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Abstract: This paper investigates singly warped product manifolds admitting semi-conformal cur-
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1. Introduction

The study of specific curvature-like tensors on Riemannian manifolds offers a com-
prehensive grasp of the geometry of the underlying manifold. There are far too many
fascinating curvature-like tensors investigated in the literature. For instance, Pokhariyal
and Mishra proposed and investigated a family of symmetric and skew-symmetric (0, 4)
tensors that include the Riemann tensor as well as a combination of the Ricci and metric
tensors [1–3]. Later, many generalizations and relativistic applications were extensively
investigated in the literature for a long time (see [4–10] and references therein).

Some of the curvature tensors arose as invariants of a particular transformation. For
example, the concircular curvature tensor is invariant under the concircular transforma-
tion that transforms geodesic circles to geodesic circles [11]. This tensor represents the
deviation of a Riemannian manifold from being of a constant curvature. As a result, nu-
merous fascinating investigations of this tensor in various contexts have been conducted
(see [12–16]).

One of the most common and significant transformations is the conformal transforma-
tion. Let (V, g) be a Riemannian manifold with metric g and a positive function σ on M.
A conformal transformation is a diffeomorphism ω : (V, g)→ (V, eσg). Under conformal
transformations, the Weyl conformal curvature tensor C on V defined by

C i
jkl = Ri

jkl +
1

n− 2
(δi

kRjl − δi
l Rjk + gjl Ri

k − gjkRi
l)

+
R

(n− 1)(n− 2)
(δi

l gjk − δi
kgjl)
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remains invariant in dimensions greater than two [17,18] where Ri
jkl and Rjl are the Rieman-

nian and Ricci curvature tensors, respectively, and gik is the metric tensor. A function f is
called harmonic if its Laplacian ∆ f vanishes. It should be emphasized that conformal trans-
formation does not preserve function harmonicity; that is, a harmonic function does not
transform into another harmonic function under conformal transformation. Conharmonic
transformations are a special type of conformal transformation that converts harmonic
functions to harmonic functions. The conharmonic curvature tensor L defined by

Li
jkl = Ri

jkl +
1

n− 2
(δi

kRjl − δi
l Rjk + gjl Ri

k − gjkRi
l)

was first considered in [19] as an invariant of conharmonic transformation. J. Kim created a
novel curvature-like tensor that also stays invariant by conharmonic transformations along
the same line of the conharmonic curvature tensor [20]. This curvature-like tensor is known
as the semi-conformal curvature tensor and is defined by

P i
jkl = −(n− 2)BC i

jkl + [A + (n− 2)B]Li
jkl ,

where A and B are constants. The semi-conformal curvature tensor reduces to a conformal
curvature tensor if A = 1 and B = −1

n−2 and to a conharmonic curvature tensor if A = 1
and B = 0. In simple terms, conharmonic transformations are conformal transformations
that preserve harmonic functions. Under conharmonic transformation, the conharmonic
curvature tensor and semi-conformal curvature tensor remain invariant. The invariance
of the semi-conformal curvature tensor under conharmonic transformation indicates that
the semi-conformal curvature tensor evolves in a precise way to keep its physical meaning
unchanged. For instance, the conharmonic transformation preserves the property P i

jkl = 0.
The flatness of the semi-conformal curvature tensor is sufficient for a manifold to be
conformally flat or of a constant scalar curvature. In addition, a semi-conformal curvature
tensor of type (0, 4) satisfies the symmetries and skew symmetries of the Riemann curvature
tensor. Also, the semi-conformal curvature tensor has the cyclic property of the Riemann
tensor. Such tensors are called generalized curvature tensors and were first introduced and
studied by Kobayashi and Nomizu [21,22]. Consequently, the semi-conformal curvature
tensor is a generalized curvature tensor.

