description is based on the symbols that compose
the score; finally, also audio/video recordings can be
considered music descriptions by full right.

When we refer to the aforementioned qualitative
standpoint, we are stating that music-related contents
constitute heterogeneous information. Let us cite the
examples of opera houses, music publishers, or historical
archives (see [1], [2]), where a great amount of
heterogeneous music documents are available, e.g. scores,
audio/video recordings, iconographic materials and so on.

A comprehensive analysis of music richness and
complexity is provided in [3], where six different levels of
music description have been identified: General, Logical,
Structural, Notational, Performance, and Audio layers. In
addition, not only different kinds of media are involved in
music description, but each heterogeneous content can be

represented according to different formats. For instance,
digital audio and graphical information can be saved in
compressed or uncompressed format, with or without loss
of information.

This paper deals with the automatic extraction and
generation of performance and audio information from a
symbolic format. Such information is intrinsically
heterogeneous from a qualitative standpoint, and – for
each step of the conversion process – it can be encoded in
different formats.

For instance, in the application we will present, Csound
and PCM are employed for performance and audio
information respectively.

The whole computer-based process to obtain automatic
audio generation can be modeled by three steps:
1. Description of the original music contents in a suitable

symbolic format;
2. Translation of the symbolic score into a suitable

performance language;
3. Audio rendering coming from the computer-based

performance.
It is worth to remark that our approach allows not only

to perform automatically the second and third step, but
also to synchronize the heterogeneous contents obtained
and to encode them within a single file. As we will
explain in the following, the particular format we use
allows to start from a score encoded in that format and to
add performance and audio information to the file itself.

The result is potentially very rich in multimedia
contents, as the three-steps process can be performed a
number of times by using different parameters.

The process that brings from score to Csound
performances and finally to audio renderings can be useful
for many reasons: first, it is possible to generate computer-
based performances of a score encoded in any format (in
the following, we will introduce an XML-based
language), in order to verify possible errors and validate
the score itself; besides, it is possible to perform
experimentations about timbres and comparisons among
different aesthetic results, by using both real-world
synthesized instruments and completely invented ones;
finally, the automatic generation of performance
information (possibly enriched by interpretative models or
real-time interaction) can have also didactic and
multimedia entertainment implications.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

259

II. AN OVERVIEW ON THE MX FORMAT

At LIM,1 a standard language for symbolic music
description is under development. This language, known
as MX, is a meta-representation for describing and
processing music information within a multi-layered
environment, in order to achieve integration among
structural, score, interpretative, and digital sound levels of
representation. Furthermore, the proposed standard should
integrate music representation with already defined and
accepted common standards.

The development of the MX format follows the
guidelines of IEEE P15992. This recommended practice
deals with applications and representations of Symbolic
Music Information using the XML language. After
standardization process, MX will be supported by any
kind of software dealing with music information, e.g.
score editing, optical music recognition, music
performance, musical databases, composition, and
musicological applications.

In brief, MX’s distinguishing multi-layer structure is
composed as follows. The General layer is mainly aimed
at expressing catalogue information about the piece. The
Logic layer contains information referenced by all other
layers. It is composed of two sub-parts: i) the Spine
description, used to mark music events in order to
reference them from the other layers and ii) the LOS
(Logically Organized Symbols) entity, that describes the
score from a symbolic point of view (e.g., chords, rests,
etc.). The Structural layer contains explicit descriptions of
music objects together with their causal relationships,
from both the compositional and the musicological point
of view. It represents how music objects can be described
as a transformation of previously described music objects.
The Notational layer links all possible visual instances of
a music piece. Here MX references the graphical instances
containing images of the score. The Performance layer
links parameters of notes to be played and parameters of
sounds to be created by a computer performance. Finally,
the Audio layer describes audio information coming from
recorded performances.

MX has been treated in detail in many papers (e.g., see
[3]), and in the following we will describe only the
characteristics aimed at automatic sound generation. For
further information, working demos and examples please
refer to http://www.mx.dico.unimi.it.

