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Abstract

The ordered open-end bin packing problem is a variant of the bin pack-
ing problem in which the items to be packed are sorted in a given order
and the capacity of each bin can be exceeded by the last item packed into
the bin. We present a branch-and-price algorithm for its exact optimiza-
tion. The pricing subproblem is a special variant of the binary knapsack
problem, in which the items are ordered and the last one does not consume
capacity. We present a specialized optimization algorithm for this sub-
problem. The speed of the column generation algorithm is improved by
subgradient optimization steps, allowing for multiple pricing and variable
fixing. Computational results are presented on instances of different size
and items with different correlations between their size and their position
in the given order.

1 Introduction

The open-end bin packing problem is a variant of the bin packing problem [4] in
which the capacity of each bin can be exceeded by one of the items packed into
the bin. This problem was introduced in a paper by Leung, Dror and Young
[7], where the authors proved that the problem is NP-hard. We study a variant
of this problem introduced by Yang and Leung [11], called ordered open-end
bin packing problem (OOEBPP), in which the items are sorted and the last
item in each bin is allowed to exceed the bin capacity. The motivation given by
the authors for studying this problem is related to the fare payment in subway
stations in Hong Kong. Yang and Leung [11] examined several algorithms for
on-line and off-line approximation and studied their worst-case and average-case
performance.

∗Correspondence to: {ceselli,righini}@dti.unimi.it
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In this work we present a branch-and-price algorithm for the exact opti-
mization of the OOEBPP. In Section 2 we introduce the notation used in the
paper and we give a 0-1 linear programming formulation of the problem; then
we present a set covering formulation of the OOEBPP, we introduce a combi-
natorial lower bound and we show how to derive a set of valid inequalities that
may strengthen the set covering formulation. Since the set covering formulation
involves an exponential number of variables, we solve it with column generation;
in Section 3 we present an ILP formulation of the pricing subproblem, which is
a variation of the binary knapsack problem, in which the items are ordered and
the last item does not consume capacity. In Section 4 we present a specialized
algorithm that allows to effectively solve the pricing subproblem to optimality,
exploiting suitable bounds and domination criteria. In Section 5 we describe
a branching strategy, three heuristic algorithms and the columns management
techniques adopted in our branch-and-price algorithm. In Section 6 we illustrate
how we embedded subgradient optimization into column generation, exploiting
dual solutions to obtain faster convergence, multiple pricing and variable fixing.
In Section 7 we present our computational results with instances of different
size and items with different correlation between their size and their position in
the given order.

2 Problem formulation

The OOEBPP is defined as follows: an ordered sequence N of N items is given;
each item j ∈ N has a given positive integer weight aj . The items must be
packed into identical bins with a given positive integer capacity b. The objective
is to minimize the number of bins, subject to the constraint that the capacity
of each bin can be exceeded only by the last item packed into it, where the
term “last” is referred to the order of the items in N . Hence the last item in
each bin requires only one unit of capacity. In the remainder we call such item
the overflow item of its bin, and we say that it initializes its bin. Throughout
the paper, we assume that each item in N is identified by a positive integer
in [1, . . . , N ] corresponding to its position in the sequence. An integer linear
programming formulation of the problem is the following.

minimize
∑

i∈N
yi (1)

s.t. yi +
∑

j>i

xij = 1 ∀i ∈ N (2)

∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N (3)

xij ∈ {0, 1} ∀i < j ∈ N (4)
yi ∈ {0, 1} ∀i ∈ N (5)

Each binary variable yi indicates whether item i is the overflow item in its
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bin. Hence the number of bins used is indicated in the objective function (1) by
the number of binary variables yi set to 1. Each binary variable xij indicates
whether item i is assigned to the bin in which the overflow item is item j.
Because of the constraint on the order of the items, we only have xij variables
with i < j. Constraints (2) impose that each item is assigned to a bin, while
capacity constraints (3) impose that the overall weight of the items assigned to
a bin, excluding the overflow item, must fit into the bin and must leave at least
one capacity unit available for accommodating the overflow item.

A lower bound for the OOEBPP can be obtained from the linear relaxation
of (1)–(5), when integrality restrictions (4) and (5) are relaxed. In the next
subsections we present two other lower bounds: the first one is obtained from
the linear relaxation of a set covering formulation of the OOEBPP; the second
one is obtained in a combinatorial way, by relaxing integrality constraints on the
assignment variables (4). Both lower bounds dominate the lower bound given
by the linear relaxation of (1)–(5) and they do not dominate each other. After
presenting the two lower bounds, we show how they can be combined together,
by adding valid inequalities obtained from the combinatorial lower bounding
algorithm to the set covering formulation.

2.1 A set covering formulation

The branch-and-price algorithm we present in this paper relies on the linear
relaxation of a set covering formulation of the OOEBPP.

Consider the set Ωj defined as follows for each j ∈ N :

Ωj = {(xij , yj)|
∑

i<j

aixij ≤ (b− 1)yj , 0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1}. (6)

Let Kj be the set of the integer points in Ωj and let (xij , yj)k be the generic
integer point of Ωj . Then each point (xij , yj) in the convex hull of Ωj can be
expressed as a convex combination of the integer points in Kj :

conv(Ωj) = {(xij , yj)|(xij , yj) =
∑

k∈Kj

(xij , yj)kzk,
∑

k∈Kj

zk = 1, 0 ≤ zk ≤ 1}.