There have been numerous investigations of the semi-conformal curvature tensor
in different settings. In [23], a study of pseudo semi-conformally symmetric manifolds
was carried out. On such manifolds, the semiconformal curvature tensor is subjected to
appropriate constraints to ensure that the manifold has either a constant or zero scalar
curvature. This study was expanded in [24] to weakly semiconformally symmetric mani-
folds. Many fascinating findings were provided. The forms of the scalar curvature of the
generalized weakly semi-conformally symmetric manifold, a generalization of the weakly
symmetric manifold, were investigated in [25]. The authors of [26] studied the symmetries
of the semi-conformal curvature tensor in semi-conformally symmetric space-time. They
demonstrated that a four-dimensional space-time that admits a suitable semi-conformal
symmetry is semi-conformally flat or of the Petrov type N. Additionally, a four-dimensional
space-time that possesses a divergence-free semi-conformal curvature tensor was inves-
tigated. In both instances, it was discovered that the scalar curvature of the space-time
vanishes if the space-time accommodates an infinitesimal semi-conformal Killing vector
field. In [27], a new symmetry property of space-times is considered. The authors called it
semi-conformal curvature collineation, and its relationship with other known symmetry
properties was demonstrated. Both non-null and null electromagnetic fields have been
explored in relation to this new symmetry of relativistic space-times. If a perfect fluid
space-time’s semiconformal curvature tensor is divergence-free and its energy–momentum
tensor is of the Codazzi type, then the ρ− 3p is constant as shown in [28], where p is the
perfect fluid pressure and ρ is the energy density. A perfect fluid space-time admitting a
divergence-free semiconformal curvature tensor either fulfills the vacuum-like equation
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of state or is a Friedmann–Lemaitre–Robertson–Walker cosmological model satisfying
ρ− 3p = constant [28].

The authors of [29] studied the (k, µ)-contact metric manifold with the semi-conformal
curvature tensor, satisfying P · R = 0, as well as the semi-conformally flat, where P · R
means P acts as a derivation on R. Further, P · S = 0 was investigated, and the relation
for Ricci tensor was obtained. Also, some results for a (k, µ)-contact metric manifold
satisfying the condition P · S = 0 were established. In [30], the authors studied space-times
which admit a semi-conformal curvature tensor. First, it was proved that the energy–
momentum tensor with a vanishing semi-conformal curvature tensor, satisfying Einstein’s
field equations (with cosmological constant) is covariantly constant. Next, it was shown
that a perfect fluid space-time with a divergence-free semi-conformal curvature tensor
satisfying Einstein field equations without a cosmological constant has constant pressure
and density. Finally, the perfect fluid space-time with a vanishing semi-conformal curvature
tensor satisfying Einstein field equations without a cosmological constant is shown to have
constant energy density and isotropic pressure, and the perfect fluid always behaves as
having a cosmological constant.

The work in [31] aims to investigate a perfect fluid space-time that fulfills Einstein’s
field equation without the cosmological constant and is semi-conformally flat on the
Riemannian manifolds. The weakly symmetric and weakly Ricci symmetric manifolds have
been used to study a variety of geometric properties connected to weakly semi-conformally
symmetric manifolds. In [32], examining that space-times that admit semi-conformal
curvature tensors in f (R) modify gravity is the main objective of this work. Analysis
was performed on the semi-conformal flatness of both generic space-time and space-time
with f (R) gravity with a perfect fluid. They created the isotropic pressure p and energy
density forms for this analysis. A few energy conditions were then taken into consideration.
The divergence-free semi-conformal curvature tensor in f (R) gravity in the presence of
the ideal fluid is the subject of our final investigation. We underline that the resulting
space-times either achieve inflation or have constant isotropic pressure and energy density
because the Ricci tensor of this space-time is semi-symmetric for a recurrent or bi-recurrent
energy–momentum tensor.

Because of the significance of warped product manifolds, researchers are interested
in investigating curvature-like tensors on these manifolds as well as on warped space-
times. Semi-conformal curvature tensor, as an invariant of the so-called conharmonic
transformation, has not been investigated on warped product manifolds. We intend to fill
this gap in our current research by investigating the semi-conformal curvature tensor on
singly warped product manifolds. The consequences of the flatness of the semi-conformal
curvature tensors on singly warped product manifolds are examined.

2. Semi-Conformal Curvature Tensor

Let R be the curvature tensor on a pseudo-Riemannian manifold V. The (0, 4) conhar-
monic curvature tensor L on a pseudo-Riemannian manifold is given by

Lijkl = Rijkl +
1

n− 2
(gikRjl − gil Rjk + gjl Rik − gjkRil)

such that i, j, k, l ∈ {1, ..., n}, Rijkl and Rjl are the Riemannian and Ricci curvature tensors,
respectively, and gik is the metric tensor [33]. Also, the (0, 4) Weyl conformal curvature
tensor C on V is given by

Cijkl = Rijkl +
1

n− 2
(gikRjl − gil Rjk + gjl Rik − gjkRil)

+
R

(n− 1)(n− 2)
(gil gjk − gikgjl).