MX strives for an overall description of music, where
the focal point is the single music piece as conceived by
its author. MX is intended to describe single pieces, which
we define as the most elementary but complete parts a
complex composition can be divided into. To provide
some examples, a song is an elementary and complete
music piece, as well as an aria from an opera or a
movement of a symphony.

The representation of music is based on those score
symbols typical of Western musical culture, however also
non-conventional notations are supported, such as
neumes, tablatures, and graphical scores; furthermore, the

1 Laboratorio di Informatica Musicale (LIM), Dipartimento di
Informatica e Comunicazione (DICo), Università degli Studi di
Milano.
2 Institute of Electrical and Electronics Engineers (IEEE) Project
Authorization Request 1599 (P1599). In IEEE context, a Project
Authorization Request is an official document needed to initiate or
change a standard.

encoded piece is not required to have a symbolic
description at all. The latter aspect confers further
flexibility to MX format.

The concept of comprehensive description of music
probably represents the main purpose of MX format.
Specific encoding formats to represent peculiar music
features, such as audio or symbolic scores, are already
commonly accepted and in use; but those formats are
characterized by an intrinsic limitation: they can describe
very accurately music data or metadata for score, audio
tracks, computer performances of music pieces, but they
are not conceived to encode all these aspects together. On
the contrary, we are interested in a comprehensive
description of music, as our purpose is providing a
symbolic, a performance-oriented and an audio
representation of the same piece.

Besides, we want this comprehensive format to support
complete synchronization among time-based descriptions
and space-time links towards graphical objects, meaning
that audio and video contents are kept synchronized with
score advancing. This should happen also when the user
switches from a performance to another or from a score
edition to another.

In the next section, the main characteristics of MX will
be discussed, and the reason why our paper is based on
such format should become clear.

III. MX AS A FORMAT SUITABLE FOR SOUND SYNTHESIS

Let us recall the subject of this paper, i.e. the process
that brings from music symbolic information to computer-
based performances and finally to sound synthesis. From
this perspective, a comprehensive format with the
aforementioned peculiarities implies a number of positive
consequences:

When a music piece is encoded in a suitable symbolic
format, algorithms can be designed to generate
computer-driven performances and audio renderings
automatically. The concepts MX is based on allow the
extraction of every music event we have to translate or
to evaluate. If such events correspond to music
symbols according to CWN, they are described in
XML format within the Logic layer.
In general, such a format lets symbolic, performance,
and audio information be encapsulated within a unique
document. In our particular case, it is possible to link
the original symbolic information to the derived
performance and audio contents.
Symbolic, performance, and audio information can be
described in different encoding formats (e.g., WAV
and MP3, Csound and SASL/SAOL, ...) and in a
number of different versions, if needed;
Symbolic, performance, and audio information can be
organized according to a single well-structured multi-
layer environment, and they are linked each other.
Thanks to this structure, it is possible to implement
both a synchronization among different information
layers (e.g. between a computer-based performance
format such as Csound and the audio produced in MP3
format) and a synchronization among different objects
within the same layer (e.g. between an MP3 coming
from a computer-driven performance and a WAV file
corresponding to a human performance).

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

260

The features we have cited provide noteworthy
advantages as regards the manipulation of music contents.
For our purposes, the most important characteristics of
this approach are the following:
1. The possibility to represent and then extract symbolic

contents from a well-defined section of the MX
encoding.

2. The possibility to add performance and audio
information to the original symbolic contents encoded
in MX format in order to provide a richer description
of the original piece. Multi-layer structure and spine
allow to link the original music events to one or more
corresponding representations in performance and
audio domain, keeping them mutually synchronized.
In this way we can have a solid representation of
music from every point of view.

IV. SCORE ENCODING IN MX

Until now, we have spent many energies to show all the
details and capabilities of MX. This preliminary effort is
required in order to understand the approach this format
can employ to generate sound having only symbolic
information. The process of sound generation is strictly
connected to the symbolic formalism at our disposal;
moreover, if we consider performance as an intermediate
step between symbolic representation and sound
generation, also the audio description capabilities of the
format are interesting from our perspective. MX, thanks to
the aforementioned characteristics, allows an
advantageous approach to score description, to translation
into a performance language and, finally, to audio
generation.

