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Introduction

Clusters of galaxies are the most massive gravitationally bound systems in the uni-
verse. They are permeated by a hot, X-ray emitting, intra-cluster medium (ICM),
which represents the dominant baryonic component. Galaxies contribute to the
gravitating mass of the cluster only for few percent and the ICM for roughly 10%;
the remaining is dark matter. The key ICM observable quantities are its density,
temperature, and chemical composition (in particular, the so-called metallicity).
Measuring the gas density is relatively simple, whereas measuring the temperature
and the metallicity of the ICM requires accumulating a spectrum and fitting it with
a plasma model. The aim of my thesis is the characterization of the radial prop-
erties (especially temperature and metallicity) of the ICM, for a large sample of
clusters of galaxies observed with XMM-Newton . Particular attention was paid to
investigate and characterize the systematic effects that may affect measurements.

The outline of the thesis is the following. In Chapter 1, I will give a non-
exhaustive overview of the properties of galaxy clusters and introduce all concepts
used to obtain my results. Although clusters emit broadband spectrum electro-
magnetic radiation from radio to gamma rays, in this thesis I will focus almost
exclusively on the X-ray emission from the intra-cluster medium. In Chapter 2 I
will give a brief overview of the main characteristics of the XMM-Newton satellite
and its on-board instrumentation (in particular EPIC). In Chapter 3 I will char-
acterize the EPIC background properties, obtained from my detailed analysis of
several “blank field” and “filter closed” observations. In Chapter 4 my data analy-
sis procedure, from the spectra preparation to the spectral analysis, will be outlined.
In Chapter 5 I will describe simulations employed to examine how best to analyze
spectra with poor statistical quality and find an unbiased estimator of the tempera-
ture; this chapter is based on Leccardi & Molendi (2007). In Chapter 6 I will report
the sample properties and present the radial profiles for temperature and metallic-
ity. In Chapter 7 I will describe the detailed analysis of a number of systematic
effects. In Chapter 8 I will report the characterization of the temperature profile de-
cline and the dependence of temperature and metallicity profile shape from physical
properties (e.g. the redshift); I will also compare profiles with hydrodynamic simu-
lations and previous observational works. In Chapter 9 I will summarize the results
of this work and outline possible future perspectives. Finally, in Chapter 10 I will
report the preliminary results obtained by investigating thermodynamic and chem-
ical properties of cluster cores for an enlarged sample from z = 0.02 to z = 0.25;
these results will be discussed in a forthcoming paper (Leccardi et al., in prep.).
The bulk of my thesis (i.e. Chapters 4, 6, 7, 8, and part of Chapter 3) is based on
two published papers, namely Leccardi & Molendi (2008a) and Leccardi & Molendi
(2008b).
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Chapter 1

A concise overview of galaxy
clusters

1.1 General properties of clusters

1.1.1 Optical band

Galaxy clusters were first discovered in the optical as exceptional concentrations of
nebulae by Charles Messier in 1784 and F. Wilhelm Herschel in 1785; however, only
at the beginning of the XX century did it become clear that nebulae are extragalactic
objects and the concentrations of nebulae were called clusters of galaxies. In the
optical band, clusters of galaxies appear as high overdensity systems of galaxies.

By traditional definition (Abell 1958), clusters contain at least 50 galaxies
brighter than m3 + 2 (where m3 is the magnitude of the third brightest cluster
member), within a radius of R ≈ 1.5 h−1 Mpc from the cluster center. This galaxy
count is usually defined as the richness of the cluster. A number of various cluster
properties (e.g. concentration of galaxies, symmetry, galactic content) have been
used to classify them from the morphological point of view. Most classifications are
highly correlated, so that clusters can be roughly represented as a one-dimensional
sequence, running from regular to irregular systems (Abell 1965). Regular clusters
tend to be compact, rich, spiral poor, and to have a central dominant galaxy. Such
a morphological sequence suggests that regular clusters may be dynamically more
relaxed.

The redshift of a cluster is determined from the mean radial velocity (along the
line of sight) of its galaxies. The radial velocities, vr, of the individual galaxies
are distributed around this mean and, to first approximation, one can describe the
velocity distribution through the dispersion,

σr = 〈(vr − 〈vr〉)2〉1/2. (1.1)

The velocity dispersion, thus calculated along the line of sight, is usually assumed
as representative for other directions, through the “pressure isotropy” hypothesis.

The most regular clusters show a smooth spatial distribution of galaxies with
a more concentrated core (see Fig. 1.1). A number of models have been proposed
to fit this distribution. The simplest is the isothermal sphere, which assumes a
gaussian and isotropic radial velocity distribution, independent of the position. The
isothermal sphere describes fairly well cluster central regions, but fails at large radii
because the total number of galaxies and the total mass would diverge linearly with
the radius. King (1962) showed that the three-dimensional galaxy distribution is
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Figure 1.1: Projected galaxy number density (dots) observed in 12 regular clusters
Bahcall (1975). The observed number densities are normalized to the central surface
number density and given as a function of the projected radius, b, divided by the
core radius, rc.

better approximated by the analytic function,

n(r) = n0

[
1 + (r/rc)

2
]−3/2

, (1.2)

where n0 is the central density of galaxies and the core radius, rc, is the size of
the central core. Also for the King model, the cluster mass and the galaxy number
diverge, although more slowly, at large radii; therefore, such density distribution
must be truncated at some finite radius. Astronomers usually measure cluster
properties in a limited region of radius, r∆, characterized by an over-density, ∆,
with respect to the critical density of the universe; ∆ usually spans the range
between 100 and 2500. The greater the over-density, the smaller the region. The
virial radius in the currently adopted ΛCDM cosmology is characterized by ∆ ≈ 100
(Eke et al. 1998).

Regular clusters should have had the time to relax dynamically. Since this
process involves the spatial motion of the galaxies, a lower limit to the relaxation
time is the galaxy crossing time,

tcr =
R

σr
' 1

(
R

1 Mpc

) ( σr

103 km s−1

)−1

Gyr. (1.3)

In a Hubble time, clusters that did not suffer major mergers should have had enough
time to relax dynamically in their inner regions (r . 1 h−1 Mpc ), while the cluster
outskirts are expected to be less regular, as is indeed observed.

The total mass of a cluster can be estimated by measuring the galaxy velocity
dispersion, σr (1.1), and assuming that clusters are bound, self-gravitating systems.
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Under these conditions one can apply the virial theorem,

2K + W = 0, (1.4)

where K and W are the sum over all galaxies of the kinetic energy of the individual
galaxies and of the gravitational potential produced by other cluster galaxies:

K =
1
2

∑

i

miv
2
i , (1.5)

W = −1
2

∑

i 6=j

Gmimj

rij
. (1.6)

From (1.4) one can derive the cluster total mass,

Mtot =
RG〈v2〉

G
, (1.7)

where the mass-weighted velocity dispersion is

〈v2〉 =
∑

i miv
2
i

MTOT
(1.8)

and the gravitational radius is

RG = 2 M2
TOT


∑

i 6=j

mimj

rij



−1

. (1.9)

The quantities 〈v2〉 and RG can be measured from the radial velocity distribution
and the projected spatial distribution of a fair sample of galaxies. From (1.7) one
can write:

Mtot = 7× 1014M¯
( σr

103 km s−1

)2
(

RG

1 Mpc

)
. (1.10)

Since σr ≈ 700-800 km s−1 and RG ≈ 1-3 Mpc, the total mass is on the order of
1014-1015 M¯, which is 10-100 times greater than the mass of all the galaxies of a
cluster. With a similar calculation using the galaxies in the cluster of Coma, Zwicky
(1933) pointed out the missing mass problem and suggested the existence of dark
matter, which provides enough mass to hold the cluster together. Such a problem
was only partially overcome with the discovery of the X-ray emitting intra-cluster
medium (see Sect. 1.3), which contains most of the baryons in a cluster.

1.1.2 X-ray band

In 1966, X-ray emission was detected from the region around the galaxy M87, at
the center of the Virgo cluster (Byram et al. 1966), followed five years later by
the detection in the direction of Coma (Fritz et al. 1971; Gursky et al. 1971a) and
Perseus clusters (Meekins et al. 1971; Gursky et al. 1971b). Since these are the
richest clusters known, Cavaliere et al. (1971) suggested that clusters of galaxies
could be generally associated with X-ray emission; however, observational evidence
was poor, because these early detections were all made with balloon- or rocket-borne
detectors.

A great advance in the study of X-ray clusters (and in X-ray astronomy in
general) was made with the launch of the first X-ray satellite, Uhuru, which gave us
the first complete survey of the sky in X-rays (Giacconi et al. 1972). Observations
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by Uhuru suggested that many clusters of galaxies are bright X-ray sources with
luminosity on the order of 1043-1045 erg s−1.

The emission from these sources was extended, rather than point-like, and its
size was comparable to that of the distribution of galaxies (Kellogg et al. 1972;
Forman et al. 1972); moreover, there was no evidence for temporal variations and
low-energy photo-absorption. The above mentioned characteristics indicated that
the emission was truly diffuse, and not the result of the superposition of many
compact sources.

Observations of the X-ray spectra of galaxy clusters have played a critical role in
establishing the emission mechanisms. The two most popular mechanisms were the
thermal bremsstrahlung from a hot diffuse intra-cluster gas (Felten et al. 1966) and
the inverse Compton scattering from a population of relativistic electrons (Brecher
& Burbidge 1972; Bridle & Feldman 1972; Harris & Romanishin 1974; Rephaeli
1977). To distinguish between the two expected spectral shapes (i.e. exponential
cut-off and power law) high quality data were required. Actually, what established
the thermal nature of the primary emission mechanism was the detection of line
emission from highly ionized gas in the X-ray spectra of Perseus (Mitchell et al.
1976), Coma and Virgo (Serlemitsos et al. 1977).

It is now firmly established that the largest amount of luminous matter which
we observe in clusters is the hot diffuse plasma which fills the deep potential well
of clusters (Sarazin 1988).

1.2 The physics of the ICM

The intra-cluster medium (ICM) has temperature, T , and electron number density,
ne, on the order of 107-108 K and 10−2-10−4 cm−3, respectively. It contains not
only primordial elements from the Big-Bang nucleosynthesis, but also a fraction of
heavy elements, which must be produced by stars. At temperatures on the order
of several million K, the ICM is almost fully ionized: Hydrogen and Helium are
completely ionized, while heavier elements retain only a few of their electrons in
their inner shells.

By using the typical densities of the ICM and the cross section for Thompson
scattering (σT = 6.65 × 10−25 cm−2), which is the main source of opacity under
these conditions, one can calculate the optical depth, τ ' ne σT R, which is much
smaller than unity for typical cluster sizes, R ≈ 1 Mpc. Therefore, clusters are
transparent to X-rays (i.e. optically thin) and even photons from the core region can
be collected; however, as a consequence, the observed spectrum is the superposition
of spectra generated at different depths (i.e. with different temperature and density).
To derive the three-dimensional cluster properties, deprojection techniques have
been developed; however, they usually require strong geometrical assumptions (e.g.
spherical symmetry) which are not always fulfilled in galaxy clusters.

1.2.1 Emission mechanisms

Ionized plasma produces large amounts of X-ray photons, which allow us to observe
and measure several physical properties of the emitting intra-cluster medium. The
most important emission processes are bremsstrahlung and discrete line emission
related to K- and L-shell transitions.

Thermal bremsstrahlung Bremsstrahlung radiation is due to the acceleration
of free electrons in the Coulomb field of an ion. If the electrons have a thermal distri-
bution with temperature T , and ions have charge Z the bremsstrahlung emissivity
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at frequency ν is:

εb(ν) =
25πe6

3mec3

(
2π

3mek

)1/2

Z2neni g(Z, T, ν)T−1/2 exp
(
− hν

kT

)
, (1.11)

where e and me are the electron charge and mass, k and h are the Boltzmann and
Planck constants, ne and ni are the electron and ion density (Rybicki & Lightman
1979). The Gaunt factor g(Z, T, ν) corrects for quantum mechanical effects and
is a slowly varying function of temperature and frequency (Rybicki & Lightman
1979). The spectrum is rather flat at low frequency and has an exponential cutoff
at νcut ' kT/h, whose position provides an estimate of the electron temperature, T .
Typical values for clusters are between 2 and 15 keV1. By integrating the emissivity
(1.11) over all frequencies, over the solid angle of the source, and along the line of
sight, one obtains the observed flux:

F =
∫

dν

∫
dΩ

∫
dl εb(ν) ∝ EI

D2
A

T 1/2, (1.12)

where DA is the angular distance to the source and EI is the emission integral

EI =
∫

dV neni, (1.13)

which can be measured directly as the normalization of the observed spectrum.
From the redshift of the source and a cosmological model, it is possible to determine
DA and, with some assumptions on symmetry and geometry, the volume V of the
source. By making use of (1.13), one can estimate the average electron density, ne,
whose typical values are 10−2-10−4 cm−3, as mentioned before.

Discrete line emission Discrete emission results from atomic processes such
as collisional excitation, radiative recombination, dielectric recombination and reso-
nant excitation. In the intra-cluster medium, ionization and emission result primar-
ily from collisions of ions with electrons (ion-ion collisions can be ignored). More-
over, the time scales for ionization and recombination are usually much smaller than
the age of the cluster (≈ the Hubble time) and any other relevant hydrodynamic
time scale, thus the plasma is assumed to be in ionization equilibrium. All processes
mentioned above have been incorporated in public available codes2 (e.g. MEKAL
in XSPEC), which are used to study collisionally ionized spectra.

For hotter clusters (kT & 3 keV), the most prominent feature in the spectrum
is a blend of lines around 7 keV (see Fig. 1.2, bottom panel), which is made up
of the Kα fluorescent lines of the hydrogen-like Iron (Fe XXVI) at 6.9 keV and of
the helium-like Iron (Fe XXV) at 6.7 keV. In cooler clusters, the Fe-Kα blend is
less evident and the most prominent feature is the Fe-L complex, located around
1 keV (see Fig. 1.2, top panel), which is related to the L-shell transition of Iron in
different ionization states. Weaker lines associated with other elements (e.g. S, Si,
Mg, Ne, O, N, C) have also been detected. However, with the current observations,
it is very difficult to measure elements other than Iron outside the core, where the
temperature is relatively high and data are characterized by poor statistical quality.

It is remarkable that all the abundant elements, which were synthesized in stars
after the primordial nucleosynthesis, have the energy of their K- and L-shell tran-
sitions in the spectral band accessible to modern X-ray telescopes. Most of the
observed emission lines in the ICM arise from the well understood hydrogen- and

1Hereafter I will express the temperature in energy units (keV), setting to unity the Boltzmann
constant.

2http://heasarc.nasa.gov/docs/xanadu/xspec/xspec11/index.html
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Figure 1.2: Simulated spectra produced with a MEKAL model in XSPEC. For
the top panel the plasma temperature is 2 keV, for the bottom panel 6 keV. The
metallicity is 0.3 solar (typical value for the ICM) and the normalization 10−4

in XSPEC units, for both spectra. Note the Fe-L complex around 1 keV in the
spectrum of the cooler gas and the Fe-Kα complex at 6.7-6.9 keV in the spectrum
of the hotter gas.
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helium-like ions, and their equivalent widths can, under the reasonable assumption
of collisional equilibrium, be directly converted into the elemental abundance of the
corresponding element. The equivalent width, EW , is measured from the spectrum:

EW =
∫

∆ν

Iline(ν)

Ic(ν)
, (1.14)

where Iline(ν) and Ic(ν) are the intensity of the line and of the continuum emission
at a frequency ν. Since the bremsstrahlung emission (1.11) is mainly due to the
contribution of hydrogen ions, Ic(ν) ∝ nenH , while Iline(ν) ∝ nenXi , thus the EW
is proportional to the abundance of the Xi element (nXi/nH). The typical mean
abundance of the Iron derived in galaxy clusters is nFe/nH ≈ 2 · 10−5, about one-
third of the solar value. I recall that the presence of heavy elements in the ICM
proves that the intergalactic gas is not of primordial origin but must have been
processed in stars. This requires mechanisms, which are not clear yet, to transport
the metals from galaxies to the ICM.

1.2.2 Heating and cooling

As discussed in Sect. 1.2.1, the primary cooling process for the intra-cluster plasma
is the emission of radiation by free-free (i.e. thermal bremsstrahlung) and free-bound
transitions. The cooling time scale can be calculated as the ratio of the internal
energy density to the X-ray emissivity (Eq. 1.11 for all the ions i):

tcool ' neT

ε
= 9× 1010

( ne

10−3 cm−3

)−1
(

T

10 keV

)1/2

yr. (1.15)

This time scale is usually longer than the Hubble time, suggesting that radiative
cooling cannot play a great role in the global physics of the ICM. However, in the
center of some clusters, where the density is high, tcool may be shorter than the
Hubble time and cooling should be taken into account (Sect. 1.4.3).

Although the ICM is very hot, no major on-going heating is necessary because
the cooling process is quite slow. The thermal energy was accumulated during the
process of cluster formation and accretion. Let us consider a sub-cluster approaching
and falling into the main cluster potential well, its potential energy is converted to
kinetic energy, which is in turn converted to thermal energy, when the infalling gas
is shocked by the collisions with the hot ICM. Infall and compression can produce
temperatures such that

3
2

kT

µmp
≈ −Φ, (1.16)

where Φ is the gravitational potential of the cluster. The infall velocity of the
colliding subclusters is expected to be comparable with the escape velocity (Sarazin
2002), so that the motions are expected to be moderately supersonic and to drive
shock waves into the ICM. Let vs be the velocity of the shock wave relative to the
pre-shock, undisturbed intra-cluster gas. The sound speed is

cs =
(

5
3

P

ρ

)1/2

∼ 1000 km s−1, (1.17)

where P is the pressure of the gas and ρ its mass density. The Mach number of the
shock,

M ≡ vs

cs
, (1.18)

is expected to be only slightly greater than unity. Numerical simulations of clus-
ter mergers (e.g. Gabici & Blasi 2004) have confirmed that almost all shocks are
expected to be found in galaxy clusters with M < 3.
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1.2.3 Transport processes

Mean free paths The mean free paths of electrons and ions in a plasma with-
out magnetic field are determined by Coulomb collisions and can be quantified as
(Spitzer 1956):

λe =
33/2(kT )2

4π1/2nee4 lnΛ
' 30

(
T

10 keV

)2 ( ne

10−3 cm−3

)−1

kpc, (1.19)

where the Coulomb logarithm ln Λ ≈ 38. The typical mean free path of electrons
(protons have nearly the same value) is some tens of kpc, much smaller than the
cluster size, indicating that the ICM is collisional and can be treated as a fluid
satisfying hydrodynamic equations. It is worth noting, however, that the mean free
path is comparable to the size of a galaxy. Therefore, in the interactions between
the ICM and the individual galaxies, the plasma may be nearly collisionless.

Effects of the magnetic field It is now believed that the ICM is a weakly
magnetized plasma. There are strong hints from X-rays and radio (measurements
of synchrotron emission and Faraday rotation) that a large scale magnetic field
exists, and the upper-limits on its strength are on the order of 10 µG. Very little is
known about the origin and the structure of such magnetic fields; however, simple
predictions can be made on the possible effects of a magnetic field in the ICM.
Charged particles rotate around magnetic field lines following spiral trajectories
with a radius (the gyroradius) of

rg =
mv⊥
Ze B

, (1.20)

where m is the particle mass, v⊥ is the component of its velocity perpendicular to
the magnetic field, Ze is the particle charge, and B is the magnetic field strength.
If v⊥ = (2kT/m)1/2, which is the RMS value in a thermal plasma, then

rg =
3× 108 cm

Z

(
T

108 K

)1/2 (
m

me

)1/2 (
B

1 µG

)−1

(1.21)

which is much smaller than any length scale of interest in clusters, and is also much
smaller than λe (1.19). Then, the effective mean free path for diffusion perpendicular
to the magnetic field is only on the order of r2

g/λe (Spitzer 1956). Due to their larger
gyroradii, the ions are more effective in transport processes perpendicular to the
magnetic field; however, in practice, the gyroradii are always so small that diffusion
perpendicular to the magnetic field in the ICM can be ignored.

Equilibration time scales The electron-electron collision time associated with
λe (1.19) is:

te−e = 3× 105

(
T

10 keV

)3/2 ( ne

10−3 cm−3

)−1

yr. (1.22)

After few te−e an electron population is expected to relax to a Maxwell-Boltzmann
distribution. The corresponding time scale for protons is

tp−p ' (mp/me)1/2 te−e ' 43 te−e (1.23)

and that necessary to reach equipartition (equal temperature) among both popula-
tions is

te−p ' (mp/me) te−e ' 1870 te−e. (1.24)

Since all these time scales are shorter than the typical cluster age (≈ Gyr), the
energy distribution for ions and electrons should, to first order, be well described
by a Maxwellian with a single temperature T .
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Conduction In a plasma with a gradient in the electron temperature, heat is
conducted down the temperature gradient. If the scale length of the temperature
gradient is much longer than the mean free path of electrons, λe (1.19), as usual in
galaxy clusters, the heat flux is given by

Q = −κ∇T, (1.25)

where the thermal conductivity (Spitzer 1956) is:

κ = 1.31 ne λe k

(
k T

me

)1/2

≈ 3× 1013

(
T

10 keV

)5/2

erg s−1 cm−1 K−1. (1.26)

Thermal conduction is mainly due to electrons, because of the inverse dependence
on the particle mass, and depends very strongly on the temperature. Within the
intra-cluster medium, thermal conduction transfers heat from hot to cold regions
in order to make the temperature constant, in absence of any other competing
effect. There are examples (e.g. cold fronts, see Markevitch & Vikhlinin 2007, for a
review) for which the conduction is strongly inhibited; one of the possible reasons is
the presence of magnetic fields, which could play a role as discussed in Sect. 1.2.3.

Convection One possible source of mixing motions in the gas is convection. If
the intra-cluster gas were hydrostatic but had a steep temperature gradient,

−d ln T

dr
> −2

3
d ln np

dr
, (1.27)

it would be unstable to convective mixing; (1.27) can also be expressed in terms of
the entropy gradient,

dS

dr
< 0. (1.28)

If the entropy profile of the gas were declining, convective motions would start and
mixing would occur within several sound crossing times in the cluster. This is a
rather short time (1.3) and actually observations tell us that ICM entropy profiles
have a positive gradient (e.g. Voit 2005; Pratt et al. 2006).

1.3 The spatial distribution of X-ray emission

In Sect. 1.2.3, it has been shown that the elastic collision times for ions and electrons
(1.22) in the ICM are much shorter than any dynamical process, therefore the gas
can be treated as a fluid. The time required for a sound wave in the ICM to cross
a cluster is given by

ts = 6× 108

(
D

1 Mpc

)(
T

10 keV

)−1/2

yr, (1.29)

where T is the temperature of the ICM and D the cluster size. The sound wave
crossing time is on the same order of the galaxy crossing time (1.3) because the
galaxies and the hot gas have roughly the same specific kinetic energy. Since this
time is short with respect to the age of clusters and the cooling is not effective (see
Eq. 1.15), the gas is assumed to be hydrostatic. The pressure distribution of the
gas, P , is thus determined by the gravitational potential, Φ, through the equation
of hydrostatic equilibrium:

∇P = −ρg∇Φ, (1.30)
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where P = ρT/µmp, ρ is the gas mass density, and µmp the mean density per
particle. By assuming, in addition, that the cluster is spherically symmetric, (1.30)
reduces to:

1
ρ

dP

dr
= −dΦ

dr
= −GM(r)

r2
, (1.31)

where r is the radial coordinate (i.e. the distance from the cluster center) and M(r)
is the mass enclosed within a sphere of radius r.

The hydrostatic equilibrium is a reasonable assumption as long as the cluster is
stationary (the gravitational potential does not change on a sound crossing time, i.e
no major mergers in act), forces other than gas pressure and gravity (e.g. magnetic
fields) are not important, and any motion of the gas is subsonic. Under these
circumstances, by making use of (1.31) one can derive the total mass of the cluster,
M(r), from temperature and density profiles of the ICM (Sarazin 1988):

M(r) = −T (r) r

Gµmp

(
d ln ρ

d ln r
+

d ln T

d ln r

)
. (1.32)

It is not surprising that the temperature is a good tracer of the total mass, because
it is strictly related to the depth of the gravitational potential well (1.16).

The cluster masses obtained through measurements based on X-ray and optical
(e.g. using gravitational lensing) observations show a good agreement (e.g. Zhang
et al. 2008). Despite the discovery of the ICM, which is responsible for most of the
cluster baryons, the missing mass problem is not yet overcome, because the total
mass is still larger than the mass of the ICM and all cluster galaxies. Observations of
nearby and intermediate redshift, rich clusters show that the average mass fraction
in stars (in galaxies and intra-cluster light combined) is roughly one-sixth of the X-
ray gas mass fraction measured within the virial radius (Lin & Mohr 2004). In the
central regions the contribution of galaxies to the visible mass is more significant,
but the contribution to the total mass is at most of 3% at every radius. The X-ray
gas mass fraction depends on the radius and spans the range between 5% and 15%
(see e.g. Allen et al. 2008, and references therein). Summarizing, galaxies and ICM
are responsible for ≈ 15% of the total mass for rich clusters; the remaining ≈ 85%
appears to be dark matter (DM). The nature of DM is still under discussion.

The most recent and strongest evidence in favor of the existence of DM comes
from the analysis of the “bullet” cluster, i.e. 1E 0657-56 (Markevitch 2006; Clowe
et al. 2006). This is a spectacular example of an ongoing major merger of two
massive galaxy clusters. The system is observed shortly after the first core-passage
of the infalling sub-cluster, which moves approximately in the plane of the sky and
is preceded by a prominent bow shock with Mach number ≈ 3 (1.18). By combining
measurements from optical and X-ray band the authors found a displacement of the
collisional ICM with respect to the non-collisional galaxies and the cluster potential
well obtained with gravitational lensing (see Fig. 1.3). In theories without dark
matter, such as Modified Newtonian Dynamics (MOND), the lensing would be
expected to follow the baryonic matter, i.e. the X-ray plasma. However, the lensing
is strongest in two regions separated from the visible matter, providing support for
the idea that most of the mass in the cluster is in the form of collisionless DM. It is
remarkable that both the first and the strongest indications in favor of the existence
of DM are related to galaxy clusters.

