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The computation of the mean perimeter density via the notion of mean covariogram for non-stationary Boolean
models has been proposed as further work in Galerne (Image Anal. Stereol. 30 (2011) 39-51). We address this
issue by considering here more general germ-grain models. Furthermore, we discuss similarities and differences
with respect to the computation of the mean boundary density by means of the outer Minkowski content notion.
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1. Introduction

Let us consider a full dimensional random closed set Θ in R𝑑 , and let 𝜕Θ be its topological boundary.
Denote by H𝑑−1 the (𝑑 − 1)-dimensional Hausdorff measure, and assume that the mean surface mea-
sure E[H 𝑑−1 (𝜕Θ ∩ · )] is locally finite. Whenever E[H 𝑑−1 (𝜕Θ ∩ · )] is absolutely continuous with
respect to the usual 𝑑-dimensional Lebesgue measure 𝜈𝑑 , its Radon-Nikodym density, say 𝜆𝜕Θ (𝑥), is
also named mean surface density of Θ. A problem of interest in the literature concerns the determina-
tion and the estimation of 𝜆𝜕Θ (𝑥). In this regard, we mention the notion of specific area of a random
closed set Θ at a point 𝑥 ∈ R𝑑 , defined as the following limit

𝜎Θ (𝑥) := lim
𝑟↓0

P(𝑥 ∈ Θ⊕𝑟 \Θ)
𝑟

, (1.1)

provided it exists. Here, Θ⊕𝑟 denotes the parallel set of Θ at distance 𝑟 , i.e. Θ⊕𝑟 := {𝑥 ∈ R𝑑 :
dist(𝑥,Θ) ≤ 𝑟}. The notion of specific area has been introduced in the seminal book on random closed
sets by Matheron in (Matheron, 1975, p. 50), leaving the existence of the limit as an open problem;
an answer to this has been given in Villa (2014) for a wide class of random closed sets, showing
that, in general, 𝜎Θ (𝑥) may differ from 𝜆𝜕Θ (𝑥). Nevertheless, under suitable regularity assumptions
on Θ, for instance, if it is a stationary Boolean model with convex grains, it is well known that
𝜎Θ (𝑥) = 𝜆𝜕Θ (𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0. Actually, the stationarity of Θ implies that E[H 𝑑−1 (𝜕Θ ∩ · )] is a
multiple of 𝜈𝑑 , whereas the convexity of the grains implies that 𝜎Θ (𝑥) equals the density of the mean
measure of the topological boundary of Θ. It is worth noticing that the H𝑑−1-measure of the topologi-
cal boundary of a non-empty convex set, but more generally of a compact set with Lipschitz boundary,
coincides with the H𝑑−1-measure of the so-called essential boundary (denoted here by 𝜕∗) of the set.
As we shall recall in the next section, the H𝑑−1-measure of the essential boundary equals the perimeter
(in the Geometric Measure Theory sense) of the set; the perimeter notion is strictly related to that of
total variation of the indicator function of the set. Actually, the theory of sets of finite perimeter is a
central topic in the broader framework of Geometric Measure Theory (e.g., see Ambrosio et al. (2000),
Maggi (2012) for an exhaustive treatment); hence it is not surprising that, in the last decades, sets
with finite perimeter appeared in various papers dealing with stochastic geometry topics (e.g., Galerne
(2011, 2016), Galerne and Lachièze-Rey (2015), Kiderlen and Rataj (2018), Rataj (2015), Villa (2010,
2014)). Among these we point out the paper by Galerne (2011), where some useful formulas for the
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computation of the perimeter are extended to any measurable set by means of the average directional
derivative at the origin of the covariogram associated to the involved set. The author considers then
random sets and their mean covariogram; in particular, he provides an explicit expression for the mean
perimeter density of Boolean models in the stationary case.
Although stationarity is often a convenient condition to get simple and applicable formulas, in the lit-
erature several explicit results for non-stationary Boolean models are available (we refer to (Schneider
and Weil, 2008, Ch. 11) for a more exhaustive discussion). Therefore the problem of possible general-
ization to the non-stationary case naturally arises, as mentioned also in Galerne (2011).

