DIPARTIMENTO DI SCIENZE DELL'INFORMAZIONE

Rapporto interno N. 326 - 09

~

Efficient recognition of trace languages
defined by repeat-until loops

Luca Breveglieri, Stefano Crespi Reghizzi,
Massimiliano Goldwurm

Efficient recognition of trace languages
defined by repeat-until loops

Luca Breveglief{! Stefano Crespi ReghiZ2i

Massimiliano Goldwurr?)

(1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio 34/5, 20133 Milano — Italy
{luca.breveglieri, stefano.crespireghizzi}@polimi.it

(2) Dipartimento di Scienze dell'Informazione, Universita degli Studi di Milano
Via Comelico 39-41, 20135 Milano — Italy, goldwurm@dsi.unimi.it

Rapporto Interno
RI-DSIn. 326 - 09

Dipartimento di Scienze dell'Informazione
Universita degli Studi di Milano
via Comelico 39/41, 20135 Milano, Italy

Aprile 2009

Abstract

A sequence of operations may be validly reordered, provided that only pairs of independent
operations are commuted. Focusing on a program scheme, idealized as a local finite automaton, we
consider the problem of checking whether a given string is a valid permutation of a word recognized
by the automaton. Within the framework of trace theory, this is the word membership problem for
rational trace languages. Existing general algorithms, although time-polynomial, have unbounded
degree related to some properties of the dependence graph. Here we present two original linear-time
solutions. A straightforward algorithm is suitable for any local finite automaton such that any two
successors of an operation are dependent or not mutually reachable. The second approach is currently
restricted to nested repeat-until loops. Using integer compositions to represent loop iterations, the
algorithm constructs the loop nesting syntax tree by exploiting newly introduced functions on integer
compositions. The result may be relevant for checking dependencies of rescheduled programs on
parallel processors.

1 Introduction

A sequence of operations may be validly reordered, provided that only pairs of independent operations
are commuted. For instance, a computer program can be idealized as a deterministic finite automaton
(DFA), recognizing a set of strings from an alphabet of abstract instructions, some of which are mutually
dependent. At a coarser granularity of operations, the same problem occurs when concurrent accesses
to a database are serialized. Formally, the problem we address is the following: Is a given string a valid
permutation of a word recognized by the automaton?

A motivation comes from the areas of compiler and processor design. Modern compilers [9] and
processors [13] reorder (“reschedule”) machine instructions, with respect to the original sequential pro-
gram ordering, with the goal of minimizing program completion time by taking advantage of available
hardware parallelism. This task involves the capability to check that instruction dependencies are not
violated. We present two very efficient algorithms under different assumptions.

Trace theory is a convenient framework for stating and analyzing dependencies checking problems.
We recall that trace languages were introduced in the '70s as a tool for the study of concurrent systems
[12] and a comprehensive treatment of their properties and related theory is presented in [8].

Using concepts from formal language theory, the program scheme is the state-transition graph of a
DFA, and since in a program each instruction differs from any other by its memory address, the DFA can
be assumed to be a local one [2]. Then the previous problem is the word membership problem for the
trace language represented by a local DFA.

In the past a few algorithms [5, 3, 1] have been proposeddtional trace languages, i.e., partially
commutative languages represented by a regular string language, and also for trace languages represented
by context-free languages [14, 5]. Such algorithms examine the prefixes of a trace, also using sophis-
ticated data structures for more efficient analysis. Their time complexity, although polynomial, has an
unbounded degree, which is related to some properties of the independence graph. More precisely the
degree is linearly related to the size of the largest clique of the independence relation, a value which is
likely to be too large for realistic application. Here we present two efficient linear-time solutions of the
word membership problem for rational trace languages represented by local regular languages.

After the basic definitions of Section 2, we present in Section 2.1 a straightforward algorithm, suitable
for any local DFA satisfying the following hypothesis: if a state has two successors, then either they are
dependent, or one is not reachable from the other on the DFA graph. These conditions correspond to
rather realistic assumptions for frequent program patterns.

The second approach is much more involved and takes the rest of the paper. The problem definition
and some of the initial ideas and properties come from [7, 16], but the mathematical setting based on
integer compositions (Section 4) and the problem solving strategy are new. This approach is currently
restricted to nested repeat-until loops, a popular class of computationally intensive program structures,
defined in Section 3. Using integer compositions to represent loop iterations, a syntax tree of an unrolled
nested repeat-until expression is precisely represented by labelled integer compositions.

Section 5 focuses on the word membership problem for trace languages represented by such repeat-
until string languages, and proves a theorem relating the existence of a syntax tree and of certain labelled
compositions, which can be derived by observing the runs of dependent letters. Then actisuyie
assumptions introduced which concerns the dependencies between nested loops.

Based on that, Section 6 outlines, defines and analyzes an efficient algorithm, which repeatedly
applies the previously introduced product and quotient operations on the integer compositions. Under
the closure assumption this algorithm solves the problem in linear time.

At last we discuss the meaning and the limits of such a closure hypothesis, and in the conclusion we

hint to possible generalizations and alternative assumptions.

2 Basic notions

Given a finite alphabel and a wordx € X*, |x| represents the length afwhile, for eachy € =", |x]y
denotes the number of occurrencey@f x. Moreover, given a subs&tC X, Tia(X) is the projection of
x overA. Further, ifx is not the empty word, P(x) andU (x) denote, respectively, the first and the last
symbol ofx, while S;(x) is the suffix ofx of length|x| — 1.

