
World Wide Web
https://doi.org/10.1007/s11280-021-01001-2

Graph embeddings in criminal investigation: towards
combining precision, generalization and transparency

Special issue on computational aspects of network science

Valerio Bellandi1 ·Paolo Ceravolo1 · Samira Maghool1 · Stefano Siccardi1

Received: 1 April 2021 / Revised: 17 September 2021 / Accepted: 22 December 2021
© The Author(s) 2022

Abstract
Criminal investigation adopts Artificial Intelligence to enhance the volume of the facts that
can be investigated and documented in trials. However, the abstract reasoning implied in
legal justification and argumentation requests to adopt solutions providing high precision,
low generalization error, and retrospective transparency. Three requirements that hardly
coexist in today’s Artificial Intelligence solutions. In a controlled experiment, we then inves-
tigated the use of graph embeddings procedures to retrieve potential criminal actions based
on patterns defined in enquiry protocols. We observed that a significant level of accuracy can
be achieved but different graph reformation procedures imply different levels of precision,
generalization, and transparency.

Keywords Knowledge graphs · Enquiry protocols · Criminal investigation ·
Graph embeddings

1 Introduction

Criminal investigation and prosecution are complex procedures that have to deeply exam-
ine large documental sources to spotlight facts often unrevealed, denied, or deliberately

This article belongs to the Topical Collection: Special Issue on Computational Aspects of Network
Science
Guest Editors: Apostolos N. Papadopoulos and Richard Chbeir

� Samira Maghool
samira.maghool@unimi.it

Valerio Bellandi
valerio.bellandi@unimi.it

Paolo Ceravolo
paolo.ceravolo@unimi.it

Stefano Siccardi
stefano.siccardi@unimi.it

1 Department of Computer Science, Università degli studi di Milano, Via Celoria 18, Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-01001-2&domain=pdf
http://orcid.org/0000-0003-4473-6258
http://orcid.org/0000-0002-4519-0173
http://orcid.org/0000-0001-8310-2050
mailto: samira.maghool@unimi.it
mailto: valerio.bellandi@unimi.it
mailto: paolo.ceravolo@unimi.it
mailto: stefano.siccardi@unimi.it

World Wide Web

withheld by criminal agents. Criminal agents also find out and make use of those assets
that are less traced in the documental sources exploited by persecutors and law enforce-
ment agencies. On the contrary, a successful investigation should result in exhaustive and
documented proceedings delineating the facts and the responsibilities that comprise crimi-
nal actions. This must be done in accordance with the law and following policies that can
guarantee fair, impartial, and efficient procedures. Artificial Intelligence (AI) [2] have been
proposed in support of the great deal of work implied by criminal prosecution. AI can pro-
cess large data sources and automatically identify relevant patterns to support the prosecutor
with recommendations. It has been observed that automating the inspection of data sources
can significantly impact the size of documents a prosecutor can bring in the trial [21] but
the benefits of AI go beyond the volumes of facts that can be documented. AI can enhance
the ability to identify criminal actions by flexibly matching the patterns defined by prose-
cutors and extending their scope [3], anticipating this way the ability of criminals in hiding
their actions by layering the stages that bring to exchanges and revenues.

A basic requirement of AI is precision, that in information retrieval refers to the rate
of relevant information within the set retrieved information. This requirement impacts how
reliable will be considered AI predictions. However, high precision achieved at the cost of
low generalization is not favorable, otherwise, the validity of the AI support will be very
narrowed and over fitted to specific problem. This notion can be measured by the gen-
eralization error that rates how accurately an algorithm can predict outcome values for
previously unseen data. Intuitively, larger is the domain of data that can be accurately han-
dled by an algorithm better it generalizes. It has been observed that the generalization error
may be significant when applying AI [19] to legal documentation. Either if the intelligence
is achieved by expert systems, driven by explicit rules, by supervised learning, discriminat-
ing from large amounts of examples, or by the hybridization of these techniques, obtaining
low generalization errors is challenging. Legal systems are, indeed, constructed on very
abstract definitions and interpretations of facts, that can be hardly reduced to a restricted set
of observations and that evolve over time following the concerns of the society. The juridical
justifications that are provided to decide on a case are often constructed a-posteriori, based
on the imputations to be supported and using a selective set of legislative provisions. This
problem is, for example, observed in [26], where an average accuracy range from 58% to
68% is reported in predicting decisions of the European Court of Human Rights for future
cases based on the cases from the past. As the authors note, the Court formulates the jus-
tifications in a way that is conducive to fit the conclusion. A same legal framework can be
applied differently based on the conditions encompassing a case.

A prosecutor has to verify specific facts, enquiries must address information in the
scope of the probed events, all related actions must be transparently documented. Therefore,
another key requirement for AI in criminal investigation is transparency. Following [13, 25]
we highlight transparency in algorithmic decision-making systems is more than account-
ability. An accountable software is software we can observe, verify the tasks it executed,
the systems, and the users it interacted with [12]. A transparent AI has to support the ret-
rospective analysis of the decision process followed by the algorithms, decomposing it into
the main elements that determined the final decision and allowing to backtrack the decision
steps followed.

In [3] we presented a method to support criminal investigation by operationalizing
Enquiry Protocols. Prosecutors adopt protocols to identify the qualified sources, registers,
and documents that can be exploited to pursue a crime, the information to be verified and
integrated, and the formal stages to be followed during the prosecution. Using a set of
data integration techniques, data sources can be organized in queryable Knowledge Graphs.

World Wide Web

Prosecutors can express a protocol as a set of subsequent operations over the data sources,
referring to the historical cases they addressed. Each operation can then be translated into
exact queries over the knowledge graph. An user interface can guide prosecutors along a
workflow that allow applying exact queries and examining their results. However, an intrin-
sic limit of exact specifications is that a small variation in the structure of a data source may
result in an unmatched occurrence. Using AI the exact knowledge of prosecutors can be
generalized supporting the identification of patterns similar to the ones identified from their
experience but differing in some respect. For example, a protocol could define a suspected
drug dealer as a person traveling with an unusual number of baggage pieces, missing the
fact he/she could simply escort an unusual number of travelers.

An efficient and versatile method to perform AI techniques on knowledge graphs is
using Graph embeddings, i.e. transforming the entities represented in the graph into vec-
tors, the standard input format for many AI algorithms. Experimental studies have reported
that graph embeddings techniques can get the highest standards in terms of precision in
classification tasks [17]. Embeddings are projections of graph nodes and edges into a
low-dimensional vector space [17], with positive impact on the processing speed of AI algo-
rithms. At the same time, embeddings can effectively capture the higher-order structure
beyond a graph letting emerging paths not otherwise visible for approaches based on exact
queries. For example, thanks to graph embeddings, two graph entities with different local
properties can be efficiently matched to obtain a rate of their coverage.

In this paper we assess the conditions a graph emebedding method has to meet in order
to reach high precision, low generalization error and retrospective transparency. In AI
solutions reaching high accuracy, these requirements cannot coexist [38]. Our experimen-
tal analysis, extending the findings in [3], confirms a single technique cannot reach full
coverage of these requirements. The solution we propose is then obtained by combining
different approaches. Embeddings of the exact queries exploited in a protocol input is a
selection task that can identify sub-graphs similar to the sub-graphs returned by the queries
in a protocol. This makes graph queries robust to variations in the structure of the queried
knowledge graph reducing the generalization error imposed by the system or uncertainties
in the retrospective data.

