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Abstract

A sequence of operations may be validly reordered, provided that only pairs of independent
operations are commuted. Focusing on a program scheme, idealized as a local finite automaton, we
consider the problem of checking whether a given string is a valid permutation of a word recognized
by the automaton. Within the framework of trace theory, this is the word membership problem for
rational trace languages. Existing general algorithms, although time-polynomial, have unbounded
degree related to some properties of the dependence graph. Here we present two original linear-time
solutions. A straightforward algorithm is suitable for any local finite automaton such that any two
successors of an operation are dependent or not mutually reachable. The second approach is currently
restricted to nested repeat-until loops. Using integer compositions to represent loop iterations, the
algorithm constructs the loop nesting syntax tree by exploiting newly introduced functions on integer
compositions. The result may be relevant for checking dependencies of rescheduled programs on
parallel processors.
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1 Introduction

A sequence of operations may be validly reordered, provided that only pairs of independent operations
are commuted. For instance, a computer program can be idealized as a deterministic finite automaton
(DFA), recognizing a set of strings from an alphabet of abstract instructions, some of which are mutually
dependent. At a coarser granularity of operations, the same problem occurs when concurrent accesses
to a database are serialized. Formally, the problem we address is the following: Is a given string a valid
permutation of a word recognized by the automaton?

A motivation comes from the areas of compiler and processor design. Modern compilers [9] and
processors [13] reorder (“reschedule”) machine instructions, with respect to the original sequential pro-
gram ordering, with the goal of minimizing program completion time by taking advantage of available
hardware parallelism. This task involves the capability to check that instruction dependencies are not
violated. We present two very efficient algorithms under different assumptions.

Trace theory is a convenient framework for stating and analyzing dependencies checking problems.
We recall that trace languages were introduced in the ’70s as a tool for the study of concurrent systems
[12] and a comprehensive treatment of their properties and related theory is presented in [8].

Using concepts from formal language theory, the program scheme is the state-transition graph of a
DFA, and since in a program each instruction differs from any other by its memory address, the DFA can
be assumed to be a local one [2]. Then the previous problem is the word membership problem for the
trace language represented by a local DFA.

In the past a few algorithms [5, 3, 1] have been proposed forrational trace languages, i.e., partially
commutative languages represented by a regular string language, and also for trace languages represented
by context-free languages [14, 5]. Such algorithms examine the prefixes of a trace, also using sophis-
ticated data structures for more efficient analysis. Their time complexity, although polynomial, has an
unbounded degree, which is related to some properties of the independence graph. More precisely the
degree is linearly related to the size of the largest clique of the independence relation, a value which is
likely to be too large for realistic application. Here we present two efficient linear-time solutions of the
word membership problem for rational trace languages represented by local regular languages.

After the basic definitions of Section 2, we present in Section 2.1 a straightforward algorithm, suitable
for any local DFA satisfying the following hypothesis: if a state has two successors, then either they are
dependent, or one is not reachable from the other on the DFA graph. These conditions correspond to
rather realistic assumptions for frequent program patterns.

The second approach is much more involved and takes the rest of the paper. The problem definition
and some of the initial ideas and properties come from [7, 16], but the mathematical setting based on
integer compositions (Section 4) and the problem solving strategy are new. This approach is currently
restricted to nested repeat-until loops, a popular class of computationally intensive program structures,
defined in Section 3. Using integer compositions to represent loop iterations, a syntax tree of an unrolled
nested repeat-until expression is precisely represented by labelled integer compositions.

Section 5 focuses on the word membership problem for trace languages represented by such repeat-
until string languages, and proves a theorem relating the existence of a syntax tree and of certain labelled
compositions, which can be derived by observing the runs of dependent letters. Then a simpleclosure
assumptionis introduced which concerns the dependencies between nested loops.

Based on that, Section 6 outlines, defines and analyzes an efficient algorithm, which repeatedly
applies the previously introduced product and quotient operations on the integer compositions. Under
the closure assumption this algorithm solves the problem in linear time.

At last we discuss the meaning and the limits of such a closure hypothesis, and in the conclusion we
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hint to possible generalizations and alternative assumptions.

2 Basic notions

Given a finite alphabetΣ and a wordx ∈ Σ∗, |x| represents the length ofx while, for eachy∈ Σ+, |x|y
denotes the number of occurrences ofy in x. Moreover, given a subsetA⊆ Σ, πA(x) is the projection of
x overA. Further, ifx is not the empty wordε, P(x) andU(x) denote, respectively, the first and the last
symbol ofx, while S1(x) is the suffix ofx of length|x|−1.

Given a wordx∈ {a,b}∗, a run of a in x is an occurrence of a maximal factor ofx included in{a}+.
An analogous definition holds forb. For instance, the wordaaabbabbbaaahas 3 runs ofa and 2 runs
of b (aaa, a, aaaandbb, bbb, respectively). Clearly, two wordsx,y∈ {a,b}+ are equal if they have the
same sequence of runs ofa, the same sequence of runs ofb andP(x) = P(y).

There is a natural relationship between runs of a letter in binary words and compositions of integers.
A compositionof an integern ≥ 1 is a nonempty finite sequence(i1, i2, . . . , ih) of integers such that
i1 + i2 + · · ·+ ih = n andi j ≥ 1 for every j = 1, . . . ,h. Integer compositions are classical combinatorial
structures, widely studied in the literature; for instance it is known that there are 2n−1 compositions of
any integern≥ 1 [10]. In our context they are used to represent projections of words on pairs of letters.
In particular, every wordx∈ {a,b}+, wherea 6= b, |x|a≥ 1 and|x|b≥ 1, defines two compositionsγa and
γb determined, respectively, by the runs ofa and the runs ofb in x. More precisely,γa = (i1, i2, . . . , ih) is
a composition of|x|a, whereh is the number of runs ofa in x and eachi j is the length of thej-th run.
Analogously,γb is a composition of|x|b defined in a similar way. We also say thatγa (resp.,γb) is the
compositiongeneratedby x ona (resp.,b).

