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ABSTRACT

In this paper, we discuss the results of some molecular dynamics simulations of a magnetized one component plasma, targeted to estimate the
diffusion coefficient D⊥ in the plane orthogonal to the magnetic field lines. We find that there exists a threshold with respect to the magnetic
field strength |EB|: for weak magnetic field, the diffusion coefficients scale as 1/|EB|2, while a slower decay appears at high field strength. The
relation of this transition with the different mixing properties of the microscopic dynamics is investigated by looking at the behavior of the
velocity autocorrelation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068674

The diffusion process is well understood for stochastic motions,1

which are supposed to mimic the behavior of a chaotic dynami-
cal system. Many questions are instead left open in the study of
the diffusive properties of a system, which is in a partially ordered
state.2 A central issue, as regards magnetized plasma confinement,
is the diffusion of charged particles in the direction perpendicu-
lar to the magnetic field lines. A widely accepted law, predicting
that the transversal diffusion D⊥ coefficient is proportional to
the inverse of the square of the magnetic field strength |EB|, was
proposed more than 50 years ago.3 Being based on kinetic theory,
this law is expected to hold whenever the microscopic dynamics
is chaotic. However, as the magnetic field |EB| is increased, a par-
tially ordered state seems to set in Refs. 4 and 5, at least for a pure
electron plasma. Our purpose was to investigate the consequences
(if any) of this transition on the diffusion process. Therefore, we
have performed molecular dynamics simulations of a magnetized
one component plasma, that is, a set of mutually interacting elec-
trons subject to a constant external magnetic field. We estimate
the diffusion coefficient D⊥ in the plane orthogonal to the field
for different values of the magnetic field strength |EB|. We find that
the kinetic law holds for low |EB| when the microscopic dynamics is
chaotic. However, as the magnetic field grows, the diffusion coef-
ficient seems to saturate to a plateau, while the microscopic state
turns to a partially ordered one.

I. INTRODUCTION

In the 1960s, there was a great exchange among research groups
of plasma physics and of dynamical systems, as both were inter-
ested in the study of the 1 1

2
Hamiltonian system that can represent

the magnetic field lines; see Ref. 6 for a broad historical overview.
In more recent years, another point of connection has become the
study of diffusion process in the phase space; see Ref. 1. It has been
shown that if the dynamics is not fully chaotic, then the process
of diffusion in the phase space can be “not normal”; i.e., the mean
square displacement does not necessarily grow linearly in time: the
process is called super diffusive if the growth is faster than linear or
subdiffusive otherwise; for a review, see Ref. 2. In both cases, there
is no widespread agreement of the correct definition of the diffusion
coefficient to be adopted.

Now, as it will be shown below, the equations of motion for
a single electron in a one component plasma subject to an external
constant magnetic field EB can be recasted in a dimensionless form,

in which the only parameter appearing is the ratio β =
√

4πωc/ωp

among the cyclotron frequency ωc = eB/mc and the plasma fre-

quency ωp =
√

4πne2/m (in the CGS system); here, n is the particle
density and e the electronic charge. The parameter β measures the
relative strength of the magnetic Lorentz force acting on a single
electron, with respect to the electrostatic force due to all other elec-
trons. In the limit of β → +∞, the equations of motions decouple
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and the system reduces (formally) to a set of independent electrons
in a constant magnetic field, i.e., to an integrable system.

Therefore, it can be conjectured that for high magnetic field
strength, the dynamics will not be fully chaotic (see Refs. 4 and 5)
and that the diffusion process in phase space may be “anomalous.”
Actually, it is impossible for us to study numerically such process,
and we limit ourselves to study the diffusion of the electrons in
the physical space. To this end, we study the diffusion coefficient,
defined as usual by 8

D⊥= lim
t→∞

〈
∣

∣1Ex⊥
∣

∣

2〉
4t

, (1)

where
∣

∣1Ex⊥
∣

∣

2
is the mean displacement in the plane perpendicular

to the magnetic field of the electrons from their initial positions and
〈·〉 is the phase average. On the contrary, in this paper, following
a common attitude, averages will always be taken as time averages
along the orbits. We have not investigated the relations between the
two averages.

As regards physical applications, small values of D⊥ are impor-
tant for the purpose of plasma confinement in fusion devices.
This is another reason to investigate in which regime the diffusion
coefficient is small.

