Supporting Information

> for

Linear, two- and four-armed pyridine-decorated thiazolo[5,4-d]thiazole fluorophores: synthesis, photophysical study and computational investigation

by
 Mauro ${ }^{b, *}$

${ }^{a}$ Laboratoire de Synthèse et Fonctions des Architectures Moléculaires, UMR7140 Chimie de la Matiere Complexe, Institut Le Bel, Université de Strasbourg \& CNRS, 4 rue Blaise, Pascal 67000 Strasbourg (France), e-mail : jouaiti@unistra.fr
${ }^{b}$ Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504, Université de Strasbourg \& CNRS, 23 rue du Loess, 67000 Strasbourg, France, e-mail : mauro@unistra.fr
${ }^{c}$ Laboratoire Lorraine de Chimie Moléculaire (L2CM), Université de Lorraine, CNRS, F57000 Metz, France
${ }^{d}$ Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy

Table of contents

Page

1. Supplementary synthetic procedures S1-S10
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S11-S23
3. Supplementary photophysical data S24
4. Supplementary references S25

1. Supplementary synthetic procedures

Compound 1a and 1b were synthesized using a similar procedure. To a solution of 2-bromo-5-hydroxypyridine ($5.0 \mathrm{~g}, 28.7 \mathrm{mmol}$) in DMF (80 mL) under argon, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (11.8, 3.0 equiv.) and either 2-ethylhexyl bromide $\left(\begin{array}{llll}6.66 & \mathrm{~g}, & 1.2 & \text { equiv.) or 2-decyltetradecyl } 4 \text { - }\end{array}\right.$ methylbenzenesulfonate (17.54 g 1.2 equiv.) were added for yielding $\mathbf{1 a}$ and $\mathbf{1 b}$, respectively. ${ }^{[1]}$ The reaction mixture was allowed to stir overnight at $90^{\circ} \mathrm{C}$ under an argon atmosphere. After cooling to room temperature, the mixture was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was collected and evaporated to dryness under reduced pressure. The resulting residue was purified by short column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether $1: 1$) affording the desired compound. $\mathbf{1 b}$ was obtained as colorless oil (7.2 g , yield 87%); 1c was obtained as pale-yellow oil (13.20 g , yield 90%).

Compound 1b. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.04(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08\left(\mathrm{dd}, J_{l}=5 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, 1 \mathrm{H}\right), 3,84(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~m}$, $4 \mathrm{H}), 0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 155.2,137.5 .131 .7,128.0,124.8$, 71.2, 39.3, 30.3, 29.0, 25.1, 23.7, 23.0, 14.1, 11.1. HR-MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$286.0801; found 286.0805.

Compound 1c. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.02(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06\left(\mathrm{dd}, J_{1}=3 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28(\mathrm{~m}, 40 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 155.2,137.5$, 131.7, 128.1, 124.8, 71.7, 40.5, 37.9, 31.9, 31.2, 30.9, 30.1, 29.9, 29.7, 29.6, 29.4, 26.8, 22.7, 14.1. HR-MS (ESI): $\mathrm{m} / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 510.3305$; found 510.3294.

1.2.Synthesis of compound 2,3 and 4.

The compounds 2,5-bis(3-bromophenyl)thiazolo[5,4-d]thiazole (2), 2,5-bis(4-bromophenyl)thiazole[5,4-d]thiazole (3) and 2,5-bis(3,5-dibromophenyl)-thiazolo[5,4d]thiazole (4) were synthesized using a modification of literature procedures ${ }^{[52-S 3]}$

A solution of dithiooxamide $(1.0 \mathrm{~g}, 8.3 \mathrm{mmol})$ and 3-bromobenzaldehyde ($3.08 \mathrm{~g}, 2.0$ equiv.) or 4-bromobenzaldehyde ($3.08 \mathrm{~g}, 2.0$ equiv.) or 3,5-dibromobenzaldehyde in DMF (60 mL) was refluxed for 24 hours. Upon cooling, the product was recrystallized out from the resulting solution. Filtration and washing successively with MeOH and diethyl ether afforded $\mathbf{2}(2.0 \mathrm{~g}$, yield $53 \%), \mathbf{3}(2.2 \mathrm{~g}$, yield $58 \%)$ or $\mathbf{4}(3.2 \mathrm{~g}$, yield $63 \%)$ respectively, as yellow solid. Due to the almost complete insolubility in a wide range of organic solvents, full characterization was not possible, and the compounds 2-4 were used in the following step without further purification.

