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Abstract: 3,4-dihydropyridin-2-ones are of considerable importance due to the large number of
these core structures exhibiting a diverse array of biological and pharmacological activities. The
Michael-type addition of 1,3-dithiane-2-carbothioates to α,β-unsaturated N-tosyl imines, followed by
intramolecular annulation driven by a sulfur leaving group, provides a practical reaction cascade for
the synthesis of a variety of substituted 3,4-dihydropyridin-2-ones. In this work, the reaction was
carried out under solid–liquid phase transfer catalysis (SL-PTC) conditions at room temperature, in
short reaction times in the presence of cheap Bu4N+HSO4

– and solid KOH. The new PTC method
exhibited adequate functional group tolerance, proving to be a green and reliable method and easy
to scale up to furnish rapid access to 3,4-dihydropyridin-2-ones after desulfurization from simple,
readily available starting materials.

Keywords: tandem reaction; S-2,2,2-trifluoroethyl 1,3-dithiane-2-carbothioate; 3,4-dihydropyridin-2-ones;
Michael addition; acyl anion equivalent; phase transfer catalysis

1. Introduction

Multi-substituted dihydropyridinones are privileged frameworks, found in many
biologically active natural compounds [1,2] and are included in the structures of a number
of synthetic molecules with therapeutic properties [3–5]. Moreover, they can be easily
converted into highly valuable derivatives [6] and employed as precursors in the synthesis
of natural molecules with biological activity [7].

In particular, 3,4-dihydropyridinones constitute the core of Lanicepine A (Figure 1),
a natural molecule extracted from Saussurea plants, known as “snow lotus”, used to treat
various disorders [8].

The 3,4-dihydropyridinone skeleton embodies the core of a series of potent P2X7
inhibitors which play important roles in several inflammatory, immune, neurological and
musculoskeletal disorders (Figure 1) [9–12].

They are also present in a series of selective α1a receptor antagonists, showing a possible
application for the benign prostatic hyperplasia [13]. Derivatives of 3,4-dihydropyridinones
play a critical role as ROCK1 inhibitors for the treatment of hypertension and related disor-
ders [14]. A series of compounds based on 3,4-dihydropyridinone core have been found to
show hypolipidemic and 5α-reductase inhibitory activities [15]. Moreover, the six-membered
lactams and their derivatives such as piperidines are valuable building blocks [16–18].

The wide pharmacological activity of the 2-pyridinone derivatives has encouraged
the research of efficient synthetic methodologies under mild and safe conditions. Typi-
cally, the methods reported in the literature take advantage of multicomponent processes
(MCR) [19–21], or one-pot synthesis via tandem reactions.
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N-(arylsulfonyl)-acrylamides and 1,3-dicarbonyl compounds (2 eq.) for the unprecedent 

Figure 1. Natural and synthetic biologically active 3,4-dihydropyridinones.

The cyclization of suitable substrates in a one-pot tandem reaction is an attractive
approach for the synthesis of dihydropyridinones. Nonetheless, these methods require
pre-functionalized molecules, which are often troublesome to access and need expensive or
toxic catalysts or harsh reaction conditions (Scheme 1).
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Scheme 1. (a–d) One-pot tandem processes for the preparation of 3,4-dihydropyridin-2-ones.

Wang reported a trifluoroacetic acid-mediated stereospecific intramolecular cyclization
reaction of oxirane-containing enamides to produce homoclausenamide analogs [22]. Zhao
developed a one-pot protocol for the access to 3,4-dihydropyridin-2-ones via a tandem
Michael-type addition followed by cyclization between Blaise intermediates, obtained
from nitriles and α-haloesters (1.5 eq.) in the presence of Zn (2 eq.), and α,β-unsaturated
carboxylic esters (2 eq.), catalyzed by boron trifluoride [23]. Liu achieved the title com-
pounds by the domino reaction of NH2-based enaminones and acryloyl chloride (2 eq.)
in the presence of aluminum trichloride (2 eq.) in water/THF as the reaction media,
at room temperature for 12 h [24]. A silver catalyzed one-pot radical reaction cascade
from N-(arylsulfonyl)-acrylamides and 1,3-dicarbonyl compounds (2 eq.) for the unprece-
dent regioselective formation of 3,3-disubstituted-2-dihydropyridinones was developed by
Nevado [25].

The dihydropyridine-2-one skeleton could also be generated in a stereoselective fashion
through benzyl bromide carbonylation followed by isothiourea promoted formal [1 + 1 + 4]
annulation with α,β-unsaturated N-tosyl ketimines [26]. Moreover, N-heterocyclic car-
benes could also be successfully used to form the desired motif through activation of
α,β-unsaturated esters with enamides [16].