Another dimensionless parameter that characterizes the state
of a plasma is the coupling parameter 0 = e2/(akBT), where a is the
interparticle spacing (related to the particle density n by the relation
a = n1/3), T the plasma temperature, and kB as usual the Boltzmann
constant. So defined, 0 is the ratio among the mean coulomb energy
of a couple of nearest particles and the mean kinetic energy. The
weak coupling regime is then defined by 0 < 1 and the strong cou-
pling regime by 0 ≥ 1. Up to now, because of the reasons explained
in the following, molecular dynamics (MD) simulations have been
performed mainly in the strongly coupled case, while the weakly
coupled regime has been addressed mostly by kinetic theory.

In the literature, it is possible to find different estimates for
the diffusion coefficient. The oldest one,3 predicting the scaling law
D⊥ ∝ β−2, is obtained in the frame of the kinetic theory in the weak
coupling regime. However, other different theories have been pro-
posed in the years, each giving a different law for the dependence of
the diffusion coefficient D⊥ on the parameter β . A few of them are
summarized in Table 1, p. 135003-2, of Ref. 9; another one is perco-
lation theory (see Refs. 7, 10, and 11), which predicts scaling, such
as β−0.7. This law is in the closest agreement with our results. It was
brought to our attention by an anonymous referee that we warmly
thank.

However, none of the proposed theories is based on the loss
of chaoticity in the Newtonian microscopic dynamics. Also, the
numerical works found in the literature fail to address this point.
In fact, up to now, the behavior of the diffusion coefficient has
been investigated by MD mostly in the unmagnetized case; see,
for instance, Refs. 12–14. The magnetized case was studied in
Ref. 9 but only in the strong coupling regime: at the smallest value
0 = 1, a transition at β ≈ 1 in the behavior of D⊥ was observed,
but the origin of such a transition was not discussed. A similar tran-
sition was observed also in two more recent works,15,16 where the
diffusion coefficient was studied numerically for 0 down to 0.1.
However, those works were based on a so-called particle–particle

particle–mesh (P3M) code, which is a sort of hybrid between a
kinetic and a MD code. We think that such a method is not suited to
study the chaoticity of the microscopic dynamics. More on the con-
nections between our results and the cited paper will be discussed in
Sec. IV.

Therefore, in this paper, we perform a full MD simulation for
different values of β for a system of N = 4096 electrons, for a fixed
value of 0 = 0.1, which is the smallest value we were able to man-
age. The aim is to verify for what value of β the transition in the
behavior of D⊥ occurs and to observe the chaoticity of the dynam-
ics by computing the time autocorrelation of the transverse particle
velocity.

In Sec. II, we describe the model and the numeric algorithm
used, in Sec. III, the numerical results are reported, while in Sec. IV,
the conclusions follow.

II. THE MODEL AND THE NUMERICAL SCHEME

The system we are considering is called in the literature a one
component plasma, and it consists of a number N of electrons in a
cubic box of side L with periodic boundary conditions, the electrons
being subject to mutual Coulomb interactions, and to an exter-
nal constant magnetic field EB = BEez (Eez is the unit vector directed
along the z axis). The density is then defined by n = N/L3. This is
considered a model of plasma as the positive ions are supposed to
constitute a uniform neutralizing background.

If t denotes time and Exi the position of the ith electron (with
i = 1, . . . , N), we define dimensionless variables

Eyi = a−1Exi, τ = ωct (2)

by rescaling distances with the interparticle spacing a = n−1/3 and
time with the cyclotron frequency ωc. Using such variables, the
equations of motion for the ith electron read

d2Eyi

dτ 2
= Eez × dEyi

dτ
+ 1

β2
EE(Eyi), (3)

where EE(Eyi) is the electric field acting on the ith electron due to all
other charges. The electric field of a periodic system of charges can
be computed via the Ewald formula (see, for example, Ref. 17)

EE(Eyi) =
∑

El

N
∑

j=1

EyijEl
|EyijEl|3

[

erfc(α|EyijEl|) +
2α|EyijEl|√

π
exp(−α2|EyijEl|2)

]

+ 4π

N

∑

Eq6=0

N
∑

j=1

Eq
q2

e−q2/4α2
sin(Eq · Eyji), α = √

πN−1/6, (4)

where El is a triplet of integers denoting the position of an image
cell, while Eq is a vector in the reciprocal lattice, i.e., defined by
Eq = 2π En/L with En being an integer vector, and finally, we have

defined EyijEl = Eyi − Eyj + El 3
√

N. The two series are truncated as to keep

the relative error below 10−7, which is smaller than the relative error
of the energy conservation in a single numerical step.