(7)

Exploiting equation (7) we obtain by substitution the following formulation of
the linear relaxation of the OOEBPP, where all polyhedra Ωj have been replaced
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by their convex hulls:

minimize
∑

j∈N

∑

k∈Kj

yk
j zk

s.t.
∑

k∈Ki

yk
i zk +

∑

j>i

∑

k∈Kj

xk
ijzk = 1 ∀i ∈ N

∑

k∈Kj

zk = 1 ∀j ∈ N (8)

0 ≤ zk ≤ 1 ∀j ∈ N , ∀k ∈ Kj .

This model can be simplified as follows. First of all, we exclude from this
linear program all columns corresponding to empty bins, that is columns in
which yk

j = 0 and xk
ij = 0 for each i < j. This is correct because empty bins

do not give any contribution to defining an OOEBPP solution. The effect of
this simplification is that y variables disappear (they are all equal to 1) and
constraints (8) are now rewritten as inequalities:

minimize
∑

j∈N

∑

k∈Kj

zk

s.t.
∑

k∈Ki

zk +
∑

j>i

∑

k∈Kj

xk
ijzk = 1 ∀i ∈ N (9)

∑

k∈Kj

zk ≤ 1 ∀j ∈ N (10)

0 ≤ zk ≤ 1 ∀j ∈ N , ∀k ∈ Kj .

For each item j which is not chosen as an overflow item, no column in Kj is basic.
The second simplification stems from the observation that an optimal solution
must exist, in which no item is chosen more than once as the overflow item of a
bin. Therefore constraints (10) are redundant and can be dropped. Hence the
remaining model only contains set partitioning constraints (9): in turn these can
be replaced by set covering constraints, because it is never convenient to pack
an item more than once. After these simplifications we obtain the following set
covering model:

minimize
∑

j∈N

∑

k∈Kj

zk (11)

s.t.
∑

k∈Ki

zk +
∑

j>i

∑

k∈Kj

xk
ijzk ≥ 1 ∀i ∈ N (12)

0 ≤ zk ≤ 1 ∀j ∈ N , ∀k ∈ Kj . (13)

In this model each variable zk, k ∈ Kj corresponds to a feasible column, that
is a feasible set of items packed into a same bin j. This formulation is at least
as tight as the linear relaxation of model (1)–(5), owing to the convexification
of constraints (3).
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Combinatorial Bounding Algorithm

Input: An ordered set N , a weight ai ∀i ∈ N , a capacity b.
Output: A set of overflow items O, a set of critical items C, a lower bound on the number of bins |O|.

begin
/* Initialization */
C:= ∅; /* C is the ordered set of critical items */
O:= ∅; /* O is the set of overflow items */
R:= 0; /* R is the overall residual capacity */
S:= ∅ /* S is the set of candidate overflow items */

for i:= N down to 1 do
S:= S ∪ {i}
if ai > R then

/* Choose the candidate of maximum weight */
Select j∗ ∈ argmaxj∈S{aj}
C:= C ∪ {i}; O:= O ∪ {j∗}; S:= S \ {j∗}
R:= R + (b− 1) + aj∗

R:= R− ai

/* Output */
return C, O and |O|

end

Figure 1: Computation of the combinatorial lower bound.

2.2 A combinatorial lower bound

To achieve a lower bound, we consider here the relaxation of the OOEBPP in
which the items can be split into different bins and we solve this relaxation to
optimality.

Our algorithm (called CBA for Combinatorial Bounding Algorithm in the
remainder) computes a set of overflow items in an optimal fractional packing in
the following way: items are considered from N down to 1, in order to comply
with the constraint on the ordering; at each iteration we define R to be the
overall residual capacity of all the bins already initialized. Whenever an item
j is found, whose size is greater than R, a new bin is initialized and item j is
inserted into an ordered set C of critical items. The overflow item of the new
bin is selected as the largest item among those already packed but not yet used
as overflow items, in order to yield the maximum residual capacity for the next
iterations.

The pseudo-code of CBA is reported in Figure 1. This algorithm returns
a lower bound to the number of necessary bins, together with the additional
information on the set C of critical items. We remark that the elements of set
C are sorted according to their insertion order.

If the set S of the candidate overflow items is implemented with a heap data
structure, the complexity of the algorithm is O(NlogN).

The bound provided by CBA dominates the bound provided by the linear
programming relaxation of (1)–(5), because the solution given by CBA is feasible
for this linear program, but not necessarily optimal.
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An example. We illustrate our algorithm CBA with a small example. Con-
sider an OOEBPP instance with 5 items of size 16, 40, 40, 45 and 50 and a bin
capacity equal to 50. For each iteration of CBA, starting from item 5 down to
item 1, we report in Figure 2 the considered item, its size, the number of bins
currently used, the overall residual capacity R, the set of overflow items O the
set of critical items C and the set of candidate overflow items S.

Note that, when item 3 is considered, the residual capacity is equal to 4 and
it is not enough to accommodate the item. Hence a second bin is initialized:
its overflow item is item 4, while the current item, that is item 3, is labeled as
critical and it is inserted into the set C. The final solution uses only two bins
and it is not feasible: the optimal value for this instance (with indivisible items)
is 3.