Now, let us recall some basic definitions on traces. An independence relationI on Σ is a symmetric
and irreflexive relationI ⊆ Σ×Σ. For everya,b∈ Σ we say thata andb are independent if(a,b) ∈ I and
in this case we also writeaIb. The dependence relationD is the complement ofI , that isD = {(a,b) ∈
Σ×Σ | (a,b) 6∈ I}. We say thata andb are dependent if(a,b) ∈ D (aDb for brevity). The pair(Σ, I) is
called independence alphabet and it is usually represented by an undirected graph whereΣ is the set of
nodes andI the set of edges. An independence relationI establishes an equivalence relation≡I on Σ∗ as
the reflexive and transitive closure of the relation∼I defined by

xaby∼I xbay ∀x,y∈ Σ∗, ∀(a,b) ∈ I .

The relation≡I is a congruence overΣ∗, i.e. an equivalence relation preserving concatenation between
words. For everyx∈ Σ∗ the equivalence class[x] = {y∈ Σ∗ | y≡I x} is calledtrace, the quotient monoid
Σ∗/ ≡I is called trace monoid and usually denoted byM(Σ, I). A subsetT ⊆ M(Σ, I) is called trace
language and, for everyL⊆ Σ∗, we define[L] = {[x] ∈M(Σ, I) | x∈ L} as the trace language represented
by L. A trace language is calledrational if it is represented by a regular language. Moreover, the rational
operations on trace languages (union, product and Kleene closure) are defined as in the free monoids.
It is known that the class of rational trace languages is the smallest family of trace languages including
the finite sets inM(Σ, I) and closed under the rational operations. We also recall that a rational trace
languageT ⊆M(Σ, I) is calledunambiguousif T = [L] for a regular languageL⊆ Σ∗ such that, for every
t ∈ T, there is exactly one stringx∈ L belonging tot. The class of unambiguous rational trace languages
can be characterized by the so-called unambiguous rational operations and it coincides with the class of
all rational trace languages if and only if the independence relationI is transitive [3, 4, 15].

In the present work we are interested in the recognition problem of rational trace languages. Given
independence alphabet(Σ, I) and a regular languageL ⊆ Σ∗, such a problem consists of deciding, for
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an inputx∈ Σ∗, whether[x] belongs to[L] (i.e. whether[x]∩L is empty). Our purpose is to study the
recognition problem for rational trace languages represented by local (string) languages [2].

2.1 Recognition of local languages with dependent successors

In this section we present a linear time algorithm for the recognition of rational trace languages that admit
a local representative language satisfying a further special condition. To formalize this case, consider a
(deterministic) finite state automatonA = (Q,q0,δ,F) over an alphabetΣ, whereQ is the set of states,
q0 is the initial state,δ : Q×Σ → Q∪{⊥} is the (partially defined) transition function andF ⊆ Q is
the set of final states. Such an automaton is said to belocal if there exists a functionf : Σ → Q such
that, for all q ∈ Q and alla ∈ Σ, δ(q,a) 6= ⊥ implies δ(q,a) = f (a). In this caseQ can be reduced
to the set{ f (a) | a ∈ Σ} ∪ {q0}. Moreover, we can define the successors of a stateq ∈ Q as the set
Suc(q) = {a∈ Σ | δ(q,a) 6=⊥}. A regular languageL⊆ Σ∗ is alocal language if it is accepted by a local
finite state automaton [2].

Now, given an independence alphabet(Σ, I) with dependent relationD, we say that the above local
automatonA = (Q,q0,δ,F) hasdependent successorsif, for every q ∈ Q and everya,b ∈ Suc(q), we
haveaDb. In this case, ifL ⊆ Σ∗ is the language accepted byA , then the trace languageT = [L] can be
recognized in linear time.

To describe the algorithm, let us represent by∆ the set of all pairs and singletons forming a covering
of the dependence graph(Σ,D):

∆ = {{a,b} | a,b∈ Σ, aDb} ∪ {{b} | b∈ Σ, ∀a∈ Σ a 6= b⇒ aIb}

Recall that, for everyx,y∈ Σ∗ we havex≡I y if and only if π`(x) = π`(y) for all ` ∈ ∆. Moreover, for
everya∈ Σ, we denote by∆(a) the set

∆(a) := {` ∈ ∆ | a∈ `} .

It is clear that the sets∆ and∆(a), a∈ Σ, only depend on the independence alphabet(Σ, I) and can be
computed in a preprocessing phase.

For a given inputw∈ Σ+ the procedure computes a wordz≡I w accepted byA , if any, otherwise it
returns 0. Note that such az also represents an accepting computation of the automaton. The procedure
maintains a family of strings{y` : ` ∈ ∆}, where at the beginningy` = π`(w) for every`. A stateq∈ Q
is also updated which represents the current state of the computation. In the main iteration one looks for
a lettera∈ Suc(q) that occurs as first symbol in ally` with a∈ `: by the hypothesis of dependence of
successors, there is at most onea satisfying that condition; in this casef (a) becomes the new current
state and its first occurrences are erased from ally`’s such thata∈ `. This process is iterated until either
all projectionsy` are empty or no new symbol can be found among the successors of the current state.
The input is accepted if and only if, at the end of the computation, ally`’s are empty and the current state
is final.

begin
for ` ∈ ∆ do y` := π`(w)
q := q0

z := ε
out := 0
while out = 0∧∃` ∈ ∆ such that|y`|> 0 do
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begin
if ∃a∈ Suc(q) such thata = P(y`) for all ` ∈ ∆(a)

then


q := δ(q,a)
z := za
for ` ∈ ∆(a) doy` := S1(y`)

else out := 1
end

if out = 0∧q∈ F
then returnz
else return 0

end

Note that, if[w]∈T then the procedure returns a wordz≡I w accepted byA . Otherwise the procedure
returns 0.