From our perspective, score should be intended as an
ordered set of music-related symbols. As mentioned
before, the original score of the piece is encoded in XML
format within the Logic layer.

If present, traditional notation is described through a
number of music events listed in spine and accurately
defined in the LOS sub-layer. All the properties of notes
and rests are described, from the pitch-related, rhythmic
and graphical perspective. In particular, as regards pitch,
MX describes both the graphical appearance of a note and
the sound we expect.

MX is aimed at a comprehensive representation of
music, consequently not only CWN is supported. The
representational possibilities offered by MX range from
western “classical” music to non-traditional scores (like
Indian music or African drumming), from opera to jazz,
from pop to rock. It would be virtually possible to
reconstruct audio renderings from symbolic information
coded also in different notations. In fact, MX supports
also non-conventional score representations, such as the
graphical ones described in the Notational layer.
However, at the moment our efforts have been
concentrated on the translation of symbols coming from
CWN. The automatic translation into a performance
language of non-traditional kinds of representation –
according to commonly accepted, computer-derived or
custom rules – will be the subject of our future research
activity.

In MX format, scores that employ CWN or other kinds
of symbolic notation are encoded in the LOS sub-layer of
the Logic layer.

Of course, this section cannot provide a complete
reference manual, and only the main characteristics of
music encoding will be discussed here. However, we think
that a short overview of notation in MX can help
understanding our approach.

CWN literature demonstrates the necessity to employ at
least two different hierarchical structures in music
description: i) a structure for staff systems and staves, and
ii) another hierarchy for parts, voices, measures, and
finally music contents such as chords and rests. MX DTD
follows this approach, in order to support the
representation of different parts/voices sharing the same
staff (e.g. three horns, violin I and II, piccolo and flute), as
well as the representation of single parts split on different
staves (e.g. piano, harp or organ).

An abstract example of LOS contents is shown in
Figure 1.

<los>
 <staff_list>
 <staff id="sopr_staff">... </staff>
 <staff id="pf_up_staff"> ... </staff>
 <staff id="pf_low_staff"> ... </staff>
 </staff_list>
 <part id="soprano">
 <voice_list>
 <voice_item id="sopr_voice"

 staff_ref="sopr_staff"/>
 </voice_list>
 <measure number="1">
 <voice ref="sopr_voice">
 ...
 </voice>
 </measure>
 <measure number="2">
 ...
 </measure>
 ...
 </part>
 <part id="piano">
 <voice_list>
 <voice_item ref="pf_up_voice"

 staff_ref="pf_up_staff"/>
 <voice_item ref="pf_low_voice"

 staff_ref="pf_low_staff"/>
 </voice_list>
 <measure number="1">
 ...
 </measure>
 ...
 </part>
</los>

Figure 1 – The structure of the LOS sub-layer.

Before describing music contents in detail, a staff list is
provided (staff_list element), where staves are
univocally identified. These identifiers will be used later,
when music contents are described, in order to associate
symbols to the right staff. The other hierarchical level is
originated by a number of part elements, each containing a
number of voices, described measure by measure.

As regards music notation, for the sake of clarity we
will consider the most elementary representation of score
symbols in MX: a single note. The graphical example and
the corresponding way to encode it in MX are shown in
Figure 2. In MX every note is coded through notehead
elements. A notehead defines the name and the octave
respectively through the attributes step and octave of pitch

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

261

element. The duration is expressed through num and den
attributes of duration element, aimed at a fraction
representation of rhythmical values.