2.3 Combining the two lower bounds

The information given by the critical items computed in algorithm CBA il-
lustrated in subsection 2.2 allows to strengthen the set covering formulation
presented in subsection 2.1 by the following valid inequalities:

∑

k∈∪i≥C(t)Ki

zk ≥ t ∀t = 1, . . . , |C|. (14)

where C(t) indicates the tth item that has been inserted in C according to the
insertion order. These inequalities state that at least t overflow items must be
selected in the range [C(t), . . . , N ].

In the example above we have C(1) = 5 and C(2) = 3 and we can add to the
master problem the two inequalities:

∑

k∈K5

zk ≥ 1 and
∑

k∈K3∪K4∪K5

zk ≥ 2.

The first inequality is trivial, since the last item is always an overflow item.
The second inequality states that at least two items in the range [3, . . . , 5] must
be overflow items and it may cut off some fractional solutions of the linear
relaxation of (11) - (13).

Item Size Bins R O C S
5 50 1 49 {5} {5}
4 45 1 4 {5} {5} 4
3 40 2 58 {4, 5} {5, 3} 3
2 40 2 18 {4, 5} {5, 3} 2, 3
1 16 2 2 {4, 5} {5, 3} 1, 2, 3

Figure 2: An example of lower bound computation with algorithm CBA.
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3 Column generation and the pricing subprob-
lem

The sets Kj of feasible columns have exponentially many elements; therefore a
restricted set covering problem (RSCP) is considered and additional columns
with negative reduced cost are iteratively generated. For the definition (6) of
Ωj for each given j ∈ N the pricing problem we need to solve to generate a new
column is a binary knapsack problem. Thus a negative reduced cost column can
be generated by solving at most N binary knapsack problems. However solving
a large number of knapsack problems to optimality can be unnecessary, since
we just need one negative reduced cost column, provided it exists. Therefore
we solve a pricing problem in which the overflow item is not fixed, but rather it
must be chosen in an optimal way; in other words we search for the column of
minimum reduced cost for all possible choices of the overflow item. To formulate
the pricing problem we introduce the non-negative dual variables λ associated
to covering constraints (12) and the non-negative dual variables µ associated to
valid inequalities (14). In the following model each binary variable yi is equal
to 1 if and only if item i is assigned to the bin and it is the overflow item, while
each binary variable xij is equal to 1 if and only if item i is assigned to the bin
and item j is the overflow item.

minimize π(λ, µ) = 1−
∑

i∈N
λi(yi +

∑

j>i

xij)−
∑

i∈N
yi

∑

t|C(t)≤i

µt

s.t.
∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N
∑

i∈N
yi = 1

yi ∈ {0, 1} ∀i ∈ N ,

xij ∈ {0, 1} ∀j ∈ N , ∀i < j.

After defining ρi = λi +
∑

t|C(t)≤i µt, the pricing problem can be rewritten in an
equivalent way, where each binary variable xi is equal to 1 if and only if item i
is assigned to the bin and it is not the overflow item.

minimize π(λ, µ) = 1−
∑

i∈N
(λixi + ρiyi) (15)

s.t.
∑

i∈N
aixi ≤ b− 1 (16)

∑

i∈N
yi = 1 (17)

xi +
∑

j≤i

yj ≤ 1 ∀i ∈ N (18)

xi, yi ∈ {0, 1} ∀i ∈ N .
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Constraint (16), now involving only the x variables, is the capacity constraint.
Constraint (17) states that there must be exactly one overflow item in the bin.
Constraints (18) impose the given order to the items: if item i is assigned to the
bin and is not the overflow item, then no item j with j ≤ i can be the overflow
item. Since ρi ≥ λi ∀i ∈ N , constraint (17) is implied by constraints (18) and
can be dropped.

We call this subproblem the ordered open-end knapsack problem (OOEKP).
For analogy with the binary knapsack problem, we state the objective function
(15) in maximization form as follows:

maximize π′(λ, ρ) =
∑

i∈N
(λixi + ρiyi).

In the next section we present an exact optimization algorithm for the OOEKP.

4 A pricing algorithm

The OOEKP can be solved in O(Nb) computing time via dynamic programming.
Let us indicate by fi,w the maximum value of a solution made of items in
the range [1, . . . , i] and consuming w units of capacity. For i = 1, . . . , N and
w = 0, . . . , b− 1 the following recursion holds:

fi,w =

{
fi−1,w if w < ai

max{fi−1,w, fi−1,w−ai + λi} otherwise

where f0,w = 0, ∀w = 0, . . . , (b − 1). Hence the optimal value of the OOEKP
can be found as

π′(λ, ρ) = max
i∈N

{ρi + max
w=0,...,b−1

{fi−1,w}}.

However this approach is impractical, especially for large size instances with a
large value of b.

The algorithm we present here performs an implicit enumeration to iden-
tify the optimal overflow item, that is the overflow item of an optimal solu-
tion. We present fast bounding techniques and problem reduction tests, coupled
with a known effective algorithms for the binary knapsack problem (KP). The
worst-case time complexity of our algorithm is worse than that of the dynamic
programming approach, since it requires the optimization of a number of KP
instances that grows as O(N) in the worst-case. However we experimentally
observed that the number of KP instances to be optimized if often very small,
and the computing time of our approach is in practice one order of magnitude
smaller with respect to the dynamic programming algorithm shown above.