For an inputw of lengthn the algorithm works inO(n) time since the cardinality of∆ only depends
on the dependence relation and hence the main iteration, which is repeated at mostn times, requiresO(1)
time.

Proposition 1 Given an independence alphabet(Σ, I), let L⊆ Σ∗ be accepted by a local automaton with
dependent successors. Then, the trace language T= [L] can be recognized in time O(n).

A first consequence of the previous algorithm is given by the following

Proposition 2 For any independence alphabet(Σ, I), if L ⊆ Σ∗ is recognized by a local automaton with
dependent successors then the rational trace language[L] is unambiguous.

Proof. In fact, let A = (Q,q0,δ,F) be a local automaton with dependent successors recognizingL.
Assume there are two wordsu,v∈ L such that[u] = [v]. Consider the longest common prefixx of u and
v. Thenu = xazandv = xbw for someaIb andz,w∈ Σ∗. We have thata,b∈ Suc(q) whereq = δ(q0,x)
and henceA has a pair of independent successors, which is contradiction. 2

Another condition onA andD that allows us to design a linear time algorithm to recognize[L] is the
following: for everyq∈ Q and every pair of independent symbolsb,c in Suc(q), in A either statef (b)
or statef (c) is not reachable from the other one. Thus, ifq is the current state and bothb andc appear
as first symbol in the corresponding projections (sincebIc they do not share a common projection), then
the procedure is forced to choose betweenf (b) and f (c), that state able to reach the other one. Note that
the previous condition is milder than the hypothesis of dependence of successors.

The hypotheses of dependent successors and non-mutual reachability we consider above occur fre-
quently in program schemes. For instance, the first condition states that the true and false successors
of a conditional instruction are dependent on each other. This also happens in the common case when
the successors are instructions assigning different values to the same variable, a case of write-after-write
data-dependence. Also the situation where one of the successors does not reach the other is typical of
rather frequent program patterns: for instance, it occurs in the case of a conditional jump raising an
exception, such that the normal execution is abandoned if the exception is verified.

3 Repeat-until languages

In this section we define a family of expressions representing a program scheme consisting of nested
repeat-until cycles (or loops).

5



Given a finite alphabetΣ, let N be the set of all regular expressions overΣ defined as follows:

i) Everya∈ Σ belongs toN,

ii) If α,β ∈ N thenα ·β ∈ N (often represented byαβ),

iii) If α is a symbol inΣ or an expressionβ · γ, for someβ,γ ∈ N, then(α)+ ∈ N.

An elementα∈N is calledrepeat-until expressionoverΣ if it contains just one occurrence ofa for every
a∈ Σ. Thus,πΣ(α) defines a linear order overΣ and, for everya,b∈ Σ, we writea< b if a occurs before
b in πΣ(α). The set of all repeat-until expressions overΣ will be denoted by RUE(Σ), or simply by RUE
whenΣ is understood.

For everyα ∈RUE, letL(α) be the language represented byα. Clearly, for everyx∈ L(α) and every
a,b∈ Σ, we have

a < b impliesπa,b(x) ∈ a{a,b}∗b (1)

Moreover, we define acycleof α as a subexpression(β)+ of α such thatβ ∈ N (note thatβ is not of the
form (γ)+). The stringπΣ(β) is thebodyof the cycle,P(πΣ(β)) andU(πΣ(β)) are itsheaderandexit,
respectively. For instance,((ac)+bd(e)+)+ is a cycle ofα = h((ac)+bd(e)+)+ f g, with headera, exit e.

Note that in everyx ∈ L(α) the body of any cycle appears at least once, possibly as a subword
consisting of several nonoverlapping factors. This justifies our definition: anyα ∈ RUE represents a
program scheme of nested repeat-until cycles and everyx∈ L(α) represents an execution of the program.

Clearly, for anyα∈RUE,L(α) is a local language and the corresponding finite automaton is obtained
by a standard construction [2], where there is an initial stateq0 and a state for each symbol inΣ. Here
we avoid the easy formal definition and describe such automaton by an example. For our subsequent
discussion, in the diagram of these automata it is convenient to represent cycles by capital letters.

Example 1 Consider the repeat-until expressionα = (a(b)+c)+(d(e)+)+. Then, the corresponding lo-
cal automatonA(α) is defined by the set of states Q= {q0,a,b,c,d,e} together with following transition
diagram:

-����
q0

-����
a -����

b -����
c -����

d -����ne?
� �

U?

� �Z

?
� �

Y?

� �X

where X,Y,Z,U represent the cycles(a(b)+c)+, (b)+, (d(e)+)+ and(e)+, respectively.

Observe that if the family of successorsSuc(q) = {a∈ Σ | δ(q,a) 6= ⊥} is a clique of a dependence
graph for anyq∈ Q, then the trace language[L(α)] is recognizable inO(n) time by the algorithm pre-
sented in Section 2.1.

3.1 Hierarchical trees

Here we describe a tree representation of a repeat-until expression. Let us first recall that a plane tree is
a rooted tree where the sons of every internal node are totally ordered (usually drawn from left to right).
This clearly induces a natural total order on the leaves of the tree. Now, givenα ∈ RUE(Σ), let C be
the family of all cycles ofα (denoted by capital letters) together with a special symbolS, which will

6



represent the root of the tree. For everyX,Y ∈ C , we defineX �Y if X is nested intoY or X = Y. We
also setX �S for everyX ∈ C . Moreover, we writeX �Y if X �Y andX 6= Y.