MX syntax disposes every note within a chord element,
where a single note is a degenerate case of a chord (such
as in Figure 2). Rests, encoded through rest element, are
very similar to chords, but obviously they cannot present
pitch and accidental information

Finally, we want to remark that music representation in
MX is both score-oriented and sound-oriented. A proof is
given by MX accidental notation. A performance-oriented
format, such as MIDI, is interested only in how a note
should sound, i.e. in its frequency. This is the reason why
– in MIDI – B#, C, and Dbb pitches are represented by the
same integer value: a computer-driven performance
language is not aimed at score representation, but at sound
synthesis. On the contrary, a notation-oriented language,
such as NIFF, is not interested in the actual note
inflecting, but only in what should be printed. Trying to
sum up, a two-tier description of accidentals can be
outlined: a first aspect implies how a note should sound,
no matter if the final result is due to key signature, note
accidentals, or execution praxis; a second aspect clarifies
which accidental symbols should be printed in a score, no
matter if they are required, or if they represent courtesy
accidentals or music misspellings. MX, in order to provide
a comprehensive description of music, implements both
the aforementioned approaches.

V. FROM SYMBOLIC FORMAT TO PERFORMANCE
LANGUAGE

Now we will discuss the second step of the process
described in the introduction, namely the intermediate
level between symbolic representation (first step) and
audio rendering (third step) of a score. The generation of
audio from symbolic information basically depends both
on the single notated sounds (e.g. chords, notes and rests)
and on the employed timbres. Other aspects can be
evaluated, too: for instance, interpretative models can
influence both the sounds to be performed and the way
they are played.

After the identification of a suitable format to represent
music contents, we have to choose the tools to be used for
sound generation and manipulation. From the encoding
perspective, many languages aimed at computer-driven
performance can be cited: for example, MIDI [4], and
SASL/SAOL [5]. It is worth to remark that they all are
supported in MX multi-layer structure. However, the
authors decided to employ another performance language,
namely Csound, because of its complete and powerful
approach to sound generation.

Csound, realized by Barry Vercoe at MIT [6], is a
digital synthesizer that permits the simulation of every
kind of sound. Music scores encoded in Csound can be
played with any timbres, both simulations of real
instruments and user-defined ones. The best simulation of
existing physical instruments is typically done through
physical model synthesis. The other most important
models supported by Csound are: additive, subtractive,
non-linear distortion, granular, and formant synthesis.

One of the most interesting features of Csound is
represented by its intrinsic structure, based on a logical
and physical distinction between orchestra and score. The
symbolic contents come from the Logic layer of MX; the

result of the process will originate Csound code which can
be synchronized in MX. Csound takes two formatted text
files in input: the orchestra (file .ORC), describing the
nature of the instruments, and the score (file .SCO),
describing notes and other parameters along a timeline.
Then Csound processes the instructions in these files and
renders an audio file or a real-time audio stream as output.
In this section we will analyze the generation of score files
extracting the necessary information from MX’s Logic
layer. The crucial point is how every symbolic event can
be translated into sound through Csound instructions
without loss of information.

In Csound syntax, every line of a score file represents a
single sound event. In particular – for every sound to be
produced – the instruments to use, the start time, the
duration, the amplitude and the frequency can be
specified. Other parameters could be employed, but for
our purposes this approach is sufficient. As regards
measurement units, time can be expressed in seconds,
amplitude in an absolute value and the pitch according to
octave-point-pitch-class notation. Once again, other
approaches are possible, but this is the best choice for our
purposes.

<chord event_ref="v1_e1">
 <duration num="1" den="1"/>
 <notehead>
 <pitch step="C" octave="5"/>
 </notehead>
</chord>

Figure 2 – A single note encoded in MX.

To make the comprehension easier, first we will study a
trivial example, and then we will present more complex
ones. As regards the simple case shown in Figure 2,
Csound translation is the following:

i1 0 4 10000 8.00

Now we can illustrate a more complex example. The
figure below shows a C major chord together with its MX
encoding.