Given a wordx € {a,b}*, arun of ain x is an occurrence of a maximal factoroincluded in{a} .
An analogous definition holds fdr. For instance, the wordaabbabbbaadas 3 runs o& and 2 runs
of b (aaa a, aaaandbb, bbb, respectively). Clearly, two wordsy € {a,b} " are equal if they have the
same sequence of runsa@fthe same sequence of runsodndP(x) = P(y).

There is a natural relationship between runs of a letter in binary words and compositions of integers.
A compositionof an integem > 1 is a nonempty finite sequenc¢a, io,...,in) of integers such that
i1 +i2+---+in=nandi; > 1 for everyj = 1,...,h. Integer compositions are classical combinatorial
structures, widely studied in the literature; for instance it is known that there"atec@mpositions of
any integem > 1 [10]. In our context they are used to represent projections of words on pairs of letters.
In particular, every word € {a,b} ", wherea+# b, |x|a > 1 and|X|, > 1, defines two compositioryg and
Vb determined, respectively, by the runsaodind the runs ob in x. More preciselyya = (i1,i2,...,in) IS
a composition ofx|,, whereh is the number of runs ad in x and eaclij is the length of thg-th run.
Analogously,y, is a composition ofx|, defined in a similar way. We also say that(resp.,yb) is the
compositiongeneratedy x ona (resp.,b).

Now, let us recall some basic definitions on traces. An independence rdlation is a symmetric
and irreflexive relatioh C X x . For everya, b € ¥ we say thatandb are independent ifa,b) € | and
in this case we also writalb. The dependence relati@is the complement df, that isD = {(a,b) €
> x 2| (ab) 1}. We say that andb are dependent ifa,b) € D (aDb for brevity). The painZ,1) is
called independence alphabet and it is usually represented by an undirected graph istbeeset of
nodes and the set of edges. An independence relati@stablishes an equivalence relatispon Z* as
the reflexive and transitive closure of the relationdefined by

xaby~; xbay Wx,yeZ* V(ab)el.

The relation=, is a congruence ovex*, i.e. an equivalence relation preserving concatenation between
words. For everx € Z* the equivalence class| = {y € Z* | y =, x} is calledtrace, the quotient monoid
>*/ =, is called trace monoid and usually denotedMyX,1). A subsetT C M(Z,1) is called trace
language and, for evetyC >*, we defingL] = {[x] € M(Z,l) | x € L} as the trace language represented
by L. A trace language is calledtional if it is represented by a regular language. Moreover, the rational
operations on trace languages (union, product and Kleene closure) are defined as in the free monoids.
It is known that the class of rational trace languages is the smallest family of trace languages including
the finite sets ilM(X,1) and closed under the rational operations. We also recall that a rational trace
languagel C M(Z,1) is calledunambiguou# T = [L] for a regular language C Z* such that, for every
t € T, there is exactly one stringe L belonging ta. The class of unambiguous rational trace languages
can be characterized by the so-called unambiguous rational operations and it coincides with the class of
all rational trace languages if and only if the independence relat®transitive [3, 4, 15].

In the present work we are interested in the recognition problem of rational trace languages. Given
independence alphabgf,|) and a regular languadeC Z*, such a problem consists of deciding, for

an inputx € Z*, whether[x] belongs to[L] (i.e. whetherx] NL is empty). Our purpose is to study the
recognition problem for rational trace languages represented by local (string) languages [2].

2.1 Recognition of local languages with dependent successors

In this section we present a linear time algorithm for the recognition of rational trace languages that admit
a local representative language satisfying a further special condition. To formalize this case, consider a
(deterministic) finite state automatch= (Q,qo,0,F) over an alphabeX, whereQ is the set of states,

Qo is the initial stated: Q x ~Z — QU { L} is the (partially defined) transition function afRdC Q is

the set of final states. Such an automaton is said todd if there exists a functiorf : < — Q such

that, for allg € Q and alla € %, §(q,a) # L implies d(g,a) = f(a). In this caseQ can be reduced

to the set{f(a) |a€ Z} U{qo}. Moreover, we can define the successors of a sfate as the set

Sudq) = {ac 2| d(q,a) # L}. Aregularlanguage C >* is alocal language if it is accepted by a local

finite state automaton [2].

Now, given an independence alphat®tl) with dependent relatioD®, we say that the above local
automatonq = (Q, do,d,F) hasdependent successdfsfor every g € Q and everya,b € Sudq), we
haveaDb. In this case, iL C Z* is the language accepted B then the trace languade= [L] can be
recognized in linear time.

To describe the algorithm, let us representde set of all pairs and singletons forming a covering
of the dependence grafgh, D):

A = {{a,b} |a,beZ, aDb} U {{b} |be X, Vac Za# b= alb}

Recall that, for every,y € Z* we havex =, y if and only if Ty (X) = 1y(y) for all £ € A. Moreover, for
everya € Z, we denote byA(a) the set

A@):={lecA|acl}.

It is clear that the set& andA(a), a € %, only depend on the independence alphdRek) and can be
computed in a preprocessing phase.

For a given inputv € Z* the procedure computes a warek; w accepted by3, if any, otherwise it
returns 0. Note that suchzaalso represents an accepting computation of the automaton. The procedure
maintains a family of string$y, : £ € A}, where at the beginning = 1y(w) for every/. A stateq € Q
is also updated which represents the current state of the computation. In the main iteration one looks for
a lettera € Sudq) that occurs as first symbol in al} with a € ¢: by the hypothesis of dependence of
successors, there is at most ansatisfying that condition; in this casda) becomes the new current
state and its first occurrences are erased froryalsuch that € ¢. This process is iterated until either
all projectionsy, are empty or no new symbol can be found among the successors of the current state.
The input is accepted if and only if, at the end of the computatioly,'alare empty and the current state
is final.

begin
for £ € Ado Yy :=Ty(W)
qd:-=0o
z:=¢
out:=0
while out=0A3¢ € A such thaty,| > 0 do

begin
if Ja € Sudq) such thaa = P(y,) for all £ € A(a)
q:=95(q,a)
then Z:=2Za
for ¢ € A(a) doy, := Si(yr)
elseout:=1
end
ifout=0AQgeF
then returnz
elsereturn 0
end

Note that, iffw] € T then the procedure returns a warg waccepted bya. Otherwise the procedure
returns 0.