General description. The algorithm initializes a best incumbent lower bound
and a set of candidate overflow items S. Then the algorithm computes upper
bounds to the value of the OOEKP for each possible choice of the overflow item.
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These upper bounds are used both to guide the search in a best-first-search fash-
ion and to terminate the algorithm. The algorithm iteratively selects a most
promising overflow item according to its associated upper bound, it solves the
corresponding KP instance and this yields a feasible OOEKP solution. The in-
formation provided by the optimal solution of the KP instance is also exploited
by additional fathoming rules to reduce the number of possible candidate over-
flow items to be considered.

Preprocessing and initialization. Consider the range {1, . . . , l} such that∑l−1
j=1 aj ≤ b and

∑l
j=1 aj > b. The optimal solution of the OOEKP involving

only items in {1, . . . , l} can be computed in linear time because the capacity
constraint is not binding when the overflow item is in [1, . . . , l]. This optimal
value is kept as an initial lower bound and all items in the range [1, . . . , l] are
no longer considered as candidate overflow items.

Reduction. Some more items that cannot be optimal overflow items are iden-
tified as follows. For each pair of items i and j with i < j such that ρi ≤ ρj ,
item i can be discarded from the set S of candidate overflow items: given a fea-
sible OOEKP solution with i as the overflow item, a non-worse feasible OOEKP
solution can be obtained by replacing item i with item j, since feasibility is not
affected by the size of the overflow item and the objective function value does
not decrease. All items for which this reduction test succeeds are deleted from
the candidate set S.

Notation. In the remainder we use the following notation. We indicate with
KPj the optimal value of the binary knapsack problem instance in which the
only items available are those in the range [1, . . . , j− 1], and the capacity of the
knapsack is equal to b− 1.

KPj = max{
j−1∑

i=1

λixi :
j−1∑

i=1

aixi ≤ b− 1, xi ∈ {0, 1} ∀i = 1, . . . , j − 1}.

We also indicate with LKPj the optimal solution of the linear relaxation of
KPj :

LKPj = max{
j−1∑

i=1

λixi :
j−1∑

i=1

aixi ≤ b− 1, 0 ≤ xi ≤ 1 ∀i = 1, . . . , j − 1}.

Finally we indicate with OOEKPj the optimal value of the ordered open-end
knapsack problem in which item j is selected as the overflow item:

OOEKPj = KPj + ρj .

Step 1: computation of the upper bounds. The first step of our algorithm
consists in computing an upper bound uj for each possible choice of the overflow
item j ∈ S. For the definitions above, the value

uj = LKPj + ρj
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is an upper bound to the optimal value of the OOEKP in which j is the overflow
item, that is:

uj ≥ OOEKPj .

The computation of each upper bound uj requires the optimization of a
continuous KP instance, which can be carried out in O(N) time [1]. However,
instead of solving N continuous KP instances, the optimal solution of each of
them can be obtained by suitably exploiting the structure of the optimal solution
of the previous one and this yields a better worst-case computational complexity
and a significant reduction in computing time. Consider the efficiency of each
item i, that is the ratio ei = λi/ai, and consider a list L of the items sorted by
non-increasing value of efficiency. This is computed in O(NlogN) time. The
optimal solution of a continuous KP instance can be found by selecting items
according to the efficiency order, until an item is found whose weight exceeds
the residual capacity. In order to fill the knapsack, such item (called break item)
is taken with a fractional value. In our algorithm we scan the set of candidate
overflow items S, starting from item N down to item l and we scan the or-
dered list L from the most to the least efficient item; assume LKPj has been
computed and let i ∈ S be the next candidate overflow item to be considered;
assume k̄ is the current break item in the optimal solution of value LKPj . In
the next iteration all items from j − 1 down to i become unavailable and the
corresponding variables are fixed to 0. If some of these variables are basic in
the optimal solution of the previous continuous knapsack, this yields some slack
capacity available in the knapsack, which can be filled by other items, which are
chosen scanning L from k̄ onward. Once L has been sorted in O(NlogN) time,
the worst-case computational complexity of the remaining procedure is O(N),
because each element of S and L is considered only once.

Step 2: search. In the second step at each iteration the most promising
overflow item k is chosen: k ∈ argmaxj∈S{uj} where S is the set of candidate
overflow items not yet considered or fathomed. As soon as uk is found to be
not greater than the best incumbent lower bound, the algorithm terminates.
Once the most promising item k has been selected, a binary knapsack problem
is solved, where the only available items are those with index less than k.

To solve KP instances we used Pisinger’s MINKNAP algorithm [10], which
is very fast and exploits the optimal solution of the continuous relaxation both
as a dual bound and to identify a good starting primal solution. Every time we
optimize a KP instance, corresponding to overflow item k, we get an optimal
value KPk: the corresponding optimal solution is a lower bound to π′(λ, ρ), since
it is a feasible solution of the current pricing subproblem instance; moreover it
can be exploited to skip the computation of further KP instances. Let this
solution be defined as

x ∈ argmax{
k−1∑

i=1

λixi|
k−1∑

i=1

aixi ≤ b− 1, xi ∈ {0, 1} ∀i = 1, . . . , k − 1}
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Optimization algorithm for the OOEKP

Input: An ordered set N ; for each j ∈ N , a weight aj , a prize λj for being inserted into the knapsack
and a prize ρj for being the overflow item; a capacity b.