Of the two dimensionless parameters of the problem, only β

appears in the equations of motion. The parameter 0 enters through
the choice of the initial data: in fact, while the positions are extracted
from a uniform distribution, the velocities are taken from a Maxwell
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distribution, and the temperature is uniquely determined by 0. With
this choice, at the beginning of each simulation, the system is out
of equilibrium: therefore, there is a drift of the kinetic energy, and
the system reaches a different, random, temperature. In order to fix
the temperature to the desired value, we operate in this way: after
extracting the initial values, we let the system evolve until equilib-
rium is reached, i.e., until the kinetic energy appears to stabilize.
We then generate new velocities again with a Maxwell distribution
at temperature T and repeat the process until the kinetic energy
appears to be constant and close to the chosen value.

Equation (3) was integrated using a symplectic splitting
algorithm.18 The total Hamiltonian

H = 1

2

∑

k

(

Epk + 1

2
Eez × Eyk

)2

+ 1

β2
V(Ey1, . . . , EyN), (5)

where V(Ey1, . . . , EyN) is the Coulomb potential of the electrons
computed according to the Ewald prescription and was split as
H = H1 + H2, where

H1
def= 1

2

∑

k

(

Epk + 1

2
Eez × Eyk

)2

, H2
def= V(Ey1, . . . , EyN). (6)

Now, denoting by 8t
1 the flow determined in the phase space

by the Hamiltonian H1 and by 8t
2 the one due to the Hamilto-

nian H2, the integration algorithm is obtained simply by compo-

sition 8
def= 8

δt/2
1 ◦ 8δt

2 ◦ 8
δt/2
1 , where δt is the time step. Such a

time step was chosen so that the energy conservation was better
than a part over 104 in all the simulations. In particular, we choose
δt = 2πC(β) 10−4, where the factor C(β) is taken to be equal to β

for β < 1 and to be equal to 1 for larger β . In Fig. 1, we report the
relative error of the energy conservation as a function of the number
of integration step for a typical run. The number of steps used was
4 × 106 for β ≤ 2.5, four times this number for β larger.

In MD simulations, the choice of the number N of particles
is always an issue, all the more in the context of a weakly cou-
pled plasma. For a very rough estimation, we made the following
considerations: the fundamental cell of the simulation should have
a side larger than the Debye length λD, which in our units reads
λD = √

1/0. The first of (2) implies that L = N1/3 so that the
requirement L > λD in our units becomes N > 0−3/2. As the
Coulomb force is long range, the computational cost scales as a
power of N. With a clever use of the Ewald summation formula,
see Ref. 19, the computational cost scales (asymptotically) as20 N3/2.
Therefore, we cannot afford to choose a value much bigger than
N = 4096. In any case, for 0 = 0.1, our constraint reads N > 32,
and therefore, with our choice of N = 4096, we have L ' 5λD.

Another interesting length scale that appears in the problem
is the Larmor radius rl, i.e., the gyration radius of the elec-
trons determined by the magnetic Lorentz force due to the exter-
nal magnetic field B. A simple computation shows that one has
rl/L = √

2/0/βN1/3. For the smallest value of β used in our com-
putations, i.e., β = 0.25, the Larmor radius is slightly larger than the
side of the simulation cell because one gets rl ' 1.1L. On the con-
trary, rl turns out to be well below the Debye length for the largest
value of β = 10.

FIG. 1. Relative error of the energy conservation as a function of the number of
integration steps. Data refer to a case with β = 1 and N = 4096 particles.

III. RESULTS

We recall that the transverse diffusion coefficient is defined by
(1), where

∣

∣1Ex⊥
∣

∣

2 def=
∑

k

(

|xk(t) − xk(t0)|2 + |yk(t) − yk(t0)|2
)

N
(7)

is the mean particle displacement in the plane orthogonal to the
magnetic field EB (we recall that the latter was taken to be directed
at the z axis) and the parentheses denote the time average along the
orbit. To estimate this quantity, we proceed as follows.