For an inputw of lengthn the algorithm works irD(n) time since the cardinality a only depends
on the dependence relation and hence the main iteration, which is repeated atimest require©(1)
time.

Proposition 1 Given an independence alphalj&t 1), let L C Z* be accepted by a local automaton with
dependent successors. Then, the trace languag€gl] can be recognized in time(0).

A first consequence of the previous algorithm is given by the following

Proposition 2 For any independence alphab@, 1), if L C X* is recognized by a local automaton with
dependent successors then the rational trace langiigge unambiguous.

Proof. In fact, let4 = (Q,qo,0,F) be a local automaton with dependent successors recogrlizing
Assume there are two wordsv € L such thafu] = [v]. Consider the longest common prefiof u and
v. Thenu = xazandv = xbwfor somealb andz,w € Z*. We have that,b € Sudq) whereq = d(qo, X)
and henceq has a pair of independent successors, which is contradiction. O

Another condition or andD that allows us to design a linear time algorithm to recogfiizés the
following: for everyq € Q and every pair of independent symbbl in Sudq), in 4 either statef (b)
or statef (c) is not reachable from the other one. Thugy if the current state and bothandc appear
as first symbol in the corresponding projections (siblzethey do not share a common projection), then
the procedure is forced to choose betwéén) and f (c), that state able to reach the other one. Note that
the previous condition is milder than the hypothesis of dependence of successors.

The hypotheses of dependent successors and non-mutual reachability we consider above occur fre-
quently in program schemes. For instance, the first condition states that the true and false successors
of a conditional instruction are dependent on each other. This also happens in the common case when
the successors are instructions assigning different values to the same variable, a case of write-after-write
data-dependence. Also the situation where one of the successors does not reach the other is typical of
rather frequent program patterns: for instance, it occurs in the case of a conditional jump raising an
exception, such that the normal execution is abandoned if the exception is verified.

3 Repeat-until languages

In this section we define a family of expressions representing a program scheme consisting of nested
repeat-until cycles (or loops).

Given a finite alphabeX, let N be the set of all regular expressions okeatefined as follows:
i) Everyae Z belongs taN,
i) If a, e Nthena-B e N (often represented hyp),
iii) If o is a symbol in> or an expressiof8 -y, for somef,y € N, then(a)* € N.

An elementr € N is calledrepeat-until expressioaverX if it contains just one occurrence afor every
ac x. Thus,mz(a) defines a linear order ovérand, for evenya, b € 2, we writea < b if a occurs before
bin 1z (a). The set of all repeat-until expressions o¥ewill be denoted by RUEZ), or simply by RUE
whenZ is understood.
For everya € RUE, letL(a) be the language representedhyClearly, for every € L(a) and every
a,b e z, we have
a< bimpliesmyp(x) € afa,b}*b Q)

Moreover, we define aycleof a as a subexpressidf) ™ of a such thap € N (note thaf is not of the
form (y)™). The stringrs(B) is thebodyof the cycle,P(1i(B)) andU (1i:(B)) are itsheaderandexit,
respectively. For instancé(ac)bd(e)™)™ is a cycle ofa = h((ac)*bd(e)™)* fg, with headem, exite.

Note that in everyx € L(a) the body of any cycle appears at least once, possibly as a subword
consisting of several nonoverlapping factors. This justifies our definition:ca®yRUE represents a
program scheme of nested repeat-until cycles and evelty(a) represents an execution of the program.

Clearly, for anya € RUE,L(a) is a local language and the corresponding finite automaton is obtained
by a standard construction [2], where there is an initial dgtend a state for each symboln Here
we avoid the easy formal definition and describe such automaton by an example. For our subsequent
discussion, in the diagram of these automata it is convenient to represent cycles by capital letters.

Example 1 Consider the repeat-until expressian= (a(b)*c)*(d(e)*)*. Then, the corresponding lo-
cal automatord(a) is defined by the set of states€)qop, a, b, ¢, d, e} together with following transition
diagram:

X Z
o B0
where XY,Z,U represent the cycleg(b)*c)*, (b)™, (d(e)*)" and(e)™, respectively.

Observe that if the family of success@adq) = {ac Z | 8(q,a) # L} is a clique of a dependence
graph for anyg € Q, then the trace languadke(a)] is recognizable irD(n) time by the algorithm pre-
sented in Section 2.1.

3.1 Hierarchical trees

Here we describe a tree representation of a repeat-until expression. Let us first recall that a plane tree is
a rooted tree where the sons of every internal node are totally ordered (usually drawn from left to right).
This clearly induces a natural total order on the leaves of the tree. Now, gi®eRUE(Y), let C be

the family of all cycles ofu (denoted by capital letters) together with a special syn@hathich will

represent the root of the tree. For evetyy € C, we defineX <Y if X is nested intdr or X =Y. We
also selX < Sfor everyX € C. Moreover, we writeX <Y if X JIY andX #Y.