1.3.Synthesis of compound 5,6 and 7.

$2 X=B r, Y=H, Z=H$
$3 X=H, Y=H, Z=B r$
$5 \quad \mathrm{X}=\mathrm{B}$ (pinacolate), $\mathrm{Y}=\mathrm{H}, \mathrm{Z}=\mathrm{H}$
$4 \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{Br}, \mathrm{Z}=\mathrm{H}$
$6 \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H}, \mathrm{Z}=\mathrm{B}$ (pinacolate)
$7 \mathrm{X}=\mathrm{B}$ (pinacolate), $\mathrm{Y}=\mathrm{B}$ (pinacolate), $\mathrm{Z}=\mathrm{H}$

To a solution of either 2 or $\mathbf{3}(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ or $\mathbf{4}(1.0 \mathrm{~g}, 1.6 \mathrm{mmol})$ was added bis(pinacolato)diborane ($1.4 \mathrm{~g}, 2.5$ equiv.) or ($2.0 \mathrm{~g}, 5.0$ equiv. in the case of 4), respectively, potassium acetate ($1.07 \mathrm{~g}, 5.0$ equiv.) or ($1.6 \mathrm{~g}, 10.0$ equiv. in the case of 4$), \mathrm{Pd}\left(\mathrm{dppf}_{2}\right)_{2} \mathrm{Cl}_{2}(0.04$ g), in dried 1,4-dioxane (30 mL) under argon. The reaction mixture was allowed to reflux overnight under an argon atmosphere. The mixture evaporated to dryness under reduced pressure and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic layer was dried with anhydrous MgSO_{4} and the solvent was removed under vacuum. The crude product was purified by short column chromatography $\left(\mathrm{SiO}_{2}\right)$, to yield $\mathbf{5}$ or $\mathbf{6}$ (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\mathrm{MeOH} 0.5 \%$), or 7 (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 0.5 \%$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1 \%$). Final washing with MeOH and then with petroleum ether provided the desired compounds in pure form.

2,5-bis(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)thiazolo[5,4-d]thiazole

White solid, 1.1 g , yield: $92 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.37(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89,(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.2,150.9,137.0,133.4,132.6,129.1,128.5,84.2,24.9$.

HR-MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$547.2072; found 547.2071. yellow solid, 1.0 g , yield: $83 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 7.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 4 \mathrm{H})$, $7.89(\mathrm{~d}, J=10 \mathrm{~Hz}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.3,151.3$, 136.1, 135.5, 125.5, 84.1, 24.9. HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+} 547.2072$; found 547.2060.

2,5-bis(3,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)thiazolo[5,4-d]thiazole

(7). White solid, 1.0 g , yield $78 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.48(\mathrm{~d}, J=0.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.32(\mathrm{t}, J=0.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 48 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ 169.2, 151.0, 143.3, 135.3, 132.8, 129.3, 84.1, 24.05. HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~B}_{4} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 799.3767$ found 799.3758 .

1.4.Synthesis of compound $8 \mathrm{a}, \mathrm{8b}$ and 8 c

A DMF solution $(15 \mathrm{~mL})$ of compound $\mathbf{6}(0.11 \mathrm{~g}, 0.2 \mathrm{mmol})$ and 2-bromo-5-methoxypyridine (0.11 $\mathrm{g}, 3.0$ equiv.) was degassed with argon for 20 min . To the mixture, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.22 \mathrm{~g}, 6.0$ equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv.) were added under an argon atmosphere. The reaction media was heated to 100 ${ }^{\circ} \mathrm{C}$ for 48 h . The heating was stopped, and the reaction mixture was allowed to reach room temperature. The yellow solid was filtered, washed successively with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, acetone and diethyl ether to yield compound $\mathbf{8 a}$ as a pure product (0.054 g , yield 53%). The very low solubility of the product in a wide range of organic solvents hampered its full characterization.

Compound 8b and 8c were synthesized using the same procedures as $\mathbf{8 a}$ and employing the corresponding 2-bromo-5-alkoxypyridine.