It is noted that one can rewrite each of the above tensors in terms of the other one
as follows:



Axioms 2023, 12, 1078 4 of 15

Cijkl = Lijkl +
R

(n− 1)(n− 2)
(gil gjk − gikgjl)

= Lijkl +
R

(n− 1)(n− 2)
Gijkl ,

where Gijkl = (gil gjk − gikgjl). These curvature-like tensors make up the semi-conformal
curvature tensor as

Pijkl = −(n− 2)BCijkl + [A + (n− 2)B]Lijkl .

Simple computations reveal that the semi-conformal curvature tensor has numerous
symmetries, skew symmetries and cyclic symmetries. It is noted that

Pijkl = −(n− 2)B
(
Lijkl +

R
(n− 1)(n− 2)

Gijkl

)
+ [A + (n− 2)B]Lijkl

= −(n− 2)B(
R

(n− 1)(n− 2)
Gijkl) + ALijkl

Pijkl =
−BR
n− 1

Gijkl + ALijkl .

Likewise,

Pijkl = ACijkl −
R(A + (n− 2)B)
(n− 1)(n− 2)

Gijkl . (1)

The tensor P satisfies the symmetries and identities of the Riemann tensor as follows:

Pijkl = −Pjikl

Pijkl = −Pijlk

Pijkl + Pjkil + Pkijl = 0.

Assume that a manifold V is semi-conformally flat, denoted by SCF, that is, the
semi-conformal curvature tensor vanishes. Then

0 =
−BR
n− 1

Gijkl + ALijkl

0 =
−BR
n− 1

Gijkl + ARijkl

+
A

n− 2
(gikRjl − gil Rjk + gjl Rik − gjkRil).

Two different contraction over i, l and j, k yield

0 =

(
B +

A
n− 2

)
Rgjk

0 = ((n− 2)B + A)R.

That is, R = 0 or (n− 2)B + A = 0. Utilizing Equation (1), one obtains Cijkl = 0.
Thus, a semi-conformally flat manifold V is either conformally flat, or the scalar curvature
vanishes. For more details about semi-conformal curvature tensors in general relativity,
see [30].

3. Singly Warped Product Manifold

Warped product manifolds were first introduced to find manifolds with a negative
curvature. The choice of the warping function gives an effective tool to create such mani-
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folds. Many interesting examples of relativistic space-times take the form of Lorentzian
warped product manifolds. Let V = V̄ × f Ṽ be a warped product manifold with its natural
projections π : V̄ × Ṽ −→ V̄ and η : V̄ × Ṽ −→ Ṽ such that (V̄, ḡ) and

(
Ṽ, g̃

)
are two

pseudo-Riemannian manifolds. Let dimV̄ = n̄ and dimṼ = ñ = n− n̄. The manifolds V̄
and Ṽ are called the base manifold and fiber manifold with metric tensors ḡ and g̃. The
warped product manifold is furnished with the metric g = ḡ⊕ Fg̃, where F : V −→ (0, ∞)
is a smooth positive function on V̄. Let i, j, . . . ∈ {1, . . . , n}, a, b, . . . ∈ {1, . . . , n̄} and
α, β, . . . ∈ {n̄ + 1, . . . , n}. The local components of the metric tensor g on the warped
product manifold V are given by

gij =


ḡab,
Fg̃αβ

0

i = a, j = b,
i = α, j = β,
otherwise.

(2)

The local non-zero components of the Riemannian curvature tensor Rijkl on the warped
product manifold V are given by

Rαβγδ = FR̃αβγδ −
1
4

∆̄FG̃αβγδ, (3)

Rαabβ =
−1
2

Tab g̃αβ, (4)

Rabcd = R̄abcd, (5)

where G̃αβγδ = gαδgβγ − gαγgβδ,4F̄ = ḡab FaFb, Fa = ∂aF = ∂F
∂xa and Tab is a tensor of type

(0, 2) defined by

Tab = ∇̄bFa −
1

2F
FaFb, Tαβ = Taα = 0.