Then we define thehierarchical treeof α as the plane treeT(α) with rootS, satisfying the following
properties:

1. C is the set of internal nodes andπΣ(α) = a1a2 · · ·am is the ordered list of leaves;

2. For anyX,Y ∈ C , X is son ofY if X �Y andX is immediately nested inY, i.e. there is noZ ∈ C
such thatX �Z�Y;

3. A leafa∈ Σ is son of a nodeX ∈ C if X is the smallest cycle ofα includinga. If a is not included
in any cycle thena is son ofS;

4. For every nodeX ∈ C and every two sonsu,v of X we setu < v if u (either as a cycle or as a letter
in Σ) occurs beforev in α.

Note thatX �Y holds if and only ifX is descendant ofY in T(α). Moreover, for everyX ∈ C different
from S, we denote byF(X) the father ofX in T(α).

Example 2 The hierarchical tree of the repeat-until expressionα defined in Example 1 is described by
the following picture.

ib ie
ia iY ic id iU� @ � A

iX iZ�
�

@

iS

For everya ∈ Σ, let C(a) be the father ofa in T(α): thusC(a) either is the smallest cycle ofα
containinga or C(a) = S if a is not included in any cycle. Analogously, for everya,b ∈ Σ, a 6= b, let
C(a,b) be the root of the smallest subtree ofT(α) including botha andb. The following proposition
states that all cycles are of the formC(a) or C(a,b) for somea,b∈ Σ.

Proposition 3 Let α ∈ RUE(Σ) and let X∈ C be a symbol different from S. Then, X= C(a) for some
a∈ Σ or X = C(a,b) for some distinct a,b∈ Σ.

The proof easily follows by induction on the height of the nodeX in the hierarchical treeT(α).

3.2 Syntactic trees

Now, givenα ∈ RUE(Σ), let C andS be defined as in the previous section. Consider the context-free
grammar with regular right partsG(α) defined by the tuple(C ,Σ,S,P), whereC is the set of nontermi-
nals,S is the initial symbol,Σ is the set of terminals andP is the family of productions given by

P = {(X → γ) | X ∈ C , γ is obtained from the list of sons ofX in T(α)
by replacing each nonterminalY ∈ C by Y+}

Example 3 If α is defined as in Example 2 then

P = {(S→ X+Z+),(X → aY+c),(Y → b),(Z→ dU+),(U → e)}
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It is clear thatG(α) generatesL(α) in the usual way (see for instance [11]). Thus, for anyx∈ L(α)
we define thesyntactic treeof x as the derivation tree ofx in G(α).

Example 4 Let α be the repeat-until expression defined in Example 1 and let x be the string

x = abbbcabcdeeedede

Then x∈ L(α) and its syntactic tree is given by the following picture:

ib ib ib ib ie ie ie ie ie
ia !!!iY � iY iY@ icaaa ia � iY ic@ id �

�iU� iUA iUQ
Q id� iUA id� iUA

iX
������������

iX
�

�
�

�

iZAA
A

A

iZH
HHH

HHH
H

iZPPPPPPPPPPPP
ilS

Proposition 4 A word x∈ Σ∗ belongs to L(α) if and only if there exists a syntactic tree T that generates
x.

Clearly any syntactic treeT is a plane tree. Its root isS and, for everyu ∈ Σ∪ C , T contains at
least one node (may be more) labelled byu: for the sake of brevity, it will be calledu-node. Clearly, all
u-nodes are at the same distance from the root and they can be identified by their (left-to-right) ordering.

Other properties of the syntactic treeT of a wordw∈ L(α) are the following:

1. For everya∈ Σ, |w|a equals the number of nodes ofT labelled byC(a);

2. For everya,b∈ Σ with a < b, |πa,b(w)|ab equals the number of nodes ofT labelled byC(a,b);

3. For everya,b∈ Σ, if (a1,a2, . . . ,ah) is the composition generated byπa,b(w) on a, then inT there
areh nodes labelled byC(a,b) and, for eachi = 1, . . . ,h, there areai nodes of labelC(a) that
are descendants of thei-th node of labelC(a,b). Moreover, an analogous statement holds for the
composition generated byπa,b(w) onb.

The last property suggests to use integer compositions for representing syntactic trees. Such a represen-
tation allows us to construct a syntactic tree. To this end, in the next section we introduce properties and
operations on integer compositions that are useful in our context.

4 Integer compositions for tree representation

For the sake of brevity we often represent a compositionα = (a1,a2, . . . ,ah) of an integern in the form
α = (ai)h. The integerh is thelengthof α, while n is also called thesumof α. They will be also denoted
by `α andnα, respectively. First, for any pair of compositionsα = (ai)h andβ = (bi)h of equal length,
the relationα≤ β means thatai ≤ bi for everyi = 1, . . . ,h.

Another natural notion is the inclusion relation� among compositions of the same integer.
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Definition 1 Given two compositionsα = (ai)h andβ = (bi)k of an integer n≥ 1, we say thatα is finer
thanβ and write

α� β

if h≥ k and there are k indices j1, j2, . . . , jk such that1≤ j1 < j2 < · · ·< jk = h and

b1 =
j1

∑
i=1

ai , b2 =
j2

∑
i= j1+1

ai , . . . , bk =
jk

∑
i= jk−1+1

ai

Note that ifα� β then there exists a uniquek-tuple of indicesj1, . . . , jk satisfying the previous property.
Moreover,� is a partial order relation on the family of all compositions ofn, where(1,1, . . . ,1) is the
smallest element and(n) the largest one (which for convenience will be also denoted by(1,1, . . . ,1)n

and(n)1, respectively).
Clearly, there is a O(n)-time algorithm that on inputα, β verifies whetherα� β and, in the affirmative

case, computes the corresponding sequencej1, . . . , jk defined above.