Compound 8b. Yellow solid (0.088 g , yield 58%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.43$ (d, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 8 \mathrm{H}), 7.79(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~m}$, $\left.2 \mathrm{H}), 1.46(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 125 \mathrm{MHz}\right): ~ \delta(\mathrm{ppm}) 168.6$, $155.5,151.4,127.5,127.4,127.0,122.2,122.1,71.6,39.3,30.3,29.0,23.7,23.0,14.1,11.1$. HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 705.3291$ found 705.3288.

Compound 8c. Yellow solid 0.131 g , yield $62 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.40$ (d, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 8 \mathrm{H}), 7.72(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{~m}, 72 \mathrm{H}), 0.86(\mathrm{t}, J=10 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 168.8$, 155.1, 151.2, 133.6, 132.3, 127.0, 126.8, 121.2, 71.5, 37.9, 31.9, 31.2, 30.0, 29.7, 29.6, 29.4, 29.3, 26.8, 22.7, 14.7. HR-MS (ESI): $\mathrm{m} / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{74} \mathrm{H}_{113} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 1153.8299 found 1153.8272 .

1.5.Synthesis of compound $9 \mathrm{a}, 9 \mathrm{~b}$ and 9 c .

A DMF solution (30 mL) of compound $5(0.5 \mathrm{~g}, 0.91 \mathrm{mmol})$ and 2-bromo-5-methoxypyridine ($0.37 \mathrm{~g}, 2.2$ equiv.) was degassed with argon for 20 min . Then $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.65 \mathrm{~g}, 2.2$ equiv.) and
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv.) were added to the mixture under an argon atmosphere. The reaction media was heated to $90^{\circ} \mathrm{C}$ for 48 h before it was allowed to reach room temperature. The mixture was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was collected and evaporated to dryness under reduced pressure. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 0.5 \%$ to yield compounds $\mathbf{4 a}$ as an off-white solid (0.2 g , yield 43\%).

Compound 9a. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.57(\mathrm{~s}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{I}=3 \mathrm{~Hz}\right.$, $\left.J_{2}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.1,160.9,155.3,151.0$, $140.0,134.5,129.7,128.7,126.3,124.4,123.3,121.0,121.1,55.8$. HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 509.1100$ found 509.1101.

Compound $\mathbf{9 b}$ and $9 \mathbf{c}$ were synthesized using the same procedures as $\mathbf{9 a}$, employing $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively, instead of $\mathbf{1 a}$.

Compound 9b. Off-white solid (0.4 g , yield 62%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.54$ (s, 2H), $8.4(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28\left(\mathrm{dd}, J_{l}=3 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.46(\mathrm{~m}, 8 \mathrm{H}), 1.33(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.2,155.0$, $151.0,148.6,140.2,137.8,134.4,129.5,128.6,126.0,124.3,121.8,121.0,71.0,39.3,30.4$, 29.1, 23.8, 23.0, 14.1, 11.1 HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 705.3291 found 705.3287 .

Compound 9c. Off-white solid (0.25 g , yield 59%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.55$ (1s, 2H), 8.4 (d, $J=3 \mathrm{~Hz}, 2 \mathrm{H}), 8.03$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28\left(\mathrm{dd}, J_{I}=3 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.80$ (m, 2H), $1.26(\mathrm{~m}, 80 \mathrm{H}), 0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.2,155.0$,
$151.0,148.6,140.2,137.8,134.4,129.5,128.6,126.0,124.3,121.8,121.0,71.4,37.9,31.9$, 31.2, 30.0, 29.7, 29.6, 29.4, 26.8, 22.7, 14.1 HR-MS (ESI): $m / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{74} \mathrm{H}_{113} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 1153.8299$ found 1153.8300 .

1.6.Synthesis of compound 10a, 10b and 10c.

A DMF solution $(30 \mathrm{~mL})$ of compound $7(0.5 \mathrm{~g}, 0.62 \mathrm{mmol})$ with 2-bromo-5-methoxypyridine ($0.70 \mathrm{~g}, 6$ equiv.) was degassed with argon for 20 min . To the mixture, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.22 \mathrm{~g}, 6$ equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.1 equiv.) were added under an argon atmosphere. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 72 h , before it was allowed to reach room temperature. The mixture was filtered through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was collected and evaporated to dryness under reduced pressure. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$, eluant, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 0.5 \%$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1 \%$ to yield compounds 10 a as an off-white solid (0.22 g , yield 31%).