Although all these methods can provide various types of the 3,4-dihydropyridin-
2-one skeleton, they suffer from the use of excess reagents, need metals or anhydrous
solvents and/or inert atmosphere, or involve the use of NaH as a base. Thus, it seemed
reasonable to investigate alternative protocols to generate the target compounds using a
more practical procedure.
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As part of our interests in the development of simple and efficient methodologies under
PTC conditions for the synthesis of heterocycles with potential biological activity [27–30],
we envisioned the possibility to obtain six-membered enol lactams according to our re-
cently published one-pot tandem procedure for the preparation of analogous enol lactones
(Scheme 1, path a) [31].

The synthetic plan involves the conjugate addition of the acyl anion equivalent
(AAE), generated by deprotonation of 1,3-dithiane-2-carbothioates 1a,b under SL-PTC
conditions, on the β position of α,β-unsaturated N-tosyl imines 3 (Scheme 2, path b).
These compounds could be easily generated from the corresponding chalcones 2 by using
4-toluenesulfonamide in the presence of TiCl4. In the second step, the resulting reac-
tive aza-enolate generates the six-membered lactams through an intramolecular addi-
tion/elimination pathway (Scheme 3).
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Scheme 3. Proposed reaction mechanism.

Indeed, 1,3-dithiane-2-derivatives are known acyl anion equivalents due to the stabi-
lization of the carbanion adjacent to the two sulfur atoms as a consequence of delocalization
of the negative charge into the contiguous vacant sulfur d-orbitals [32]. Moreover, the
additional carbothioate group contributes to decreasing the pKa with respect to the un-
substituted 1,3-dithiane, thus enriching the reactivity profile [33]. In our case, the thioate
moiety has a crucial role acting as a suitable leaving group, thus enabling the cyclization
to give the desired dihydropyran-2-one skeleton. Noteworthy, in the literature, different
methodologies are reported to easily remove the 1,3-dithiane group in the final product.
1,3-dithiane-2-carbothioates have also been successfully used by one of the authors of this
work in the stereoselective 1,4-addition to nitroalkenes [34] and enones [35].

2. Results

In a first set of experiments, we investigated the feasibility of the synthetic plan by
using S-phenyl 1,3-dithiane-2-carbothioate (1a) and N-[(1E,2E)-1,3-diphenylallylidene]-4-
methylbenzenesulfonamide (3a) as model compounds.
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When thioester (1a) was reacted with imine 3a (1.05 eq) in the presence of solid KOH
(1.1 eq.) and Bu4N+HSO4

– (0.1 eq., TBAHSO4) in DCM for 22 h at room temperature, the
corresponding enol lactam 3a was formed in 51% yield (Table 1, entry 1).

Table 1. Optimization of reaction conditions a.
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2 1a 1.05 TEBA KOH (1.1) DCM 22 50

3 1a 1.25 TBAHSO4 KOH (1.1) DCM 22 61

4 1a 1.25 TBAHSO4 KOH (1.5) DCM 22 62
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8 1b 1.25 TBAHSO4 KOH (1.5) DCM 5 85

9 d 1b 1.25 TBAHSO4 KOH (1.5) DCM 5 88

10 e 1b 1.25 TBAHSO4 KOH (1.5) toluene 5 38

11 e 1b 1.25 TBAHSO4 KOH (1.5) 2MeTHF 5 44

12 e 1b 1.25 TBAHSO4 KOH (1.5) CH3CN 5 54

13 e 1b 1.25 TBAHSO4 KOH (1.5) 1,2,3-trimethylbenzene 5 47

14 1b 1.15 TBAHSO4 KOH (1.5) DCM 5 77

15 1b 1.15 TBAHSO4 – DCM 5 0

16 e 1b 1.15 – KOH (1.5) DCM 5 33
a All reactions were carried out on a 0.2 mmol scale by using 0.2 mL of the indicated solvent at 25 ◦C. b Isolated
yield. c At 40 ◦C. d Using 0.2 eq. of TBAHSO4. e The yield was calculated by 1H NMR of the reaction mixture
after usual work-up by using 1,4-dinitrobenzene as internal standard.

Under the same reaction conditions, benzyl triethylammonium chloride (TEBA) af-
forded similar yield (Table 1, entry 2). In both cases, some unreacted thioester 1a was
recovered; therefore, it was chosen to increase the amount of imine 3a. Better yields could
be obtained by using 1.25 molar equivalents of 3a (Table 1, entry 3), whereas similar results
were obtained by using more solid KOH (Table 1, entry 4). On the other hand, a milder base
such as solid, anhydrous K2CO3 furnished a lower yield of 3a (Table 1, entry 5). Both KOH
and TBAHSO4 were needed to ensure high yields of the desired product 4a. Actually, very
low conversions and yields were observed when the reaction was carried out without a base
or TBAHSO4 (Table 1, entries 6,7). These results confirm that the reaction proceeds through
a PTC mechanism even though the background reaction occurs to some extent [36,37].

In a second set of experiments, we used S-2,2,2-trifluoroethyl-1,3-dithiane-2-carbothioate
(1b) for further optimization since previous results [31] showed that the presence of the
powerful electron-withdrawing S-2,2,2-trifluoroethyl group facilitates such domino processes.