4.1 Product operation

Consider two compositionsα = (ai)h andβ = (b j)k, and assumenα = `β, which impliesh≤ k. Then,
we define theproductα ·β as the compositionγ = (gl )h such that

gl =
j l

∑
j= j l−1+1

b j for every l = 1,2. . . ,h

where j0 = 0 and j l = ∑l
i=1ai for eachl = 1,2. . . ,h.

More precisely, we have

g1 = b1 +b2 + · · ·+ba1

g2 = ba1+1 +ba1+2 + · · ·+ba1+a2

. . . = . . .
gh = ba1+···+ah−1+1 +ba1+···+ah−1+2 + · · ·+ba1+···+ah

Briefly, γ is obtained fromβ by adding consecutive elements as indexed by the compositionα. Clearly,
we haveβ� γ, nγ = nβ and`γ = `α.

Here is an example:

α = (1,2,2) β = (1,2,1,3,2) γ = α ·β = (1,3,5)

Notice that the product is associative but not commutative. Moreover, for every compositionβ =
(b j)k, the following identities hold:

(1,1, . . . ,1)k ·β = β (k)1 ·β =
(
nβ

)
1 β · (1,1, . . . ,1)nβ

= β

The product of two compositions can be computed by scanning their elements from left to right. It
is easy to design an algorithm that takes in input two compositionsα = (ai)h, β = (b j)k such thatnα = k
and computes their product inO(k) time.
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4.2 Quotient operation

In a similar way we define the quotient operation. Given two compositionsα = (ai)h, β = (bl )k such that
α� β (and hencek≤ h), consider the sequence of indicesj0, j1, . . . jk such that 0= j0 < j1 < · · ·< jk = h
and

bl =
j l

∑
i= j l−1+1

ai for everyl = 1,2, . . . ,k.

Then, thequotientβ/α is the compositionγ = (gl )k of h such that

gl = j l − j l−1 for everyl = 1,2, . . . ,k.

It is clear that ifγ = β/α thenβ = γ ·α, `γ = `β andnγ = `α.
For instance:

β = (4,2,5) α = (1,3,2,1,1,3) γ = β/α = (2,1,3)

Notice that we have the following special cases, for any compositionα = (ai)h:

α/α = (1,1, . . . ,1)h (nα)1/α = (h)1 α/(1,1, . . . ,1)nα
= α

Also the quotient of two compositions can be computed in linear time by scanning both operands
from left to right. Then, there is an algorithm that, for an inputα = (ai)h, β = (b j)k satisfying the
relationα� β, computes the compositionγ = (g j)k such thatγ = β/α and works in timeO(h).

4.3 Labelled compositions

Now, let us see how syntactic trees can be represented by integer compositions. To this end, we introduce
the notion of labelled composition. Given an expressionα ∈ RUE with set of cyclesC , a labelled
compositionis an integer composition equipped with two symbolsA,B∈ C such thatB�A: we denote
it by an expression of the formdA

B, for some symbold.
Given a syntactic treeT, consider two cyclesA,B∈ C such thatB�A and assumeT hash nodes of

labelA andk nodes of labelB. Then, define the labelled compositionmA
B by

mA
B = (a1,a2, . . . ,ah)

where, for eachi = 1, . . . ,h, ai is the number ofB-nodes that are descendants of thei-th A-node inT.
Clearly we havek = nmA

B
, while mS

B = (k) andmB
B = (1,1, . . . ,1)k.

Thus, any syntactic treeT defines a family of labelled compositions{mA
B | B� A} satisfying the

following proposition, the proof of which follows from the definitions.

Proposition 5 Given a syntactic tree T , let A,B,C be cycles inC such that C�B�A. Then the following
properties hold:

1. mA
B ≤mA

C and mB
C �mA

C;

2. The sum of mAB equals the length of mBC and hence mAB ·mB
C is well-defined;

3. mA
C = mA

B ·mB
C and hence mAB = mA

C/mB
C.
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Thus, properties 1, 2 and 3 above are necessary conditions for a set of labelled compositions to represent
a syntactic tree (with respect to a given repeat-until expressionα). Actually, they are also sufficient
conditions to represent a syntactic tree. However, in order to state such a property it is convenient to
restrict our reasoning to the labelled compositions corresponding to pairs of father-son cycles inT(α).

Proposition 6 Given a hierarchical tree T(α) with set of cyclesC and initial symbol S, let N= {dA
B |

A,B∈ C ,A = F(B)} be a family of labelled compositions such that:

1. For every A∈ C such that S= F(A), the length of dSA is 1;

2. For every A,B,C ∈ C such that A= F(B) and B= F(C), the sum of dAB equals the length of dBC
(and hence dAB ·dB

C is well-defined).

Then there exists a unique syntactic tree T whose family of labelled compositions includes N.

Proof. The syntactic treeT can be built as follows. First,T has a unique node of labelSand, for every
X ∈ C\{S}, it haskX many nodes of labelX, wherekX is the sum ofdY

X with Y = F(X). Second, for
eacha∈ Σ, add ana-node as a son of eachX-node such thatX = C(a). Then, for everyX,Y ∈ C where
Y = F(X), consider the labelled compositiondY

X = (a1,a2, . . . ,ah). By condition 2 it is easy to see that
there areh nodes of labelY andn = a1 + · · ·+ah nodes of labelX: thus one can set the firsta1 nodes of
labelX as sons of the firstY-node, the subsequenta2 nodes of labelX as sons of the secondY-node, and
so on till setting the lastah nodes of labelX as sons of the lastY-node. This defines a syntactic treeT
and the ordered sequence of the labels of its leaves yields a stringx∈ L(α). 2

Combining Propositions 6 and 5, we can state that a familyM of labelled compositions (including
at most one composition for each pairA,B∈ C such thatB� A) defines a unique syntactic treeT if M
includes the setN satisfying the hypothesis of Proposition 6 and all triplesmA

B,mC
B,mA

C ∈M, forC�B�A,
satisfy conditions 1, 2 and 3 of Proposition 5.