Compound 10a. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 8.68(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 7.31\left(\mathrm{dd}, J_{l}=2.5 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 3.93(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.1,155.2,151.1,148.9,140.5$,
137.3, 134.9, 126.5, 123.9, 121.2, 55.7. HR-MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 723.1843$ found 723.1843 .

Compound 10b and 10c were synthesized using the same procedures as for 10a.
Compound 10b Light brown oil (0.4 g , yield 57%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 8.62(\mathrm{t}, J$ $=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{dd}$, $\left.J_{I}=2.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.94(\mathrm{~m}, 8 \mathrm{H}), 1.75(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~m}, 16 \mathrm{H}), 1.32(\mathrm{~m}, 16 \mathrm{H}), 0.92(\mathrm{~m}$, $24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.2,155.1,151.0,148.6,140.6,137.8,134.8,126.4$, 123.8, 121.7, 121.2, 71.0, 39.4, 30.4, 29.1, 23.8, 23.0, 14.1, 11.1. HR-MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{68} \mathrm{H}_{87} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 1115.6225$ found 1115.6168 .

Compound 10c. Light brown oil (0.15 g , yield 30%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ $8.62(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.30\left(\mathrm{dd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 3.94(\mathrm{~m}, 8 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 160 \mathrm{H}), 0.85$ (m, 24H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 169.3,155.1,151.0,148.6,140.6,137.8$, 134.9, 126.4, 123.8, 121.7, 121.2, 71.5, 38.0, 31.9, 31.2, 30.0, 29.7, 29.6, 29.4, 26.8, 22.7, 14.1. HR-MS data are not available most likely due to decomposition of the compound during MS experiment.

2. NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 c}$ in CDCl_{3}.

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{5}$ in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{5}$ in CDCl_{3}.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 7 in CDCl_{3}.

Figure S10. ${ }^{13} \mathrm{C}$ NMR (125 MHz , 298K) spectrum of compound 7 in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{8 b}$ in CDCl_{3}.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{8 b}$ in CDCl_{3}.

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{8 c}$ in CDCl_{3}.

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{8 c}$ in CDCl_{3}.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound 9 a in CDCl_{3}.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{9 a}$ in CDCl_{3}.

Figure S17. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{9 b}$ in CDCl_{3}.

Figure S18. ${ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}, 298 \mathrm{~K})$ spectrum of compound 9 b in CDCl_{3}.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{9 c}$ in CDCl_{3}.

Figure S20. ${ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}, 298 \mathrm{~K})$ spectrum of compound 9 c in CDCl_{3}.

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 0 a}$ in CDCl_{3}.

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 0 a}$ in CDCl_{3}.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 0 b}$ in CDCl_{3}.

Figure S24. ${ }^{13} \mathrm{C}$ NMR (125 MHz , 298K) spectrum of compound $\mathbf{1 0 b}$ in CDCl_{3}.

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 0 c}$ in CDCl_{3}.

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}$) spectrum of compound $\mathbf{1 0 c}$ in CDCl_{3}.

3. Supplementary photophysical data

Figure S27. Comparison of the electronic absorption spectra of compound of series $\mathbf{8}$ (orange traces), $\mathbf{9}$ (blue traces), and $\mathbf{1 0}$ (green traces) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at concentration of $5 \times 10^{-6} \mathrm{M}$. Series a, b, and \mathbf{c} are displayed as solid, dashed and dotted line, respectively.

Figure S28. Comparison of the photoluminescence spectra of compound of series $\mathbf{8}$ (orange traces), $\mathbf{9}$ (blue traces), and $\mathbf{1 0}$ (green traces) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at concentration of $5 \times 10^{-6} \mathrm{M}$. Series a, \mathbf{b}, and \mathbf{c} are displayed as solid, dashed and dotted line, respectively. Samples were excited upon $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

4. References

[S1] B. Wang, R. Sun, D. D. Günbaş, H. Zhang, F. C. Grozema, K. Xiao, S. Jin, Chem. Comтип., 2015, 51, 11837-11840.
[S2] F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D'Alessandro, C. J. Kepert, Chem. Eur. J. 2014, 20, 17597 - 17605.
[S3] A. Dessi, M. Calamante, A. Mordini, L. Zani, M. Taddei, G. Reginato, RSC Adv., 2014, 4, 1322-1328.