We were pleased to find that the reaction reached completion in 5 h only, affording the
desired 4a in 85% isolated yield (Table 1, entry 8). The amount of PT catalyst (0.1 eq) was
shown to be optimal since only a slightly increased yield could be obtained by increasing
the amount of TBAHSO4 to 0.2 molar equivalents (Table 1, entry 9). Lower yields were
obtained when dichloromethane (DCM) was replaced by toluene, 2-methyltetrahydrofuran,
acetonitrile or 1,2,3-trimethylbenzene (Table 1, entries 10–13).
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Similar results could be obtained with a slightly reduced amount of imine 3a (Table 1,
entry 14), whereas the reaction did not proceed in the absence of base (Table 1, entry 15)
and gave 33% yield only without PT catalyst (Table 1, entry 16). This behavior might be
ascribed to a limited solubility of the thioate potassium salt A in DCM that makes possible
the reaction with the N-tosyl-imine 2a. However, the reaction is remarkably more efficient
in the presence of the PTC catalyst. Indeed, the exchange of the potassium cation in A with
the ammonium cation of the catalyst generates the highly reactive ammonium acyl anion
equivalent AAE, triggering a fast reaction cascade and leading to the desired heterocycle
4a. When the same reaction was carried out without TBAHSO4 by using a greater excess
of both KOH (3 eq.) and N-tosylimine 2a (2 eq.), the dihydropyran-2-one 4a could be
obtained in a 62% yield. Moreover, this reaction provided 4a in a complex mixture with
other byproducts, and the latter reaction conditions are remarkably less efficient from the
atom economy point of view.

The reaction scope has been investigated by reacting a variety of substituted imines
3a–j either bearing electron-poor or electron-rich substituents with thioester 1b under opti-
mized conditions (Table 2). Both electron-withdrawing and electron-donating substituents
in the para position of the aromatic rings gave adequate yields of 3,4-dihydropyridin-2-ones
4. On the other hand, the less reactive imine 3g bearing a nitro group was not suitable to
generate the expected compound under the present conditions. The reaction works with
imines bearing the sterically encumbered bromo atom both in ortho and para positions. The
current method was also suitable when the heteroaromatic furyl and thienyl rings replaced
the phenyl ring in position three of the starting imine.

Table 2. Synthesis of 3,4-dihydropyridin-2-ones 4a–j a.
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the reaction with the N-tosyl-imine 2a. However, the reaction is remarkably more efficient 

in the presence of the PTC catalyst. Indeed, the exchange of the potassium cation in A with 

the ammonium cation of the catalyst generates the highly reactive ammonium acyl anion 

equivalent AAE, triggering a fast reaction cascade and leading to the desired heterocycle 

4a. When the same reaction was carried out without TBAHSO4 by using a greater excess 

of both KOH (3 eq.) and N-tosylimine 2a (2 eq.), the dihydropyran-2-one 4a could be ob-

tained in a 62% yield. Moreover, this reaction provided 4a in a complex mixture with other 

byproducts, and the latter reaction conditions are remarkably less efficient from the atom 

economy point of view. 

The reaction scope has been investigated by reacting a variety of substituted imines 

3a-j either bearing electron-poor or electron-rich substituents with thioester 1b under op-

timized conditions (Table 2). Both electron-withdrawing and electron-donating substitu-

ents in the para position of the aromatic rings gave adequate yields of 3,4-dihydropyridin-

2-ones 4. On the other hand, the less reactive imine 3g bearing a nitro group was not suit-

able to generate the expected compound under the present conditions. The reaction works 

with imines bearing the sterically encumbered bromo atom both in ortho and para posi-

tions. The current method was also suitable when the heteroaromatic furyl and thienyl 

rings replaced the phenyl ring in position three of the starting imine. 

Table 2. Synthesis of 3,4-dihydropyridin-2-ones 4a–j a. 

 

 R1 R2 Yield (%) 

3a,4a Ph Ph 85 

3b,4b 4-C6H4-Cl Ph 62 

3c,4c 4-C6H4-Br Ph 64 

3d,4d 4-C6H4-OMe 4-C6H4-OMe 60 b 

3e,4e Ph 4-C6H4-OMe 59 

3f,4f Ph 4-C6H4-Me 70 

3g,4g Ph 4-C6H4-NO2 – 

3h,4h Ph 2-C6H4-Br 50 

3i,4i Ph 3-methylthienyl 72 

3j,4j Ph 2-methylfuryl 76 

R1 R2 Yield (%)

3a,4a Ph Ph 85

3b,4b 4-C6H4-Cl Ph 62

3c,4c 4-C6H4-Br Ph 64

3d,4d 4-C6H4-OMe 4-C6H4-OMe 60 b

3e,4e Ph 4-C6H4-OMe 59

3f,4f Ph 4-C6H4-Me 70

3g,4g Ph 4-C6H4-NO2 –

3h,4h Ph 2-C6H4-Br 50

3i,4i Ph 3-methylthienyl 72

3j,4j Ph 2-methylfuryl 76
a Reaction conditions: 1b (0.30 mmol), 3 (0.375 mmol), KOHsolid (0.45 mmol), TBAHSO4 (0.03 mmol), DCM
(0.30 mL) at rt for 5 h. b The yield was 70% when the reaction was carried out with 1.25 mmol of 1b under
otherwise identical conditions.