Graph embeddings techniques have, however, significant limits in terms of transparency.
They allow comparing two objects with high precision but lack interpretability [17]. To
explain the recommendations prompted to the prosecutors we cannot just match two objects
with high accuracy we have to provide visibility to the discriminates used to find this
match [40]. A suspected drug dealer escorting travelers instead of luggage must be iden-
tified thanks to the proximity between travelers and pieces of luggage and this proximity
must be highlighted.

To overcome these limits, in [3], we proposed to perform the selection of discriminant
points by a hierarchical filtering procedure. The proximity measures in the embedding
space, which quantifies the neighborhood of a given node, filters out the dissimilar sub-
graphs in two steps. In the first step, filters according to the structural similarity, while in
the second step, the higher-order of neighborhood is considered. A coarse-grained refor-
mation [6] of the knowledge graph is required to give grip at the filtering procedure. The
knowledge graph is reformed into an undirected network of interconnected instances that
preserves the structural characteristic of the sub-graphs depicted by the protocol eliminating
redundant details. This reformation procedure, filtering out details unrelated to the proto-
col, improves identifying a set of sub-graphs with high similarity to the sub-graphs resulting
from the queries of the protocol. At the same time, this procedure support transparency
as the identified sub-graphs can be reported to the entities involved in the reformation

World Wide Web

process. However, not all the reformation procedures have the same impact on generaliza-
tion error and transparency. In our experimental study, we assessed different reformation
procedures getting different levels of precision in detecting the criminal patterns contained
in a synthetic dataset generated by augmenting a real-world example. The experimental
section contained results of three different embedding algorithms, node2vec, VERSE, and
proNE, used for extracting the proximity of entities in the latent space.

We compared the solutions presented in [3] with a method based on the classification
of group of events labeled as normal/criminal event patterns. The classification task has
implemented by Support Vector Classification (SVC) algorithm that the literature report it as
highly accurate and actually achieved full accuracy in our experiments. Our results show the
precision achieved in [3] and generalization are comparable. At the same time, our proposal
demonstrates better transferability due to the less specific reformation stage we applied.

More specifically, the remainder of the paper is organized as follows: Section 2 provides
an overview of Knowledge Graphs and Graph Embeddings. In Section 3, we describe the
materials and methods adopted for this study and we present our methods. In section 4, a
money-laundering scenario is introduced to guide the controlled experiment we run. The
results of our evaluation come in Section 5. A discussion on the results concludes the paper
in Section 6.

2 Related works

In this section, we review the background work required to develop our solution.

Knowledge graphs Knowledge graphs [30] describe interlinked entities with deep rep-
resentational power. Generally speaking, a knowledge graph G(V, ER) consists of V =
{v1, ..., vn} nodes, R = {r1, ..., rk} edge types, and Erh = eij edges, with i, j ∈ [1, n] and
h ∈ [1, k]. With Grh we refer to a graph containing edges of type rh only. Including edges
and nodes of multiple types a knowledge graph supports data integration and reasoning
capabilities for retrieving implicit knowledge rather than only allowing querying on explicit
knowledge.

The adoption of knowledge graphs in criminal investigation has been extensively stud-
ied under various headings. In [11] a public dataset from Manchester, U.K., is considered,
mapping all the entities relevant to criminal queries to four basic concepts: Person, Object,
Location, and Event. Meaningful links between nodes of these types highlight criminal
evidence or support the computation of useful statistics about the criminal activity in an
area.

Mobile phone calls can be given a natural graph structure, linking callers to called people
and involved cellular towers. This structure can be used to find associations between crim-
inals and anti-social people. Several studies proposed to identify patterns of calls, people
most often called by the suspects, and their communication with convicted criminals, see
for instance [9, 23].

In [10] the authors analyzed the database of a factoring company, to generate risk profiles
of clients using social network metrics. The period under consideration spanned nineteen
months. Factoring companies buy accounts receivable from third parties at a discounted
price, repaying the seller with working capital and taking the responsibility of collecting
the debts. As the money paid is a “clean” asset, this kind of business can be a case of
money laundering when invoices are fictitious. Using techniques from social network anal-
ysis, potentially suspect entities have been found among the actors of big or most frequent

World Wide Web

financial transactions. Companies operating in several economic sectors and located in some
peripheral regions emerged from the analysis. Links between different companies sharing
the same owner or representative have also been highlighted using visual tools.

The paper [31] considers a criminal network as a system that needs to reach equilibrium,
in the setting of General System Theory in Political Science. It is proposed to apply data
mining to these networks of organized crime and social network analysis is then exploited
to study the conditions bringing to this equilibrium.

In [7] the authors point out that, notwithstanding the evident benefits of knowledge
graphs for criminal investigations, their practical application is often limited. The reason
is that complex and time-consuming data integration procedures are necessary, due to the
legacy technologies adopted by law enforcement offices, and by regulatory barriers.

Graph embeddings Knowledge Graphs are widely adopted for supporting data modeling
and data analytic procedures. Their detail-oriented structural complexity is, however, an
obstacle for eliciting the information they convey using ML methods, which are engineered
for ingesting feature vectors. Features are measurable properties, distinguishing characteris-
tics, of the phenomena being observed. In ML data are seen in terms of a vector of features,
but the data encoded in an interconnected graph lay on multi-modal feature spaces. Regard-
ing the subject matter, the observed phenomena could refer to the constituent entities of this
graph, such as specific nodes or links (connections), or to the variations of this graph, such
as creation or annihilation of links which could be translate as “events”. Given a predefined
dimensionality to the feature space, multiple vectors can be equally representative of the
graph.

Graph Embeddings are techniques to project a graph in a d-dimensional space that pre-
serves as much as possible the graph properties. Given a graph G(V, E), graph embedding
properly provides the transformation of a graph G into R

d by a matrix X ∈ R
x×d whose

rows xi ∈ R
d are the vectors, otherwise said embeddings, that encode the graph proper-

ties. In the recent literature, the most common algorithms used for generating embeddings
are Neural Networks (NN) [1] which have been proved to be very effective in classifying
patterns. The strategies initially proposed focused on embedding the nodes by representing
their proximity to the other nodes in the graph. Other strategies have focused on embed-
ding the edges or the sub-graphs. Applications focusing on graph matching have brought
to techniques for encoding an entire graph [37]. The proposed approached can also dif-
fer because of the data reformation procedure adopted and the intrinsic specification of
the studied problem. On the other hand, the reformation process on the dynamic network
could be implemented considering the temporal sequence of events. In this sense, the event
embedding techniques could help in finding the proximity of events as nodes in latent space.
In particular in this work we compare strategies based on Entities embedding and Event
embedding.

i) Entities embedding:

For embedding entities (nodes and links) of a graph into the latent space, the xi are gen-
erated using proximity measures that are qualified in the first- and higher-order, depending
on the number of transformations applied on the adjacency matrix encoding the graph by the
pairs of nodes that are adjacent [17]. The general goal is to keep the interconnected nodes
closer in the embedding space, besides, efficient task-dependent transformation strategies
are studied to meet the requirements of different ML algorithms.