The local components of the Ricci curvature tensor Rij of the warped product manifold
V are the following:

Rab = R̄ab −
ñ

2F
Tab, (6)

Rαβ = R̃αβ −
1
2
[T +

ñ− 1
2F
4̄F]g̃αβ, (7)

Raα = 0. (8)

The scalar curvature R of the warped product manifold is

R = R̄ +
1
F

R̃− ñ
F
[T +

ñ− 1
4F
4̄F] (9)

where T = ḡabTab and R̄, R̃ are the scalar curvatures of the base manifold V̄ and the fiber
manifold Ṽ. The non-vanishing components of the covariant derivative of the Riemannian
curvature tensor are

∇eRabcd = ∇̄eR̄abcd, (10)

∇εRαβγδ = F∇̃εR̃αβγδ, (11)

Rαabδ = 0. (12)

The covariant derivative of the Ricci curvature tensor is

∇cRab = ∇̄cR̄ab −
ñ
2
∇c

Tab
F

, (13)

∇γRαβ = ∇̃γR̃αβ, (14)

∇γRab = 0. (15)
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For more details, the reader is referred to [34,35].

4. Semi-Conformal Curvature Tensor On Warped Product Manifolds

The conharmonic curvature tensor L and the Weyl curvature tensor C make up the
semi-conformal curvature tensor such that

Pijkl = −(n− 2)BCijkl + [A + (n− 2)B]Lijkl , (16)

where

Lijkl = Rijkl +
1

n− 2
(gikRjl − gil Rjk + gjl Rik − gjkRil) (17)

Cijkl = Rijkl +
1

n− 2
(gikRjl − gil Rjk + gjl Rik − gjkRil)

+
R

(n− 1)(n− 2)
(gil gjk − gikgjl)

= Lijkl +
R

(n− 1)(n− 2)
Gijkl , (18)

where Gijkl = (gil gjk − gikgjl). Then

Pijkl = −(n− 2)B
(
Lijkl +

R
(n− 1)(n− 2)

Gijkl

)
+ [A + (n− 2)B]Lijkl (19)

= −(n− 2)B(
R

(n− 1)(n− 2)
Gijkl) + ALijkl

Pijkl =
−BR
n− 1

Gijkl + ALijkl (20)

such that i, j, k, l ∈ {1, . . . , n}, Rijkl and Rjl are the Riemannian and Ricci curvature tensors,
respectively, and gik is the metric tensor. For more details about semi-conformal curvature
tensors in general relativity, see [30]. Now we have the conversion of Lijkl , Cijkl , and Pijkl
from the Riemannian manifold to WPMs such that i, j, k, l ∈ {1, . . . , n̄} then i = a, j = b,
k = c, l = d.

The symmetries and anti-symmetries of the tensor P reduce the non-zero components
to only three components out of sixteen components. By using Equations (5) and (6) in
Equation (17), one obtains the following.

4.1. The Component Paαβb

The first case Paαβb is computed as

Paαβb = −(n− 2)BCaαβb + [A + (n− 2)B]Laαβb

=
−BR
n− 1

Gaαβb + ALaαβb.

Let us first find Laαβb as

Laαβb = Raαβb +
1

n− 2
(−gabRαβ − gαβRab)

= Raαβb −
1

n− 2
gabRαβ −

1
n− 2

gαβRab.

The use of the definitions of the Riemann tensor and the Ricci tensor on warped
product manifolds lead to
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Laαβb =
−1
2

Tab g̃αβ −
1

n− 2
ḡab

(
R̃αβ −

1
2
[T +

ñ− 1
2F
4̄F]g̃αβ

)
− 1

n− 2
Fg̃αβ

(
R̄ab −

ñ
2F

Tab

)
=

(
−1
2

+
ñ

2(n− 2)

)
Tab g̃αβ −

1
n− 2

ḡabR̃αβ

+
1

2(n− 2)
[T +

ñ− 1
2F
4̄F]ḡab g̃αβ −

1
n− 2

Fg̃αβR̄ab

=

(
−n̄ + 2

2(n− 2)

)
Tab g̃αβ −

1
n− 2

ḡabR̃αβ

+
1

2(n− 2)
[T +

ñ− 1
2F
4̄F]ḡab g̃αβ −

1
n− 2

Fg̃αβR̄ab.