<chord event_ref="v1_e1">
 <duration num="1" den="1"/>
 <notehead>
 <pitch step="C" octave="5"/>
 </notehead>
 <notehead>
 <pitch step="E" ctave="5"/>
 </notehead>
 <notehead>
 <pitch step="G" octave="5"/>
 </notehead>
 <notehead>
 <pitch step="C" octave="6"/>
 </notehead>
</chord>

Figure 3 – A chord encoded in MX.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

262

The same events, coded in Csound according to the
aforementioned conventions, have the following structure:

i1 0 4 10000 8.00
i1 0 4 10000 8.04
i1 0 4 10000 8.07
i1 0 4 10000 9.00

In MX every chord is an element which contains a
number of sub-elements coding the notes of the chord. On
the other hand, in Csound every line represents a single
sound event. In this case there are four different sounds
whose start time and duration time are the same. More
complex cases, i.e. chords composed by notes with
different rhythmic values, could be managed by encoding
sound events with the same start time for all the notes and
different durations.

We will now consider the problem of rest encoding.
The figure below illustrates a music example and its XML
counterpart.

<rest event_ref="v1_e1">
 <duration num="1" den="4"/>
</rest>

Figure 4 – A rest encoded in MX.

Usually, in a performance-oriented language, only
sounds are coded, so rests are implicitly represented
through the start time and the duration time of sound
events. In other words, rests are included by the absence
of sound.

As a consequence, the Csound code of the above figure
results as follows:

i1 0 1 10000 8.08
i1 2 2 10000 8.08

The different coding of rests in MX and in Csound is a
typical example of the different approaches of symbolic
and performance languages: in MX rests are explicitly
notated by XML elements, whereas in Csound rests result
from the absence of sound. In fact, in a symbolic language
(like MX) usually we want to code every music symbol of
the score. On the other hand, in a performance language
(like Csound) we are interested in the information strictly
related to the sounds that have to be produced.

The notes of a chord are only some of the contemporary
objects used in a score. For example, we can consider
simultaneous notes from different parts and voices. In
order to translate this in Csound, the algorithm has to reset
the counter of the start time whenever a new part/voice
begins. The conversion algorithm we have implemented
follows the same sequence employed in MX to encode
events: parts, measures and voices are managed in this
exact order. Our choice implies that the translation in
Csound of music symbols belonging to a voice within a
measure can be straightforward. Please remember that –
according to MX approach – single notes are always
considered as degenerate chords, and the translation of
simultaneous symbols belonging to a chord (see Figure 3)

is achieved by setting the same start time and the same
duration for all the notes.

On the other hand, simultaneous events can occur also
because they belong to other voices. When there are
different simultaneous parts/voices, the translation is
performed measure by measure and the start time of the
measure is saved in a variable. As soon as the translation
of the single voice ends, the counter is reset to the initial
value previously saved.

Figure 5 – A polyphonic score where different voices are present.

For instance, in Figure 5 a piano score is shown. While
the first measure contains only two voices, corresponding
to right hand and left hand respectively, in the third
measure three rhythmically independent voices can be
recognized. Our algorithm scans the score part by part
(but here only piano part is present), measure by measure
and finally voice by voice. Consequently, the events in the
third measure are encoded in Csound according to the
following process: first, the global start time of the
measure is saved, then the events belonging to the upper
voice are encoded with the proper start time, and when a
new voice of measure 3 has to be parsed, the global start
time is re-used to synchronize the very first event of that
voice.

Basic rhythm information can be retrieved and
translated as we have shown in the previous examples, on
the base of the information coded in MX. Such
information allows a trivial conversion in terms of start
time and duration time. However, a detailed management
of more complex information, such as different kinds of
articulation, tie symbols and irregular groups, implies a
more difficult approach. For brevity we are going to treat
only the last case, namely tuplets; other examples are
shown in the documentation available on-line.

MX specifies the actual duration for every element in
an irregular group. Tuplets can be represented considering
both the aggregate duration of all the music objects of the
group and the single notated duration of every element.
For instance, it is possible to represent a situation where 3
quavers take the place of 2 quavers, as shown in the
following example. The attributes of tuplet_ratio
reflect the sentence: “enter 3 quavers in the space of 2
quavers”.