Output: An optimal OOEKP solution (x∗, y∗) and its value π′(λ, ρ)

begin
/* Initialization */
π′(λ, ρ):= −∞; l:= 1

while (
Pl−1

j=1 aj ≤ b− 1) do

if (
Pl−1

j=1 λj + ρl > π′(λ, ρ)) then

π′(λ, ρ):=
Pl−1

j=1 λj + ρl

x∗j := 1 ∀j < l; x∗j := 0 ∀j ≥ l
y∗:= 0; y∗l := 1

l:= l + 1
S:= {l + 1, . . . , N}

/* Reduction */
for each j ∈ S do

for each i ∈ S, i < j do
if (ρi ≤ ρj) then S:= S \ {i}

/* Compute upper bounds from linear relaxations */
for each j ∈ S do uj := ρj + LKPj

/* Examine all candidate overflow items */
repeat

/* Select the most promising candidate */
Select k ∈ argmaxj∈S{uj}
/* Termination test */
if (uk ≤ π′(λ, ρ)) then goto end
/* Solve a KP, store the optimal solution and its value */

Select x ∈ argmax{Pk−1
i=1 λixi :

Pk−1
i=1 aixi ≤ b− 1, xi ∈ {0, 1} ∀i = 1, . . . , k − 1}

KPk:=
Pk−1

i=1 λixi

for each j = k, . . . , N do xj := 0

/* Identify the best overflow item */
h:= k
while (xh = 0) do

if (KPk + ρh > π′(λ, ρ)) then
/* Update the best incumbent primal solution */

π′(λ, ρ):= KPk + ρh;
x∗:= x
y∗:= 0; y∗h:= 1

S:= S \ {h}; h:= h− 1
until (S = ∅)

end

Figure 3: Pseudo-code of the OOEKP optimization algorithm
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and let h = max{i|xi = 1} be the first non-zero component in x. Then for each
h < j ≤ k the optimal value OOEKPj is given by ρj + KPk and the items in
the range [h + 1, . . . , k] can be discarded from S; in fact, fixing any yj = 1 with
h < j ≤ k would not change the optimal solution of the binary KP instance.

The pseudo-code of the pricing algorithm is reported in Figure 3.

5 Branch-and-price

In this section we describe our branch-and-price algorithm: we illustrate our
branching strategy, we describe how primal bounds are obtained at the root
node and possibly improved at each node of the search tree by fast heuristics
and we describe the techniques we use to manage the pool of columns.

5.1 Branching strategy

Our branching rule is based on the variables of the original formulation (1) - (5).
Once an optimal solution z∗ of the master problem is obtained, a corresponding
(fractional) solution (x∗, y∗) in terms of the original variables can be recon-
structed through the relations x∗ij =

∑
j>i

∑
k∈Kj

xk
i z∗k and y∗j =

∑
k∈Kj

z∗k for
each i, j ∈ N .

We have adopted a two levels branching strategy: in the first level search
tree the branching decisions are taken on the yj variables, that is the overflow
items of the bins are chosen; the variable yj whose current optimal value y∗j is
closest to 0.5 is selected and two branches are considered: j is discarded from
the set of candidate overflow items in the first branch and it is selected as an
overflow item in the second branch. In the second level search tree, where the
number of bins has been defined and the overflow item of each bin has been
chosen, we are left with a feasibility problem. In this second level search tree
we use a binary branching rule similar to the previous one, selecting the xij

variable whose current optimal value x∗ij is closest to 0.5.
Fixing an xij variable is easily taken into account at pricing level, because it

just reduces the dimension of the pricing subproblem. Fixing a yj variable to 0
is also easy to manage: the item j is simply dropped from the set S of candidate
overflow items. When a yj variable is fixed to 1, two cases must be taken into
account at pricing level: each time we solve the pricing subproblem, either j is
not included in the optimal OOEKP solution or j must be the overflow item;
therefore, we first exclude j and solve the remaining OOEKP; then we fix j
as the overflow item and solve the remaining KP; finally we take the best of
these two solutions. Owing to the multiple choice constraint (17) this does not
provoke a combinatorial explosion in the number of cases to consider: in a node
of the search tree where n binary y variables have been fixed to 1, we need to
consider n + 1 cases: either one of them is the overflow item and the others are
disregarded or all of them must be disregarded.

The search tree is explored with a best-bound-first policy.

12



5.2 Primal bounds

We have used three different heuristic algorithms to compute primal feasible
solutions to the OOEBPP quickly.

The first one is an adaptation of the well-known Best-Fit Decreasing-Height
(BFDH) approximation algorithm [8], which we indicate as Best-Fit Decreasing-
Time (BFDT). The items are iteratively considered from item N down to item 1
and at each iteration the current item is packed into the bin with the minimum
residual capacity among those which can accommodate it; if no bin can receive
the item, a new bin is initialized. The pseudo-code of this algorithm is reported
in Figure 4.