Isothermal gas distributions: the β-model The simplest distribution of gas
temperature would be an isothermal distribution. Let us consider both gas and
galaxies in the gravitational potential3 of the cluster, Φ, and assume spherical sym-

3The source of the potential (e.g. dark matter) is not important.
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Figure 1.3: The “bullet” cluster 1E 0657-56. Superposed on the HST image, the
density of the ICM from Chandra measurements is reported in red and the strength
of the potential well from lensing measurements in blue.

metry. One can write the Jeans equations for both gas and galaxies

1
ρgas

dPgas

dr
= −dΦ

dr
, (1.33)

1
ρgal

dPgal

dr
= −dΦ

dr
. (1.34)

Since the right sides of (1.33) and (1.34) are equal, they cancel out together with
the potential dependence. By giving an equation of state for gas and galaxies,
Pgas = ρgas σ2

gas and Pgal = ρgal σ
2
gal, where σgas = (kT/µmp)

1/2 and σgal = σr

both independent of r, and by defining the parameter β = σ2
gal/σ2

gas, one obtains
the so-called β-model (Cavaliere & Fusco-Femiano 1978):

ρgas ∝ ρβ
gal = ρ0

[
1 +

(
r

rc

)2
]−3β/2

, (1.35)

where the galaxy density in (1.2) is used.
This self-consistent isothermal model assumes that the gas and the galaxy dis-

tributions are both static and isothermal. Moreover, it assumes that the galaxy
mass density ρgal is proportional to the galaxy density n(r) in (1.2). Even if none
of these assumptions is fully justified and the gas is not isothermal, the β-model has
the advantage that the resulting gas distribution is analytic and that nearly all the
integrals needed to compare the model to the observations are also analytic. For
this reason, the β-model has been largely used to fit gas density profiles.

Adiabatic and polytropic gas distributions The ICM will be isothermal if
thermal conduction is sufficiently rapid (see Sect. 1.2.3). On the other hand, if
thermal conduction is slow, but the ICM is well-mixed, then the entropy per atom
in the gas will be constant (see Sect. 1.2.3). In an adiabatic gas, pressure and
density are simply related,

P ∝ ργ , (1.36)
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where γ is the usual ratio of specific heats and equals to 5/3 for a monatomic
ideal gas. Although the value of 5/3 would be expected to apply if the ICM were
strictly adiabatic, (1.36) is often used to parameterize the thermal distribution of
plasma, with γ taken to be a fitting parameter. For example, γ = 1 implies that the
gas distribution is isothermal. ICM models with an arbitrary value of γ are often
referred to as “polytropic” models, and γ is called the polytropic index. Models
with the polytropic index γ > 5/3 are convectively unstable (1.27); thus, hydrostatic
polytropic models must have 1 ≤ γ ≤ 5/3.

Hydrodynamical simulations Outside the central regions, where a not-well
defined heating source should balance the radiative losses, the physics of the X-ray
emitting ICM is expected to be mainly driven by adiabatic compression and shocks,
taking place during the collapse of the cosmic baryons into accreting dark matter
halos (see Sect. 1.2.2). Such processes can be properly treated in hydrodynamical
simulations, using Tree+SPH codes like e.g. GADGET-2 (Springel 2005), and allow
us to investigate cluster outskirts.

Roncarelli et al. (2006) used a set of hydrodynamical simulations adopting four
different physical prescriptions for nine galaxy clusters, and found that the volume
density profile for the gas steepens in the outskirts changing the slope of the power
law from ≈ 2.5 to ≈ 3.4 at roughly 1.2 R200. Moreover, they found that the behavior
of the profiles in the external regions of clusters does not depend significantly on the
presence or absence of cooling and supernova feedback, confirming the expectation
that the mean behavior of the ICM in the cluster outskirts is mainly due to the
gravitational force.

1.4 Spatially resolved spectroscopy

Up to 1990, the available instruments (i.e. HEAO 1, Einstein , EXOSAT and Ginga )
could provide only global measurements of cluster temperature and metallicity; for
simplicity galaxy clusters were assumed to be roughly isothermal. With the ad-
vent of ROSAT , ASCA , and BeppoSAX , and more recently of Chandra and XMM-
Newton , it became possible to perform spatially resolved spectroscopy and obtain
radial profiles and two-dimensional maps of both temperature and metallicity. This
allowed us to discover and observe the effects of important phenomena such as cool-
ing flows, merger shocks, cold fronts, etc. (see Peterson & Fabian 2006; Markevitch
& Vikhlinin 2007, for extensive reviews), with a great progress in the study of the
physical processes in the ICM. Moreover, by assuming hydrostatic equilibrium, de-
projected radial temperature profiles allowed an X-ray measurement of the cluster
total mass (see Sect. 1.3). The measure of the total mass allows us not only to have
an independent confirmation of the missing mass (i.e. the dark matter), but also
to use clusters as cosmological tools, because the mass is the main parameter on
which all theoretical models of structure formation are based.

1.4.1 The temperature structure

Temperature profiles are usually obtained by extracting spectra in concentric annuli
centered on the X-ray emission peak (see Chapter 4); then, they are rescaled by
the mean cluster temperature and a scale length (the virial radius, R180, R200,
etc.; see Sect. 6.2). In Fig. 1.4 the mean temperature profiles for two samples of
clusters observed with BeppoSAX and XMM-Newton are reported. The first sample
is further divided into two groups: those showing a temperature decline towards the
center, i.e. the cool core clusters, and those showing a roughly isothermal core, i.e.
the non-cool core clusters (see Sect. 1.4.3 for further details). A temperature drop
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Figure 1.4: Mean temperature profiles from XMM-Newton (black square) and Bep-
poSAX (circles) data. The BeppoSAX sample is divided in cool core (red filled
circles) and non-cool core (blue empty circles) clusters.

in the core is expected when the cluster is not disturbed by major mergers and has
the time to relax.

Beyond ≈ 0.2 R180 all profiles show a decline. The cluster outer regions are rich
in information and interesting to study, because clusters are still forming there by
accretion (e.g. Tozzi et al. 2000; Borgani et al. 2004). Moreover, far from the core it
is easier to compare simulations with observations, because non-gravitational effects
(often called “feedback”) are less important (e.g. Borgani et al. 2004; McNamara
et al. 2005; Roncarelli et al. 2006), so that the cluster radial profiles can be used
to test the actual theories of the structure formation. Unfortunately, while cluster
surface-brightness rapidly declines with radius (1.35), background (of instrumental,
solar, local, and cosmic origin) is roughly constant over the detector (see Chapter 3).
For this reason, spectra accumulated in the outer regions are characterized by poor
statistics and high background, especially at high energies, where the instrumental
background dominates other components (see Fig. 4.1). Such conditions make tem-
perature measurements at large distances from the center a technically challenging
task, requiring an adequate treatment of both statistical and systematic errors (see
Chapter 5).

Given the technical difficulties, early measurements of cluster temperature pro-
files have been controversial. At the end of the ASCA and BeppoSAX era, the shape
of the profiles at large radii was still the subject of debate (Markevitch et al. 1998;
Irwin et al. 1999; White 2000; Irwin & Bregman 2000; Finoguenov et al. 2001; De
Grandi & Molendi 2002).

Markevitch et al. (1998) analyzed azimuthally averaged radial temperature pro-
files for 30 clusters observed with ASCA , finding that nearly all clusters show a
significant temperature decline at large radii (see Fig. 1.5, left panel). By fitting
the composite temperature profile for symmetric clusters with a polytropic relation
up to roughly half of the virial radius, the authors found that the temperature
decline corresponded to a polytropic index (see Sect. 1.3) of 1.24 on average.

However, doubts on the universality and the steepness of this profile have been
raised by subsequent studies. Irwin et al. (1999) compared results by Markevitch
et al. (1998) with those by other authors (see references in Irwin et al. 1999), and
found isothermal temperature profiles, even for those clusters where Markevitch
et al. found a decline. After the analysis of a sample of 106 clusters observed
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Figure 1.5: Left panel: radial temperature profiles for 30 clusters observed with
ASCA (Markevitch et al. 1998). Right panel: radial temperature profiles for 11
nearby clusters observed with BeppoSAX (Irwin & Bregman 2000).

with ASCA , White (2000) concluded that 90% of the temperature profiles were
consistent with being flat; however, some of the differences between White (2000)
and other works can be attributed to White’s use of a PSF model that overestimated
scattering at low energies. Moreover, White typically did not extend measurements
to large radii because of the large uncertainty inherent in his image deconvolution
method; in the overlapping radial range most of his temperature profiles are in fact
consistent with Markevitch et al. (1998). For a sample of cool clusters (i.e. kT &
4 keV) observed with ASCA however, Finoguenov et al. (2001) derived temperature
profiles similar to those obtained by Markevitch et al. (1998), although the radial
range explored was smaller.

Although ASCA has been the first X-ray instrument able to perform spatially
resolved spectroscopy in hot clusters, given its adequate energy range (1–10 keV), its
large and strongly energy-dependent point-spread function (PSF) required compli-
cated correction procedures for the spectral analysis of extended sources. Different
works on temperature measurements with ASCA have applied different methods to
correct for the PSF effects. In this light BeppoSAX was a more suitable instrument
to investigate temperature structures in galaxy clusters and supplied an indepen-
dent dataset with respect to ASCA . The Medium-Energy Concentrator Spectrome-
ter (MECS) on board BeppoSAX works in a similar energy range of ASCA , but has
a sharper PSF (HPR ≈ 1′), which is radially symmetric and almost energy inde-
pendent. Irwin & Bregman (2000), who analyzed a sample of 11 clusters observed
with BeppoSAX , placed further arguments supporting an isothermal gas. They
claimed that the temperature profiles were generally flat or even increase slightly
out to ≈ 30% of the virial radius (see Fig. 1.5, right panel); however, De Grandi
& Molendi (2002) pointed out a technical error in their data analysis. Instead, De
Grandi & Molendi (2002) analyzed 21 nearby clusters and found declining temper-
ature profiles outside the core (see Fig. 1.6), in good agreement with results by
Markevitch et al. (1998).

Recent observations with current telescopes (i.e. XMM-Newton and Chandra)
have clearly shown that cluster temperature profiles decline beyond 15-20% of the
virial radius (Piffaretti et al. 2005; Vikhlinin et al. 2005; Pratt et al. 2007). I report,
as an example, the temperature profiles obtained by Vikhlinin et al. (2005) for 13
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Figure 1.6: Radial temperature profiles for 21 clusters observed with BeppoSAX (De
Grandi & Molendi 2002). Top panel: profiles for cool core clusters; bottom panel:
profiles for non-cool core clusters.
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Figure 1.7: Left panel: radial temperature profiles for 13 nearby clusters observed
with Chandra (Vikhlinin et al. 2005). Right panel: radial temperature profiles for
15 nearby clusters observed with XMM-Newton (Pratt et al. 2007).

nearby clusters observed with Chandra , and those obtained by Pratt et al. (2007) for
a sample of 15 nearby clusters observed with XMM-Newton (see Fig. 1.7). However,
most of these measurements might still be unreliable at very large radii (larger than
one-half of the virial radius), because they are probably affected by a number of
systematics related to the analysis technique and the background treatment.

The main purpose of my thesis is not only to measure the mean temperature
profile for a large sample of clusters, exploiting at best the instrumentation on-
board XMM-Newton , but also to investigate with particular attention where the
systematic errors come from and how large they are, by making use of extensive
montecarlo simulations.

With the advent of Chandra and XMM-Newton , also detailed two-dimensional
temperature maps of galaxy clusters have been produced (e.g. Finoguenov et al.
2005; Fabian et al. 2006; Rossetti et al. 2007), showing complex structures (e.g.
spiral features) in the ICM. Great efforts have been devoted to compare observed
2D temperature maps with those produced from hydrodynamic simulations (e.g.
Tittley & Henriksen 2005; Ascasibar & Markevitch 2006).

1.4.2 The metallicity structure

The discovery of the Fe-K line emission in the spectrum of the Perseus cluster
by the Ariel V satellite (Mitchell et al. 1976) and in Coma and Virgo by OSO-8
(Serlemitsos et al. 1977) confirmed that the X-ray emission of galaxy clusters is
predominantly thermal radiation from hot intra-cluster plasma rather than inverse
Compton radiation (see Sect. 1.1.2). These observations also showed that the ICM
is made up by a significant fraction of processed gas, which was ejected from stars
in the cluster galaxies. This was not a priori obvious because, in principle, the ICM
could be made of Hydrogen and Helium only, since clusters are the last structures in
the universe to have clearly decoupled from the Hubble flow. The presence of heavy
elements establishes an important connection between galaxies and ICM; however,
while the origin of metals is clearly related to stellar processes and supernova ex-
plosions, the mechanisms through which heavy elements are transferred from stars
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in galaxies to the ICM is not clear yet. Such mechanisms are extremely important
because they give us a link between the hot diffuse baryons in the ICM and the cold
gas locked in the stellar phase.

Most of the metals from O up to the Fe-group are produced by supernovae. The
supernovae can be broadly divided into two groups: Type Ia supernovae (SN Ia) and
core collapse supernovae (SNcc). SN Ia are most likely thermonuclear explosions
of accreting white dwarfs. When the white dwarf reaches the Chandrasekhar limit,
carbon ignition in the central region leads to a thermonuclear runaway. SN Ia
produce a large amount of Fe, Ni, and Si-group elements (Si, S, Ar, and Ca), but
only very small amounts of O, Ne, and Mg. SNcc occur when the iron core of massive
stars collapses under its own gravity and produce a large amount of O, Ne, and Mg,
unlike SN Ia. The time scales for the formation of the two types of supernovae are
also different. Already after ≈ 107 years the most massive stars exploded as SNcc,
rapidly causing massive enrichment through galactic winds. Instead white dwarfs
formed and in some cases produced SN Ia after ≈ 108 years. By measuring the
relative abundance of various elements, one can investigate which type of supernova
enrichment is dominant (e.g. de Plaa et al. 2007).

First spectroscopic analyses of cluster samples revealed that the ICM has an
Iron abundance of about one-third of the solar value (Mushotzky 1984). By com-
bining spectra obtained by Einstein and Ginga , White et al. (1994) found the first
indication of a centrally enhanced metallicity in four cooling flow clusters. Until
the launch of ASCA in 1993, Iron was the only element for which the abundance
was accurately measured in a large number of clusters. ASCA allowed us to detect
the emission features from O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni in the spectra of
a number of clusters. Moreover, ASCA data clearly showed that in cool core clus-
ters the metallicity increases towards the center (Fukazawa et al. 1994), and that
SN Ia are responsible for the strongest contribution to the cluster core enrichment.
ASCA observations also allowed us to accurately determine the mean iron abun-
dance out to z ≈ 0.5, revealing a lack of evolution out to z ≈ 0.4 (Mushotzky &
Loewenstein 1997). However, its large and energy dependent PSF did not allow us
to investigate the spatial abundance distribution in detail.

De Grandi & Molendi (2001) took advantage of the better spatial resolution
of BeppoSAX and measured the radial iron abundance profiles for a sample of 17
rich, nearby clusters of galaxies. They found that the eight non-cool core clusters in
their sample have rather flat or slightly decreasing profiles, while the iron abundance
presents an enhancement in the central regions of cool core clusters (see Fig. 1.8).
De Grandi et al. (2004) showed that the iron mass associated with the central
abundance excess can be entirely produced by the brightest cluster galaxy (BCG)
observed in almost all cool core clusters.

Observations with XMM-Newton and Chandra confirmed the central peak and
the flat distribution of metals for cool core and non-cool core clusters respectively
(Vikhlinin et al. 2005; Pratt et al. 2007; Tamura et al. 2004; Baldi et al. 2007),
previously found with BeppoSAX ; however, how the central metallicity gradients
are distributed for a representative sample of galaxy clusters is still an open is-
sue. XMM-Newton and Chandra also confirmed the strong contribution of SN Ia
to the enrichment of cluster cores found by ASCA . By using XMM-Newton data,
Böhringer et al. (2004a) found that long enrichment times (> 5 Gyr) are needed to
produce the observed central abundance peaks. As mentioned in Sect. 1.4.1 for the
temperature measurements, the outer regions (i.e. beyond 0.2 R180), although in-
formation rich, are much less studied than the cluster core, as far as the metallicity
is concerned. In such regions, comparing observed profiles with those obtained from
hydrodynamic simulations is straightforward, because the complicated phenomena
related to the core are almost negligible.

One of the main results of my thesis work is the first measure, after the one
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Figure 1.8: Radial metallicity profiles for 17 clusters observed with Bep-
poSAX (De Grandi & Molendi 2001). Top panel: profiles for cool core clusters;
bottom panel: profiles for non-cool core clusters.
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Figure 1.9: Evolution of the mean iron abundance (red circles) with redshift from
Balestra et al. (2007). Error bars refer to the one-sigma confidence level. Shaded
areas show the RMS dispersion. The dashed line indicates the best fit with a power
law.

obtained with BeppoSAX , of the mean metallicity profile for a large, representative
sample of galaxy clusters out to 0.4 R180.

Recent XMM-Newton and Chandra measurements are further expanding the
redshift range of precise iron abundance measurements in clusters. Balestra et al.
(2007) analyzed Chandra data of 56 clusters with 0.3 ≤ z ≤ 1.3 and found that
the iron abundance within ≈ 0.3 Rvir significantly declines with redshift out to
z ≈ 0.5, remaining then constant out to z ≈ 1.3 (see Fig. 1.9). Maughan et al.
(2008) analyzed Chandra data of 115 clusters with 0.1 ≤ z ≤ 1.3 and found that
the abundance evolution is still present (although less significant) even if the core
regions are excluded, indicating that the observed evolution is not only due to a
possible variation of the number of cool core clusters with redshift. However, the
abundance evolution is still under discussion, because the analysis of low metallic-
ity, statistically poor spectra could be affected by a number of systematics (see e.g.
Sect. 7.2), which have not yet been well investigated.

Deep observations of bright, nearby clusters of galaxies with XMM-Newton and
Chandra also allowed to map the 2D distribution of metals in the ICM (e.g. Sanders
et al. 2004; Sauvageot et al. 2005; Sanders & Fabian 2006). The distribution of
metals in clusters is usually not azimuthally symmetric, and in several cases shows
complex patterns (see Fig. 1.10).

1.4.3 The cluster classification: cool core vs. non-cool core

Observations show that the X-ray emission from many clusters of galaxies is sharply
peaked around the central brightest galaxy (see Fig. 1.11). The inferred radiative
cooling time of the gas in that peak (1.15) is much shorter than the age of the
cluster, suggesting the existence of a cooling flow there (Fabian et al. 1994). The
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Figure 1.10: Abundance map for several elements in the Perseus cluster obtained
by Sanders & Fabian (2006) with Chandra data.

Figure 1.11: Comparison of the X-ray surface-brightness between a cool core cluster
(A478, left panel) and a cluster without a cool core (the Coma cluster, right panel).
Although the luminosity of the two clusters is roughly the same (within a factor of
two) the X-ray emission from the cool core cluster is much more peaked.
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cooling gas should slowly move towards the center due to the weight of the overlying
ICM layers. The temperature drop in the very central regions was expected to be
a factor of 100; however, over the last years, X-ray spectroscopy showed that the
temperature drop is limited to about a factor of three (Peterson et al. 2001). Just
when the gas should be cooling most rapidly, it appears not to be cooling at all;
therefore, a heating source must exist able to balance the radiative losses. Several
mechanisms have been proposed and investigated (e.g. thermal conduction, AGN
heating, ICM turbulence), but none are fully satisfying and astronomers are still
debating the issue.

The question of how to classify astronomical objects is widely present in the
literature. In optical, clusters are usually represented as a one-dimensional sequence,
from regular to irregular systems (see Sect. 1.1.1); conversely, in X-rays, they are
commonly classified according to the presence of merger evidence or on the basis of
the core properties. As far as the core is concerned, clusters are divided into two
groups, cool core (CC) and non-cool core (NCC) clusters, according to the presence
or the absence of a surface-brightness peak and a temperature drop in the center.
It is not yet clear if cluster distribution with respect to temperature and surface-
brightness presents a bimodality; indeed, it was found a non-negligible number of
objects with intermediate characteristics. The structure in surface-brightness and
temperature is usually regular and shows azimuthal symmetry for CC; conversely,
NCC clusters appear as irregular and have a rather flat distribution of surface-
brightness (see Fig. 1.11, right panel) and temperature.

The correlation between thermodynamic and chemical properties has not yet
been widely studied; as mentioned in Sect. 1.4.2, previous works found that CC
are always characterized by a central metallicity enhancement, while NCC clusters
usually show mild (if present) metallicity gradients (see Fig. 1.8). The investigation
of such correlation could provide us a number of clues about the evolution of clusters,
from the thermodynamic and the chemical point of view.
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Chapter 2

The XMM-Newton satellite

In this chapter, I will give a brief overview of the main characteristics of the XMM-
Newton satellite. XMM-Newton (X-ray Multi-mirror Mission, Fig. 2.1) is an ESA
satellite, launched on December 10th, 1999 (Jansen et al. 2002). It carries three
X-ray telescopes, with different instruments in their focal plane, and a 30 cm op-
tical/UV telescope. There are three types of science instruments, which operate
simultaneously and independently:

• European Photon Imaging Camera (EPIC), three CCD cameras (two
MOS and one pn) for X-ray imaging and spectroscopy with moderate spectral
resolution;

• Reflection Grating Spectrometer (RGS), two spectrometers for high
resolution X-ray spectroscopy;

• Optical Monitor (OM), for optical/UV imaging.

A sketch of the XMM-Newton payload is shown in the bottom panel of Fig. 2.1.
Its most important characteristics for the study of extended sources such as galaxy
clusters are the following.

• High sensitivity: XMM-Newton carries the X-ray telescopes with the largest
effective area (Aeff) of a focusing telescope ever, i.e. 4650 cm2 at 1 keV total.

• Good angular resolution: the point spread function (PSF) has a full width
at half maximum (FWHM) of about 6′′, and a half energy width (HEW, i.e.
the radius at which a half of the total energy is encircled) of about 15′′.

• Moderate and high spectral resolution: the resolving power is moderate
(i.e. E/∆E ' 20− 50) for EPIC cameras, and high (i.e. E/∆E ' 200− 800)
for RGS spectrometers.

• Long continuous target visibility: a highly elliptical orbit offers continu-
ous target visibility up to 40 hours, but unfortunately also a higher background
level if compared to lower circular orbits.

In Table 2.1 I compare the basic characteristics of XMM-Newton and other re-
cent X-ray missions.

2.1 The X-ray telescopes

The three X-ray telescopes on board XMM-Newton are co-aligned with a relative
astrometry between the three EPIC cameras calibrated to better than 1′′-2′′ across
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Figure 2.1: Top panel: a picture of XMM-Newton . Bottom panel: a sketch of
the XMM-Newton payload. The mirror modules, two of which are equipped with
Reflection Grating Arrays, are visible at the lower left. At the right end of the
assembly, the focal X-ray instruments are shown: the EPIC MOS cameras with
their radiators (black/green “horns”), the radiator of the EPIC pn camera (violet)
and those of the (light blue) RGS detectors (in pink). The OM telescope is obscured
by the lower mirror module.
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Satellite FWHMa HEWa Energy rangeb Ac
eff

XMM-Newton 6 15 0.15–15 4650
Chandra 0.2 0.5 0.1–10 800
ROSAT 3.5 7 0.1–2.4 400
ASCA 73 174 0.5–10 350
BeppoSAX 60 75 1.3–10 240

Notes: a in arcmin; b in keV; c in cm2 at 1 keV.

Table 2.1: Comparison between the main characteristics of XMM-Newton and other
X-ray missions.

Figure 2.2: Left panel: the light path of the telescope with the pn camera in the
focus. Right panel: the light path in the two XMM-Newton telescopes with grating
assemblies. The fraction of non intercepted radiation which passes to the primary
MOS focus is 44%, while 40% of the incident light is intercepted by the grating
plates.

the FOV. The telescope hosting the pn camera in its focus has a light path as shown
on the left of Fig. 2.2, while the others have grating assemblies, which diffract about
half of the incoming radiation onto their secondary focus (Fig. 2.2, right panel).

2.1.1 The point spread function (PSF)

The first critical parameter for determining the quality of an X-ray mirror is its
ability to focus photons. This is one of the most important characteristics of XMM-
Newton : the core of its PSF is narrow and varies little over a large energy range
(0.1–4.0 keV). At higher energies, the PSF is slightly more energy dependent. A
wide set of in orbit calibration data sets have been considered to characterize the
properties of the PSF (on-axis and off-axis) and of the encircled energy fraction
(EEF), i.e. the fraction of energy of a point source collected within a given radius
(Ghizzardi 2001, 2002).

Each of the three telescopes has its own PSF. The shape of the PSF is quite
complex but the azimuthally averaged radial profile can be represented by analytical
functions. In Fig. 2.3 I show the EEF for an on-axis source as a function of the
collecting radius for several different energies. The off-axis PSF depends mainly on
the off-axis angle (i.e. the distance from the center of the field of view) and slightly
on the azimuthal angle. In general, the energy dependence of the PSF increases
with the off-axis angle.
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Figure 2.3: The MOS1 (left panel) and pn (right panel) EEF as a function of angular
radius (on-axis) at different energies.

2.1.2 The effective area

Another important characteristic of the telescope performance is its effective area
(Aeff ), which represents the ability of the mirrors to collect photons with different
energies (Fig. 2.4). The combination of the EPIC instrument (mirrors and detectors)
is effective in the energy range between 0.1 and 10 keV; the effective area reaches its
maximum at 1.5 keV and has a pronounced edge near 2 keV due to the gold on the
telescope surface. The effective areas of the MOS cameras are lower than that of the
pn, because only a fraction of the incoming photons reaches the detectors, which
are partially obscured by the RGS gratings (Fig. 2.2, right panel). The effective

Figure 2.4: The net effective area of all XMM-Newton X-ray telescopes, combined
with the response characteristics of the focal X-ray instruments, EPIC and RGS.

area depends on the off-axis angle within the mirror field of view (FOV). This effect
is known as vignetting : when increasing the off-axis angle, a smaller fraction of the
photons entering the telescopes actually reaches the focal plane. In Fig. 2.5 I report
the vignetting of the telescopes, described by the decline of the effective area as a
function of the off-axis angle.
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Figure 2.5: Vignetting as a function of the off-axis angle, at few selected energies,
of the X-ray telescope in front of the pn camera (Ehle et al. 2003).

EPIC MOS EPIC pn
Bandpass 0.15–10 keV 0.15–10 keV
Sensitivitya ∼ 10−14 ∼ 10−14

Field of view 30′ 30′

PSFb 5′′/14′′ 6′′/15′′

Pixel size 40 µm (1.1′′) 150 µm (4.1′′)
Timing resolution 1.5 ms 0.03 ms
Spectral resolution at 1 keV ∼ 70 eV ∼ 80 eV
Spectral resolution at 6.4 keVc ∼ 150 eV ∼ 150 eV

Notes: a after 10 ks in the range 0.15–15 keV, in units of erg cm−2 s−1; b FWHM and
HEW; c the energy of the Fe Kα.

Table 2.2: Main characteristics of the European Photon Imaging Cameras.

2.2 European Photon Imaging Camera (EPIC)

Two of the X-ray telescopes on board XMM-Newton are equipped with EPIC MOS
(Metal Oxide Semi-conductor) CCD arrays (Turner et al. 2001), the third carries
a different CCD camera called EPIC pn (Strüder et al. 2001). The detector layout
is shown in Fig. 2.6: the shaded area corresponds to the FOV (r ≈ 15′). During
revolution 961 (on March 9th, 2005), an event was registered in the focal plane of
the EPIC MOS1 instrument, probably due to a micrometeoroid impact scattering
debris, damaging the CCD6 which has been switched off few days later.