As one of the prominent transformation strategies, we can name the RandomWalk (RW)
based strategies. These methods use random walkers to traverse the graph and explore it.

World Wide Web

The proximity measure s(i, j) is approximated by the probability that nodes i and j co-
occur on a random walk over the network. The RW-based algorithms not only suggest a
flexible stochastic definition of node similarity function, that incorporates both local and
higher-order neighborhood, but also are efficient since during the training stage just the
pairs of nodes co-occurring on a random walk are considered, not all pairs of nodes [18, 32].
By extending this idea, a graph can be viewed as a set of routed sub-graphs around every
node, the embedding of a graph can then be interpreted as an aggregation of the embeddings
of every node in the graph [29]. The mentioned properties of RW-based embeddings make
these strategies eligible in exploring the variations of exact sub-graphs. In general, methods
using higher-order proximity measures outperform other methods and get excellent perfor-
mance with ML tasks such as clustering or classifying nodes and graphs, or predicting link
creation and decay [17].

ii) Event embedding

Event embedding idea is a newly emerging, powerful method in the area of complex
network studies [38]. The main focus of this method is the temporal network in which the
network variations happen on a small time scale. In most cases, the embedding procedure
of temporal networks into latent, low dimensional space contains redundant information
about single entities. On the other hand, the event embedding method implies reforming the
data transforming the edges and nodes expressing temporal conditions as running events
on the network, instead of constituting entities of the network. Based on the specific event
time dimension, a vector xi will be assigned to the event i. The defined event-vectors
could create an “event graph” which contains the events as nodes that are connected to the
non-simultaneous adjacent events with one shared end respecting the time direction. A con-
sequence of applying this approach is that the network reformation procedure to be executed
to organized data as a sequence of events is significantly domain-dependent and an error in
the specification of correct event vector may result in loosing the accuracy. In Section 4.3
we discuss this point in the context of the enquiry protocol encoded in our experiments.

3 Methodology

In this section, we present our methodology by illustrating its basic components.

Enquiry protocols Enquiry Protocols define the qualified sources and documents that can
be exploited to pursue a crime, the information to be verified and integrated, and the formal
stages to be followed during the prosecution [16]. It may be helpful to think about an enquiry
protocol as a funnel filled with many sources of information and data. That data passes
through the investigative filters that determine the possibilities, develop theories, and test
those theories against known evidence and facts. Data narrows itself down until a reasonable
grounds of belief is found, getting inculpatory or exculpatory evidence [14].

To operationalize enquiry protocols we defined them as a set of data integration
procedures followed by a set of nested graph queries.

Data integration It can be stressed that individuals are normally involved in several rela-
tional networks and during their daily activities generate many different types of data. Often,
relationships from one of these sources shed light on data from another; for instance, links
between companies can be inferred by integrating links between individuals and compa-
nies, taken from the companies’ records, and links between individuals, taken from social

World Wide Web

networks message flows. As a consequence, when constructing a knowledge graph, it is
important to identify all the relevant data sources and the data integration rules to apply.
A tricky point may consist of defining identity criteria, to decide if an entity described in
several data sources is the same individual or not. Actually, only in the most favourable
cases, the relevant entities are attached to the same identifier in all sources. When an auto-
matic identification is impossible, the ingestion programs should generate separate entities,
linking them as “potentially the same”, leaving the final decision to the user.

The focus of this paper is not on data integration, the interested reader may refer to [24]
for further details. We assume here that at the end of the data integration step a knowledge
graph containing the information relevant to the addressed investigation is available.

Graph queries Graph queries [20] can be used to extract sub-graphs that are qualitatively
or quantitatively different from the queries constituting an enquiry protocol. Queries can
spotlight nodes with unusual characteristics, e.g. the number of edges. When the edges have
attributes, one can search for an unusual aggregated value of the edges connected to a node.
When the graph has a temporal dimension, queries can detect nodes affected by an unusual
number of events in a time interval of some meaningful duration. To make sense, these
queries presuppose some knowledge of the statistics of the phenomenon, or at least some
heuristics, in order to define what should be meant as “unusual”. Queries can find specific
sequences of some types of nodes and edges that are known to be found (or to be missing)
when the entities represented are involved in some crimes. As an example, we can consider
the process of purchasing an item, that usually consists of a purchase order linked to product
delivery, an invoice, and a payment. Patterns lacking the invoice node can be considered
suspicious.

Graph reformation Data pruning and graph reformation technically point to several
approaches to avoid overfitting in building decision trees [8]. In the presented work, by
graph data reformation, we aim to pre-process the provided data, for the sake of perform-
ing efficient and targeted embedding tasks in large graphs. Therefore, we adopt filtering
procedures to reconsider the knowledge graphs’ instances as dynamic/static nodes intercon-
necting via fixed/temporal links. The goal is representing a structured knowledge graph G
with multiple edge types by an undirected networkN equivalent to a graph Grh totally deter-
mined by an edge type rh. During these pruning and reformation steps, we strictly respected
the semantics of the source data sets. The details of the pruning and reformation process
applied in our scenario, are discussed in Section 4.2.

Graph embeddings As discussed in Section 2, the embedding techniques provide a prob-
abilistic approximation of a similarity function which possibly incorporates the low/high-
order structure of the graph. More specifically, after data pruning and graph reformation,
we adopt the node2vec method [18], VERSE [36] and proNE [39], to map the nodes in an
undirected networkN to a latent space. The node2vec algorithm, known as one of the best-
performing embedding methods [22], can be efficiently optimized using stochastic gradient
descent [27]. A second-order random walk, considered in this method, takes the previ-
ously visited node into consideration allowing to encode the latent structure of the explored
graph.

We have also considered VERtex Similarity Embeddings (VERSE), a method that explic-
itly learns any similarity measures among nodes by training a single-layer neural network.
In its learning core, VERSE stands between deep learning approaches on the one hand and

World Wide Web

the direct decomposition of the similarity matrix on the other hand by VERSE. It is possi-
ble to choose a vertex-to-vertex similarity measure, whose distribution is preserved by the
embedding.

Another method of embedding we have implemented in this paper is the proNE. ProNE
initialize network embeddings in an efficient manner and enhance the representation power
of these embeddings. The first step is achieved by formulating network embedding as sparse
matrix factorization; The second step is to leverage the higher-order Cheeger’s inequal-
ity to spectrally propagate the initial embeddings with the goal of capturing the network’s
localized smoothing and global clustering information.

Temporal slicing While the real-life networks are evolving in time, following such tem-
poral evolution in graphs is challenging due to the huge size of data to be extracted and
represented. With data pruning and graph reformation, we can pursue balance between
computational resources and huge size of data. Following the same perspective, in our
experiments, we adopt two approaches for representing the temporal dimension. In the
pseudo-static approach we model the extracted graph data within an approximately large
time duration, so the entire information is conclusively presented in the graph assumed
as a static one. In the temporal approach, the graph is sliced in temporal layers [4] con-
sidering the need of problem. The nodes relevant to a protocol are first identified in each
separated layer to then follow the edges interconnecting them. This approach brings a sig-
nificant reduction in computational cost since rather than embedding the accumulated data
resulted from large time duration, we apply the embeddings on the temporal layers which
are significantly lower in size. To get concrete results of temporal embedding, a reference
sub-graph connect the embeddings of different layers in a hierarchical order depending on
the temporal sequence (Figure 3).