However, the tensor Gaαβb is given as

Gaαβb = gabgαβ = Fḡab g̃αβ.

Thus, the corresponding component of the tensor P is given by

Paαβb =
−BR
n− 1

Gaαβb + ALaαβb

=
−FBR
n− 1

ḡab g̃αβ + ALaαβb

=
−FBR
n− 1

ḡab g̃αβ + A
(
−n̄ + 2

2(n− 2)

)
Tab g̃αβ −

A
n− 2

ḡabR̃αβ

+
A

2(n− 2)
[T +

ñ− 1
2F
4̄F]ḡab g̃αβ −

A
n− 2

Fg̃αβR̄ab.

This leads us to the form of the first non-zero component of the tensor P on warped
product manifolds. Thus, we have the following.

Theorem 1. In a warped product manifold, the semi-conformal curvature tensor satisfies

Paαβb =
−FBR
n− 1

ḡab g̃αβ + A
(
−n̄ + 2

2(n− 2)

)
Tab g̃αβ −

A
n− 2

ḡabR̃αβ

+
A

2(n− 2)
[T +

ñ− 1
2F
4̄F]ḡab g̃αβ −

A
n− 2

Fg̃αβR̄ab.

In a semi-conformally flat warped product manifold, one obtains

0 =
−2(n− 2)FBR

n− 1
ḡab g̃αβ − A(n̄− 2)Tab g̃αβ − 2AḡabR̃αβ

+ A[T +
ñ− 1

2F
4̄F]ḡab g̃αβ − 2AFg̃αβR̄ab.

Two different contractions of the above equation will give us many important implica-
tions of the flatness of the tensor P on warped product manifolds. The first contraction by
g̃αβ implies

0 =
−2ñ(n− 2)FBR

n− 1
ḡab − Añ(n̄− 2)Tab − 2AR̃ḡab

+ ñA[T +
ñ− 1

2F
4̄F]ḡab − 2ñAFR̄ab. (21)
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This equation gives

0 =
−2n̄ñ(n− 2)FBR

n− 1
− Añ(n̄− 2)T − 2n̄AR̃ + n̄ñA[T +

ñ− 1
2F
4̄F]− 2ñAFR̄.

0 =

[
−2ñ(n− 2)FBR

n− 1
− 2AR̃ + ñA[T +

ñ− 1
2F
4̄F]

]
n̄− Añ(n̄− 2)T − 2ñAFR̄.

A direct computation infers[
−2ñ(n− 2)FBR

n− 1
− 2AR̃ + ñA[T +

ñ− 1
2F
4̄F]

]
=

ñ
n̄

A[(n̄− 2)T + 2FR̄]. (22)

Updating Equation (21), one obtains

0 =
ñ
n̄

A[(n̄− 2)T + 2FR̄]ḡab − 2ñAFR̄ab − Añ(n̄− 2)Tab

0 =
1
n̄

A[(n̄− 2)T + 2FR̄]ḡab − 2AFR̄ab − A(n̄− 2)Tab (23)

0 = −2AF
[

R̄ab −
1

2n̄F
[(n̄− 2)T + 2FR̄]ḡab +

n̄− 2
2F

Tab

]
.

A manifold is called quasi-Einstein if the Ricci tensor satisfies Rij = agij + buiuj for
some scalars a and b, where u is a 1−form. Hence, we can state the following.

Theorem 2. In a semi-conformally flat warped product manifold where A 6= 0, the base manifold
is Einstein if and only if the tensor Tab is proportional to the metric tensor.

Theorem 3. In a semi-conformally flat warped product manifold where A 6= 0, the base manifold
is quasi-Einstein if the tensor Tab takes the form Tab = uaub for a one-form u.

Equation (22) needs more discussion as follows:

−2ñ(n− 2)FBR
n− 1

− 2AR̃ + ñA[T +
ñ− 1

2F
4̄F] =

ñ
n̄

A[(n̄− 2)T + 2FR̄].