The reaction could be easily carried out on a preparative scale under the same reaction
conditions. Increasing the reaction scale by 4-fold gave 496 mg of dihydropyridin-2-one 4d
(70% isolated yield) after the same reaction time by using the same 1 M concentration.

The 1,3-dithiane moiety of dihydropyridin-2-ones 4 could be easily removed by re-
ductive desulfurization, as demonstrated by the clean conversion of 4a,b to the corre-
sponding 4,6-diaryl-1-tosyl-3,4-dihydropyridin-2-ones 5a,b with the nickel boride approach
(Scheme 4) [38,39]. The reaction was carried out by portion-wise addition of NaBH4 to
a stirred solution of the substrate in the presence of nickel chloride hexahydrate. The
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dihydropyridin-2-ones 5a,b were isolated in 70% yield, showing analytical and physical
properties identical to those previously reported [40].
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Scheme 4. Desulfurization of dihydropyridin-2-ones.

The 3,4-dihydropyridin-2-ones derivatives 5 are useful building blocks for several
further derivatizations (Scheme 5). In our hands, the N-detosylation of 5a using the sodium
naphthalenide protocol afforded a 82% yield of 6a. The latter has been previously converted
to the corresponding piperidine 7 by a two-step procedure involving a carbonyl to alcohol
DIBAL-H reduction followed by deoxygenation [16]. Moreover, the amide nitrogen of 9
could also be successfully subjected to N-allylation [26], whereas the heterocyclic ring could
be opened to sulfonamide 8 with LiAlH4 at 0 ◦C.
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3. Conclusions

In summary, an efficient synthesis of 3,4-dihydropyridin-2-ones 4 was accomplished
via the addition of 1,3-dithiane-2-carboxy thioesters 1 to α,β-unsaturated ketimines 2 under
SL-PTC conditions, followed by in situ cyclization driven by the thioate leaving group. The
reaction could be carried out under mild conditions with bench stable and cheap substrates.
The method is tolerant of different substituents on the aromatic groups of the ketimines
and does not need to be carried out under inert atmosphere. The process can be easily
carried out to scale. The 1,3-dithiane group on the final products 5 can be easily removed
by reductive desulfurization.

This new procedure competes well with previous methods. In particular, the previous
procedures [16,40] to generate 3,4-dihydropyridin-2-ones 4,5 described herein require
working under deoxygenated and inert atmosphere in 20-fold more diluted conditions for
significantly longer reaction times. The PTC approach also seems promising to develop the
asymmetric version of the procedure.

4. Materials and Methods

All commercially available compounds were purchased from Merck Life Science S.r.l.,
20149 Milano, Italy or TCI Europe, Boereveldseweg 6-Haven 1063, 2070 Zwijndrecht, Belgium.

Melting points were determined with a BÜCHI 535 (BÜCHI Labortechnik AG Meierseg-
gstrasse 40, Postfach, 9230 Flawil, Switzerland) and were corrected. NMR spectra were
recorded on a Bruker AC 300 (Bruker, Billerica, MA, USA) operating at 300.13 MHz for 1H
NMR, 75.3 MHz for 13C NMR and 282 MHz for 19F NMR. Chemical shifts were reported
by using CHCl3 (7.24 ppm for 1H NMR and 77.0 for 13C NMR) and CFCl3 (0 ppm for 19F
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NMR) as external standards. APT experiments were used in the assignment of carbon
spectra. Column chromatography on silica gel (230–400 mesh) was performed by the flash
technique or by using MPLC. For thin-layer chromatography (TLC), silica gel plates Merck
60 F254 (Merck KGaA, Darmstadt, Germany) were used and compounds were visualized
by irradiation with UV light.

4.1. Synthesis of S-2,2,2-Trifluoroethyl 1,3-dithiane-2-carbothioate (1b)

To a solution of dithiane carboxylic acid (0.67 g, 5 mmol) in dry dichloromethane
(25 mL), hydroxybenzotriazole (0.71 g, 5.25 mmol) was added at 0 ◦C, and the resulting
solution was stirred for 10 min at the same temperature. 1-ethyl-3-carbodiimide hydrochlo-
ride (1.01 g, 5.25 mmol) was added at 0 ◦C and the mixture was stirred for 30 min at the
same temperature. Finally, 2,2,2-trifluoroethanethiol (0.64 g, 5.50 mmol) was added at 0 ◦C,
and the mixture was allowed to warm to room temperature. After being stirred overnight,
the reaction mixture was diluted with dichloromethane (10 mL) and water (30 mL) was
added. The aqueous layer was extracted with dichloromethane (2× 15 mL) and the organic
phases were washed with water (10 mL) and brine (10 mL), dried over MgSO4 and evapo-
rated in vacuo to give the title compound as pale yellow solid. Crude 1b was recrystallized
from dichloromethane-petroleum ether to give 1.00 g of pure 1b, yield 80%, mp 56–57 ◦C.

