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Abstract

In the dynamic landscape of emerging technologies such as IoT and 5G,
the integration of advanced cryptographic protocols becomes essential for
fostering secure and data-driven communication. The reliability of crypto-
graphic protocols plays a pivotal role, enabling secure communication chan-
nels, privacy preservation, real-time responses, energy-efficient operations,
enhanced security measures, personalised user experiences, and optimized
network performance. However, a critical concern emerges due to the lim-
ited presence of formalised communication protocols, posing security risks
in our interconnected daily lives. The lack of formalisation can be traced
back to the mathematical intricacy of formal methods languages and their
complex integration into the tight development timeframes of companies.
To ensure that mathematical proofs of correctness, secrecy, authentication
and integrity are guaranteed through all the developing phases of security
protocols, we perfuse our effort in creating a framework to close the gap
between the designers’ needs and the formal methods tools. The project in-
troduces APROVER, an "Automatic Protocol Verifier" designed to simplify
the formal specification, verification, and development of security protocols.
The initiative focuses on two main aspects: i) bridging the usability gap by
developing a web UI based on a sequence diagram for message exchange
and a versatile language (KANT) for power users, helping them with syn-
tactic and semantic validation of their models; ii) unifying the verification
methodology by creating a multi-level approach that targets both the com-
munication and the internal device logic.
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Glossary

development refers to a set of computer science activities that are dedic-
ated to the process of creating, designing, deploying, and supporting
software.

verification entails the procedure of checking using a mathematical form-
alism whether a design meets certain specified requirements.

language validation refers to the process of ensuring that the input con-
forms to the syntax, semantics, and constraints defined within the
specific domain.

model validation refers to the process of creating scenarios to test the ad-
herence of the model to the requirements.

formalisation refers to the process of representing systems or specification
using precise, well-defined mathematical or logical frameworks.
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1 Introduction

This thesis aims to bridge the gap between the complex mathematical form-
alism of formal methods and the community of designers who develop se-
curity protocols. We present the motivation and two research questions in
Section 1.1. To address the previously outlined challenges, we detail our
approach to solving these two questions in Section 1.2.

1.1 Motivation

Security protocols can be characterised as distributed algorithms specific-
ally crafted to attain essential security objectives, such as ensuring confid-
entiality, authentication, and integrity, particularly in communication across
networks that may be untrusted. Despite these protocols’ crucial role in
fortifying information systems, the design and implementation process is
notably error-prone, as evidenced by the many flaws observed in published
and deployed security protocols. The presence of such flaws underscores the
need for a methodology that produces functional specifications and formal
security proofs when designing security protocols for modern networks and
business infrastructures. Despite the importance of formal verification in
the design of protocols and their proven effectiveness in uncovering vulner-
abilities, its implementation remains limited. This is because formal veri-
fication approaches are mathematically complex, and designers often prior-
itise quick feature development over the time-consuming process of model-
ling and verifying the requirements of protocols. The lack of integration of
formal methods during the security protocol development process cannot be
blamed solely on designers. Most of the tools recognised as state-of-the-art
for security protocol verification do not integrate well with the development
flow since they are not very intuitive (both in their languages and findings
presentation) and would require companies to hire highly skilled personnel
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1 Introduction

to perform this task. Furthermore, tool integration is challenging to achieve
[50] since each tool has its own input language and modelling primitives;
thus, using different tools often requires starting to model the same protocol
from scratch each time.

Organisations often view security as a financial liability rather than a stra-
tegic investment, as highlighted in [74]. Specifically, in the realm of com-
panies engaged in the development of Internet of Things (IoT) devices, a
prevalent tendency is to incorporate security features only in response to a
security breach. This reactive stance neglects the fundamental principle of
cost-effectiveness, wherein the expenses associated with rectifying a vul-
nerability identified during the production phase far surpass those incurred
through the establishment of secure and verified requirements in advance.
Because of this, millions of devices are abandoned without further patch-
ing, exposing organisations and individuals to security risks.

The primary objective of this thesis is to assist designers in integrating
formal methods into the security protocol’s development cycle. By doing
so, we can reduce the barrier to the adoption by allowing even developers
with low knowledge of formal methods to analyse the absence of logical
flow in the requirements of the security protocol. This motivates our first
research question.

Research Question 1: How can the usability of formal methods be en-
hanced to facilitate their effective integration into the design process of se-
curity protocols, ensuring that designers, who may lack formal methods ex-
pertise, can leverage these tools more intuitively and efficiently?

The second research question arises from the observation that formal veri-
fication tools used in literature for verifying security protocols (e.g., TAM-
ARIN, PROVERIF, AVISPA) usually capture different protocol details and
retrieve different attack traces. Moreover, in an environment such as the cor-
porate environment where development time is tight, the verification results
must be returned to the designer as quickly as possible. Hence our ques-
tion:

Research Question 2: How can we exploit the strength of various formal
methods to speed up the verification process and check the security of dif-
ferent aspects of a security protocol?

4



1.2 Approach Taken

1.2 Approach Taken

In the following, we describe our approach to solving our two research ques-
tions.

Research Question 1
To answer the first question, our research concerted in hiding the complex-
ity of formalisation by creating an intuitive and expressive language. The
language we designed is called KANT [34]. It has traits in common with
the language adopted by the VERIFPAL [57] tool. However, it adds val-
idation primitives that allow conceptual errors to be eliminated already at
the validation stage, thus reducing both the verification time and supporting
protocol designers with continuous feedback during development. In ad-
dition to KANT, we have developed a graphical interface that allows less
experienced users to build a protocol with a drug-and-drop mode. The GUI
was designed to act as a web front-end so that corporations can easily ac-
cess and integrate it into the protocol development process. Furthermore,
The GUI will be able to aggregate the verification results, making the error
traces found more readable for designers.

Research Question 2
Our goal is not to create new tools for formal protocol verification but to es-
tablish a working framework validated on real-world security protocols that
demonstrates the effectiveness of our approach. We focused on minimising
the designer’s involvement in the verification phase. To achieve this res-
ult, we have explored the integration of formal protocol verification in the
ASMETA framework that, thanks to formal verification via model checker,
does not require user involvement to help the verification termination. To
exploit the various potential of the verification tools used in the field of se-
curity protocol in the literature (e.g. TAMARIN [65] and PROVERIF [24]),
we choose to use METACP [13] , which allows starting from a protocol
model written in JSON to obtain two models in the target languages with a
set of security properties that can be tested. During the development of our
approach, a new tool that combines the TAMARIN and PROVERIF syn-
tax called SAPIC+ [38] was presented. However, our testing of this tool has
shown that its implementation is still in the development phase, and because
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of this, we have preferred to use the target tools directly, which are more
mature and stable. To conclude the answer to the second research question
on how it might be possible to capture different aspects of a security pro-
tocol, we focused on an approach that envisaged exploiting the combination
of results from two different verification methods. In more detail, our pro-
posed approach involves a feedback loop between the verification methods
chosen to finish the incremental models and increase the designer’s confid-
ence that they have covered the totality of the specification of the protocol
requirements.

1.3 Contribution

We identify three main contributions in our work.

• We have designed a Domain Specification Language (DSL) named
KANT, which has a user-friendly syntax to capture the requirements
of a security protocol. KANT provides useful feedback to designers
about the common errors found in literature, which helps them avoid
incorporating those errors into their designs. By eliminating errors
during the validation phase, KANT makes the verification process
faster. Additionally, KANT enables designers to capture the trans-
itions of agents’ internal states participating in the security protocol’s
messaging exchange. This feature is useful in the verification phase
to ensure the accuracy of the agents’ internal state machine.

• We have developed a web front-end that simplifies the formalisation
of a security protocol using a drag-and-drop approach. This front-
end is compatible with KANT and aims to reduce errors that a de-
signer could make. The drag-and-drop modules represent crypto-
graphic primitives that can only be combined following specific lo-
gical constraints, ensuring a proactive approach to preventing errors.
The front-end is built on a JSON Schema and can also show the attack
trace found during the verification stage.

• We have created a set of primitives and CTL formulas that can be used
to model and verify security protocols using the ASMETA frame-
work. The reusable CTL formula patterns for the security properties
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1.4 Overview

and primitives that describe both the message structure, the crypto-
graphic functions and the internal logic of the agents make it easier to
model a security protocol, even for designers who do not have much
knowledge of formal methods. This is because the Abstract State
Machine is very similar to the Finite State Machine, known to any
programmer. We tested the effectiveness of our approach by form-
alising the Z-Wave protocol and discovering a zero-day vulnerability
that was confirmed by Silicon Labs, the company that developed the
protocol.

• We have proposed a methodology for unifying the security protocol
verification, enabling the capture of different levels and details of a
security protocol. More specifically, we formalised the WPA3 SAE
protocol of the IEEE 802.11 standard, using PROVERIF to standard-
ise message exchange and ASMETA to authenticate the machine to
agent states. We discovered 20 new attacks, which helped us under-
stand how a multi-tool approach with a feedback loop will enable us
to capture more details than those caught with a single verification
tool.

The contributions listed above all pertain to the APROVER framework. In
particular, this thesis deals with creating the front-end and back-end of the
framework, with a particular focus on the pi-calculus and abstract state ma-
chine formalisms. In Fig. 3, the structure of the framework is visible.
The boxes highlighted in green will be described in this thesis; those high-
lighted in yellow are obtained through other tools (i.e., for conversions to
PROVERIF and TAMARIN, we used METACP). The connections between
the front-end conversion tools are in the process of being refined; at the mo-
ment, the conversion still requires a step of human intervention to achieve
the end-to-end conversion.

1.4 Overview

This thesis consists of two parts. The first part details our effort in bridging
the usability gap between the formal verification tools and the designer by
developing a user-friendly web interface and Domain Specific Language
KANT to validate models syntactically and semantically. The first part is
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back-endfront-end

Figure 1.1: APROVER Framework

based on the publication [34], which is a joint work with Chiara Braghin
and Elvinia Riccobene. The second part aims to make the verification more
within the reach of inexperienced users and, simultaneously, allow them to
verify the requirements of the security protocol, capturing even more details
of the classical verification methods. The approach we propose involves a
multi-level verification that will enable us to verify both the communication
layer (a layer usually analysed by tools such as TAMARIN or PROVERIF)
and the device layer, which captures the internal operating logic of each
agent involved in the message exchange. The second part is based on the
publications [60, 35, 33, 61], which are a joint work with Chiara Braghin,
Elvinia Riccobene, Roberto Metere and Luca Arnaboldi. We introduce the
notation for security protocols in 2.1. In Section 2.2, we explain the frame-
work that we used to verify security protocols. Section 2.2.3 provides an
overview of the verification tools used for verifying security protocols. Sec-
tion 2.2.4 analyses related work that adopts a user-centric approach and ap-
proaches combining multiple verification tools. The last two sections of the
Background chapter present the verification tools used in our experiments.
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They are the ASMETA framework and the Abstract State Machine (ASM)
on which ASMETA is based, presented in Section 2.3, and PROVERIF and
the Applied p-calculus described in section 2.4. The last two chapters are
self-contained, and we outline them below.

Bridging the Usability Gap
Chapter 3 describes the creation of a user-friendly development environment
aimed at modelling a security protocol. The environment includes two main
components: a graphical specification language that captures the message
flow between security protocol agents (Section 3.1) and a domain-specific
language (DSL) called KANT (Section 3.2).

In Section 3.1, we present the APROVER Front-End GUI, which is a web
graphical interface that provides novice users with a clean modelling envir-
onment for developing security protocols. The GUI aims to mitigate error-
prone steps and guide users in making the correct choices. We explore the
usability of the GUI in Section 3.1.1, showing the various pages that com-
pose it and their use. Additionally, we discuss how the GUI stores data that
would be converted into the various back-end languages in Section 3.1.2.

KANT, a DSL for validating syntactically and semantically the security
protocol models, is detailed in Section 3.2. The development process of
KANT is elaborated in Section 3.2.2, covering its objectives and struc-
ture. The section also details the syntax of KANT, including principal
definition, type and function definitions, property definition, knowledge
definition, principals’ communication, security checks, and the KANT
model of the reference scenario. In Section 3.2.4, we discuss validation
rules for KANT, encompassing both syntactic and semantic checks. Syn-
tactic checks (Section 3.2.4.1)cover aspects such as syntax well-formedness,
knowledge declaration, naming convention, and more. Semantic checks
(Section 3.2.4.2)cover type compatibility, knowledge scoping, function in-
version, list access, and other prudent engineering practices. In Section
3.2.5, we evaluate the effectiveness of KANT in detecting errors within
the security protocol specification. The KANT language presentation con-
cludes with an exploration of related work (Section 3.2.6), examining exist-
ing efforts to develop domain-specific languages for security protocol mod-
elling.
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1 Introduction

Unifying Verification Methodology
In Chapter 4, a method for formally verifying security protocols is presen-
ted. This method analyses the protocol at two levels: communication and
device. At the communication level, the protocol is modelled statelessly,
which is the traditional way used in the literature to verify security proto-
cols formally. On the other hand, the device level describes the internal state
machine of the agents involved in the protocol and their transitions during
the message exchange.

Section 4.1 presents a verification approach that takes advantage of the sim-
plicity of ASM syntax to perform formal verification covering both the com-
munication and device levels. This new approach involved developing a
library for ASMETA that would capture cryptographic primitives (Section
4.1.4.1) and security properties (Section 4.1.4.2). The remaining sections
will show the application of the approach to the Z-wave protocol by demon-
strating how novel vulnerabilities could be captured with it.

Section 4.2 presents a formal verification approach that involves both levels
(communication and device) and allows us to retrieve important feedback to
further detail the model and discover vulnerabilities that a simple analysis
of the communication level could not have captured. Section 4.2.3 presents
the WPA3-SAE protocol that was used as a running example. Section 4.2.4
describes how PROVERIF and ASMETA are used in multi-level modelling.
Section 4.2.5 presents the two models developed for the PROVERIF and
ASMETA back-ends. Finally, section 4.2.6 describes the results obtained
from using the tools disjointly, combined, and results common to both.
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2 Background

2.1 Security protocol

A communication protocol is a set of defined rules governing how entities
exchange information. In the context of this thesis, these entities primar-
ily consist of two computers, although they may also encompass interac-
tions between individuals or a person and a computer. The transport me-
dium, or communication channel, is integral to the communication process.
In specific scenarios, the communication channel cannot be deemed trust-
worthy. For example, sharing sensitive information over unsecured public
Wi-Fi networks can put that information at risk of being intercepted and
potentially accessed by unauthorised individuals. In situations involving
untrusted channels, the necessity for security protocols arises. These pro-
tocols are designed to uphold specific properties even in the presence of an
adversarial entity. An early example of a security protocol is using wax seals
to close and authenticate letters. The wax seal served the dual purpose of
authenticating the sender and protecting the letter from unauthorised modi-
fication. The capabilities of an adversary are contingent upon the circum-
stances. Sometimes, assuming that the adversary can only observe com-
munication may be reasonable. At the same time, in other cases, one must
consider the possibility that the attacker may control one or more parties
involved in the protocol. For instance, a protocol utilising a wax seal as a
form of authentication assumes that the adversary cannot forge an existing
seal. In computer-mediated communication, cryptography achieves proper-
ties analogous to those provided by wax seals for physical letters. Our focus
primarily centres on cryptographic primitives: nonces, hashes, and encryp-
tion. Nonces, as random values, prevent message reuse and thwart an at-
tacker’s ability to discern if the same encrypted message has been sent mul-
tiple times. Hash functions, characterised as one-way deterministic func-
tions, facilitate the verification of whether two hash values originate from
the same message. Encryption, a pivotal component, conceals the contents
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of a message during transmission. The subsequent sections of this thesis de-
lineate properties relevant to a security protocol, enumerate potential char-
acteristics of a communication channel, and expound upon various attacks
that an adversary may deploy against a protocol.

2.1.1 Security properties

In the realm of security protocols, a spectrum of properties may be deemed
requisite. While we enumerate some of the most common properties herein,
it is imperative to acknowledge the existence of additional properties pertin-
ent to specific security contexts. Noteworthy exclusions from consideration
in this thesis are properties such as privacy and observational equivalence,
which are not addressed succinctly due to their complexity.
Secrecy: Secrecy stands as one of the fundamental properties of a secur-
ity protocol. It asserts that an adversary should be precluded from acquiring
knowledge of any information intended to remain confidential. An illus-
trative example is the concealment of a key generated from a key exchange
protocol.
Authentication: Authentication is foundational to a security protocol, en-
suring the verification of the true identity of the message sender. Authentic-
ation exhibits varying degrees, encompassing weak-authentication, wherein
one party can ascertain that the other party executed the protocol at some
point, and injective authentication, assuring that the other party recently en-
gaged in the protocol exclusively with the present entity. A more exhaustive
exploration of authentication is available in [62].
Freshness: Parameter freshness denotes the assurance within a protocol
that a utilised parameter, such as a key, has not been employed previously.
This is particularly critical, as numerous cryptographic primitives hinge on
the premise that a key is utilised for a limited number of instances.
Forward Secrecy: Forward Secrecy ensures that the compromise of long-
term keys does not jeopardise the confidentiality of past communications. In
other words, even if an adversary gains access to the long-term secret keys
at some point in the future, it should not be able to decrypt past communic-
ations that were securely transmitted. This property provides an additional
layer of security, especially in the face of evolving threats and potential
long-term key exposures.
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Comprehending the inherent characteristics of a security protocol demands
a clear understanding of its properties. It is imperative to note that these
properties represent only a subset, and the considerations may evolve de-
pending on an application’s specific security requirements and context.

2.1.2 Common Attacks

In this section, we enumerate various types of attacks on protocols as out-
lined in the book "Protocols for Authentication and Key Establishment"
[32]. Notably, we omit consideration of the Certificate Manipulation at-
tack, as it pertains to public key encryption with certificates and does not
apply to the current setting.
Eavesdropping: It constitutes a passive attack wherein the adversary en-
deavours to gain knowledge by clandestinely intercepting messages without
active interference. This tactic is often coupled with other attacks, such as
replay. A straightforward example is an individual surreptitiously listening
to a private phone conversation.
Modification: In a modification attack, the adversary alters parts of exist-
ing messages to construct another message that can be utilised to comprom-
ise the protocol. For instance, if an adversary can manipulate the amount
of money in a financial transaction message, this constitutes a modification
attack.
Replay: A replay attack occurs when the adversary duplicates and retrans-
mits a previous message. This tactic can be exemplified by illicitly reusing
a coupon to obtain another discount. A specific instance of replay is reflec-
tion, where messages sent are returned to the sender, inducing a false belief
that communication is with a valid party when, in reality, it is with itself.
Preplay: Preplay denotes a scenario in which the adversary initiates the
protocol before the involved parties formally initialised it. A more general
form is message insertion, wherein the adversary can introduce a message
during the protocol, potentially acquiring knowledge to complement other
attacks.
Typing Attacks: A typing attack transpires when a message of one type
is employed as another type of message. An example is the decryption of
an encrypted nonce without proper verification, potentially leading to the
unintended decryption of an encrypted secret.
Denial of Service: Denial of Service entails the adversary impeding le-
gitimate users from completing a protocol run. Common instances include
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flooding a server with excessive requests to overwhelm its capacity or phys-
ically severing the communication line of a residence equipped with a dial-
ling alarm system.
Cryptanalysis: Cryptanalysis involves the adversary leveraging know-
ledge about the encryption employed in the protocol to compromise security
properties. For instance, the encryption key might be calculable if the ad-
versary possesses both the encrypted message and its plaintext content for
multiple messages.
Cross-Protocol Attack: A cross-protocol attack occurs when vulnerab-
ilities emerge through the collaborative interaction of two protocols. For
instance, if the same encryption key is employed across both protocols, the
system may be susceptible to a typing attack, wherein a message from one
protocol is illegitimately utilised in the other.

2.1.3 Communication Channels

Protocols employ various types of channels for communication, and the
nature of these channels can significantly impact the security properties as-
sociated with message transmission. In [64], four distinct channel types are
delineated, emphasising the insecure channel. When considering a scen-
ario with a single sender (Alice) and a single receiver (Bob), the following
channel classifications are identified:
Authentic Channel: In an authentic channel, Bob can reliably ascertain
that Alice indeed sent the message and that it was explicitly intended for
him. This channel type emphasises the assurance of message authenticity
and source verification.
Confidential Channel: Within a confidential channel, Alice can depend
on the assurance that only Bob can decipher and comprehend the contents
of the messages transmitted by Alice. This channel type underscores the
confidentiality of message content.
Secure Channel (or Private Channel): The term "secure channel" is used
interchangeably with "private channel" in this thesis. Both terms denote a
communication channel that ensures the authenticity of messages from the
sender (e.g., Alice) to the receiver (e.g., Bob) and maintains the confidenti-
ality of message contents. The term "private channel" emphasises security
without encryption, relying on the adversary’s lack of knowledge about the
channel for protection.
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Insecure Channel (or Public Channel): The term "insecure channel" is
used interchangeably with "public channel" in this thesis. Both terms de-
scribe a communication channel lacking assurances of message authenticity
and confidentiality. Despite its inherent insecurity, cryptographic methods
may be applied to enhance the security properties of messages transmitted
over a public channel.

2.2 Formal verification of security protocols

Securing communication systems requires formal verification of security
protocols to ensure resilience against potential threats. In protocol ana-
lysis, two primary models exist: symbolic and computational. The symbolic
model, with its abstraction and high-level representations, offers a concep-
tual framework that facilitates comprehensive protocol analysis. In contrast,
the computational model delves into cryptographic algorithm intricacies,
providing granular protocol execution scrutiny. We prefer the symbolic
model, as it can handle protocol complexities with a reasonable balance
between fidelity and tractability. Additionally, it is more suitable for inex-
perienced users who target our framework. While the computational model
excels in capturing cryptographic nuances, its susceptibility to undecidab-
ility challenges requires a knowledgeable user to invest time and effort to
exploit its capability.

The following sections delve into the Dolev-Yao model, a symbolic form-
alism widely employed for security protocol analysis. We explore how this
model, through strategic abstraction, mitigates undecidability challenges in-
herent in cryptographic protocol verification. Our aim is to illuminate prag-
matic strategies to strike a reasonable compromise between computational
intricacy and symbolic abstraction rigorous formal verification pursuits.

2.2.1 Dolev-Yao Model

The Dolev-Yao model is conceptualised as a framework where the adversary
wields control over all communication channels but is devoid of cryptana-
lytic capabilities. In this thesis, we adhere to the notion of an adversary in-
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capable of launching attacks on cryptographic primitives. Furthermore, we
impose additional constraints by restricting the adversary from interacting
with private channels. The adversary, within the constraints of our model
and as outlined in [43], is endowed with four actions tailored to our notion
of public channels:
Read Action: The adversary can read a message on a public channel and
remove it from the channel.
Split Action: The adversary can split a message into smaller parts and
retain them in memory.
Generate and Combine Action: The adversary can generate new data and
combine various parts to form novel data constructs.
Send Action: The adversary is empowered to send messages generated
from known data to a public channel.

2.2.2 Undecidability and state space explosion

The challenge of state space explosion is pervasive in model checking, and
protocol verification is not exempt from it. Due to the myriad and potentially
infinite ways in which a protocol can be executed, exhaustive examination
of all concurrent execution paths becomes infeasible. If protocol verification
mandated the scrutiny of every execution path, it would render verification
an undecidable problem, particularly for protocols characterised by an infin-
ite set of traces. Indeed, studies have established the general undecidability
of protocol verification [73, 3, 44]. Specifically, the verification of secrecy,
an extensively studied aspect, has been demonstrated to be undecidable for
protocols that impose restrictions on various factors, including the number
of actors and message length [73]. Given the inherent undecidability, it be-
comes apparent that no tool can universally verify all protocols. In practical
terms, this implies that a verification tool may either fail to terminate as it
navigates through an infinite number of traces or yield a result indicating
uncertainty in the face of undecidability.