<chord event_ref="p1v1_0">
 <duration num="1" den="8">
 <tuplet_ratio enter_num="3"

enter_den="8" in_num="2" in_den="8"/>
 </duration>
 <notehead>

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

263

 <pitch step="D" octave="7"/>
 </notehead>
</chord>

Figure 6 – The encoding of a note in a tuplet.

Thanks to the accurate information provided by MX
format, it is possible to convert tuplets and other complex
rhythmical layouts into Csound, as shown by the
following code example, corresponding to Figure 6.

i1 0 0.5 10000 9.00
i1 0.5 0.5 10000 9.04
i1 1 0.33 10000 9.02
i1 1.33 0.33 10000 9.04
i1 1.66 0.34 10000 9.05

In conclusion, we have explained how Csound can
generate sound events through a symbolic approach based
on MX elements. On the other hand, we have also
demonstrated that MX can provide sufficient information
to a performance language, supplying an intuitive and
effective organization of music contents. Soon other
applications will be illustrated.

VI. INTERPRETATIVE MODELS

During sound generation, it can be necessary to
consider also those aspects that are not (and cannot be)
encoded in the original symbolic format. In other words,
the previous section has illustrated some techniques to
translate the original symbolic information into a
performance language; however, the execution by a
human performer is achieved not only by reading the
score, but also by interpreting the piece in a unique
manner according to the performer’s taste and experience.

An approach that takes into account also the human
interpretation can be very complex. In this context we
only want to point out how many shadings can be
produced in an automatic execution to make it credible,
and consequently how many parameters should be
considered during the design of algorithms suitable to
generate sound from symbolic contents. These parameters
can be many and various. Now we will only mention the
most immediate and basic ones.

At first, we can consider the dynamics notated in the
score. These signs typically represent hints for the
interpretation and can provide either absolute (e.g. p, mf, f,
sfz) or relative (e.g. crescendo, diminuendo) indications.
The executor himself can reproduce dynamic symbols in a
different manner depending on the role employed in the
whole musical piece, historical context, musical genre,
personal preferences, etc. Obviously, relative indications
cannot be executed in a way independent from the
context, since they are related to something else by
definition. Please note that even absolute indications
usually do not correspond to standard values.

To cite other similar cases, also the metronome of the
whole score can be re-interpreted by every performer and
usually changes during the piece. We can find similar
problems as regards the execution of grace notes,
articulations and – in general – every symbol without a
fixed rendering in music.

As said before, sound synthesis can be used for
different purposes, and not only to generate score
renderings similar to human performance. However, in the
case we are discussing, we would like that music
automatically generated can resemble human
performance. As a consequence, the aforementioned
problems are relevant and have to be considered in order
to create “credible” audio from symbols.

A possible solution consists in allowing a priori, real-
time or a posteriori human intervention to influence the
results of score performance. On the contrary, in this
context we are interested in computer-based automatic
solutions, with the implementation of ad hoc algorithms to
solve interpretation ambiguity during sound generation.
This solution is preferable in order to achieve a
completely automatic translation. The application
described in the last section implements some basic
algorithms to provide a more detailed and credible
computer-generated performance. For instance, the
absolute dynamic indications are translated by assigning
default values within the allowed range, and hairpins (and
their equivalents) are realized through appropriate
interpolations. The interpretation of time indications and
agogics would be a far more complex task. It is sufficient
to consider the way tempo markings are encoded: even
when standard indications are used, their definition may
consist in basic markings (e.g. Allegro, Andante, Adagio),
common qualifiers (e.g. Assai, Con moto, Con brio),
mood markings (e.g. Vivace, Maestoso, Sostenuto), and
even terms for change in basic tempo (e.g. Ritenuto,
Stretto, Rubato). All this information is encoded in MX,
but in general its semantic content cannot be inferred
automatically.

As regards all the aspects whose meaning is not
codified or it is difficult to be interpreted by a machine, a
credible human-like performance can be simulated by
formalizing some typical human behaviors.

VII. AUDIO RENDERING AND SYNCHRONIZATION

In the previous sections we have analyzed how to
encode some performance parameters from the symbolic
information of MX format. The last step of the process,
namely the transformation from computer-based
performance to sound, can be based on Csound itself: in
fact, this software tool allows to reproduce and save the
results of sound synthesis in digital format.