The two types of EPIC cameras differ in many properties, besides the geometry
of the chips shown in Fig. 2.6. The readout of the pn camera is much faster than
that of the MOS, since each column has its own readout node. Moreover, the pn
quantum efficiency is greater than that of MOS, because the pn CCDs are back-
illuminated, while the MOS chips are front illuminated. In Table 2.2 I compare the
main characteristics of the detectors.

The EPIC cameras feature several modes of data acquisition, to allow observa-
tions of a large class of sources. Some of these modes have a short readout time
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Figure 2.6: A rough sketch of the field of view of the two types of EPIC cameras;
MOS (left) and pn (right). The pn chip array is slightly offset with respect to the
optical axis of its telescope, so that the nominal on-axis observing position does not
fall on the gaps between the central CCDs. The two MOS cameras are rotated by
90◦ with respect to each other.

to overcome the pile-up problem plaguing very bright sources1 and perform timing
studies. Since galaxy clusters are stationary and low surface-brightness sources, the
full frame and the extended full frame (available only for the EPIC pn) modes are
always used for observing clusters with EPIC. When these operative modes are set,
all pixels of all CCDs are read out and the full FOV is covered. For the extended full
frame mode the collection time is longer than in the full frame mode (time resolu-
tion of 200 ms instead of 73.4 ms): this is useful when correcting for pn out-of-time
events (i.e. events registered during the readout process).

The angular resolution of EPIC is determined by the PSF of the mirrors, since
the pixel size is smaller than the FWHM of the PSF (namely, MOS and pn pixel
sizes are respectively 40 µm and 150 µm which correspond to angles of 1.1′′ and
4.1′′ on the sky).

The resolving power of the EPIC cameras is determined by the intrinsic energy
resolution of individual pixels. In Fig. 2.7 I show the spectral resolution as a function
of the energy for a point source. In the same figure, I also plot the measured in-flight
FWHM of the on board calibration lines of the MOS1 (Al- and Mn Kα), after the
correction for the charge transfer inefficiency (CTI), i.e. the loss of charge during
the transport to the amplifiers. The resolving power for the MOS camera is reduced
of about 13% since launch, due to an increase in the CTI of the CCDs. Conversely,
the resolving power for the pn camera is substantially unchanged.

The EPIC effective area depends on the effective area of the telescopes, on the
quantum efficiency of the CCD, and on the filter transmission power. The quantum
efficiency (QE) describes the response of the CCD chips to the incident radiation; in
Fig. 2.8 I show the different QE for MOS and pn. The pn is much more sensitive at
low energies because is back-illuminated. Since the CCDs are not only sensitive to
X-ray photons, but also to IR, visible and UV light, the EPIC cameras are equipped
with a set of three filters (thick, medium, and thin) for minimizing the optical light

1The pile-up effect is the arrival of more than one photon in a pixel, or in adjacent pixels,
before the signal is read out.
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Figure 2.7: Left panel: the MOS resolving power (FWHM) as a function of the
energy. The solid curve is a best-fit E1/2 function to ground calibration data. The
points are the measured in-flight FWHM of the Al-Kα (at 1.487 keV) and Mn-Kα

(at 5.893 keV) lines, after CTI correction, for five different epochs. Right panel:
the pn resolving power (FWHM) as a function of the energy. Curves are given for
single and double events at the focus position as well as at a position 10 pixels away
from the readout node (Ehle et al. 2003).

Figure 2.8: Quantum efficiency for MOS (left) and pn (right) as a function of the
photon energy (Ehle et al. 2003).



32 Chapter 2. The XMM-Newton satellite

Figure 2.9: The effective area for MOS (left) and pn (right) for each of the optical
blocking filters and without a filter (Ehle et al. 2003).

contamination; however, the use of a filter also reduces the softest X-ray response
(see Fig. 2.9).



Chapter 3

The EPIC background and
its characterization

When analyzing data from low surface-brightness sources as galaxy clusters, it is
crucial to characterize background properties as well as possible. I have been care-
fully characterized the EPIC background by using data sets taken with the filter
wheel in the closed position (hereafter referred to as “closed”) and from unex-
posed regions (hereafter OUT-FOV), and using observations of “blank fields” at
high galactic latitude. In Sect. 3.1 I describe the components which combine to
constitute the EPIC background, and in Sect. 3.2 I report the detailed analysis of
“closed” and “blank field” observations.

3.1 The EPIC background

The EPIC background is due to several components, which can be separated in
three groups.

• Particles: the events due to the soft protons channeled by the telescopes to-
wards the detectors and the internal (cosmic-ray induced) background, created
directly by particles penetrating the CCDs and indirectly by the fluorescence
of satellite material to which the detectors are exposed.

• Photons: the astrophysical background, dominated by thermal emission from
within our own Galaxy at lower energies (E . 1 keV) and by a power law
emission (primarily from unresolved cosmological sources) at higher energies.

• Electronic noise: bright pixels, hot columns, and readout noise (E . 0.2 keV).

3.1.1 The internal background

The internal cosmic-ray induced background is due to high energy (E & 1 MeV) par-
ticles interacting with the detector and producing events similar to those produced
by genuine X-ray photons. Cosmic rays also interact with the structure surrounding
the detectors; they excite atoms, which then emit X-ray radiation when returning
to their ground state. The monochromatic energy of the emitted radiation depends
on the particular transition and element.

The internal background can be studied by analyzing “closed” observations,
whose events are solely induced by cosmic rays (see Sect. 3.2.1). Its spectrum is
characterized by a continuum plus several fluorescence emission lines: in Fig. 3.1 I
report the spectra obtained by stacking data from ≈ 50 (≈ 30) closed observations
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Figure 3.1: MOS1 (red) and pn (black) spectra obtained by stacking data from
closed observations.

with the EPIC MOS (pn) camera. The MOS spectrum features two most intense
lines around 1.5 keV and 1.8 keV, due to Al-Kα and Si-Kα respectively; the pn
spectrum features the Al-Kα line and the Ni-Cu-Zn multiplet around 8 keV. The
difference between the spectra from MOS and pn depends on the detector structure
(EPIC pn is monolithic and complanar, thus Si-Kα radiation is self-absorbed) and
position (the pn detector is very close to an electronic board responsible for the
Ni-Cu-Zn emission, see also Fig. 3.2).

Above 2 keV the spectra are well fitted by a single power law (index 0.2-0.3),
instead below 2 keV they become softer. As showed in Sect. 3.2.1, the internal
background is roughly flat over the MOS detectors; conversely, the pn camera suffers
from the proximity of the electronic board mentioned above, which blocks a fraction
of the particles, and the spatial distribution of the events mirrors rather precisely
the shape of the board (see Fig. 3.2). The intensity of the continuum shows temporal
variations on the order of 10-15% of the mean for MOS and pn (Katayama et al.
2002; Leccardi & Molendi 2008a), while the intensity of emission lines is rather
stable. More details will be given in Sect. 3.2.

3.1.2 The soft protons

The soft protons (hereafter SP) are particles with energy on the order of few hundred
keV, channeled by the telescopes towards the detectors. They probably have solar
origin and are accelerated by magnetospheric reconnection events. This background
component is characterized by a strong variability, appearing in the light curve of
the observations as sudden flares, when the count rate increases by a factor of 100
or more. In Fig. 3.3 I report an example of light curve for an extremely polluted
observation. The spectra of SP flares are variable and no clear correlation has been
found between intensity and spectral shape. The current understanding is that soft
protons are organized in clouds in the Earth’s magnetosphere. The number of such
clouds encountered by XMM-Newton is variable and depends upon many factors
(e.g. the altitude of the satellite, its position with respect to the magnetosphere
and the amount of solar activity). Unfortunately, the presence of this troublesome
background component was not properly anticipated before the launch. The light
curves for MOS1 and MOS2 are very similar, while for pn some flares appear to
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Figure 3.2: Background images for the pn camera with spatially inhomogeneous
fluorescent lines: smoothed image in the Ti+V+Cr-Kα lines (top left), full resolu-
tion image in Copper (7.8–8.2 keV) (top right), Nickel (7.3–7.6 keV) (bottom left)
and Molybdenum (17.1–17.7 keV) (bottom right) (Ehle et al. 2003).
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Figure 3.3: MOS1 (black) and pn (red) light curves for an extremely polluted
observation. Note the logarithmic scale on the y-axis. Only 5 ks remain after the
exclusion of soft proton flares.
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be much more intense and to have more extended tails. Data collected during the
flares are unusable and must be rejected with good time interval (GTI) filtering (see
Chapter 4). After the filtering process a fraction of soft protons (called quiescent
soft protons, QSP) can survive. To quantify the amount of this component, I made
use of the “IN over OUT” diagnostic described in Sect. 4.1.2.

3.1.3 The astrophysical background

The astrophysical background beyond ≈ 3 keV has extragalactic origin: the so-
called cosmic X-ray background (CXB) is isotropic on large angular scales and is
due to the superposition of a large number of unresolved AGN. Its spectrum is well
fitted by a power law with a photon index of 1.4 (De Luca & Molendi 2004). The
total CXB flux is the sum of the contribution of the unresolved sources within a
given area of the sky; for this reason, it may vary on the sky because of Poissonian
variations of the number of sources, intrinsic variability of the source fluxes, and
the large scale structure of the universe (see e.g. Fabian & Barcons 1992).

At lower energies, the photon background is a mixture of Galactic, heliospheric,
and geocoronal diffuse emission, plus the extragalactic emission from point-like
sources and warm-hot intergalactic medium (WHIM). This component is strongly
spatially variable and also changes spectrally (Snowden et al. 1997; Lumb et al.
2002); it is therefore very difficult to characterize and model.

3.2 The background characterization

In Sect. 3.2.1 I present the results of my analysis of ≈ 50 MOS observations with
the filter wheel in the closed position. I also performed a preliminary analysis of
≈ 30 closed observations with the pn camera; however, when dealing with cluster
observations I considered only EPIC MOS data because of the following reasons.
The region outside the pn field of view (FOV) is much smaller than the MOS one,
therefore the uncertainties on the intensity of the NXB are large. The presence of
a non negligible fraction of out-of-time events causes events from different parts of
the instrument to be mixed together; this is troublesome, because the spectral com-
ponents inside and outside the FOV have different shapes and a standard statistical
correction does not work properly. The pn NXB is much less stable than the MOS
one: especially below 2 keV, it shows variations not only in intensity but also in
shape. Finally the pn instrument has further drawbacks due to the electronic board
near the detector: the NXB spatial distribution is not flat and the emission due to
Ni-Cu-Zn lines is more intense in the outer regions (see also Fig. 3.2).

In Sect. 3.2.2 I show the results obtained from the analysis of ≈ 30 “blank field”
observations with the MOS camera.

3.2.1 The analysis of “closed” observations

I analyzed ≈ 50 MOS closed observations, exposure times of individual observations
span the 5–100 ks range, for a total exposure time of ≈ 650 ks. For each observation,
I selected six concentric rings (0′–2.75′, 2.75′–4.5′, 4.5′–6′, 6′–8′, 8′–10′, and 10′–12′)
centered on the detector center. For each instrument (i.e. MOS1 and MOS2) and
each ring, I produced the total spectrum by summing, channel by channel, spectral
counts accumulated during all observations. I associated the appropriate RMF with
each total spectrum and performed a minimal grouping to avoid channels with no
counts. In Fig. 3.4 I report the total spectra accumulated in the 10′–12′ ring, for
MOS1 and MOS2, in the 0.2–11.3 keV band.
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Figure 3.4: MOS1 (thick) and MOS2 (thin) spectra from closed observations in the
whole energy band, i.e. 0.2–11.3 keV. MOS2 spectrum is scaled by a factor of 2 for
clarity. Spectra were accumulated in the 10′–12′ ring. The total exposure time is
≈ 650 ks.

Γ1 EB [keV] Γ2

MOS1 0.22 7.0 0.05
MOS2 0.32 3.0 0.22

Table 3.1: Best fit parameters for the broken power law fit. Γ1 and Γ2 are the slopes
below and above the break energy, EB.

As mentioned above, closed observation events are solely due to the internal
background, which is characterized by a cosmic-ray induced continuum plus sev-
eral fluorescence emission lines. Beyond 2 keV, the continuum was well fitted by a
single power law (index 0.24 and 0.23 for MOS1 and MOS2 respectively); instead,
for the 0.7–10.0 keV range, a broken power-law (see Table 3.1) was more appropri-
ate. Emission lines were modeled by Gaussians. Note that the models for particle
background components were not multiplied by the effective area.

In Table 3.2 I list the emission lines in my background model with their rest
frame energies. Normalization values are always reported in XSPEC units. Lines
are determined by 3 parameters: peak energy, intrinsic width, and normalization.
The energy of Al-Kα, EAl, was left free to allow for a small shift in the energy
scale; the energies of Al-Kβ , Si-Kα, Si-Kβ , and Au-M lines were linked to EAl in
such a way that a common shift, ∆E, can be applied to all lines. Similarly, the
energy of Cr-Kα, ECr, was free and the energies of all other lines above 5 keV were
linked to ECr. The intrinsic width was always fixed to zero, except for Al and Si
lines; for these lines it was fixed to 2.2 eV to allow for minor mismatches in energy
calibrations for different observations. Normalizations for all Kα lines, Al-Kβ , and
Si-Kβ were free, normalizations of other Kβ lines were forced to be one-seventh of
the correspondent Kα line (Keith & Loomis 1978). The correlation between broken
power-law and Gaussian parameters was very weak.

As noticed by Kuntz (2006), there are observations in which the count rate of
some CCDs is very different, especially at low energies, indicating that the spectral
shape of the NXB is not constant over the detector. In particular, the count rate of
MOS1 CCD-4 and CCD-5 and MOS2 CCD-2 and CCD-5 may be very high. Since
my procedure requires background parameters to be rescaled from the outer to the
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Line E [keV] Line E [keV]
Al-Kα 1.487 Mn-Kβ 6.490
Al-Kβ 1.557 Fe-Kβ 7.058
Si-Kα 1.740 Ni-Kα 7.472
Si-Kβ 1.836 Cu-Kα 8.041
Au-Mα 2.110 Ni-Kβ 8.265
Au-Mβ 2.200 Zn-Kα 8.631
Cr-Kα 5.412 Cu-Kβ 8.905
Mn-Kα 5.895 Zn-Kβ 9.572
Cr-Kβ 5.947 Au-Lα 9.685
Fe-Kα 6.400

Table 3.2: Instrumental emission lines in the 0.7–10.0 keV energy band.

Figure 3.5: Γ1, Γ2, and N values for MOS1 (top) and MOS2 (bottom) for all closed
observations analyzed. The dotted lines are the best fit values reported in Table 3.1.
For Γ1 and Γ2 the scatter is comparable with the uncertainties, while for N there
is an intrinsic scatter of ≈ 20%. Values for N are reported in XSPEC units.

inner rings (see Sect. 4.2), I always excluded the above mentioned “bright” CCDs
from data analysis when using the 0.7–10.0 keV band (see Sect. 4.1.1). When using
the band above 2 keV all CCDs are used, because the effect is negligible for almost
all observations.

After the exclusion of the bright CCDs, I fit spectra accumulated in the 10′–12′

ring for different closed observations, to check for temporal variations of the NXB.
In Fig. 3.5 I report the values of broken power-law free parameters (namely the
slopes, Γ1 and Γ2, and the normalization, N) for MOS1 and MOS2 in the 0.7–
10.0 keV band. The scatter of Γ1 and Γ2 values is the same order of magnitude as
the statistical uncertainties, while the scatter of the N values (≈ 20%) is not purely
statistic; i.e., NXB normalization varies for different observations.

I also checked for spatial variations of the internal background. As explained
above, I accumulated the total spectrum for each of the 6 rings and for each instru-
ment. I defined the surface-brightness, SB, as the ratio between N and the area of
the ring. In Fig. 3.6 I report MOS1 and MOS2 best fit values of SB as a function of
the distance from the center, by fixing Γ1 and Γ2. The spatial variations are greater
than statistical errors but less than 5%. To a first approximation, the NXB is flat
over the detector. When fitting spectra above 2 keV, I find similar results, both in
terms of temporal and spatial variations.
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Figure 3.6: Surface-brightness best fit values for MOS1 (left) and MOS2 (right) as
a function of the distance from the detector center.

Emission lines showed rather weak temporal variations and most of them (namely,
all except for Al, Si, and Au) have a uniform distribution over the detector. Al lines
are more intense in the external CCDs, while Si lines are more intense in the central
CCD. Conversely, Au lines are very localized in the outer regions of the field of view,
thus I model them only when analyzing rings beyond 3.5′.

3.2.2 The analysis of “blank field” observations

A large number (≈ 30) of “blank field” observations were analyzed to characterize
the spectrum of other background components. Exposure times of individual obser-
vations cover between 30 and 90 ks for a total exposure time of ≈ 600 ks. Almost all
observations have different pointing in order to maximize the observed sky region
and minimize the cosmic variance of the X-ray background.

Data were prepared and cleaned as described in Sects. 4.1.1 and 4.1.2. For each
instrument (i.e. MOS1 and MOS2) and each filter (i.e. THIN1 and MEDIUM), I
produced total spectra by summing, channel by channel, spectral counts accumu-
lated during all observations after the selection of the same rings used for closed
observations (see Sect. 3.2.1). I associated the appropriate RMF and ARF with each
spectrum and performed a minimal grouping to avoid channels with no counts. I also
estimated the QSP contamination by calculating the average RSB (see Sect. 4.1.2),
which is 1.09±0.01 for both filters and both detectors.

Inside the field of view, the spectral components beyond 0.7 keV are the following
(see Fig. 3.7):

• the galactic component likely related to the emission from the Halo (HALO),

• the cosmic X-ray background (CXB),

• the quiescent soft protons (QSP),

• the cosmic ray induced continuum (NXB),

• the fluorescence emission lines.

The photon components only (i.e. HALO and CXB) were multiplied by the effective
area and absorbed by our Galaxy. The equivalent hydrogen column density along
the line of sight, NH, was fixed to the 21 cm measurement (Dickey & Lockman
1990), averaged over all fields. I selected blank field observations pointed at high
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Figure 3.7: MOS1 spectrum from blank field observations in the 10′–12′ ring. Above
2 keV the spectrum is simpler. Data are shown in black, particle background in red
and astrophysical background in blue.

galactic latitude, so that NH is < 1021 cm−2 and the absorption effect is negligible
above 1 keV.

In the 0.7–10.0 keV band, the total model is composed of a thermal component
(HALO), a power law (CXB), two broken power laws (QSP and NXB), and several
Gaussians (fluorescence emission lines). The thermal model (APEC in XSPEC)
parameters are: kT = 0.197 keV, Z = 1.0 Z¯, and z = 0.0 (Kuntz & Snowden
2000). The slope of the CXB power law was fixed to 1.4 (De Luca & Molendi
2004), and the normalization was calculated at 3 keV to minimize the correlation
with the slope. The QSP broken power law has a break energy at 5.0 keV, and the
slopes were fixed to 0.4 and 0.8 respectively below and above 5 keV. The model
parameters for the internal background are the same as reported in Sect. 3.2.1. In
the 2.0–10.0 keV band the model is simpler (namely, three power laws and several
Gaussians) and more stable. The HALO component is negligible above 2 keV, the
CXB model is the same as in the 0.7–10.0 keV band, the slope of the QSP power
law was fixed to 1.0, and the model parameters for the internal background are
those reported in Sect. 3.2.1.

Most components have rather similar spectral shapes (see Fig. 3.7), therefore
a high degree of parameter degeneracy is present. In such cases, it is useful to
constrain as many parameters as possible. Events outside the field of view are
exclusively due to the internal background, therefore the spectrum accumulated
in this region provides a good estimate of the NXB normalization, NNXB. By
analyzing closed (CL) observations I find that the ratio between NNXB calculated
in two regions of the detector is independent of the particular observation:

NNXB(R1; O1)
NNXB(R2; O1)

=
NNXB(R1;O2)
NNXB(R2;O2)

, (3.1)

where R1,2 are any two regions of the detector, and O1,2 are any two observations.
By using the region outside the field of view (OUT), for each ring (R) of blank field
(BF) observations, I estimated and fixed NNXB from Eq. 3.1:

NNXB(R; BF ) = NNXB(R; CL)× NNXB(OUT ; BF )
NNXB(OUT ; CL)

. (3.2)
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Instr. Filter NHALO NQSP Na
CXB

[10−4] [10−3] [10−2]
MOS1 THIN1 1.7±0.1 2.4±0.1 5.1±0.1
MOS2 THIN1 1.6±0.1 2.5±0.1 5.0±0.1
MOS1 MEDIUM 1.4±0.1 2.6±0.1 6.0±0.1
MOS2 MEDIUM 1.6±0.1 2.4±0.1 5.8±0.1

Note: a calculated at 3 keV.

Table 3.3: Best fit results for the analysis of blank field observations in the 10′–12′

ring.

Ring HALO CXB
MOS1 MOS2 MOS1 MOS2

0′–2.75′ 0.62 0.68 0.80 0.91
2.75′–4.5′ 0.74 0.70 0.70 0.78
4.5′–6′ 0.63 0.65 0.89 0.95
6′–8′ 0.74 0.71 0.89 0.92

Table 3.4: Correction factors, K(r), for each ring and instrument.

In Table 3.3 I report the best fit values for the normalization of the HALO,
NHALO, of the QSP, NQSP, and of the CXB, NCXB, in the 10′–12′ ring, for MOS1
and MOS2 instruments and for THIN1 and MEDIUM filters. I fit spectra in the 0.7–
10.0 keV energy band. I stress the remarkably good agreement between MOS1 and
MOS2 for all parameters. Moreover, I point out that, when comparing observations
with different filters, values for NHALO and NQSP agree, while values for NCXB are
significantly different (≈ 20%) because of the cosmic variance (≈ 15% expected for
the considered solid angles).

By construction (see Eq. 4.1) there is a relation between RSB and NQSP, so that
the higher RSB, the higher NQSP. For observations that are not contaminated by
QSP, RSB ≈ 1.0 and NQSP ≈ 0.0 are expected. Since RSB values span a relatively
narrow range (roughly between 1.0 and 1.5), I approximated the relation between
RSB and NQSP with a linear function: NQSP = A× (RSB − 1). The scaling factor,
A ≈ 0.03, was determined from the analysis of blank fields observations, for which
I measured RSB = 1.09 ± 0.01 and NQSP = (2.5 ± 0.1) × 10−3. Thus, for each
observation I model the bulk of the QSP component by deriving NQSP from RSB (see
Sects. 4.2.1 and 4.2.2). In Sects. 7.1.1 and 7.1.2 I will discuss possible systematics
related to QSP, and show that the linear approximation used above is satisfactory.

When analyzing cluster observations, I estimated the normalizations of the back-
ground components in the 10′–12′ ring, and rescaled them in the inner rings (see
Sect. 4.2.1). When considering the 0.7–10.0 keV energy band, a simple rescaling
by the area ratio was too rough and caused systematic errors, especially in the
outer regions where cluster emission and background fluctuations are comparable.
To overcome this problem, I have proceeded in the following manner. I fit blank
field spectra, by fixing NNXB and NQSP, and determined NCXB and NHALO best fit
values. For each ring and instrument, I defined a correction factor, K(r):

K(r) =
Nobs

Nexp
, (3.3)

where Nobs is the best fit value that I just obtained, and Nexp was derived by
rescaling the value measured in the 10′–12′ ring by the area ratio. In Table 3.4 I
report the values for K(r) for all cases. K(r) is a second order correction, because
the contribution of CXB and HALO components to the total flux is relatively small:
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when considering the 0.7–2.0 keV band only (i.e. the energy range in which these
components are more intense), the HALO-to-total and the CXB-to-total flux ratios
are ≈ 5% and ≈ 20%, respectively. Thus, the effective correction is of a few percent
only, for both cases.

Different observations have different centers in detector coordinates, and the
intensity of the various components depends on the particular observation. These
facts could cause some discrepancies; however, since I analyzed a large number of
blank-field and cluster observations, I expect only a few percent systematic effect
on the mean profile. When considering the band above 2 keV, the statistical quality
of the data is poorer; therefore, rescaling by the area ratio (i.e. no correction factor)
can be considered a good approximation for both CXB and NXB. The QSP value
was rescaled by the soft proton vignetting profile (Kuntz 2006) and did not require
any correction factor.



Chapter 4

Data analysis

In this chapter I will describe the data analysis procedure in detail. The preparation
of spectra comprises the following major steps:

• preliminary data processing,

• good time interval (GTI) filtering to exclude periods of high soft proton flux,

• filtering according to pattern and flag criteria,

• excision of brightest point-like sources,

• calculation of the “IN over OUT” ratio,

• extraction of spectra in concentric rings.

The spectral analysis is structured as follows:

• estimate of background parameters from a peripheral ring of the field of view;

• spectral fitting using the Cash statistic and modeling the background, rather
than subtracting it, as commonly done;

• production of surface-brightness, temperature, and metallicity profiles.

All these points are described in detail in the following sections.
I recall that I used only EPIC MOS data because a robust characterization of

EPIC pn background was not possible (see Chapter 3 for further details).

4.1 Spectra preparation

4.1.1 Preliminary data preparation

Observation data files (ODF) were retrieved from the XMM-Newton archive and
processed in a standard way with the Science Analysis System (SAS) v6.1.

The soft proton cleaning was performed using a double filtering process. I ex-
tracted a light curve in 100 second bins in the 10–12 keV energy band by excluding
the central CCD, applied a threshold of 0.20 cts s−1, produced a GTI file and
generated the filtered event file accordingly. This first step allows most flares to
be eliminated, however softer flares may exist such that their contribution above
10 keV is negligible. I then extracted a light curve in the 2–5 keV band and fit the
histogram obtained from this curve with a Gaussian distribution. Since most flares
had been rejected in the previous step, the fit was usually very good. I calculated
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the mean count rate, µ, and the standard deviation, σ, applied a threshold of µ+3σ
to the distribution, and generated the filtered event file.

After soft proton cleaning, I filtered the event file according to PATTERN and
FLAG criteria (namely PATTERN≤12 and FLAG==0). I excluded observations that
are highly affected by soft proton flares, when their good (i.e. after flare cleaning)
exposure time is not long enough (less than 16 ks when summing MOS1 and MOS2)
to measure reliable temperature and metallicity profiles out to external regions.

When fitting spectra in the 0.7–10.0 keV band (see Sect. 4.2), I also excluded
the “bright” CCDs, i.e. CCD-4 and CCD-5 for MOS1 and CCD-2 and CCD-5 for
MOS2 (see Sect. 3.2.1 for the discussion).

Brightest point-like sources were detected, using a procedure based on the SAS
task edetect_chain, and excluded from the event file. I estimated a flux limit for
excluded sources on the order of 10−13 erg cm−2 s−1; after the source excision, the
cosmic variance of the residual X-ray background on the entire field of view (FOV)
is expected to be ≈ 20%.