Event graphs The system under consideration is a temporal network, consisting of enti-
ties that interact and interactions constituting an event happening at a definite time. It is
an intrinsically dynamical system that can be reduced to a static one using temporal slic-
ing as described above. Some other specific techniques have been also developed for node
embedding in temporal networks (e.g. [5]); among these a particularly interesting one is
the construction of an event graph [35], as it results in a static network preserving the main
characteristics of the original one, and including all the events occurred, as no time-slicing
is used. In event graphs, the nodes (events) are the links of the original network and relations
are found considering non-simultaneous events that are adjacent, that is they share at least
one end. Adjacent nodes are connected by links, respecting the direction of time. A weight
may be attached at links, corresponding to the absolute time difference between events; in
this case, we speak of weighted event graphs. With the described construction, for instance,
events occurring at the same place or involving the same individuals are linked to each other
in sequences. We use a model of this type to validate the precision achieved by our proposal,
as described in Section 4.3.

4 Experimental design

To illustrate our methodology we present it in the context of a controlled experiment
illustrated in the following.

World Wide Web

4.1 Amoney laundering scenario

Money laundering represents a relevant section of criminal activities that can be detected
using data analytics. Funds move on standard financial instruments and can be traced by
looking at anomalous behaviour. Multiple data sources are, however, required for identi-
fying these anomalies. Knowledge graphs represent therefore a valuable tool in this area.
The scenario we addressed involves a protocol to detect organizations hiding their financial
movements by fractionating transactions in small transfers. The final collection of the funds
is organized by numerous cash withdrawals at ATMs, using multiple debit cards. Because,
nowadays, most of the banking services notify withdrawals via SMS, an anomalous pattern
can be identified from the records when this technique is applied. In fact, usually, the mobile
phone connected to a debit card is located in proximity to the ATM used for withdrawal.
When a large organization adopts this technique, a same mobile phone can be connected to
an uncommon number of cards, and the SMS are notified to cells not in the proximity of the
ATMs. This intuition can be summarised in an enquiry protocol defining the following con-
ditions. Within brackets, we provide the threshold used in our example but, clearly, these
values are parametric.

1. Some people are in charge of withdrawing a large amount of money using multiple
debit cards (> 10).

2. They choose at random an ATM and withdraw the maximum allowed amount (250)
with each debit card.

3. When the withdrawals are concluded they call their supervisor (within 5 minutes of the
last withdrawal).

4. Then they move to another ATM and follow back to point 1.
5. After each withdrawal, the bank sends an SMS to the mobile phone associated with the

debit card.
6. The supervisor holds all the mobile phones associated with the debit cards.
7. The supervisor follows the operations from a geographical area not in proximity to the

withdrawals.

Our controlled experiment was executed on a proof of concept realized for Italian pros-
ecutors. The dataset was generated augmenting a set of real-world examples provided by
the Milan prosecutor’s office. As a graph database management system we used the Neo4j
desktop edition and the Neo4j browser. We integrated data from several sources; in some
cases, we used public databases, in others, we did not have real data available for privacy
reasons and we generated simulated data. Among the first, we quote public data about the
purchases made by the Italian public administration, companies’ websites, and geographical
positions of the ATMs and the cellular radio towers. Among the latter, we quote the records
of mobile phone calls, debit card details, and withdrawals.

Data were imported into the Neo4j databases using Cypher shells or python programs
in particular we imported: 996 ATMs of the Milan urban area with their real longitude and
latitude; 2104 cellular towers from the same area with their real longitude and latitude;
30000 mobile phones with program generated numbers and sim card identifiers; 10000 debit
cards with program generated codes, each connected to a phone number; 891096 phone
calls; 370035 withdrawals.

Phone calls and withdrawals have been generated assuming three criminal withdrawers
and a supervisor were acting for five days from 9:00 AM to 5:00 PM using 10 debit cards
each. Normal user withdrawals could happen at any time. Criminal and normal withdrawals

World Wide Web

and phone calls have been generated separately. The generation of criminal withdrawals
started placing the supervisor in a randomly chosen place in the Milan urban area. Then, a
minimum of 5 ATM was assigned to each withdrawer, choosing among those located in a
randomly chosen area. Waiting times between withdrawals were normally distributed with
a mean of 2 minutes and a standard deviation of 30 seconds. We generated 1473 criminal
withdrawals in groups of a maximum of 10 and a minimum of 3 withdrawals, with an
average of 6.2. These withdrawals and phone calls were flagged as “criminal” in order to
check the ability of the embeddings to spot them. A confirmation call to the supervisor
was made on an average of 5 minutes after the last withdrawal, with a 1 minute standard
deviation. Normal users’ withdrawals have been generated at random times in the 24 hours
each day, using the same ATMs. Withdrawal amounts were chosen in 25% of cases as 100
euros, in 50% as 150 euros, in 12.5% as 200 euros, and in 12.5% as 250 euros. We also
generated phone calls for normal users, using the same cell towers. Call duration and time
were chosen at random.

Exact resultants Figure 1a shows a sub-graph including a withdrawal of 250 euros for
which the bank sent SMS to a cell phone not close to the ATM. The withdrawal is repre-
sented by the red node connected to the cell tower, in light blue, via the ATM, in orange.
The withdrawal is connected on the left to the debit card node and the leftmost section of
the graph shows that the message is sent to another cell tower, this means that the phone
is far from the ATM. This behaviour reflects points 5 and 6 of the scenario, but it is not
enough to detect a suspicious transaction, because it might happen in a number of normal
cases. In order to get better evidence, we expect a large number of 250 euros withdrawals
in a short time (points 1 and 2 of the scenario). Accordingly, we divide the total observation
time into suitable intervals and select the pairs of ATMs and intervals with higher numbers
of maximal withdrawals to look for the pattern in Figure 1a.

We then use the ATM and period codes to get a new pattern illustrated in Figure 1b in
the right area of the graphs the big red circles represent 10 withdrawals of the maximum
amount carried out in a short time from the same ATM. In the left area, the big blue circles
are 10 SMS sent by banks to confirm the withdrawals: it is clear that all of them used the
same cell tower, so the phones are close to each other and far from the ATMs.

4.2 Entities embeddingmethod

Graph reformation Graph embeddings techniques accept in input an adjacency matrix that
can capture complex graph structures using high-order proximity. High-order proximity
is effective for organizing embeddings in a metric space but not for filtering them base
on a specific node or edge values. For this reason, we implement data reformation steps
that simplify the structure of the knowledge graph without changing the semantics of the
resultants of our exact queries by pruning the redundant details. This reformation stage ,
will allow filtering patterns by filtering on a single node and have a positive impact on the
computational efficiency of our method. The reformation stage we apply is composed of
the following filtering steps:

– Ignore the debit cards and substituting them with the registered phone numbers in a
branch of a bank.