2.2.3 Verification tools

In security protocol verification, numerous tools are available, distinguished
by their approaches to both bounded and unbounded verification. Bounded
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verification involves imposing limits on certain protocol parameters, ensur-
ing the protocol is secure within those bounds. These bounds are typically
set to mitigate state space explosion, such as placing a cap on the max-
imum message length. The rationale behind bounded verification lies in
achieving decidability and guaranteeing termination. If the property to be
proven is decidable within the specified bounds, termination can be ensured.
However, it is crucial to note that bounded verification does not provide an
absolute guarantee against all attacks, as potential vulnerabilities may ex-
ist beyond the specified bounds. Despite this limitation, bounded verifica-
tion is considered effective, particularly when the bounds align with those
inherent in the protocol specification. This aligns with the argument that
practical attacks on realistic protocols tend to be small and discoverable
through bounded verification [18]. One notable tool for bounded verifica-
tion is SATMC [9], which boasts an expressive language and allows the
analysis to closely mirror protocol implementations. SATMC utilises a
bound on the number of protocol runs, iteratively testing the protocol for
attacks until the specified bound is reached. It has been employed in vari-
ous projects, including AVISPA [10] and AVANTSSAR [11]. Unbounded
verification, in contrast, imposes no limits during the verification process,
yet it faces challenges due to the inherent difficulty of use. Tools for un-
bounded verification rarely guarantee termination, given the undecidability
of general properties like secrecy. These tools assume the decidability of
a property for a specific protocol and attempt to construct proof validating
the property. However, non-termination is a plausible outcome exemplified
by scenarios where tools get stuck while attempting to find attacks, poten-
tially by adding an infinite number of participants to a protocol run. To
enhance the likelihood of termination, some tools employ approximations.
These approximations expand the adversary’s capabilities, often by relax-
ing the order in which protocol operations must be executed. Analogously,
this concept can be likened to the mortality problem [52], an undecidable
problem that becomes more manageable with approximations. Two state-
of-the-art tools for protocol verification, PROVERIF and TAMARIN, have
been used to verify large and complex protocols, demonstrating their good-
ness even without being able to guarantee termination. PROVERIF [24] is
a tool that internally converts a protocol specification into a simplified rep-
resentation for property verification. While this translation introduces false
positives (false attacks), denoting proofs that an adversary could exploit, it
effectively identifies potential vulnerabilities. TAMARIN [65] employs a
backwards-search approach for property proof on a protocol specification,
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eliminating issues related to false positives but introducing challenges with
termination. An extension to TAMARIN, as outlined in [58], translates
protocol specifications in the applied p-calculus into a model understood
by TAMARIN, a more intuitive description of protocols. Although proven
sound, this translation may require user guidance for successful proof con-
struction.

2.2.4 Tools Improving Verification Usability

In recent years, there have been various attempts to make formal methods
more user-friendly and integrated. The first category involves the creation
of more accessible front-end languages for non-expert users. Two examples
of this category are METACP and VERIFPAL.

METACP [13] is a tool that simplifies the creation and verification of secur-
ity protocols. It achieves this through a user-friendly graphical interface akin
to modern database editors. This interface lets users craft complex security
specifications intuitively, making protocol design accessible to a broader
audience. At the core of METACP lies its structured data storage system,
utilising XML format to store protocol information. While XML lacks in-
herent meaning, METACP employs plugins to imbue the data with precise
semantics. These plugins ensure that the graphical designs are accurately
translated into various back-end verification languages like TAMARIN and
PROVERIF.

VERIFPAL [57] is a tool that tries to address the challenges of adopting
formal verification to verify security protocols. VERIFPAL seeks to make
formal verification more approachable for real-world practitioners, students,
and engineers while maintaining comprehensive features crucial for rigor-
ous analysis. At its core, VERIFPAL introduces a new language for mod-
elling protocols, offering users a user-friendly environment that mirrors in-
formal conversations. This approach, coupled with the internal logic of de-
constructing and reconstructing abstract terms, aims to enhance the intuit-
iveness of protocol modelling without compromising on precision. VERI-
FPAL takes a unique stance by disallowing the definition of custom crypto-
graphic primitives. Instead, it provides a set of built-in cryptographic func-
tions. This standardised approach ensures that fundamental cryptographic
operations are defined correctly, contributing to model clarity and reliability.
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However, the limiting set of primitives could hamper the ability of the user
to capture specific details of the protocol specification. Moreover, VERI-
FPAL is mapped into a library defined for the Coq theorem prover [39]. This
integration allows VERIFPAL models to be automatically translated within
Coq, enabling it to verify the classical security properties. After the verific-
ation, the user can view the obtained traces in the interface.

The second category concerns the integration of the use of verification tools
with each other. In this line of research, we can find the SAPIC+ tool.

SAPIC+ [38] is a big step forward over Sapic [58]. The SAPIC+ conver-
sion is proven sound and ensures correct PROVERIF, DEEPSEC, and TAM-
ARIN models. These translations, covering both protocol and property spe-
cifications, yield consistent verification outcomes. Integration is seamless,
with SAPIC+ becoming an integral part of TAMARIN. This integration
streamlines the verification process, offering direct translations and enhan-
cing visual feedback in manual, interactive proofs. An optional PROVERIF-
like type system detects modelling errors, simplifying development through
a unified approach. Capabilities are extended as SAPIC+ introduces support
for destructor symbols, let-bindings, and macro declarations in the transla-
tion procedure to TAMARIN. A compression technique reduces model size
while maintaining correctness, broadening the tool’s applicability to larger
and more realistic protocol models. However, the implementation still ap-
pears not perfectly stable and lacks the documentation needed to enable
broader tool adoption. Also, the issues with the use of mathematical form-
alism remain since it is still based on the TAMARIN syntax, preventing
novice users from using its capabilities.

2.3 Abstract State Machines and ASMETA framework

2.3.1 Abstract State Machines

Abstract State Machines (ASMs), formerly referred to as Evolving Algeb-
ras, constitute a robust system engineering methodology that guides the hol-
istic development lifecycle of systems, including software and hardware.
This method orchestrates the progression from initial requirements capture
to the ultimate code implementation. ASMs have garnered commendable
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success across diverse domains, exemplifying versatility and efficacy. Real-
world applications of ASMs:

• Definition of Industrial Standards: ASMs contribute significantly to
formulating industrial standards for programming and modelling lan-
guages, affording a precise and unambiguous foundation for specific-
ations.

• Design and Re-engineering of Industrial Control Systems: Within in-
dustrial control systems, ASMs provide a systematic approach for
capturing, refining, and evolving complex control logic.

• Modelling E-commerce and Web Services: ASMs furnish a formal
methodology for modelling interactions and processes in e-commerce
and web services, ensuring a structured representation of online trans-
actions and service-oriented architectures.

• Design and Analysis of Protocols: ASMs find utility in designing and
analysing communication protocols, ensuring correctness and reliab-
ility in systems involved in data exchange.

• Architectural Design: ASMs contribute to architectural design by
providing a systematic framework for defining and refining system
architectures, encompassing the specification of structural compon-
ents and dynamic interactions.

• Verification of Compilation Schemas and Compiler Back-ends: ASMs
play a pivotal role in verifying compilation schemas and compiler
back-ends. They facilitate the formal representation of the translation
process, ensuring the correctness of the conversion from high-level
source code to machine-executable instructions.

Abstract State Machines (ASMs) are a type of transition system that util-
ises the concept of state to represent the instantaneous configuration of a
system during development. The change in state is described by transition
rules. ASMs offer a more sophisticated and expressive method for model-
ling transitions than Finite State Machines (FSMs).

2.3.1.1 Abstract States

In the ASM (Abstract State Machine) framework, the concept of an ASM
state refers to multi-sorted first-order structures. These structures consist
of domains of objects that have functions and predicates defined on them.
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More specifically, a state in the ASM framework is represented by a set of
couples, each consisting of a location and its associated value.

The ASM locations in the ASM framework refer to pairs consisting of a
function name and a list of paracharacterised. These pairs represent basic
object containers, such as memory units, in the abstract ASM concept. Loc-
ation updates are the fundamental units of state change in the ASM frame-
work and are expressed as assignments of the form loc := v, where loc is
a location and v is its new value. To provide a more precise definition of
terms, we formally denote the following:

Definition 1 (Signature). A Signature (or Vocabulary) S is a finite set of
function names. Each function, denoted by f , is associated with an ar-
ity, a non-negative integer representing the number of arguments it takes.
Functions in the signature can be categorised as static or dynamic. Nullary
functions, those with arity zero, are often called constants.

It is important to note that, as explained later, the interpretation of dynamic
nullary functions may vary from state to state, akin to programming vari-
ables. Moreover, every ASM vocabulary is assumed to include the static
constants undef, True, and False.

Definition 2 (Location). A Location can be defined as a pair
( f ,(1, . . . ,Un)) consisting of a function name f of arity n � 0, fixed by
the signature, and an argument (V1, . . . ,Un) (empty if n = 0), formed by a
list of dynamic parameter values vi of whatever type.

The concept of locations can be regarded as an abstraction of memory units,
where the mechanisms of memory addressing and object referencing are not
explicitly defined [31].

Definition 3 (State). An ASM state (A) of a signature (S) consists of a
non-empty set X (called the superuniverse of A) and interpretations for the
function names in S.

An interpretation of an n-ary function f , where n > 0, is a function fA :
Xn ! X . For a 0-ary function c, an interpretation cA is an element of X .
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ASM functions may be partial and not completely defined. They can be
viewed as total functions, where the interpretation of an unspecified loca-
tion ( f (v1, . . . ,Un)) is equivalent to the interpretation of the constant undef
( fA(U1, . . . ,Un) = undefA). The superuniverse (X) is typically divided into
smaller domains. A domain D can be described using a characteristic func-
tion (g) that indicates the elements of the superuniverse that make up the
domain, i.e., for all x 2 X , x 2 D if and only if g(x) = true.

2.3.1.2 Transitions

ASM transition rules are used to express changes in function interpreta-
tions from one system state to another. These rules describe how the system
configuration is modified. The basic format of an ASM transition rule is
a guarded update, which takes the form of "if Condition then Updates".
The rule executes a set of function updates (or update rules) simultan-
eously when the Condition is true. The function updates are of the form
f (t1, . . . , tn) := t, where f is an arbitrary n-ary function and t1, . . . , tn, t are
first-order terms.

Definition 4 (Update). Updates are location-value pairs, represented by
(loc,v), where ( f ,(v1, . . . ,vn),v) represent the basic units of state change.

Definition 5 (Update set). The update set represents the set of all the ap-
plicable updates in a state.

The update set may contain several updates for the same function name,
f. In this case, the updates must be consistent; otherwise, the execution
stops. In its most basic form, the transition rule is characterised by a guarded
update.

Definition 6 (Consitent Update set). An Update set, U, is considered con-
sistent if it meets the following requirements:

If ( f ,(a1, . . . ,an),b) 2U and ( f ,(a1, . . . ,an),c) 2U , then b = c.
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This means that a consistent update set contains at most one value for each
function and argument tuple.

Definition 7 (Run). A run (or computation) of an ASM is a finite or in-
finite sequence s0,s1, . . . ,sn of states of the machine, where s0 is an initial
state and each si+1 is obtained from si by simultaneously applying all of the
transition rules which can fire in si.

2.3.1.2.1 Transition rules
A transition rule can be expressed as a guarded update:

if cond then updates

The rule applies when a first-order formula without free variables called
cond is true, and a set of function updates called updates of the form
f (1, . . . , tn) := t are simultaneously executed. Here, f is an arbitrary n-ary
function, and t1, . . . , tn are first-order terms. To apply this rule in a state si,
all terms t1, . . . , tn are evaluated at si to their values, say v1, . . . ,vn,v. Then
the value of the location ( f ,(v1, . . . ,vn)) is updated to v, representing the
value of the location in the next state si+1. ASMs provide a rich set of trans-
ition rules that allow us to describe complex guarded updates quickly and
concisely. These transition rules are highly expressive and can be used to
express a variety of scenarios. In the following, we will provide a brief
description of the transition rules that are available in the ASMs.

Skip rule. It does not result in any updates.

skip

Update Rule. The update rule specifies the process by which the location
f (v1, . . . ,vn) is updated to the value v in the current state. This involves
evaluating the terms t1, . . . , tn and t to obtain the values v1, . . . ,vn and v, re-
spectively. These values are then used to update the location f in accordance
with the rule.

f (t1, . . . , tn) := t
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Block Rule. It executes rules R1 to Rn in parallel.

par

R1

. . .

Rn

endpar

Conditional Rule. The rule R1 is executed upon the satisfaction of the
boolean condition cond, whereas rule R2 is executed otherwise.

if cond then

R1

else

R2

endif

Forall rule. It executes rule R in parallel for all x values where the boolean
condition cond is true. The variable x can appear in both the boolean condi-
tion and rule R.

forall x in D with cond do R

Choose rule. It non-deterministically chooses a value for x for which the
boolean condition cond is true and executes the rule R with the selected
value. Nothing is done if no value for x satisfies the condition. The variable
x can occur in the boolean condition and rule R.

choose x in D with cond do R

Extend rule. It extracts a new element e from the reserve (i.e., a subset of
the superuniverse X , containing new elements), removes e from the reserve
and adds it to the domain D. After that, it executes rule R, which allows the
new value e to be utilised.

extend x in D with cond do R

Let rule. It assigns the value of t to x and executes R. The variable x can
occur in the rule R.

let x=t in R

Call rule. It invokes the rule R using as parameters t1, . . . , tn.

R(t1, . . . , tn)
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2.3.1.3 ASM Definition

Having defined the notion of signature, state, and transition rule in the sec-
tion above, we can formally define an ASM using the notion of rule declar-
ation.

Definition 8 (Rule definition). A rule definition for a rule name r of arity
n is an expression:

r(x1, . . . ,xn) = Ri

Let Ri be a transition rule. When calling a rule, denoted by r(t1, . . . , tn),
the variables xi in the body Ri of the rule definition are replaced by the
corresponding parameters ti.

Definition 9 (ASM). An Abstract State Machine M is a triplet (S,A,R):

• a vocabulary S,
• an initial state A for S,
• a set R of rules name consisting of

– a rule name of arity zero called the main rule name of the ma-
chine

– a rule definition for each rule name.

2.3.1.4 ASM Agents

Multi-agent ASM models involve agents interacting and executing moves
according to their programs, which are sets of rules outlining their beha-
viour.

Multi-agent ASMs can be:

• Synchronous: All agents execute their programs in parallel, which
means that all agents are synchronised using an implicit global sys-
tem clock [31]. A synchronous multi-agent ASM allows a complex
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single-agent ASM to be decomposed into sub-agents. Each sub-agent
interacts with the others, capturing parts of the complex single-agent
ASM, including the signature, behaviours and transition rules.

• Asynchronous: The moves of the agents can be scheduled in any
desired order. A run of asynchronous multi-agent ASM is a partially
ordered set (M,<) that guarantees three conditions:

1. Finite History: Each move m 2 M has finitely many prede-
cessors.

2. Sequentiality of Agents: The set of moves of every agent is lin-
early ordered by <.

3. Coherence: Given an initial finite segment X of (M,<), there
exists a state s(X) that is the result of applying any maximal
element m 2M to a state s(X�m).

2.3.1.5 Functions Classification

ASMs functions are categorised based on their read and update character-
istics, as illustrated in Fig. 2.1. The primary distinction is between basic
and derived functions. Basic functions constitute the fundamental signa-
ture, while derived functions are defined in terms of other basic functions.
Basic Functions can be categorised into:

1. Static Functions: Functions that remain constant throughout any ex-
ecution of the machine. A particular case of static functions is the
0-ary functions that can be interpreted as constants.

2. Dynamic Functions: Functions that may be modified by the environ-
ment or through machine updates. Similarly to 0-ary static functions,
they have a particular interpretation. The 0-ary dynamic functions can
be viewed as variables.

Dynamic Functions can be further divided into:

1. Monitored Functions: Functions updated by the environment or an-
other agent in multi-agent systems. They are read-only for the ma-
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chine, which means they cannot appear on the left-hand side of an
update rule. The monitored functions specify the portion of the dy-
namic state controlled by the environment.

2. Controlled Functions: Functions read and updated by the machine
through transition rules. They cannot be updated by the environment
or other agents. The controlled functions identify the portion of the
dynamic state directly controlled by the machine.

3. Shared Functions: Functions read and updated by both the machine
and the environment, representing a combination of monitored and
controlled functions. They require a policy to ensure consistent up-
dates by multiple agents.

4. Out Functions: Functions updated but not read by the machine (only
appear on the left-hand side of an update rule). They can be read but
not updated by the environment and other agents.

functions

basic

derived

dynamic

static

monitored

shared

out

controlled

Figure 2.1: ASMs functions classification

2.3.2 ASMETA framework

2.3.2.1 Concrete Syntax and Language Artifacts

ASMETAL [78] is a platform-independent syntax that allows users to create
ASM models in a way that is easy to understand for humans. Along with
this syntax, the user can use a text-to-model compiler called ASMETALC to
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parse ASMETAL models and ensure consistency with the AsmM metamodel
OCL constraints. Furthermore, users can save ASM models in the XMI
interchange format, and Java APIs are available to represent ASMs using
Java objects.

2.3.2.2 Simulator

For basic model validation, the ASM simulator ASMETAS [48] can be em-
ployed to simulate ASM models. This process helps verify that a system
model aligns with the desired behaviour, ensuring that the specification ac-
curately reflects user needs. ASMETAS supports invariant checking, con-
sistent updates checking, random simulation with environmental input, and
interactive simulation where inputs are provided interactively during simu-
lation.

2.3.2.3 Scenario-Based Validation

A more robust validation approach is scenario-based validation using the
ASM validator ASMETAV [37]. Built upon the ASMETAS simulator and the
Avalla modelling language, ASMETAV allows the expression of execution
scenarios through interaction sequences. These sequences consist of actions
executed by the user actor to set the environment, check the machine state,
request the execution of transition rules, and guide the machine through one
or more steps as reactions to actor actions.

2.3.2.4 AsmetaRE

For validating system requirements, ASMETARE [79] automates the map-
ping of use case models (following the Restricted Use Case Modeling ap-
proach) into ASM models written in ASMETAL. The resulting executable
ASM specification serves as the basis for requirements validation using
the SAPIC+ toolset. Ad-hoc transformations also enable the generation of
Avalla scenarios from use cases for scenarios-based validation with the AS-
METAV tool.
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2.3.2.5 Model Review

Model review is a validation technique aimed at assessing the quality of a
model early in the system development process. The AsmetaMA [5] tool fa-
cilitates an automatic review of ASMs, identifying common vulnerabilities
and defects introduced by developers during the modelling activity.

2.3.2.6 Model Checking

Formal verification of ASM models is supported by the ASMETASMV [4]
tool. It takes ASM models written in ASMETAL and translates them into
specifications for the NUSMV model checker. ASMETASMV supports both
Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas
for verification.

2.3.2.7 Runtime Verification

Runtime verification, as facilitated by the COMA [6] tool, involves check-
ing whether a running system conforms to given correctness properties.
COMA uses abstract state machines to monitor Java software during
runtime, identifying undesirable behaviours and verifying the conformance
of the concrete implementation with its formal specification.

2.3.2.8 ATGT (Model-Based Testing)

The ATGT [47] tool is designed for testing ASM models. It generates test
suites from abstract models of the system under test, employing adequacy
criteria defined for ASMs to measure test suite coverage. ATGT uses the
SPIN model checker for automatic test case generation based on counter-
examples produced by the model checker.
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2.4 p-calculus and ProVerif

2.4.1 Applied p-calculus

Process calculus is a formal framework for describing concurrent compu-
tation, elucidating how programs communicate and interact in an environ-
ment where multiple programs may execute simultaneously. The primary
construct in a process calculus is process parallelisation, akin to instanti-
ating new threads and communication with other processes. The Applied
p-calculus, originally defined in [2], extends the p-calculus [68, 67], intro-
ducing the symbolic application of functions and equations. A process in
the Applied p-calculus is characterised by a finite set F of functions and
their arity, an infinite set of names N, an infinite set of variables V , and
an equational theory S. Terms can be constructed from names, variables,
and functions. The equational theory establishes relations between terms.
Symbolic application of functions involves applying a function f of arity
one to a term t, resulting in the term f (t). Functions without equations can
be considered one-way hash functions, generating a deterministic random
value for the input without disclosing the arguments. To model a non-hash
function, a destructor must be defined by adding equations to the equational
theory. For example, if (g( f (a)) = a) 2 S, then the term g( f (t)) can be
created to retrieve t. Here, g acts as a destructor for the function f . Another
example of a destructor is a decryption function.

A process in the Applied p-calculus cab be defined as sequence of opera-
tions. The grammar for all operations is presented in Figure 2.2. The null
process signifies inactivity. Parallel composition runs two processes concur-
rently as separate threads, and replication denotes a process that runs in par-
allel with itself an unlimited number of times. Name restriction associates a
variable in the process with a fresh name. This action can be interpreted as
the process of generating a new, essentially random, value or channel. Ad-
ditionally, the event operation from PROVERIF is included. This operation
does not alter the process but is appended to the process trace, a sequence
of all executed operations. For instance, the process trace can be utilised to
demonstrate the reachability of a specific point in a process or as part of a
counterproof of secrecy.
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Symbol Meaning

M,N Terms
a,b,c Names
z,y,z Variables

f (M1, . . . ,Mn) Functions
P,Q,R Processes

0 Null processes
P|Q Parallel composition
!P Replication

nn.P Restriction
if M = N then P else Q Conditional

c(x).P Message input
chNi.P Message output

event(e(M)) Log event e(M)

Figure 2.2: The grammar notation of applied p-calculus

2.4.1.1 Operational Semantics

Every process runs according to the rules specified in the operational se-
mantics, as presented in Fig. 2.3. Each rule defines an initial process config-
uration and its resulting counterpart. Some rules may have side-conditions
dictating when they are applicable. A process configuration is denoted by
(E,A,P), where E is the set of all names bound by the n operation (with nx
binding the variable x to a distinct new name), A is a set of terms repres-
enting the adversary’s knowledge, and P is a multiset of processes executed
concurrently.

Including adversary knowledge in the operational semantics clarifies when
an output or input operation can occur and how the adversary influences
the process. The adversary’s knowledge is reflected in the set A, indicating
what the adversary knows or can generate through term creation or equation
application. Notably, if the adversary knows a term used for communica-
tion, it is considered a public channel; otherwise, it is a private channel. A
prerequisite for output on a private channel is the existence of another pro-
cess with an input operation on that channel to allow the continuation of
processes. This constraint is not applicable to output and input on a pub-
lic channel, where all communication is assumed to be direct with the ad-
versary.
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(1) (E,A,P[{0})! (E,A,P)
(2) (E,A,P[{P|Q})! (E,A,P[{P}[{Q})
(3) (E,A,P[{!P})! (E,A,P[{P}[{!P})
(4) (E,A,P[{nn.P})! (E [{n0},A,P[{P{n0/n}}) if n0 /2 E
(5) (E,A,P[{c(M).P})! (E,A[{M},P[{P}) if c 2 A
(6) (E,A,P[{c(x).P})! (E,A,P[{P{M/x}}) if c,M 2 A
(7) (E,A,P[{c(M).P1}[{c(x).P2})! (E,A,P[{P1}[{P2{M/x}}) if c /2 A
(8) (E,A,P[{i f M = N then P else Q})! (E,A,P[{P}) if M = N
(9) (E,A,P[{i f M = N then P else Q})! (E,A,P[{Q}) if M 6= N
(10)(E,A,P[{event(e(M)).P})! (E,A,P[{P})

Figure 2.3: Operational Semantics Rules

In this thesis, we establish the convention that the initial process configura-
tion always includes a public name, ’pub.’ This name explicitly communic-
ates information to the adversary, such as new terms intended to be public.
Formally, the initial configuration is represented as (E,A,P) where pub 2 E
and pub 2 A.

A protocol run trace is a sequential record of applied rules and the initial
state. This trace provides a detailed account of how the protocol unfolds, in-
cluding when each message is sent. Such traces are valuable for demonstrat-
ing the existence of attacks or verifying the capability to transmit messages
within the protocol.

2.4.2 ProVerif

PROVERIF is an automated verification tool for security protocols, employ-
ing the applied p-calculus as its input language. Internally, it generates Horn
clauses to verify specified security properties. With origins dating back to
2001, PROVERIF is a well-established tool with comprehensive document-
ation. The verification process involves the transformation of the input, ex-
pressed in the applied p-calculus, into Horn clauses. These Horn clauses are
subsequently utilised to establish and validate various properties within the
security protocol. The verification process encompasses the identification
and analysis of potential false attacks. In cases where PROVERIF detects
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an attack within the Horn clause representation, it endeavours to pinpoint
a valid attack trace within the original process description. This entails a
backward analysis starting from the Horn clause solution. If a trace is suc-
cessfully identified, the attack is deemed valid, and PROVERIF generates a
sequence of steps to reproduce the attack. Conversely, if no trace is found,
PROVERIF outputs "cannot be proved," signifying a lack of conclusive evid-
ence for or against the existence of the specified property. This outcome
corresponds to a "don’t know" response regarding the protocol’s verifiabil-
ity. Fig. 2.4 provides a schematic representation of PROVERIF’s internal
workings to aid comprehension of this verification process. The figure illus-
trates the translation of input to Horn clauses, their application in property
verification, and the subsequent analysis to identify and validate potential
attacks.

Figure 2.4: The internal logic of PROVERIF
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2.4.2.1 ProVerif Input

A protocol is formally defined by specifying a primary process, a set of
functions, equations, and queries. Additionally, PROVERIF enables users to
articulate predicates using Horn clauses to enhance control over the trans-
lation process. Queries serve as a pivotal component in the verification
process, delineating the properties that PROVERIF is tasked with proving.
These properties may include checks for adversary knowledge or the reach-
ability of specific events. It is crucial to formulate queries meticulously,
as inadequately defined queries may result in the verification of a protocol
even in the presence of vulnerabilities. Equations play a pivotal role in ar-
ticulating relationships among functions. A common application involves
describing exponentiation, where a function, denoted as exp(n,m), signifies
nm mod p. For instance, the relation gxy mod p = gyx mod p can be suc-
cinctly captured through the equation exp(exp(g,x),y) = exp(exp(g,y),x).
Functions are categorised into two types: constructors and destructors. In
the absence of a specified destructor, a function is considered a one-way
hash function. As discussed in the applied p-calculus section, a destructor
is a function facilitating the extraction of a term using equations. For ex-
ample, the equation dec(k,enc(k,m)) = m defines decryption, where the dec
function serves as a destructor. Events are conceptualised as elemental log
messages seamlessly integrated into the protocol’s run trace without exert-
ing any influence on the protocol itself. These events are frequently em-
ployed as debugging tools to validate the protocol’s ability to complete a
session and are instrumental in proving the freshness property within a pro-
tocol. Predicates sanctioned by PROVERIF empower users to define lists
and abstract concepts such as random selection from a list. These predicates
are subsequently employed to mitigate the risk of false attacks during the
encoding of state information. In summary, the formalisation of a protocol
involves meticulously specifying its main process, functions, equations, and
queries and employing PROVERIF-supported constructs like predicates to
enhance precision and control during the verification process.