4.1.2 Quiescent soft proton contamination

A quiescent soft proton (QSP) component can survive the double filtering process
(see Sect. 4.1.1). To quantify the amount of this component, I made use of the
“IN over OUT” diagnostic1 (De Luca & Molendi 2004). I measured the surface-
brightness, SBIN, in an outer region of the FOV, where the cluster emission is
negligible, and compared it to the surface-brightness, SBOUT, calculated outside
the FOV in the same energy range (i.e. 6–12 keV). Since soft protons are channeled
by the telescope mirrors inside the FOV and the cosmic ray induced background
covers the whole detector, the ratio

RSB =
SBIN

SBOUT
(4.1)

is a good indicator of the intensity of residual soft protons and was used for back-
ground modeling (see Sects. 4.2.2 and 3.2.2). The values for RSB roughly span the
range from 1.0 (negligible contamination) to 1.5 (high contamination). The typical
uncertainty in measuring RSB is a few percent.

4.1.3 Spectra accumulation

The cluster emission was divided in 10 concentric rings (namely 0′–0.5′, 0.5′–1′, 1′–
1.5′, 1.5′–2′, 2′–2.75′, 2.75′–3.5′, 3.5′–4.5′, 4.5′–6′, 6′–8′, and 10′–12′). The center of
the rings was determined by surface-brightness isocontours at large radii and is not
necessarily coincident with the X-ray emission peak. I prefer that azimuthal sym-
metry be preserved at large radii, where I am interested in characterizing profiles,
at the expense of central regions.

For each instrument (i.e MOS1 and MOS2) and each ring, I accumulated a
spectrum and generated an effective area (ARF). For each observation I generated
one redistribution function (RMF) for MOS1 and one for MOS2. I performed
a minimal grouping to avoid channels with no counts, as required by the Cash
statistic.

4.2 Spectral analysis

Spectral fitting was performed within the XSPEC v11.3 package. The choice of the
energy band for the spectral fitting was not trivial. I fit spectra in the 0.7–10.0 keV

1A public script is available at http://xmm.esac.esa.int/external/xmm sw cal/background/
epic scripts.shtml
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and in the 2.0–10.0 keV energy bands, by using the Cash statistic, with an ab-
sorbed thermal plus background model. The high-energy band has the advantage
of requiring a simplified background model (see Sects. 3.2.1 and 3.2.2); however, a
significant fraction of source counts was excluded and the statistical quality of the
measurement was substantially reduced. Due to the paucity of source counts, there
is a strong degeneracy between source temperature and normalization, and the tem-
perature is systematically underestimated; therefore, when using the 2.0–10.0 keV
band, an “a posteriori” correction was required (Leccardi & Molendi 2007). In
contrast, in the 0.7–10.0 keV band, the statistical quality of the data is good, but
the background model is more complicated and background components are less
stable and affected by strong degeneracy (see Sect. 3.2.1 and 3.2.2). I excluded the
band below 0.7 keV because the shape of the internal background is very compli-
cated and variable with time and because the source counts reach their maximum
at ≈ 1 keV. The 0.7–10.0 keV energy band seems to be the best trade-off for this
kind of measurements. Hereafter, all considerations are valid for both energy bands,
unless otherwise stated.

In conditions of poor statistics (i.e. few counts/bin) and high background, the
Cash statistic (Cash 1979) is more suitable than the χ2 with reasonable channel
grouping (Leccardi & Molendi 2007). The Cash statistic requires the number of
counts in each channel to be greater than zero (Cash 1979); thus, the background
cannot be subtracted. In the case at hand, the total background model is the sum
of many components, each one characterized by peculiar temporal, spectral, and
spatial variations (see Sect. 3.2.2). When subtracting the background, the informa-
tion on single components was lost. Conversely, background modeling allows one to
preserve the information and to manage all components appropriately. Moreover,
I recall that the background modeling does not require strong channel grouping,
error propagation, or renormalization factors.

4.2.1 Estimate of background parameters

To model the background, a careful characterization of all its components is manda-
tory. Ideally, one would like to estimate background parameters in the same region
and at the same time as the source. Since this was not possible, I estimated back-
ground parameters in the external 10′–12′ ring and rescaled them in the inner rings,
by making reasonable assumptions on their spatial distribution tested by analyzing
blank-field observations (see Sect. 3.2.2). The 10′–12′ ring often contains a weak
cluster emission that, if neglected, may cause a systematic underestimate of tem-
perature and normalization in the inner rings (see Sect. 7.1.1). In this ring the
spectral components in the 0.7–10.0 keV band are:

• the thermal emission from the cluster (GCL),

• the emission from the Galaxy Halo (HALO),

• the cosmic X-ray background (CXB),

• the quiescent soft protons (QSP),

• the cosmic ray induced continuum (NXB),

• the fluorescence emission lines.

The HALO component is negligible when considering the 2.0–10.0 keV range. The
model is the same one as used when analyzing blank-field observations (see Sect. 3.2.2
for further details) plus a thermal component for the GCL.

I fixed most parameters (namely all except for the normalization of HALO,
CXB, NXB, and fluorescence lines) to reduce the degeneracy due to the presence of



46 Chapter 4. Data analysis

different components with similar spectral shapes. All cluster parameters were fixed:
the temperature, kT , and the normalization, NS, were extrapolated from the final
profiles through an iterative procedure. The metallicity, Z, was fixed to 0.2 solar2

and the redshift, z, was fixed to the optical value. The QSP normalization, NQSP,
was calculated from RSB (see Sect. 3.2.2) and fixed. Minor discrepancies in shape
or normalization with respect to the real QSP spectrum are possible, the model
accounts for them by slightly changing the normalization of other components,
i.e. NHALO, NCXB, and NNXB (see Sects. 7.1.1 and 7.1.2 for the discussion of the
systematic effects related to QSP).

Summarizing, in the 10′–12′ ring, I have determined the range of variability,
[Nmin,Nmax], (i.e. the best fit value ±1σ uncertainty) for the normalization of
the main background components, i.e. NHALO, NCXB, and NNXB. Once properly
rescaled, this information allowed us to constrain background parameters in the
inner rings.

4.2.2 Spectral fit in concentric rings

I fit spectra in internal rings with the same model as adopted in the 10′–12′ ring case
(see Sect. 4.2.1). In Fig. 4.1 I compare spectra and best fit models for two different
regions of the same cluster. In the inner ring (1′–1.5′) source counts dominate, while
in the outer ring (4.5′–6′) background counts dominate.

The equivalent hydrogen column density along the line of sight, NH, was fixed
to the 21 cm measurement (Dickey & Lockman 1990). Since clusters in our sample
are at high galactic latitude (|b| > 20◦), the NH is < 1021 cm−2 and the absorption
effect is negligible above 1 keV. I have always left the temperature, kT , and the nor-
malization, NS, free to vary. The metallicity was constrained between ±5 Z¯ below
≈ 0.4R180 and fixed to 0.2 solar beyond, because there the source-to-background
count rate ratio is too small and the measurements are unreliable. The redshift
was allowed to vary between ±7% of the optical measurement in the two innermost
rings and, in the other rings, was fixed to the average value of the first two rings,
by considering independently MOS1 and MOS2 spectra. The main reason for this
choice is to allow for EPIC calibration uncertainties, and for possible discrepancies
between X-ray and optical derived redshift values. Typical shift values are on the
order of 2%.

The normalization of HALO, CXB, and NXB for the inner rings were obtained
by rescaling the best-fit values in the 10′–12′ ring (see Sect. 4.2.1) by the area
ratio and the correction factor, K(r), obtained from blank field observations (see
Table 3.4 in Sect. 3.2.2):

N int = N ext × Areaint

Areaext
×K(r) , (4.2)

for NXB K = 1 for all rings. Then, N int
HALO, N int

CXB, and N int
NXB were free to vary

within a certain range: the lower (upper) limit of this range was derived by rescaling
the best-fit value minus (plus) the 1σ-error calculated in the 10′-12′ ring. The
local background should have a variation length scale of some degrees (Snowden
et al. 1997); conversely, NCXB may have large (i.e. 20-100%) variations between
different rings due to the cosmic variance. However, extensive simulations show
that these statistical fluctuations do not introduce systematics in the temperature
measurement, when averaging on a large sample (see Sect. 7.1.1). I obtained N int

QSP

by rescaling the value adopted in the 10′-12′ ring by the area ratio and by the
QSP vignetting profile (Kuntz 2006), and fixed it for all rings. Normalizations of
instrumental fluorescence emission lines were free to vary within a limited range

2The solar abundances were taken from Anders & Grevesse (1989).
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Figure 4.1: Spectra and best fit models for the 1′–1.5′ (top) and the 4.5′–6′ (bottom)
rings of Abell 1689. The solid thick and the dashed thick lines respectively represent
the thermal and the total background model. The solid thin line represents the
total (i.e. thermal + background) model. In the inner ring, source counts dominate
background ones, in the outer the opposite is true.
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determined from the analysis of closed observations and have an almost negligible
impact on final measurements.

For each ring, when using the 0.7–10.0 keV energy band, I determined kT , Z,
and NS best fit values and one-sigma uncertainties for each MOS and calculated
the weighted average. Conversely, when using the 2.0–10.0 keV band, I combined
temperature measurements from different instruments as described in Leccardi &
Molendi (2007), to correct for the bias that affects the temperature estimator (see
Chapter 5). In the 0.7–10.0 keV band, there are many more source counts, the
temperature estimator is much less biased, and the weighted average returns a
slightly (≈ 3% in an outer ring) biased value (see the F = 1.0 case in Sect. 7.1.1).

Finally, surface-brightness (i.e. normalization over area), temperature, and metal-
licity profiles were produced for each cluster.



Chapter 5

The bias on the ML
temperature estimator

When exploring the physical properties of the intra-cluster medium (ICM) in the
outer regions of galaxy clusters, both statistical and systematic issues need to be
addressed. Typically, the spectra have poor statistics (i.e. few counts/bin) and a
high background, especially at high energies, where the instrumental background
dominates other components, also due to the sharp decrease of the effective area of
the experiments (see Chapter 2). In this chapter I employ simulations to examine
how best to analyze this kind of spectra, focusing on the treatment of statistical
errors only. More specifically the question I wish to address is the following: “What
are the effects of pure statistical uncertainties in determining interesting parame-
ters of highly non linear models (e.g. the temperature of the ICM), when we analyze
spectra accumulated from low surface-brightness regions using current X-ray exper-
iments?” To deal with this, I performed a set of simulations. First, I chose the
input values for model parameters and produced the expected spectrum; then, I
generated a large number of perturbed spectra representing a large set of measure-
ments; at last, I analyzed them with different techniques based on the method of
maximum-likelihood (hereafter ML) and compared results. The choices of simula-
tion parameters (e.g. spectral model, fixed parameters, etc.) are justified by the
practical issue of determining the temperature in the outer regions of massive galaxy
clusters. The analysis is mainly focused on XMM-Newton ; however, most results
are valid in all cases when analyzing low-count Poisson-distributed data.

From a more general perspective, this may be viewed as an attempt to quan-
tify the significance of the bias of ML estimators commonly adopted by X-ray as-
tronomers to determine spectral parameters. I will show that the most common
ML estimators, indeed all those available within XSPEC, are characterized by a
substantial bias when applied to our specific case (see Sect. 5.2). A long-term solu-
tion to the problem requires an unbiased, or perhaps a less biased, estimator to be
found and implemented within standard fitting packages (see Sect. 5.3). Another,
faster, solution involves correcting the bias a posteriori by making use of extensive
Montecarlo simulations (see Sect. 5.3.3).

5.1 The source-only case

At first, I addressed the idealized source-only case. I represented the source with
an absorbed thermal model (WABS*MEKAL in XSPEC). The parameter values were
the following: the equivalent hydrogen column density along the line of sight, NH,
is 2.5 × 1020 cm−2; the metallicity, Z, and the redshift, z, were respectively 0.25
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solar and 0.2; the temperature, kT , was 7 keV and the normalization, NS, was
3.5×10−3 in XSPEC units. Redistribution matrix (RMF) and effective area (ARF)
have been produced from the observation number 0093030101 of the galaxy cluster
Abell 1689 with the EPIC MOS1 instrument; the angular size of the region from
which the simulated spectra were accumulated was ≈ 4 arcmin2, corresponding to
the ring between 1.0′ and 1.5′ centered on the cluster emission peak. The exposure
times considered are 5 ks, 10 ks, 100 ks, and 1000 ks and the total counts in the
2.0–10.0 keV band are respectively about 600, 1200, 12000, and 120000. For each
channel I perturbed the number of counts with a Poisson distribution centered on
the expected value. I repeated this step Nmeas times (with Nmeas very large) to
obtain Nmeas spectra, simulating Nmeas independent measurements of the source.

I fit simulated spectra using the χ2 and the Cash statistics, where the latter
is more suitable for analyzing spectra with a few counts per channel (Cash 1979;
Nousek & Shue 1989; Mighell 1999; Arzner et al. 2006). I recall that each measure-
ment can be represented by the number of counts, Oi, observed in each channel i
(i = 1, ..., N where N is the number of channels). The probability, Q, of obtain-
ing this particular measurement (i.e. this particular spectrum) is the product of
Poisson distributions and can be expressed as a function of the expected counts,
Ei, which depend1 on the particular set of model parameters, α (e.g. in this case
α = (NH, kT,Z, z, NS)):

Q(α) =
N∏

i=1

Ei
Oi e−Ei

Oi!
. (5.1)

The associated log-ML function C (Cash 1979) is defined as

C(α) = −2 ln Q(α) = −2
N∑

i=1

(Oi ln Ei − Ei − ln Oi!) . (5.2)

The best set of parameters is determined by maximizing Q (i.e. minimizing C)
with respect to α. Conversely, the χ2 statistic is based on the hypothesis that
each spectral bin contains a sufficient number of counts for the deviations of the Oi

from the Ei to have a Gaussian distribution. This hypothesis is satisfied for large
Oi, when Q can be approximated by a product of Gaussian distributions, and the
associated log-ML function χ2 is defined as

χ2(α) =
N∑

i=1

(Oi − Ei)
2

σi
2

, (5.3)

where σi is usually the uncertainty in the i-th bin (σi = Oi
1/2). The larger Oi, the

better the approximation of the Gaussian regime. Channel grouping is a widely
used strategy that allows the bias introduced by this approximation to be reduced.
I grouped channels in order to have at least 25 counts per bin, which is a commonly
adopted compromise. Conversely, when using the Cash statistic I performed a min-
imal grouping to avoid channels with no counts; i.e. the spectrum was substantially
unbinned and no spectral information was lost. Each spectrum was fitted between
2.0 and 10.0 keV with the absorbed thermal model mentioned above. The NH was
fixed to the input value, z was allowed to vary between 0.186 and 0.214 (±7% of
the input value), while kT , Z, and NS were free. I determined best-fit values and
one-sigma uncertainties for all parameters.

In Table 5.1 I compared the weighted average of the Nmeas measured tempera-
tures to the input value, kT0 = 7 keV, for different exposure times and statistics. I
chose Nmeas in order to have similar uncertainties on the average (Nmeas = 1200 for

1In the following equations the dependency of Ei from α is omitted for clarity.
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χ2 Cash
Exp.a kT b

0 kT c ∆T/T d
0 kT c ∆T/T d

0

1000 7.00 6.89±0.01 −1.6% 7.00±0.01 +0.0%
100 7.00 6.83±0.01 −2.4% 7.03±0.01 +0.4%
10 7.00 6.76±0.03 −3.4% 6.91±0.02 −1.3%
5 7.00 6.59±0.04 −5.9% 6.81±0.03 −2.7%

Notes: a exposure time in ks; b input temperature in keV; c measured temperature in keV;
d relative difference.

Table 5.1: Weighted averages of temperature best fit values compared to the input
value and relative differences ∆T/T0, using different exposure times and statistics.

Na
bin kT b

0 kT c ∆T/T d
0

400 7.00 6.99±0.01 −0.1%
100 7.00 6.95±0.01 −0.7%
25 7.00 6.89±0.01 −1.6%

Notes: a counts per bin; b input temperature in keV; c measured temperature in keV;
d relative difference.

Table 5.2: Weighted averages of temperature best-fit values compared to the input
value and relative differences ∆T/T0, using different channel groupings.

5 and 10 ks, Nmeas = 300 for 100 and 1000 ks). In almost all cases, the true temper-
ature is underestimated by a few percent and the effect becomes more evident for
shorter exposure times. I recall that both χ2 and Cash statistics are based on the
ML method. Although X-ray astronomers make extensive use of ML estimators, it
is well known from the literature (e.g. Cowan 1998) that: 1) ML estimators may be
biased, i.e. the expectation value may be different from the true value of the quan-
tity to estimate; 2) ML estimators are usually Gaussian and unbiased only in the
asymptotic limit. In the case at hand, the asymptotic limit is approached when the
total number of counts becomes large. The results reported in Table 5.1 show that:
1) both ML estimators are biased; 2) both estimators are asymptotically unbiased;
3) the Cash estimator tends to the true value more quickly than the χ2 one.

As I have just pointed out, the χ2 is significantly more biased than the Cash
estimator (i.e. the difference between the expected and the true value is greater).
This is because the approximation of the Gaussian regime fails for few counts per
bin. The obvious implication is that, to improve the precision of the χ2 estimates,
one needs to increase the number of counts in each bin, Nbin. In Table 5.2 I compare
the results obtained using the χ2 with different channel groupings (note that this
is not necessary when using the Cash statistic). The input temperature was 7 keV,
the exposure time 1000 ks, and the number of measurements 300. As expected,
I find that the greater the number of counts in each bin, Nbin, the smaller the
bias. However, in practice, grouping of a large number of channels is not desirable,
because it causes loss of spectral information; 25 counts per bin is a commonly
adopted compromise. I have to mention the existence of an alternative way of
reducing the bias that affects the χ2 estimator for few counts per bin. Some authors
(e.g. Churazov et al. 1996; Gehrels 1986; Kearns et al. 1995) have chosen different
statistic weights (σi in Eq. 5.3) instead of the standard O

1/2
i . By analyzing again all

spectra using all the alternative weights implemented in XSPEC, I obtained results
somewhat similar to those already discussed for the Cash statistic.

My results are summarized as follows. The standard χ2 statistic works well
only in the Gaussian regime, which is reached when performing a strong channel
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grouping (see Table 5.2). When using a realistic grouping (e.g. 25 counts per
bin) the measured temperature, kT , is lower than the true temperature, kT0 (see
Table 5.1). The Cash statistic (Cash 1979) works better, because it is based on
the ML function for Poisson processes; however, when the total number of spectral
counts is small, kT is lower than kT0 by a few percent (see Table 5.1). This means
that the Cash ML estimator is only asymptotically unbiased (for a review about
parameter estimation and ML concepts see Cowan 1998). Many efforts (e.g. Cash
1979; Wachter et al. 1979; Baker & Cousins 1984; Gehrels 1986; Nousek & Shue
1989; Kearns et al. 1995; Churazov et al. 1996; Jading & Riisager 1996; Mighell
1999; Hauschild & Jentschel 2001; Bergmann & Riisager 2002; Arzner et al. 2006)
have been devoted to extending the standard theories about curve fitting to the
case of low-count spectra (best fit parameters and confidence intervals estimation,
goodness-of-fit test, etc.); however, no definitive solution has been found yet.

5.2 The source-plus-background case

I also considered a more realistic situation by introducing a simplified instrumental
background. The model is a power law (PEGPWRLW/b in XSPEC) convolved with
the RMF but not multiplied by the ARF. The power-law slope, ΓB, is fixed to 0.25;
the normalization, NB, is calculated at the center of the energy band to minimize
the correlation with ΓB.

There are two ways of analyzing spectra with background: subtract it using a
spectrum from blank field observations or model it. The background subtraction
using the χ2 statistic is a widely used technique; however, in the previous section
(see Sect. 5.1) I showed that, for low-count spectra, the Cash statistic is more
suitable than the χ2 with reasonable grouping. Since the Cash statistic requires the
number of counts in each channel to be greater than zero, the background has to
be modeled (Cash 1979). I analyzed simulated spectra in both ways and compared
the results. Hereafter I call “sub-χ2” the standard analysis technique and “mod-C”
the analysis using the Cash statistic and the background modeling.

I proceeded as for the source-only case, considering the Abell 1689 observation
mentioned in Sect. 5.1 as a guideline. I produced a simulated spectrum choosing
realistic input values for an absorbed thermal (see Sect. 5.1) plus background (see
above) model (WABS*MEKAL+PEGPWRLW/b in XSPEC) and produced Nmeas different
measurements with a Poissonian perturbation of the number of counts in each chan-
nel. In the mod-C case, each spectrum was associated with the RMF and the ARF
and was fitted between 2.0 and 10.0 keV with the WABS*MEKAL+PEGPWRLW/b model.
The NH and ΓB were fixed to the input values, z was allowed to vary between 0.186
and 0.214 (±7% of the input value), kT , Z, NS, and NB were free. I determined
best-fit values and one-sigma uncertainties for all parameters. At last, I computed
the weighted average of all Nmeas values for each parameter using one-sigma uncer-
tainties, and compared it with the input value. In the sub-χ2 case, I simulated a
background-only spectrum with a long exposure time. I considered a PEGPWRLW/b
model (slope and normalization were equal to those of the power law in the source
observation mentioned above) and I perturbed the expected spectrum as explained
above. The adopted background spectrum was the same for all Nmeas measure-
ments, and its exposure time was 1000 ks. For each of the Nmeas source spectra,
I grouped the spectral channels to have at least 25 counts per bin and associated
the background spectrum, the RMF, and the ARF with the binned spectrum. I
fit the net spectrum with a thermal model only (WABS*MEKAL in XSPEC) in the
2.0–10.0 keV band to determine the best-fit values, then computed the weighted
averages and compared them with the input values.

I considered two spatial regions: the ring between 1.0′ and 1.5′ centered on the



5.2. The source-plus-background case 53

Figure 5.1: Simulated spectra accumulated in an inner ring (left panel) and in
an outer ring (right panel). The solid line is the source contribution, the dashed
line the background, and the dotted the sum. In the outer ring, beyond 3 keV,
background counts dominate source counts. See text for further details and for
model parameters.

cluster emission peak, where the source dominates the background (see Fig. 5.1,
left panel) and the ring between 4.5′ and 6.0′, where the background dominates
(see Fig. 5.1, right panel). Input values for the normalizations of both components
were the best-fit values measured in the two rings of the Abell 1689 observation
mentioned in Sect. 5.1. More specifically, in the inner ring NS = 3.5 × 10−3 and
NB = 1.5, and in the outer ring NS = 7.0 × 10−4 and NB = 17.5 (XSPEC units).
For each ring, I considered three input temperatures (namely 5, 7, and 9 keV) and
two exposure times (10 and 100 ks).

In Table 5.3 I show the comparison between the two data analysis techniques
described above (i.e. sub-χ2 and mod-C). At first, I considered the inner ring, where
the source dominates the background. The results are very similar to the case
without background (see Sect. 5.1, Table 5.1). For the 100 ks case, mod-C returns
the correct temperature and sub-χ2 slightly underestimates it. For shorter exposure
times, both techniques return a slightly biased value (bias ≈ 3%). No significant
trend with the input temperature, kT0, is found. Conversely, when considering
the outer ring, where the background dominates, I find the true temperature to
be strongly underestimated in all cases. There is a clear trend with the input
temperature: the higher kT0, the stronger the bias. For long exposure times, mod-
C (bias ≈ 10%) works better than sub-χ2 (bias ≈ 30%). For short exposure times,
both techniques underestimate the true temperature by a factor of 2. These results
are qualitatively similar to those found for the source-only case (see Table 5.1), but
the bias is much stronger.

I have repeated the same analysis as described above for a particular set of
simulated spectra (namely in the outer ring, with exposure time of 10 ks and kT0 =
7 keV) modeling the source with a bremsstrahlung rather than with a MEKAL. The
bremsstrahlung model is simpler and can be expressed as an analytic function of
its two free parameters (i.e. the temperature and the normalization). Conversely,
the MEKAL model has two further parameters (metallicity and redshift), and its
complicated dependency on the parameters is not expressed in an analytic form:
the expected values are tabulated on a finite grid as a function of all parameters.
For this particular set of spectra, the bias for MEKAL and bremsstrahlung models is
the same, suggesting that the bias is not related to the approximation of a finite
grid of values.
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sub-χ2 mod-C
Ring Exp.a kT0

b kT c ∆T/T0
d kT c ∆T/T0

d

1.0′–1.5′ 100 5.00 4.84±0.01 −3.2 % 4.96±0.01 −0.8%
1.0′–1.5′ 100 7.00 6.78±0.02 −3.1 % 6.97±0.02 −0.4%
1.0′–1.5′ 100 9.00 8.69±0.02 −3.4 % 8.97±0.03 −0.3%
1.0′–1.5′ 10 5.00 4.81±0.03 −3.8 % 4.82±0.03 −3.6%
1.0′–1.5′ 10 7.00 6.78±0.05 −3.1 % 6.79±0.05 −3.0%
1.0′–1.5′ 10 9.00 8.68±0.11 −3.6 % 8.62±0.08 −4.2%
4.5′–6.0′ 100 5.00 3.95±0.01 −21.0 % 4.71±0.02 −5.8%
4.5′–6.0′ 100 7.00 5.24±0.02 −25.1 % 6.45±0.03 −7.9%
4.5′–6.0′ 100 9.00 6.43±0.02 −28.6 % 8.09±0.04 −10.1%
4.5′–6.0′ 10 5.00 3.02±0.03 −39.6 % 3.20±0.03 −36.0%
4.5′–6.0′ 10 7.00 3.68±0.04 −47.4 % 3.94±0.04 −43.7%
4.5′–6.0′ 10 9.00 4.11±0.05 −54.3 % 4.52±0.06 −49.8%

Notes: a exposure time in ks; b input temperature in keV; c measured temperature in keV;
d relative difference.

Table 5.3: Comparison between the results obtained using the sub-χ2 and the mod-
C data analysis techniques.

Figure 5.2: A cumulative distribution function (left panel) and the associated prob-
ability density function (right panel).