As said before, there exist well-known and commonly
accepted standards to represent both performance and
audio information. In particular, for our purposes we have
employed Csound as the reference language for
performance and PCM format for audio. Let us recall that
such formats are supported by MX, in the sense that they
are linkable from the proper MX layers. In other words,
thanks to MX characteristics, it is possible to enrich the
original file (that presented only symbolic information)
with the results of the process that has originated a
computer-based performance and finally an audio
rendering.

As regards synchronization, we have affirmed that
different layers can be connected each other through the
spine structure; as a consequence, every music event
(described from a symbolic perspective in the Logic layer)
can be linked to its representation in the layers devoted to

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

264

computer-driven performance and audio [7].
Synchronization implies:
1. the recognition of each music event listed in spine

inside performance and audio files;
2. the update of the original MX file in order to encode

also synchronization information.
In general, when we want to create an MX file where

not only symbolic information is present, but performance
and audio contents as well, a problem arises: it is still
difficult to obtain automatic synchronization in
performance files and audio tracks, even if the complete
score is known.

Such problem can be easily overcome when
performance and audio information are automatically
generated by a computer system that parses the original
score. In fact, in this case it is sufficient to keep trace of
the process to have all the information required. For
example, in a Csound score the start time and the duration
of each sound event are clearly identified. An algorithm
that keeps trace of these values and associates them to the
corresponding audio events easily achieves a correct
synchronization.

According to MX multilayer structure, the three steps
constituting the automatic generation process are
represented in the Logic, Performance, and Audio layers
respectively. All these representations have to be
connected to spine; in this way, each music event is linked
to its logical, performance and audio rendering.

As regards the Performance layer, it is sufficient to
relate the identifier of spine events to the corresponding
line in Csound score file. An example is provided in
Figure 7.

<performance>
 <csound_instance>
 <csound_score file_name="C:\adagio.csd">
 <csound_spine_event line_number="3"

event_ref="p1v1_1" />
 <csound_spine_event line_number="4"

event_ref="p1v1_2" />
 ...
 </csound_score>
 </csound_instance>
</performance>

Figure 7 – Synchronization of a Csound score in MX.

After obtaining a Csound score and associating timbres
to parts/voices through a Csound orchestra, finally a
waveform can be generated. In Csound score the start time
and the duration of each sound event is known, so this
information can be used to achieve synchronization
between the music symbols in the Logic layer and their
rendering in the Audio layer. For every track event –
namely events mapped in audio tracks – MX encodes the
current reference to spine and the absolute time expressed
in absolute terms (see Figure 8).

<audio>
 <track file_name="C:\adagio.wav" … >
 <track_indexing timing_type="seconds">
 <track_event timing="0"

event_ref="p1v1_1" />

 <track_event timing="0.1875"
event_ref="p1v1_2" />

 ...
 </track_indexing>
 </track>
</audio>

Figure 8 – Synchronization of an audio clip in MX.

As we have said before, thanks to MX it is possible to
implement both a synchronization among different
information layers (e.g. between a computer-based
performance format such as Csound and the audio
produced in MP3 format) and a synchronization among
different objects within the same layer (e.g. between an
MP3 coming from a computer-driven performance and a
WAV file corresponding to a human performance). We
can refer to the former as inter-layer synchronization and
to the latter as intra-layer synchronization, where inter-
layer synchronization is characterized by linking
heterogeneous media contents, whereas intra-layer one
creates mappings among different encodings of contents
of the same type. As a consequence, we can obtain one or
more computer-based performances from the original
symbolic information, and one or more audio renderings
of such performances, and everything will be kept
synchronized.

In conclusion, our approach establishes both a
quantitative and a qualitative enrichment of the original
music information contained in an MX file. The
qualitative enrichment is achieved by adding
heterogeneous types of multimedia information, whereas
the quantitative enrichment is due to a number of media
objects of each type that are virtually linkable to the
original file.