5 The membership problem for repeat-until trace languages

Now, let us consider the membership problem for trace languages defined by repeat-until expressions.
Formally, given an independence alphabet(Σ, I) and an expressionα ∈RUE(Σ), the problem consists of
deciding, for an inputx∈ Σ+, whether[x]∩L(α) is empty. The following theorem yields an equivalent
condition.

Theorem 7 Given an independence alphabet(Σ, I) with dependence relation D and an expressionα ∈
RUE(Σ), for any x∈ Σ+ we have[x]∩L(α) 6= /0 if and only if there exists w∈ L(α) having syntactic tree
T such that:

a) For all a ∈ Σ, |x|a is the number of nodes in T labelled by C(a);

b) For every a,b∈ Σ such that aDb and a< b, |πa,b(x)|ab equals the number of nodes of T labelled by
C(a,b);

c) For any a,b∈ Σ such that aDb and a< b, if X = C(a), Y = C(b) and Z= C(a,b), then the labelled
compositions mZX and mZ

Y of T coincide with the compositions generated byπa,b(x) on a and b,
respectively.
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Proof. First recall that a wordw belongs to[x] if and only if |x|a = |w|a for everya∈ Σ andπa,b(x) =
πa,b(w) for every pair of distinct symbolsa,b∈ Σ such thataDb. Therefore, if there existsw∈ [x]∩L(α)
thenw satisfies Properties 1, 2, 3 of Section 3.2. Since the projections ofx andw on the pairs of (possible
coincident) dependent symbols are equal, the same properties hold forx, proving conditionsa), b) and
c).

On the other hand, if there existsw ∈ L(α) satisfying these conditions then bothx andw have the
same projections on the pairs of (possible coincident) dependent symbols, proving thatw∈ [x] and hence
[x]∩L(α) 6= /0. 2

The previous theorem can be used to design a linear time algorithm for recognizing[L(α)] whenever
α andD satisfy a further condition we introduce below. To this end, let us define the graphG(α,D) as
the directed graph such thatC is the set of nodes and the family of edgesE is given by

E = {(Y,X) | X,Y ∈ C ,∃a,b∈ Σ : aDb,X = C(a),Y = C(a,b)}.

If (Y,X) ∈ E we say thatX is adjacentto Y. Note that in this caseX �Y. Moreover, givenU,Z ∈ C , we
say thatU is connectedto Z throughD if there is a path inG(α,D) from U to Z.

Definition 2 We say that T(α) is closedwith respect to D if, for every(Y,X) ∈ E, either Y= F(X) or
all nodes along the path from Y to X in T(α) are connected to X through D.

Example 5 Let T(α) be the hierarchical tree defined by the following picture:

id ig
iD ic iG if� A � A

iC ib iF
!!!

aaa
iB ia!!!

aaa
iA
iS

Then T(α) is closed with respect to the following dependence relations: D= {{a,d},{b,d},{c,d}}, D=
{{a,d},{c, f},{c,d}}, D = {{a,g},{b, f},{g, f}}, D = {{d,c},{ f ,g},{c,g},{a,d}}. On the contrary
the same T(α) is not closed with respect to the dependence relations defined by D= {{a,c},{a,b}},
D = {{a,d},{b,c}}, D = {{c, f},{c,g}}, D = {{a,c},{b,d}}.

6 Recognition algorithm

Now, assuming thatT(α) is closed with respect toD, let us define an algorithm for the recognition of
[L(α)]. The key idea of the computation is to construct, for an inputx ∈ Σ+, the syntactic treeT of a
word w∈ [x]∩L(α) that satisfies conditionsa), b), c) of Theorem 7. Such a tree (if any) will be defined
by a family of labelled compositions{dA

B | A,B∈ C ,A = F(B)} that satisfies Proposition 6.
The algorithm consists of three phases. In the first one, by applying conditionsa) andb), we compute

the numberkA of A-nodes inT, for eachA∈ C . In the second phase we compute the set of all labelled
computationsdA

B of T determined by the dependency relationD, i.e. those defined by conditionc). In
the third phase we close such a set of labelled compositions with respect to the product and the quotient,
checking in particular that all products are coherent. Finally, by a suitable choice, we compute explicitely
the remaining undefined compositions of the formdA

B with A = F(B).
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6.1 Computing the nodes of the syntactic tree

First of all, the root is the unique node labelled byS. Then, the leaves ofT are determined by the
occurrences of symbols ofΣ in x: for everya∈ Σ one checks that|x|a ≥ 1 and adds|x|a leaves labelled
by a in T. Moreover, by conditiona) of Theorem 7, the number of nodes labelled byC(a) has to be
equal to|x|a. Thus, one has to check that|x|b = |x|a for all b∈ Σ such thatC(b) = C(a). Once such a
condition is guaranteed, we can assign|x|a to the required numberkX of X-nodes, whereX = C(a). On
the contrary, if|x|b 6= |x|a for someb∈ Σ such thatX = C(b), then the required syntactic treeT does not
exist and hence we reject the input and stop.