Let δt be the integration step and Mtot the total number of inte-
gration steps. Let j be also an integer smaller than a fixed fraction
M′ of Mtot (we take one sixteenth), and then the time averages of

〈
∣

∣1Ex⊥
∣

∣

2〉 at time tj = jδt were computed as

〈
∣

∣1Ex⊥
∣

∣

2〉(tj)

= 1

M

M
∑

h=1

(

1

N

N
∑

k=1

(

|xk(th+j) − xk(th)|2 + |yk(th+j) − yk(th)|2
)

)

,

(8)

where M = Mtot − M′. After plotting 〈
∣

∣1Ex⊥
∣

∣

2〉 as a function of
time, we fit the tail with a straight line whose angular coefficient
(divided by four) is an estimate of the diffusion coefficient. The
values computed in such way can be found in Table I (second entry).

The whole set of our plots (in a log–log scale) can be found
in Fig. 2; as usual, they display diffusive (linear) behavior only
after a certain time (the so-called ballistic jump). Therefore, we also
restricted the sets of points to the latter time window to exclude
small times.
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TABLE I. Values of the diffusion coefficient D⊥, together with the values of the

parameter A, ω, and γ that appear in the fit of velocity autocorrelation.

β D⊥ D⊥a A ω γ

0.25 18.1 17.9 9.90 0.253 0.169
0.50 5.61 5.91 9.85 0.506 0.169
0.75 2.68 2.83 9.80 0.754 0.167
1.00 1.56 1.63 10.1 1.01 0.164
1.25 1.03 1.07 9.95 1.258 0.166
2.00 0.428 0.434 9.90 2.022 0.165
2.50 0.327 0.342 9.75 2.518 0.171
4.00 0.212 0.200 10.0 4.046 0.168
5.00 0.188 0.184 10.35 5.035 0.164

10.0 0.133 0.146 10.30 10.06 0.157

aComputed from the velocity correlation by formula (9).

The results of our computations are summarized in Fig. 3.
There, in a logarithmic scale, the numerically computed values of
the coefficient D⊥ are reported (full circles) as a function of β . All
the simulations were performed at the same value of 0 = 0.1. The
solid line is the plot of the function D⊥ = γ A

γ 2+β2 , with γ = 0.168 and

A = 9.9. It can be checked that this function agrees very well with the
numerical results for β < 2. We remark that, for small values of γ ,
this function decreases as β−2; i.e., for β < 2, the computed values
of D⊥ agree with the prediction of the kinetic theory. However, by
further increasing the magnetic field above a value about 2, the plot
shows a “knee”: the diffusion coefficient appears to obey a different

FIG. 2. The average square displacement as a function of time. It is interesting
to observe the initial nondiffusive behavior, which becomes more evident as β is
increased.

FIG. 3. Diffusion coefficient D⊥ perpendicular to the magnetic field vs β com-
puted by MD simulations. Circles are the numerical results, while the solid line is

the plot of the function D⊥ = γA

γ 2+β2
, with γ = 0.168 and A = 9.9. Such values

are obtained from the autocorrelation of the electron velocities, as explained in
the text. The broken line is the plot of the function D⊥ ' β−0.7, corresponding to
the law found in Ref. 7.

law. These results are in agreement with Fig. 5(a) of Ref. 16. Notice
that for such a value of β , the Larmor radius rl is slightly smaller than
Debye length.

The law D⊥ = γ A

γ 2+β2 was not obtained by interpolation, but by

the use of the following argument. Let us introduce the velocity auto-
correlation 〈Ev⊥(t) · Ev⊥(0)〉, where Ev⊥ is the component of the mean
particle velocity transverse to the magnetic field, and the brack-
ets denote the time averages along the orbit. Then, the diffusion
coefficient can be expressed21 as

D⊥ = 1

2

∫ +∞

0

〈Ev⊥(t) · Ev⊥(0)〉 dt (9)

whenever the velocity autocorrelation decays at t → +∞ fast
enough. Let us introduce a function f(t) to describe this decay by
setting

〈Ev⊥(t) · Ev⊥(0)〉 ' 〈Ev⊥(0) · Ev⊥(0)〉 cos(ωct)f(t). (10)