Best-Fit Decreasing-Time heuristic

Input: An ordered set N ; a weight ai for each i ∈ N ; a capacity b.
Output: The set of overflow items O in a feasible OOEBPP solution, and the corresponding value |O|.

begin
/* Initialization */
O:= ∅; S:= ∅
for i ∈ N do J(i):= ∅ /* J(i) is the set of items in the bin whose overflow item is i */

/* BFDT computation */
for i:= N down to 1 do
S:= S ∪ {i}
/*Compute the set of bins in which i can be inserted */
F (i):= {j ∈ O|Pk∈J(j) ak + ai ≤ b− 1}
if F (i) = ∅ then

/* Initialize a new bin with the candidate of largest weight */
Select i∗ ∈ argmaxi∈S{ai};
O:= O ∪ {i∗}; S:= S \ {i∗}
if i∗ 6= i then

/* Remove i∗ from its bin; since ai ≤ ai∗ this becomes */
/* the bin with minimum residual capacity that can receive item i */
j∗:= j ∈ O|i∗ ∈ J(j);
J(j∗):= J(j∗) ∪ {i} \ {i∗};

else
Select j∗ ∈ argmaxj∈F (i){

P
k∈J(j) ak}

J(j∗):= J(j∗) ∪ {i}

/* Output */
return O and |O|

end

Figure 4: Pseudo-code of the Best-Fit Decreasing-Time heuristic.

A second way of computing feasible solutions is a simple randomized version
of the BFDT algorithm, called RBFDT, in which a set of r overflow items is
drawn from a uniform probability distribution and r corresponding bins are
initialized (the only exception is the last item, which is always fixed as an
overflow item). We considered values of r ranging from 1 to b0.5

∑
j∈N aj/bc;

this threshold was chosen in order to randomly select at most half of the overflow
items. We ran RBFDT 10 times for each value of r.

A third heuristic consists in taking the current fractional solution of the
linear relaxation of the master problem and to round up some of the basic z
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variables, until all rows are covered by columns associated to variables equal to
1. This rounding is carried out in a greedy way: the zk variables are considered
in order of non-increasing fractional value and each variable is set to 1 if and
only if it covers at least one row left uncovered by the columns whose variables
have been already set to 1.

The BFDT and RBFDT heuristics are executed once at the root node, as an
initialization step of our algorithm and the primal solutions obtained in this way
are used to populate the initial RSCP. The two heuristics pursue two different
objectives: with BFDT we look for “good” initial solutions, while with RBFDT
we generate a diversified initial set of columns of the RSCP.

Instead, the rounding heuristic is executed once for each node of the search
tree, when the column generation process is over.

5.3 Columns removal and insertion

We found useful to periodically remove unpromising columns from the RSCP:
each time a new node of the search tree is considered, the columns in the RSCP
whose reduced costs are greater than a threshold are moved into a pool. To this
purpose the reduced cost of each column is computed with respect to the optimal
dual solution on the ancestor node. In our implementation the threshold is set
to 1/(2N), in order to keep the RSCP small.

The pool of columns is scanned at each column generation iteration: when-
ever a column is found whose reduced cost is negative with respect to the current
dual solution, it is moved back into the RSCP. A column is erased from the pool
if its reduced cost has been found to be non-negative for 6 consecutive times.
This parameter is tuned in accordance to our previous experience with pool
management techniques (see for instance [3] and [2]).

6 Lagrangean bounds

The bound obtained by optimizing the set covering formulation of the OOEBPP
can also be obtained through Lagrangean relaxation of the set of constraints
(2). For the theoretical equivalence between column generation and Lagrangean
relaxation, we refer the reader to the recent book by Desaulniers et al. [5]. The
exploitation of this equivalence can be very influential on the effectiveness of
a column generation algorithm, as shown for instance in reference [3]. In this
section we describe an effective way of alternating primal simplex iterations
of the column generation procedure with subgradient optimization iterations
to locally improve the dual solution: this allows to obtain tight dual bounds
quickly and to design effective multiple pricing and variable fixing procedures.

The Lagrangean subproblem originating from the relaxation of constraints
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(2) is the following:

minimize
∑

j∈N
yj −

∑

i∈N
λi(yi +

∑

j>i

xij − 1)

s.t.
∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N

xij ∈ {0, 1} ∀j ∈ N , ∀i < j

yj ∈ {0, 1} ∀j ∈ N .

For each set of multipliers λ ≥ 0 the problem decomposes into independent
subproblems, one for each j ∈ N :

minimize (1− λj)yj −
∑

i<j

λixij

s.t.
∑

i<j

aixij ≤ (b− 1)yj

xij ∈ {0, 1} ∀i < j

yj ∈ {0, 1}.

Each subproblem can be optimized considering two cases according to the value
of yj . For yj = 1 a binary knapsack problem is solved. This is equivalent to fix
j as the overflow item and optimize problem (15) – (18). In order to highlight
this analogy, we indicate the value obtained in this way by πj(λ). If πj(λ) > 0,
a better solution is found by fixing yj to 0, and by consequently setting xij to
0 for each i < j. Hence, for any choice of the Lagrangean multipliers, a valid
lower bound ω(λ) for the OOEBPP is given by

ω(λ) =
∑

i∈N
λi +

∑

j∈N
min{πj(λ), 0}.