Some insight into the origin of the bias can be gained by inspecting the probabil-
ity density function (p.d.f.) of the parameter of interest (in this case the tempera-
ture). Here I deal with the Cash statistic, and similar considerations apply to the χ2.
For each measurement, I defined as Cmin the absolute minimum value of the func-
tion C(α). As in the previous section (see Sect. 5.1), I minimized C(α) (see Eq. 5.2)
to determine the best estimate, αbest, of the parameter set (Cmin ≡ C(αbest)). Cash
(1979) has shown that the function ∆C (i.e. C − Cmin) follows a χ2 distribution,
therefore the confidence intervals can be generated in a standard way (e.g. using the
XSPEC command ERROR). For each free parameter (here I considered only the
temperature) I produced the function C with the XSPEC command STEPPAR. I
calculated ∆C(T ) and, since it is χ2 distributed, I could associate with each tem-
perature, TX, the probability that the true value is less or equal to TX, i.e. the
cumulative distribution function (c.d.f.) of the temperature, P (TX). In Fig. 5.3
I compare representative p(T ) for single measurements in different conditions. For
each case, the p(T ) is chosen randomly from the Nmeas different measurements;
therefore, the attention should be focused on the shapes of the p.d.f., rather than
on temperature values. Clearly the curves become less symmetric and less similar
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Figure 5.3: A comparison between representative p(T ) for single measurements ex-
tracted randomly in different conditions. The attention should be focused on the
shapes of the p.d.f., rather than on temperature values. Top panels: the inner ring,
where the source dominates over the background. Bottom panels: the outer ring,
where the background is dominant. For left panels the exposure time is 100 ks, for
right panels 10 ks. The input temperature is always 7 keV. Note that the scales
in ordinate are different. Clearly the curves become less symmetric and less simi-
lar to Gaussians, as the exposure time decreases and the background contribution
increases.
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to Gaussians, as the exposure time decreases and the background contribution in-
creases. The input temperature also plays a role: the higher the temperature, the
less symmetric the curve. Summarizing, the poorer the statistical quality of the
data, the more asymmetric the p(T ) and the stronger the bias.

The way measurements are combined does not change the result. I have ex-
perimented with two different methods: the weighted average of individual mea-
surements and the product of individual p.d.f.. The weighted average roughly ap-
proximates the p(T ) to a Gaussian function and implies the contribution of high
temperature tails be neglected. A more appropriate way to join information from
different and independent measurements is to multiply single p.d.f.. The best value
for the parameter corresponds to the maximum of the joined p.d.f.. I multiplied all
Nmeas p.d.f., computed as explained above, and still find a discrepancy between the
best fit and true values. The bias is only slightly weaker than when computing a
weighted average. I have also tried computing the p(T ) in a different way, i.e. using
the parametric bootstrap technique (Press et al. 1992), which consists in creating
and analyzing a large number of fake datasets starting from model best-fit values.
I essentially obtain the same results.

In Table 5.3 I have showed that the strength of the bias mainly depends on
the total number of counts and on the background contribution. One possibility
for increasing the total counts is to extend the band to lower energies. I have ex-
plored it by analyzing one set of simulated spectra (namely in the outer ring, with
an exposure time of 10 ks and kT0 = 7 keV) between 0.5 and 10.0 keV. In this
energy band the correlation between kT and NS is weaker and the uncertainty on
both parameters for a single measurement is smaller. When using the mod-C tech-
nique, the bias in the broad band is smaller (≈ 10% vs. ≈ 40%) than in the narrow
band, suggesting that also the parameter degeneracy could play an important role
when fitting in the 2.0–10.0 keV band. However, in practice, enlarging the band to
lower energies has also drawbacks, such as the imperfect calibration of EPIC instru-
ments and the presence of the galactic X-ray background (negligible beyond 2 keV),
which introduce systematic effects that are hard to take into account. Moreover,
broadband spectra are substantially more contaminated by emission from low tem-
perature components located on the same line of sight as the dominant component
(Mazzotta et al. 2004; Vikhlinin et al. 2005). For the analysis of real clusters I used
the 0.7–10.0 keV energy band (see Chapter 4).

When considering the realistic case of a thermal source with a background, a
stronger bias is expected (Eadie et al. 1971; Bergmann & Riisager 2002). As in
the source-only case (see Sect. 5.1), I actually find that 1) the χ2 and the Cash
estimators are strongly biased, and that 2) the Cash estimator is less biased than
the χ2 one, especially for long exposure times. The strength of the bias depends
mainly on two factors: the total number of counts and the background contribution.

5.3 Attempts to correct the bias

Having established that neither sub-χ2 nor mod-C return acceptable results, one is
faced with two alternative ways to proceed. A long-term solution to the problem
requires that an unbiased, or perhaps a less biased, ML estimator be found and
implemented within standard fitting packages (i.e. XSPEC). Another, faster, solu-
tion involves correcting the bias a posteriori, making use of extensive Monte Carlo
simulations. In the following sections I show the main results obtained by exploring
both approaches.
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100 ks 20 ks 10 ks
Est.a kT b ∆T/T0

c kT b ∆T/T0
c kT b ∆T/T0

c

T 6.44±0.03 −8.0% 4.96±0.05 −29.1% 4.04±0.07 −42.3%
T−1 6.96±0.03 −0.6% 7.46±0.08 +6.6% 8.83±0.14 +26.1%
T−1/2 6.88±0.03 −1.7% 6.59±0.06 −5.9% 6.36±0.09 −9.1%
T−1/4 6.80±0.03 −2.9% 6.24±0.06 −10.9% 5.72±0.08 −18.3%

Notes: a temperature estimator; b measured temperature in keV; c relative difference.

Table 5.4: Comparison between the results obtained using different estimators of
the temperature. The input temperature is 7 keV.

5.3.1 Using different estimators

From the literature (e.g. Cowan 1998), it is known that even if X̂ is an unbiased
estimator of X, f(X̂) is not necessarily an unbiased estimator of f(X). By reversing
the argument one can argue that if T̂ is a biased estimator of T , a transformation,
f , may exist such that f(T̂ ) is an unbiased (or at least less biased) estimator of
f(T ). To test this idea I defined an analytic model, which I dubbed BREM2, similar
to bremsstrahlung (1.11), by using the MDEFINE command within XSPEC.

ST(E) = NS E−4/3 T−1/2 exp
(
−E

T

)
, (5.4)

where the energy, E, is expressed in keV. The normalization, NS, is chosen to
reproduce the same flux as a MEKAL with no metals. The Gaunt factor is well
approximated by E−4/3.

I simulated 3 sets of 3000 thermal plus background (BREM2+PEGPWRLW/b) spectra
with the following input parameters: NS = 7.2× 10−4, NB = 17.5, and T = 7 keV.
These parameters correspond to those adopted in the case of the outer region (see
Sect. 5.2). Each set had a different exposure time: 10, 20, and 100 ks. I defined 3
different estimators of the temperature,
A = T−1 ,
B = T−1/2 ,
C = T−1/4 ,
and their respective models:
SA(E) = NS E−4/3 A1/2 exp (−AE) ,
SB(E) = NS E−4/3 B exp

(−B2 E
)

,
SC(E) = NS E−4/3 C2 exp

(−C4 E
)

.
For simplicity I have considered only power laws as different f(T ). I fit each set of
spectra with the listed models and measured the best estimate of f(T ). I computed
the weighted average of the 3000 f(T ) and calculated T by using the inverse func-
tion, f−1. In Table 5.4 I report the results of this analysis for different exposure
times and estimators. The choice of the estimator strongly affects the bias. When
using T as estimator, I obtained very similar results to those obtained with a MEKAL.
This was expected, because the model BREM2 is very similar to a bremsstrahlung
(see Eq. 5.4); note also that in Sect. 5.2 I showed that the bias is roughly the same
when using a MEKAL or a bremsstrahlung, as a model. When considering the bias
as a function of the power-law index, I find a minimum corresponding to T−1/2,
which is the best estimator among those considered. For short exposure times (i.e.
10 ks) the use of T−1/2 instead of T reduces the bias by a factor of 4. I suggest
that this could be related to the degree of complexity of the derivative of S(E)
with respect to the estimator. Note also that, when slightly increasing the statistic
(e.g. when considering 20 ks of exposure time), the bias associated with the T−1/2

estimator is almost negligible if compared to typical statistical uncertainties. Such
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Ring Exp.a kT0
b kT c ∆T/T0

d

1.0′–1.5′ 100 5.00 4.96±0.01 −0.8 %
1.0′–1.5′ 100 7.00 6.97±0.01 −0.4 %
1.0′–1.5′ 100 9.00 8.97±0.01 −0.3 %
1.0′–1.5′ 10 5.00 4.88±0.02 −2.4 %
1.0′–1.5′ 10 7.00 6.90±0.05 −1.4 %
1.0′–1.5′ 10 9.00 8.81±0.13 −2.1 %
4.5′–6.0′ 100 5.00 4.90±0.02 −2.0 %
4.5′–6.0′ 100 7.00 6.77±0.04 −3.3 %
4.5′–6.0′ 100 9.00 8.51±0.09 −5.4 %
4.5′–6.0′ 10 5.00 4.68±0.13 −6.4 %
4.5′–6.0′ 10 7.00 5.90±0.24 −15.7 %
4.5′–6.0′ 10 9.00 7.67±0.51 −14.8 %

Notes: a exposure time in ks; b input temperature in keV; c measured temperature in keV;
d relative difference.

Table 5.5: Results obtained fitting p(T ) with a log-normal distribution.

results encourage exploration of this approach (i.e. to consider different estimators)
in order to find a rigorously derived unbiased estimator of the temperature.

5.3.2 Fitting with a log-normal function

The shape of the p(T ) resembles the log-normal function, which is the p.d.f. of any
random variable whose logarithm is normally distributed. If X is a random variable
with a normal distribution, then x ≡ exp(X) has a log-normal distribution. The
log-normal distribution has p.d.f.

f(x;µ, σ) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

(5.5)

for x > 0, where µ and σ are respectively the mean and the standard deviation of
the variable’s logarithm. The expected value is

E(X) = eµ+σ2/2 , (5.6)

and the variance is
var(X) = (eσ2 − 1) e2µ+σ2

. (5.7)

I fit each p(T ) with a log-normal function, f(x; µ, σ) (see Eq. 5.5) and calculated
the best values of µi and σi. I computed a weighted average of µi using σ−2

i as
weights and calculated the expected value (see Eq. 5.6) and the uncertainty, i.e. the
variance (see Eq. 5.7) divided by the square root of the number of measurements.
In Table 5.5 I report the results of these test calculations. In all cases, this method
provides better results than a simple weighted average (see Table 5.3 for a compar-
ison). There is still a bias of a few percent, except for the case of the outer ring
with 10 ks: in this case the bias is greater than 10%. Thus, when the background
contribution is small, the log-normal distribution provides a good estimate, while
the result is still biased when the background is dominant, especially for few total
counts, but much less than when using the standard techniques.

5.3.3 A semi-empirical method: summing three distributions

The three EPIC instruments (MOS1, MOS2, and pn) on board XMM-Newton provide
three simultaneous and independent measurements of the same target; therefore,
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Figure 5.4: Visual representation of the definition of T−, TM, and T+ from a joined
cumulative distribution function.

when dealing with EPIC data, one needs to correctly combine these three mea-
surements. A weighted average is the simplest procedure, however in Sect. 5.2 I
have shown that it leads to biased results. In Sect. 5.2 I have also shown that the
strength of the bias is related to the shape of the p.d.f. and in Sect. 5.3.2 that a
fit with a log-normal function does not return sufficiently accurate results. In this
section, I chose a different procedure, emphasizing the contribution of p.d.f. tails at
high temperature. I derived Nmeas measurements of the temperature with their cor-
responding p.d.f., as in the mod-C case described in Sect. 5.2. I divided the Nmeas

measurements into groups of three; then, for each group, I considered the three
p.d.f., pi(T ) (i=1,2,3), and combined them in a non-standard way by calculating
the sum, rather than the product, of the single p.d.f.. In practice, it is equivalent,
but more useful, to sum the c.d.f., P i(TX) directly. The sum is renormalized by
dividing it by 3. I defined P sum(TX) as

P sum(TX) =
1
3

3∑

i=1

P i(TX) , (5.8)

which is a sort of joined c.d.f. of three measurements, and the associated p.d.f. is
usually more symmetric than the single pi(T ). I defined as T−, TM, and T+ the
temperatures that correspond to a probability, Psum(TX), of 0.1587, 0.5000, and
0.8413, respectively (see Fig. 5.4). I considered TM as the best estimate for the
three joined measurements, dT− ≡ (TM − T−)/

√
3 as the lower uncertainty and

dT+ ≡ (T+−TM)/
√

3 as the upper uncertainty. Thus I have Nmeas/3 “triplet” mea-
surements: TM

+dT+

−dT− . I computed the weighted average of the Nmeas/3 “triplets”,
and in Table 5.6 compare the results with the input values. In almost all cases this
semi-empirical method (hereafter “triplet” method) provides excellent results: the
discrepancy is lower than 2% and often comparable with the statistical uncertainty.

I have tried joining different numbers of measurements together. Simulations
show that, when considering two measurements at a time, the temperature results
slightly underestimated; instead, when considering five measurements, I obtain sub-
stantially correct results, as when using the “triplets”. This suggests that the ef-
fectiveness of this a posteriori correction depends on the number of measurements
combined.
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Ring Exp.a kT0
b kT c ∆T/T0

d

1.0′–1.5′ 100 5.00 4.97±0.01 −0.6 %
1.0′–1.5′ 100 7.00 6.97±0.02 −0.4 %
1.0′–1.5′ 100 9.00 8.98±0.03 −0.2 %
1.0′–1.5′ 10 5.00 4.90±0.04 −2.0 %
1.0′–1.5′ 10 7.00 6.94±0.07 −0.9 %
1.0′–1.5′ 10 9.00 8.98±0.11 −0.2 %
4.5′–6.0′ 100 5.00 5.00±0.02 −0.0 %
4.5′–6.0′ 100 7.00 6.90±0.04 −1.4 %
4.5′–6.0′ 100 9.00 8.91±0.05 −1.0 %
4.5′–6.0′ 10 5.00 5.04±0.06 +0.8 %
4.5′–6.0′ 10 7.00 6.97±0.09 −0.4 %
4.5′–6.0′ 10 9.00 8.96±0.13 −0.4 %

Notes: a exposure time in ks; b input temperature in keV; c measured temperature in keV;
d relative difference.

Table 5.6: Results obtained with the semi-empirical “triplet” method.

I want to stress that this technique is not rigorously derived from principles of
statistics, but it is able to correct the bias and returns the expected temperature
under very different situations (e.g. different background contributions and exposure
times) when using the 2.0–10.0 keV band. This could be related to the fact that
joined p.d.f. are usually more symmetric than the single ones.
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Radial profiles

6.1 The sample

I selected from the XMM-Newton archive a sample of hot (kT > 3.3 keV), inter-
mediate redshift (0.1 . z . 0.3), and high galactic latitude (|b| > 20◦) clusters of
galaxies. Upper and lower limits to the redshift range are determined, respectively,
by the cosmological dimming effect and the size of the EPIC field of view (≈ 15′

radius). Indeed, our data analysis technique requires that the intensity of back-
ground components be estimated in a peripheral region, where the cluster emission
is almost negligible (see Sect. 4.2.1). I retrieved from the public archive all obser-
vations of clusters satisfying the above selection criteria, performed before March
2005 (when the CCD6 of EPIC MOS1 was switched off1) and available at the end
of May 2007. Unfortunately, 23 of these 86 observations are highly affected by soft
proton flares (see Table 6.1) and I excluded them from the sample, as mentioned in
Sect. 4.1. Furthermore, I excluded 14 observations of clusters that show evidence of
recent and strong interactions (see Table 6.2). For such clusters, a radial analysis
is not appropriate, because the gas distribution is far from being azimuthally sym-
metric. Finally, I find that the target of observation 0201901901, which is classified
as a cluster, is probably a point-like source; therefore, I excluded this observation
too from the sample.

In Table 6.3 I list the 48 observations that survived the above mentioned selection
criteria and report cluster physical properties (i.e. redshift, temperature, and scale
radius) and observation characteristics (i.e. exposure time, intensity of residual soft
protons, filter). The redshift value (from optical measurements) is taken from the
NASA Extragalactic Database2; kTM and R180 are derived from the analysis (see
Sect. 6.2). In Fig. 6.1 I report the cluster distribution in the redshift-temperature
space. The only selection effect I detect is the paucity of cool (kTM < 5 keV) clusters
at high (z > 0.2) redshift. In Fig. 6.2 I report the histograms of the frequency
distribution for observation exposure times and for RSB values (see Sect. 4.1.2).
Since the observation 0084230401 of Abell 267 is extremely polluted by QSP (RSB =
1.8), I excluded it from the sample. Observations were performed with THIN1 and
MEDIUM filters, as reported in Table 6.3.

All results are given assuming a ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7,
and H0 = 70 km s−1 Mpc−1.

1http://xmm.esac.esa.int/external/xmm news/items/MOS1-CCD6/index.shtml
2http://nedwww.ipac.caltech.edu
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Name Obs ID
RXCJ0303.8–7752 0042340401
RXCJ0516.7–5430 0042340701
RXCJ0528.9–3927 0042340801
RXCJ2011.3–5725 0042341101
Abell 2537 0042341201
RXCJ0437.1+0043 0042341601
Abell 1302 0083150401
Abell 2261 0093030301
Abell 2261 0093030801
Abell 2261 0093030901
Abell 2261 0093031001
Abell 2261 0093031101
Abell 2261 0093031401
Abell 2261 0093031501
Abell 2261 0093031601
Abell 2261 0093031801
Abell 2219 0112231801
Abell 2219 0112231901
RXCJ0006.0–3443 0201900201
RXCJ0145.0–5300 0201900501
RXCJ0616.8–4748 0201901101
RXCJ0437.1+0043 0205330201
Abell 2537 0205330501

Table 6.1: Observations excluded from the sample due to high soft proton contam-
ination.

Name Obs ID
Abell 2744 0042340101
Abell 665 0109890401
Abell 665 0109890501
Abell 1914 0112230201
Abell 2163 0112230601
Abell 2163 0112231501
RXCJ0658.5–5556 0112980201
Abell 1758 0142860201
Abell 1882 0145480101
Abell 901 0148170101
Abell 520 0201510101
Abell 2384 0201902701
Abell 115 0203220101
ZwCl2341.1+0000 0211280101

Table 6.2: Observations of clusters that show evidence of recent and strong inter-
actions.
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Name Obs ID za kTM
b R180

c Exp.d RSB
e Ff

RXCJ0043.4–2037 0042340201 0.2924 6.8 1.78 11.9 11.3 1.25 T
RXCJ0232.2–4420 0042340301 0.2836 7.2 1.85 12.1 11.7 1.08 T
RXCJ0307.0–2840 0042340501 0.2534 6.8 1.82 11.4 12.6 1.08 T
RXCJ1131.9–1955 0042341001 0.3072 8.1 1.93 12.4 12.3 1.08 T
RXCJ2337.6+0016 0042341301 0.2730 7.2 1.86 13.4 13.1 1.19 T
RXCJ0532.9–3701 0042341801 0.2747 7.5 1.90 10.9 10.5 1.09 T
Abell 68 0084230201 0.2550 7.2 1.88 26.3 25.9 1.37 M
Abell 209 0084230301 0.2060 6.6 1.85 17.9 17.8 1.19 M
Abell 267 0084230401∗ 0.2310 4.5 1.49 17.0 16.5 1.79 M
Abell 383 0084230501 0.1871 4.4 1.52 29.3 29.8 1.33 M
Abell 773 0084230601 0.2170 7.5 1.96 13.6 15.5 1.16 M
Abell 963 0084230701 0.2060 6.5 1.83 24.4 26.0 1.19 M
Abell 1763 0084230901 0.2230 7.2 1.92 13.0 13.2 1.08 M
Abell 1689 0093030101 0.1832 9.2 2.21 36.8 36.8 1.14 T
RX J2129.6+0005 0093030201 0.2350 5.5 1.66 36.0 37.5 1.21 M
ZW 3146 0108670101 0.2910 7.0 1.81 52.9 52.9 1.07 T
E1455+2232 0108670201 0.2578 5.0 1.56 35.3 35.8 1.11 M
Abell 2390 0111270101 0.2280 11.2 2.37 9.9 10.3 1.11 T
Abell 2204 0112230301 0.1522 8.5 2.16 18.2 19.5 1.06 M
Abell 1413 0112230501 0.1427 6.7 1.92 25.4 25.4 1.10 T
Abell 2218 0112980101 0.1756 6.5 1.86 18.2 18.2 1.17 T
Abell 2218 0112980401 0.1756 7.0 1.93 13.7 14.0 1.42 T
Abell 2218 0112980501 0.1756 6.1 1.80 11.3 11.0 1.07 T
Abell 1835 0147330201 0.2532 8.6 2.05 30.1 29.2 1.16 T
Abell 1068 0147630101 0.1375 4.5 1.58 20.5 20.8 1.09 M
Abell 2667 0148990101 0.2300 7.7 1.96 21.9 21.6 1.48 M
Abell 3827 0149670101 0.0984 7.1 2.02 22.3 22.4 1.16 M
Abell 3911 0149670301 0.0965 5.4 1.77 25.8 26.1 1.43 T
Abell 2034 0149880101 0.1130 7.0 1.99 10.2 10.5 1.16 T
RXCJ0003.8+0203 0201900101 0.0924 3.7 1.47 26.3 26.6 1.10 T
RXCJ0020.7–2542 0201900301 0.1424 5.7 1.78 14.8 15.4 1.02 T
RXCJ0049.4–2931 0201900401 0.1080 3.3 1.37 19.2 18.8 1.28 T
RXCJ0547.6–3152 0201900901 0.1483 6.7 1.92 23.3 24.0 1.12 T
RXCJ0605.8–3518 0201901001 0.1410 4.9 1.65 18.0 24.1 1.07 T
RXCJ0645.4–5413 0201901201 0.1670 7.1 1.95 10.9 10.9 1.11 T
RXCJ1044.5–0704 0201901501 0.1323 3.9 1.47 25.7 25.9 1.03 T
RXCJ1141.4–1216 0201901601 0.1195 3.8 1.46 28.4 28.6 1.03 T
RXCJ1516.3+0005 0201902001 0.1183 5.3 1.73 26.7 26.6 1.13 T
RXCJ1516.5–0056 0201902101 0.1150 3.8 1.46 30.0 30.0 1.08 T
RXCJ2014.8–2430 0201902201 0.1612 7.1 1.96 23.0 23.4 1.05 T
RXCJ2048.1–1750 0201902401 0.1470 5.6 1.75 24.6 25.3 1.07 T
RXCJ2149.1–3041 0201902601 0.1179 3.3 1.37 25.1 25.5 1.11 T
RXCJ2218.6–3853 0201903001 0.1379 6.4 1.88 20.2 21.4 1.11 T
RXCJ2234.5–3744 0201903101 0.1529 8.6 2.17 18.9 19.3 1.31 T
RXCJ0645.4–5413 0201903401 0.1670 8.5 2.13 11.5 12.1 1.51 T
RXCJ0958.3–1103 0201903501 0.1527 6.1 1.83 8.3 9.4 1.16 T
RXCJ0303.8–7752 0205330101 0.2742 7.5 1.89 11.7 11.5 1.18 T
RXCJ0516.7–5430 0205330301 0.2952 7.5 1.87 11.4 11.7 1.19 T

Notes: a redshift taken from the NASA Extragalactic Database; b mean temperature in
keV derived from the analysis; c scale radius in Mpc derived from the analysis;
d MOS1 and MOS2 good exposure time in ks; e intensity of residual soft protons
(see Eq. 4.1); f filter wheel: THIN1 (T) or medium (M); ∗ excluded due to high
residual soft proton contamination.

Table 6.3: Physical properties and observation details for the 48 clusters analyzed.
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Figure 6.1: Distribution of selected clusters in the redshift-temperature space. I
distinguish cool core (blue), non-cool core (red) and uncertain (green) clusters, as
defined in Sect. 6.2. There is no evidence of selection effects, except for a weak
positive correlation between redshift and temperature.

Figure 6.2: Histograms of the frequency distribution for averaged MOS exposure
time (left panel) and RSB (right panel) values.
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Figure 6.3: Radial temperature profiles for all clusters in my sample rescaled by
R180 and kTM.

6.2 Temperature and metallicity profiles

Clusters in my sample have different temperatures and redshifts, therefore it is
not trivial to identify one (or more) parameters that indicate the last ring where
the temperature measurement is reliable. I define an indicator, I, as the source-
to-background count rate ratio in the energy band used for the spectral fitting.
For each observation and each ring, I calculated I: the higher I, the more the
source contribution, the more reliable the measurement in that particular ring. The
indicator I is affected by an intrinsic bias; i.e., upward statistical fluctuations of the
temperature are associated with higher I (because of the difference in spectral shape
between source and background models); therefore, near a threshold, the mean
temperature is slightly overestimated. This systematic effect is almost negligible
when considering the whole sample, but may appear when analyzing a small number
of objects; however, I note that, although present, it does not affect results obtained
when dividing the whole sample into subsamples (e.g. Sects. 7.1.2 and 8.1.2).

In Fig. 6.3 I show the radial temperature profiles for all clusters in my sample
by setting a lower limit I0 = 0.6; spectra are fitted in the 0.7–10.0 keV band. Each
profile is rescaled by the cluster mean temperature, kTM, computed by fitting the
profile with a constant after the exclusion of the core region (i.e. for R > 0.1 R180).
The radius is rescaled by R180, i.e. the radius encompassing a spherical density
contrast of 180 with respect to the critical density. I computed R180 from the mean
temperature and the redshift (Arnaud et al. 2005):

R180 = 1780
(

kTM

5 keV

)1/2

h(z)−1 kpc, (6.1)

where h(z) = (Ωm(1+z)3+ΩΛ)1/2. The scale radius, R180, is a good approximation
to the virial radius in an Einstein-De Sitter universe and has been largely used to
rescale cluster radial properties (e.g. Markevitch et al. 1998; De Grandi & Molendi
2002; Vikhlinin et al. 2005). I then used 180 as an over-density for comparing
my results with previous works (see Sect 8.1.6), even if the virial radius encloses a
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Figure 6.4: Radial metallicity profiles for all clusters in my sample. Abundances
are expressed in Anders & Grevesse (1989) solar values and radii in units of R180.

spherical density contrast of about 100 in the current adopted cosmology (Eke et al.
1998).

In Fig. 6.4 I show radial metallicity profiles for all clusters in my sample.
All metallicity measurements are relative to the solar values published by Anders
& Grevesse (1989). Even if these have been superseded by more recent values
(Grevesse & Sauval 1998; Asplund et al. 2005), they allow straightforward compari-
son with most of the literature (e.g. De Grandi & Molendi 2001; Balestra et al. 2007;
Baldi et al. 2007). Grevesse & Sauval (1998) and Asplund et al. (2005) introduced
a 0.676 and 0.60 times lower iron solar abundance respectively, while other elements
are substantially unchanged. A simple scaling by 0.676 and 0.60 converts measures
from the Anders & Grevesse (1989) iron abundance to the Grevesse & Sauval (1998)
and Asplund et al. (2005) abundances. The radius is rescaled by R180, as for the
temperature profiles. The profiles are limited to ≈ 0.4 R180 because beyond that
radius the source-to-background count rate ratio is too small and the measurements
are unreliable.

It is worth noting that, especially for temperature profiles, the error bars are
usually strongly asymmetric; i.e., the upper bar is larger than the lower. Moreover,
the higher the temperature, the larger the error bars. The reason is that most of
the information on the temperature is located around the energy of the exponential
cut-off. Due to the spectral shapes of source and background components and to
the sharp decrease of the effective areas at high energies, the source-to-background
count rate ratio strongly depends on the energy band (see for example Fig. 4.1);
i.e., the higher the cut-off energy, the lower the source-to-background ratio and the
larger the uncertainties.