– Change the modality of withdrawals (large red nodes), from “nodes” in the sub-
graph of Figure 1a to “edges” in the simplified form, connecting the ATMs to phones
numbers/debit cards.

World Wide Web

Figure 1 a Pattern of a withdrawal when the phone associated to the debit card is far from the ATM.
b Pattern of a set of 10 withdrawals as described by our scenario

– Change the modality of phone calls/SMS (blue nodes), from “nodes” in the sub-graph
of Figure 1a to “edges” in the revised form, connecting the phones/debit cards to towers.

– Omit any intermediary node, such as branches of bank or bank phone numbers.

Applying the aforementioned stage, we get the sub-graph of Figure 2 that highlights the
main characteristics of a criminal pattern we aim to identify. The tower providing the service
to an ATM is geographically far from the tower sending confirmation SMS to the phones

Figure 2 The schematic of reformed graph data, describing the specific characteristic of a criminal pattern.
The tower in proximity to the ATM is different to the tower communicating with the phones held by the
supervisor of this criminal organisation

World Wide Web

connected to the suspicious withdrawals. Let’s call the debit card/phone nodes as P , the
ATM nodes as A, and the tower nodes as T . Considering this dual role for phones, at the
same time counterpart in the P −A−T and A−P −T paths, we can radically simplify the
graph G into an undirected networkN . This abstract coarse-grained form makes the imple-
mentation of embeddings on our resulted network more efficient in detecting the criminal
sub-graphs out of the enormous original graph. The constituent nodes and edges of N can
be encoded into an adjacency matrix Wi,j that:

Wi,j =
{
1 if a withdrawal or SMS happen between i and j

0 otherwise
,

where i, j ∈ A|T |P , are nodes presented in networkN .

Embedding procedure As discussed in Section 3, we compare two different procedures
for embedding the networkN .

In the pseudo-static approach, the final configuration of the network N , is the cumu-
lative resultant data of 5-days of ingested data. By applying the node2vec embedding
algorithm [18] on N , specific d-dimensional vectors xi to each node in N are assigned in
the embedded space.

The proximity of nodes in the embedded space is evaluated using a cosine similarity
function of their vectors of the given nodes i and j in the network:

s(i, j) ≈ xi.xj
|xi||xi| . (1)

Thereafter, we call n the number of the most-similar instances to a reported ATM
involved in criminal withdrawals, for example, the ATM: “a602” in our sample graph
data. These n-similar instances are chosen under the condition of s(“a602”, j) = S while
0 ≤ S ≤ 1 and are sorted by the larger assigned s-values. We should be noticed that, in
order to get a complete list of similar ATMs, we need to choose n large enough since some
of the phones and towers also may be returned as similar nodes to ATM: “a602”. In our
case, by trial and error, we have found out that choosing n = [1000, 2000] almost all ATMs
with S > 0 are returned.

Even though F1 score illustrated in Figure 5b indicates that leveraging the embedding
method, efficiently returns a list of ATMs involved in criminal scenarios, these ATMs, by
themselves, are not of much interest practically. From a prosecutor’s point of view, criminal
withdrawals by certain debit cards are required to be found out in order to operationally
track a criminal scenario.

To this aim, we introduce some formal definitions to describe the procedure. First, We
return a list of the ATMs similar to the known ATM: “a602”, as La602. In the same way,
nodes in proximity to the ith element of the list La602, are inserted in list Li

a602, and then
grouped in the list of lists L = [[L1

a602], [L2
a602], ...]. Each criminal sub-graph, structurally,

contains an ATM from the La602 list and a tower named Ti , which should be located closely
in the embedded space. According to our case study, the money laundering scenario, the
supervisor of criminal withdrawals who holds the phones, does not change his place occa-
sionally, so the number of nearby towers providing SMS service to phones are few. These
towers frequently take part in different criminal withdrawals of different ATMs (different
sub-graphs).

World Wide Web

The procedure of recognizing the criminal debit cards/phones is as follow:

– For every single ATM presented in the list La602, we return the Li
a602 and compose the

list L.
– The most-frequent “towers”, {Ti} in the list (L) are returned. Each corresponding peers

of La602 and {Ti} lists, for example ATM:Am and tower Tm, are constituents of a
criminal sub-graph.

– Referring to the network N and adjacency matrix W, the phones (Pk) that enabled a
path from the tower: Tm through the ATMs: Am, could be recognized, where:{

WAm,Pk
= 1 and,

WPk,Tm = 1

However, we have to notice the network N evolves over time. Although the A − T

edges are fixed, due to their physical position, the A − P and P − T edges (respectively,
withdrawals and SMS) are constantly changing over time. We have then designed an embed-
ding procedure that exploits this temporal dimension to further reduce the computational
complexity of the embedding procedure.

In the temporal approach, considering the fact that the criminal withdrawals may have
taken place in small time intervals, we divide the entire network into different layers corre-
sponding to the time intervals of the occurring withdrawals. Figure 3 proposes a schematic
view of the network partitioned into layers corresponding to specific time intervals. In our
experiment, we size a span of 2 hours.

Given the ATM:“a602” as an ATM involved in a criminal sub-graph, we made an
educated guess to consider this ATM and all of its first and second-order neighbors as
omnipresent instances in all network layers (the orange-colored node and its emanating
green edges in Figure 3). The choice of the first and the second order of proximity is
directly concluded from the abstract form of criminal sub-graph (Figure 2), indicating that
starting from known ATM, at least two order of proximity is needed to reach the service
provider tower in the embedded space. With this assumption, we are still able to find similar
sub-graphs to the given sub-graph, in each time interval of occurring withdrawals and SMS.

In the studied problem, computational complexity significantly reduced by applying our
temporal approach, due to a radical reduction in the dimension of the research space.

4.3 Event embeddingmethod

Graph reformation This method requires reforming the network in terms of sequences of
events. We start by identifying two types of top-level events at time t withdrawals {wt}, and
phone calls {pt}, where t < T the duration of study. They may happen independently where
wt1 ,pt2 with t2 − t1 � 0, or a withdrawal may trigger a phone call, wt1 �−→ pt1+�t with
�t → 0 which indicates the pt1+�t is triggered by wt1 . According to the enquery protocols
presented in Section4.1, in detecting the criminal withdrawals, the geographical distance
between the tower which provides the service to the ATM during the withdrawal process
and the tower provides the phone call or SMS is a highly relevant parameter. Furthermore,
the number of repetitive withdrawals from a single ATM, and the marginal amount of with-
drawals are the other key points to b considered. Recalling these three key points, in the
graph reformation step we build the vectors which contain the required spatio-temporal
information. The reformation procedure is divided into two steps. In a pre-processing step,
we build the compound events, {A,B,N,M}: {{wt } ⊕ {pt+�t} with 0 < t < 2T}, identify-
ing the withdrawals and the triggered phone calls, including SMS if any, and assign a type

World Wide Web

Figure 3 Converting the 5-days cumulative network into partial networks containing the temporal edges
occurring in the corresponding time interval which is mentioned beside each layer. The orange node and
green links represent the studied ATM and its related links, which is involved in a criminal sub-graph. This
criminal sub-graph is present in all partial networks

to each of these events, depending on the characteristics of the withdrawal and the call. The
characteristic of withdrawals could be specified by amount, origin ATM and nearby tower
while the phone calls (SMS) are characterized by their providing towers. The embedding
procedure builds a vector for each compound event, whose components are the type of the
events and the numbers of events of each type that happened in a time window that includes
the event itself. For simplicity, in the rest of this paper, we avoid the full term of “compound
event” and call them just as “event”. We have considered four main event types namely:

1. Type Ax withdrawals have maximal withdrawal amount, with SMS received at a tower
far from the ATM; x is the receiving tower id and acts as a sub-type.