The main advantage of our pricing method is to avoid the optimization of
a large number of KP instances, since in the OOEKP algorithm we implicitly
consider all πj ’s to identify the one with minimum value. However a lower bound
ω(λ) to ω(λ) can be obtained by replacing each πj(λ) value with a corresponding
lower bound πj(λ).

To this purpose, we exploit the solution of the relaxed OOEKP: we ini-
tially set the πj(λ) values to the uj bounds, which are readily available from
the pricing algorithm; then, whenever KPj subproblem is solved to optimality
during the execution of the pricing algorithm, the corresponding πj(λ) bound
is updated. Finally the information from the combinatorial bound presented in
subsection 2.2 can be used to strengthen ω(λ). A set of valid inequalities for
the original formulation, analogous to constraints (14), is

∑

i≥C(t)
yi ≥ t ∀t = 1, . . . , |C|. (19)
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Select overflow items:

Input: A set of πj(λ) values

Output: A set O of selected overflow items

begin
O:= ∅
for each t ∈ C do

Select j∗(t) ∈ argminj∈N\O,j≥C(t){πj(λ)};
O:= O ∪ {j∗(t)};

O:= OS{j ∈ N|πj(λ) < 0};
end

Figure 5: Computation of the Lagrangean lower bound

A dual bound ω(λ) is computed as follows. First, the best set of overflow items is
identified, that satisfy constraints (19); then further “desirable” overflow items,
that is those with πj(λ) < 0, are selected. This procedure is detailed in Figure
5. Finally, ω(λ) is computed as

ω(λ) =
∑

i∈N
λi +

∑

j∈O
πj(λ).

Whenever, during the column generation iterations, the difference between the
largest ω(λ) value encountered and the RSCP optimal value is less than 10−6,
the column generation process is terminated, and the Lagrangean bound is kept
as the final lower bound for the current node of the search tree.

6.1 Multiple pricing

The equivalence with Lagrangean relaxation is exploited also to search for differ-
ent sets of columns at each column generation iteration. In fact, it is a common
practice in Lagrangean relaxation-based algorithms to iteratively improve a dual
solution with subgradient optimization [6]. In our case the subgradients are not
readily available, since we avoid to optimize several KP subproblems in our
pricing algorithm. Therefore, as in the computation of the πj(λ) values, in all
cases in which the exact optimization of a KP subproblem has not been carried
out during the execution of the pricing algorithm, we use the fractional solution
of the corresponding continuous KP instance to approximate the subgradient.

At each column generation step we initialize a set of Lagrangean multiplier
values λ0 with the current values of the dual variables λ; then we perform at
most 50 subgradient iterations, starting with a step parameter value of 2.0 and
halving it every 10 iterations in which the lower bound has not been improved;
in this way we obtain a sequence of Lagrangean multipliers λ0, . . . , λ50.

Let λ∗ ∈ argmaxs<g{ω(λs)} be the set of multipliers corresponding to the
best incumbent lower bound before a generic subgradient iteration g. Whenever
λg improves the lower bound given by λ∗, the column corresponding to the
OOEKP optimal solution at iteration g is inserted into the RSCP.

In this way for each column generation iteration several subgradient opti-
mization iterations are performed and more than one column can be added to
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the restricted master problem. Both subgradient optimization iterations and
column generation iterations call the same subroutine, that is the optimization
algorithm for the OOEKP presented in Section 4.

This hybrid technique, mixing the primal simplex algorithm with subgra-
dient optimization, yields substantial improvements to the convergence rate of
the column generation algorithm.

6.2 Variable fixing

We also used the πj(λ
s) values in a variable fixing procedure, to evaluate the

effect of flipping the binary variables representing the selection of each overflow
item.

Consider the set of items j ≥ C(t) for some t = 1, . . . , |C|. When the corre-
sponding constraint (19) is not active, the effect of flipping a yj with value 1
(resp. 0) is evaluated by adding (resp. subtracting) the πj(λ

s) value to (from)
the lower bound. On the opposite, when this constraint is active, dropping an
overflow item requires the selection of another one in the corresponding interval;
in a similar way, the selection of an additional overflow item may allow to drop
the least profitable selected one.

Hence, considering a generic iteration s of the subgradient optimization al-
gorithm, for each t = 1, . . . , |C|, let πBO(t) be the minimum πj(λ

s) value among
the unselected items j ∈ N \ O, j ≥ C(t), and πWI(t) be the maximum πj(λ

s)
value among the selected items j ∈ O, j ≥ C(t) (BO stands for ‘Best Out’ and
WI stands for ‘Worst In’). If |{j ∈ O|j ≥ C(t)}| > t, set πBO(t) = πWI(t) = 0;
if πWI(t) < 0 set πWI(t) = 0.

Then for each t = 1, . . . , |O|
• for each j ≥ C(t) such that j ∈ N \O, if dω(λs)+πj(λ

s)−πWI(t)e ≥ UB,
then j can be discarded from the set of candidate overflow items (yj is set
to 0);

• for each j ≥ C(t) such that j ∈ O, if dω(λs) − πj(λ
s) + πBO(t)e ≥ UB,

then j can be fixed as an overflow item (yj is set to 1).