2.4.2.2 Horn Clauses

Horn clauses constitute a fundamental element in logical expressions, em-
bodying a set of predicates interconnected by the logical disjunction (OR)
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operation. Within this framework, three distinct types of Horn clauses
emerge: Facts, Rules, and Goals.

Facts: A Fact is characterised by a singular non-negated predicate denoted
as P. This fundamental form represents a straightforward assertion without
any negations.

Rules: Rules, on the other hand, present a more intricate structure. They
involve multiple predicates, where more than one is negated and precisely
one is non-negated. Symbolically, a Rule is expressed as (P1 ^P2 ^ . . .^
Pn)! Q, which is equivalent to ¬P1 _¬P2 _ . . ._¬Pn _Q. This formula
captures the essence of a rule, where the conjunction of negated predicates
implies a non-negated predicate.

Goals: Goals represent negative clauses devoid of any positive predicates.
In a formal sense, a Goal is articulated as ¬P, where P is a predicate to be
disproven.

The utilisation of these Horn clauses finds application in resolution-based
reasoning. In the context of PROVERIF, the construction of clauses involves
a combination of rules and facts, where predicates incorporate arguments.
Notably, clauses are crafted with a focus on adversary knowledge. Predic-
ates labelled ’attacker’ typically feature a single argument, signifying a term
known to the adversary. Furthermore, variables employed as arguments
within predicates may exhibit nested structures. While these nested argu-
ments are not actively employed during the Horn clause resolution process
in PROVERIF, they play a crucial role in the tool’s capacity to construct
concrete attacks on the protocol. An illustrative example of nested argu-
ments includes their application in nonces, specifying the process by which
a nonce was generated.

2.4.2.3 Termination

PROVERIF models may encounter two types of termination problems. One
of them arises due to the transformation to Horn clauses, which can result
in an infinite loop, causing PROVERIF not to terminate. In the event of non-
termination caused by this, it is difficult to predict what output PROVERIF
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would produce if it were to terminate. The other cause for non-termination
is unification. When PROVERIF identifies a trace in the Horn clause repres-
entation, it must verify that this corresponds to a trace in the model. This
verification process can be time-consuming and memory-intensive. If we
encounter this problem, we know that PROVERIF either finds a trace or out-
puts "cannot be proven". It never returns the result that no attack exists. The
uncertainty lies in whether this cause of non-termination is genuine or if the
algorithm would eventually conclude, given enough time.
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This chapter describes our effort to create a user-friendly development envir-
onment to model a security protocol. It consists of two parts: (1) a graphical
specification language based on the message flow between the agent of the
security protocol and (2) a domain-specific language (DSL) called KANT,
which would provide first aid in detecting common errors from the secur-
ity protocol specification. We conducted usability testing for the front end
(targeting both the GUI and the KANT language) with participants from
the Cybersecurity Master’s degree program at Università degli Studi di Mil-
ano. The study involved students with a cybersecurity background to ensure
relevance and practical insights into the tool’s usability within the specific
domain.

3.1 AproVer Front-End GUI

We can see two main approaches to developing graphical user interfaces
(GUI) for formalising protocols in literature. The first approach involves in-
terfaces that help users understand the tool’s output, such as SCYTHER and
TAMARIN’s traces output [41]. The second approach involves interfaces
allowing users to input and specify protocols like SPAN [28], the compan-
ion graphical tool for the HLPSL language of AVISPA.

However, for a user unfamiliar with modelling security protocols, it might
help to have both possibilities in one tool. Out of this need came the GUI
for the APROVER framework, which will allow the flow of a protocol to
be modelled similarly to SPAN but with the addition of constraint to avoid
introducing basic errors. All information entered during the protocol model-
ling phase is collected in an interchange format (JSON Schema), allowing a
straightforward mapping to back-end verification tools. Also, due to its flex-
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ibility, the proposed JSON Schema can be used as a format to encode error
traces found by verification tools to be shown to the user in the APROVER
GUI.

When deciding between a web-based graphical user interface (GUI) and a
native GUI for a verification tool, there are several factors to consider. Opt-
ing for a web-based GUI has several advantages over a native GUI. Firstly,
web-based GUIs allow for cross-platform accessibility, meaning users can
access the verification tool from any device or operating system without
needing specific installations. This feature is particularly useful in collabor-
ative settings where stakeholders may use different platforms.

Secondly, the process of updates and maintenance is streamlined with web-
based GUIs. Since the GUI is on the web, updates can be applied centrally
on the server, ensuring that all users can benefit from the latest features and
improvements. This eliminates the need for users to manually update their
native applications.

Thirdly, web-based GUIs offer a collaborative potential. Multiple users can
simultaneously interact with the verification tool, allowing real-time collab-
oration and data sharing. This collaborative environment is conducive to
teamwork, facilitating joint analyses and discussions.

Fourthly, web-based GUIs offer inherent scalability and flexibility. These
apps can adapt effortlessly as the verification tool evolves or experiences
increased user demand. This scalability is critical in dynamic environments
where the tool’s usage patterns fluctuate.

Lastly, a web-based GUI can be more cost-effective from a development
perspective. The shared codebase and platform compatibility can lead to re-
source optimisation, reducing the efforts required to maintain separate nat-
ive versions.

3.1.1 Usability Features of the GUI

On the above advantages, the choice for the APROVER GUI has fallen on
a web app. The landing page of APROVER is shown in Fig. 3.1. Upon
opening the interface, it is possible to find the two classic actors of AnB
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notation (Alice and Bob) arranged on a message sequence graph. On Alice’s
lifeline, there is a blue rectangle representing her initial state; next to the
initial state, it is possible to notice a small letter icon that, if clicked, will
open the procedure for message creation.

Figure 3.1: AproVer website landing page

On the left side, we find two badges (colour-coded with the colours of the
actor labels) that allow us to create, modify or delete the associated actor’s
knowledge. To the left of the two badges, we find a menu bar containing the
categories of knowledge that can be made available to each actor. In Fig.
3.2, it is possible to better appreciate the association between the various
knowledge concepts and the icons chosen to represent them; also shown in
the above image is how the GUI renders the Needham-Schroeder public-key
protocol.
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Figure 3.2: AproVer GUI showing the Needham-Schroeder protocol

Once the user clicks on the letter envelope icon in Fig. 3.1, he/she will be
redirected to the message creation page, which will look as shown in Fig.
3.3.

Figure 3.3: AproVer GUI that shows the drag-and-drop interface to build mes-
sages

The message creation page provides on the left side a series of boxes which
can be dragged into the main space to compose the Message. The boxes are
divided into three colour-coded sections. The first section, represented by
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shades of red, encloses all the cryptographic primitives made available by
the interface, which the user can also find in KANT. Cryptographic prim-
itives can take as input the knowledge present in the section represented by
the shades of green. However, the input of cryptographic primitives is not
limited to a direct application and can be nested (the output of one crypto-
graphic primitive is used as the input of another). The nesting process might
require grouping knowledge or the results of diverse cryptographic primit-
ives; this can be achieved through the use of the blue box called Group.
Once the message fields have been obtained in the desired manner, they can
be linked to the respective nodes of the blue box called Message. A key
feature to aid in error reduction present on the message creation page is the
semantic control of connections that are allowed between boxes. More pre-
cisely, each box has input nodes on the left and output nodes on the right.
When a user selects a knowledge to be used in a cryptographic primitive, it
must correspond to the label next to the input node to be used. To make this
task even user-friendlier for the user, the interface highlights, when a user se-
lects a knowledge or drowning input, all the nodes to which that information
can be linked. The page shown in Fig. 3.3, as mentioned above, is generated
from a given state of one of the agents participating in the protocol, which
means that the agent Alice, in the case of the image, will only possess the
knowledge given to her by the user. In subsequent messages, Alice will have
access to further knowledge derived from the content of messages received
from other agents. The last features for improving usability can be found in
the top bar, where the user can undo and redo actions, select boxes to delete
them and view the preview of the created message. Once the apply button is
pressed, the message creation is completed, and the user will be redirected
to the message sequence diagram page. On this page, in addition to entering
new knowledge and visualising the flow of the messages, it is also possible
to see which knowledge is exposed in case an attacker is eavesdropping on
the channel. This view, shown in Fig. 3.4, can be enabled via the button at
the top right called other options.
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Figure 3.4: AproVer GUI showing an attacker eavesdropping on channels

Lastly, it is possible to import attack traces found by the verification tools
and display them on the sequence diagram, as shown in Fig. 3.5. The
diagram shows an attack sequence generated by executing an authentication
query on the Needham-Schroeder public-key protocol.

Figure 3.5: AproVer GUI showing an attack trace
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3.1.2 GUI Data Handling

As introduced in Section 3.1, the data entered in the interface is handled
by a JSON Schema saved in the session cookie of the browser chosen by
the user. In this preliminary version of the interface, the cookie is saved in
plain text. However, it is planned in the subsequent development phase to
add an encryption layer to keep the data secure on the user’s local machine.
We have created two schemas to validate the correctness of the data passed
to the interface; the first schema checks the correctness of the knowledge
attributed to a protocol actor, while the second schema deals with validating
the structure of the messages.

The first JSON Schema is used to validate the principals’ knowledge con-
tained in the cookie against seven types of knowledge: public and private
keys, symmetric keys, nonce, timestamp, bitstring, and identity certificates.
In trying to limit the introduction of errors by the user, we decided to tie the
creation and assignment of the public keys to the generation of the corres-
ponding private keys so that the user does not have to create a posteriori link
between the two. The cookie is updated each time a message is received,
and the knowledge is added to the receiver only if it has the keys available
to reverse the contents of the cryptographic primitives in the message. The
cookie containing the principal knowledge can also be updated by the user
adding new knowledge, as shown on the left side of Fig. 3.2.

The second JSON Schema validates the cookie that stores the message con-
tent. This cookie contains the types defined earlier in the knowledge schema
and their application within the cryptographic primitives. The Schema val-
idates the cryptographic primitives to ensure that only acceptable arguments
are passed to them. For instance, in Code 3.1’s JSON Schema excerpt, line
27 mandates that for symmetric encryption, the key parameter type must be
a knowledge of the symmetric key type. We have also incorporated the abil-
ity to include metadata in the Schema, as seen in line 10. Symmetric encryp-
tion metadata could include the chosen algorithm type. This metadata can
be used in a verification phase to provide more information to the verifica-
tion tools or in a validation phase to warn the user of potential vulnerabilities
and suggest more secure algorithms.
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Code 3.1: JSON Schema excerpt of the cryptographic primitive symmetric en-
cryption

1 "symmetricEncryption": {
2 "type": "object",
3 "properties": {
4 "id": {
5 "type": "string"
6 },
7 "securityConcept": {
8 "const": "symmetricEncryption"
9 },

10 "algorithm": {
11 "type": "string"
12 },
13 "argument": {
14 "allOf": [
15 {
16 "$ref": "#/definitions/knowledge"
17 }
18 ]
19 },
20 "encryptionKey": {
21 "allOf": [
22 {
23 "$ref": "#/definitions/knowledge"
24 }
25 ],
26 "required": [
27 "symmetricKey"
28 ]
29 }
30 },
31 "required": [
32 "id",
33 "securityConcept",
34 "algorithm",
35 "argument",
36 "encryptionKey"
37 ]
38 }
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3.2 KANT Language

We here present KANT (Knowledge to ANalyzing Trace), a DSL explicitly
designed as the front-end language of APROVER for the specification of
security protocols. KANT is a high-level language with primitives for pro-
tocol modelling and assumption expression. It has been conceived as a sort
of lingua franca that allows simple textual descriptions to express protocols
and easy translation into the input languages of various tools for protocol
analysis. Since KANT has been engineered and developed by using the
Langium platform1, its grammar definition comes with an editor and sev-
eral other tools that allow checking KANT models not only for syntactic
correctness but also for consistency concerning a given semantic model.
The latter is expressed in terms of a set of validation rules describing con-
straints and best practice principles in designing security protocols. Such a
checking mechanism is extremely important at design time to avoid com-
mon security errors (e.g., incorrect use of encryption keys) or to warn the
designer regarding choices that might lead to protocol vulnerabilities (e.g., a
principal’s name not mentioned explicitly in the message). Note that in Fig.
1.1, blocks in grey are under development, and the mapping from KANT to
validation and verification tools is out of the scope of this work.

The Section is subdivided as follows. Section 3.2.1 recalls the concept of
security protocol and presents a protocol that we use as a reference scenario
throughout the paper. Section 3.2.2 introduces the Langium platform used to
develop KANT as DSL, while KANT modelling primitives and constructs
are given in Section 3.2.3. Section 3.2.4 presents the semantic model of
KANT and shows the application of the validation rules. In Section 3.2.5,
we show the use of KANT and the language validation mechanism on the
reference scenario.

3.2.1 Reference scenario

Although there is a wide range of protocols, differing by the number of
principals (or actors), the number of messages, and the protocol’s goals (that
may often be expressed with a list of desired security properties), they all

1https://langium.org/
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share a common structure. Indeed, a communication protocol consists of a
sequence of messages between two or more principals. Each message may
be written by using the classical Alice&Bob notation in the form:

M1. A! B : message_payload

which specifies:

• The principals (or actors) exchanging messages (in general, symbols
A and B represent arbitrary principals, S a server). In particular, the
direction of the arrow specifies the sender and the receiver of the mes-
sage.

• The order in which messages are sent, and their specific payload.
In particular, M1 is a label identifying the message, whereas mes-
sage_payload specifies the actual content of the message.

In secure protocols, payloads can be partially or totally ciphered, either by
symmetric-key encryption (in this case, a key shared between actors is used
both to encrypt and decrypt), or by asymmetric-key encryption (here, KB
and KB

-1 is used to specify a public and private key of B, to encrypt and,
respectively, decrypt). Message payloads can contain other information,
such as nonces (N), timestamps (T), etc.

The security goals are often defined with respect to CIA (Confidentiality,
Integrity, Authentication) triad. The most common are confidentiality or in-
tegrity of message payloads, or entity authentication (i.e., the process by
which one entity is assured of the identity of a second entity that is particip-
ating in the same session of a protocol. Thus, they share the same values of
the protocol parameters, such as session keys, nonces, etc.).

Consider the classic Needham-Schroeder public-key protocol (NSPK, for
short) that will be used throughout the paper as a running example to intro-
duce the KANT notation.

M1. A! B : {A,NA}KB

M2. B! A : {NA,NB}KA

M3. A! B : {NB}KB

It was introduced in 1978 for mutual authentication (here, we omit the ex-
changes with the certification authority to get the public keys). It consists of
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three messages: in the first message, principal A sends to B a message con-
taining her identity, A, and a nonce, NA, to avoid replay attacks (i.e., reuse
of old messages, often called a challenge message), that only B can decrypt
with his private key. B’s answer (message M2) is ciphered with A’s public
key and contains nonce NA to authenticate B (he is the only one able to de-
crypt message M1 and obtain NA in clear), and a nonce NB to authenticate A
with B. Since message M2 is encrypted with A’s public key, she is the only
one who can decrypt it, thus if B receives message M3 containing nonce NB
encrypted with his public key, A is authenticated, too.

3.2.2 KANT Development

KANT (Knowledge ANalysis of Trace) is the domain-specific language we
explicitly designed and implemented in Langium for the specification of
security protocols. Using a tool to engineer a DSL offers several advant-
ages that can streamline the development process and enhance the utility of
the DSL, such as syntax highlighting autocompletion, and debugging sup-
port.

In particular, Langium represents an innovative tool in the context of lan-
guage engineering, enabling DSL development in a web-based technology
stack. When used in the context of a desktop app (e.g., VS Code, Eclipse
IDE, etc.), Langium runs on the Node.js platform. Additionally, it can run
in a web browser to add language support to web applications with embed-
ded text editors (e.g., Monaco Editor). The interface between Langium and
the text editor is the Language Server Protocol (LSP), allowing languages
based on Langium to seamlessly interact with a range of popular IDEs and
editors supporting LSP.

A grammar language is provided to specify the syntax and structure of the
language. The grammar rules describe the concrete syntax by instructing
the parser how to read input text, and also the abstract syntax in terms of
meta-classes and their properties. For a given text document, Langium cre-
ates a data structure called Abstract Syntax Tree (AST): every grammar
rule invocation leads to a corresponding node in the AST that is a JavaS-
cript object, and Langium generates a TypeScript interface for every rule to
provide static typing for these nodes. As programs written in the language
are parsed, Langium automatically generates Abstract Syntax Trees based
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on these interfaces, making efficient manipulation and analysis of the parsed
content possible. In particular, Langium allows to implement also custom
validation without the need to involve complex external tools, thus ensuring
that validation is defined alongside the grammar specification. It provides a
cutomizable Validation Registry mapping validation functions with specific
nodes in the AST, enabling targeted validation checks at relevant points in
the AST (e.g., either internal or leaf nodes). Designers only need to define
the validation functions encapsulating the desired checks on both the struc-
tural and semantic aspects of the language captured by the AST, and to up-
date the Validation Registry with the new functions. This approach is great
for rapid prototyping, when the focus is on designing the syntax of a new
language.

Beyond parsing, Langium extends its capabilities to establish connections
between different language elements, enabling cross-referencing and link-
ing. These relationships play an important role, and Langium is capable of
resolving them automatically thanks to built-in scoping and indexing.

Although Langium’s grammar declaration language is similar to Xtext, they
are built upon different open-source libraries and tools: Xtext is built upon
Eclipse and ANTLR, while Langium is built upon Visual Code and Chevro-
tain. Moreover, Xtext is heavily based on the Eclipse Modeling Framework,
whereas Langium uses TypeScript interfaces, enabling language engineer-
ing in TypeScript, the same technology that is used for VS Code extensions.
In contrast, building a tool that uses an Xtext-based language server with VS
Code or Theia means creating a hybrid technology stack with some parts
implemented in Java and others in TypeScript. Developing and maintaining
such a mixed code base is more demanding, and long-term maintenance is
likely more difficult than Langium’s coherent technology stack.

3.2.3 KANT Syntax

In this section, we present the abstract and concrete syntax of the KANT
language and show how it encompasses all the essential aspects of security
protocols. In particular, it integrates useful features that can be helpful for
the verification process and provide valuable insights for protocol correct-
ness at the design phase.
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The syntax includes constructs of the notations commonly used to express
security protocols (e.g., the Alice&Bob notation); however, it has been
extended with the concept of knowledge exchange between the parties in-
volved in the security protocol session to help reasoning and analysing the
flow of information during the communication.

KANT has been developed by exploiting the MDE approach for a DSL
definition, so its abstract syntax is given in terms of a metamodel from which
a concrete textual notation is derived. KANT’s meta-model (see Fig. 3.6)
defines six mandatory meta-classes and two optional ones are necessary to
specify a valid protocol model in KANT. The protocol must contain spe-
cific elements, including the definition of principals involved in the protocol
(such as Alice, Bob, and Server), the types used in the function definitions
and the definition of cryptographic functions and their inverse functions, the
knowledge that each principal has during the message exchange, and the
definition of the communication mechanism for messages exchange.

In addition to these mandatory model sections, two optional meta-classes
can be used to define shared knowledge between principals, and to help the
user writing, in a human-readable style, either properties or constraints on
the model elements, and security checks. These statements are arguments
for the validation and verification of the model.

Figure 3.6: Protocol Meta-model
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3.2.3.1 Principal Definition

A protocol model (instance of the meta-model) written in KANT starts with
the name declaration of the principals involved in the message exchange.
Two examples of declarations follow (the user is free to select the most
suitable name):

principal Alice
principal Alice, Bob, Server

3.2.3.2 Type and Function Definitions

We designed the language with static analysis in mind, so we included
types in it. The user can use built-in types that are declared in the lan-
guage prelude, but he/she can also define other types. An example of type
definition is the following:
type SymmetricKey, PublicKey, BitString, Group

where SymmetricKey and PublicKey are types of cryptographic keys used
for symmetric and asymmetric encryption, respectively; Bitstring is a
special type we call ‘sink type’ since a function that accepts a Bitstring
as a parameter can accept any other type; Group represents elements of an
Abelian group, i.e., a set of elements with commutative operations.

Types are used to categorize information in the principal’s knowledge and
allow the validation of the usage of a piece of information through the pro-
tocol. Moreover, since some input languages of the back-end tools are
typed, using types at the top level of the KANT model removes the need
for a conversion step.

The FunctionDef meta-class enables users to define custom functions in
agreement with the symbolic model [25] to describe both invertible and one-
way functions. A function is defined by a name, one or more parameters,
and one or more return values. Each function component requires an
identifier and a type, either pre-defined or custom-defined to suit the par-
ticular use case. Cryptographic functions, in addition, require the definition
of a key used to encrypt data (which are the function parameters).
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Figure 3.7: Function Definition Meta-model

The separation of the FunctionDef in the composing meta-classes
(FunctionParam, Functionkey and FunctionReturn, see Fig. 3.7)
enables us to define validation rules (see Section 3.2.4) that are specific to
each class and, in turn, helps to streamline the validation process.

Examples of function definitions are given below for the function ENC to en-
crypt data with a given key and the one-way cryptographic HASH function.
function ENC(content:BitString)

with k:SymmetricKey -> [ enc:Ciphertext ]

function HASH(value:BitString)
-> [ hash:Digest ] one way

3.2.3.3 Property Definition

Properties can be added to a model to express constraints on model ele-
ments (e.g., on functions and their parameters) or equivalence properties
(e.g., Diffie-Hellman exponentiation, as well as other equational theories).
For example, the following property states the identity function as the result
of applying description on encrypted data by using a symmetric key.
property forall x:BitString, k:SymmetricKey |

DEC(ENC(x) with k) with k -> [ x ]

An example of a property stating function equivalence is the following that
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guarantees the Diffie-Hellman equivalence between two private keys a and
b on a generator g in a finite cyclic group . 2

property forall a:PrivateKey, b:PrivateKey,
g:Group | DF(EXP(g,b),a)
equals DF(EXP(g,a),b)

3.2.3.4 Knowledge Definition

Figure 3.8: Knowledge Meta-model

KANT allows declaring the knowledge of the principals. There are two
ways to accomplish this: (i) at the beginning of the protocol model,
define the knowledge that is shared by selected principals in the ini-
tial state of the protocol run (by the construct share of the meta-class
SharedKnowledgeDef); (ii) define private principal’s knowledge at any
point of the protocol model, but before sending a message (by the con-
struct know in the meta-class PrincipalKnowledgeDef). In both cases
of knowledge definition, two qualifiers can be used to distinguish between
knowledge that is regenerated every time the protocol is executed (fresh

2According to the Diffie-Hellman key exchange protocol, the shared secret between two
parties is given by the formula K = (ga)b mod p = (gb)a mod p, being p a prime num-
ber and g a primitive root modulo p on which the two parties agree and that are public
values, a and b secret values chosen by Alice and Bob, respectively.
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knowledge at any protocol session), and knowledge that remains the same
(constant knowledge during a protocol session) – both qualifiers are
defined in the meta-class KnowledgeDefBuiltin on top of the meta-classes
SharedKnowledgeDef and PrincipalKnowledgeDef.

Private knowledge of a principal can include the specification of its own
Finite State Machine (FSM): principal’s initial state is specified as

state initial_state;

at the beginning of the protocol model; information on a reached state and
its enabled transition can be specified at any point of the protocol model
as:

state reached_state;
transition previous_state => reached_state;

Information relative to principal’s FSM is primarily used in verification, but
it is also useful in validation to analyze the knowledge flow of principals3.

Two examples of shared and private knowledge specification follow:
Bob,Alice share{

const key:SymmetricKey;}

Alice know{
state second_state_Alice;
transition first_state_Alice => second_state_Alice;
fresh priv_a:PrivateKey;
pub_a = PUB_GEN(priv_a);
enc_mess = ENC(m) with key;}

The knowledge block is used to specify what a principal knows at the ap-
plication of a given protocol rule. Fig. 3.8 shows the relation among the
meta-classes for knowledge representation.

Each information is identified by a reference priv_a of a given type
PrivateKey in priv_a:PrivateKey and can be constant or fresh (from
the meta-class KnowledgeDefBuiltIn). Additionally, information of meta-
class KnowledgeDefCustom is of the form ref= ... and can refer to
the result of a function application (e.g., puba=PUB_GEN(priva)), or it

3Since not a mature feature yet, KANT allows for drawing the FSM of each principal from
his/her knowledge block.
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can reference some saved information derived from the received messages
(e.g., dec_na = PKE_DEC(enc_na)) or built to be sent as a message (e.g.,
enc_na = PKE_ENC(na)) (see the reference scenario model, in the follow-
ing).