A similar reasoning derives from conditionb), which allows us to determine the numberkZ of Z-
nodes for any cycleZ ∈ C such thatZ = C(a,b) for somea,b∈ Σ satisfyinga < b andaDb. This value
coincides with the number of occurrences ofab in πa,b(x). Also in this case one has to verify thatkZ

equals|πa′,b′(x)|a′b′ for every paira′,b′ ∈ Σ satisfying the same conditions asa,b, i.e. Z = C(a′,b′),
a′ < b′, a′Db′. If that is not true, the procedure rejects the input and stops.

Then, we have to compute the number ofB-nodes inT for thoseB∈ C\{S} such thatB 6= C(a) for
all a ∈ Σ andB 6= C(a,b) for all a,b ∈ Σ satisfyingaDb. Observe that every son of such aB in T(α)
is a cycle (it is not inΣ) and any pair of symbolsa,b∈ Σ that are discendent of different sons ofB are
independent. As a consequence, the sons of anyB-node inT can be grouped consecutively according
to the order defined byT(α). This means we can choose the minimalkB by settingkB = kA, where
A = F(B). This property can be summarized by the following proposition1.

Proposition 8 Givenα ∈ RUE(Σ) and a dependence relation D onΣ, let X ∈ C\{S} be a cycle such
that X 6= C(a) for all a ∈ Σ and X 6= C(a,b) for all a,b∈ Σ satisfying aDb. Let Y be the father of X in
T(α), i.e. Y= F(X), and consider a word w∈ L(α). Then, there exists z∈ L(α)∩ [w] such that every
Y-node in the syntactic tree of z has just one son labelled by X (and hence the number of X-nodes equals
the number of Y-nodes).

Finally we have to check that there is at least one son for each father inT, i.e. if Y = F(X) then
kX ≥ kY.

To define formally the computation described above, we use the subroutineAssign(z,v) that assigns
the value ofv to the variablez, checking that the previous possible value ofz is not different fromv
(otherwise a global variableout is set to 0).

Procedure Assign(z,v)
if z=⊥ then z := v

else if z 6= v then out := 0

Then, the computation of the nodes of the syntactic tree is given by the following procedure:

begin
for X ∈ C do kX :=⊥
kS := 1
out := 1
for a∈ Σ do

begin
X := C(a)

1The proof is also given in [16, Prop. 1].
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t := |x|a
if t = 0 then out := 0
Assign(kX, t)

end
for a,b∈ Σ such thata < b∧aDbdo

begin
Z := C(a,b)
u := |πa,b(x)|ab

Assign(kZ,u)
end

for X ∈ C\{S} (in preorder)do
begin

Y := F(X)
if kX =⊥ then kX := kY

else if kX < kY then out := 0
end

end

Thus, the variableout is set to 0 whenever some necessary condition for computing the nodes ofT
does not hold. In this case the algorithm stops and rejects the input. On the contrary, if the final value of
out is 1, then the procedure correctly computes for everyX ∈ C the numberkX of X-nodes of a possible
syntactic tree.

6.2 Initial labelled compositions

In the second phase we compute a set of initial labelled compositions of the required syntatic tree. They
are denoted bydA

B, whereA,B ∈ C andB� A. Clearly, those of the formdA
A (for A ∈ C ) easily derive

from the valueskA computed in the previous section. Other obvious compositions are thosedA
B’s such

thatA = F(B) andkA = kB; in this case,dA
B = (1,1, . . . ,1)kA and this includes all compositionsdY

X where
X andY satisfy the hypothesis of Proposition 8.

Then, we compute the labelled compositions determined by conditionc) of Theorem 7. Also in this
case a uniqueness condition has to be verified; if a pairA,B∈ C with B�A is associated with two distinct
pairs of dependent symbols, the corresponding labelled compositions have to be equal, otherwise there
is no syntactic tree satisfying the required conditions.

The procedure below formally defines the second phase of our algorithm. Again, we use the subrou-
tineAssign and, at the end of the computation, ifout = 0 the algorithm stops and rejects the input.

begin
1. labelled compositions derived from nodes

for A,B∈ C do dA
B :=⊥

for A∈ C do dA
A := (1,1, . . . ,1)kA

for A∈ C such thatS= F(A) do dS
A := (kA)

for A,B∈ C such thatA = F(B) do
if kA = kB then dA

B := (1,1, . . . ,1)kA

2. labelled compositions derived from dependent pairs
for a,b∈ Σ such thata < b∧aDbdo

begin
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X := C(a)
Y := C(b)
Z := C(a,b)
compute the compositionγ generated byπa,b(x) ona
Assign(dZ

X,γ)
compute the compositionδ generated byπa,b(x) onb
Assign(dZ

Y ,δ)
end

end

6.3 Closure operations

Once the previous phase has been completed without settingout to 0, we have to close the setM of
labelled compositions determined so far with respect to the product and the quotient. Observe that, by
the procedure of Section 6.1, for anyA,B,C ∈ C such thatC�B�A, if dA

B 6= ⊥ 6= dB
C then the product

dA
B ·dB

C is well-defined becausendA
B
= kB equals the length ofdB

C. Then the productdA
B ·dB

C can be computed

and assigned todA
C, checking that a unique composition is assigned to the same pairA,C.

The computation is defined by the following scheme.

repeat
for A,B,C∈ C such thatC�B�A do

if dA
B 6=⊥ 6= dB

C then

{
γ := dA

B ·dB
C

Assign(dA
C,γ) (1)

for A,B,C∈ C such thatC�B andA = F(B) do

if dA
C 6=⊥ 6= dB

C then if dB
C � dA

C then

{
δ := dA

C/dB
C

Assign(dA
B,δ) (2)

else out := 0
until out = 0 or no new assignment is executed in commands(1) and(2)

Clearly, if out = 0 the input is rejected, otherwise it is accepted. Note that there could still exist pairs
of father-son cyclesA,B∈ C such thatdA

B =⊥. However, in this case any composition of lengthkA and
sumkB can be assigned todA

B since, by the closure hypothesis, there is no labelled composition inM
connecting an ancestor ofA to a descendent ofB.

for A,B∈ C such thatA = F(B) do

if dA
B =⊥ then

{
choose a compositionγ of lengthkA and sumkB

dA
B := γ

Thus, in case of acceptance,dA
B is well defined for everyA,B∈C such thatA= F(B) and the syntactic

tree of a wordw∈ [x] is obtained by applying Proposition 6.
Since the product and the quotient of integer compositions can be computed in linear time, the whole

algorithm works inO(n) time, wheren = |x|.