In Fig. 6.5 I report the mean profiles binned in units of R180; these values have
been computed by performing, for each new bin, a weighted average of temperature
(or metallicity) values in the original bins which have a non-zero intersection with
the new bin. The weight is the product of two components: one is the inverse
squared errors, the other depends on the intersection between the original bin and
the new one. If the original bin is totally included into the new one, the weight is
equal to one. If the original bin has only a partial intersection with the new one,
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Figure 6.5: Mean radial temperature (top panel) and metallicity (bottom panel)
profiles averaged over all clusters. Temperatures are rescaled by kTM, abundances
are expressed in Anders & Grevesse (1989) solar values, and radii are in units of
R180. The dotted lines show the one-sigma scatter of the values around the average,
for both profiles.
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Figure 6.6: Temperature vs. radius for the innermost ring respectively scaled by
kTM and R180. Clusters for which the temperature is significantly (at least 3σ) lower
than kTM are defined as cool cores (blue circles); those for which the temperature
profile does not significantly (at least 2σ) decrease are defined as non-cool cores (red
circles); other clusters, whose membership is not clearly determined, are classified
as uncertain (green circles). When considering distant clusters, which fill the right
side of the panel, smaller gradients are expected due to the lower spatial resolution.

the weight is the fraction of the original bin that belongs to the new one. Possible
blurring effects associated either with the original binning in angular units or with
the recasting in units of R180 should be minimal. As far as the original binning is
concerned, I note that the size of central bins (i.e. 30′′) is comparable to the XMM-
Newton PSF. As far as the recasting is concerned, what I show in Fig. 6.5 is the
result of various trials specifically aimed at reaching the best compromise between
resolution and statistical quality; moreover, the size of central bins (i.e. 0.04 R180)
corresponds to ≈ 30′′ for clusters at z ≈ 0.2 with a temperature of 7 keV.

The temperature profiles (see Fig. 6.3) show a clear decline beyond ≈ 0.2 R180

and toward the center, because of the presence of cool core clusters (see Sect. 1.4.3).
The measurements extend out to ≈ 0.6 R180. The large scatter of values is mostly of
statistical origin; however, a maximum likelihood test shows that, when excluding
the region below 0.2 R180, profiles are characterized by a 6% intrinsic dispersion,
which is comparable to the systematics (see Sect. 7.1.3), so that the existence of
a universal cluster temperature profile is still an open issue. The scatter in the
inner region is mostly due to the presence of both cool core and non-cool core
clusters, but also to the choice of preserving the azimuthal symmetry at large radii
(see Sect. 4.1.3). In Fig. 6.6 I report temperature and radius of the innermost ring
scaled by kTM and R180 for all clusters. I define (i) cool core (hereafter CC) clusters
as those for which the temperature is significantly (at least 3σ) lower than kTM, (ii)
non-cool core (hereafter NCC) clusters as those for which the temperature profile
does not significantly (at least 2σ) decrease, and (iii) uncertain (hereafter UNC)
clusters as those for which the membership is not clearly determined. In Table 6.4
I report the membership for each cluster.

The mean metallicity (see Fig. 6.5, right) is 0.45 Z¯ in the center and decreases
out to ≈ 0.2 R180; beyond this radius the profile is consistent with being flat, a fit
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CCa NCCb UNCc

Abell 383 RXCJ0043.4–2037 RXCJ0232.2–4420
RX J2129.6+0005 Abell 1763 RXCJ0307.0–2840
ZW 3146 Abell 2218 RXCJ1131.9–1955
E1455+2232 Abell 3911 RXCJ2337.6+0016
Abell 2390 RXCJ0003.8+0203 RXCJ0532.9–3701
Abell 2204 RXCJ0020.7–2542 Abell 68
Abell 1835 RXCJ0049.4–2931 Abell 209
Abell 1068 RXCJ1516.3+0005 Abell 773
Abell 2667 RXCJ1516.5–0056 Abell 963
RXCJ0605.8–3518 Abell 1689
RXCJ1044.5–0704 Abell 1413
RXCJ1141.4–1216 Abell 3827
RXCJ2014.8–2430 Abell 2034
RXCJ2149.1–3041 RXCJ0547.6–3152
RXCJ0958.3–1103 RXCJ0645.4–5413

RXCJ2048.1–1750
RXCJ2218.6–3853
RXCJ2234.5–3744
RXCJ0303.8–7752
RXCJ0516.7–5430

Notes: a cool core clusters; b non-cool core clusters; c uncertain clusters.

Table 6.4: Cool core, non-cool core, and uncertain clusters.

with a constant for R > 0.2 R180 gives Z = 0.23±0.01 Z¯. The profiles show a large
scatter, which is mostly of statistical origin. In the central regions (R < 0.2 R180) I
find an intrinsic scatter of 22± 2% related to the presence of cool core clusters; in the
outer regions (R > 0.2 R180) the intrinsic scatter is only 14 ± 8% (i.e. ≈ 0.03 Z¯),
the same order of magnitude as the systematics (see Sect. 7.1). Past works (e.g.
De Grandi & Molendi 2001) have shown that the abundance profiles of cool core
and non-cool core clusters differ in the central regions. I found qualitatively similar
results, discussed in Sect. 8.2.1 and in Chapter 10.
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Chapter 7

Discussion of systematic
effects

7.1 Evaluation of systematics on temperature mea-
sures

I carefully checked my results, searching for possible systematic effects. Prior to
the analysis, I made use of extensive simulations to quantify the impact of different
spectral components on a simulated temperature profile (“a priori” tests). After
the analysis, I investigated how the measured temperature profile changed, when
choosing different key parameters (“a posteriori” tests).

7.1.1 “A priori” tests

I performed simulations that reproduced our analysis procedure as closely as pos-
sible (see Chapter 4). I considered two rings: the external 10′–12′, Rext, where the
background parameters are estimated, and the 4.5′–6′, Rint, where the temperature
is measured. The exposure time for each spectrum is always 20 ks, i.e. a representa-
tive value for my sample (see Fig. 6.2). As in Chapter 5, I used the Abell 1689 EPIC
MOS1 observation as a guideline, for producing RMF and ARF, and for choosing
typical input parameters. The simulation procedure is structured as follows:

• choice of reasonable input parameters,

• generation of 300 spectra in Rext,

• generation of 500 spectra in Rint,

• estimate of background parameters in Rext,

• rescaling background parameters and fitting spectra in Rint.

Simulation details are described in each subsection. I tested the effect of the cosmic
variance, of an inaccurate estimate of the cluster emission in Rext, and of the QSP
component. All results were obtained by fitting spectra in the 0.7–10.0 keV band.
I also conducted a similar analysis for the 2.0–10.0 keV band, finding that the
systematics for the two bands are the same order of magnitude. I recall, however,
that the hard band is characterized by the worst statistics; therefore, in this case
systematic errors are masked by statistical ones and have less impact on the final
measurement.
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Figure 7.1: Relative differences between measured and input values for the source
temperature, kT , and normalization, NS, as a function of the factor F , which simu-
lates the fluctuation due to the cosmic variance (see text for details). Uncertainties
are smaller than the circle size. 30% fluctuations cause ≈ 10% variations in kT and
NS. For a positive/negative fluctuation, the measured kT and NS are higher/lower
than the input values.

The cosmic variance

I employed a simulation to quantify the effect of the cosmic variance on temperature
and normalization measurements. In this simulation I neglected the soft proton
contribution; the background components are the HALO, the CXB, and the NXB,
and are modeled as for MOS1 in Sect. 3.2.2. In Rext there were only background
components, while in Rint there was also the thermal source. Normalization1 input
values in Rext were: N ext

HALO = 1.6 × 10−4, N ext
CXB = 5.0 × 10−2, and N ext

NXB =
1.0 × 10−2; input values in Rint were obtained by rescaling the values in Rext by
the area ratio (i.e. as in Eq. 4.2 with K(r) = 1.0). Then, NCXB was also multiplied
by a factor, F , which simulates the fluctuation due to the cosmic variance between
Rint and Rext. After the excision of brightest point-like sources (see Sect. 4.1.1),
one-sigma fluctuations were expected to be ≈ 30%. I then considered 3 cases: a null
(F = 1.0), a positive (F = 1.3), and a negative (F = 0.7) fluctuation. In the first
case the input value for CXB in Rint was equal to that rescaled by the area ratio, in
the second it was 30% higher, and in the third 30% lower. Input parameters for the
thermal model in Rint were kT = 6 keV, Z = 0.2 Z¯, z = 0.2, and NS = 7.0×10−4.
In Rext, Z and z were fixed to the input values, while kT and NS were free. For this
particular choice of the parameters, the source-to-background count rate ratio, I, is
1.13 (see Sect. 6.2). As explained in Sects. 4.2.1 and 4.2.2, I determined the ranges
of variability for NHALO, NCXB, and NNXB and rescaled them in Rint. I then fit
spectra in the 0.7–10.0 keV band and calculated the weighted averages of kT and
NS over the 500 simulations.

In Fig. 7.1 I show the relative differences between measured and input values for
the temperature, kT (filled circles), and the normalization, NS (empty circles). A
positive fluctuation of CXB normalization (i.e. F = 1.3) returns higher temperature

1Normalization values are always reported in XSPEC units
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and normalization, because the excess of counts due to the CXB is modeled by the
thermal component, which is steeper than the CXB power law. For the F = 1.0
case, while NS returns exactly the input value, kT returns a slightly (≈ 3%) un-
derestimated value, probably due to the bias on the temperature estimator (see
Chapter 5). The effect of the cosmic variance is roughly symmetric on both kT
and NS, making it almost negligible when averaging over a large sample. I also
performed simulations for my worst case, i.e. I = 0.6 (see Sect. 6.2), finding qual-
itatively the same results. For the F = 1.0 case, the bias on the temperature is
≈ 8% rather than ≈ 3% and the bias on the normalization is negligible.

The cluster emission in the 10′–12′ ring

The source contribution in the 10′–12′ ring, which mainly depends on cluster redshift
and emission measure, is difficult to estimate with accuracy. I employed a simulation
to determine how an inaccurate estimate could affect the measurement of cluster
temperature, kT , and normalization, NS. Soft protons were neglected in this case,
too; background components and their input values were the same as for the F = 1.0
case of the cosmic variance tests. Input parameters for the thermal model in Rint

were the same as in that case, instead in Rext were kT ext = 4 keV, Zext = 0.2 Z¯,
zext = 0.2, and N ext

S = 2.5× 10−4. For this particular choice of the parameters, the
source-to-background count rate ratio, I, is 1.13 (see Sect. 6.2). When fitting spectra
in Rext, all thermal parameters were fixed: namely, the temperature, the metallicity,
and the redshift were fixed to the input values, while for N ext

S I considered 4 cases.
In the first case, I neglected the source contribution (N ext

S = 0); in the other cases,
the normalization was fixed to a value lower (N ext

S = 1.0×10−4), equal (N ext
S = 2.5×

10−4), and higher (N ext
S = 4.0× 10−4) than the input value. Normalizations of all

background components (namely NHALO, NCXB, and NNXB) were free parameters.
For each case, I computed the weighted average of NHALO, NCXB, and NNXB over
the 300 spectra in Rext and compared them to the input values (see Fig. 7.2). Both
NNXB and N ext

S are weakly correlated; instead, NHALO and, in particular, NCXB

show a strong negative correlation with the input value for N ext
S , which depends on

their spectral shapes. Note that, if I correctly estimate N ext
S , then NHALO, NCXB,

and NNXB converge to their input values.
For each input value of N ext

S in Rext, I fit spectra in Rint in the 0.7–10.0 keV
band after the usual rescaling of background parameters (see Sect. 4.2.2), calculated
the weighted averages of the source temperature, kT , and normalization, NS, over
the 500 simulations, and compared them to the input values (see Fig. 7.3). Values
of kT and NS measured in Rint show a positive correlation with the value of N ext

S

fixed in Rext. This is indeed expected because of the broad similarity in the spectral
shapes of thermal and CXB models. In Rext an overestimate of N ext

S implies an
underestimate of NCXB (see Fig. 7.2); NCXB is then rescaled by the area ratio, hence
underestimated in Rint too. This results in an overestimate of kT and NS in Rint,
as for the F = 1.3 case of the cosmic variance simulations. Typical uncertainties (≈
50%) on N ext

S cause systematic 5% and 7% errors on kT and NS (see Fig. 7.3). Note
that, after the correction for the ≈ 3% bias mentioned when analyzing the cosmic
variance simulations, the effect on NS and kT is symmetric; thus, when averaging
on a large sample, the effect on the mean profile should be almost negligible. Note
also that if I were to neglect the cluster emission in the 10′–12′ ring (N ext

S = 0), I
would cause a systematic underestimate of kT and NS on the order of 7-10% (see
Fig. 7.3).

In a real case I deal with a combination of fluctuations and cannot treat each
one separately, so I employed a simulation to investigate how fluctuations with
different origins combine with each other. I combined effects due to the cosmic
variance and to an inaccurate estimate of the cluster emission in the 10′–12′ ring,
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Figure 7.2: Relative differences between measured and input values for the normal-
ization of background components (namely NHALO, NCXB, and NNXB) as a function
of the input value for cluster normalization in Rext, N ext

S . Uncertainties are smaller
than the symbol size, and NCXB shows the strongest (negative) correlation with
N ext

S .

Figure 7.3: Relative differences between measured and input values for the source
temperature, kT , and normalization, NS, as a function of the input value for
cluster normalization in Rext, N ext

S . Uncertainties are smaller than the symbol
size. An underestimate/overestimate of N ext

S causes kT and NS to be underesti-
mated/overestimated.
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by considering the F = 0.7, F = 1.0, and F = 1.3 cases mentioned when analyzing
the cosmic variance simulations and N ext

S = 1.0 × 10−4, N ext
S = 2.5 × 10−4, and

N ext
S = 4.0×10−4 mentioned in this section. The simulation procedure was the same

as described before. For the cluster normalization, I find that fluctuations combine
in a linear way and that effects are highly symmetric with respect to the zero case
(F = 1.0 for the cosmic variance and N ext

S = 2.5× 10−4 for the cluster emission in
the 10′–12′ ring). For the cluster temperature, I find again the ≈ 3% bias related
to the estimator; once accounted for this 3% offset, results are roughly similar to
those found for the normalization case. To be more quantitative, when averaging on
a large sample, the expected systematic on the temperature measurement is ≈ 3%
due to the biased estimator and . 2% due to deviations from the linear regime.

The QSP component

A careful characterization of the QSP component is crucial for our data analysis
procedure. I employed a simulation to quantify how an incorrect estimate of the
QSP contribution from the “IN over OUT” diagnostic; i.e., the RSB = 1.10 (see
Sect. 4.1.2) could affect the measurements. The spectral components and their input
values were the same as for the F = 1.0 case of the cosmic variance simulations, plus
the QSP component in both rings. The model for QSP was the same as described
in Sect. 3.2.2. I chose two input values for NQSP corresponding to a standard
(RSB = 1.10) and a high (RSB = 1.40) level of QSP contamination. For these
particular choices of the parameters, the source-to-background count rate ratio, I,
is 1.06 for RSB = 1.10 and 0.77 for RSB = 1.40 (see Sect. 6.2). For each input value
I considered 2 cases: an underestimate (RSB = 1.05 − 1.35) and an overestimate
(RSB = 1.15 − 1.45) of the correct value. By fitting spectra in Rext in the 0.7–
10.0 keV band, I determined the range of variability of NHALO, NCXB, and NNXB,
and rescaled it in Rint (see Sect. 4.2.2). I then fit spectra in Rint and compared
the weighted averages of cluster temperature, kT , and normalization, NS, to their
input values (see Fig. 7.4).

When considering NS, the relative difference between measured and input values
is less than 5% for all cases and the effect is symmetric, so the impact on the mean
profile obtained from a large sample should be very weak. Instead, kT strongly
depends on the estimate of the QSP component: the relative difference is ≈ 5%
for RSB = 1.10 and ≈ 20% for RSB = 1.40. When overestimating RSB, kT is
underestimated, because of the broad similarity in the spectral shapes of the two
components. In the RSB = 1.40 case, the values corresponding to an overestimate
and an underestimate, although symmetric with respect to zero, are characterized
by different uncertainties (errors in the first case are twice those in the second);
thus, a weighted average returns a 10% underestimated value.

7.1.2 “A posteriori” tests

In this subsection I investigate how the mean profile is affected by a particular choice
of key parameters: the last ring for which I measure a temperature, the energy band
used for the spectral fitting, and the QSP contamination.

The truncation radius

In Sect. 6.2 I introduced the indicator I to determine the last ring where the tem-
perature measurement is reliable. I produced the mean temperature profiles by
averaging over all measurements or which I > I0, for different values of the thresh-
old I0. In Fig. 7.5 I report the profiles obtained in the 0.7–10.0 keV band for different
choices of I0 (namely 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0). As expected, the smaller the
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Figure 7.4: Relative differences between measured and input values for the source
temperature, kT , and normalization, NS, as a function of the input value for the
QSP contribution, RSB. Uncertainties are smaller than the circle size. Top panel:
RSB is underestimated to 1.05 and 1.35 with respect to 1.10 and 1.40. Bottom
panel: RSB is overestimated to 1.15 and 1.45 with respect to 1.10 and 1.40. See
text for the discussion.
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Figure 7.5: Mean temperature profiles computed by choosing different values for
the threshold I0 (defined in Sect. 6.2) plotted with different colors. There is a clear
systematic effect: the smaller the threshold, the steeper the profile. The radii have
been slightly offset in the plot for clarity.

threshold, the farther the mean profile extends. Let us focus on the points between
0.3 and 0.6 of R180, a clear systematic effect is noticed: the smaller the threshold,
the lower the temperature; meaning that, on average, the temperature is lower in
those rings where the background is more important. Such a systematic effect be-
comes evident where cluster emission and background fluctuations are comparable
and is probably related to small imperfections in my background modeling and to
the bias on the temperature estimator (see Sect. 7.1.1). The imperfections of my
background model becomes the dominant effect for low values of I (namely I . 0.4).
Thus, under a certain threshold, I0, the measurements are no longer reliable. In
Fig. 7.5 I show that I0 = 0.6 represents a good compromise. Indeed, when consid-
ering the region between 0.4 and 0.5 of R180 and comparing the average value for
kT obtained for a threshold I0 = 0.6 and for I0 = 1.0, I find a small (4% ± 3%)
relative difference.

Fitting in different bands

I fit spectra in two different energy bands (i.e. 0.7–10.0 keV and 2.0–10.0 keV),
each one characterized by different advantages and drawbacks (see Sect. 4.2). The
indicator, I, defined in Sect. 6.2 depends on the band in which the count rate is
calculated: more precisely, I(0.7–10.0) is roughly 1.5 times greater than I(2.0–10.0)
for low values (i.e. I . 2.0). The threshold I0 = 0.6 in the 0.7–10.0 keV band
corresponds to I0 = 0.4 in the 2.0–10.0 keV band. In Fig. 7.6 I compare the mean
temperature profiles obtained in the 0.7–10.0 keV band (I0 = 0.6) and in the 2.0–
10.0 keV band (I0 = 0.4). The profiles are very similar, except for the innermost
point. The uncertainties in the 0.7–10.0 case are much smaller at all radii, even
if the total number of points (i.e. the number of rings for all cluster) is the same,
because the higher statistical quality at low energies allows a substantial reduction
of the errors on single measurements.

In the most internal point, a high discrepancy between the two measurements
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Figure 7.6: Mean temperature profiles obtained by fitting spectra in the 0.7–
10.0 keV (filled circles) and in the 2.0–10.0 keV band (empty circles). The profiles
are very similar, except for the innermost point. The radii have been slightly offset
in the plot for clarity.

is present, although in that region the background is negligible. This is due to the
superposition, along the line of sight, of photons emitted by optically thin ICM with
different densities and temperatures (see Sect. 1.2). When looking at the center
of cool core clusters, the line of sight intercepts regions characterized by strong
temperature gradients, so the accumulated spectrum is the sum of many components
at different temperatures. In this case, the best fit value for the temperature strongly
depends on the energy band (i.e. the harder the band, the higher the temperature),
because the exclusion of the soft band implies the exclusion of most of the emission
from cooler components (Mazzotta et al. 2004).

Contamination from QSP

I divided clusters in my sample into four groups, according to the QSP contamina-
tion estimated from RSB (see Sect. 4.1.2). In Fig. 7.7 I report the mean temperature
profiles for the four groups, by fitting spectra in the 0.7–10.0 keV band and fixing
I0 = 0.6. When dividing clusters into subsamples, I chose larger bin sizes to reduce
the error bars. When RSB was high, my selection criterion based on the source-to-
background count rate ratio (see Sects. 6.2) excluded the outer rings, indeed the red
profile only extends out to 0.5 R180. No correlation is found between the shape of
the profiles and RSB; i.e., the four profiles are fully consistent. The discrepancy in
the innermost ring is due to the presence of a different number of cool core clusters
in each group. I therefore conclude that the systematic error associated with the
QSP contamination is smaller than statistical errors (≈ 7% beyond 0.4 R180).

7.1.3 A budget for systematics

In this subsection I summarize the main results for what concern systematic errors
associated with the mean profile. I compare expected systematics computed from
“a priori” tests with measured systematics from “a posteriori” tests.
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Figure 7.7: Mean temperature profiles as a function of the QSP contamination,
RSB. The four profiles are fully consistent, and no correlation is found between the
shape of the profiles and RSB. The radii have been slightly offset in the plot for
clarity.

The F = 1.0 case of the cosmic variance simulations and the N ext
S = 2.5× 10−4

case of the cluster outer ring simulations show that our analysis procedure is affected
by a 3% to 8% systematic underestimate of the temperature when analyzing the
outermost rings. The bias is probably related to the temperature estimator as
described in Chapter 5. In contrast, the normalization estimator is unbiased. In
Sect. 7.1.1, I also found that i) the effects of the cosmic variance and of an inaccurate
estimate of the cluster emission in the external ring are symmetric for both the
temperature, kT , and the normalization, NS; ii) the effects due to fluctuations with
different origins combine in a linear way and, when averaging over a large sample,
the systematic associated with the mean profile is almost negligible for NS and
. 2% for kT . Thus, the expected systematic for kT is . 5%.

Moreover, in Sect. 7.1.1 I found that, for a standard level of contamination
(RSB = 1.10), a typical 5% error in the estimate of RSB causes negligible effects
on both measurements of cluster temperature and normalization. The same er-
ror causes negligible effects on NS measurements for a high level of contamination
(RSB = 1.40). In contrast, effects on kT for RSB = 1.40 are important: the same 5%
error causes a 10% underestimate of kT , also when averaging over a large sample.
However, at the end of Sect. 7.1.2, in particular from Fig. 7.7, I have concluded
that, when considering the whole sample, the systematic error associated with the
QSP contamination is smaller than statistical errors (≈ 7% beyond 0.4 R180). The
difference between expected and measured systematic errors is only apparent. In-
deed, when analyzing my sample, I averaged measurements that span a wide range
of values for RSB and I; conversely, the 10% systematic error is expected for an
unfavorable case, i.e. RSB = 1.40 and I = 0.77.

In Sect. 7.1.2 I compared the mean temperature value obtained for a threshold
I0 = 0.6 and for I0 = 1.0 in an outer region (i.e. between 0.4 and 0.5 of R180). In
this ring the mean value for the indicator I is 1.14, thus the expected bias related to
the temperature estimator is ≈ 3% (see Sect. 7.1.1). Actually, I measured a 4%±3%
temperature discrepancy, which is consistent with the expected bias. As pointed
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Figure 7.8: Mean temperature profile rescaled by R180 and kTM. For each ring,
empty boxes and shaded regions indicate one-sigma uncertainties respectively before
and after the bias correction.

out in Sect. 7.1.2, the discrepancy could also be due to small imperfections in my
background model. I am not able to quantify the amount of this contribution, but
it is expected to be small when considering I > 0.6.

To summarize, in external regions the measurements of the cluster temperature
are affected by systematic effects, which depend on the radius through the factor
I, i.e. the source-to-background count rate ratio. For each ring, I calculated the
mean value for I, estimated the expected bias from simulations, and applied a
correction to the mean profile. The expected bias is negligible for internal rings
out to 0.30 R180 (for which I > 3), is 2-3% for 0.30–0.36 and 0.36–0.45 bins, and
is ≈ 5% for the last two bins (i.e. 0.45–0.54 and 0.54–0.70). I associated with the
correction an uncertainty close to the correction itself, accounting for the limited
knowledge from my “a posteriori” tests of the precise value of the bias. In Fig. 7.8
I show the mean temperature profile before and after the correction for the bias.
The uncertainty is the quadrature sum of the statistical error and of the error
associated with the correction. Hereafter, I will consider the mean profile corrected
for the bias, unless otherwise stated. Note that the bias is always comparable to
the statistical uncertainties. For this reason, mine can be considered as a definitive
work, for what concerns the measurement of radial temperature profiles of galaxy
clusters with XMM-Newton . I have reached the limits imposed by the instrument
and by the analysis technique, so that increasing of the number of objects will not
improve the quality of the measurement.

7.2 Evaluation of systematics on metallicity mea-
sures

I made use of montecarlo simulations to test the reliability of the metallicity mea-
surements. The simulation procedure is similar to that described for the source-only
case in Sect. 5.1. I considered a thermal (MEKAL in XSPEC) spectrum only, with-
out a background. Input parameters were 6 keV temperature, 0.25 Z¯ metallicity,
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Figure 7.9: Frequency distribution for metallicity (expressed in solar units) best fit
values for a 100 ks exposure time. The dashed line indicates the input value, i.e.
0.25 Z¯.

0.2 redshift, and 9 × 10−4 normalization. As usual, I used the Abell 1689 EPIC
MOS1 observation as a guideline, for producing RMF and ARF, and for choosing
typical input model parameters. I considered the 3.5′–4.5′ ring only; i.e., the outer
ring where I am usually able to measure a reliable metallicity. For each channel,
I perturbed the number of counts with a Poisson distribution centered on the ex-
pected value, and repeated this procedure 1000 times to obtain 1000 spectra, which
simulate 1000 independent measurements of the source. I fit simulated spectra with
a MEKAL model in the 0.7–10.0 keV energy band using the Cash statistic. Tem-
perature, metallicity, redshift, and normalization were allowed to vary within their
XSPEC standard ranges. Here I focused on the metallicity, for which the stan-
dard allowed range is between 0 and 103 in solar units. For each measurement, I
determined the best fit value and the one-sigma uncertainties.