Then we define thhierarchical treeof a as the plane tre€(a) with root S, satisfying the following
properties:

1. Cisthe set of internal nodes amgl(a) = a;a, - - - am is the ordered list of leaves;

2. ForanyX,Y € C, X is son ofY if X <Y andX is immediately nested i¥, i.e. thereisn&Z € C
suchthaX «Z «Y;

3. Aleafae Zis son of a nodX € Cif X is the smallest cycle af includinga. If ais not included
in any cycle thera is son ofS

4. For every nodX € C and every two sons, v of X we setu < vif u (either as a cycle or as a letter
in X) occurs beforerin a.

Note thatX <Y holds if and only ifX is descendant of in T(a). Moreover, for every € C different
from S, we denote by (X) the father ofX in T (a).

Example 2 The hierarchical tree of the repeat-until expressmulefined in Example 1 is described by
the following picture.

@

@éi

For everya € Z, let C(a) be the father ofa in T(a): thusC(a) either is the smallest cycle af
containinga or C(a) = Sif ais not included in any cycle Analogously, forevemyp € 3, a# b, let
C(a,b) be the root of the smallest subtreeTofa) including botha andb. The following proposition
states that all cycles are of the fofa) or C(a,b) for somea,b € Z.

Proposition 3 Leta € RUEX) and let Xe C be a symbol different from S. Then=xXC(a) for some
a€ 2 or X =C(a,b) for some distinct &b € .

The proof easily follows by induction on the height of the nddm the hierarchical tre& (a).

3.2 Syntactic trees

Now, givena € RUE(Z), let ¢ andS be defined as in the previous section. Consider the context-free
grammar with regular right parS(a) defined by the tupléC, 2, S P), where(is the set of nontermi-
nals,Sis the initial symbolz is the set of terminals arfdis the family of productions given by

P = {(X—y)|XeC(, yisobtained from the list of sons of in T(a)
by replacing each nontermingle C by Y}

Example 3 If a is defined as in Example 2 then

P={(S—X*Z"),(X—aY'c),(Y — b),(Z—dU"),(U —e)}

It is clear thatG(a) generate& (a) in the usual way (see for instance [11]). Thus, for aryL(a)
we define thesyntactic treef x as the derivation tree ofin G(a).

Example 4 Leta be the repeat-until expression defined in Example 1 and let x be the string
x = abbbcabcdeeedede

Then xe L(a) and its syntactic tree is given by the following picture:

o & > 5
@@@/\@@@é@é
® ® © OO ©® ©

Proposition 4 A word xe€ X* belongs to [a) if and only if there exists a syntactic tree T that generates
X.

Clearly any syntactic tre& is a plane tree. Its root iS and, for everyu € ZU C, T contains at
least one node (may be more) labelledubyor the sake of brevity, it will be called-node Clearly, all
u-nodes are at the same distance from the root and they can be identified by their (left-to-right) ordering.
Other properties of the syntactic tr€eof a wordw € L(a) are the following:

1. For everya € Z, |w|, equals the number of nodesDflabelled byC(a);
2. For everya,b € > with a < b, [T h(W)|an €quals the number of nodesDflabelled byC(a, b);

3. Foreverya,be %, if (a1,ay,...,an) is the composition generated by, (w) ona, then inT there
are h nodes labelled by (a,b) and, for eachi = 1,...,h, there areg; nodes of labeC(a) that
are descendants of tlieh node of labeC(a,b). Moreover, an analogous statement holds for the
composition generated iy p(w) onb.

The last property suggests to use integer compositions for representing syntactic trees. Such a represen-
tation allows us to construct a syntactic tree. To this end, in the next section we introduce properties and
operations on integer compositions that are useful in our context.

4 Integer compositions for tree representation

For the sake of brevity we often represent a composttien (as,az, . ..,an) of an integem in the form
o = (a)n. The integeh is thelengthof a, while nis also called theumof a. They will be also denoted
by ¢4 andng, respectively. First, for any pair of compositioas= (a)n and3 = (b;), of equal length,
the relationa < 3 means thas; < b; for everyi =1,...,h.

Another natural notion is the inclusion relatishamong compositions of the same integer.

Definition 1 Given two compositions = (&)n andp = (b)i of an integer n> 1, we say thatr is finer
than3 and write

a=p
if h > k and there are k indices jj2,...,jk suchthatl < j; < jo < --- < jy=h and
1 j2 I
P i;ai = i:121+1ai e s i:ijlJrlai
Note that ifa < 3 then there exists a unigketuple of indicesj, ..., jk satisfying the previous property.

Moreover,= is a partial order relation on the family of all compositionsnpfvhere(1,1,...,1) is the
smallest element angh) the largest one (which for convenience will be also denotedlby, ..., 1),
and(n)1, respectively).

Clearly, there is a On)-time algorithm that on input, verifies whethea < 3 and, in the affirmative
case, computes the corresponding sequénce., jx defined above.

4.1 Product operation

Consider two compositions = (g), andp = (bj)x, and assumey = /g, which impliesh < k. Then,
we define thegroducta - 3 as the compositiog = (g), such that
i
g= Z b; forevery 1=12....h
j=l-1tl

wherejo=0andj = 5!_, & foreachl = 1,2...h.
More precisely, we have

g1 = bi+by+---+Dby
g = ba1+1+ba1+2+"‘+ba1+a2

Oh = ba1+-~-+ah71+1 + ba1+---+ah,1+2 +t ba1+-»-+ah

Briefly, y is obtained fronf3 by adding consecutive elements as indexed by the compositi@iearly,
we have <y, ny = ng and/ly = {q.
Here is an example:

a=(1,22 B=(1,2132) y=a-B=(1,35)

Notice that the product is associative but not commutative. Moreover, for every compdssition
(bj)k, the following identities hold:

(1a17"'71)k'[3:[3 (k)lsz(nﬁ)l B'(:L?lv"'?l)n[;:B

The product of two compositions can be computed by scanning their elements from left to right. It
is easy to design an algorithm that takes in input two compositicaga)n, B = (bj)« such thany =k
and computes their product @(k) time.