Particular importance is given to the two built-in functions that we have
defined to facilitate list management (and that we use to model our reference
scenario). The language prelude contains the basic types and functions:
CONCAT and SPLIT of the meta-class ListAccess; the former yields the
reference of a list concatenating a sequence of elements; the latter returns
the list of elements from a given list reference. The property that derives
from the two functions definition (see below) guarantees that concatenating
a sequence of elements into a referenced list and then sliting such referenced
list, holds the original list.
function CONCAT(...values: BitString)

-> [ value: BitString ]
function SPLIT(value: BitString)

-> [ values: BitString ]
property forall v: BitString |

SPLIT(CONCAT(...v)) -> [ v ]

3.2.3.5 Principals communication

A principal Alice builds within its knowledge a piece of information,
enc_mess, that it wants to send as a protocol message to one of the other
participants, Bob. To send the message, we exploit the concrete syntax of
the meta-class CommunicationDef:

Alice->Bob: enc_mess

3.2.3.6 Security Checks

KANT grammar allows the user to specify security properties, which are
verified once the model is transformed into a valid model for the back-end
verification tools. The validation rules introduced in Sect. 3.2.4 can guaran-
tee a lightweight form of static analysis of the information flow. Dynamic
analysis can be performed only by back-end verification tools.
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We provide three meta-classes, ConfidentialityCheck, EquivalenceCheck,
and AuthenticationCheck, to express different kinds of security checks.
The concrete syntax follows:

• ConfidentialityCheck: an information m must be known only by prin-
cipals Alice and Bob

only Alice,Bob should know m

• EquivalenceCheck: this is used to check whether two pieces of in-
formation are equal or not; this is relevant for a security protocol when
communication happens in an insecure channel and some information
can be stolen or altered during the protocol run.

g_ab, g_ba should be equal

• AuthenticationCheck: the nounce nb allows Alice to authenticate
principal Bob.

Alice should authenticate Bob with nb

3.2.3.7 KANT Model of the Reference Scenario

The following KANT model 4 is the specification of the NSPK security pro-
tocol described in Sect. 3.2.1: Alice and Bob have an associated FSM; they
do not share any knowledge; each principal has private keys, uses a public
key (generated from the corresponding private one) to encrypt messages,
decrypts messages by using its own private key, generates fresh nonces and
builds private knowledge according to the protocol rules.
principal Alice, Bob

Alice know {
state sending_puba;
const priva: PrivateKey;
puba = PUB_GEN(priva);}

Alice -> Bob : puba

Bob know {
state waiting_puba;

4All the KANT language artefacts (grammar, models, validation rules, etc) are available at
https://github.com/Aprover/KANT on GitHub.
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const privb: PrivateKey;
pubb = PUB_GEN(privb);}

Bob -> Alice : pubb

Alice know {
state waiting_pubb;
transition sending_puba=>waiting_pubb;
fresh na: Nonce;
enc_na = PKE_ENC(na) with pubb;}

Alice -> Bob : enc_na

Bob know {
state waiting_enc_na;
transition waiting_puba=>waiting_enc_na;
fresh nb: Nonce;
dec_na = PKE_DEC(enc_na) with privb;
nb_na = CONCAT(nb, dec_na);
enc_nb_na = PKE_ENC(nb_na) with puba;}

Bob -> Alice : enc_nb_na

Alice know {
state waiting_enc_na_nb;
transition waiting_pubb => waiting_enc_na_nb;
dec_na_nb = PKE_DEC(enc_nb_na) with priva;
rec_na_nb = SPLIT(dec_na_nb);
enc_nb = PKE_ENC(rec_na_nb[1]) with pubb;}

Alice -> Bob : enc_nb

Bob know {
state waiting_enc_nb;
transition waiting_enc_na=>waiting_enc_nb;
dec_nb = PKE_DEC(enc_nb) with privb;}

check nb, dec_nb should be equal
check Bob should authenticate Alice with nb

3.2.4 KANT Validation Rules

A model written in a DSL is an instance of the language meta-model.
Thanks to Langium, a model can be validated according to certain valid-
ation rules and constraints, covering both syntactic and semantic aspects.
These rules have to be defined at the meta-model level. Error and warning
messages can be reported upon model validation.

In KANT, the model validation phase helps the protocol designer to avoid
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common mistakes such as incorrect use of encryption keys or definition of
incorrect knowledge flows. Moreover, KANT grammar has some restric-
tions on the use of undeclared names of functions, types, and principals,
and these restrictions are captured by the use of cross-references in Langium
(see Sect. 3.2.2). Thus, it is possible to eliminate incorrect spelling of terms
during model writing and to suggest, by means of auto-completion, only
what is allowed.

Besides the advantages offered by the cross-reference mechanism in terms
of revealing mistakes and making suggestions, in order to improve KANT
model validation, we defined and implemented three sets of validation rules
whose violations result in errors or warnings. Rules for syntactic checks
(see Sect. 3.2.4.1) are used to reveal syntactic errors that must be corrected.
Rules for semantic checks (see Sect. 3.2.4.2) can reveal potential errors or
violations of security properties. Rules for prudent engineering practices
(see Sect. 3.2.4.3) work as guidelines for security protocol specification
following some of the principles outlined in [1]; they help to identify and
prevent common error patterns found in the literature, which might lead to
attacks. Especially for semantic and prudent practice rules, a warning serves
as a suggestion to improve the clarity of the model or to adopt good practices
in writing the protocol.

All validations are performed in real-time and are triggered by the user en-
tering new knowledge. In Section 3.2.4.1 we show an example taken from
the GUI of Visual Studio Code, subsequent error reports are shown in plain
text for better readability. We convey to mark incorrect elements by a red
underline and a warning by a yellow underline. We use fragments of the
KANT model of the NSPK protocol to show the application of the valida-
tion rules.

3.2.4.1 Syntactic Checks

Syntax Well-formedness This set of validation rules checks for the cor-
rect formatting of parentheses, comments, and delimiters when writing a
protocol in KANT. The example in Fig. 3.9 catches the error of a missing
semicolon, which is used to declare separate knowledge.
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Figure 3.9: Semicolon placement error

Knowledge declaration New knowledge must be either fresh, constant or
the result of a function. When declaring fresh or constant knowledge, the
type must also be specified.

Alice know {
state sending_puba;
const priva;
}

The error message specifies the expected token sequence:

Expecting: one of these possible token sequences:

1 [ID : [Type:ID]]

2 [ID : [Type:ID], ID : [Type:ID]]

but found: ’priva’.

Naming Convention The naming convention in KANT requires that prin-
cipals’ names start with capital letters, function names are capitalised, and
variables are lowercase.

principal alice , Bob

In this case, it is raised a warning since this is a stylistic convention and not
a real error:
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Principal name alice should start with a capital letter.

Keyword Usage Keywords can only be used in the way specified by the
syntax (similarly to other programming languages).

Bob know {
state state;}

This means it is impossible to use "state" as a name for a FSM state. The
error produced is:

Expecting token of type ’ID’ but found ’state’.

Functions Definition A function in KANT is declared as a name with
typed parameters and typed results. Invocations must follow the same struc-
ture as the definitions.
function PKE_ENC(content: BitString)

with k: PublicKey -> [pke_enc: Ciphertext]
Alice know {
...
fresh na: Nonce;
fresh nx: Nonce;
enc_na = PKE_ENC(na,nb) with pubb;}

The validator produces the following error because the declaration has only
one parameter:

"PKE_ENC" requires "1" argument, but "2" arguments are provided.

A similar error would be produced if the number of keys entered does not
correspond to the number of keys declared.

Unused Knowledge or Principal In order to increase the clarity of the
model, we warn the user of all principal and knowledge declarations that
remain unused in the writing of a protocol:

principal Alice, Bob, Server

Principal Server is declared but never used.
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Check Fields User-entered checks in the protocol may only target know-
ledge and principals, but not functions.

only Alice,Bob should know CONCAT(na,nb)

Knowledge check should target only knowledge references and list access.

3.2.4.2 Semantic Checks

Type Compatibility The types of parameters used in the function invoc-
ation are inferred and checked to be congruent with those of the declara-
tions.

Bob know {
...
dec_na = PKE_DEC(enc_na) with pubb;
...}

Incorrect key type: “PublicKey", the invoked function requires a key of type
“PrivateKey".

Knowledge Scoping The knowledge declared by a principal is only ac-
cessible by that principal or the ones it has shared it with. Furthermore, the
names of new knowledge must be unique across the entire protocol.

Bob -> Alice : nx

Principal “Bob" doesn’t know “nx".

Function Inversion Only functions that are not one-way can be inverted,
and a property must be specified for the inversion.
function PKE_ENC(content: BitString)

with k: PublicKey
-> [ pke_enc: Ciphertext ]one way

function PKE_DEC(pke_enc: Ciphertext)
with k: PrivateKey
-> [ content: BitString ]

property forall x: BitString, k: PrivateKey
| PKE_DEC(PKE_ENC(x) with PUB_GEN(k))

with k -> [ x ]
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PKE_ENC is a one-way function that cannot be inverted.

List Access It is possible to access a list by using only the names resulting
from the application of a SPLIT. The validation of the SPLIT requires it to
be used only on the results of a CONCAT:

Alice know {
...
dec_na_nb = PKE_DEC(enc_nb_na) with priva;
rec_na_nb = SPLIT(enc_nb_na);
...}

The “SPLIT" function is called on a parameter that is not the result of
“CONCAT".

3.2.4.3 Prudent engineering practices

We have implemented additional validation rules to complement the stand-
ard semantic and syntactic checks. These new rules are based on the prin-
ciples outlined in [1] and help identify and prevent common error patterns
found in the literature. By catching these errors early on, users are able to
correct them before the verification phase.

Same Key for Encryption and Authentication The usage of the same
key for symmetric encryption and signing can allow an attacker to use the
signing algorithm to decrypt messages, so it is crucial to use a different key
for each method. In this example, Alice uses the same key priva both for
decrypting the message enc_bit and to sign the plaintext dec_mess. This
causes a potential vulnerability when the signature is sent out.
Alice know {

fresh bit:BitString;
fresh priva:PrivateKey;
puba = PUB_GEN(priva);}

...
Alice know {

dec_mess = PKE_DEC(enc_bit) with priva;
sign_mess = SIGN(dec_mess) with priva;}
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Hash used as Encryption A message should not contain a signed hash
of a plaintext as it could have been generated by a third party and sent to
another principal. An instance of the problem can be shown in the example
below, which specifies the following message:

Alice! Bob : {X}Kb ,{HASH(X)}Ka
�1

where {X}Kb represents the asymmetric encryption of secret X (in plaintext)
using Bob’s public key Kb and {HASH(X)}Ka

�1 represents the signature of
the hash function applied to secret X using Alice’s private key.
Alice know {

enc_x = PKE_ENC(x) with pubb;
hash_x = HASH(x);
sign_hash_x = SIGN(hash_x) with priva;
mess = CONCAT(enc_x,sign_hash_x);}

Alice -> Bob: mess

Encrypt then Sign The authentication pattern encrypt then sign is vulner-
able to attacks: the attacker can remove the signature and replace it with its
own, claiming ownership of the message that the recipient receives. Thus,
this pattern is generally insecure and should be avoided. To ensure greater
security, it would be better to use the sign-then-encrypt method and add the
identity of the recipient to the signature. The example below shows a mes-
sage mess built by using asymmetric encryption with a public key pubb. The
resulting cyphertext enc_x is signed and concatenated to the encryption.
Alice know {

enc_x = PKE_ENC(x) with pubb;
sign_enc_x = SIGN(enc_x) with priva;
mess = CONCAT(enc_x,sign_enc_x)}

Alice -> Bob: mess

Add Recipient Identity to Signature According to [1], it is crucial never
to infer the principal’s identity from the content or the sender of a mes-
sage, as this can lead to impersonation attacks. To prevent such attacks, it
is essential to mention the identity of the receiver in the message’s signa-
ture. Additionally, although it can be deduced from the key used to sign
the message, the identity of the sender should also be included. In the ex-
ample below, Alice sends a message enc_sign encrypted with asymmetric
encryption and containing a signature sign_kab_ta that does not include
Bob’s identity.
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Alice know {
fresh kab:SymmetricKey;
fresh ta:Nonce;
kab_ta=CONCAT(kab,ta);
sign_kab_ta = SIGN(kab_ta) with priva;
enc_sign = PKE_ENC(sign_kab_ta) with pubb;}

Alice -> Bob: enc_sign

Avoid Double Encryption Double encryption, also known as cascading
encryption, is a practice that has fallen out of favor in modern cryptographic
security. While it may seem like a logical way to enhance data security,
it is often counterproductive. Double encryption introduces complexity,
consumes additional computational resources, and poses key management
challenges. Rather than enhancing security, it can lead to marginal improve-
ments while increasing the potential for implementation errors and vulner-
abilities. The following example uses double encryption. The first symmet-
ric encryption with key kab is applied on bit, and the result is encrypted
using public encryption with the key pubb.

Alice know {
fresh bit:BitString;
enc1 = ENC(bit) with kab;
enc2 = PKE_ENC(enc1) with pubb;}

3.2.5 KANT Effectiveness

In order to evaluate the ability of KANT language to capture the com-
mon concepts and primitives of security protocols, besides the NSPK pro-
tocol, we modelled classical security protocols such as SSL, Needham-
Schroeder, Needham-Schroeder-Lowe, Woo-lam, Yahalom, BAN-Yahalom,
Otway-Rees, Denning-Sacco, and other protocols are under development.
KANT’s models of all the case studies have been validated by using the set
of validation rules and, as expected, some warnings were raised on those
protocol aspects that might cause vulnerabilities – not surprisingly since the
rules on prudent engineering practice (see Sect. 3.2.4.3) were defined fol-
lowing the guidelines suggested in [1] as measures to prevent known attacks
against classical protocols.

Besides modelling constructs in common with other notations for security
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protocol description, KANT also has primitives to model the principal’s
knowledge and the FSM of its execution of a given protocol session. Such
concepts are relevant for protocol verification by back-end tools, and the
advantage of being already specified at the level of the KANT model fa-
cilitates the translation of these models into models suitable for verification
and allows better integration of such crucial activity into the development
process of robust protocols. Typically, verification is undertaken after the
protocol has already been released [19, 40, 60], and the effort of making
changes in the protocol is expensive. Our idea in developing KANT was to
facilitate the integration of verification early in the development process. In
this way, not only does one develop consistent documentation across iter-
ations, but also avoids the introduction of vulnerabilities when adding new
features or making changes to cryptographic primitives.

To assess the potentialities of KANT in modelling knowledge information
flow among parties, we selected the WPA3 Simultaneous Authentication
of Equals (SAE) protocol5, a password-based authentication and password-
authenticated key agreement method. The choice was due to the fact that this
protocol includes in its documentation an FSM of the protocol instances, and
it is one of the first protocols to expose this feature. In addition, it provides
advanced security features such as Forward Secrecy, Eavesdropping, and
Dictionary attack resilience.

The overall picture of the WPA3-SAE protocol execution is given in the of-
ficial documentation in terms of the FSM reported in Fig.3.10. The path in
green describes the transitions performed by each principal (and are cap-
tured by our model) involved in the protocol for getting authentication; the
other transitions are performed by other entities described in the WPA3 doc-
umentation, and we here abstract from them.

The crucial steps of the protocol message exchanges depicted in Fig. 3.11
are mainly two: (1) the commitment exchange, to move from state Com-
mitted to state Confirmed, where each party commits to a single password
guess; (2) the confirmation exchange, to move from state Confirmed to state
Accepted, which validates the correctness of the guess. The state Nothing
is the initial state where a principal is when it is created and immediately
moves to state Committed when starts the protocol exchange.

5802.11-2020 - IEEE Standard for Information Technology
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Figure 3.10: WPA3 SAE FSM

The main rules of the protocol are the following:

• A party can commit at any point during the exchange.

• Confirmation can only be done after a party and its peer have com-
mitted.

• Authentication is only accepted when a peer has successfully con-
firmed.

• The protocol ends successfully when each participating party has ac-
knowledged and accepted the authentication process.

The protocol uses modular arithmetic primitives to calculate numbers sA
and sB by summing:

sA = (a+A)mod q

sB = (b+B)mod q

where a, A, b, B are random numbers, and q is the (prime) order of the
group. Password Equivalent (PE) is a hashed value of the password that
Bob and Alice know and is raised to the power of �A for Alice and �B
for Bob. Once the commit messages have been exchanged, the two agents
calculate the value k as:

k = (PEsB ⇤PE�B)a = (PEsA ⇤PE�A)b = PEab (3.1)

The two principals compute KCK as the hash of the concatenation between
k and the sum modulo q of sA and sB. Finally, they hashed all received
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Figure 3.11: WPA3 SAE key exchange

information together with KCK and a counter called send-confirm (scA, scB)
to build the commit messages.

To model in KANT the above computations, we defined the following func-
tions:
function SCALAR_OP(r:Number,y:Group)->[z:Group]
function ELEMENT_OP(x:Group,y:Group)->[z:Group]
function INV_OP(h:Group)->[o:Group]
function SUM_MOD(r:Number,n:Number)->[t:Number]
property forall r:Number, t:Number, p:Group |

ELEMENT_OP(SCALAR_OP(SUM_MOD(r,t),p),
INV_OP(SCALAR_OP(t,p)))-> SCALAR_OP(r,p)

property forall x:Group, y:Group |
ELEMENT_OP(x,y) equals ELEMENT_OP(y,x)

property forall r:Number, t:Number |
SUM_MOD(r,t) equals SUM_MOD(t,r)

In both Finite Field Cryptography (FFC) and Elliptic curve cryptography
(ECC) groups, WAP3 SAE employs three arithmetic operators: the element
function ELEMENT_OP that produces a group from two groups, the scalar
function SCALAR_OP that generates a group from an integer and a group,
and the inverse function INV_OP that produces a group from a group. The
protocol uses modular arithmetic; we added the function SUM_MOD has been
added for this purpose (we omit the module as an argument since it is of
public domain and not relevant to the analysis). We then added various prop-
erties to address the commutativity of functions ELEMENT_OP and SUM_MOD,
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and a property that allows us to perform the mathematical simplification as
described in the Formula 3.1.

The model of the WPA3 protocol in KANT, upon checking syntactic and
semantic validation rules, is available at WPA3_SAE. This case study shows
the expressive potential of the language in modelling a protocol having very
high mathematical complexity. Moreover, thanks to the capability to express
the state-end transition in the knowledge of a principal, the model can reflect
the FSM structure in Fig. 3.10.

3.2.6 Related Work

Formal verification of security protocols has been a critical area of research
and development in computer security in the last twenty years. Many tech-
niques and tools have been proposed for verifying protocols. Depending
on the specific tool, either the protocol has been translated into the tool in-
put language or a new language has been defined to model the protocol. In
most of the cases, the language was not user-friendly, requiring expertise
in formal methods and protocol analysis. There are indeed some examples
of domain-specific languages that inspired us when deciding which features
needed to be included in the language, such as the knowledge notion, or
the state. For example, in the seminal paper [36] introducing one of the
first formalisms designed to reason about protocols, the authors recognise
the importance of making explicit the assumptions (called principal’s be-
liefs and assumptions) taken before the execution of the protocol, which we
expressed with the principal’s knowledge.

AVISPA (Automated Validation of Internet Security Protocols and Applic-
ations) [12] supports the editing of protocol specifications and allows the
user to select and configure the different back-ends of the tool, similar to our
long-term goal. The protocol is given in the High-Level Protocol Specifica-
tion Language HLPSL [57], an expressive, modular, role-based, formal lan-
guage, thus not really user-friendly; HLPSL specifications are then trans-
lated to the so-called Intermediate Format (IF), an even more mathematical-
based language at an accordingly lower abstraction level and is thus more
suitable for automated deduction.

Also, SAPIC+ [38] aims at exploiting the strengths of some of the tools that
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reached a high degree of maturity in the last decades, e.g., TAMARIN and
PROVERIF, offering a protocol verification platform that permits choosing
the tool. However, the input language is an applied p-calculus similar to
PROVERIF, thus it requires high expertise in equational theories and rewrite
systems.

In [55, 69], the authors define and give the semantics of AnB, a formal
protocol description language based on the classical Alice&Bob notation
we introduced in Sect. 3.2.1. However, part of the readability is lost in the
translation since a mathematical notation is used.

The work most related to ours is VERIFPAL [57], which uses a user-friendly
high-level language that allows users to model cryptographic protocols and
security properties rather intuitively. The tool uses symbolic analysis tech-
niques and can automatically generate formal verification code in the TAM-
ARIN prover’s input language, making it compatible with TAMARIN for
further in-depth analysis and verification. However, they provide only a text
editor with a syntax highlighter, whereas in our case, we do both syntax and
semantic checking.
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This chapter explores the analysis using various back-ends and proposes a
unifying proof methodology to achieve a multi-level verification framework.
It is structured into two main parts: In the first part, a verification approach
is presented, leveraging Abstract State Machines (ASMs) and their user-
friendliness to comprehensively capture the intricacies of a security protocol
across multiple levels. This approach extends from the communication to
the device level, offering a detailed examination of the protocol’s function-
ing. Notably, the effectiveness of this approach is demonstrated through
its application to the Z-Wave protocol, where its performance is rigorously
evaluated. The second part introduces a method for integrating verification
tools to enhance their capabilities and expressible details during the formal-
isation of a security protocol. This method harnesses the ASMETA frame-
work and PROVERIF, combining their functionalities to achieve a more
comprehensive analysis. The method’s efficacy is showcased through its
application to the well-known WPA3-SAE protocol, which successfully un-
covers vulnerabilities and provides valuable insights into protocol secur-
ity.

4.1 ASMETA Back-end

4.1.1 Overview

Connected IoT (Internet of Things) devices (e.g., alarms, door locks, lights,
sensors, etc.) are extensively used in many software applications to provide
users with smart services, which go from domotic home services (e.g., home
door opening, lights and heating control) to monitoring services (e.g., gas
and water monitoring) and managing services (e.g., appliances managing).
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These applications are security- and safety- critical, since installing vulner-
able or unsafe devices might have serious consequences in terms of user’s
privacy and safety [77].

Many alliances of corporations are adopting security procedures to pro-
tect the traffic generated by their protocols, and often costly patches are
required to protect against attacks exploiting previously unknown vulner-
abilities; however, the approaches adopted to meet security requirements
have often been proven to be insufficient [81], and many connected devices
do not use standardised communication protocols with a provable security
guarantee.

For this reason, the Security By Design approach [63] is increasingly adop-
ted as a development process where security assurance has to be guaranteed
“a priori", already at the design phase, instead that “a posteriori", at opera-
tion time. The security-by-design paradigm aims at identifying, as early as
possible, potential security threats and vulnerabilities and designing secure
components and interfaces since the beginning of the software development
life cycle. Therefore, security-by-design approaches require adopting soft-
ware security assurance processes at design time, reasoning on an abstract
model representation, which allows for validation and verification of the
security solutions in a rigorous and provable way.

Model-based security assurance is strictly interconnected with protocol veri-
fication, which has been very active in the last thirty years. It reached a fairly
mature state. However, most of the tools are not widely adopted by practi-
tioners as one would expect, mainly due to the complexity of the notations
and the lack of skills in verification techniques [42]. In order to reduce the
gap between designers’ backgrounds and practical usage of formal methods
in security protocol design, our long-term research goal is the development
of a user-friendly but rigorous design approach based on the use of formal
methods and allowing security assurance at the model level. In our case,
we exploit the symbolic model approach [25]. This paper is an extension
of [60] and a step forward in this direction.

Starting from a preliminary work [35], where we introduced a minimal set
of templates to formalise, in the Abstract State Machine formal method [30,
31], common behavioural patterns in security protocols to facilitate the pro-
tocol formal verification, here we provide a more complete set of specifica-
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tion primitives and develop a more concise, but complete and better scalable
model of the Z-Wave protocol. We use this model to validate and verify the
protocol security requirements by instantiating a set of property schemas
reflecting the common confidentiality, integrity and authentication protocol
properties.

Among the numerous IoT security protocols, the Z-Wave protocol [87], de-
signed primarily for home automation, is claimed to be one of the most
secure protocols for IoT device communication. It became publicly avail-
able only in 2016 (this is the reason why it has not been so widely analysed),
and then it was updated with a new security layer (S2 Security), overcom-
ing the shortcomings of the previous S0 security layer, which was found
vulnerable [46]. Before the results in [60], which revealed a feasible Man-
In-The-Middle (MITM) attack confirmed by Silicon Labs and Z-Wave Al-
liance, the protocol lacked a rigorous approach to verification. This work
completes and improves the protocol analysis.

We can summarise the contribution of the paper as follows:

• We provide a library of primitives useful to model communica-
tion protocols: functions and domains to model protocol principals,
their knowledge, protocol messages and their communication, cryp-
tographic functions, etc.

• We define a set of schema for temporal logic formulas that specify
common security goals of cryptographic protocols to be instantiated
according to the specific protocol information to verify confidential-
ity, integrity and authentication properties.