2. Type Bx withdrawals have non-maximal withdrawal amount, with SMS received at a
tower far from the ATM; x is the receiving tower id and acts as a sub-type.

3. Type N withdrawals are withdrawals of any amounts, with SMS received at the tower
near the ATM; they have no sub-types.

4. Type M withdrawals are withdrawals of any amounts, with no SMS received; they have
no sub-types.

The embedding is built starting at each event labeled as above and considering events
that happened at the same ATM during a time-span T = 10 minutes before and after the
event itself. The vector columns are as follows:

World Wide Web

– first 4 columns contain the number of typeA,B,M ,N events found in the time window;
– next 4 columns contain 1 if the event is of type A, 0 otherwise; the same for types B,

M , N ;
– next 2 columns contain the number of different sub-types of A events and B events

found;
– next 2 columns contain the number of A events with the same sub-type as the event and

the same for B events;
– the last column is the target label (criminal or normal withdrawal) for supervised

learning.

This structure is illustrated in Figure 4 where events are indexed from 1 to 10.

Embedding procedure The table in Figure 4 contains the results of the embedding proce-
dure, where each row is the vector corresponding to an event. The columns are in the same
order as in the vectors previously described, even if, the last column, about the target label,
has been omitted. For instance, the embedding of the first event, that is of type M , is built
in this way: we consider the time period spanned by the horizontal dashed line that starts
at the event itself. Because it is the first event there is no dashed line before it. We see that
four events of type A6 can be found in the time window, that is before the vertical dotted
line. Accordingly, column “n.A” contains 4, and columns “n.B”, “n.M” and “n.N” con-
tain 0 because no events of these types are found in the time window. Of the following four
columns, only the one labeled “Is M” contains 1, as the event is of type M . We have only a
subtype, “6”, for the 4 events of type A, so column “St .A” contains 1 and column “St .B”
contains 0 (we have no events of type B, so no B subtypes at all). As the event is of type
M , we have no type A or B events of the same subtype of the event under consideration
and the last two columns contain 0 too. The other vectors are computed in the same way,
but the time window moves, so that also events that happened earlier and are drawn above
in the picture, must be taken into account. As an illustration, dotted vertical lines delimiting
the window have been drawn for the sixth event, of type N .

Therefore, we end up with the “event vectors” containing the information of a specific
event within the defined time window. Considering the money laundering scenario, we aim
to detect criminal withdrawals out of a large number of withdrawals. Each of these vectors
could be assumed as a 12-Dimensional vector and ingested into a classification algorithm.
For this purpose, we use Support Vector Classification (SVC) algorithm by sklearn [33]
and keras in TensorFlow [34]), which is effective in high dimensional space and memory
efficient algorithm. The input layers receive the event vectors to processed. In this way, the
event vectors, which encode the different types of withdrawals, will be labeled as criminal
or non-criminal.

5 Evaluation

To evaluate our methodology we assess it in terms of precision, generalization, and trans-
parency and compare the results of the three proposed methods, temporal and static entities
embedding and event embedding. We calculate the precision as the ratio of correctly pre-
dicted positive observations to the total predicted positive observations and the recall (or
sensitivity) as the ratio of correctly predicted positive observations to all positive observa-
tions in actual data. Here we have reported the f1 score which is the harmonic mean of

World Wide Web

Figure 4 We consider 10 events at the same ATM. Time is running along the horizontal axis and the event
displacement is proportional to the elapsed time. For the sake of clarity, the events have been displaced along
the vertical axis too. The dashed horizontal lines represent the time window before and after each event, in
which events were considered to build the embedding. Vertical dotted lines delimiting the time windows have
been drawn for the first and sixth events only

precision and recall [15]. Therefore, this score takes both false positives and false nega-
tives into account. The f1 score is usually more useful than accuracy score, especially if
we have an uneven class distribution, i.e. a large number of actual negative, for the binary
classification task.

Concerning the generalization of an algorithm, one might have two view points. First,
one could be considered as the success of a model in correctly prediction of unseen data
set. For this purpose we compared f1 and precision computed using increasing percentages
of data for training plotted by learning curve. In this way we evaluate how the model can
correctly extend predictions to a set of data that is much bigger of the training data set.

Secondly, we note that generalization can be understood in a broader sense, that is a
qualitative evaluation of the effort that should be done to adapt a method to a different
data set or context, that is a kind of transferability of the methods to other domains. In this
sense, it is evident that the entity based methods are more general than the event based one,
because they could be used with virtually no changes to classify data from other graphs. On
the other hand, the event based method requires appropriate definition of the event types for
the context at hand and, as a consequence, a reworking of the pre-processing phase.

With transparency we mean the property of an algorithm of being more or less easily
understood by a human, so that one can realize how the model made decisions and arrived at

World Wide Web

the results. We will discuss qualitative evaluations of this property, taking into account that
the algorithms are composed by two distinct steps: embedding computation and embedding
vectors classification. We will consider separately the transparency of each step to compare
the overall transparency of the methods.

5.1 Results: entities embeddingmethod

In Section 4.2, we discussed how the embedding algorithms help to find sub-graphs com-
mitted to our money laundering scenario by converting the network N of incorporating
instances to vectors. The experimental results of testing parameters for the first method, the
pseudo-static network using node2vec algorithm, is demonstrated in Figure 5. The figure
contains two parts, the required modelling time, comes in Figure 5a, and the f1 score
obtained by using different parameters is presented in Figure 5b. Considering the hyper-
parameters vector-dimension and walk-length sets on the horizontal axis, we witnessed the
needed time for generating embeddings increases by increments in the number of walks.
Figure 5b depicts the f1 score of embedding models for different parameters on the basis
of returning the correct number of ATMs involved in a criminal event. This plot repre-
sents that the method, in general, is able to correctly recognizes more than 90% of criminal
withdrawals.

In the second method, reforming the network in temporal slices, we aimed to reduce the
computational complexity in the embedding procedure. Figure 6a and b demonstrate the
needed time and f1 score of the model using different parameters. While the f1 score for
temporal network embedding, in comparison to the first method, decreases as we expected,
the needed time of modeling sharply decreases. This reduction is a direct result of the tem-
poral slicing procedure which may cause interruptions in the series of occurring criminal
withdrawals and received SMS. However, it is worth mentioning that, we still observe high
performances in the case with large length and number of walks. The Figure 7 compares the
precision/f1 score of pseudo and temporal entity embedding methods.
Using the proNE and VERSE algorithms we confirmed the output results of node2vec algo-
rithms comparing the pseudo-static and temporal embedding. Whilst these algorithms are
significantly faster in modelling, the accuracy drastically decreased (For further details and
plots of the modelling time and the f1 score see the Supplementary material).