In both cases flipping the value of the y variable would produce a lower bound
not smaller than the best incumbent upper bound.

7 Computational results

We tested our branch-and-price algorithm on two data-sets proposed in the
literature for bi-dimensional packing problems. The first data-set is described
in [8] and consists of 5 classes of instances: BENG (10 instances), CGCUT (3
instances), GCUT (4 instances), HT (9 instances) and NGCUT (12 instances).
The second data-set is described in [9] and consists of 500 instances, divided
into 10 classes of 50 instances, named MV and BW. In bi-dimensional packing
problems each item has both a width and a height and the aforementioned
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data-sets contain instances with different types of correlation between these two
parameters. In order to obtain OOEBPP instances, we interpreted the height of
each item as a “time-stamp”: if item i has a smaller height than item j in the bi-
dimensional packing instance, then item i precedes item j in the corresponding
OOEBPP instance. To obtain a total order, we broke the ties according to the
order given in the original data file.

Our branch-and-price algorithm was implemented in C++. CPLEX 8.1 was
used to solve the LP relaxations. The code was compiled with the GNU CC ver-
sion 3.2.2, with full optimization. Our computational results were obtained on
a Linux workstation equipped with a Pentium IV 1.6GHz processor and 512MB
of RAM. We imposed to every test a time limit of one hour.

Dual bounds. In a first set of tests, we compared the tightness of the dual
bounds described in Section 2. In Tables 1(a) and 1(b) we report our results
on the first and the second data-set respectively. Each table is made by five
blocks: in the first one we include the class of instances, while each of the
subsequent four blocks refers to the dual bounding technique indicated in the
leading row. We denote the combinatorial bound with CB, the linear relaxation
of the original formulation with LP, the relaxation given by the set covering
formulation without constraints (14) with CG and the relaxation given by the
set covering formulation with constraints (14) with MIX. Each entry of the
tables represents the average value of the instances in a class.

For CB we report the average dual gap, computed as the difference between
the optimal value and the value of the bound, divided by the optimal value. We
also report the gap when the lower bound is rounded up to the nearest integer,
which is always possible since the number of bins in a feasible solution must
always be an integer number. We do not report the computation time, because
the effort for computing CB and LP for these instances is negligible and the
computation of the other two bounds never required more than a few seconds.

The CG bound is always tight: on the first data-set no duality gap was
observed when rounding the value of the CG bound up to the nearest integer;
on the second data-set, a gap was found on three classes, and it was always
smaller than 0.2%. The competitor is CB: it is tighter and faster to compute
than LP; it gives rather tight bounds (except for class BW06, where the duality
gap is more than 11%). In class MV02 it is better than the CG bound too. It
is worth noting that combining CG and CB techniques in the MIX relaxation
yields sometimes (e.g. on a set of GCUT instances) a bound that is tighter than
the best of the two.

Primal bounds. In Tables 2(a) and 2(b) we report the cost of the feasible
solutions found by three heuristics at the root node, for the instances in the
first and second data-set respectively. These tables consist of four columns:
the first one indicates the class of instances, while the subsequent columns re-
fer to the BFDT, RBFDT and rounding heuristics respectively. Each entry
indicates the average gap between the value of the heuristic solution and the
optimal value, divided by the optimal value. Randomizing the BFDT heuristic

18



yields better primal bounds and allows to obtain an initial RSCP with a large
enough set of well diversified columns, such that its linear relaxation is rather
tight. The rounding heuristic yielded essential improvements only for instances
in the class GCUT of the first data-set. We do not report computational times
of the heuristics since they were negligible compared to the rest of the algorithm.

Optimal solutions. Finally, we performed a set of tests on the effectiveness
of branch-and-price for solving the OOEBPP to optimality, comparing it with
CPLEX 8.1 used as an ILP solver.

The branch-and-price algorithm using the combined bound was able to re-
duce the duality gap very quickly on all instances; however, the relaxed solutions
were highly fractional, and it was hard for the heuristics to find the optimal so-
lution. In the most successful version of our method the inequalities (14) were
dropped and each µt coefficient fixed to 0. Instead, both the CG and CB bounds
were computed at each node of the branching tree, and the tightest of them was
considered. In this way optimal solutions were found earlier, and less nodes of
the branching trees were explored to prove optimality. Therefore we report our
computational results only for this last implementation.

The results of our comparison on the first and second data-sets are reported
in Tables 3(a) and 3(b). In the first column we indicate the instance class
name; then, each table has a block for the results of CPLEX and a block for
those of the branch-and-price. For the first data-set we report the average gap
between the value of best solution found and the optimal value, divided by the
optimal value (“gap”), and the time required to obtain a proven optimal solution
(“time”). Both methods completed the computation within the resource limits,
but branch-and-price was almost always faster than CPLEX; in particular on
classes BENG and GCUT it was two orders of magnitude faster. In Table 3(b)
related to the second data-set, we indicate also the number of solved instances
in each class (“solved instances”). Branch-and-price solved all the instances but
4, while CPLEX failed on 30 instances. CPLEX exceeded the time limit in 16
cases, and had memory overflow problems in the remaining 14; branch-and-price
failures were all due to memory overflow. The remaining instances were solved
on the average in less than one minute.
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