4.2 Quotient operation

In a similar way we define the quotient operation. Given two compositioasa;),,, B = (b), such that
o < B (and hencé& < h), consider the sequence of indiggsjs, ... jksuchthatG jo< ji<--- < jk=h

and ,
h
b = Z a foreveryl =1,2,... k.
i=ji-1t1

Then, thequotientB/a is the compositioty = (g)k of h such that
g =Jj—Ji-1 foreveryl =1,2,... k.

Itis clear that ify = 3/a thenB =y-a, ¢, = {g andny = {q.
For instance:

B=(425 o=(132113) y=B/a=(213)
Notice that we have the following special cases, for any compositien(a;)n:

a/a=(11,...,1), (Ng), /a = (h); a/(1,1,...,1), =a

Na

Also the quotient of two compositions can be computed in linear time by scanning both operands
from left to right. Then, there is an algorithm that, for an input= (&), B = (b;), satisfying the
relationa < 3, computes the composition= (gj)k such thaly = 3/a and works in timeD(h).

4.3 Labelled compositions

Now, let us see how syntactic trees can be represented by integer compositions. To this end, we introduce
the notion of labelled composition. Given an expressioa RUE with set of cyclesC, a labelled
compositioris an integer composition equipped with two symb&l8 € ¢ such thaB < A: we denote
it by an expression of the forwig, for some symbotl.

Given a syntactic tre&, consider two cycle#, B € C such thaB <A and assumé& hash nodes of
label A andk nodes of labeB. Then, define the labelled compositiog by

Mg = (&1,82, .-, an)

where, for eacli = 1,...,h, g is the number oB-nodes that are descendants of ik A-node inT.
Clearly we havek = nys, while ms = (k) andmB = (1,1,..., D).

Thus, any syntactic tre€ defines a family of labelled compositiofsng | B < A} satisfying the
following proposition, the proof of which follows from the definitions.

Proposition 5 Given a syntactic tree T, let B,C be cycles irC such that GIB<IA. Then the following
properties hold:

1. nf <nmfand n§ < n§;

2. The sum of fhequals the length of gnand hence - mg is well-defined;
3. mf =mg-mg and hence = ng/ng.

10

Thus, properties 1, 2 and 3 above are necessary conditions for a set of labelled compositions to represent
a syntactic tree (with respect to a given repeat-until expressjonActually, they are also sufficient
conditions to represent a syntactic tree. However, in order to state such a property it is convenient to
restrict our reasoning to the labelled compositions corresponding to pairs of father-son cydles.in

Proposition 6 Given a hierarchical tree Ta) with set of cycleg” and initial symbol S, let N= {d5 |
A.Be C,A=F(B)} be a family of labelled compositions such that:

1. For every Ac C such that S= F(A), the length of §is 1

2. For every AB,C € (such that A= F(B) and B= F(C), the sum of f§ equals the length of&
(and hence §- o€ is well-defined).

Then there exists a unique syntactic tree T whose family of labelled compositions includes N.

Proof. The syntactic tre@ can be built as follows. Firsf, has a unique node of lab8land, for every
X € C\{S}, it haskx many nodes of labeX, whereky is the sum ofdy with Y = F(X). Second, for
eacha € %, add ara-node as a son of eactrnode such thaX = C(a). Then, for everyX,Y € C where
Y = F(X), consider the labelled compositio = (a;,ay,...,a,). By condition 2 it is easy to see that
there aréh nodes of labeY andn = a; + - - - 4+ a,, nodes of labeK: thus one can set the firat nodes of
labelX as sons of the first-node, the subsequest nodes of labeK as sons of the secondnode, and
so on till setting the lasty, nodes of labeK as sons of the lai-node. This defines a syntactic trée
and the ordered sequence of the labels of its leaves yields a strihga). O

Combining Propositions 6 and 5, we can state that a faMilgf labelled compositions (including
at most one composition for each paiB € ¢ such thaB < A) defines a unique syntactic tréeif M
includes the sell satisfying the hypothesis of Proposition 6 and all triptésmS, mp € M, for C<IB<IA,
satisfy conditions 1, 2 and 3 of Proposition 5.

5 The membership problem for repeat-until trace languages

Now, let us consider the membership problem for trace languages defined by repeat-until expressions.
Formally, given an independence alphafiet) and an expressiom € RUE(X), the problem consists of
deciding, for an inpuk € =+, whether[x] NL(a) is empty. The following theorem yields an equivalent
condition.

Theorem 7 Given an independence alphali&t |) with dependence relation D and an expressioa
RUE(Z), for any xe = we havex] NL(a) # 0if and only if there exists w L(a) having syntactic tree
T such that:

a) Forallae %,

X|a is the number of nodes in T labelled byef,

b) For every ab € X such that aDb and & b, |1, p(X)|ap €quals the number of nodes of T labelled by
C(a,b);

c) For any ab € X such that aDb and & b, if X =C(a), Y =C(b) and Z= C(a,b), then the labelled
compositions g and n§ of T coincide with the compositions generatedry(x) on a and b,
respectively.

11

Proof. First recall that a wordv belongs tox] if and only if |x|a = |w|, for everya € X and T p(X) =
T (W) for every pair of distinct symbola, b € > such thaeDb. Therefore, if there exists € [x NL(a)
thenw satisfies Properties 1, 2, 3 of Section 3.2. Since the projectionaraiw on the pairs of (possible
coincident) dependent symbols are equal, the same properties haldofmving conditionsa), b) and
C).