1H NMR (300 MHz, CDCl3): δ = 1.96–2.20 (m, 2 H), 2.60–2.68 (m, 2 H), 3.16–3.24 (m, 2 H),
3.62 (q, J = 9.8 Hz, 2 H) 4.27 (s, 1H). 13C NMR (75 MHz, CDCl3): δ = 24.7 (CH2), 26.4 (2 CH2),
31.8 (q, J = 1.4 Hz, CH2), 49.5 (CH), 124.0 (q, J = 272.0 Hz), 192.7 (C). 19F NMR (282 MHz, CDCl3):
δ =− 67.2. C7H9F3OS3 (262.34): calcd. C, 32.05, H, 3.46; found C, 32.14, H, 3.47.

4.2. General Procedure for N-Tosylimine 3 Synthesis

To a stirred dry DCM (75 mL) solution of chalcone 2 (0.015 mol) and 4-toluenesulfonamide
(3.08 g, 0.018 mol) cooled to 0 ◦C, Et3N (5.46 g, 0.054 mol) and TiCl4 (3.41 g, 0.018 mol)
were added in sequence. After heating at reflux overnight, the resulting solution was
cooled to room temperature, followed by the addition of water and extraction with DCM.
The combined organic phase was evaporated to dryness and subjected to column chro-
matography or directly purified through crystallization with AcOEt-hexane 1:1 to generate
pure compounds 3 in 50–70% yield with physical and spectroscopic data identical to those
reported in literature [41–43].

The following imines are new:
4-methyl-N-((E)-3-(3-methylthiophen-2-yl)-1-phenylallylidene)benzenesulfonamide (3i) 1H

NMR (300 MHz, CDCl3) δ = 7.93 (d, 2H, J = 8.1 Hz), 7.63 (d, 2H, J = 7.5 Hz), 7.55–7.42 (m, 6 H),
7.32 (d, 2H, J = 8.1 Hz), 7.26 (d, 1H, J = 15.6 Hz), 6.90 (d, 1H, J = 5.1 Hz), 2.49 (s, 3H), 2.22 (s, 3H).

13C (75 MHz, CDCl3) δ = 177.4 (C), 143.3 (C), 140.2 (CH), 139.0 (C), 134.5 (C), 131.6
(CH), 131.5 (CH), 129.9 (CH), 129.6 (CH), 129.4 (CH), 128.3 (CH), 127.2 (CH), 109.8, 49.8
(CH), 27.8 (CH2), 27.7 (CH2), 24.3 (CH2), 21.7 (CH3). Mp 173–175 ◦C. C21H19NO2S2 (381.51):
calcd. C, 66.11; H, 5.02; N, 3.67; found C, 66.12; H, 5.00; N, 3.68.

4-methyl-N-((E)-3-(5-methylfuran-2-yl)-1-phenylallylidene)benzenesulfonamide (3j) 1H
NMR (300 MHz, CDCl3) δ = 7.94 (d, 2H, J = 7.6 Hz), 7.59 (d, 2H, J = 7.6 Hz), 7.53–7.31 (m, 6 H),
6.79 (d, 1H, J = 15.6 Hz), 6.60 (d, 1H, J = 3.6 Hz), 6.15 (d, 1H, J = 3.3 Hz), 2.44 (s, 3H), 2.43 (s, 3H).

13C (75 MHz, CDCl3) δ = 177.4 (C), 157.7 (C), 149.6 (C), 143.1 (C), 139.0 (C), 135.1 (CH),
131.2 (CH), 129.7 (CH), 129.2 (CH), 128.2 (CH), 127.0 (CH), 119.4 (CH), 109.8 (CH), 21.4
(CH3), 14.0 (CH3). Mp 142–143 ◦C. C21H19NO3S (365.45): calcd C, 69.02; H, 5.24; N, 3.83;
found C, 69.01; H, 5.23; N, 3.84.

4.3. General Procedure for the Synthesis of 3,4-Dihydropyridin-2-ones 4a–j

Well-crushed KOH (25,2 mg, 0.45 mmol) was added under vigorous stirring at room
temperature to a solution of thioester 1b (109 mg, 0.30 mmol), imine 3 (0.37 mmol) and
TBAHSO4 (10.2 mg, 0.03 mmol) in dichloromethane (0.30 mL). After 5 h, the reaction
mixture was added with 10% aq NH4Cl, the organic phase was separated and the aqueous
phase was extracted with DCM (2 × 5 mL). The combined organic phases were dried over
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Na2SO4 and evaporated to dryness at reduced pressure. The crude obtained was purified
by flash chromatography to afford dihydropyridin-2-ones 4a–j. The eluant, yield, physical
and spectroscopic data of 4a–j are as follows.