In Fig. 7.9 I report the frequency distribution for metallicity best fit values for
a 100 ks exposure time (i.e. for spectra with high statistical quality); as expected,
the curve is very similar to a narrow Gaussian peaked around the input value (i.e.
0.25 Z¯). The mean, the median, and the weighted (over one-sigma uncertainties)
average are all close to 0.25 Z¯, namely the weighted average is 0.246± 0.002 Z¯.
In the left panel of Fig. 7.10 I report the same histogram for a 20 ks exposure
time (i.e. for spectra with standard statistical quality). The curve is peaked on
the input value, but the variance, which mainly depends on the number of counts
around the energy of the emission line, is higher. Since the metallicity is forced to
be positive, the curve is truncated and a dozen points pile up near the boundary
(i.e. zero). In this case, the mean and the median are close to 0.25 Z¯, instead the
weighted average is 0.193± 0.003 Z¯, i.e. ≈ 25% lower than the input value. Part
of this discrepancy is due to a boundary effect. For measurements characterized by
a negative fluctuation of the metallicity, the minimum of the χ2 curve lies outside
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Figure 7.10: Frequency distribution for metallicity (expressed in solar units) best
fit values for a 20 ks exposure time. The dashed lines indicate the input value, i.e.
0.25 Z¯. For the left panel, the metallicity is forced to be positive; for the right
panel, it can assume negative values too. The two histograms only differ around
zero.

the allowed range. The best fit values are then forced to be above zero and the
uncertainties have unreliable small values; therefore, when computing a weighted
average, these measurements have the highest statistical weight, and the net effect
is an underestimate of the real metallicity. When fitting exactly the same spectra,
allowing the metallicity to be negative, I obtain the histogram reported in the right
panel of Fig. 7.10. The tails of the curve are more symmetric, all measurements
have roughly the same uncertainty, as expected, and the weighted average is 0.229±
0.004 Z¯, i.e. ≈ 8% lower than the input value. This simple solution allowed us to
correct for most of the underestimate; however, a small (i.e. ≈ 0.02 Z¯) systematic
still affects the measurements, especially in the outer regions. I also performed more
realistic simulations, by introducing a background, and obtain substantially similar
results.

Although allowing observables to assume unphysical values is against common
sense, there are measurement procedures that can yield unphysical values. Deciding
to accept only physical values and reject others will clearly result in a bias. This is a
general issue, which does not pertain to astrophysics alone. An interesting example
I found concerns the analysis of data from the Collider Detector at Fermilab2. A
statistical committee specifically appointed to provide guidelines for the analysis of
the Collider Detector data recommends a treatment similar to the one I propose
here, i.e. unphysical values can be used in statistical procedures.

The boundary effect I have just pointed out should play an important role when
comparing subsamples characterized by a different statistical quality of the data.
For example, in Sect. 8.2.2 I compare the metallicity obtained for near and distant
clusters. In my sample, near cluster spectra usually have a better statistical quality
for various reasons (e.g. longer observations, cosmological dimming effect). If the
metallicity is allowed to vary between 0 and 5 Z¯, the mean metallicity beyond
0.20 R180 is 0.249 ± 0.011 Z¯ and 0.188 ± 0.014 Z¯, for near and distant clusters
respectively. The measured discrepancy of 0.061 ± 0.018 Z¯ has a significance of
more than three-sigma. Conversely, if the metallicity is allowed to vary between
±5 Z¯ (see Sect. 8.2.2), the discrepancy of 0.029 ± 0.019 Z¯ is consistent with a

2http://www-cdf.fnal.gov/physics/statistics/statistics faq.html#ssel1
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purely statistical fluctuation.
I then warn X-ray astronomers about the existence of this kind of systematics,

which could affect the measurement of the metallicity, especially for the case of low
metallicity, statistically poor spectra.

Balestra et al. (2007) and Maughan et al. (2008) have adopted a procedure
that is alternative to ours to estimate mean metal abundances for a sample of
clusters. These authors performed a simultaneous spectral fit, leaving temperature
and normalization free to vary for each object and using a unique metallicity value
for all clusters in each redshift bin. It is worth noting that when modeling the
background, as we do, a joint fit is infeasible, because of the large number of model
parameters. Moreover, we are not aware of any detailed work that investigates the
impact of systematic errors, possibly affecting individual measurements, on the final
result of a joint fit.
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Chapter 8

Results

In this chapter I will characterize the mean temperature and metallicity profiles, in-
vestigate their dependency from physical properties (e.g. the redshift), and compare
them with hydrodynamic simulations and previous observational works.

I summarize here my main results: in Table 8.1 and Fig. 8.1 I report the mean
temperature profile, and in Table 8.2 and Fig. 8.2 I report the mean metallicity
profile, obtained by averaging individual cluster profiles as explained in Sect. 6.2.

8.1 The mean temperature profile

8.1.1 Characterizing the profile

I fit all individual temperature profiles reported in Fig. 6.3 beyond 0.2 R180 with a
linear model and a power law to characterize the profile decline. By using a linear
model

kT

kTM
= A− B

(
R

R180
− 0.2

)
, (8.1)

I find A = 1.02± 0.01 and B = 0.77± 0.11. By using a power law

kT

kTM
= N

(
R

0.2 R180

)−µ

, (8.2)

Ringa Temperatureb

0.00–0.04 0.762±0.004
0.04–0.08 0.921±0.005
0.08–0.12 1.028±0.007
0.12–0.18 1.030±0.008
0.18–0.24 0.993±0.010
0.24–0.30 0.985±0.014
0.30–0.36 0.938±0.026
0.36–0.45 0.878±0.035
0.45–0.54 0.810±0.058
0.54–0.70 0.694±0.069

Notes: a in units of R180;
b in units of kTM.

Table 8.1: Mean temperature values rescaled by kTM and corrected for the biases
discussed in Chapter 5, for each interval in units of R180.
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Figure 8.1: Mean temperature profile rescaled by R180 and kTM.

Ringa Metallicityb

0.00–0.04 0.450±0.010
0.04–0.08 0.352±0.009
0.08–0.12 0.294±0.010
0.12–0.18 0.262±0.010
0.18–0.24 0.230±0.013
0.24–0.32 0.245±0.017
0.32–0.45 0.218±0.023

Notes: a in units of R180;
b in solar units (Anders & Grevesse 1989).

Table 8.2: Mean metallicity values in solar units (Anders & Grevesse 1989) for each
interval in units of R180.
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Figure 8.2: Mean metallicity profile averaged over all clusters. Abundances are
expressed in Anders & Grevesse (1989) solar values and radii in units of R180.

I find N = 1.03 ± 0.01 and µ = 0.24 ± 0.04. If the gas can be approximated by a
polytrope (see Sect. 1.3), one can derive its index, γ, from the slope of projected
temperature profiles, µ (De Grandi & Molendi 2002):

γ = 1 + µ/2, (8.3)

under the assumption that, at large radii, three-dimensional gas temperature and
density profiles be well described, respectively, by a power law and a β-model with
β = 2/3. For R > 0.2 R180, I measured γ = 1.12 ± 0.02, which is an intermediate
value between those associated with isothermal (γ = 1.0) and adiabatic (γ = 1.67)
gas. However, note that the power-law best-fit parameters depend on the chosen
region (see Fig. 8.3), as well as the derived γ, thus the above values should be taken
with some caution.

8.1.2 Redshift evolution of temperature profiles

I divided clusters in my sample into four groups according to the redshift, to inves-
tigate a possible evolution of temperature profiles with cosmic time. In Fig. 8.4 I
report the mean temperature profiles for the four groups. Spectra were fitted in the
0.7–10.0 keV band and I0 = 0.6 (see Sect. 6.2). As in the following Sects. 8.1.3 and
8.1.4, when dividing clusters into subsamples, the profiles were not corrected for
biases (see Sect. 7.1.3), because when comparing subsamples one is not interested
in determining the absolute value of the temperature, but in searching for relative
differences. Moreover, in Figs. 8.4 and 8.6 I chose larger bin sizes to reduce the
error bars (as in Fig. 7.4). The four profiles are very similar: the discrepancy in the
outer regions is comparable to statistical and systematic errors, and the difference
in the central region is due to a different fraction of cool core clusters. I fit each
group of profiles with a power law beyond 0.2 R180 and report the results in Fig. 8.5.
Since there is no clear correlation between the two parameters and the redshift, the
conclusion from the analysis of my sample is that there is no indication of profile
evolution up to z = 0.3.
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Figure 8.3: Power-law best-fit parameters obtained by fitting profiles beyond a
variable radius, Rmin, in units of R180. The normalization is calculated at 0.2. The
index best-fit value is not constant with Rmin, thus the ICM cannot be considered
as a polytrope.

Figure 8.4: Mean temperature profiles for the four z-binned groups of clusters.
There is no indication of profile evolution. The radii have been slightly offset in the
plot for clarity.
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Figure 8.5: Best fit parameters obtained by fitting each group of profiles with a
power law beyond 0.2 R180. The normalization is calculated at 0.2 R180. The
dashed lines indicate the best fit values for the whole sample. No clear correlation
is found between power-law parameters and the redshift.

8.1.3 Cool core and non-cool core clusters

In Sect. 6.2 I defined three groups: clusters that clearly host a cool core, clusters
with no evidence of a cool core, and uncertain clusters. In Fig. 8.6 I show the mean
temperature profiles for the three groups. Spectra were fitted in the 0.7–10.0 keV
band and I0 = 0.6. Profiles differ by definition in the core region and are consistent
beyond ≈ 0.1 R180.

8.1.4 REFL04 and LP07 subsamples

My sample is not complete with respect to any property. However, most of its
clusters (≈ 2/3) belong to the REFLEX Cluster Survey catalog (Böhringer et al.
2004b), a statistically complete X-ray flux-limited sample of 447 galaxy clusters,
and a dozen objects belong to the XMM-Newton Legacy Project sample (Pratt
et al. 2007), which is representative of an X-ray flux-limited sample with z < 0.2
and kT > 2 keV. I then selected two subsamples from our sample: clusters that
belong to the REFLEX catalog (REFL04 subsample) and to the Legacy Project
sample (LP07 subsample). The smaller (i.e. the LP07) was derived from Pratt’s
parent sample, by applying our selection criteria based on cluster temperature and
redshift (see Sect. 6.1). I also excluded cluster observations that are heavily affected
by soft proton contamination; however, the latter selection should be equivalent to
a random choice and introduce no bias. Thus, I expect the LP07 subsample to be
representative of an X-ray flux-limited sample of galaxy clusters with 0.1 < z < 0.2
and kT > 3.3 keV. The larger (i.e. the REFL04) subsample includes the LP07
one. Clusters that belong to the REFL04, but not to the LP07, were observed
with XMM-Newton for different reasons. They are not part of a large program
and almost all observations have different PIs. Thus, there are no obvious reasons
to believe that the REFL04 subsample is significantly biased with respect to any
fundamental cluster property. A similar reasoning leads to the same conclusion for
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Figure 8.6: Mean temperature profiles for cool core (blue), non cool core (red), and
uncertain (green) clusters. Profiles differ by definition in the core region and are
consistent in the outer regions.

my whole sample.
In Fig. 8.7 I compare mean temperature profiles obtained from the two subsam-

ples and the whole sample. The three profiles are fully consistent beyond ≈ 0.1 R180,
the difference in the central region is due to a different fraction of CC clusters. The
conclusion is that my whole sample is representative of hot, intermediate redshift
clusters with respect to temperature profiles, i.e. the quantity I am interested in.

8.1.5 Comparison with hydrodynamic simulations

In this subsection I compare the mean temperature profile obtained in this work with
the one (hereafter B04) derived from cluster hydrodynamic simulations by Borgani
et al. (2004). The authors used the TREE+SPH code GADGET (Springel et al.
2001) to simulate a concordance cold dark-matter cosmological model (Ωm = 0.3,
ΩΛ = 0.7, σ8 = 0.8, and h = 0.7) within a box of 192 h−1 Mpc on a side, 4803

dark-matter particles, and as many gas particles. The simulation included radia-
tive cooling, star formation, and supernova feedback. Simulated cluster profiles
were scaled by the emission-weighted global temperature and R180 calculated from
its definition (i.e. the radius encompassing a spherical density contrast of 180 with
respect to the critical density). In Fig. 8.8 I compare my observed profile to the pro-
jected mean profile obtained by averaging over simulated clusters with kT > 3 keV.
The evident mismatch between the two profiles is most likely due to a different def-
inition for the scaling temperature: actually, it is known that the emission weighted
temperature is higher than the mean temperature obtained from observational data
(Mazzotta et al. 2004). By rescaling the B04 profile by 10%, I find good agreement
between simulation and our data beyond ≈ 0.25 R180, confirming the expectation
that the mean behavior of the ICM in the cluster outskirts is mainly due to the
gravitational force. Conversely in the core region, where many not yet well under-
stood physical processes also play a role, simulations are not able to reproduce the
observed profile shape.
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Figure 8.7: Mean temperature profiles obtained from the LP07 subsample (blue
triangles), the REFL04 subsample (red squares), and the whole sample (green cir-
cles). The three profiles are fully consistent in the outer regions. The radii have
been slightly offset in the plot for clarity.

Figure 8.8: Comparison between the observed mean profile obtained in this work
(circles) and the one derived from hydrodynamic simulations (Borgani et al. 2004)
by averaging over clusters with kT > 3 keV (solid line). The dashed line is obtained
by rescaling the solid one by 10%.
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Figure 8.9: Top panel: mean temperature profiles obtained from this work (black
circles, LM08), by De Grandi & Molendi (blue squares, DM02), by Vikhlinin et al.
(red upward triangles, V05), and by Pratt et al. (green diamonds, P07). All profiles
are rescaled by kTM and R180 as defined in Sect. 6.2. The dashed line shows the best
fit with a linear model beyond 0.2 R180 (see Sect. 8.1.1) and is drawn to guide the
eye. Bottom panel: residuals with respect to the linear model. The LM08 profile is
the flattest one.

8.1.6 Comparison with previous observations

In this section I compare my mean temperature profile (LM08) with those obtained
by other authors, namely De Grandi & Molendi (2002), Vikhlinin et al. (2005), and
Pratt et al. (2007). De Grandi & Molendi (DM02) have analyzed a sample of 21 hot
(kT > 3.3 keV), nearby (z . 0.1) galaxy clusters observed with BeppoSAX . Their
sample included both CC and NCC clusters. Vikhlinin et al. (V05) have analyzed
a sample of 13 nearby (z . 0.2), relaxed galaxy clusters and groups observed with
Chandra . I selected from their sample only the hottest (kT > 3.3 keV) 8 clusters,
for a more appropriate comparison with my sample. Pratt et al. (P07) analyzed a
sample of 15 hot (kT > 2.8 keV), nearby (z . 0.2) clusters observed with XMM-
Newton . Clusters of their sample present a variety of X-ray morphology.

Comparing different works is not trivial. Cluster physical properties, instrumen-
tal characteristics, and data analysis procedures may differ. Moreover, each author
uses his own recipe to calculate a mean temperature and to derive a scale radius. I
rescaled temperature profiles obtained by other authors by using the standard cos-
mology (see Sect. 6.1) and calculating the mean temperature, kTM, and the scale
radius, R180, as explained in Sect. 6.2; the aim is to reduce all inhomogeneities as
much as possible.

In Fig. 8.9 I compare the four mean temperature profiles, rescaled by kTM and
R180. Due to the correction for the biases described in Sect. 7.1.3, our mean profile
is somewhat flatter than others beyond 0.2 R180. Discrepancies in the core region
are due to a different fraction of CC clusters. The outermost point of the P07
profile is ≈ 20% lower; however, it is only constrained by two measurements beyond
≈ 0.6 R180. The indicator I (see Sect. 6.2) warns about the reliability of these two
measurements, for which I ≈ 0.3, i.e. a half of the threshold I chose, I0 = 0.6. In
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Figure 8.10: Best fit parameters, obtained by fitting observed and simulated cluster
profiles with a power law, beyond 0.2 R180. In the upper panel I report the normal-
ization, in the lower the index. I use the same symbols as in Fig. 8.9 for observed
clusters and a violet downward triangle for Borgani’s work (B04). The normaliza-
tion is calculated at 0.2 R180. For P07 I report two values, empty diamonds indicate
index and normalization obtained when excluding the two outermost measurements
(see text for details). The empty downward triangle indicates the normalization of
the B04 rescaled profile (see Sect. 8.1.5). In the lower panel, the dashed line and the
shaded region represent the weighted average and its one-sigma confidence interval
derived from the observed profiles only (for P07 we use the lower value, i.e. the
empty diamond). As previously noted from Fig. 8.9, the LM08 profile is the flattest
one, but all indices of observed profiles are consistent within two sigma. Conversely,
the B04 profile seems to be significantly steeper, but in this case I am not able to
provide an estimate of parameter uncertainty.

Fig. 7.5 I showed that, when using our analysis technique, lower values of I are
associated with a bias on the temperature measurement. I assume that a somewhat
similar systematic may affect the P07 analysis technique, too. When excluding
these two measurements, the P07 mean profile only extends out to 0.6 R180 and is
consistent with LM08 (see also Fig. 8.10). It is possible that measurements obtained
with other experiments be also affected by a similar kind of systematics, which make
the profiles steeper.

I fit observed and simulated cluster profiles with a power law beyond 0.2 R180

and in Fig. 8.10 report best fit parameters. The LM08 profile is the flattest one;
however, all observed profile indices are consistent within 2-3 sigma. In Sect. 7.1.3
I have quantified the systematic underestimate on the temperature measurement
associated with our procedure. Since it depends on the indicator I, which itself
depends on the radius, I also expect a net effect on the profile index, µ; namely, I
expect µ to be overestimated. For this reason, it is possible that the discrepancy
between indices obtained from different works (reported in Fig. 8.10) may not have a
purely statistical origin. I calculated an average profile index, µ = 0.31±0.02, which
is significantly lower than obtained from the B04 profile, µ = 0.39; however, for the
simulation case I am not able to provide an estimate of parameter uncertainty.
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Figure 8.11: Mean metallicity profiles for cool core (blue), non-cool core (red), and
uncertain (green) clusters. Lines indicate the scatter for each class. All profiles
show a central peak, which is more pronounced for cool core clusters.

8.2 Metallicity profiles

The mean metallicity profile shows a central peak (see Fig. 8.2), due to the presence
of cool core clusters, where the mean metallicity is 0.45 Z¯. The profile decreases
out to ≈ 0.2 R180; beyond this radius the profile is consistent with being flat
(Z ≈ 0.2).

8.2.1 Cool core and non-cool core clusters

In Sect. 6.2 I defined three groups: clusters that clearly host a cool core, clusters
with no evidence of a cool core, and uncertain clusters. In Fig. 8.11 I show the
mean temperature profiles for the three groups. Profiles are consistent beyond
≈ 0.2 R180. In the center, as expected, cool core clusters show a strong central peak,
but unexpectedly also profiles for the other two classes show a mild enhancement.
This original result will be discussed in more detail in Chapter 10.

8.2.2 Redshift evolution of metallicity profiles

I divided clusters in our sample into two groups to investigate a possible evolution
of the metal abundance with redshift: near (distant) clusters are characterized by
a redshift lower (greater) than 0.2. In Fig. 8.12 I show the mean metallicity profiles
for the two groups. The single points are consistent within one- or two-sigma,
except for the core region where the spatial resolution plays an important role.
In my procedure I fixed the size of the central ring to 30′′, which corresponds to
≈ 0.03 R180 for nearest (z ≈ 0.1) and to ≈ 0.07 R180 for most distant (z ≈ 0.3)
objects; thus, the metallicity peak for distant clusters is blurred over a larger region.
Most of the three-sigma discrepancy in the region within 0.2 R180 (see shaded regions
in Fig. 8.12) is most likely due to a different fraction of cool core and non-cool core
clusters within the two subsamples (see Sect. 1.4.3).
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Figure 8.12: Mean metallicity profiles for near (z < 0.2, filled circles) and distant
(z > 0.2, empty circles) clusters. The dark and the light shaded regions indicate
the average metallicity within one-sigma uncertainties below and beyond 0.20 R180

for near and distant clusters, respectively. The radii have been slightly offset in the
plot for clarity.

In the outer regions, if the metallicity is allowed to vary between 0 and 5 Z¯ as
commonly done, I measure a discrepancy between two profiles of 0.061± 0.018 Z¯
with a more than three-sigma significance (see Sect. 7.2). Conversely, if the metal-
licity is allowed to vary between ±5 Z¯ as in our data analysis procedure (see
Sect. 4.2), near and distant clusters have a mean metallicity of 0.248 ± 0.011 Z¯
and 0.219± 0.015 Z¯, respectively. For this case, the discrepancy (i.e. ≈ 1.5 sigma,
see shaded regions in Fig. 8.12) is consistent with a purely statistical fluctuation,
and is the same order of magnitude as systematics I have estimated. I stress that
the systematic effect described in Sect. 7.2, which affects in particular low metal-
licity, statistically poor spectra, if unaccounted for, could cause a false detection of
the metallicity evolution.

Two recent works (Balestra et al. 2007; Maughan et al. 2008) have investigated
the evolution in the iron content of the ICM, by analyzing data from the Chan-
dra archive. As mentioned in Sect. 7.2, these authors performed a simultaneous
spectral fit, leaving temperature and normalization free to vary for each object and
using a unique metallicity value for all clusters in each redshift bin. Unfortunately,
I cannot compare my results with those obtained by Balestra et al. (2007), because
they considered different regions from cluster to cluster. Instead, Maughan et al.
(2008) analyzed the region within R500 (≈ 0.6 R180) with and without the core (i.e.
0.15 R500) and obtained respectively Z ≈ 0.4 Z¯ and Z ≈ 0.35 Z¯ between z = 0.1
and z = 0.3. When analyzing roughly the same regions for my clusters, I obtain
Z = 0.32 Z¯ and Z = 0.26 Z¯ respectively, with negligible uncertainties. The
relative difference is, thus, consistent with the one found by Maughan et al. (2008),
even if the absolute values for the metal abundance are significantly lower (≈ 20%).
A possible explanation for the discrepancy between absolute values may be related
to different weights on the averaging procedure: I averaged weighting over the in-
verse squared errors, while Maughan et al. (2008) measured metal abundances from
individual spectra extracted from the entire region of interest. Summarizing, when
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Figure 8.13: Comparison between our observed mean profile (circles) and the one
derived from hydrodynamic simulations (solid line) by Fabjan et al. (2008). Abun-
dances are expressed in Anders & Grevesse (1989) solar values and radii in units of
R180.

considering the same regions (i.e. beyond 0.15 R500), I measure a difference in metal
abundance, between near and distant sample, consistent with the result obtained
by Maughan et al. (2008). When considering regions where the metallicity profile is
roughly flat (i.e. beyond ≈ 0.2 R180), because of the poor statistical quality of the
measurements, I find a result that is consistent with that found beyond 0.15 R500,
but also with the absence of evolution.

8.2.3 Comparison with hydrodynamic simulations

I compare our (hereafter LM08) mean metallicity profile with the one (hereafter
F08) derived from hydrodynamic simulations of four relaxed clusters by Fabjan
et al. (2008).

The simulations were performed using the hydrodynamical TREE-SPH code
GADGET-2 (Springel 2005) with the implementation of chemical enrichment by
Tornatore et al. (2007). The authors used the emission-weighted definition of metal-
licity, with emissivity of each gas particle computed in the 0.5–10.0 keV energy band.
In principle, for a comparison with observational data, one should extract synthetic
spectra from the simulated clusters and then measure the metallicity by fitting
these spectra with a single-temperature and single-metallicity plasma model (e.g.
the MEKAL model in XSPEC). A recent work presented by Rasia et al. (2008)
showed that, at least for Iron, the emission-weighted estimator of the metallicity
gives results quite close (within about 10%) to those obtained from the spectral-
fitting analysis.

In Fig. 8.13 I compare LM08 and F08 profiles. Note the differences at both small
and large radii. In the central region, the F08 profile is much more peaked; however,
this difference likely results from two factors: namely that Fabjan et al. (2008)
analyzed only relaxed clusters and that LM08 results are limited by the XMM-
Newton PSF. At large radii, while the F08 profile shows a constant decrease, LM08
is consistent with being flat beyond 0.2 R180. This discrepancy could be due to issues
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Figure 8.14: Mean metallicity profiles obtained from this work (LM08, circles), by
De Grandi et al. (2004) (DM04, triangle), and Baldi et al. (2007) (BA07, squares).
Abundances are expressed in Anders & Grevesse (1989) solar values and radii in
units of R180. The radii have been slightly offset in the plot for clarity.

related to observations, simulations, or both. More precisely, observations could be
affected by unknown systematic effects, and simulations could underestimate the
metallicity at large radii by underestimating possible motions in the ICM, which
might be responsible of mixing metals.

8.2.4 Comparison with previous works

I compare my results with those obtained by De Grandi et al. (2004) and Baldi
et al. (2007). De Grandi et al. (hereafter DM04) have analyzed a sample of 21
hot (kT & 3.5 keV), nearby (z . 0.1) galaxy clusters observed with BeppoSAX .
Baldi et al. (hereafter BA07) have analyzed 12 very hot (kT & 6 keV), intermediate
redshift (0.1 . z . 0.3) clusters observed with Chandra .

As mentioned in Sect. 8.1.6, comparing results obtained from different works is
not trivial; I have thus rescaled DM04 and BA07 profiles by using the standard cos-
mology (see Sect. 6.1) and deriving the scale radius, R180, as explained in Sect. 6.2,
in order to reduce all inhomogeneities as much as possible. I also converted DM04
abundances from Grevesse & Sauval (1998) to Anders & Grevesse (1989) solar val-
ues.

In Fig. 8.14 I compare LM08, DM04, and BA07 mean metallicity profiles. Even
if the three samples cover a different redshift range and the instruments (i.e. XMM-
Newton , BeppoSAX , and Chandra) present different characteristics, the mean pro-
files are remarkably similar over the entire radial range.
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Chapter 9

Conclusions and future
perspectives

9.1 Main results

I have analyzed a sample of ≈ 50 hot, intermediate redshift galaxy clusters ob-
served with XMM-Newton to measure their radial properties. The sample should
be representative of hot, intermediate redshift clusters, at least with respect to the
temperature and metal abundance profiles.

The results concerning temperature measurements are summarized as follows.

• The mean temperature profile declines with radius in the 0.2–0.6 R180 range.

• When excluding the core region, the profiles are characterized by an intrinsic
dispersion (6%) comparable to the estimated systematics.

• There is no evidence of profile evolution with redshift from z = 0.1 to z = 0.3.

• The profile slope in the outer regions is independent of the presence of a cool
core.

• The slope of the mean profile is broadly similar to those obtained from hydro-
dynamic simulations. I find a discrepancy of ≈ 10% in normalization probably
due to a different definition for the scaling temperature, while the slopes are
roughly consistent.

• When compared to previous works, my profile is somewhat flatter, probably
due to a different level of characterization of systematic effects, which become
very important in the outer regions and tend to steepen the profile.

The results concerning metallicity measurements are summarized as follows.

• The mean metallicity is 0.45 Z¯ in the center and decreases out to ≈ 0.2 R180;
beyond 0.2 R180 the metallicity is consistent with being flat at 0.23±0.01 Z¯.