On the other hand, if there existse L(a) satisfying these conditions then botlandw have the
same projections on the pairs of (possible coincident) dependent symbols, proviwgthatnd hence

X]NL(a) # 0. O
The previous theorem can be used to design a linear time algorithm for recoghi@ngwhenever

a andD satisfy a further condition we introduce below. To this end, let us define the @&piD) as
the directed graph such thatis the set of nodes and the family of eddes given by

E={(Y.X) | X,Ye (C,JabeZ:aDbX=C(a),Y =C(a,b)}.

If (Y,X) € E we say thai is adjacentto Y. Note that in this cas¥ <Y. Moreover, giverlJ,Z € C, we
say thatJ is connectedo Z throughD if there is a path irG(a,D) fromU to Z.

Definition 2 We say that Ta) is closedwith respect to D if, for everyY,X) € E, either Y= F(X) or
all nodes along the path fromY to X ind) are connected to X through D.

Example 5 Let T(a) be the hierarchical tree defined by the following picture:

Then T(a) is closed with respect to the following dependence relations:{Ba,d}, {b,d},{c,d}}, D=

{{a,d},{c, f},{c,d}}, D={{ag},{b, t},{g,f}}, D={{d,c},{f g}, {c,g},{a d}}. Onthe contrary
the same Ta) is not closed with respect to the dependence relations defined-by {&,c},{a,b}},

D= {{a,d},{b,c}}, D= {{C7 f}a {C7g}}’ D= {{a,c},{b,d}}.

6 Recognition algorithm

Now, assuming thaf (a) is closed with respect tD, let us define an algorithm for the recognition of
[L(a)]. The key idea of the computation is to construct, for an inpatZ ™, the syntactic tred of a
wordw € [x] NL(a) that satisfies conditiors), b), c) of Theorem 7. Such a tree (if any) will be defined
by a family of labelled composition&ds | A,B € ¢,A= F(B)} that satisfies Proposition 6.

The algorithm consists of three phases. In the first one, by applying condijianslb), we compute
the numbekpa of A-nodes inT, for eachA € C. In the second phase we compute the set of all labelled
computationsdg of T determined by the dependency relatDdni.e. those defined by conditiaz). In
the third phase we close such a set of labelled compositions with respect to the product and the quotient,
checking in particular that all products are coherent. Finally, by a suitable choice, we compute explicitely
the remaining undefined compositions of the fatfwith A= F(B).

12

6.1 Computing the nodes of the syntactic tree

First of all, the root is the unique node labelled 8y Then, the leaves of are determined by the
occurrences of symbols &fin x: for everya € Z one checks thgk|, > 1 and addsx|, leaves labelled
by ain T. Moreover, by conditiora) of Theorem 7, the number of nodes labelled@a) has to be
equal to|x|a. Thus, one has to check thiat, = |x|4 for all b € X such thatC(b) = C(a). Once such a
condition is guaranteed, we can assjgpg to the required numbés of X-nodes, wherX = C(a). On
the contrary, ifix|p # |X|a for someb € X such thaiX = C(b), then the required syntactic tr&edoes not
exist and hence we reject the input and stop.

A similar reasoning derives from conditids), which allows us to determine the numberof Z-
nodes for any cycl& € ¢ such thaZ = C(a,b) for somea, b € X satisfyinga < b andaDb. This value
coincides with the number of occurrencesaXin 1, (x). Also in this case one has to verify thigt
equals|Ty iy (X)|qy for every paird,b’ € X satisfying the same conditions ash, i.e. Z =C(d,b’),
a < b/, aDb'. If that is not true, the procedure rejects the input and stops.

Then, we have to compute the numbeiBafiodes inT for thoseB € C\{S} such thaB +# C(a) for
all ac % andB # C(a,b) for all a,b € X satisfyingaDb. Observe that every son of suctBan T (a)
is a cycle (it is not inX) and any pair of symbola, b € X that are discendent of different sonsBare
independent. As a consequence, the sons ofBangde inT can be grouped consecutively according
to the order defined by (o). This means we can choose the minirkglby settingks = ka, where
A = F(B). This property can be summarized by the following proposttion

Proposition 8 Givena € RUEX) and a dependence relation D &y let X € C\{S} be a cycle such

that X # C(a) for all a € Z and X+ C(a,b) for all a,b € X satisfying aDb. Let Y be the father of X in

T(a), i.e. Y=F(X), and consider a word w L(a). Then, there existse L(a) N[w] such that every

Y -node in the syntactic tree of z has just one son labelled by X (and hence the number of X-nodes equals
the number of Y -nodes).

Finally we have to check that there is at least one son for each fatfieriia. if Y = F(X) then
kx > ky.

To define formally the computation described above, we use the subrastihen(z v) that assigns
the value ofv to the variablez, checking that the previous possible valueza$ not different fromv
(otherwise a global variablaut is set to 0).

Procedure Assign(zV)
ifz=1 thenz:=V
else if z#Vvthenout:=0

Then, the computation of the nodes of the syntactic tree is given by the following procedure:

begin
forXe Cdokyx:=1
ksZ:l
out:=1
forae 2 do
begin
X:=C(a)

1The proof is also given in [16, Prop. 1].