• We give a rigorous description of the Z-Wave joining procedure using
the most updated specification of the S2 Security class and exploiting
the library of primitives.

• We perform scenario-based validation to check our model against
the protocol requirements and to better understand the vulnerability
trace retrieved. Validation is performed in the presence of passive and
active attacker models.

• We provide an exhaustive verification of the protocol security goals
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obtained through the evaluation of confidentiality, integrity, authen-
tication properties and other protocol-specific properties.

• The QR code-based security solution designed by Z-Alliance to pre-
vent MITM vulnerability exploitation is modelled and analysed.

The rest of the section is organised as follows. Section 4.1.2 introduces the
Z-Wave protocol. Section 4.1.3 presents, in a concise way, the theory behind
the ASM formal method and the ASMETA framework with its analysis ap-
proaches. Section 4.1.4 introduces the modelling primitives for specifying
the protocol and the security properties to be verified. Section 4.1.5 presents
the ASM models of the protocol, their extension with the attacker models
and the solution of the QR code. We report only some excerpts of the avail-
able models online1. Section 4.1.9 presents the validation and verification
processes of the model of the Z-Wave protocol; we discuss the results in
the two possible scenarios, with passive and active attackers. Section 4.1.10
discusses some threats to the validity of our approach, while Section 4.1.11
briefly reviews existing results on formal methods in the context of IoT se-
curity protocols.

4.1.2 Running case study: the Z-Wave IoT protocol

Z-Wave is a wireless radio frequency based communication protocol and
uses a proprietary protocol stack [86]. A Z-Wave network is a mesh network
with nodes communicating via low-energy radio waves having frequencies
from 865 to 926 MHz. Nodes can be either controllers or slaves: control-
lers are in charge of adding and removing nodes from the network, as well
as maintaining the routing table for the entire system, whereas slaves are the
actual “smart" components of the network. Nodes within range of the con-
troller can interact directly, while remote nodes must rely on intermediary
nodes for retransmission. In Fig. 4.1, controller coverage is shown with a
grey ellipse, and slave coverage using empty ellipses.

Since the protocol was designed primarily for home automation, slave nodes
can be residential appliances or other devices, such as lighting controllers,
thermostats, security systems, windows, locks and garage door openers.

1All models are available at: https://github.com/mariolilliresearch/Aprover.
git.
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Figure 4.1: Z-wave network
topology

Security Feature Technique

Confidentiality
Authentication

AES CCM mode
128 bit key

Integrity AES CMAC mode
128 bit key

Freshness

Pre-Agreed
Nonces (PAN)

Multicast Pre-Agreed
Nonces (MPAN)

Figure 4.2: Security features of
Z-Wave protocol

In order to minimise battery usage, nodes are either active or in sleeping
mode. Obviously, only active nodes can relay a message.

Since the beginning, Z-Wave was designed to guarantee secure interactions
among devices, thus all messages are sent encrypted. However, [46] found
a vulnerability in the Z-Wave first-generation security framework (S0 Se-
curity) that has been dismissed, although many devices still have backward
compatibility. The second-generation security framework (S2 Security) was
released in 2016, offering significant improvements over S0. The new secur-
ity layer uses a combination of symmetric encryption and message authen-
tication code (MAC) to guarantee integrity, confidentiality, authentication,
and data freshness during communication (refer to Tab. 4.2 for the specific
techniques).

In addition, the S2 security framework provides four security classes (S0,
S2-AccessControl, S2-Authenticated and S2-Unauthenticated) that are used
to group devices and segment the network. Door locks, garage door openers,
and controllers are assigned to the S2-AccessControl class, while the major-
ity of end devices, including window blind motors, switchers, other sensors
and secondary controllers, belong to the S2-Authenticated class. In order
for a new device to join the network, the controller and the new device must
first agree on the subset of security classes that the controller is capable of
handling. The controller then transmits a key for each security class it has
been granted. In this way, a Z-Wave network is segmented by grouping
nodes into security classes that communicate securely using the same AES
128-bit key. The improved security is clear: access control devices are only
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Figure 4.3: Z-Wave joining procedure

accessible by controllers that need to control them and not by any device
in the network. Moreover, when one of the granted keys is compromised,
the network is protected by the segmentation of the security class, which
reduces the number of devices using the compromised key.

The joining procedure, occurring when a new device joins the network and
negotiates the AES-128 symmetric key to be used for all communications,
is the core of S2 security layer. The procedure consists of two phases (see
Fig. 4.3): during the first phase, the two participants agree on a temporary
AES key; in the second phase, the temporary key is used to encrypt the
symmetric key granted to the new joining device. As a result, key estab-
lishment is dependent on the secrecy of the temporary key Kt: if the key is
compromised, all of the symmetric keys exchanged in the second phase of
the protocol are compromised. Therefore, in our formal analysis of Z-Wave
protocol, we discuss and analyse only the messages exchanged between the
controller A and the new slave device B during the protocol’s first phase,
which consists of three steps:

1. First step: the new device reveals its device type via a Node In-
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formation Frame (NIF). Then, controller A and slave B negotiate and
agree on which security classes to share, by exchanging KEX Get, KEX
Report, and KEX Set messages.

2. Second step: the two participants exchange their public keys to gen-
erate the temporary encryption key Kt by using Elliptic Curve Diffie-
Hellman (ECDH) on Curve25519 with a 256-bit public key length.

ECDH is a key agreement mechanism that allows two parties, A
and B, owning an elliptic-curve public-private key pair, to estab-
lish a shared secret over an unsecured channel. A computes the
shared secret using her/his private key and B’s public key, whereas
B computes the shared secret using B’s private key and A’s public
key. Unless an attacker can solve the elliptic curve discrete logarithm
problem, only A or B are able to compute the shared secret. Since
ECDH is vulnerable to man-in-the-middle attacks, Z-Wave Alliance
developed [88] two Out-Of-Band (OOB) authentication methods to
prevent eavesdropping and MITM attack vectors. To continue the
joining procedure, the user can choose one of two options:

i) Enter as a PIN the first five digits of the Device Specific Key (DSK)
printed on the device and obfuscated during the RF transmission, and
visually validate the bytes 3 to 16 of B’s DSK; ii) Scan a QR code
to verify the full DSK (p. 93, requirement CC:009..01.00.11.05F in
[88])2.

3. Third step: A and B perform a challenge-response protocol based on
a nonce that enables them to verify that they are both able to encrypt
using Kt. In order to prevent message manipulation, they send KEX
Get and KEX Report messages again.

The protocol then enters a loop in which an AES key is assigned to each
granted class. It should be noticed that several protocol sub-phases are
timed. Thus, if a message is delayed, the slave or controller will exit the
joining procedure. The vertical double-edge arrows in Fig. 4.3 show what
messages must arrive before a specific timer expires; the timer name is in-

2In the last release of the protocol, Z-Wave Alliance updated the authentication process of
the joining procedure by selecting the QR code as default user’s choice, while previously
the PIN was the default one and it is still supported for retro-compatibility. Sect. 4.1.8
provides more details.
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dicated as a label of the arrow (e.g., timer TA1 requires that message KEX
Report takes no more than 10 seconds to arrive).

Consider as an example a smart thermostat with native S2 Security trying
to join the network. In a typical protocol execution, the thermostat (node B)
requests the symmetric keys associated to three security classes (S2 Authen-
ticated, S2 Unauthenticated, and S0). In order to increase network security,
if the network consists exclusively of native S2 Security devices, the user
may disable class S0 Security in the controller (node A). In case the KEX
Report message delivered from B to A has been tampered with, the control-
ler gets only requests with the S0 Security class. Therefore, the intersection
between the requested and granted security classes is empty, and the error
message KEX FAIL KEX KEY is generated. This behaviour complies with a
security requirement given in the protocol specification.

4.1.3 Abstract State Machines in a Nutshell

Abstract State Machines (ASMs) [31, 30] is the formalism that we use for
modelling the Z-Wave protocol.

ASMs are a state-based formal method that extends Finite State Machines
(FSMs) by replacing unstructured control states with algebraic structures
(i.e., domains of objects with functions defined on them). State transitions
are performed by firing transition rules. At each computation step, all trans-
ition rules are executed in parallel by leading to simultaneous (consistent)
updates of a number of locations – i.e., memory units defined as pairs
(function-name, list-of-parameter-values)–, and therefore changing func-
tions interpretation from one state to the next one. Location updates are
given as assignments of the form loc := v, where loc is a location and v its
new value. Among other rule constructors, those used for our purposes are
constructors for guarded updates (if-then, switch-case), parallel updates
(par),

nondeterministic updates (choose).

Functions which are not updated by rule transitions are static. Those up-
dated are dynamic, and distinguished in monitored (read by the machine
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and modified by the environment), controlled (read and written by the ma-
chine).

An ASM model has a predefined structure consisting of: a signature, which
contains declarations of domains and functions; a block of definitions of
static domains and functions, transition rules, state invariants and properties
to verify; a main rule, which is the starting point of a machine computation;
a set of initial states, one of which is elected as default and defines an initial
value for the (controlled) machine locations.

An ASM computation (or run) is defined as a finite or infinite sequence
S0,S1, . . . ,Sn, . . . of states of the machine, where S0 is an initial state and
each Sn+1 is obtained from Sn by firing the unique main rule which in turn
could fire other transitions rules.

ASMs allow modelling different computational paradigms from a single
agent executing an ASM, to distributed multiple agents, which is the com-
putational paradigm we used in our Z-Wave model. A multi-agent ASM
is a family of pairs (a,ASM(a)), where each a of a predefined set Agent
executes its own machine ASM(a) (specifying the agent’s behaviour), and
contributes to determining the next state by interacting synchronously or
asynchronously with the other agents. A predefined function program on
Agent is used to associate the ASM with an agent.

Since agents of the same kind (e.g., agents representing Z-Wave protocol
slaves) have the same behaviour, within transition rules, each agent can
identify itself by means of a special 0-ary function self : Agent which is
interpreted by each agent a as itself.

Code 4.1 shows an excerpt of the multi-agent ASM model for the Z-Wave
joining procedure between two nodes (A and B), working as controller and
slave, respectively. r_controllerRule[] on line 25 is the ASM program
associated to an agent of type Controller, while r_slaveRule[] on line 27
is that of an agent of type Slave; nodeA and nodeB are instantiated as the
corresponding type of agents.

An ASM agent can behave according to a control-state ASM [31]: transition
rules are guarded by a mode function (as, for example, a function state),
which is updated in the rule body and whose values resemble the states of a
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asm ZWave_join_MITM

signature:
domain Slave subsetof Agent
domain Controller subsetof Agent
domain Intruder subsetof Agent
.....
static nodeA: Controller
static nodeB: Slave
static nodeE: Intruder
....

definitions:
main rule r_Main =
par

program(nodeA)
program(nodeB)
program(nodeE)

endpar
default init s0:
function slaveState (a in Agent) = if (a = nodeB) then INIT_SLV endif
function controllerState (c in Agent) = if (c = nodeA)

then INIT_CTRL endif
...

agent Controller:
r_controllerRule[]

agent Slave:
r_slaveRule[]

agent Intruder:
r_mitmRule[]

Code 4.1: Excerpt of the ASM model of the Z-Wave protocol

Finite State Machine. This machine model has been used for specifying the
agent’s behaviour (i.e., the actor’s actions).

Tools and Validation & Verification Techniques The ASM formal
method is supported by the tool-set ASMETA (ASM mETAmodeling) [8]
for model editing (with ASMETAL notation), validation and verification.
Model construction, especially when taking the system requirements from
natural language, can often be error-prone. For this reason, it is essential
to be able to validate a model against its functional and non-functional re-
quirements. ASM models can be validated in terms of model simulation (by
using ASMETAS), animation (by ASMETAA), and scenarios execution (by
ASMETAV). In the latter case, each scenario contains a description of the
expected system behaviour and the tool checks whether the machine runs
correctly. It is also possible to verify properties expressed in temporal logic
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by means of model checking (with ASMETASMV, which maps ASMETAL
models to the model checker NUSMV): the tool will check if the property
holds during all possible model executions.

Remark. ASMs offer several advantages as formal methods: (1) due to their
pseudo-code format, they can be easily understood by practitioners and can
be used for high-level programming; (2) they allow for system specification
at any desired level of abstraction; (3) they are executable models, so they
are also suitable for lighter forms of model analysis, such as simple simula-
tion to check model consistency w.r.t. system requirements; (4) they support
techniques for mapping models to code (e.g., to C++ [29], or Java [7]); (5)
they can be used for modeling distributed systems, such as IoT networks;
(6) the ASMETA framework allows for an integrated usage of tools for dif-
ferent forms of model analysis; it is well-maintained and under continuous
feature improvement.

4.1.4 An ASM-based formal framework for security protocol
analysis

This section introduces the fundamentals for formalising the protocol (Sect.
4.1.4.1) and the security properties to be verified (Sect. 4.1.4.2).

4.1.4.1 ASMs Modeling of Cryptographic Protocols

Security protocols share a common structure: they consist of a sequence
of encrypted messages (or messages containing encrypted parts) exchanged
between two or more principals (or actors) to establish a secure communic-
ation.

To facilitate ASM modelling of security protocols, starting from the work
in [35], we defined a set of primitives corresponding to the typical parts of a
protocol in terms of ASM functions and domains in the ASMETAL notation.
They are contained in a predefined library called CryptoLibrary that can
be imported into any ASM model of a specific protocol and contains a sym-
bolic notation to specify actors, the protocol messages and their exchange,
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and the main cryptographic primitives. In the following, CryptoLibrary is
described by using snippets of code derived from the Z-Wave case study.

Actors or Principals. The library supports four main types of actors, de-
pending on the role of the actor in the protocol: Initiator, the actor
starting the protocol; Receiver, the other actor of the protocol that
replies to the messages received from the initiator; Intruder, a prin-
cipal working as a potential attacker; Server, a trusted actor often
used with the role of key distributor. They are all ASM agents.

The following excerpt defines the Z-Wave three types of agents and
their corresponding nodes. Since no Server is used in the running
example, we omit it.
domain Initiator subsetof Agent
domain Receiver subsetof Agent
domain Intruder subsetof Agent

static nodeA: Initiator
static nodeB: Receiver
static nodeE: Intruder

The intruder role is introduced in order to verify the correctness of the
protocol in case of attacks. It is a malicious external actor controlling
the traffic (in accordance with Dolev-Yao model [43]), which can op-
erate in passive mode, i.e., as an eavesdropper, or in active mode.
Also, a legitimate actor of the protocol can have malicious behaviour.
This operation mode is not used in the verification of Z-Wave, but
examples of use can be found in [35].

Messages. Each protocol message is uniquely identified by a label. Iden-
tifiers are contained in the domain Message and are protocol-
specific (e.g., for the Z-Wave protocol, Message contains labels
KEX_GET, KEX_REPORT, KEX_SET, etc., identifying the first messages
exchanged).

Communication is handled using the function protocolMessage that
associates the label of the message to the pair of principals (sender,
receiver) exchanging it3.
enum domain Message ={KEX_GET | KEX_REPORT | KEX_SET | ... }
controlled protocolMessage: Prod(Agent,Agent)−> Message

3Prod is the predefined operator for the Cartesian product of sets.
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(a) Field structure (b) Field structure
of the message
PUB_KEY_REP_JOIN

Figure 4.4: Message structure

Knowledge. The message payload is modelled by reflecting the structure
depicted in Fig. 4.4a, namely a sequence of “pieces" of informa-
tion known by actors, called knowledge, each contained into a field
identified by an integer specifying its position within the message.4

Fig. 4.4b shows an example of the message structure instantiation of
PUB_KEY_REP_JOIN. The payload of the message contains a single
field with the obfuscated public key of the slave.

The macro domain Knowledge is partitioned into sub-domains to
group the knowledge depending on the type of information. For ex-
ample, the domain KnowledgeAsymPrivKey identifies private keys
and KnowledgeBitstring generic binary data. Depending on the
protocol, the number of Knowledge’s sub-domains can be eas-
ily extended to describe more complex case studies. For ex-
ample, a protocol using the signature would need a sub-domain
KnowledgePubSignKey of Knowledge to store the signature public-
keys.

The function messageField specifies the content of a specific field
of the message. The domain FieldPosition is a set of integers used
to enumerate the position of the content in a message. The listing
below reports part of the declaration of domains and functions used
for modelling the Z-Wave protocol. The naming convention used for
expressing asymmetric key pairs is KPUB_ACTOR and KPRIV_ACTOR,
where ACTOR should be replaced by the actor’s name.
enum domain Knowledge = {CSA_0| CSA_1 | SKEX_0 | SKEX_1 |ECDH_0| ECDH_1

| ACCESS_S2_0 | ACCESS_S2_1 |AUTH_S2_0 |AUTH_S2_1| UNAUTH_S2_0
| UNAUTH_S2_1 | S0_0 | S0_1

//Asymmetric Public Key

4The message structure presented here improves that in [35] to better scale with protocols
complexity.
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| KPUB_SLV | KPUB_CTRL | KPUB_MITM_CTRL | KPUB_MITM_SLV
| OB_KEY_MITM_CTRL | OB_KEY_MITM_SLV | OB_KEY_SLV | OB_KEY_CTRL
| KPUB_ERR

//Asymmetric Private Key
| KPRIV_CTRL | KPRIV_SLV | KPRIV_MITM_CTRL | KPRIV_MITM_SLV
//Symmetric Public Key
| KT1 | KT2 | KT3 | KT_ERROR
//Pin used to complete obfuscated keys
| PIN_OK | PIN_ERROR}

domain KnowledgeBitString subsetof Any
domain KnowledgeSymKey subsetof Any
domain KnowledgeAsymPrivKey subsetof Any
domain KnowledgeAsymPubKey subsetof Any
domain FieldPosition subsetof Integer
controlled messageField: Prod(Agent,Agent,FieldPosition,Message)−>Knowledge

In general, protocol’s actors have some knowledge before starting the
protocol run (e.g., the public key of the receiver, a long-term shared
key, a nonce, etc.). Then, they increase their knowledge during the ex-
ecution of the protocol, by means of the exchanged messages. Agent’s
dynamic knowledge is modeled by controlled functions that store the
information known by an agent, grouped by knowledge type.
controlled knowsBitString:Prod(Agent,KnowledgeBitString)−>Boolean
controlled knowsSymKey:Prod(Agent,KnowledgeSymKey)−>Boolean
controlled knowsAsymPubKey:Prod(Agent,KnowledgeAsymPubKey)−>Boolean
controlled knowsAsymPrivKey:Prod(Agent,KnowledgeAsymPrivKey)−>Boolean

Symmetric encryption primitives. CryptoLibrary contains encryption
and decryption built-in primitives working with symmetric and asym-
metric keys. Here, we present only the ones based on symmetric keys
since they are relevant for the Z-Wave case study. The asymmetric
ones behave similarly.

Encryption primitives can be applied to the full message payload or
part of it. They can also be nested, i.e., applied to already encrypted
data. To model these two features, two domains are defined: Level,
an integer value specifying the nesting level (1 meaning no nesting),
and EncField1 and EncField2 that specify the indexes delimiting
the contiguous fields to which encryption is applied.

The function symEnc stores the encryption key used to encrypt (part
of) a message, the nesting Level and the indexes of the encrypted
fields. The decryption function symDec works similarly. It only adds
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Figure 4.5: Example of the internal state of the controller

the Agent parameter to check if the agent performing the decryption
knows the correct key, i.e., the key used to encrypt the message5.
domain Level subsetof Integer
domain EncField1 subsetof Integer
domain EncField2 subsetof Integer

controlled symEnc: Prod(Message,Level,EncField1,EncField2)−> KnowledgeSymKey
static symDec: Prod(Message,Level,EncField1,EncField2,Agent)−> Boolean

function symDec($m in Message,$l in Level,$f1 in EncField1,$f2 in EncField2,$d in Agent)=
if (knowsSymKey($d,symEnc($m,$l,$f1,$f2))=true) then

true
else

false
endif

Actor’s Actions. In a communication protocol, principals exchange mes-
sages iteratively according to the definition of the protocol. We model
honest actors’ behaviour as ASM control-state machines: each time
an agent receives a new message, the content/knowledge in the mes-
sage triggers an internal state change and possibly, if foreseen by
the protocol, the sending of a new message. Fig. 4.5 shows the
state machine for the Z-Wave controller. Blue horizontal arrows
pointing to the right denote a message sent by the controller (act-
ing as an honest participant). The red arrow pointing to the left rep-
resents a response by the intruder. The labels on top identify the

5Note that in the AsmetaL notation, a variable x is denoted by $x.
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names of the messages. Yellow vertical arrows model the internal
state change. Initiator’s states are defined in the StateInit do-
main, Receiver’s states in the StateRec domain. The functions
initiatorState and receiverState store the current state of the
initiator and of the receiver, respectively.

For readability, in the Z-Wave model, since the controller is the pro-
tocol initiator and the slave works as the receiver, we renamed all
domains and functions referring to initiator/receiver in terms of
controller/slave to better customize the model signature.
enum domain StateInit = {INIT_CTRL | ADD_MODE | WAIT_EVAL_CSA

| WAIT_EVAL_KEX_CURVE | WAIT_EVAL_KEX_SCHEME | WAIT_EVAL_KEX_KEY
| WAIT_EVAL_USER_KEY | WAIT_NONCE | INSERT_PIN | WAIT_PIN_OR_KEY
| WAIT_ECDH_PUB_JOIN | WAIT_KEX_REP | WAIT_SEI_KEX_SET_ECHO
| WAIT_CTRL_AES| OK_C | ERROR_C | TIMEOUT_C}

enum domain StateRec = {INIT_SLV | LEARN_MODE | WAIT_KEX_SET
| WAIT_EVAL_SET_KEX_KEY | WAIT_EVAL_SET_KEX_SCHEME
| WAIT_EVAL_SET_KEX_CURVE | WAIT_EVAL_SET_CSA | WAIT_ECDH_PUB_CTRL
| INSERT_PIN_CSA| WAIT_NONCE_REP_REI | WAIT_KEX_REPORT_ECHO
| OK_S | ERROR_S | TIMEOUT_S}

controlled controllerState: Initiator −> StateInit
controlled slaveState: Receiver −> StateRec

The program of an honest agent’s consists of a number of protocol-
dependent rules, each modeling the agent’s internal computation upon
receiving a message, its message sending and state change. The in-
truder’s program has two different set of rules, depending on his/her
operation mode (i.e., active or passive) and on the messages he/she
intercepts.

Agents communicate with each other through messages. During a
protocol run between two honest principals, the communication is dir-
ect. In case of an untrusted channel, the communication is intercepted
by the intruder that can only understand the information that he/she
can decrypt using the knowledge in his/her possession. Therefore,
the communication between the two honest actors can be thought as
the communication between Initiator and Intruder, and between
Intruder and Receiver.
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rule r_controllerRule =
par

r_initEnvCtrl[]
r_kexGet[]
r_timeoutTa1[]
r_timeoutTia1[]
r_evalKexReport[]
r_timeoutTa2[]
r_kexSet[]
r_timeoutTia2[]
r_insertPin[]
r_nonceReport[]
r_evalkexSetEcho[]
r_failCatchCtrl[]

endpar

rule r_slaveRule =
par

r_initEnvSlv[]
r_timeoutTb1[]
r_kexReport[]
r_timeoutTb2[]
r_evalKexSet[]
r_timeoutTb3[]
r_sendSlvPubKey[]
r_timeoutTib1[]
r_insertPinCsa[]
r_SPANestablishment[]
r_evalkexReportEcho[]
r_failCatchSlave[]

endpar

rule r_mitmRule =
if (mode=ACTIVE) then

par
r_kexGetReplay[]
r_kexReportCraft[]
r_kexSetCraft[]
r_saveKexSet[]
r_sendEslvKey[]
r_sendEctrlKey[]
r_nonceGetCraft[]
r_nonceReportCraft[]
r_bruteForce[]
r_SPANCraft[]
r_kexReportEchoCraft[]

endpar
else

par
r_kexGetReplay[]
r_kexReportReplay[]
r_kexSetReplay[]
r_sendSlvPubKeyReplay[]
r_sendCtrlPubKeyReplay[]
r_nonceGetReplay[]
r_nonceReportReplay[]
r_SPANReplay[]
r_kexReportEchoReplay[]

endpar
endif

Figure 4.6: ASM models of actors’ programs

Fig. 4.6 shows the program of the Z-Wave agents modelling the con-
troller, the slave and the intruder.

Diffie-Hellman key exchange primitives. CryptoLibrary also provides a
number of security primitives that are often exploited in security pro-
tocols.