• The profiles show a large scatter, which is mostly of statistical origin. In
the central regions the scatter (i.e. 22 ± 2%) is also related to the presence
of cool core clusters, in the outer regions it (i.e. 14 ± 8%) is comparable to
systematics.

• There is no clear evidence of profile evolution from z = 0.1 to z = 0.3 in the
outer regions (i.e. beyond ≈ 0.2 R180);
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• When considering the same regions analyzed by Maughan et al. (2008) using
Chandra , I obtain consistent results as far as the relative difference between
near and distant clusters is concerned, but ≈ 20% lower absolute values,
possibly due to the different method used to calculate the mean metallicity.

• I point out the existence of a systematic effect, affecting in particular distant
clusters, which, if unaccounted for, could cause a false detection of evolution.

• When comparing my mean profile to the one derived from hydrodynamic sim-
ulations by Fabjan et al. (2008), I find differences at small and large radii. In
particular, while the profile obtained by Fabjan et al. (2008) shows a constant
decrease, mine is consistent with being flat beyond 0.2 R180.

• When comparing my mean profile to those obtained by recent works with
BeppoSAX (De Grandi et al. 2004) and Chandra (Baldi et al. 2007), I find
remarkable agreement over the entire radial range.

The results reported above were obtained using a novel data analysis technique,
which includes two major improvements. First, the use of the background modeling,
rather than the background subtraction, and the Cash statistic rather than the χ2.
This method requires a careful characterization of all background components, but
allows us to properly deal with each individual component. Second, the detailed
assessment of systematic effects with Montecarlo simulations allows us to give an
estimate of the systematics affecting the mean temperature profile, and propose a
correction to the profile itself. I performed two groups of tests to quantify the impact
of different components on simulated spectra, and investigate how the measured
temperature profile changes when choosing different key parameters.

My work not only provides a confirmation of previous results. For the first
time, we believe we know where the systematics come from and how large they are.
Indeed, my work allows us to not only constrain cluster temperature profiles with
confidence in the outer regions, but also, from a more general point of view, to
explore the limits of XMM-Newton instrumentation and find new ways to exploit
at best the large amount of data in the XMM-Newton archive.

9.2 Future perspectives

9.2.1 The shock front in Abell 754

My work will allow us to look forward to ambitious new measurements: an ex-
ample is the attempt to measure the putative shock in Abell 754, for which we
have obtained a ≈ 200 ks observation with XMM-Newton in AO7. Detection and
characterization of shock fronts in clusters are limited to a tiny number of objects.
One of the major difficulties is that shocks occur in low surface-brightness regions,
where available instrumentation has considerable difficulty in making reliable mea-
surements. The novel observational and data analysis strategy described in my
thesis should allow us to make a reliable measurement of the shock front in A754.
The sensitivity afforded by our observation will also allow us to characterize parts
of the outer regions of A754 in unprecedented detail. From a more general per-
spective ours may be viewed as an attempt of demonstrating the capability of the
EPIC experiment to provide substantially improved measurements of cluster outer
regions, which are likely to remain unsurpassed for years to come. The observation
was performed on the last May and we are currently analyzing data.
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9.2.2 Deriving other physical properties

The radial temperature profiles obtained in the framework of this thesis will be
used to derive other physical properties of great interest (e.g. mass and entropy).
Before, however, the profiles must be deprojected to derive the 3D cluster properties.
A number of deprojection techniques have been developed (e.g. Pizzolato et al.
2003), even if they usually require strong geometrical assumptions (e.g. spherical
symmetry) which are not always fulfilled in galaxy clusters. The deprojection starts
from the most external ring for which a measurement is available and continues
inward recursively subtracting the contribution of external rings to the inner (the
process is called “onion peeling”).

Once obtained 3D density (from the surface-brightness) and temperature profiles
of the ICM, one can derive the total mass profile from (1.32), by assuming the
hydrostatic equilibrium (e.g. Voigt & Fabian 2006). Theoretical models for the
formation of structures predict cluster properties as a function of mass and redshift;
therefore, a reliable measure of the mass for a large sample of clusters gives the
possibility of using clusters as cosmological probes. Moreover, by measuring the
total mass, it is possible to investigate the scaling relations (e.g. Ettori et al. 2002)
between physical quantities that are directly measurable (e.g. X-ray luminosity)
and those requiring complicated procedures of measurement (e.g. temperature and
mass). Scaling relations can be used to better exploit the large amount of data from
present and future X-ray surveys by converting the cluster luminosity function into
the mass function and studying its evolution with redshift.

From deprojected temperature and density profiles, it is common to derive also
the entropy, S = T × n−2/3, in analogy with the thermodynamic entropy. The
characterization of the entropy distribution represents one of the most straightfor-
ward way to investigate non-gravitational processes. Previous works have found
that, during the cluster formation and accretion, the ICM arranges itself in order
to have a minimum of entropy in the center. However, cooler (and less massive)
clusters show an entropy excess both in the core, where non-gravitational processes
are more important, and sometimes in the outer regions, as a signature of possible
pre-heating processes (e.g. Pratt et al. 2006).
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Chapter 10

Preliminary results on
additional work in progress

The issue of how to classify astronomical objects is widely discussed in the literature.
The goal is to find few observable properties, that provide valuable information on
the physics of the system at hand. As mentioned in Sect. 1.1.1, clusters of galaxies
in optical can be roughly represented as a one-dimensional sequence, from regular to
irregular systems, where regular clusters should be dynamically more relaxed. In X-
rays, clusters are usually classified according to the presence of merger evidence or on
the basis of the core properties. Clues of on-going or recent mergers are provided by
the X-ray emission morphology (i.e. the presence of sub-clusters, irregular features
in surface-brightness and temperature distribution, etc.) and by the presence of
strong non-thermal emission (mainly detectable in the radio band). As far as the
core properties are concerned, clusters are roughly divided according to the presence
or the absence of a surface-brightness peak and a temperature drop in the center,
usually referred as cool core (see Sect. 1.4.3). The two classifications are highly
correlated in the sense that clusters showing evidence of recent interactions usually
do not present a cool core, and vice-versa.

I focused on the central regions of clusters and, there, investigated thermody-
namic and chemical properties of the intra-cluster medium. In Sect. 6.1 I showed
that, when dividing clusters of my sample on the basis of the central tempera-
ture drop, about one-third does not clearly belong to cool core (those for which
the temperature is significantly lower than the mean temperature) nor to non-cool
core clusters (those for which the temperature profile does not significantly de-
crease), suggesting the existence of a population with intermediate characteristics.
In Sect. 8.2.1 I showed that cool core clusters present strong metallicity peaks in
their center, but also that the mean metallicity profile for non-cool core clusters
shows a mild positive gradient towards the center. A key thermodynamic observ-
able in describing clusters is the entropy (e.g. Ponman et al. 2003; Voit 2005; Pratt
et al. 2006), which is commonly defined as T3D×n

−2/3
3D , where T3D and n3D are the

deprojected temperature and density. In the literature (e.g. Rossetti et al. 2007), it
is usual to define a pseudo-entropy from projected quantities as:

s = T × EM−1/3; (10.1)

entropy should be the thermodynamic observable which better correlates with the
metallicity. Given all these points, in this chapter I will show the preliminary
results obtained when subdividing clusters of an enlarged sample, on the basis of
their central pseudo-entropy gradient and correlating thermodynamic and chemical
properties.
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Name za kTOUT
b Exp. timec RSB

d Filter

Abell 4038 0.0300 3.0 78.1 1.45 MEDIUM
Abell 2199 0.0301 4.1 38.4 1.14 THIN1
2A 0335+096 0.0349 3.6 230.8 1.02 THIN1
Abell 2052 0.0355 2.9 85.1 0.99 THIN1
Abell 576 0.0390 3.8 42.7 1.54 MEDIUM
Abell 3571 0.0391 6.3 43.5 1.54 MEDIUM
Abell 119 0.0442 6.0 54.1 1.62 THIN1
MKW03 0.0450 3.3 99.2 1.08 THIN1
Abell 3376 0.0456 3.9 58.9 1.03 MEDIUM
Abell 1644 0.0470 4.2 42.0 1.40 THIN1
Abell 4059 0.0475 4.0 64.9 1.11 THIN1
Abell 3558 0.0480 5.2 126.4 1.00 THICK
Abell 3562 0.0480 4.3 116.6 1.85 THIN1
Triangulum Austr. 0.0510 9.2 27.3 1.15 MEDIUM
Hydra A 0.0538 3.4 52.2 1.59 THIN1
Abell 754 0.0542 8.7 40.6 1.12 MEDIUM
Abell 85 0.0551 5.5 34.6 1.04 MEDIUM
Abell 2319 0.0557 9.2 44.6 1.80 MEDIUM
Abell 3158 0.0597 4.9 54.0 1.58 THIN1
Abell 1795 0.0625 5.4 97.3 1.29 THIN1
Abell 399 0.0720 6.0 27.9 1.84 THIN1
Abell 401 0.0740 7.3 34.7 1.76 MEDIUM
Abell 3112 0.0750 4.3 64.6 1.23 MEDIUM
Abell 2029 0.0773 6.2 30.8 1.17 THIN1
Abell 2255 0.0806 6.2 25.1 1.37 THIN1
Abell 1650 0.0838 5.4 75.0 1.29 MEDIUM
Abell 2597 0.0852 3.5 144.3 1.07 THIN1

Notes: a redshift taken from the NASA Extragalactic Database; b reference temperature
in keV derived from our analysis; c total good exposure time in ks; d intensity of
residual soft protons.

Table 10.1: Physical properties and observation details for local clusters.

10.1 The sample and the analysis procedure

I enlarged my sample to about 60 objects from z = 0.02 to z = 0.25, by adding a
number of local clusters (see Rossetti et al., in prep.). All clusters were observed
with XMM-Newton , have a high temperature (kT > 3 keV) and a high galactic
latitude (|b| > 20◦). In Tables 10.1 and 10.2 I list the observations of local and
distant clusters respectively and report cluster physical properties (e.g. redshift
and temperature) and observational technical characteristics (e.g. total exposure
time and filter). The redshift value (from optical measurements) is taken from
the NASA Extragalactic Database1; kTOUT is derived from our analysis. Each
observation is performed using THIN1 or MEDIUM filters. I excluded from the
sample observations that are highly affected by soft proton flares, so that the total
(i.e. MOS1+MOS2+pn) exposure time for all observations is at least 20 ks. I also
excluded observations of extremely disturbed clusters for which it was impossible
to define a center; for what concerns double clusters, I analyzed the most luminous
only.

Observation data files (ODF) were retrieved from the XMM-Newton archive
and processed in a standard way with the Science Analysis System (SAS) v7.0.
The event files were prepared as described in Sect. 4.1.1.

1http://nedwww.ipac.caltech.edu
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Name za kTOUT
b Exp. timec RSB

d Filter

RXCJ0049.4–2931 0.1080 3.3 44.8 1.28 THIN1
Abell 2034 0.1130 7.0 27.9 1.16 THIN1
RXCJ1516.5-0056 0.1150 3.8 83.6 1.08 THIN1
RXCJ2149.1–3041 0.1179 3.3 71.2 1.11 THIN1
RXCJ1516.3+0005 0.1183 5.3 77.3 1.13 THIN1
RXCJ1141.4–1216 0.1195 3.8 82.0 1.03 THIN1
RXCJ1044.5–0704 0.1323 3.9 72.4 1.03 THIN1
Abell 1068 0.1375 4.5 56.3 1.09 MEDIUM
RXCJ2218.6–3853 0.1379 6.4 54.6 1.11 THIN1
RXCJ0605.8–3518 0.1410 4.9 58.3 1.07 THIN1
RXCJ0020.7–2542 0.1424 5.7 41.9 1.02 THIN1
Abell 1413 0.1427 6.7 71.7 1.10 THIN1
RXCJ2048.1–1750 0.1470 5.6 71.1 1.07 THIN1
RXCJ0547.6–3152 0.1483 6.7 67.1 1.12 THIN1
Abell 2204 0.1522 8.5 51.2 1.06 MEDIUM
RXCJ0958.3–1103 0.1527 6.1 22.9 1.16 THIN1
RXCJ2234.5–3744 0.1529 8.6 42.8 1.31 THIN1
RXCJ2014.8–2430 0.1612 7.1 64.8 1.05 THIN1
RXCJ0645.4–5413 0.1670 7.1 59.2 1.11 THIN1
Abell 1914 0.1712 8.7 62.9 1.17 THIN1
Abell 2218 0.1756 6.5 117.0 1.17 THIN1
Abell 1689 0.1832 9.2 106.7 1.14 THIN1
Abell 383 0.1871 4.4 82.3 1.33 MEDIUM
Abell 115 0.1971 5.1 103.2 1.20 MEDIUM
Abell 2163 0.2030 15.5 29.2 1.07 THIN1
Abell 963 0.2060 6.5 69.4 1.19 MEDIUM
Abell 209 0.2060 6.6 49.3 1.19 MEDIUM
Abell 773 0.2170 7.5 45.6 1.16 MEDIUM
Abell 1763 0.2230 7.2 36.3 1.08 MEDIUM
Abell 2390 0.2280 11.2 29.4 1.11 THIN1
Abell 2667 0.2300 7.7 59.9 1.48 MEDIUM
RX J2129.6+0005 0.2350 5.5 102.0 1.21 MEDIUM

Notes: a redshift taken from the NASA Extragalactic Database; b reference temperature
in keV derived from our analysis; c total good exposure time in ks; d intensity of
residual soft protons.

Table 10.2: Physical properties and observation details for distant clusters.
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To investigate cluster properties in the central regions, I accumulated spectra in
a circle of radius 0.05 R180 centered on the X-ray emission peak, and there measured
the normalization, NIN, the temperature, TIN, and the metallicity, ZIN, of the core.
Since I was interested in characterizing a variation of such quantities, I also measured
the normalization, NOUT, and the temperature, TOUT, in the 0.05–0.20 R180 ring
(the outer radius is limited by the apparent size of nearest clusters). For each EPIC
instrument and each region, I accumulated a spectrum and generated an effective
area (ARF), and for each observation generated redistribution functions (RMF) for
MOS1, MOS2, and pn.

Spectra accumulated in the central regions of clusters have almost always high
statistical quality; therefore, the complicated procedures developed for dealing with
the background in the outer regions (see Chapter 3) are not strictly necessary and
also EPIC pn data have been used. For all three detectors (namely MOS1, MOS2,
and pn), channels were assembled in order to have at least 25 counts for each
group, as commonly done when using the χ2 statistic. I merged nine blank-field
observations to accumulate background spectra, as commonly done. For each cluster
observation, I calculated the count rate ratio, Q, between source and background
observations beyond 9 keV in an external ring (10′–12′) of the field of view. I
scaled background spectra by Q and, for each region, subtracted it from the cluster
observation. This rough rescaling accounted for temporal instrumental background
variations.

The spectral fitting was performed in the 0.5–10.0 keV energy band, by using
the χ2 statistic, with an absorbed thermal model (WABS*MEKAL in XSPEC). I
fit spectra leaving the temperature and the normalization free to vary. The metal-
licity was constrained between ±5 Z¯ (see Sect. 7.2). The redshift was constrained
between ±5% of the optical measurement. The equivalent hydrogen column den-
sity along the line of sight, NH, was fixed to the 21 cm measurement (Dickey &
Lockman 1990). Finally, for each quantity I computed the average over the three
(MOS1, MOS2, pn) values and derived the projected emission measure, EM , as the
ratio between the normalization and the area of the region in square arcmin.

10.2 Defining interesting quantities

To characterize the gradient of temperature and emission measure, I should compare
the central to a global value for such quantities; however, for local clusters it was
only possible to perform reliable measurements out to a small (≈ 20%) fraction
of R180. As a temperature reference, I used TOUT (see Sect. 10.1), which can be
gathered to be a good proxy of the global temperature from Fig. 6.3. For what
concerns the emission measure, I was faced with two alternatives, namely using
EMOUT (see Sect. 10.1) or the self-similar scaling (Arnaud et al. 2005).

A reference value for the emission measure should be measured at ≈ 0.4 R180,
where profiles show a remarkable degree of similarity (see Fig. 10.1). Here I consid-
ered the subsample of distant (z > 0.1) clusters, for which it is possible to measure
EM out to 0.4 R180. I defined as EM0 the emission measure calculated in the
0.2–0.4 R180 ring, and as

EMSSS = ∆3/2
z (1 + z)9/2

(
kTOUT

10 keV

)1/2

, (10.2)

the self-similar scaled emission measure. For each distant cluster, I calculated our
“ideal” ratio EMIN/EM0, determined directly from the data, the self-similar scaled
ratio EMIN/EMSSS, and the standard ratio EMIN/EMOUT. In Fig. 10.2 I compare
the self-similar scaled (left panel) and the standard (right panel) ratios to the ideal
ratio. For both cases I find a good correlation, but the scatter is smaller (16% vs.
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Figure 10.1: Self-similar scaled, projected emission measure profiles for the
intermediate-redshift (i.e. z > 0.1) clusters. The radius is in units of R180 and
the emission measure is scaled by EMSSS (see Eq. 10.2).

Figure 10.2: Correlations between various definitions for the EM ratios (see text for
details). Left panel: self-similar scaled vs. ideal ratios. Right panel: standard vs.
ideal ratios. The solid curve is the best fit with a power law. The uncertainties are
smaller than the point size. The scatter is 29% and 16% for left and right panels
respectively.
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Figure 10.3: Comparison of temperature and emission measure ratios for all clusters.
The dashed and the solid curves indicate the regions of the plot where the pseudo-
entropy ratio, σ, is constant; clusters with the strongest pseudo-entropy variations
populate the bottom-right corner. The solid curves indicate the thresholds used
to divide clusters in high- (red circles), medium- (green circles), and low- (blue
circles) entropy core systems. For each class, open and filled circles indicate local
(i.e. z < 0.1) and distant (i.e. z > 0.1) clusters respectively.

29%) when using the standard ratio. For clarity, in the following plots, I will make
use of EMIN/EMOUT, but I point out that all the results are largely independent
of this particular choice.

In Fig. 10.3 I compare the temperature ratio, TIN/TOUT, with the emission
measure ratio, EMIN/EMOUT. As expected, there is a clear, but quite scattered,
correlation: more precisely, the stronger the emission measure peak, the stronger
the temperature drop. From Eq. 10.1 I use emission measure and temperature ratios
to define a pseudo-entropy ratio,

σ =
TIN

TOUT
×

(
EMIN

EMOUT

)−1/3

. (10.3)

The pseudo-entropy ratio has been found to be well correlated with the entropy ratio
(Rossetti et al. 2009, in preparation). In Fig. 10.3 the solid and the dashed curves
indicate the regions where σ is constant; clusters with the strongest variations (i.e.
lower ratios) of pseudo-entropy fill the bottom-right corner and are usually known as
cool core clusters. From Fig. 10.3 there is not a clear bimodality in entropy, clusters
form a continuous population of objects extending from low-entropy cores (LEC)
through intermediate objects (MEC) to high-entropy cores (HEC). I arbitrarily
chose two reasonable thresholds to divide clusters into three classes, so that each one
contains roughly the same number of objects. In Table 10.3 I report the membership
for each cluster. In Fig. 10.4 I show the histogram of the frequency distribution for
the entropy ratio, σ. The distribution shows a weak indication of bimodality, but
is also consistent with being flat.

The appearance of the plot in Fig. 10.3 and the classification based on the
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LECa MECb HECc

2A 0335+096 Abell 1644 Abell 119
Abell 1795 Abell 1650 Abell 2255
Abell 2052 Abell 2029 Abell 3158
Abell 2199 Abell 2319 Abell 399
Abell 2597 Abell 3558 Abell 401
Abell 3112 Abell 3562 Triangulum Austr.
Abell 85 Abell 3571 RXCJ0547.6–3152
Hydra A Abell 4038 RXCJ0020.7–2542
Abell 383 Abell 4059 RXCJ2048.1–1750
RX J2129.6+0005 Abell 576 RXCJ2234.5–3744
Abell 2390 RXCJ0049.4–2931 RXCJ1516.3+0005
Abell 2204 RXCJ0645.4–5413 RXCJ1516.5–0056
Abell 1068 MKW03 Abell 773
Abell 2667 Abell 209 Abell 1763
RXCJ0605.8–3518 Abell 1413 Abell 2163
RXCJ1044.5–0704 Abell 963 Abell 2218
RXCJ1141.4–1216 Abell 1689 Abell 2034
RXCJ2014.8–2430 Abell 1914 Abell 3376
RXCJ2149.1–3041 Abell 754
RXCJ0958.3–1103
Abell 115

Notes: a low entropy core clusters; b medium entropy core clusters; c high entropy core
clusters.

Table 10.3: Low, medium, and high entropy core clusters.

Figure 10.4: Histogram of the frequency distribution for the entropy ratio, σ. The
color code is the same as used in Fig. 10.3.
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Figure 10.5: Correlation between σ and σ̃ (see text for definitions) for clusters with
z > 0.1. The solid line shows the best-fit power law; the scatter is ≈ 6%. The
dashed lines indicate the thresholds used to divide clusters into LEC, MEC, and
HEC systems.

entropy ratio is very similar, also when using

σ̃ =
TIN

TOUT
×

(
EMIN

EMSSS

)−1/3

, (10.4)

which differs from σ for the use of the self-similar scaled EM . In Fig. 10.5 I show
the correlation between σ and σ̃ for the subsample of distant clusters; I find a ≈ 6%
scatter around the best-fit power law (represented with a solid line). The dashed
lines indicate the thresholds used to define the three classes (i.e. LEC, MEC, and
HEC clusters). Only few border-line objects change their class from MEC to LEC
or HEC and vice-versa, when switching from σ to σ̃; this fact is a confirmation of
the robustness of our classification.

The central cooling time is another quantity largely used in the literature (e.g.
Peres et al. 1998) to estimate the relaxation degree of clusters. Similarly as done for
the entropy, I defined a pseudo-cooling-time, tcool = T 1/2×EM−1/2, and a pseudo-
cooling-time ratio, τ = (TIN/TOUT)1/2 × (EMIN/EMOUT)−1/2. When separating
clusters according to τ , I find essentially the same results as when using σ.

10.3 Chemical properties

10.3.1 Chemical vs. thermodynamic quantities

In Fig. 10.6 I plot the central metallicity, ZIN, vs. the pseudo-entropy ratio, σ, for
all clusters. I find σ and ZIN to have a negative correlation, namely: the stronger
the pseudo-entropy gradient, the stronger the metallicity peak.

I have further investigated the relationship between metallicity and pseudo-
entropy shown in Fig. 10.6, by computing the main properties for the metal abun-
dance distributions within 0.05 R180 for the three entropy classes. The computation
has been performed both with and without few outliers, which have been identified
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Figure 10.6: Central metallicity peak, ZIN, vs. the pseudo-entropy ratio, σ. Symbol
and color codes are the same as in Fig. 10.3. Abundances are expressed in Anders
& Grevesse (1989) solar values. The dashed line at 0.23 Z¯ indicates the metallicity
in the outer regions of clusters (see Table 8.2).

Figure 10.7: Summary of the main properties of the metallicity distributions for the
three entropy classes. The color code is the same as used in Fig. 10.3. Abundances
are expressed in Anders & Grevesse (1989) solar values. For each group, the dashed
and the solid lines indicate the weighted average and the median respectively. The
clearer area encloses the mean value plus or minus the standard deviation (i.e.
indicates the one-sigma scatter of the values around the mean), and the darker area
encloses the mean value plus or minus its uncertainty (calculated as the standard
deviation over the square root of the number of elements). The long-dashed line
at 0.23 Z¯ indicates the metallicity in the outer regions. In the right panel, few
outliers are excluded (see text for details).
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Figure 10.8: Mean metallicity profiles for LEC (blue circles), MEC (green), and
HEC (red) clusters. The dashed line indicates 0.2 R180, within that radius profiles
are obtained from all clusters, the black point beyond that radius is the average
value from distant (i.e. z > 0.1) clusters.

through a recursive sigma clipping procedure with a threshold of 1.5 σ. Results
are reported in Fig. 10.7: in the left panel I considered all clusters, in the right
one only those that survived the sigma clipping. When excluding the outliers, the
correlation between metallicity and pseudo-entropy becomes more evident, the scat-
ter is strongly reduced, and the shape of the distribution is much more symmetric
(i.e. median, mean, and weighted average become consistent). Last but not least,
an abundance excess with respect to the value measured in the outer regions (i.e.
0.23 Z¯, see Table 8.2) is found for all classes, whether the outliers were included or
not. For HEC systems the excess is small, but nonetheless statistically significant.

10.3.2 Metallicity profiles

To provide a more comprehensive characterization of chemical properties I have also
produced the mean radial metallicity profiles for each entropy class. In Fig. 10.8 I
show the mean profiles for LEC, MEC, and HEC clusters (defined in Sect. 10.2). The
binning used is in units of R180 and was computed as explained in Sect. 6.2; for each
bin the average is calculated by allowing the existence of an intrinsic dispersion (see
Fig. 10.7). I have performed measurements of the metal abundance for all clusters
out to 0.2 R180 only. Beyond that radius I only averaged over distant clusters and
obtained a metallicity of 0.242 ± 0.013 Z¯, that is remarkably consistent with the
value obtained by De Grandi & Molendi (2001) for a local sample of relaxed clusters
observed with BeppoSAX.

Within 0.1 R180, a region typically associated with the core, all profiles show
an abundance excess. The excess is strongest for LEC, somewhat weaker for MEC,
and wekaest for HEC clusters. Between 0.1 and 0.2 R180 the profiles for the three
classes are roughly consistent with one another and, at least for LEC systems,
show a significant excess with respect to the mean value measured in the outskirts.
Between 0.2 and 0.4 R180, where I have data for the intermediate-redshift sample
only, the three profiles are consistent with being flat and equal with each other.
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10.4 Conclusions

In this section I will briefly describe the two main results of this work in progress,
their discussion will be presented in a forthcoming paper (Leccardi et al., in prep.).

I find that most clusters, although showing no evidence of a temperature decline
toward the center, exhibit a central metallicity peak. This may suggest that most
clusters have spent a significant amount of time as a cool core (i.e. almost undis-
turbed) having had the chance of yielding a large quantity of metals in the central
regions.

I also investigated the correlation between the central metallicity and the pseudo-
entropy ratio, namely: the stronger the pseudo-entropy ratio, the stronger the
metallicity peak. Despite the correlation, there are a few outliers with rather weak
pseudo-entropy variations, but mild and strong metallicity peaks. This quite inter-
esting result leads to a problem. Simulations (Poole et al. 2006) show that when a
cool core is formed, it is almost impossible to destroy its entropy structure. More-
over, it is known that the main way for a cluster to produce a central metallicity
peak is through a cool core phase (De Grandi et al. 2004). A possible explanation
for such outliers is that the strongest interactions are able to destroy the entropy
structure, but not all cool core evidences; the central metallicity peak is resistant
and remains as a relic of the past cool core phase.
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