13

t:=|X|a
ift=0thenout:=0
Assign(kx,t)
end
for a,b € Z such thaa < bAaDbdo
begin
Z:=C(a,b)
U= [T p(X)|ab
Assign(kz,u)
end
for X € C\{S} (in preorder)yo
begin
Y :=F(X)
if kx = L thenkyx :=ky
else if kx < ky thenout:=0
end
end

Thus, the variableut is set to 0 whenever some necessary condition for computing the nodes of
does not hold. In this case the algorithm stops and rejects the input. On the contrary, if the final value of
outis 1, then the procedure correctly computes for every C the numbeky of X-nodes of a possible
syntactic tree.

6.2 Initial labelled compositions

In the second phase we compute a set of initial labelled compositions of the required syntatic tree. They
are denoted b4, whereA B € ¢ andB < A. Clearly, those of the forndj (for A € () easily derive
from the valueska computed in the previous section. Other obvious compositions are dsssuch
thatA = F(B) andka = kg; in this caseds = (1,1,...,1)x, and this includes all compositios where
X andY satisfy the hypothesis of Proposition 8.

Then, we compute the labelled compositions determined by conditiohTheorem 7. Also in this
case a uniqueness condition has to be verified; if aqd@rc C with B<JAis associated with two distinct
pairs of dependent symbols, the corresponding labelled compositions have to be equal, otherwise there
iS no syntactic tree satisfying the required conditions.

The procedure below formally defines the second phase of our algorithm. Again, we use the subrou-
tineAssign and, at the end of the computationgiit = 0 the algorithm stops and rejects the input.

begin
1. labelled compositions derived from nodes
forABe Cdods:= 1
for Ac Cdody:=(1,1,...,1),
for A€ C such thaS=F(A) do d3 := (ka)
for A/Be€ (C suchthatA =F(B) do
if ka =kg thendf:=(1,1,...,),
2. labelled compositions derived from dependent pairs
for a,be Z suchthaa<bAaDbdo
begin

14

X:=C(a)
Y :=C(b)
Z:=C(a,b)
compute the compositiopngenerated byt p(X) ona
Assign(dg,y)
compute the compositiohgenerated byt (x) onb
Assign(d,d)
end
end

6.3 Closure operations

Once the previous phase has been completed without setting 0, we have to close the skt of
labelled compositions determined so far with respect to the product and the quotient. Observe that, by
the procedure of Section 6.1, for aAyB,C € (such thaC < B<A, if d§ # 1 # dg then the product
dg-dg is well-defined becausgy = ks equals the length @. Then the produdlg - dg can be computed
and assigned td?, checking that a unique composition is assigned to the samagir
The computation is defined by the following scheme.

repeat
for AB,C € CsuchthaC<B<Ado

£ A B y:=dg-dg
if dg # L #dg then { Assign(da.y) (1)

for A,B,C € C such thaC<BandA=F(B) do
e qA B e B < gA 5:=dg/dg
if dz # L #0dg then if dZ < dg then { AssigndA. 5))
elseout:=0
until out= 0 or no new assignment is executed in commaigsind(2)

Clearly, ifout= 0 the input is rejected, otherwise it is accepted. Note that there could still exist pairs
of father-son cycle#, B € C such thatld = L. However, in this case any composition of lengghand
sumkg can be assigned tf since, by the closure hypothesis, there is no labelled compositidh in
connecting an ancestor Afto a descendent d.

for A,Be C suchthalA=F(B) do
if P — | then { 82933;9 a compositiopof lengthka and surkg
B =

Thus, in case of acceptanci,is well defined for every, B € ¢ such tha’A = F (B) and the syntactic
tree of a wordwv € [X] is obtained by applying Proposition 6.

Since the product and the quotient of integer compaositions can be computed in linear time, the whole
algorithm works inO(n) time, wheren = |x|.

Theorem 9 For every independence alphaliet |) and every expressiamc RUEZ), if T (a) is closed
with respect to the dependence relation then the trace langjidge] can be recognized in @) time.

15

If the hierarchical tree is not closed with respect to the dependence relation, the algorithm above
may fail to build a syntactic tree (even if there exists one) because some father-son connection could
remain undefined. This may happen when, for an adjacentYa{) and a cycleéB such thaX <B<,

B is not connected t& throughD and several choices falf, whereA = F(B), are coherent with the
compositions occurring along the path fraito X. A simple choice of one of these is not always correct,
because (without the closure assumption) the resutiingight not be coherent with the initial labelled
compositions occurring in other paths includiBgThe following example describes in detail a situation
of this kind.

Consider the hierarchical tréee(a) defined by the picture of Example 5 and let the dependence
relation be given by the pairfg, d}, {b,c}, {b,f}, {a,g}. ClearlyT(a) is not closed with respect to
such a relation. In particular the paths frénto D and fromA to G are not closed.

Now, assume the projections of the inpudver {a,d} and{b,c} are given by, 4 = dddddadddda
andm, ¢ = ccbccbebcbrespectively. Here, the number of nodes of laheB, C andD are, respectively,
ka = 2, ks = 4, ke =5 andkp = 9, while the initial compositions defined bya,d} and {b,c} are
df = (4,5) anddg = (2,2,1,1). There are two possible choices fift coherent withd5 anddg, i.e.
satisfyingdZ < dj anddg < d; they ared? = (4,2) andd& = (2,4), which produce, by the quotient
operation, the labelled compositiod§ = (2,2) andds = (1,3), respectively.

However, an analogous reasoning based on dependencé pditsand{a, g} may yield a partially
different set of possible values fd§. In fact, assumey, 1 = bf fbfbf fbfandm, g = gggggagggaln
this case we havie: = 6, kg = 8,dE = (2,1,2,1) andd§ = (5,3). The possible values fai are(3,3)
and(5,1), which implies the compositiord§ = (2,2) andd = (3,1), respectively.