The listing in Code 4.2 reports, in a symbolic way, the Diffie Hellman
key exchange procedure specification. The function diffieHellman
captures the high-level concept behind the key exchange. A principal
who has received an asymmetric public key combines it with his/her
asymmetric private key to obtain a symmetric key, which becomes the
shared key between the two principals participating in the exchange.
Also, an intruder has access to this primitive and may use it for ma-
licious actions. Indeed, the capability of the intruder to generate a
shared key allows testing whether or not a protocol is vulnerable to
the known Diffie Hellman key exchange weakness (e.g., MITM at-
tack).
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static diffieHellman:Prod(KnowledgeAsymPubKey,KnowledgeAsymPrivKey)−>KnowledgeSymKey

function diffieHellman($pub in KnowledgeAsymPubKey,$priv in KnowledgeAsymPrivKey)=
if (($pub = KPUB_MITM_SLV and $priv = KPRIV_CTRL)
or ($pub = KPUB_CTRL and $priv = KPRIV_MITM_SLV)) then

KT1
else

if (($pub = KPUB_SLV and $priv = KPRIV_MITM_CTRL)
or ($pub = KPUB_MITM_CTRL and $priv = KPRIV_SLV)) then
KT2

else
if (($pub = KPUB_SLV and $priv = KPRIV_CTRL)
or ($pub = KPUB_CTRL and $priv = KPRIV_SLV)) then
KT3

else
KT_ERROR

endif
endif

endif

Code 4.2: Specification of Diffie-Hellman key exchange procedure

The diffieHellman specification reported below is customized for
the type of keys exchanged by the principals during the Z-Wave pro-
tocol execution.

4.1.4.2 Modeling of security properties

In order to verify the protocol’s security goals by means of the NuSMV model
checker, we defined the schema of the CTL formulas corresponding to the
verification of confidentiality, integrity and authentication security proper-
ties. They are parameterised with respect to the knowledge function (e.g.,
knowsSymKey, knowsAsymPrivKey, etc.) denoted with fK , and x, the piece
of information that must be secured. Parameters need to be replaced with
the specific values of the protocol under verification.

Confidentiality. In security protocols, encryption is used to guarantee data
confidentiality: only actors with correct decryption keys are able to
access encrypted data.

This property can be modelled by the following CTL formula:

¬EF( fk(Intruder, x))
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expressing the condition that confidentiality of x is assured if there is
not a state in the future in which Intruder knows x.

Field Integrity. This property requires that a piece of information ex-
changed between the legitimate actors is not altered by an intruder
during a protocol session, i.e., the received payload must correspond
to the sent one.

Let m be a message. Field integrity of m is assured by proving that
there is not a state in the future in which an Intruder altered a field
in position n of message m:

¬EF( messageField(Initiator,Intruder,n,m)

!=messageField(Intruder,Receiver,n,m))

Entity Authentication. A principal proves his/her identity by demonstrat-
ing to know a secret (not necessarily shared) without explicitly reveal-
ing it.

Let x be a secret that must be shared by the two actors at the end of the
protocol execution. Authentication of entities is assured by proving
that if there is a state in the future in which Initiator and Receiver
know x, then Intruder will never know x.

EF( fk(Receiver,x) and fk(Initiator,x))!

AG( ¬(fk(Intruder,x)))

Similar patterns can be used to guarantee further properties. For example,
it is possible to express message authentication (also called data origin
authentication and not used in our case study) as follows.

Data Origin Authentication. This property specifies that a message has not
been modified while in transit and that the receiving party can verify
the source of the message. This is commonly obtained by means
of the usage of cryptographic primitives (either MAC or signature),
therefore it is enforced when the message (or part of it) has been en-
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crypted/signed with a key that is known only by the originator, the
only one able to modify it.

Let x be a key known by an honest actor at a given moment of the
protocol execution. Authentication of data x is assured by proving
that if there is a state in the future in which Initiator knows x, then
Intruder will never know x.

EF( fk(Initiator,x))! AG( ¬(fk(Intruder,x)))

4.1.5 Z-Wave Formal Model

In the following, we exploit the CryptoLibrary described in the previous
section to give the full ASM specification of the Z-Wave joining procedure
that takes place when a new slave device asks the controller to join the net-
work. Verification and validation of the models are described in depth in
Section 4.1.9.

In particular, we present:

1. A first model with a passive attacker that can read all the messages
exchanged between the controller and the slave (wireless protocols
are always exposed to attacks since they use a shared channel to com-
municate).

2. A second model with an active attacker that can intercept, delete,
modify and inject any message. In this model, the verification process
highlighted a previously unknown feasible MITM attack confirmed
by Silicon Labs and Z-Wave Alliance, where the attacker can obtain
the temporary AES key (and consequently the keys granted to a new
device during the joining phase).

3. A third model that implements the solution proposed by the Z-Wave
Alliance to fix the vulnerability.
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Figure 4.7: ASM model of Z-wave joining procedure

4.1.6 ASM model of the joining procedure with a passive
attacker

Recall from an excerpt of Code 4.1 that the controller, the slave and the
intruder are modelled as three ASM agents with their programs running in
parallel. The intruder, running in passive mode, intercepts messages, reads
them and forwards them to the intended recipient.

In Fig. 4.7, the sequence diagram of the corresponding ASM model is de-
picted. There are three swim lanes, one for node A, the controller, one for
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node B, the slave, and the central one for the intruder. The internal states of
a node are represented by the rectangles coloured in light green. The flow of
an agent’s behaviour is vertical, whereas the horizontal flow describes the
messages exchanged between principals. Blue horizontal arrows pointing
to the intruder are the messages sent by honest participants and intercepted
by the intruder, while the red ones sent either to the slave or the control-
ler are the intercepted messages forwarded by the intruder to the intended
receiver.

The mapping from Z-Wave protocol description to ASMs is rather straight-
forward: for each message exchange of Fig. 4.3, there is a corresponding
state in Fig. 4.7, and a transition rule is defined to manage the state trans-
ition. The INPUT box occurring on some states, e.g., on INSERT PIN state,
models the request to the external user owning the device to perform an ac-
tion necessary to proceed to the next state. Mimicking the protocol require-
ments, every time a control fails (e.g., in case there is a security class mis-
match between the requested classes and the granted classes or the wrong
ECDH curve is asked), the node sends an error message to the other node
and terminates its execution.

The domain SlaveType and a monitored function slave:Slave !
SlaveType are defined to model the different types of slave devices and the
security class a device belongs to. The invocation of the slave function
during the agent initialisation phase to set up the device type corresponds to
the sending of the NIF sent by the slave to the controller before the joining
procedure starts.

Both in the controller and slave models, most of the transition rules have
the same structure: activation is demanded by a rule guard that controls the
current state, the message received, and the time left. The core of a rule con-
sists of function updates changing the agent’s internal state, setting a timer,
and crafting the next messages expected by the Z-Wave protocol, using the
primitives described in the CryptoLibrary. As an example, consider the
kexReport rule of the slave program reported in Code 4.3:

• Line 2 sets the intruder as the receiver of the agent communication
(let ($ectrl=nodeE)). The intruder has a rule that updates his/her
knowledge and forwards the message to the intended receiver.
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• Lines 3-4 specify the guard, which checks: (i) the internal state of
the slave (in this case, the slave must be in LEARN_MODE state), (ii)
the message received (in this case the message must be part of the
negotiation part of the protocol, i.e., KEX_GET), and (iii) if timer TB1
has not expired.

• On Lines 6-8, the slave: (i) updates its internal state to
WAIT_KEX_SET, (ii) activates timer TB2, and (iii) deactivates timer
TB1.

• On Lines 9-25, the slave sends the KEX_REPORT message to the in-
truder impersonating the controller (line 9) (that will forward it to the
legitimate controller by executing its program), and with the expected
payload (lines 12-25) built by using the slave knowledge.

Most of the transition rules have the same structure, others are not guarded
by a timer, or they execute only controls over the payload of an already
received message.

4.1.7 ASM model of the joining procedure with an active
attacker

The major issue when modeling an active attacker to possibly get a vulner-
ability scenario is the choice of which capabilities to assign to the attacker.
This task highly depends on the specific protocol – both on the security
goals and on the cryptographic primitives used –, and on the use-case scen-
ario. In addition, modeling the most powerful adversary from the very start
might downgrade the performance of the verification phase and make the in-
terpretation of results difficult. It is preferable to proceed in an incremental
way, by subsequently refining the program of the intruder with new rules
expressing the added capabilities.

For the Z-Wave case study, we proceeded in an incremental way defining
three different models of the attacker. We started by assessing the possible
vulnerabilities of the cryptographic primitives used. Z-Wave uses the El-
liptic Curve Diffie-Hellman (ECDH) agreement mechanism to generate a
temporary key needed for the encryption of long-term keys. ECDH guar-
antees confidentiality of the shared key, but it lacks authentication. Thus, it
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1 rule r_kexReport =
2 let ($ectrl=nodeE) in
3 if (slaveState(self) = LEARN_MODE and protocolMessage( $ectrl , self ) = KEX_GET ) then
4 if (not(passed(TB1))) then
5 par
6 slaveState(self):= WAIT_KEX_SET
7 startTimer(TB2):= true
8 startTimer(TB1):= false
9 protocolMessage(self, $ectrl):= KEX_REP

10 if (knowsBitString(self,CSA)) then
11 messageField(self, $ectrl,1,KEX_REP):= CSA_1
12 else
13 messageField(self, $ectrl,1,KEX_REP):= CSA_0
14 endif
15 ...
16 if (knowsBitString(self,UNAUTH_S2)) then
17 messageField(self, $ectrl,6,KEX_REP):= UNAUTH_S2_1
18 else
19 messageField(self, $ectrl,6,KEX_REP):= UNAUTH_S2_0
20 endif
21 if (knowsBitString(self,S0)) then
22 messageField(self, $ectrl,7,KEX_REP):= S0_1
23 else
24 messageField(self, $ectrl,7,KEX_REP):= S0_0
25 endif
26 endpar
27 endif
28 endif
29 endlet

Code 4.3: kexReport rule

is vulnerable to an impersonation attack. To patch this weakness, Z-Wave
Alliance added an Out-Of-Band (OOB) authentication method to prevent
eavesdropping.

This analysis led us towards the modeling of active attackers with imper-
sonation capabilities. In particular, we defined:

1. A first model, where the attacker can generate a pair of public and
private keys to share with the slave (see Code 4.4). The model does
not take into account the OOB procedure.

2. A second model adding to the attacker the capability to craft the PIN
code usually generated in the OOB procedure. The PIN is obtained
by means of a brute force attack implemented in the r_bruteForce
rule (see Code 4.5 for the updated program).
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3. A third model, where the attacker is also able to craft a key using
the PIN just obtained, and then sends to the controller the crafted key
containing the correct PIN. This new capability is implemented by
the r_sendEslvKey rule (see Code 4.6). The model is depicted in the
sequence diagram of Fig. 4.8, where the yellow B flag highlights the
brute force attack obtaining the PIN, and the yellow C flag identifies
the attack on the public key generated by knowing the PIN.

rule r_mitmRule =
if (mode=ACTIVE) then
par

r_kexGetReplay[]
r_kexReportCraft[]
r_kexSetCraft[]
r_saveKexSet[]
r_sendSlvPubKeyReplay[]
r_sendEctrlKey[]
r_nonceGetCraft[]
r_nonceReportCraft[]

r_SPANReplay[]
r_kexReportEchoCraft[]

endpar
else
...
endif

Code 4.4: First
Model

rule r_mitmRule =
if (mode=ACTIVE) then

par
r_kexGetReplay[]
r_kexReportCraft[]
r_kexSetCraft[]
r_saveKexSet[]
r_sendSlvPubKeyReplay[]
r_sendEctrlKey[]
r_nonceGetCraft[]
r_nonceReportCraft[]
r_bruteForce[]

r_SPANReplay[]
r_kexReportEchoCraft[]

endpar
else
...
endif

Code 4.5: Second
Model

rule r_mitmRule =
if (mode=ACTIVE) then

par
r_kexGetReplay[]
r_kexReportCraft[]
r_kexSetCraft[]
r_saveKexSet[]
r_sendEslvKey[]

r_sendEctrlKey[]
r_nonceGetCraft[]
r_nonceReportCraft[]
r_bruteForce[]
r_SPANCraft[]
r_kexReportEchoCraft[]

endpar
else
...
endif

Code 4.6: Third
Model

4.1.8 ASM model of the joining procedure with QR code

In order to remove the vulnerability found, Z-Wave Alliance extended the
authentication process of the joining procedure with a QR code scanning.
The use of the PIN is still supported for retro-compatibility. However, new
devices are shipped with a QR code containing the device’s public key. The
joining procedure remains unchanged, but instead of inserting the first five
digits of the joining device key, the user must scan the QR code on the label
applied either on the device or the device box. The public key extracted
from the QR code is used: (i) to get the missing five digits; (ii) to check
if the public key extracted matches with the one sent (obfuscated) by the
device; (iii) to complete the ECDH agreement mechanism. The updated
procedure increases the overall security of the protocol since the controller
can check the full public key and not only the first five digits.
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Figure 4.8: Flow chart of the MITM attack

The model can be easily extended to integrate the new functionality by up-
dating the insertPin rule of the controller with a new decision branch (the
attacker models remain unchanged). The scanning of the QR code is imple-
mented by some new monitored functions: chosenQrCodeUsage allows the
user to select the default authentication mode (QR code or manual entry);
chosenQrCode gives the asymmetric public key encoded in the QR code.
The monitored values are stored in two controlled functions during the exe-
cution (qrCodeUseDecison and qrKey functions).

The new branch added to the insertPin rule of the controller program is
reported in Code 4.7 and works as follows:
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• Line 2 sets the intruder as the receiver of the agent communication,
modelling the intruder intercepting all the traffic.

• Lines 3-5 specify the guard, which checks: (i) the internal
state of the controller (in this case the controller must be in
WAIT_ECDH_PUB_JOIN state), (ii) the message received (i.e.,
PUB_KEY_REP_JOIN), and (iii) if timer TA2 has not expired.

• On Lines 6-9, the controller:(i) updates its internal state to
INSERT_PIN, (ii) activates timer TAI2 and deactivates timer TAI2,
and (iii) asks the user to continue with the joining procedure using
the monitored function ctrlAbort.

• Lines 12-14 are reached when the controller is in INSERT_PIN state.
In this case, if the timer has not expired, the controller: (i) checks
where the user has chosen to insert the PIN (either on the controller
or on the joining device in case of Client-Side Authentication), and
(ii) checks if the user wants to abort the joining procedure.

• Line 15 reads the public key received by the controller.

• On Lines 17-19, the controller changes its internal state to
WAIT_NONCE and sends the message PUB_KEY_REP_CTRL contain-
ing his public key, as required by the protocol.

• Line 20 starts the branch dedicated to the scanning of the QR code
by checking if the slave chose QR code authentication as the default
mode.

• On Lines 21-22, the slave public key derived from the QR code and
the controller private key are used by ECDH to compute the shared
symmetric key.

• Line 24 puts the newly generated symmetric key in the controller’s
knowledge.

• Line 25 uses function recomposePubKey to recompose the obfus-
cated key and check if it matches the public key extracted from the
QR code.
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1 rule r_insertPin =
2 let ($eslv=nodeE) in
3 if (controllerState(self) = WAIT_ECDH_PUB_JOIN
4 and protocolMessage( $eslv ,self ) = PUB_KEY_REP_JOIN ) then
5 if (not(passed(TA2))) then
6 controllerState(self):= INSERT_PIN
7 startTimer(TAI2):= true
8 startTimer(TA2):= false
9 abortCtrlSaved:= ctrlAbort

10 endif
11 else
12 if (controllerState(self) = INSERT_PIN and messageField(self, $eslv,1,KEX_SET)=CSA_0
13 and protocolMessage( $eslv ,self ) = PUB_KEY_REP_JOIN and abortCtrlSaved = false) then
14 if (not(passed(TAI2))) then
15 let ($sk_ob =messageField($eslv,self,1,PUB_KEY_REP_JOIN)) in
16 par
17 controllerState(self):= WAIT_NONCE
18 protocolMessage(self, $eslv):= PUB_KEY_REP_CTRL
19 messageField(self , $eslv,1,PUB_KEY_REP_CTRL):= KPUB_CTRL
20 if (qrCodeUseDecison= true) then
21 let ($pubkey_qr=qrKey) in
22 let ($aes_qr=diffieHellman($pubkey_qr,KPRIV_CTRL)) in
23 par
24 knowsSymKey(self,$aes_qr):= true
25 if (recomposePubKey(true,$sk_ob)=$pubkey_qr) then
26 par
27 knowsBitString(self,PIN_OK):= true
28 knowsBitString(self,PIN_ERROR):= false
29 endpar
30 endif
31 endpar
32 endlet
33 endlet
34 else
35 ...
36 endlet

Code 4.7: insertPin rule

• On Lines 27-28, the PIN code is added to the controller’s knowledge
only if the public key extracted from the QR code matches the obfus-
cated one.

4.1.9 Z-Wave Formal Validation & Verification

In the following, we describe the analysis process we followed to validate
and verify the models we introduced in the previous section. The analysis
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was performed both on the model with the passive attacker (Sect. 4.1.9.1)
and on the model with an active attacker (Sect. 4.1.9.2). In particular:

1. The models of the joining procedure were validated by using AS-
METAV validator working on Avalla scenarios, assessing model re-
liability and completeness with respect to the informal protocol de-
scription. We expressed one scenario for each requirement in the Z-
Wave protocol documentation and checked that the model behaves as
expected.

2. To verify the correctness of the Z-Wave protocol despite the presence
of the attacker, we expressed a list of security properties as a CTL
formula and used the ASMETASMV tool to check if a CTL formula
holds by exploiting the NUSMV model checker.

4.1.9.1 Analysis of the model with a passive attacker

Model Validation Avalla language provides special commands to: set

the values of monitored functions, perform one step of simulation, exec

rules or function updates, check that some properties hold. By playing
with a combination of these commands, we were able to express significant
scenarios and check the correctness of the message flow.

Here, we report and discuss a fragment of a scenario (Code 4.8) where the
user of a door lock updated to S2 Security refuses to insert the PIN on the
device rather than on the controller side.

• On line 4, we check that the scenario is correctly set at the beginning
of the joining procedure, i.e., the controller and the slave are in their
initial states INIT_SLV and INIT_CTRL.

• Lines 6-8 configure the scenario, i.e., the type of the controller and
the slave (a door lock updated to S2 Security), and the attacker mode
(passive).

• The checking on lines 11-13 is done for all the messages exchanged
before getting to the point of the protocol in which the user has to in-
sert the PIN on the device: a certain message has to be received when
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Code 4.8: Rejected Client-Side Authetication scenario
1 scenario refuseCSA_passive_scenario
2 load ZWave_join_MITM_validation.asm
3
4 check slaveState(nodeB) = INIT_SLV
5 and controllerState(nodeA) = INIT_CTRL;
6 set controller(nodeA) := CONTROLLER_S2;
7 set slave(nodeB) := DOOR_LOCK_UP;
8 set chosenMode := PASSIVE;
9 ...

10 step
11 check protocolMessage(nodeE,nodeB) = KEX_GET
12 and controllerState(nodeA) = WAIT_KEX_REP
13 and slaveState(nodeB) = LEARN_MODE;
14 set passed(TB1) := false;
15 set passed(TA1) := false;
16 ...
17 step
18 ...
19 set userCsa(nodeA):=false;
20 step
21 check controllerState(nodeA) =ERROR_C
22 and protocolMessage(nodeA,nodeE) =KEX_FAIL_CANCEL;

the controller and the slave are in the correct state according to the
definition of the protocol. In this case, the slave in LEARN_MODE state
receives KEX_GET message when the controller is in WAIT_KEX_REP
state.

• On lines 14-15, the timers TB1 and TA1 are set as not expired.

• After some intermediate simulation steps and checks, on lines 19-22,
we simulate a user rejecting the request of Client-Side Authentication
and check that an error is generated and KEX_FAIL_CANCEL message
is sent by the controller indicating the failing of the joining procedure.

Property verification During the verification phase, we examined a broad
spectrum of properties expressed as CTL formulas and verified them by the
model checker NUSMV. The result, if the model checker terminates, is a
Boolean condition: in case of True, the property holds; if it is False,
it means that the property is violated at least once (and the tool returns the
attack trace). In case of a violating path, the trace was rewritten as a scenario
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in the Avalla language and executed on the model to better understand the
origin of the vulnerability.

We derived some of the properties from the patterns presented in Sect.
4.1.4.2. The first two properties on confidentiality were proved, meaning
that without an active Intruder, the ECDH key exchange is robust:

There exists no state in the future in which the PASSIVE Intruder nodeE
knows the symmetric key KT3 (i.e., the key generated by ECDH key ex-
change using the controller and slave asymmetric keys).

[P1] ¬EF(mode=PASSIVE ^ knowsSymKey(nodeE,KT3)=true)

There exists no state in the future in which the PASSIVE Intruder nodeE
knows the correct pin code PIN_OK.

[P2] ¬EF(mode=PASSIVE ^ knowsSymKey(nodeE,PIN_OK)=true)

We verified the integrity property for each field in the exchanged mes-
sages. The properties should hold since a passive attacker only re-routes
messages.

There exists no state in the future in which a PASSIVE attacker can modify
the first field of KEX_SET message .

[P3] ¬EF(mode=PASSIVE ^ messageField(nodeA,nodeE,1,KEX_SET)

!=messageField(nodeE,nodeB,1,KEX_SET))

We conclude our analysis of the passive attacker model of the joining pro-
cedure with the proof of the following authentication property:

There exists a state in the future in which, if the attacker is PASSIVE, the
slave knows its public-key and the controller has obtained the cor-
rect PIN, then the attacker will never know the correct PIN .

[P4] EF(mode=PASSIVE ^ knowsAsymPubKey(nodeB,KPUB_SLV)=true ^

knowsBitString(nodeA,PIN_OK)=true)! AG( ¬( knowsBitString(nodeE,PIN_OK)=true))
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The evaluation of the formula is True because to recover the correct PIN,
the passive attacker must break the encryption using brute force over the
full symmetric key.

4.1.9.2 Analysis of the model with an active attacker

Model Validation The modelling of the legitimate actors of the protocol
is the same in the case of an active attacker. Thus, there was no need to
re-validate the protocol requirements.

Property verification As done in the case of a passive attacker, we derived
the CTL formulas of some of the properties from the patterns presented in
Section 4.1.4.2. Obviously, during the verification phase, we used the model
with the most powerful adversary. As expected, some properties do not hold,
meaning that an attacker able to craft the correct PIN code and the associated
public key can break the protocol.

The confidentiality properties check that the temporary symmetric key Kt is
known only by the two honest participants:

There exists no state in the future in which the ACTIVE intruder nodeE
knows the symmetric key KT1 or KT2 (i.e., the key generated by ECDH
using the asymmetric keys of the slave and the controller).

[P5] ¬EF(mode=ACTIVE ^ knowsSymKey(nodeE,KT1)=true)

[P6] ¬EF(mode=ACTIVE ^ knowsSymKey(nodeE,KT2)=true)

Both confidentiality properties are False. Intuitively, it means that the
attacker is able to take part to the ECDH key exchange with a MITM attack,
impersonating the slave with the controller -first formula- and, vice versa,
the controller with the slave -second formula-.

Integrity properties check if the attacker is able to modify the messages of
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the protocol without the legitimate principals noticing it. For example, the
following formula does the check for the KEX_REP message:

There exists no state in the future in which an active attacker can modify
the fourth field of the message KEX_REP.

[P7] ¬EF(mode=ACTIVE ^ messageField(nodeB,nodeE,4,KEX_REP)

!=messageField(nodeE,nodeA,4,KEX_REP))

The integrity properties results are True, because the active attacker for-
wards the received message fields from the slave to the controller without
altering them, to reduce the probability of triggering some error responses.

We tested the same authentication property as for the passive attacker, chan-
ging only the intruder’s mode to active. The property is expressed as fol-
low:

There exists a state in the future in which, if the attacker is ACTIVE,
the slave knows its public-key and the controller has obtained the
correct PIN, then the attacker will never know the correct PIN.

[P8] EF(mode=ACTIVE ^ knowsAsymPubKey(nodeB,KPUB_SLV)=true ^

knowsBitString(nodeA,PIN_OK)=true)! AG( ¬( knowsBitString(nodeE,PIN_OK)=true))

The property evaluation returns False, showing a partial path of the at-
tack where both the slave and the controller have established a key with the
attacker and share the same pin code. We use the slave knowledge of its
public key because the pin code is extracted from the five first digits of that
key. Thus if the slave knows his/her complete public key, he/she knows the
pin code.

By checking the security properties described above, we found that the
shared key Kt can be compromised. However, the attack is not success-
ful if the legitimate participants notice it. To this aim, we checked if there is
at least one execution trace that leads the controller and the slave to believe
that the protocol ended correctly, namely:
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There is not a state in the future in which the controller and the slave
are both in the OK state, that represents the final state they reach only when
the protocol runs as expected.

[P9] ¬EF(controllerState(nodeA) =OK_C ^ slaveState(nodeB) = OK_S)

The property evaluation returns False. Thus, we analysed the violating
path encoding it in an Avalla scenario, as described in the following.

Analysis of the attack trace The failure of the verification of some se-
curity properties seems to confirm the feasibility of an MITM attack in the
case of an active attacker. In general, a faulty property trace can be en-
coded in a scenario giving the ability to the protocol designer to visualise
and manipulate the trace. The scenario can be later used to test vulnerability
patches or it is useful for crafting new verification properties to find further
vulnerabilities.

In the specific case of our faulty property, the scenario drawn from the trace
shows that the attacker tries to take advantage of the duration of a timer
as much as possible, avoiding the timeout (a brute force attack is a time-
consuming operation).