Recalling the electronic dynamics, we expect that due to the
gyration along the magnetic field lines alone, 〈Ev⊥(t) · Ev⊥(0)〉 would
oscillate with the cyclotron frequency ωc. However, the electric
interaction between the electrons instead determines a loss of coher-
ence of the electronic motion and thus the decaying to zero of the
autocorrelation. A common choice is to consider an exponential
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FIG. 4. Velocity autocorrelation 〈Ev⊥(t) · Ev⊥(0)〉, as a function of time, for different values β = 0.5, β = 1.25, β = 2.5, and β = 5, of the magnetic field (circles), together
with a best fit by a damped oscillation A cosωt eγ t (solid line). The values of the parameter A, γ , and ω are reported in each panel. The fit is very good either below and
above β = 2. Notice that A, γ are essentially independent of β , while ω agrees well with the cyclotron frequency ωc.

decay, and thus, f(t) = 2A e−γ t, where γ is a parameter represent-
ing the inverse of the decorrelation time. Then, formula (9) gives
exactly D⊥ = γ A

γ 2+β2 .

In Fig. 4, the velocity autocorrelation is plotted as a function of
time, for different values of β , either above and below the thresh-
old β = 2. As one can check, the law (10) is nicely agreed. From
the values reported in Table I, one finds that the parameters A and
γ are quite independent of β , while ω turns out to be very close
to the cyclotron frequency ωc (equal to β in our units) as expected.
Therefore, taking average values A = 9.9, γ = 0.168, and ω = ωc,
the values of the diffusion coefficient D⊥ obtained by numerical
computations can be recovered from formula (9).

Now, a peculiar fact happens. In fact, while formula (10)
appears to be in very good agreement with the velocity autocorrela-
tion plots for all the values of β considered, the formula D⊥ = γ A

γ 2+β2

is valid only below a threshold βcr ' 2. This notwithstanding, if we
compute the time integral numerically and inject it into formula (9),
the resulting values of D⊥ agree very well with those found using

linear regression, as one can check from Table I comparing the val-
ues reported in the second and third column. Notice that, when
computing the integral appearing formula (9), one has to trun-
cate the integral to an upper limit tmax chosen carefully, i.e., not to
large; otherwise, the numerical errors introduced in computing the

autocorrelation 〈Ev⊥(t) · Ev⊥(0)〉 spoil the result.

A possible explanation of this transition when passing from a
weakly magnetized to a strongly magnetized regime can be given in
the spirit of Ref. 5, where it was surmised that at low β , the plasma
is in a fully chaotic regime, but as β is increased, a transition to a
partially ordered regime occurs.

It was shown in that paper how, in such a partially ordered
regime, a perturbation theory could apply by adapting the Hamil-
tonian perturbation theory developed for system of interest in sta-
tistical mechanics (see, for example, Refs. 22–25) to the case of
plasma. The idea is that, in the thermodynamical limit, one can-
not control the adiabatic invariants along each individual trajectory
(in the phase space), but it is instead possible to control their
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FIG. 5. Autocorrelation of the magnetization (along the magnetic field direction)
as a function of time for two different values β = 0.5 (square) and β = 5 (circles)
of themagnetic field. Notice that for a field below the threshold, the autocorrelation
vanishes very fast, while, above the threshold, autocorrelation vanishes eventually
on a totally different time scale.

autocorrelations with respect to an invariant measure, showing that
they vanish exponentially slow in the perturbative parameter. Notice
that, in virtue of the linear response theory, such autocorrelations
correspond often to important physical observables.

In Ref. 5, it was considered the case of the component M of the
magnetization along the magnetic field EB, defined (as usual) as

M
def= e

2mc

1

N

∑

k

(Evk × Exk)z. (11)

Notice that the autocorrelation CM(t)
def= 〈M(t)M(0)〉 is an impor-

tant quantity because, according to the linear response theory, its

Fourier transform ĈM(ω) gives the magnetic susceptibility χ(ω) at
the frequency ω (see, for example, Refs. 26 and 27 or Appendix B of
Ref. 28).