Thus, the only value aﬂé that is coherent with both patlds— D andA— G is dd = (2,2). Therefore,
in the general case, for computing a labelled compositidrone should determine the set of admis-
sible values for each including path and compute the intersection of all these sets. However, such a
computation does not seem to be feasible as the number of compositions of given sum is exponential.

6.4 On the closure assumption

To conclude this section we spend some words to discuss the closure assumption for nested repeat-until
programs. We recall that the innermost loop containing instrucids “adjacent” to an outer loop
containing instructiong andb, if the two instructions are dependent. Here the adjacency relation can

be seen as a directed edge from the outer loop to the inner one. Also, an innermost@nd@n outer

loopY are “connected” if there is a path of adjacences fioin X. The closure hypothesis says that, in

any chain of nested loops, such that the outermost and the innermost one are adjacent, each intermediate
loop is connected to the innermost one.

For instance, it is easy to see that the standard procedure for matrix multiplication has three nested
cycles, where the header of each loop increments a control variable and is dependent on the innermost
instruction.

Even if the closure assumption is not satisfied by all repeat-until expressions, however we think
it covers a significant part of these languages, those for which the reconstruction of the syntactic tree
(from the projections of the input string on the dependence pairs) can be done univocally by using the
operations of product and quotient between compositions.

Moreover, the existence of linear time recognition algorithms under this hypothesis supports the con-
jecture that also for more general expressions there exist efficient procedures for the membership prob-
lem, with time complexity independent of the clique size of the independence relation. A first attempt
in this direction is proposed in [6] where some procedures, working in quadratic time, are described

16

for specific examples of repeat-until expressions without closure assumption. That approach however
is not based on a general property relating the repeat-until expression to the dependence relation and
involves operations over integer compositions, other than product and quotient, which do not seem to be
computable in linear time.

7 Conclusion

An important problem in program optimization and in other computer applications is the schedule check-
ing problem. It consists of checking whether a given sequence of operations is a permutation of any
sequence defined by a finite-state machine, obeying a given dependence relation. We have presented
two linear-time algorithms that solve the problem under certain assumptions, which we believe to be not
restrictive for certain realistic cases. This may open the way to the experimentation of our algorithms,
in contrast to previous procedures for the general problem, which have too high time complexity to be
practical.

Analysing general iterative computations, as we did for nested repeat-until cycles, is rather com-
plicated. In our case we have overcome the difficulty by introducing the labelled integer compositions
in this context, and we have shown that they are quite expressive and convenient mathematical struc-
tures. Their use has allowed us to clarify and improve on previous efforts to solve the schedule checking
problem, determining precisely the time complexity of the algorithm in several significant cases. In our
opinion, it should be possible to apply similar methods based on integer compositions to more general
cases, such as programs of loops of twtgle ... do... and others.

References

[1] A. Avellone, M. Goldwurm. Analysis of algorithms for the recognition of rational and context-free
trace languagefRAIRO Theoretical Informatics and Applicatiod®: 141-152, 1998.

[2] J. Berstel, J.-E. Pin. Local languages and the Berry-Sethi algoritheoret. Comput. Scl55:439-
446, 1996.

[3] A. Bertoni, M. Goldwurm, G. Mauri, N. Sabadini. Counting techniques for inclusion, equivalence
and membership problems, Tine book of traces/. Diekert and G. Rozenberg Editors, World Scien-
tific, 131-163, 1995.

[4] A. Bertoni, G. Mauri, N. Sabadini. Unambiguous regular trace languages. Proc. Coll. on Algebra,
Combinatorics and Logic in Computer Science, Colloquia Mathematica Soc. J. Bolyai, 42: 113-123,
North-Holland, 1985.

[5] A. Bertoni, G. Mauri, N. Sabadini. Membership problems for regular and context-free trace lan-
guagesinformation and Computatio@2 (2): 135-150, 1989.

[6] L.Breveglieri, S. Crespi Reghizzi, M. Goldwurm. Integer compositions and syntactic trees of repeat-
until programs. Tech. Rep. n. 323-08, Dip. Scienze dell'Informazione, Universita degli Studi di Mi-
lano. Presented at the Workshop DNTTTO08, Developments and New Tracks in Trace Theory, Cre-
mona, 9-11 October 2008.

[7] L. Breveglieri, S. Crespi Reghizzi, A. Savelli. Efficient word recognition of certain locally defined
trace languages. Proc. 5th Int. Conf. on Words, Montreal (Canada), September 2005.

17

[8] V. Diekert and G. Rozenberg (editordhe book of tracedNorld Scientific, 1995.

[9] J. A. Fisher, P. Faraboschi, C. Youngmbedded computing: a VLIW approach to architecture,
compilers and toolsMorgan-Kaufmann Publishers, 2005.

[10] P. Flajolet. Mathematical methods in the analysis of algorithms and data structufiesnds in
Theoretical Computer Sciendg. Borger Editor, Computer Science Press, 225-304, 1988.

[11] W. LaLonde. Regular right part grammars and their parsgosamunications of the ACRD (10):
731-741,1977.

[12] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI Rep. PB 78,
Aarhus University, Aarhus, 1977.

[13] D. A. Patterson, J. L. Hennessyomputer Organization and Desigklorgan-Kaufmann Publish-
ers, San Francisco, 1998.

[14] W. Rytter. Some properties of trace languagasd. Inform.7:117-127, 1984.
[15] J. Sakarovitch. On regular trace languagéeeoret. Comput. Scb2: 59-75, 1987.

[16] A. Savelli, Two contributions to automata theory on parallelization and data compression, Doctoral
Thesis, Politecnico di Milano, Université de Marne-la-Vallée, June 2007.

18