9,11-Diphenyl-8-oxa-1,5-dithiaspiro[5.5]undec-9-en-7-one (4a)
Et2O/hexane 1:6, (129 mg, 85%), white solid, mp 186–187 ◦C. 1H NMR (300 MHz,

CDCl3) δ = 7.87 (d, 2H, J = 8.4 Hz), 7.36–7.28 (m, 12 H), 5.74 (d, 1H, J = 6.3 Hz), 3.95 (d, 1H,
J = 6.3 Hz), 3.49–3.29 (m, 2H), 2.63–2-59 (m, 2H), 2.49 (s, 3H), 2.11 (m, 1H), 1.75 (m, 1H).
13C (75 MHz, CDCl3) δ = 168.4 (C), 145.1 (C), 140.2 (C), 137.1 (C), 136.4 (C), 135.2 (C), 129.6
(CH), 129.5 (CH), 129.1 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 126.2 (CH),
118.1 (CH), 55.4 (C), 49.8 (CH), 27.8 (CH2), 27.7 (CH2), 24.3 (CH2), 21.7 (CH3). C27H25NO3S3
(507.68): calcd. C, 63.88, H 4.96; found C 63.90, H 5.00.

9-(4-chlorophenyl)-11-phenyl-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4b)
Et2O/hexane 1:5, (101 mg, 62%), white solid, mp 180–182 ◦C. 1H NMR (300 MHz, CDCl3)

δ = 7.89 (d, 2H, J = 8.4 Hz), 7.32–7.27 (m, 11H), 5.73 (d, 1H, J = 6.6 Hz), 3.93 (d, 1H, J = 6.6 Hz),
3.49–3.31 (m, 2H), 2.63–2.55 (m, 2H), 2.50 (s, 3H), 2.14–2.10 (m, 1H), 1.78–1.71 (m, 1H). 13C (75 MHz,
CDCl3) δ = 168.2 (C), 145.3 (C), 139.1 (C), 136.1 (C), 135.7 (C), 129.5 (CH), 129.3 (CH), 128.5 (CH),
128.4 (CH), 127.4 (CH), 118.5 (CH), 55.2 (C), 49.7 (CH), 27.83 (CH2), 27.79 (CH2), 24.3 (CH2), 21.8
(CH3). C27H24ClNO3S3 (542.12): calcd. C, 59.82; H, 4.46; found C, 59.81; H, 4.45.

9-(4-bromophenyl)-11-(phenyl)-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4c)
Et2O/hexane 1:4, (113 mg, 64%), white solid, mp 131–132 ◦C. 1H NMR (300 MHz, CDCl3)

δ = 7.90 (d, 2H, J = 7.9 Hz), 7.49 (d, 2H, J = 8.0), 7.37–7.23 (m, 9H), 5.73 (d, 1H, J = 6.3 Hz),
3.92 (d, 1H, J = 6.3 Hz), 3.49–3.27 (m, 2H), 2.63–2.59 (m, 2H), 2.50 (s, 3H), 2.15–2.10 (m, 1H),
1.80–1.70 (m, 1H). 13C (75 MHz, CDCl3) δ = 168.1 (C), 145.3 (C), 139.1 (C), 136.2 (C), 134.9 (C),
131.4 (C), 129.5 (CH), 129.2 (CH), 128.4 (CH), 127.7 (CH), 126.4 (CH), 122.3 (C), 118.5 (CH),
55.2 (C), 49.7 (CH), 27.79 (CH2), 27.77 (CH2), 21.7 (CH3). C27H24BrNO3S3 (586,58): calcd. C,
55.29; H, 4.12; found C, 56.00; H, 4.12.

9,11-bis(4-methoxyphenyl)-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4d)
EtOAc/hexane 1:6, (102 mg, 60%), white solid, mp 203–204 ◦C. 1H NMR (300 MHz,

CDCl3) δ = 7.87 (d, 2H, J = 8.4 Hz), 7.32–7.22 (m, 6H), 6.89–6.83 (m, 4H), 5.66 (d, 1H, J = 6.6 Hz),
3.88 (d, 1H, J = 6.6 Hz), 3.86 (s, 3H), 3.81 (s, 3H), 3.48–3.29 (m, 2H), 2.62–2.58 (m, 2H), 2.48 (s,
3H), 2.14–2.09 (m, 1H), 1.74–1.62 (m, 1H). 13C (75 MHz, CDCl3) δ = 168.5 (C), 145.3 (C), 139.1
(C), 136.2 (C), 134.9 (C), 131.4 (C), 129.5 (CH), 129.2 (CH), 128.4 (CH), 127.7 (CH), 126.4 (CH),
122.3 (C), 118.5 (CH), 55.2 (C), 49.7 (CH), 27.8 (CH2), 27.7 (CH2), 21.6 (CH3). C29H29NO5S3
(567.73) calcd. C, 61.35 H, 5.15; found C, 62.56; H, 5.16.