Since timers are local to the legitimate actors of the protocol, the attacker
cannot know exactly when a timer has expired. To this aim, we give the in-
truder the capability to estimate the expiration time with a monitored func-
tion nearToEnd that takes a timer and returns true if it is running out. This
scenario shows the feasibility of the Man-In-The-Middle (MITM) attack we
found in [60]. The vulnerability was confirmed and patched by Silicon Labs
and Z-Wave Alliance.

An excerpt of the scenario is reported in Code 4.9. The structure is similar
to Code 4.8:

• The scenario involves an alarm device with native S2 Security, a con-
troller supporting the S2 Security and an active attacker (lines 4-8).

• Timer TA1 has not expired yet (line 9).
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Code 4.9: Successful MITM attack scenario
1 scenario validation_protocol_mitm
2 load zwaveProtocol_join_MITM_validation.asm
3
4 set chosenMode:=ACTIVE;
5 check slaveState(nodeB) = INIT_SLV
6 and controllerState(nodeA) = INIT_CTRL;
7 set controller(nodeA) := CONTROLLER_S2;
8 set slave(nodeB) := ALARM_NAT;
9 set passed(TA1) := false;

10 ...
11 step
12 ...
13 set nearToEnd(TA1) := true;
14 step
15 check protocolMessage(nodeE,nodeB) = PUB_KEY_REP_CTRL
16 and slaveState(nodeB) = WAIT_ECDH_PUB_CTRL
17 and controllerState(nodeA) = WAIT_KEX_REP;
18 ...
19 step
20 ...
21 check protocolMessage(nodeA,nodeE)=EC_KEX_REPORT_ECHO
22 and slaveState(nodeB) = OK_S
23 and protocolMessage(nodeE,nodeB)=EC_KEX_REPORT_ECHO
24 and controllerState(nodeA) = OK_C;

• The attacker uses nearToEnd to delay as much as possible the sending
of the message KEX_REPORT, i.e., just before timer TA1 expires (lines
13-17, as depicted also in Fig 4.8).

• Function nearToEnd is used also to delay just before TA2 expires the
execution of the brute force attack (lines 21-24).

4.1.10 Discussion and Threat to validity

We here provide some evaluating discussions of our approach. Applying
the modelling primitives to the specification of a real case study has demon-
strated their adequacy and expressiveness. The model presented here is
more concise than that in [60], and performs better for the verification, al-
lowing us a more complete model validation and verification.

More specifically, the CTL properties presented in this paper have been veri-
fied using an AMD Ryzen 2600 processor with 16 GB of RAM. The results
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Confidentiality Integrity Authentication

Property P1 P2 P3 P4 Avg.
Time (s) 0,06 107,86 23,17 96,04 56,78
BDD
Allocated 106127 919310 427160 464471 479269

Outcome true true true true

Table 4.1: Time and BDD nodes required for the verification of a passive attacker

of property verification are shown in Tables 4.1 , 4.2 and 4.3 in terms of time
and space complexity, i.e., time required for the execution and nodes of the
binary decision diagram (BDD) allocated in memory. Table 4.1 shows the
results obtained by analysing the CTL properties of a passive attacker, and
Table 4.2 that of an active attacker. We also include the results of some
reachability properties that performed worst in time. This is due to the fact
that the verification of these specific properties requires reachability of the
model terminal states, thus the model checker must search deeper into the
BDD to guarantee that the property holds.

Confidentiality Integrity Authentication

Property P5 P6 P7 P8 Avg.
Time (s) 53,88 53,37 62,35 85,08 63,67
BDD
Allocated 379759 94198 381814 499791 338890

Outcome false false true false

Table 4.2: Time and BDD nodes required for the verification of an active attacker

Reachability

Property P9 P10 Avg.
Time (s) 214,01 143,33 178,67
BDD Allocated 154573 829309 491941
Outcome false true

Table 4.3: Time and BDD nodes required for the verification of the reachability
properties

The results confirmed us the utility of the ASMs as formal method, mainly
related to their possibility to specify a model in a symbolic way and at any
level of abstraction, their understandability as pseudo-code over abstract
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data, and the simplicity of refining modes by adding details along the mod-
eling process.

The refinement process was very useful not so much for modeling the pro-
tocol itself (as communication between honest principles), as for modeling
the intruder capabilities. This refining process helped a lot for the verific-
ation phase, either in terms of its scalability, and in terms of understanding
the results and establishing the minimal intruder’s abilities to exploit the
protocol vulnerability.

Our results show the importance of exploiting formal methods during the
design process of a security protocol in order to find vulnerabilities since
the early stages of protocol development. Already in [60], the formal veri-
fication of the Z-Wave joining procedure revealed a vulnerability later con-
firmed by the Z-Wave Alliance. The formalisation of the protocol helped to
increase the overall security of the joining procedure; indeed, the Alliance
has introduced a new way of authenticating the joining device using a QR
code, as explained in Sect. 4.1.8.

On the refined model in Section 4.1.8, we have proved the same property
checked for the model under active attacker. More precisely, we verified the
property:

There is not a state in the future in which the Controller and the Slave are
both in the OK state, the QR code is used for the authentication, and the key
encoded in the QR code is the public key of the Slave.

[P10] ¬EF(controllerState(nodeA) =OK_C ^

slaveState(nodeB) = OK_S ^ qrKey=KPUB_SLV ^ qrCodeUseDecison=true )

As expected the property returns True, proving that it is no longer possible
to exploit the vulnerability.

However, the approach has some limitations. They are mainly due to the
state explosion of the model checker, caused by the possible high cardinal-
ity of the knowledge domain. Although the usage of high level mathemat-
ical functions helps in a symbolic representation of a given protocol, their

105



4 Unifying Verification Methodology

mapping to a sequence of model checker’s variables may compromise the
performance of the verification because the number of variables to manage
might be very high.

To overcome this verification limits, we are working towards the definition
of a domain-specific language (DSL) for IoT protocols by exploiting the
meta-modeling approach of DSL construction. Such DSL should work as
a sort of "lingua franca" between protocol requirements and back-end veri-
fication tools. The obtained protocol program can be mapped into different
verification tools by exploiting model-to-model transformations. For ex-
ample, the mapping to ASM models goes through the mapping of the DSL
constructs to the CryptoLibrary functions and domains. Such transform-
ations will allow for the use of verification tools having verification tech-
niques different from model checking, for example, clauses resolution in
ProVerif [24] or rewriting rules for constraint solving in TAMARIN [65].

4.1.11 Related Work

After the seminal paper on BAN logic [36] introducing one of the first form-
alisms designed to reason about protocols, many techniques and tools have
been proposed for verifying protocols. Unfortunately, formal methods are
still not widely adopted by industry, mainly due to their mathematical base,
which discourages many designers or engineers [42]. For this reason, there
are only a few mature tools for automatic verification [65, 24] and many of
the protocols verified so far have been a case study for a specific tool.

Specification and verification of IoT protocols is a recent topic in the context
of formal methods, and small literature exists in this area. A comprehensive
review of formal methods for IoT protocols is given in [51]. Z-Wave has
small literature since it has been proprietary for a long time. The security of
the Z-Wave protocol has been mainly investigated and tested in practice by
means of test beds in real environments. In [82], Z-Wave is analysed with
respect to common attacks to IoT systems. In [16], the frame forwarding and
topology management aspects of a previous version of the Z-Wave routing
protocol are reverse-engineered. Then, a security analysis is also performed
on the network, and the possibility of modifying the topology and routes
by an outsider is found. In [56], the authors propose three different attack
vectors that, if combined, can cause critical damage (e.g., DoS).
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To the best of our knowledge, apart our previous work [60], the only con-
tribution on formal methods applied to Z-Wave protocol is [71], where the
possibility of flaws generated by wrong configurations in Z-Wave scenes is
evaluated by means of model checking. In this paper, we extend and en-
hance the results we obtained in our previous works on security protocol
analysis [59, 35].

We extend and give a more complete set of templates to formalise, in the Ab-
stract State Machine formal method [30, 31], common behavioural patterns
in security protocols and a set of security properties. These templates were
presented in [35] to facilitate the protocol formal verification by providing
built-in mathematical elements (functions, domains, transition rules, etc.)
to be customised according to the specific protocol to be verified. The im-
provements regard the specification of protocol principals’ knowledge and
how it is communicated and shared during the protocol execution, e.g., we
model the message structure in a way that allows us to obtain better per-
formance and scalability in the verification phase. Moreover, two different
models of intruder, a passive attacker that simply eavesdrops on the mes-
sages in the communication channel and an active attacker able to intercept
and craft messages, are provided for the validation and verification. The im-
provements with respect to the results in [60] mainly concern the evaluation
of the effectiveness of our modelling and verification primitives on a real
and complex case study. Here, following a model-based approach, the im-
proved templates are used to model the protocol. The resulting specification
is more concise, so the verification scales better with the new modelling
choices. Moreover, the model also includes the specification of the solu-
tion implemented by the Z-Wave Alliance to avoid the vulnerability found
in [60].

The idea of pattern reusing is not new but has not been investigated a lot in
the context of security protocol design and verification. In [22], a systematic
way to design secure-by-construction cryptographic protocols, where the
proof process reuses smaller protocol parts previously proven to be correct
and secure. In this case the approach is based on the B notation. The work
in [21] describes a method for implementing and analyse a specific class
of security protocols (i.e., classical key distribution protocols) in SPIN. In
particular, the authors focus on modelling a generic intruder model work-
ing with all the protocols within the class. The work in [70] presents a
model-driven approach to design security-critical systems based on crypto-
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graphic protocols and to prove application-specific security properties. A
smart card application is analysed. UML is used as front-end modelling
notation, whereas ASMs and a theorem prover are used as back-end form-
alisms for property verification; the underlying idea is similar to ours.

Among the other IoT protocols, the mostly analysed are Zigbee, LoRaWAN,
Bluetooth, Narrowband IoT, 6LoWPAN, and 5G. The Zigbee protocol is
analyzed in [66] by using AVISPA and Casper, where the existence of a
known security flaw is discovered. AVISPA (Automated Validation of In-
ternet Security Protocols and Applications) [12], in combination with the
graphical tool SPAN, allows a sort of protocol runtime verification where
Message Sequence Charts are built during the protocol execution and are
used to check if the execution performs consistently with the expected mes-
sage exchange [85].

Two versions of LoRaWAN are compared in [45] using models specified
with SCYTHER: for LoRaWAN v1.0, they find some flaws already known
in the literature, while they do not find any evident vulnerability in v1.1.
Some of the Bluetooth protocol versions have been verified with formal
methods. Version v5.0-Part I has been checked by Sun and Sun [80]; they
perform a formal analysis of the secure, simple pairing (SSP) that consti-
tutes a considerable part of the security in home automation scenarios. Four
different models are used depending on the device’s capability, but they all
resist passive eavesdropping and MITM attacks.

Two schemas for the 6LoWPAN protocol have been verified. In [76], the
authors propose a secure Proxy Mobile IPv6 (MPIPv6) that prevents some
attacks, including replay attacks, man-in-the-middle attacks, privileged in-
sider attacks and Sybil attacks. The attacks and the schema are executed
by using AVISPA and a Java simulation. The work in [75] presents an ex-
tension schema of 6LoWPAN, which grants Confidentiality, Integrity and
Authentication for a group of resource-constrained 6LoWPAN devices. In
[19], a formal analysis of the 5G authenticated key exchange (AKA) pro-
tocol is provided. The 5G AKA is formalised with TAMARIN, and the
verification shows possible privacy flaws. A provable fix for the vulnerabil-
ity found is then proposed.
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4.2 Multi-tool Verification Approach

4.2.1 Overview

Developed progressively since 2016, WPA3 has been designed to enhance
wireless security from the current WPA2 standard. Yet, despite this claim, it
has not been impervious to security vulnerabilities [84]. This paper delves
into the critical analysis of WPA3’s security framework using a formal veri-
fication approach, able to fully capture the WPA3 Simultaneous Authentic-
ation of Equals protocol and show to what extent it really is secure.

A notable observation in the field of protocol verification is its predom-
inant concentration on the message exchange. While this focus has yielded
robust verification methodologies[20, 10, 26], it inadvertently overlooks po-
tential vulnerabilities residing in the behaviour of single devices [33]. This
oversight becomes particularly critical when protocols are deployed in real-
world scenarios, where lower-level vulnerabilities can lead to significant
security breaches.

In response to this challenge, our research proposes a unified and integ-
rated approach to protocol verification that encompasses both these aspects,
which, for brevity, we call them respectively Communication level and
Device level. Our methodology exploits different formalisms and verific-
ation techniques at the two levels (stateless algebraic system at the Commu-
nication level and stateful transition system at the Device level), thus lever-
aging the strengths of each approach to achieve verification goals of each
level. This holistic methodology enables a more comprehensive and effect-
ive security verification process. By integrating verification across multiple
levels, our approach not only identifies but also helps mitigate vulnerabilit-
ies that might otherwise go undetected in traditional, single-level verifica-
tion processes.

Our findings using this approach are twofold: i) the two modelling efforts
intuitively capture different aspects of the protocol, and each finds a sub-
set of errors in the standard - some of which link to serious known and
new vulnerabilities; and, interestingly ii) combining these two modelling
approaches, we gained new insights into the nature of the vulnerabilities,
greatly aiding our understanding and ability to patch the standard - which is
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a desirable result for future such investigations. In this work, we showcase
the strength of this methodology by discovering a series of attacks found
through our formal analysis at both layers, alongside a series of errors in the
specification.

Our models are validated against existing attacks on WPA3 [84]; as we are
able to replicate known previous attacks, we gain confidence that our model
captures significant parts of real-world implementations. Through this ana-
lysis, we found other attacks and several errors, which are described in Ap-
pendix A; for brevity, the rest of the thesis will focus on a subset of these
to highlight the advantage of multi-level analysis. We found that some of
the errata were due to misalignments between the Communication and the
Device level. Rather than having a correct specification at the original level,
they were patched at a different level. Whilst a common misconception may
be that being a newer standard and more recent might mean better security,
we find that a greater numerical number does not always imply better secur-
ity guarantees; and indeed, often, unfortunately, several security safeguards
are discarded in newer standards, leading to repetitions of attacks as we find
in this work. These vulnerabilities and errors have been acknowledged by
the IEEE standards and are in the process of being rectified [the latest stand-
ard is coming soon].

Our contributions are the following: i) a unified and integrated approach
to protocol verification that encompasses both Communication and Device
levels; ii) a detailed security analysis, applying this approach to the WPA3-
SAE; and iii) results of security analysis, showcasing over 20 new errors
and security flaws, as well as our suggested patches verified to fix the prob-
lems.

4.2.2 Related Work

The unification of multiple tools for the verification of protocols has come
under substantial attention recently [14, 72], this is not altogether new as it
was one of the core principles of AVISPA [10] (although all based on AnB
logic), and later on, the earliest work discussing this for modern verifiers
was in 2019, where authors combined the verification of a protocol using
both TAMARIN and PROVERIF [13]. This was not shocking, as protocols
formally verified in one tool have been found vulnerable by another [49].
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Recent work unifying protocol verification [14] presents a methodology for
the modular verification of protocol implementations. The methodology
leverages verification logics and tools, supporting a wide range of imple-
mentations and programming languages. The effectiveness of this approach
is demonstrated through the verification of memory safety and security of
various protocol implementations. Similarly, another work extends the se-
curity guarantees typically associated with protocol designs to their actual
implementations [72]. This is achieved by instrumenting common cryp-
tographic libraries and network interfaces with a runtime monitor. By fo-
cusing on runtime verification, the paper addresses the dynamic aspects of
protocol security, ensuring that the protocols behave as expected not just
in theory but also in real-world operational environments. Early work on
verification of TLS1.2 [23], the authors here identify that the state machine
is an important part of the implementation and perform some verification
on it. The verification process includes type checking the state machine of
the TLS protocol. Type checking is a method of verifying that the program
adheres to the specified types, which in this context, relate to the correct
sequence of operations and data handling in the protocol. This ensures that
the state transitions in the TLS protocol adhere to the defined security spe-
cifications. This is a very important first step; however, this is never linked
to the upper layers of the protocol, and no further verification beyond type
checking is performed. We argue these are not distinct steps, and indeed the
verification of the state machine properties can lead to better analysis of the
network protocol and vice versa.

4.2.3 WPA3 Simultaneous Exchange of Equals Key Exchange

WPA3 security is ensured using the Simultaneous Exchange of Equals
(SAE) protocol, which is introduced to replace the Pre Shared Key Ex-
change (PSK) used in WPA2, which was known to be vulnerable to at-
tacks [83]. SAE provides authentication at the Link layer referring to the
TCP/ IP stack. It was originally introduced in 2016 as part of IEEE 802.11
- IEEE Standard for Information Technology–Telecommunications and In-
formation Exchange between Systems [53], with claims to resolve the pre-
vious vulnerabilities affecting PSK and WPA2. We focus our security ana-
lysis on the latest version protocol, following the specifications from IEEE
802.11w [54] when conducting our assessment.
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4.2.3.1 The SAE Key Exchange (Communication level)

The SAE key exchange is a two-party protocol that takes two rounds of
messages. Each round is symmetric so that we do not have a notion of an
Initiator and Responder or of a Supplicant and Authenticator. Each side
may initiate the protocol simultaneously such that each side views itself as
the initiator for a particular run of the protocol. This design is necessary to
address the unique nature of mesh basic service set [54]. Several variants
of SAE are specified; nonetheless, we only focus on the variant of SAE
adopted in the WPA3 protocol, especially the variant that operates in finite
field cryptography.

The SAE protocol operates in G, a common and known subgroup of Z?
p of

multiplicative order q, where q is a Sophie Germain prime, i.e., p = 2q+1,
where the discrete logarithm problem is assumed to be hard. The pro-
tocol also uses H representing a hash-based message authentication code
(HMAC). Two remote parties, Alice and Bob, share a common secret pass-
word from which they apply a transformation to calculate a corresponding
password element, PE. This secret element can be derived as described by
the Key Derivation Function KDF described in the standard [54]. The (last)
confirmation phase also defines a confirmation function CN, also described
in the standard. Both KDF and CN are calls to the hash function H. The SAE
protocol runs in two rounds: the commit exchange and the confirmation ex-
change, as illustrated in Fig. 4.9 (right) for the peer A, which communicates
with a symmetric peer B.

4.2.3.2 The SAE Message Handling (Device level)

Message handling in WPA3 is described in §12.4.8 of the standard, in terms
of a state machine, as interactions between three entities: 1. Station Man-
agement Entity (SME), 2. Parent Process (PP), and 3. Protocol Instances
(PI).

SME is a component responsible for managing various aspects of a wire-
less station or device. It is primarily concerned with managing the
physical and medium access control (MAC) layers of the 802.11 pro-
tocol. SME provides an interface for higher-layer protocols to interact
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Figure 4.9: SAE protocol in WPA3 [54] at both Device level (left) and Com-
munication level (right). A and B share the secret password w and
computed PE in private; PE 2G and G is a subgroup of Z?

p of order
q; i is a counter. B is symmetric to A and thus omitted.
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with the lower layers and handles tasks related to the wireless station’s
configuration, operation, and maintenance. However, this entity is not
strictly described in the standard, which specifies:

§6.1, pg. 314

Some of the functions of the SME are specified in this stand-
ard.

Moreover, the description is fragmented and given incrementally in
different parts of the documentation. This easily causes misinterpret-
ation and misunderstanding.

PP is in charge of managing the database of the protocol instances (PIs).
It performs a number of tasks, such as allocating and deallocating in-
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stances, and keeping track of their respective states. Additionally, it
is responsible for routing incoming messages from the environment
to the correct PI (allocating a new instance when needed). To ac-
complish these operations, it sends a suitable event to drive the state
change of the PI. It also keeps the database updated based on the
events it receives from both the SME and the PIs.

PIs behave according to a state machine. State changes are triggered by
messages and events received from the PP, but transitions fire upon the
analysis of message content. Transitions execution is accompanied
by actions that the PI executes before entering a state. Such actions
consist of messages for the peer or generation of error or completion
output events to be sent to the PP for subsequent deallocation of the
instance.

Fig. 4.9 (left) depicts a simplified version of a PI’s state machine consisting
of four states and having transitions labelled with the relevant events sent
by the PP and able to trigger a state transition (note that we omit inform-
ation regarding the received messages that might prevent transition firing,
and actions performed by the PI when a transition fires). A PI is in the
state Nothing initially, as a new instance, and finally, as a terminal state be-
fore being deallocated in case of error. Depending on their allocation, new
PI immediately transitions out of the Nothing state to either Committed or
Confirmed. Protocol instances that transition into the Nothing state shall im-
mediately and irretrievably be deleted6. A PI enters state Committed when
it receives the event Init from the PP and has sent an SAE commit message
to the peer. In this state, the PI waits for the Com event from the PP and
moves to state Confirmed having sent an SAE confirm when it receives the
correct SAE commit message from the peer. The PI remains in this state if
a Retransmission7 event happens. When an unmanageable error occurs, a
Del event is sent to the PP, and the PI moves to state Nothing to be dealloc-
ated. In the state Confirmed, the PI operates as in state Committed in case
of events Del and Retransmission, and moves to state Accepted on the event
Con from the PP and by receiving a peer’s correct commit message. In the
(final) Accepted state, events Retransmission and Del, if happen, are dealt

6This relevant information is reported only in section 12.4.8.2.2 of [54]
7This event groups several wrong (but manageable) error cases that can happen, e.g., wrong

order of the received messages, wrong received group, etc.
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with as in the previous states; otherwise, the PI has successfully concluded
the process.

4.2.4 Methodology

The unified methodology, at the Communication and Device level that we
propose, concretely involves:

• Dual-Level Modeling. Specify models that separately represent the
Communication and Device levels.

• Level-Specific Properties Analysis. Exploit different formalisms
and verification paradigms at the two levels: a stateless modelling sys-
tem at the Communication level and a stateful modelling system at the
Device level. This dual verification approach leverages the strengths
of each methodology to cover a comprehensive range of aspects and
verification goals of each level:

– At the Communication level, we use p-calculus as specification
formalism, Horn clauses resolution as a verification mechanism,
and PROVERIF [27] as a tool. For this, we analyse properties
common to key exchange verification processes, with a special
focus on Forward Secrecy claims.

– At the Device level, we use state-based transition systems as
specification formalism (specifically, the Abstract State Ma-
chines [31]), model checking of CTL temporal properties [17]
as verification mechanism, and ASMETA [15] as supporting
tools. At this level, we concentrate on the operational correct-
ness of message handling, synchronisation mechanisms, queue
implementations, and state reachability within the protocol.

This approach allows for a much deeper study into the security of a protocol,
not only allowing for greater insights into how well the protocol functions
(thus allowing for better implementations).
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4.2.5 Formal Models of WPA3-SAE

As per phase one of our methodology, we first modelled the Communication
and Device levels of the protocol.

4.2.5.1 Models at the Communication level in the p-calculus

As can be easily seen, the p-calculus code inside the boxes in Fig. 4.10 is
the part modelling the protocol scheme depicted in Fig. 4.9.

Figure 4.10: The vanilla description of
the SAE protocol.

1 PL get tp(=L,=R,= pw,PE) in
2 nrL.nmL.
3 let sL = rL +mL in
4 let EL = PE�mL in
5 let cL = (sL,EL) in
6 out(c,cL); in(c,cR);
7 let sR,ER = cR in ;
8 let K = (PEsRER)

rL in
9 let ks = H

�
032,K

�
in

10 let ss = sL + sR in
11 let kc = kc f (ks, ’SAE’,ss) in
12 let k = pmk(ks, ’SAE’,ss) in
13 niL. // send-confirm
14 let HL = CN(kc, i,cL,cR) in
15 out(c,HL, iL); in(c,HR, iR);
16 out(c,enc(k,m));

We highlight the symmetric nature
of the protocol, letting both pro-
cesses write to the channel before
reading from it.

The p-calculus code outside of the
box serves to model two aspects:
first, to implement the usage of the
same password element PE; and
second, to model the usage of the
key k after the key exchange for
secrecy properties.

The two parties. We call one
the Leftmost, L, and the other the
Rightmost, R, for the convenience
of naming in our model; however,
we stress that given its symmetric
structure, the protocol can be initi-
ated by any device.

The pre-shared password. A table tp of passwords is filled with all pass-
word elements PE that would be calculated by the participants before en-
gaging the protocol, i.e., PE 2 G is the secret group generator for L and R
implemented with finite field cryptography.

The main process. Due to its symmetric nature, any peer can initiate the
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protocol, so the implementation could just be a single self-composed pro-
cess that will be used by both parties. Unfortunately, such a naive, direct
model of the SAE protocol would easily produce false attacks where an ini-
tiator would speak to itself. To avoid this unwanted behaviour, a solution
is to explicitly support the session between the two parties. However, the
session denoted as sID, is not private information and is known to the at-
tacker. To model that, we simply push it to the insecure channel c, i.e.,
out(c,sID). Before calling the processes PL and PR, we allow an external
source to establish which party runs PL and which runs PR, i.e., in(c,(L,R));
doing this, we capture the ability of any honest party to engage with the
protocol with either algorithm, whose structure is anyway mirrored. This
choice requires us to make sure that the two parties would not engage in
the protocol if they do not share the password element. For this reason, we
also added an environment process PP, which is in charge of inserting shared
password elements into a table that will be accessed by PL and PR but cannot
be accessed by the attacker.