In our case, the behavior of the autocorrelation is different
below and above the threshold. This is shown in Fig. 5: for a low
magnetic field, the autocorrelation relaxes to zero, while for a high
magnetic field, it keeps oscillating and eventually vanishes on a
totally different time scale. Therefore, the magnetization could be
considered an adiabatic invariant of the system, thus implying that
the dynamics remains partially correlated for a long time.

A similar mechanism could be at work also in the case of the
velocity autocorrelation, even if from our plots, this is not as evident
as in the case of the magnetization. In fact, a clue can be obtained by
looking at the spectrum of the velocity autocorrelation, i.e., at their
cosine Fourier transform, as shown in Fig. 6 (in a semilogarithmic

scale). Notice that D⊥ is simply half the value of the spectrum at
ω = 0.

For β = 0.5, the slope of the spectrum seems to vanish at
ω = 0. As the spectrum is an even function of the frequency, this
is coherent with the behavior of a smooth function. On the contrary,
for β = 5, the spectrum slope seems to remain (negative and) dif-
ferent from zero at ω = 0. Now, it can be very easily shown that

by denoting with f̂(ω) the Fourier cosine transform of the func-

tion f(t) then, for t → +∞, one has f(t) = 2
π

1
t2

(

−f̂ ′(0) + o(1)
)

if

all the derivatives of f̂(ω) up to the second one are integrable.29

Therefore, it seems that in our data on the velocity autocorrelation,
there is a small component that decays very slowly (i.e., as t−2) to
zero. Nevertheless, such a component gives a very big contribution
to the diffusion coefficient (more than double the one due to the
exponentially decreasing part 2A e−γ t cos ωt).

In any case, at the moment, it is not clear, for what reason, in
a less chaotic regime, the diffusion coefficient apparently decreases,
as a function of β , at a slower rate with respect to the fully chaotic
regime.

IV. FINAL CONSIDERATIONS

In this work, we performed MD simulations of a magnetized
electron gas, also called a one component plasma. We have shown
that such a system shows a transition between two different regimes
as the value of the parameter β is raised above a critical threshold of
about 2.

The transition occurs both on a macroscopic level, with a
change in the diffusive behavior, and on a microscopic level as well:
when the parameter is raised, the system passes from a chaotic
state to a partially ordered one. This is the main finding that we
have pointed out, and is a rather new phenomenon, only remotely
addressed in the literature up to now. As a matter of fact, a similar
result, for what concerns the behavior of the diffusion coefficient,
was published quite recently in Ref. 16. However, the authors tried
to explain this phenomenon in the framework of the kinetic the-
ory, looking at the behavior of the particles during the “collisions.”
We refrain from this approach, and we try to discuss it according to
the ergodic theory of a dynamical system using its standard tools. In
particular, our aim is to understand if the dynamics is truly chaotic
or not, and, in this latter case, what are the consequences for what
concerns the macroscopic quantity characterizing the plasma.

As regards the direct consequences of our results on plasma
physics, a strong objection may be raised on the dependence, we
have not explored, of the results on the number of particles N. In
particular, in Ref. 16, it was claimed that a few hundred particles are
sufficient in the low β regime, but for high β , a huge number of par-
ticles (above 106) is needed. In particular, they show that the value of
the diffusion coefficient slowly decreases as N is increased. However,
it seems unlikely that those values would ever agree with the kinetic
law D⊥ ∝ β−2, although a Bohm relation D⊥ ∝ β−1 may finally
show up in the high β regime, as in Ref. 9. Also, such a high value
of N is going toward the real number of particles; therefore, at this
point, even the use of periodic boundary conditions becomes ques-
tionable. Finally, possibly, the problem is that the diffusive regime is
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FIG. 6. Spectrum of the velocity as a function of ω in a
semilogarithmic scale for two different values of β = 0.5 (cir-
cle) and β = 5 (square). The continuous lines are the Fourier
transform of the damped oscillation 2Ae−γ t cosωt. For β

= 1.0, the slope of the spectrum vanishes atω = 0; forβ = 5,
the slope remains different from zero. This latter case hints at a
decay of the velocity autocorrelation as 1/t2 for t → +∞ (see
the text).

not normal so that the diffusion coefficient is not well defined. This
problem is discussed at length in Ref. 1.

In any case, we think that there are much more fundamental
questions to address about the portability of our results to real plas-
mas: above all, the absence of positive ions in our models. We hope
to be able to address such a big issue in the (near) future.
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