11-(4-methoxyphenyl)-9-phenyl-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4e)
Et2O/hexane 1:4, (95 mg, 59%), white solid, mp 176–178 ◦C. 1H NMR (300 MHz,

CDCl3) δ = 7.86 (d, 2H, J = 8.1 Hz), 7.34–7.25 (m, 9H), 6.84 (d, 2H, J = 8.1 Hz) 5.73 (d, 1H,
J = 6.6 Hz), 3.91 (d, 1H, J = 6.6 Hz), 3.82 (s, 3H), 3.50–3.27 (m, 2H), 2.62–2.59 (m, 2H),
2.49 (s, 3H), 2.15–2.10 (m, 1H), 1.76–1.71 (m, 1H). 13C (75 MHz, CDCl3) δ = 163.5 (C), 159.5
(C), 145.0 (C), 140.1 (C), 137.2 (C), 130.7 (CH), 129.5 (CH), 129.2 (CH), 128.3 (CH) 128.2 (CH),
126.1 (CH), 118.4 (CH), 113.8 (CH), 55.2 (CH3), 48.9 (CH), 27.8 (CH2), 24.4 (CH2), 21.8 (CH3).
C28H27NO4S3 (537.71) calcd. C, 62.54; H, 5.06; found C, 62.55; H, 5.06.

9-phenyl-11-(p-tolyl)-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4f)
Et2O/hexane 1:4, (110 mg, 70%), white solid, mp 169–170 ◦C. 1H NMR (300 MHz,

CDCl3) δ = 7.85 (d, 2H, J = 6.1 Hz), 7.34–7.30 (m, 7 H), 7.19 (d, 2H, J = 5.9 Hz), 7.10 (d, 2H,
J = 5.9 Hz), 5.71 (d, 1H, J = 4.7 Hz), 3.90 (d, 1H, J = 4.7 Hz), 3.46–3.30 (m, 2H), 2.61–2.57 (m,
2H), 2.47 (s, 3H), 2.33 (s, 3H), 2.11–2.08 (m, 1H), 1.76–1.66 (m, 1H). 13C (75 MHz, CDCl3)
δ = 168.5 (C), 145.1 (C), 140.0 (C), 138.2 (C), 137.2 (C), 136.4 (C), 129.5 (CH), 129.2 (CH),
129.1 (CH), 128.7 (CH), 128.3 (CH), 128.2 (CH), 126.1 (CH), 118.4 (CH), 55.4 (C), 49.3 (CH),
27.9 (CH2), 27.8 (CH2), 24.3 (CH2), 21.8 (CH3), 21.2 (CH3). C28H27NO3S3 (521.71): calcd. C
64.46, H 5.22; found C 64.39, H 5.21.

11-(2-bromophenyl)-9-phenyl-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4h)
Et2O/hexane 1:6, (106 mg, 60%), white solid, mp 198–199 ◦C. 1H NMR (300 MHz,

CDCl3) δ = 7.86 (d, 2H, J = 8.3 Hz), 7.63–7.60 (m, 1H), 7.35–7.28 (m, 8H), 7.19–7.16 (m,
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2H), 5.77 (d, 1H, J = 6.7 Hz), 4.64 (d, 1H, J = 6.7 Hz), 3.59–3.49 (m, 1H), 3.35–3.26 (m, 1H),
2.66–2.62 (m, 2H), 2.49 (s, 3H), 2.16–2.11 (m, 1H), 1.84–1.71 (m, 1H). 13C (75 MHz, CDCl3)
δ = 168.3 (C), 145.1 (C), 140.2 (C), 137.1 (C), 136.2 (C), 133.0 (C), 129.8 (CH), 129.5 (CH), 129.3
(CH), 129.2 (CH), 128.3 (C), 128.2 (C), 127.7 (CH), 125.9 (CH), 125.5 (C), 117.0 (CH), 55.0 (C),
47.6 (CH), 27.8 (CH2), 27.6 (CH2), 21.7 (CH3). C27H24BrNO3S3 (586,58): calcd. C, 55.29; H,
4.12; found C, 55.29; H, 4.11.

11-(3-methylthiophen-2-yl)-9-phenyl-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4i)
Et2O/hexane 1:4, (114 mg, 72%), white solid, mp 193–194 ◦C. 1H NMR (300 MHz,

CDCl3) 7.84 (d, 2H, J = 8.4 Hz), 7.33–7.28 (m, 7H), 7.20 (d, 1H, J = 5.1 Hz), 6.83 (d, 1H,
J = 5.1 Hz), 5.68 (d, 1H, J = 5.7 Hz), 4.37 (d, 1H, J = 5.7 Hz), 3.46–3.37 (m, 2H), 2.68–2.57 (m,
2H), 2.46 (s, 3H), 2.33 (s, 3H), 2.16–2.11 (m, 1H), 1.80–1.75 (m, 1H). 13C (75 MHz, CDCl3)
168.4 (C), 145.1 (C), 140.1 (C), 137.2 (C), 136.7 (C), 131.9 (C), 129.4 (CH), 129.2 (CH), 128.4
(CH), 128.2 (CH), 126.5 (CH), 124.4 (CH), 118.8 (CH), 45.9 (C), 42.4 (CH), 27.7 (CH2), 27.6
(CH2), 24.3 (CH2), 21.7 (CH3), 14.8 (CH3). C26H25NO3S4 (527,73) calcd. C, 59.18 H, 4.78;
found C, 62.56; H, 5.16.