VIII. A CASE STUDY

Thanks to its characteristics, MX format is extremely
flexible: it can be applied to classical music as well as
Indian raga, to jazz as well as contemporary music, to
neumes as well as non-conventional music notations [8].

In order to apply all the concepts shown in this paper
and to demonstrate their implementability, at LIM we
have designed and developed an application which carries
out the translation from symbolic to audio information by
using an intermediate performance language and focusing
on CWN. This application loads an MX file and shows it
in the left part of the interface. Therefore, the user has to
choose a Csound file that contains the orchestra and the
score. This file is visualized in the right part of the main
window. For the sake of easiness, we have chosen the
single Csound file format based on XML (namely .cds), so
that both the orchestra and the score are managed within
one document.

A number of human interventions and user settings is
allowed. For instance, we can cite the choice of
instruments and their association to parts/voices, the
choice of base dynamics, the fixing of the execution time,
the decision to write or not data about synchronization in
the original file.

Before starting the process, two files are required: the
MX file containing a valid score (which corresponds to
the first step of the aforementioned process) and a .csd file

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

265

with the Csound orchestra to be completely or partially
used.

The application performs the second and the third step
mentioned in the introduction: when the MX score is
loaded, it is translated into a Csound score and added to
the .csd file that contains the timbres. The synchronization
information between symbolic and performance is added
to the original MX, and the MX view is refreshed.
Therefore, the .csd file is rendered by CsoundAV.exe and
the resulting PCM file can be listened to through a special
button. The further synchronization data are added to MX.

This software, besides demonstrating the concepts we
have illustrated, has some practical implications. First, it
permits every kind of timbre experimentation, with any
piece of any music genre. Experimentations were made
during the past years with classic pieces or with pieces
purposely written with aesthetic goals. In this sense, our
application supports an easy, direct and immediate
approach that electronic musicians can adopt to study
timbre manipulation. Besides, the application can also
become a useful didactic instrument to learn the basics of
timbre study or to experiment synthetic sound effects.
Finally, this instrument supports the validation of scores
directly written in XML or converted in MX by filters, as
it makes symbolic scores sound with no human
intervention.

IX. RELATED WORKS AND CONCLUSIONS

MX format provides an innovative and comprehensive
way to describe music information. As regards the
content types treated in this paper, of course there exist
many other formats able to convey score, performance
and audio information, but they all provide only a
partial view of the big picture and their data are often
uncorrelated. On the contrary, the MX format can
describe heterogeneous information in a unique
document and in a synchronized fashion. This is the
main reason why MX-based applications can be
effective tools to perform the process that brings form
score to performance and audio.

REFERENCES

[1] G. Haus, “Rescuing La Scala’s Music Archives”, Computer, vol.
31, no. 3, pp. 88–89, 1998.

[2] G. Haus and L.A. Ludovico, “The Digital Opera House: an
Architecture for Multimedia Databases”, Journal of Cultural
Heritage, vol. 7, no. 2, pp. 92–97, 2005.

[3] G. Haus and M. Longari, “A Multi-Layered, Time-Based Music
Description Approach Based on XML”, Computer Music Journal,
vol. 29, no. 1, pp. 70–85, 2005.

[4] E. Selfridge-Field, “Beyond MIDI: the handbook of musical
codes”, MIT Press, 1997.

[5] E.D. Scheirer and B.L. Vercoe, “SAOL: The MPEG-4 Structured
Audio Orchestra Language”, Computer Music Journal, vol. 23, no.
2, pp. 31–51, 1999.

[6] R. Boulanger, “The Csound book”, Cambridge, MIT Press, 2000.
[7] A. Baratè, G. Haus, and L.A. Ludovico, “An XML-Based Format

for Advanced Music Fruition”, Sound and Music Computing
2006, 2006.

[8] D.L. Baggi, A. Baratè, L.A. Ludovico, and G. Haus, “A computer
tool to enjoy and understand music”, EWIMT 2005, pp. 213–217,
2005.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

266