Theorem 9 For every independence alphabet(Σ, I) and every expressionα ∈RUE(Σ), if T(α) is closed
with respect to the dependence relation then the trace language[L(α)] can be recognized in O(n) time.
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If the hierarchical tree is not closed with respect to the dependence relation, the algorithm above
may fail to build a syntactic tree (even if there exists one) because some father-son connection could
remain undefined. This may happen when, for an adjacent pair(Y,X) and a cycleB such thatX �B�Y,
B is not connected toX throughD and several choices fordA

B, whereA = F(B), are coherent with the
compositions occurring along the path fromY to X. A simple choice of one of these is not always correct,
because (without the closure assumption) the resultingdA

B might not be coherent with the initial labelled
compositions occurring in other paths includingB. The following example describes in detail a situation
of this kind.

Consider the hierarchical treeT(α) defined by the picture of Example 5 and let the dependence
relation be given by the pairs{a,d}, {b,c}, {b, f}, {a,g}. ClearlyT(α) is not closed with respect to
such a relation. In particular the paths fromA to D and fromA to G are not closed.

Now, assume the projections of the inputx over{a,d} and{b,c} are given byπa,d = dddddadddda
andπb,c = ccbccbcbcb, respectively. Here, the number of nodes of labelA, B, C andD are, respectively,
kA = 2, kB = 4, kC = 5 andkD = 9, while the initial compositions defined by{a,d} and {b,c} are
dA

D = (4,5) anddB
C = (2,2,1,1). There are two possible choices fordA

C coherent withdA
D anddB

C, i.e.
satisfyingdA

C ≤ dA
D anddB

C � dA
C; they aredA

C = (4,2) anddA
C = (2,4), which produce, by the quotient

operation, the labelled compositionsdA
B = (2,2) anddA

B = (1,3), respectively.
However, an analogous reasoning based on dependence pairs{b, f} and{a,g} may yield a partially

different set of possible values fordA
B. In fact, assumeπb, f = b f f b f b f f b f andπa,g = gggggaggga. In

this case we havekF = 6, kG = 8, dB
F = (2,1,2,1) anddA

G = (5,3). The possible values fordA
F are(3,3)

and(5,1), which implies the compositionsdA
B = (2,2) anddA

B = (3,1), respectively.
Thus, the only value ofdA

B that is coherent with both pathsA−D andA−G is dA
B = (2,2). Therefore,

in the general case, for computing a labelled compositiondA
B one should determine the set of admis-

sible values for each including path and compute the intersection of all these sets. However, such a
computation does not seem to be feasible as the number of compositions of given sum is exponential.

6.4 On the closure assumption

To conclude this section we spend some words to discuss the closure assumption for nested repeat-until
programs. We recall that the innermost loop containing instructiona is “adjacent” to an outer loop
containing instructionsa andb, if the two instructions are dependent. Here the adjacency relation can
be seen as a directed edge from the outer loop to the inner one. Also, an innermost loopX and an outer
loopY are “connected” if there is a path of adjacences fromY to X. The closure hypothesis says that, in
any chain of nested loops, such that the outermost and the innermost one are adjacent, each intermediate
loop is connected to the innermost one.

For instance, it is easy to see that the standard procedure for matrix multiplication has three nested
cycles, where the header of each loop increments a control variable and is dependent on the innermost
instruction.

Even if the closure assumption is not satisfied by all repeat-until expressions, however we think
it covers a significant part of these languages, those for which the reconstruction of the syntactic tree
(from the projections of the input string on the dependence pairs) can be done univocally by using the
operations of product and quotient between compositions.

Moreover, the existence of linear time recognition algorithms under this hypothesis supports the con-
jecture that also for more general expressions there exist efficient procedures for the membership prob-
lem, with time complexity independent of the clique size of the independence relation. A first attempt
in this direction is proposed in [6] where some procedures, working in quadratic time, are described
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for specific examples of repeat-until expressions without closure assumption. That approach however
is not based on a general property relating the repeat-until expression to the dependence relation and
involves operations over integer compositions, other than product and quotient, which do not seem to be
computable in linear time.

7 Conclusion

An important problem in program optimization and in other computer applications is the schedule check-
ing problem. It consists of checking whether a given sequence of operations is a permutation of any
sequence defined by a finite-state machine, obeying a given dependence relation. We have presented
two linear-time algorithms that solve the problem under certain assumptions, which we believe to be not
restrictive for certain realistic cases. This may open the way to the experimentation of our algorithms,
in contrast to previous procedures for the general problem, which have too high time complexity to be
practical.

Analysing general iterative computations, as we did for nested repeat-until cycles, is rather com-
plicated. In our case we have overcome the difficulty by introducing the labelled integer compositions
in this context, and we have shown that they are quite expressive and convenient mathematical struc-
tures. Their use has allowed us to clarify and improve on previous efforts to solve the schedule checking
problem, determining precisely the time complexity of the algorithm in several significant cases. In our
opinion, it should be possible to apply similar methods based on integer compositions to more general
cases, such as programs of loops of typewhile . . . do . . . and others.
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