11-(5-methylfuran-2-yl)-9-phenyl-8-tosyl-1,5-dithia-8-azaspiro[5.5]undec-9-en-7-one (4j)
Et2O/hexane 1:4, (117 mg, 76%), white solid, mp 198–199 ◦C. 1H NMR (300 MHz,

CDCl3) 7.76 (d, 2H, J = 8.4 Hz), 7.30–7.25 (m, 7H), 6.25 (d, 1H, J = 3.0 Hz), 5.94 (m, 1H), 5.68
(d, 1H, J = 7.2 Hz), 3.94 (d, 1H, J = 6.9 Hz), 3.67–3.62 (m, 1H), 3.21–3.17 (m, 1H), 2.72–2.62 (m,
2H), 2.46 (s, 3H), 2.33 (s, 3H), 2.18–2.15 (m, 1H), 1.80–1.56 (m, 1H). 13C (75 MHz, CDCl3)
δ = 168.8 (C), 153.1 (C), 146.0(C), 144.7 (C), 140.7 (C), 137.0 (C), 136.8 (C), 129.3 (CH), 129.0
(CH), 128.1 (CH), 126.4 (CH), 115.4 (CH), 110.8 (CH), 106.3 (CH), 54.3 (C), 43.4 (CH), 27.9
(CH2), 27.6 (CH2), 21.7 (CH3), 13.7 (CH3). C26H25NO4S3 (511.67) calcd. C, 61.03 H, 4.93;
found C, 61.04; H,4.93.

4.4. General Procedure for the Synthesis of 3,4-Dihydropyridin-2-ones 5a–b

A solution of 4 (0.25 mmol) in THF (2 mL) was added to a stirred solution of NiCl2 . 6 H2O
(950 mg, 4.00 mmol) in DMF (1 mL). After cooling to 0 ◦C, NaBH4 (302 mg, 8.0 mmol)
was added in portions. The reaction mixture was stirred at 0 ◦C for 15 min, then filtered
through a Celite pad and washed with AcOEt. The organic solution was dried over MgSO4
and concentrated in vacuum to afford a crude residue that was purified by flash column
chromatography to give desulfurized dihydropyranones 5a,b.

Eluant, yield and physical spectroscopic data of 5a,b are as follows:
4,6-diphenyl-1-tosyl-3,4-dihydropyridin-2-one (5a)
AcOEt/hexane 1:12, (71 mg, 70%). 1H NMR (300 MHz, CDCl3) δ = 7.75 (d, 2H, J = 8.4 Hz),

7.45–7.12 (m, 12 H), 5.96 (d, 1H, J = 4.5 Hz), 3.91–3-85 (m, 1H), 2.82 (d, J = 8.2 Hz 2H), 2.42 (s, 3H).
6-(4-clorophenyl)-4-phenyl-1-tosyl-3,4-dihydropyridin-2-one (5b)
AcOEt/hexane 1:12, (71 mg, 70%). 1H NMR (300 MHz, CDCl3) δ = 7.76 (d, 2H, J = 8.4 Hz),

7.40–7.22 (m, 9 H), 7.20–7.15 (m, 2 H) 5.98 (d, 1H, J = 4.5 Hz), 3.92–3.83 (m, 1H), 2.82 (d,
J = 8.2 Hz 2H), 2.43 (s, 3H).

4.5. Synthesis of 4,6-Diphenyl-3,4-dihydropyridin-2-one (6a)

To a stirred solution of 5a (71 mg, 0.18 mmol) in THF (3 mL) at −78 ◦C under nitro-
gen atmosphere, a freshly prepared sodium naphthalenide solution in dry THF (10 mL)
(sodium (33 mg, 1.44 mmol) and naphthalene (185 mg, 8 mmol)) was added dropwise.
The reaction mixture was stirred for 30 min at −78 ◦C and quenched with saturated NaCl
aqueous solution. The mixture was allowed to reach room temperature and extracted
with Et2O. The aqueous phase was extracted with Et2O (2 × 5 mL). The combined organic
phases were dried, evaporated to dryness under reduced pressure and subjected to column
chromatography (AcOEt/hexane 1:6) to generate 6a (37 mg, 82%). 1H NMR (300 MHz,
CDCl3) δ = 7.45–7.21 (m, 10 H), 5.56 (dd, 1H, J = 4.0, 1.3 Hz), 4.0–3.89 (m, 1H), 2.88 (dd,
J = 16.2, 6.9 Hz 1H).
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