5.2 Results: event embeddingmethod

The event embedding vectors are made according to the description provided in Section 4.3
regarding the money laundering scenario. Leveraging a classification algorithm, event vec-
tors (withdrawals) that contain the spatio-temporal information of withdrawals could be
labeled as criminal or non-criminal. To this aim, we feed the “event vectors” to the Support
Vector Classifier for classification purpose.

In particular, Figure 8 shows the learning curve for the SVC used to classify the event
embedding. The leftmost point uses the same amount of training data as Figure 7a and the
rightmost uses the full data set for training as Figure 7b. Comparison of the three panels
shows that the event embedding can make correct previsions using a smaller set of data
than the entity embedding methods. We therefore conclude that event embedding get high
generalization faster that entity embedding, however, all three methods have reasonably
high and comparable f1 and precision scores.

World Wide Web

(a)

(b)

Figure 5 a The experimental results for the needed time of modelling the pseudo-static network is plotted.
b The f1 score in detecting correct number of ATMs involved in criminal withdrawals. Different values of
parameters in node2vec algorithm are tested

World Wide Web

(a)

(b)

Figure 6 a The experimental results on the time used for modeling Temporal Embeddings is plotted. b The
F1 score in detecting the criminal withdrawals at each layer of the network. Different values of parameters
in Node2Vec algorithm are tested

World Wide Web

6 Discussion

In this paper, we have discussed twomethodswith different perspectives of the embedding. In
the Entities embeddingmethod, the constituting instances of a knowledge graph are embed-
ded in the latent space according to their sub-graphs structural similarity. In this method,
both spatial and temporal dimensions are considered as two different attributes of entities.
Considering the results of the pseudo static and temporal approaches, our findings indicate
that the spatial dimension of the network could serve the pattern recognition and sub-graph
matching task. This structural robustness could help to progress the studies for a large period
of time without an obsessive focus on the time dimension and provide an evaluation of the
distance between the predicted criminal instances and the original enquery protocol.

On the other hand, in the event embedding method, the phenomenal point of view of the
network is much of interest. In this method, the time dimension plays a crucial role while
the higher-order structure of the network will not be preserved anymore. This point makes
this method precise and fast in recognizing the favorite events (in this study, the criminal
withdrawals).

On the other hand, this method requires a domain-dependent pre-processing procedure
in “events” definitions before initiating the classification task, which is time-consuming and
may cause a high generalization error in the embedding computation procedure.

In Figure 7, a summary of the precision and f1 score of the proposed methods in terms
of relevant hyper-parameters, for our specific case study, are provided. These results indi-
cate the high precision and f1 score for the entity embedding methods. Instead, Figure 8
demonstrates a learning curve for the event embedding classification task using SVC which
has high but at the same time comparable f1 and precision scores for the different training
examples.

Concerning the transparency required in the criminal investigations, as stated in
Section 5, we consider separately the steps of embedding computation and embedding
vectors classification.

(a) (b)

Figure 7 The precision and F1 score of proposed methods. The diagrams represent respectively: a the result
of Entities embedding for temporal approach; b the result of Entities embedding for pseudo-static approach
in terms of a vector of dimension/walk length for different number of random walkers

World Wide Web

Figure 8 The learning curve of Support Vector Classifier leveraged for the classification task of event
embedding algorithm. The leftmost data points demonstrate the f1 and precision of 3% of training data set
comparable with the partial data used for modelling temporal embedding. The rightmost points represent the
100% of the training example data equal to the used data for the pseudo-static entity embedding algorithm

Entity embedding computation by node2vec is based on random walks traversing the
graph and measuring the probability of observing a specific entity considering different
staring points which could be intuitive by human.

On the other hand, VERSE learns embeddings by training a single-layer neural network,
so that its transparency is lower. The way ProNE enhances the embedding using spectral
spaces techniques seems also hardly transparent.

Event embedding computation consists in counting events of some types happening in
a time window before and after the event to embed. It is a perfectly human understandable
operation as, probably, is what a human agent would do if he/she had to manually find event
patterns.

Entity embedding classification is performed using cosine similarity, that can be consid-
ered quite an intuitive concept, so easily understood in general.

Event embedding classification may be done using a choice of machine learning
methods, such as decision trees, support vector machines, neural networks and so on.

Table 1 Comparing the transparency levels of the proposed methods in terms of transparency in the com-
putation of embedding vectors and classification task. We used a scale: 0 (not transparent), 1 (partially
transparent), 2 (fully transparent)

Methods Embedding Transparency levels

Entities embedding-node2vec 1

Entities embedding-VERSE 0

Entities embedding-ProNE 0

Event embedding-Event series 2

World Wide Web

Table 2 Evaluation of Precision, Generalization (that is separated in Generalization err. Transferability), and
Transparency of proposed methods. Each method is ranked as their performance in evaluation

Generalization

Precision Generalization err. Transferability Transparency

Entities embedding-node2vec 3◦ 1◦ 1◦ 2◦

Entities embedding-VERSE 2◦ 1◦ 1◦ 3◦

Entities embedding-ProNE 2◦ 2◦ 1◦ 3◦

Event embedding-Event series 1◦ 2◦ 2◦ 1◦

Accordingly, the transparency of this step may vary considerably. In our implementation we
used a SVC, that can be considered half way in transparency, as one can compute and plot
an estimate of the sensitivity of the model to each feature [28].

In Table 2 we summarize the discussion providing the evaluation of three key points in
this work, precision, generalization, and transparency of our proposed methods. We split
the generalization into two columns, the first according to Figure 7 takes into account the
ability of the model of getting low generalization error with a small training data set; the
second, that we call transferability, considers the amount of work needed to adapt the model
to other contexts.

We consider the temporal and pseudo-static entity embeddings as partial and complete
training data set respectively for comparing generalization of entity and event embedding
algorithms.

7 Conclusions

Using knowledge graphs and graph queries to integrate criminal data and retrieve operational
inquiries that verify the facts according to protocols, is an advancement in justice systems.
Graph queries properly return the events in exact correspondence to the criminal patterns
specified in the protocols but fails in identifying even small deviations from these patterns.

With this paper, we have suggested two innovative approaches to crime detection using
the embedding techniques to retrieve criminal patterns reasonably closed to the patterns
specified in the protocols.

To this aim, in the first method, we have applied a hierarchical filtering procedure.
According to this procedure, the proximity measures in the embedding space, which quanti-
fies the neighborhood of a given node, filters out the dissimilar sub-graphs in two following
steps. At the first step, the structural similarity and at the second step, the higher-order
of neighborhood, are considered. Our method demonstrates robust accuracy with different
hyper-parameters. It also provided good results in terms of transparency.