−2ñ(n− 2)FBR
n− 1

+ A
(
−2R̃ + ñT + ñ

ñ− 1
2F
4̄F
)
= A

[
ñT − 2

ñ
n̄

T + 2
ñ
n̄

FR̄
]

−ñ(n− 2)BR
n− 1

+ A
(
− R̃

F
+

ñ
F

ñ− 1
4F
4̄F
)
= A

[
− ñ

n̄
T
F
+

ñ
n̄

R̄
]

−ñ(n− 2)BR
n− 1

− A
(

R̃
F
− ñ

F
ñ− 1

4F
4̄F
)
= A

[
− ñ

n̄
T
F
+

ñ
n̄

R̄
]

.

However,

R = R̄− ñ
F

T +
1
F

R̃− ñ
F

ñ− 1
4F
4̄F.

Thus,
−ñ(n− 2)BR

n− 1
− A

(
R− R̄ +

ñ
F

T
)
= A

[
− ñ

n̄
T
F
+

ñ
n̄

R̄
]

.

Simple calculations imply

0 = A
[

1
ñ

R +

(
1
n̄
− 1

ñ

)
R̄ +

(
1− 1

n̄

)
T
F

]
+

n− 2
n− 1

BR. (24)

Thus, we can write the following.

Theorem 4. In a semi-conformally flat warped product manifold, it is
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0 = A
[

1
ñ

R +

(
1
n̄
− 1

ñ

)
R̄ +

(
1− 1

n̄

)
T
F

]
+

n− 2
n− 1

BR.

The second contraction by ḡab yields

0 =
−2n̄(n− 2)FBR

n− 1
g̃αβ − A(n̄− 2)Tg̃αβ − 2An̄R̃αβ

+ A[T +
ñ− 1

2F
4̄F]n̄g̃αβ − 2AFg̃αβR̄.

That is,

AR̃αβ =

[
−(n− 2)FBR

n− 1
+ A

(
ñ− 1

4F
4̄F− F

R̄
n̄
+

T
n̄

)]
g̃αβ.

This equation leads to

AR̃ =

[
−(n− 2)FBR

n− 1
+ A

(
ñ− 1

4F
4̄F− F

R̄
n̄
+

T
n̄

)]
ñ.

This gives an update of the previous equation as

A
(

R̃αβ −
R̃
ñ

g̃αβ

)
= 0.

Hence, we have the following.

Theorem 5. In a semi-conformally flat warped product manifold where A 6= 0, the fiber manifold
is Einstein.

The Lie derivative Lζ of the metric tensor g on warped product manifolds along the
flow lines of a vector field ζ = ζ̄ + ζ̃ is given by

Lζ g = L̄ζ̄ ḡ + FL̃ζ̃ g̃ + ζ̄(F)g̃,

where L̄ζ̄ ḡ and L̃ζ̃ g̃ are the Lie derivatives of the metric tensors ḡ and g̃ along the flow lines
of the vector fields ζ̄ and ζ̃, respectively. Now, assume that ζ = ζ̃, then

Lζ g = FL̃ζ̃ g̃.

The isometries of the warped product manifolds correspond to vector fields with the
identity Lζ g = 0. Every vector field with this property is called a Killing vector field. This
implies that all Killing vector fields on the fiber manifold are also Killing vector fields on
the warped product manifolds.

A vector field where the Lie derivative of the Ricci tensor vanishes is called Ricci
collineation. It is known that every Killing vector field is a Ricci collineation; however,
the converse is not generally true. However, in a semi-conformally flat warped product
manifold, where A 6= 0, the fiber manifold is Einstein. On Einstein manifolds, the scalar
curvature is constant, and consequently, every Killing vector field on the fiber manifold is
also a Ricci collineation.

Corollary 1. In a semi-conformally flat warped product manifold where A 6= 0, every Ricci
collineation is a Killing vector field.
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4.2. The Component Pabcd

The second non-zero case is

Pabcd = −(n− 2)BCabcd + [A + (n− 2)B]Labcd

or,

Pabcd =
−BR
n− 1

Gabcd + ALabcd. (25)

The tensor Labcd is given by

Labcd = Rabcd +
1

n− 2
(gacRbd − gadRbc + gbdRac − gbcRad).

Using the Riemann tensor and Ricci tensor identities on warped product manifolds,
one obtains

= R̄abcd +
1

n− 2
[ḡac(R̄bd −

ñ
2F

Tbd)− ḡad(R̄bc −
ñ

2F
Tbc)

+ ḡbd(R̄ac −
ñ

2F
Tac)− ḡbc(R̄ad −

ñ
2F

Tad)]

= R̄abcd +
1

n− 2
[ḡacR̄bd − ḡadR̄bc + ḡbdR̄ac − ḡbcR̄ad]

− ñ
2(n− 2)F

[ḡacTbd − ḡadTbc + ḡbdTac − ḡbcTad].