Finally, the main process P that the tool checks has the following struc-
ture:

P PP | (( nsID. out(c,sID); in(c,(L,R)); (PL(sID) | PR(sID)))) | !PA.

4.2.5.2 Models at the Device level in ASMETA

The ASMETA framework allowed us to model the state machines of the
PP and the PIs as ASMs. They are an extension of Finite State Machines
where unstructured control states are replaced by mathematical algebras and
state transitions are expressed in terms of transition rules. As an example
in Fig. 4.11, we show the ASM rule of the PI model8, which causes the
transition from state Nothing to state Committed upon receiving the event
Init. By changing the state, the PI sends the commit message and stats the
timer T0.

Writing such transition rules from the documentation was straightforward
since the ASMs are a state-based formal method and have the same compu-
tation paradigm of a state machine (used to describe the PI’s behaviour in the
standard). However, many inconsistencies and incompleteness were found

8All the PIs execute the same machine and each PI identifies self as itself.
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in the official documentation. The complete final model has been obtained
by a model refinement process. Building scenarios to validate the require-
ments of the standard was useful in finding inconsistencies and errors in our
model. Our first model incorporated all three agents (SME, PP and PI) and
this model focused on understanding the agents’ interaction and learning
whether the rule sets defined for each agent meet the requirements. Upon
the initial phase of model validation, when we were confident enough of its
correctness and completeness, we verified our model by using AsmetaSMV.
For verification purposes, the SME model was not considered. since this
agent does not consume events produced by the other agents, the contribu-
tion of this machine is irrelevant for verification purposes. We modelled
only the reception of SME events by the PP.

Figure 4.11: Step from Nothing to
Committed.

rule r_Nothing_State_INIT=
if (state(self)=NOTHING) then

if (PI_Event(self)=INIT) then
par

message_to_peer_COMMIT(self):=true
start_Timer(self,TIMER0):=true
state(self):=COMMITTED
...

endpar
endif

endif

Simulation and verification of the
two ASMs allowed us to ob-
tain essential insight into execu-
tion paths and discover some at-
tacks. Since security and authentic-
ation properties have been handled
by verification at the Communic-
ation level, where the messages’
content is thoroughly checked, dur-
ing our analysis of the agents’ ma-
chines, we focused on verifying
safety (bad configurations do not
happen), reachability (desired con-

figuration are reachable) and deadlock-free (it is always possible to exit
from given configurations) properties. These properties are expressed by
the CTL formula AG(f), meaning that the condition f must always be glob-
ally true. Additional CTL formulas have been developed to assess corner
cases. These formulas include the evaluation of edge safety properties that
check for agents’ failure to receive events when an agent is running low on
RAM or receiving events from multiple agents simultaneously.

4.2.6 Findings/Results

As discussed in Section 4.2.4, we created models to capture the specific-
ation at two different levels - the Communication level, which is analysed
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through the lens of a Dolev-Yao attacker [43], and the Device level, which
investigates the safety and completeness of the machine states of the agents
involved in the protocol.

As expected, both modelling efforts could capture different aspects of the
WPA3-SAE protocol, detailed in Section 4.2.6.1, as well as some common
aspects, detailed in Section 4.2.6.2. Interestingly, combining insights from
both verification tasks allowed us to refine one or the other model to better
understand the nature of the vulnerabilities we could find and reproduce.
Consequently, findings in the verification in one level suggested ways to
patch issues in the other level; for example, from the partial correctness at
the Device level, we could suggest how to patch the state machine modelling
the Communication level, something greatly useful for applying the most
appropriate patch to a vulnerability. We detail these combined findings in
Section 4.2.6.3.

Table 4.4 reports the classes of checked properties and the verification res-
ults. In the following, only a relevant sample of these properties is presen-
ted.

Table 4.4: Summary of results on formal verification of security properties in
ProVerif (left) and ASMETA (right).

Communication level Device level
CO SA WA SK SPE PFS SF DL ES RC

IEEE 802.11:2020

patched models

Formal verification results of our models on IEEE 802.11 and our patches.
Legend. Correctness (CO), Strong/Weak authentication (SA)/(WA), Key secrecy (SK), Password ele-
ment secrecy (SPE), Perfect Forward Secrecy (PFS); Safety (SF), Deadlock (DL), Edge Safety (ES),
Reachability (RC). Outcomes: ( ) - verified, ( ) - partly verified, ( ) - attacks found, ( ) - no attacks
found, yet cannot be proved.

4.2.6.1 Disjoint findings: Replay Attack and Deadlock

4.2.6.1.1 Replay attack
The verification of the design of WPA3-SAE in the latest standard [54,
§12.4] highlighted a vulnerability in the logical flow that led to breaking
its authentication in our model.
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On the basis of the vanilla code illustrated in Fig. 4.10, authentication of L
in R (mirroring the process L) can be captured through the artificial injection
of two events, ei in PL and e f in PR. Informally, ei signifies the belief of L
of having started an authentication process with R, and e f the belief of R
of having terminated an authentication process that must have been started
by L, i.e., R believes that it is communicating to a genuine L. The standard
way to capture authentication in the symbolic model is through verifying a
correspondence of events in the traces of executions. In particular, if for all
the traces t of the symbolic execution of P (defined in Section 4.2.5.1), the
presence of e f in t is always after a single presence of ei in t, then we have
verified authentication9. This is called a correspondence of events and can
be formally described as

8t 2 T. e f 2 t) !9ei 2 t.

The formal tool ProVerif [26] is able to reconstruct the flow of an attack
as a counterexample of the property described above. By inspecting the
reconstruction, we noticed that it is simply carried through blocking com-
mit and confirm messages from L to R, when L initiates the protocol, and
finally reflecting back to L its own messages. Fig. 4.12 shows the mathem-
atical operations for which a simple replay of messages is (mathematically)
acceptable.

Figure 4.12: Replay attack at the design level specification of the WPA3-SAE
protocol in IEEE 802.11:2020, the variant that uses finite field cryp-
tography.

Leftmost Mallory Rightmost
sL,EL blocked!

sR[= sL],ER [= EL]

CN(kc, i,sL,EL,sR,ER) [= CN(kc, i,sL,EL,sL,EL)] blocked!
CN(kc, i,sR,ER,sL,EL) [= CN(kc, i,sL,EL,sL,EL)]

The patch to this specific attack would be that of discarding messages with
the same sL, EL or both. In our model, we can add the guard if cL 6= cR then
just after line 7 of the model of PL described in Fig. 4.10 (and likewise for

9For mutual authentication, we need to inject other two analogous events inverting the
processes.
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PR which is omitted). That guard would allow the rest of the model to run
and would stop in the case of a replay, i.e., cL = cR. With our patch, the
same verification in ProVerif cannot find any attack on authentication any
more.

An interesting note is that the specification of the state machine [54,
§12.4.8.6.4] ignores replayed commit messages, de facto evidencing aware-
ness about this attack. However, by deviating from the protocol specific-
ation, the state machine compromises authentication. It becomes evident
that our comprehensive verification approach across multiple levels plays
a crucial role in ensuring alignment with the intended protocol behaviour,
thereby reducing the risk of insecure and buggy implementations.

4.2.6.1.2 Deadlock

Requirements in the WPA3 SAE standard include safety properties stated
in natural language that can be translated into CTL (safety) properties and
checked on the ASM model to ensure its robustness and correctness. E.g.,
the specification states that:

§12.4.8.6.1

For any given peer identity, there shall be only one protocol instance
in the Committed or the Confirmed states.

This is expressed by the following CTL formula stating that globally (AG)
does not exist a state where two PIs (pi1 and pi2) have the same mac (i.e.,
the same identity) but incompatible state according to the specifications.

AG
⇣
¬
�
mac(pi1) = mac(pi2)^
�

(state(pi1) = Committed ^ state(pi2) = Confirmed)
_ (state(pi1) = Confirmed ^ state(pi2) = Committed)
_ (state(pi1) = Confirmed ^ state(pi2) = Confirmed)
_ (state(pi1) = Committed ^ state(pi2) = Committed)

��⌘

Since this property requires checking the internal states of multiple PIs, it
was verified against the PP model since PP has information on the current
states of the PIs. The result of the property detects no attacks.
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However, the standard documentation does not mention other relevant prop-
erties, such as the absence of deadlock, necessary to guarantee the complete-
ness of error-handling cases. During the analysis of the absence of deadlock
in the Committed state, we discovered, through the following failing prop-
erty, which states that does not exist a configuration where the PI (pi) is in
state Committed and an error occurs (fail holds),

AG(¬(state(pi) = Committed^ f ail))

that the standard does not handle the error in case of receiving a wrong
commit message. This not-handled error causes the PI’s state machine to
deadlock, with no chance for the PI to be deallocated by the PP.

The standard specifies that a timer T0 could have mitigated the deadlock by
sending a Del event when it expired. However, the timer is deactivated when
the PI is in the Committed state, and it checks the content of the Commit
message, preventing the attack mitigation.

The deadlock is even more severe due to the safety property mentioned
above because the attack can be easily executed by a malicious agent. In-
deed, as a result of this deadlock, the PP is unable to create any new in-
stances with the same MAC address as the one associated with the dead-
locked PI. As a result, this may lead to a Denial of Service (DoS) attack on
the affected peer, making it unable to connect to the network. The attacker
could also exploit this vulnerability to cause a peer to run out of memory, as
it is unable to deallocate all instances that ended up in the aforementioned
error state. The last attack exhibits a similar pattern to the one described by
[84], but it exploits a different vulnerability. The attack can be easily solved
by adding, in the state machine, two transitions from the Committed state to
the Nothing state. These transitions must involve sending a Del event to the
PP to signal it to deallocate the PI.

4.2.6.2 Common findings: Correctness violation and Stall on bad
password identifiers

Both the analyses of the two levels could model common issues with a novel
feature that has been introduced in the revision 2020 of IEEE 802.11 [54]:
the possibility of using multiple passwords. This change is meant to en-
hance security by resisting dictionary attacks, providing (selective) forward
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secrecy, allowing user flexibility, preventing credential sharing, facilitating
secure connections for IoT devices, adapting to evolving threats, and im-
proving overall usability. To enact this, an SAE entity can require its peer
to use a specific password by sending a password identifier:

§12.4.5.4

If the peer’s SAE Commit message contains a password identifier,
the value of that identifier shall be used in the construction of the
password element for this exchange.

And failure if no password maps from that password identifier. We could
model the specification of correctness (from slightly different angles) in all
the analysis levels, Communication and Device levels. In both, we found
that correctness was violated: on one hand, the formal verification at the
protocol design level showed a case where peers would use a different pass-
word and, thus, cannot complete the protocol; on the other hand, the formal
verification of the safety property on the state machine showed that an unre-
cognised password identifier would lead to a stall where, again, the protocol
could not complete.

4.2.6.2.1 Correctness violation
We implemented the exchange of password identifiers and their spe-
cified behaviour in ProVerif and found that this new feature breaks
the security property of correctness in some unhandled cases. On the
basis of the code illustrated in Fig. 4.10, we modified line 6 of PL to
out(c,(cL, pL)); in(c,(cR, pR)), where pL and pR are the requested password
identifiers. An analogous change is made for PR. We have three cases: if
pR =?, a password identifier is not requested; if pR 6=? but pR is not valid,
then we abort; otherwise, if pR is a valid identifier, the password element
PE0 depending on pR is used accordingly. This behaviour is captured by the
following code:

if pR 6=? then
get tp(=L,=R,= pR,PE0) in fails if pR not found
let EL = PE0�mL in recalculate password element
out(c,(cL, pL)); re-commit

where a missing entry for an invalid pR in tp for L and R would automatically
fail. Then, correctness is captured as a reachability property of an event
eCORR at the end of the protocol that includes the exchanged key k. The
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two processes PL and PR would write their entity names, the session and the
exchanged key, each in their own table, tL and tR respectively, that cannot be
read by the adversary but it is shared among processes. Then we instantiate
the additional process PA with an event that eCORR that collects information
from both tables. Formally, we first inject the table writing operation

insert tL(L,R,s,k) and insert tR(R,L,s,k)

just after line 7 of the model of PL described in Fig. 4.10. Then, for all
sessions s, keys k, we require that the reasoning core is able to show a trace
t where the event eCORR is recorded and is such that two honest participants
agree on their identities, the password, and the pairwise master key k.

8 s,k. 9 t. eCORR(A,B,s,k,A,B,s,k) 2 t.

where A and B are (the only) honest parties, s is the (common) session ID,
and k is the pairwise master key. If such an event is reached, i.e., eCORR is
found in t, then there exists a run of the protocol in which the two parties
have authenticated each other and they have correctly exchanged the same
session key. This formalism requires us to hardcode all different cases in-
dependently to make a comprehensive analysis, so if some cases but not all
are verified, we quickly say that correctness is partly verified.

ProVerif is unable to reach eCORR, thus violating the security property of
correctness, in the case when both PL and PR require the usage of a specific
password through a valid but different password identifier. In such a case,
the password element PE will be different between the two peers, and they
will not be able to verify the peer confirmation messages. The situation
can be remarkably relevant in meshes, where the possibility of two peers
initiating simultaneously can be frequent, and about which WPA3-SAE is
particularly focussed:

§12.4.1

SAE shall be implemented on all mesh STAs to facilitate and pro-
mote interoperability.

In practice, meshes treat all peers uniformly in the network, yet certain peers
might possess multiple passwords tied to distinct profiles that they can seam-
lessly switch between. Again, we notice a deviation of the state machine to
the protocol specification, as two peers starting the protocol with two dif-
ferent password identifiers would fail the authentication. Even if this seems
just a patch in the wrong place, it is not and that is why: first of all it is
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coincidental, as there is no justification for such a deviation, but more im-
portantly both peers would act legitimate and simply see the authentication
failing, so they would just try again. In other words, there is no mechanism
to prevent both peers from attempting the (failed) authentication repeatedly.
Additionally, as the map of password identifiers is not bijective, they could
have mapped to the same password allowing the protocol to end correctly.

We can patch correctness requesting that, upon reception of the password
identifier, a peer would not reply with a different one. In the case when both
peers initiate and request for a different password identifier that is valid,
then

• the peer with numerically lesser identity (MAC) shall accept the re-
quested password identifier and regenerate the peer-commit-element
accordingly, and

• the peer with numerically greater identity (MAC) shall ignore the re-
quested password identifier.

With this patch, the problematic case can be formally verified for correct-
ness. It is important to notice that this solution may not be ideal, depend-
ing on the reason behind clients sharing multiple passwords, but generally
speaking it is pointless to deny both connections. This aspect of the se-
mantics of multiple passwords goes beyond fixing correctness at the design
level and requires further analysis that is not captured by the formalisation
efforts in our work.

Finally, we stress that our model derives from an intuitive interpretation of
missing specifications on how to handle password identifiers at the design
level. In Section 4.2.6.3, we will examine how the outlined specifications,
supported by formal verification, address the missing specifications.

4.2.6.2.2 Stall on bad password identifiers
In the documentation of the standard, the description of the multiple
branches of the state machine capturing the WPA3-SAE protocol behaviour
is given in natural language and leaves out important details. This can res-
ult in ambiguity and interpretation, leading to serious vulnerabilities or at-
tacks during implementation. For instance, when we modelled the PI state
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machine with ASMETA, we discovered an attack that was caused by un-
clear instructions on how the principal PI should handle an error message.
The vulnerability lurks in the protocol requirement describing a case of fail-
ure:

§12.4.8.6.3

If so, and there is no password associated with that identifier,
BadID will be set, and the protocol instance will construct and
transmit an authentication frame with StatusCode set to UN-
KNOWN_PASSWORD_IDENTIFIER

However, this requirement infers the following deadlock-free property:

AG(¬(state(pi) = Nothing^ event(pi) 6= Del))

indeed, in case of a failure, PIs (pi) (in the state Nothing) should always
request to be deallocated by the PP by sending the termination event Del.
Failing, the property returns a trace where the PI remains stuck in the Noth-
ing state. As shown by the requirement, the Del event is missing, and this
leads the PI to become unresponsive, and the PP can no longer remove it.

This attack, in turn, leads to the violation of additional safety properties in
the PP model. More precisely, the standard in a note states:

§12.4.8.6.3

NOTE—A protocol instance in Nothing state will never receive an
SAE Confirm message due to the state machine behaviour of the
parent process

However, by analysing the behaviour of the PI state machine when it is
stalled, we discovered that the PP can send the CON event to the PI that is
waiting in the Nothing state (this is because the PP only checks the presence
of a PI with the correct MAC but does not check the PI state). The PI does
not handle the CON in the Nothing state, and this could further aggravate the
situation as unhandled severe exceptions could be triggered.

To ensure that the standard is safeguarded against possible future regres-
sions, it would be best to include two patches: one for PP and one for PI.
The first patch should require PP to not only check if the MAC associated
with the one in the confirm message is present in its database but also verify
the PI’s state. The second patch (which, at the current state of the specifica-
tion, patches both) would involve sending the Del event to PP, in addition to
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the frame with StatusCode set to UNKNOWN_PASSWORD_IDENTIFIER when
the PI receives a message containing a password identifier not present in the
table.

4.2.6.3 Unified results: Secure specification for password identifiers

At the Communication level, two peers are not forbidden to choose different
password identifiers, but when the two password identifiers are different, the
protocol will fail without exchanging a common key (correctness violation).
Surprisingly, the analysis of the state machine highlighted that two peers are
not allowed to choose different password identifiers (failure), contradicting
the protocol specification. We discovered that the only states where a re-
newal of the commit message could have happened was the Commited. The
main case of interest turned out to be the agreement on groups, as, if two
peers initiated the protocol with different but supported groups, then one
group would be selected by both on the basis of the natural ordering of their
MAC address: in detail, the one with the lowest MAC has to re-commit and
confirm, and the other has to ignore and wait for another commit message.

We leveraged this result back to our model at the Communication level to
include group agreement according to the specification, as well as our patch
to handle password identifiers, see Sec. 4.2.6.2. From the Communication
perspective, we end up finding a false attack that seems to downgrade pass-
word identifiers. The Communication level model confirms the existence of

Figure 4.13: Attack on password identifier WPA3-SAE protocol in IEEE
802.11:2020 at the Communication level, that reveals to be a false
attack when we analyse the Device level.

Alice Mallory Bob
mA,?,g mA, p̄,g

mB, p̄,g0

mA0, p̄,g0

CN(mB,mA0)
CN(mA0,mB)

this attack, allowing two peers to start with different groups and password
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identifiers. However, the state machine actually implements a check on this,
disallowing the start of the third message in Fig. 4.13.

This demonstrates that the flaw handled at the Device level (without a justi-
fication) is covering for a vulnerability affecting the Communication level,
supporting the high number of misalignments in our Errata, see Appendix A.
This is to exemplify that our unified approach allowed our formal verifica-
tion to enjoy a deeper security analysis than traditional single-model veri-
fication. We argue that the correct design of the protocol (which is what our
patch accounts for) should supersede the patching of the incorrect design
at a different level. Additionally, the deeper analysis here sketched also
suggests that two other important points have to be added to the Commu-
nication level specifications: i) despite both peers being allowed to start the
protocol, when one receives a message before having sent its first message,
it should consider itself a Receiver and act accordingly; and ii) a Receiver
should always accept a supported group, never offer a different group, and
terminate the protocol in a failure state, if an unsupported group is offered
according to the expected rejection list of groups. Our verification shows
that with such specifications, the above attack will not occur.
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Our ultimate goal is for all security protocol designers to be capable of pro-
ducing formal proof of correctness. We view the user-friendly GUI, aided
by the KANT language and the multi-level verification that combines the
results of multiple back-ends, as a substantial step towards achieving this
vision. In particular, we demonstrated the goodness of the analysis approach
that combines the device level with the communication level by evaluating
it on real-world security protocols with critical dimensions that could affect
the lives of millions of people if not correctly designed. In the following,
we highlighted the benefits of the APROVER framework.

The APROVER framework is designed to make it easier for people who
are not familiar with formal methods to create their security protocols.
Users can build their protocols from scratch by dragging and dropping
elements to build the messages composing them. The framework comes
with a graphical user interface that includes basic checks on the parameters
used in cryptographic primitives, which helps to prevent major errors. For
more experienced users, the framework includes the KANT language, a
domain-specific language that allows for both syntactic and semantic valid-
ation queries. This semantic-level validation helps to identify and eliminate
known vulnerabilities even before back-ends verify the protocol. By using
this approach, users can have greater confidence in the protocol require-
ments and reduce the time it takes to verify the protocol. Once the protocol
is modelled, it can be verified by back-ends. The APROVER framework
provides both classical tools used in the literature to verify security proto-
cols at the communication level and verification at the device level via the
ASMETA framework and a library developed specifically for it. The library
developed for ASMETA makes it possible to perform verification covering
both the communication and device levels. The library for ASMETA is
tested to formalise the Z-Wave protocol, proving capable of good perform-
ance (as shown in Table 4.2, 4.1, 4.3) in verification time and allowing us to
discover a severe vulnerability in the protocol, confirmed by Silicon Labs.
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However, a single verification method with its formalism constitutes a single
view of the protocol to be analysed by capturing only part of the details ex-
pressed in the requirements of a real-world security protocol. To overcome
this limitation, we have developed an approach to unifying results that takes
full advantage of the expressive capabilities of the individual tools. The ap-
proach tested combines the use of PROVERIF and ASMETA (it can also
be extended to TAMARIN) to test the communication and device levels,
respectively. The results were compared separately, looking for similarities
and creating a feedback loop in which the results of one tool provided addi-
tional details to be added to the other verification tool. The effectiveness of
the approach has enabled us to discover 20 errata on the WPA3-SAE pro-
tocol (summarised in Table 4.4), which the IEEE 802.11 standard committee
has confirmed, and fixes are in the process of being integrated.

In the future, the APROVER framework will be improved with a focus on
fully automated verification. The aim is to enhance the user experience
by providing feedback via metadata collected during the modelling phase.
Additionally, the goal is to generate code for implementing the security pro-
tocol based on the verified requirements. We plan to conduct further usabil-
ity tests to target a broader audience and make the framework more access-
ible to those without a background in cybersecurity. These tests will ensure
the tool is user-friendly and suitable for a broader range of users. Further-
more, we intend to continue testing the framework with various security
protocols, even though we have already demonstrated its use on complex
protocols such as WPA3-SAE and Z-Wave. This will enable us to expand
the support for cryptographic primitives and implement new security prop-
erty patterns.
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A Errata Summary

The full Errata document is currently with IEEE and is being discussed at
the WG in Panama on January 14th. A high level summary of our findings
can be found below. Full details will be published for the final version.

The errata documents for IEEE Std 802.11:2020 contain twenty-four spe-
cific corrections and patches to the discovered vulnerabilities and errors.
These include clarifications and modifications addressing issues such as
password identifier handling in Mesh networks, management of rejected
group lists, procedures when peers start with different groups, and roles in
the SAE protocol. Other significant errata concern the use of Anti-Clogging
Tokens, incomplete KDF formulas, misleading section titles, participant
roles, the use of indicators, and event handling in the protocol’s state ma-
chine. Each erratum details the original text, proposed corrections, and ra-
tionale, aiming to resolve ambiguities and potential vulnerabilities in the
standard. These corrections are critical for the standard’s accuracy and in-
tegrity. Below is a high level summary of all the proposed corrections:

1. Password Identifier: Addresses operations for Mesh connections
and different password identifiers.

2. List of Rejected Groups: Clarifies handling of group element lists.

3. Start with Different Groups: Proposes random delays and group
selection.

4. Principal Role: Removes ’SAE Initiator’ for role clarity.

5. Anti-Clogging Token: Amends text for Open variable threshold
cases.
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A Errata Summary

6. Incomplete KDF Formula: Updates pseudocode for formula
changes.

7. Misleading Titles: Reorganizes titles for accuracy.

8. Conflation of Participants: Clarifies the SME participant’s role.

9. Use of Indicators: Discusses indicators’ intended use or removal.

10. Misleading SME Events: Clarifies SME-related event descriptions.

11. Non-existent Event: Corrects Sync event naming.

12. Declared but Never Used Event (Fail): Addresses ’Fail’ event re-
dundancy.

13. Missing COM Event: Clarifies COM event handling in state ma-
chine.

14. Missing Del Event and State Transition: Details post-
authentication frame actions.

15. Silent Deletion of Messages: Proposes explicit error case handling.

16. Algorithm Identifier Confusion: Seeks clarity on ’algorithm identi-
fier.’

17. Rejection Frame Terminology: Aims for naming consistency.

18. Deterministic PWE: Corrects procedure description.

19. Probability of PT Value: Modifies algorithm for PT=1 cases.

20. Replay Attack Vulnerability: Suggests protocol revisions for attack
prevention.

21. Different Password Identifiers/Groups: Enhances handling logic.

22. Missing Status Code: Improves error message processing.
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23. Algorithm Identifier Issue: Clarifies algorithm identifiers in frames.

24. Del Event and State Transition: Addresses error handling in the
state machine.
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