As a secondmethod,wehave considered the event embeddingmechanism inorder to detect
the favorite series of events in a pre-defined time interval. Even though this method demon-
strated high accuracy and robustness, it has the drawback of requiring high computation
resources for training and high amount of work to transfer the computed model to other
contexts.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

World Wide Web

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abiodun, O.I., Jantan, A., Abiodun, E.O., Dada, K.V., Nachaat, A.M., Arshad, H.: State-of-the-art in
artificial neural network applications: A survey. Heliyon 4(11), e00938 (2018)

2. Ashley, K.D.: Artificial intelligence and legal analytics: New tools for law practice in the digital age.
Cambridge University Press (2017)

3. Bellandi, V., Ceravolo, P., Maghool, S., Siccardi, S.: Graph embeddings in criminal investigation:
Extending the scope of enquiry protocols. In: Proceedings of the 12th International Conference on Man-
agement of Digital EcoSystems, MEDES ’20, pp. 64–71. Association for Computing Machinery, New
York (2020)

4. Benzi, K.M.: From recommender systems to spatio-temporal dynamics with network science. Technical
report EPFL (2017)

5. Béres, F., Kelen, D.M., Pálovics, R., Benczúr, A.A.: Node embeddings in dynamic graphs. Applied
Network Science (2019)

6. Bertalan, T., Wu, Y., Laing, C., Gear, C.W., Kevrekidis, I.G.: Coarse-grained descriptions of dynamics
for networks with both intrinsic and structural heterogeneities. Front. Comput. Neurosci. 11, 43 (2017)

7. Bjelland, H.F., Dahl, J.Y.: Exploring criminal investigation practices: The benefits of analysing police-
generated investigation data (2017)

8. Breslow, L.A., Aha, D.W.: Simplifying decision trees: A survey. Knowl. Eng. Rev. 12(1), 1–40 (1997)
9. Catanese, S.A., Fiumara, G.: A visual tool for forensic analysis of mobile phone traffic. In: MiFor ’10:

Proceedings of the 2nd ACMworkshop on Multimedia in forensics, security and intelligence, pp. 71–76.
ACM (2010)

10. Colladon, A.F., Remondi, E.: Using social network analysis to prevent money laundering. Expert Syst.
Appl. 67, 49–58 (2017)

11. Depeau, J.: Announcing the neo4j crime investigation sandbox. Technical report, Neo4j. https://medium.
com/neo4j/announcing-the-neo4j-crime-investigation-sandbox-c0c3bd9e71b1 (2018)

12. Eriksén, S.: Designing for accountability. In: Proceedings of the Second Nordic Conference on Human-
Computer Interaction, pp. 177–186 (2002)

13. Felzmann, H., Villaronga, E.F., Lutz, C., Tamò-Larrieux, A.: Transparency you can trust: Transparency
requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society
6(1), 2053951719860542 (2019)

14. Gehl, R., Plecas, D., et al: Introduction to criminal investigation: Processes, practices and thinking. Jus-
tice Institute of British Columbia. https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/
348 (2018)

15. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication
for evaluation. In: European Conference on Information Retrieval, pp. 345–359. Springer (2005)

16. Govende, D.: The criminal investigation: principles and practices. Servamus Community-based Safety
and Security Magazine 112(11), 31–33 (2019)

17. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey. Knowl.-
Based Syst. 151, 78–94 (2018)

18. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864
(2016)

19. Hildebrandt, M.: Law as computation in the era of artificial legal intelligence: Speaking law to the power
of statistics. University of Toronto Law Journal 68(supplement 1), 12–35 (2018)

20. Holzschuher, F., Peinl, R.: Querying a graph database–language selection and performance considera-
tions. J. Comput. Syst. Sci. 82(1), 45–68 (2016)

21. Irons, A., Lallie, H.S.: Digital forensics to intelligent forensics. Fut Int 6(3), 584–596 (2014)
22. Junior, S.B., Ceravolo, P., Damiani, E., Tavares, G.M.: Evaluating trace encoding methods in process

mining. In: Bowles, J., Broccia, G., Nanni, M. (eds.) From Data to Models and Back, pp. 174–189.
Springer International Publishing, Cham (2021)

http://creativecommons.org/licenses/by/4.0/
https://medium.com/neo4j/announcing-the-neo4j-crime-investigation-sandbox-c0c3bd9e71b1
https://medium.com/neo4j/announcing-the-neo4j-crime-investigation-sandbox-c0c3bd9e71b1
https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/348
https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/348

World Wide Web

23. Kumar, M., Hanumanthappa, M., Suresh Kumar, T.V.: Crime investigation and criminal network analysis
using archive call detail records. In: 2016 Eighth International Conference on Advanced Computing
(ICoAC), pp. 46–50. IEEE (2017)

24. Leida, M., Ceravolo, P., Damiani, E., Cui, Z., Gusmini, A.: Semantics-aware matching strategy (sams)
for the ontology mediated data integration (oddi). International Journal of Knowledge Engineering and
Soft Data Paradigms 2(1), 33–56 (2010)

25. Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J.,
Bansal, N., Lee, S.-I.: From local explanations to global understanding with explainable ai for trees.
Nature Machine Intelligence 2(1), 56–67 (2020)

26. Medvedeva, M., Vols, M., Wieling, M.: Using machine learning to predict decisions of the european
court of human rights. Artificial Intelligence and Law 28(2), 237–266 (2020)

27. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector
space. arXiv:http://arxiv.org/abs/1301.3781 (2013)

28. Nalbantov, G., Bioch, J., Groenen, P.: . Solving and interpreting binary classification problems in
marketing with svms 566–573, 11 (2005)

29. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning
distributed representations of graphs. arXiv:http://arxiv.org/abs/1707.05005 (2017)

30. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic
Web 8(3), 489–508 (2017)

31. Peroncini, R., Pizzi, R.: Values for some: How does criminal network undermine the political system? a
data mining perspective. In: Systemics of Incompleteness and Quasi-Systems), pp. 267–282 (2019)

32. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 701–710 (2014)

33. scikit-learn, machine learning in python
34. Tensorflow
35. Torricelli, M., Karsai, M., Gauvin, L.: weg2vec: Event embedding for temporal networks. Scientific

Reports (2020)
36. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph embeddings from similarity mea-

sures. In: Proceedings of the 2018 World Wide Web Conference, WWW ’18, pp. 539–548. Republic and
Canton of Geneva CHE (2018). International World Wide Web Conferences Steering Committee

37. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of approaches and
applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

38. Wischmeyer, T.: Artificial intelligence and transparency: Opening the black box. In: Regulating Artificial
Intelligence, pp. 75–101. Springer (2020)

39. Zhang, J., Dong, Y., Wang, Y., Tang, J., Ding, M.: Prone: Fast and scalable network representation
learning. In: IJCAI, vol. 19, pp. 4278–4284 (2019)

40. Zhang, M., Wang, Q., Xu, W., Li, W., Sun, S.: Discriminative path-based knowledge graph embedding
for precise link prediction. In: European Conference on Information Retrieval, pp. 276–288. Springer
(2018)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1707.05005

	Graph embeddings in criminal investigation: towards combining precision, generalization and transparency
	Abstract
	Introduction
	Related works
	Knowledge graphs
	Graph embeddings

	Methodology
	Enquiry protocols
	Data integration
	Graph queries
	Graph reformation
	Graph embeddings
	Temporal slicing
	Event graphs

	Experimental design
	A money laundering scenario
	Exact resultants

	Entities embedding method
	Graph reformation
	Embedding procedure

	Event embedding method
	Graph reformation
	Embedding procedure

	Evaluation
	Results: entities embedding method
	Results: event embedding method

	Discussion
	Conclusions
	References