The tensor P from (25) is given by

Pabcd =
−BR
n− 1

Ḡabcd + AR̄abcd

+
A

n− 2
[ḡacR̄bd − ḡadR̄bc + ḡbdR̄ac − ḡbcR̄ad] (26)

− ñA
2(n− 2)F

[ḡacTbd − ḡadTbc + ḡbdTac − ḡbcTad].

Theorem 6. In a warped product manifold, the semi-conformal curvature tensor satisfies
Equation (27).

Assume that the warped product manifold is semi-conformally flat, then

0 =
−BR
n− 1

Ḡabcd + AR̄abcd

+
A

n− 2
[ḡacR̄bd − ḡadR̄bc + ḡbdR̄ac − ḡbcR̄ad] (27)

− ñA
2(n− 2)F

[ḡacTbd − ḡadTbc + ḡbdTac − ḡbcTad].

Contracting this equation by ḡad, one may obtain

0 =
−(n̄− 1)BR

n− 1
ḡbc + AR̄bc

+
A

n− 2
[R̄bc − n̄R̄bc + R̄bc − ḡbcR̄] (28)

− ñA
2(n− 2)F

[Tbc − n̄Tbc + Tbc − ḡbcT].
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Then,

0 =
−(n̄− 1)BR

n− 1
ḡbc +

(
ñT − 2R̄

2(n− 2)F

)
Aḡbc

+
ñA

n− 2
R̄bc +

ñ(n̄− 2)A
2(n− 2)F

Tbc.

Accordingly, we have

0 =

(
−(n̄− 1)(n− 2)BR

ñ(n− 1)
+

ñT − 2R̄
2ñF

A
)

ḡbc

+ AR̄bc +
(n̄− 2)A

2F
Tbc.

However, Equation (23) whenever A 6= 0 implies

R̄ab −
1

2n̄F
[(n̄− 2)T + 2FR̄]ḡab +

n̄− 2
2F

Tab = 0.

Thus, we may update the above equation as follows:

0 =

(
−(n̄− 1)(n− 2)BR

ñ(n− 1)
+

ñT − 2R̄
2ñF

A
)

ḡbc

+ A
1

2n̄F
[(n̄− 2)T + 2FR̄]ḡab.

This yields(
−(n̄− 1)(n− 2)BR

ñ(n− 1)
+

ñT − 2R̄
2ñF

A
)
= −A

1
2n̄F

[(n̄− 2)T + 2FR̄].

That is,

0 = A
(

R̄bc −
1

2n̄F
[(n̄− 2)T + 2FR̄]ḡbc +

(n̄− 2)
2F

Tbc

)
.

It is clear that we obtain the same conclusion on the base manifold as in the previ-
ous case.

4.3. The Component Pαβγδ

Now if i, j, k, l ∈ {n̄ + 1, . . . , n}, first we compute Lαβγδ in Equation (17) from
Equations (2), (3) and (7) as

Lαβγδ = Rαβγδ +
1

n− 2
(gαγRβδ − gαδRβγ + gβδRαγ − gβγRαδ).

Utilizing the Riemann and Ricci tensor forms on warped product manifolds, we obtain

Lαβγδ = FR̃αβγδ −
1
4

∆̄FG̃αβγδ

+
F

n− 2
g̃αγ(R̃βδ −

1
2
[T +

ñ− 1
2F
4̄F]g̃βδ)

− F
n− 2

g̃αδ(R̃βγ −
1
2
[T +

ñ− 1
2F
4̄F]g̃βγ)

+
F

n− 2
g̃βδ(R̃αβγδ −

1
2
[T +

ñ− 1
2F
4̄F]g̃αγ)

− F
n− 2

g̃βγ(R̃αδ −
1
2
[T +

ñ− 1
2F
4̄F]g̃αδ).
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The previous equation can be rewritten in the following form:

Lαβγδ = FR̃αβγδ +
2FT + ñ− n̄

2(n− 2)
4̄FG̃αβγδ

+
F

n− 2
(

g̃αγR̃βδ − g̃αδR̃βγ + g̃βδR̃αβγδ − g̃βγR̃αδ

)
.

Theorem 7. In a warped product manifold, the semi-conformal curvature tensor satisfies

Lαβγδ = FR̃αβγδ +
2FT + ñ− n̄

2(n− 2)
4̄FG̃αβγδ

+
F

n− 2
(

g̃αγR̃βδ − g̃αδR̃βγ + g̃βδR̃αγ − g̃βγR̃αδ

)
.

Assume that the warped product manifold is semi-conformally flat, then

0 = FR̃αβγδ +
2FT + ñ− n̄

2(n− 2)
4̄FG̃αβγδ

+
F

n− 2
(

g̃αγR̃βδ − g̃αδR̃βγ + g̃βδR̃αγ − g̃βγR̃αδ

)
.

In this case, the Riemann curvature tensor of the fiber manifold is given by

R̃αβγδ = −
2FT + ñ− n̄

2(n− 2)
4̄F

F
G̃αβγδ

− 1
n− 2

(
g̃αγR̃βδ − g̃αδR̃βγ + g̃βδR̃αγ − g̃βγR̃αδ

)
.

However, the fiber manifold is Einstein in semi-conformally flat manifolds, that is,

R̃αβγδ =

(
−2FT + ñ− n̄

2(n− 2)
4̄F

F
− 2R̃

ñ(n− 2)

)
G̃αβγδ.

It is known that a manifold with pointwise constant sectional curvature has a global
constant sectional curvature. Thus, using the above equation, the sectional curvature of the
fiber manifold κ̃ is constant and is given by

κ̃ = −2FT + ñ− n̄
2(n− 2)

4̄F
F
− 2R̃

ñ(n− 2)
.

Theorem 8. In a semi-conformally flat warped product manifold, the fiber manifold is of a constant
sectional curvature.

A manifold with a constant sectional curvature is a manifold with maximum symmetry,
that is, the number of Killing vector fields attains its maximum.

Corollary 2. In a semi-conformally flat warped product manifold, the number of Killing vector
fields on the fiber manifold is 1

2 ñ(ñ + 1). Also, the number of Ricci collineations on the fiber
manifold is 1

2 ñ(ñ + 1).

In this section, it is shown that every Killing vector field on the fiber manifold is also a
Killing vector field on the warped product manifold.

Corollary 3. In a semi-conformally flat warped product manifold, the minimum number of Killing
vector fields on the warped product manifold is 1

2 ñ(ñ + 1). Also, the minimum number of Ricci
condemnations on the warped product manifold is 1

2 ñ(ñ + 1).
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5. Conclusions

Warped product manifolds are obvious and fruitful extensions of Cartesian product
manifolds [36]. Bishop and O’Neill developed the use of this concept to construct manifolds
with a negative sectional curvature [36–38]. It should also be noted that many types of
space-times in general relativity are frequently shown as Lorentzian warped product
manifolds. Generalized Robertson–Walker space-times and standard static space-times are
examples of singly warped product manifolds. As a result, warped product manifolds are
significant not only in differential geometry but also in general relativity. For this reason,
warped product structures have been widely studied and extended. Multiply warped
product manifolds, sequential warped product manifolds [39] and doubly warped product
manifolds [40] are amazing generalizations of singly warped product manifolds. Warped
product manifold geometry is intimately connected to factor manifolds’ geometry. As a
result, investigating curvature tensors [41] or geometric structures on warped product
manifolds [42,43] aids in better understanding the warped product manifolds’ geometry in
relation to factor manifolds.

The semi-conformal curvature tensor is a conharmonic transformation invariant. The
Weyl conformal curvature tensor and conharmonic curvature tensor are special cases of the
semi-conformal curvature tensor. There are numerous fascinating studies of this tensor on
relativistic space-times in the literature. Motivated by these findings, this paper investigates
semi-conformal curvature on singly warped product manifolds. The Riemann tensor and
the Ricci tensor of the factor manifolds of a semi-conformally flat singly warped product
manifold are given. It is shown that the fiber manifold of a semi-conformally flat warped
product manifold has a constant curvature. There are sufficient conditions on the warping
function to ensure that the base manifold is a quasi-Einstein or an Einstein manifold. We
can find more motivations of our work from the following papers [44–51].
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