In the next section, we shall define properly all these notions only mentioned so far. Now, in order
to clarify the aim of our paper, we anticipate that in Galerne (2011) it is proved that, for a stationary
random closed set Θ, the density of the mean perimeter measure E[𝑃(Θ, · )] (= E[H 𝑑−1 (𝜕∗Θ ∩ · )]),
say 𝜆𝜕∗Θ (𝑥), is constant, given by

𝜆𝜕∗Θ (𝑥) ≡
1

𝑏𝑑−1

∫
𝑆𝑑−1

lim
𝑟→0

P(𝑟𝑢 ∈ Θ,0 ∉ Θ)
|𝑟 | H𝑑−1 (d𝑢) for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 , (1.2)

where 𝑏𝑑−1 is the volume of the unit ball in R𝑑−1, and 𝑆𝑑−1 the unit sphere in R𝑑 . Furthermore, we
would like to point out that, if the boundary 𝜕Θ of Θ is sufficiently regular and such that E[H 𝑑−1 (𝜕∗Θ∩
· )] = E[H𝑑−1 (𝜕Θ ∩ · )], by specializing to the stationary case some more general formulas for non-
stationary random sets given in Theorem 7 and Theorem 18 in Villa (2014), we also know that

𝜆𝜕∗Θ (𝑥) = 𝜎Θ (𝑥) ≡ lim
𝑟↓0

P(0 ∈ Θ⊕𝑟 \Θ)
𝑟

= lim
𝑟↓0

P(0 ∈ (𝜕Θ)⊕𝑟 )
2𝑟

for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 . (1.3)

Therefore, on the one hand, the equations (1.2) and (1.3) provide equivalent ways for computing the
density of the mean boudary measure of Θ whenever it is sufficiently regular; this might also bring to
different approaches in possible estimations of 𝜆𝜕∗Θ (𝑥). On the other hand, we also observe that if Θ is
lower dimensional with positive H 𝑑−1 measure, then 𝜆𝜕∗Θ (𝑥) ≡ 0, whereas the limits in Eq. (1.3) are
different from 0.

Hence, the main aim of the present paper is twofold. Firstly, to generalize some results in Galerne
(2011) to the non-stationary case, left there as a further work; among these, Eq. (1.2) and related results
for Boolean models. This provides a further step in extending the theory of sets with finite perimeter
and related topics in a stochastic setting. Secondly, to clarify similarities, differences and links between
the above limits in relation with the evaluation of the mean surface density of a random set. To do
this, we shall compare the notion of covariogram on the one hand, and the notion of (outer) Minkowski
content on the other hand.
We also point out here that, contrary to the Minkowski content notion, the covariogram and the perime-
ter notion do not require the closure of the involved set; for this reason some related recent results in
the literature for random sets are stated in the more general setting of random measurable sets (RAMS)
(e.g., see Galerne (2016), Galerne and Lachièze-Rey (2015)). Nevertheless, as we shall discuss in Sec-
tion 4.3, the framework of random closed sets seems to be more suitable to our aims.

The paper is organized as follows. In Section 2, we recall some basic facts and definitions on sets
with finite perimeter and on random sets useful for the sequel. In Section 3, we first introduce the
assumptions, which are analogous to the corresponding assumptions in Villa (2010), where the role of
the topological boundary of Θ is played here by its perimeter. Then we state and prove our main results;
in particular we generalize the known results for homogeneous Boolean models to the non-stationary
case, and then we address the problem for a more general germ-grain model. In particular, it will
emerge why the general non-stationary case is much less tractable than the Boolean case. In Section
4, we collect some remarks and we discuss some similarities and differences in the evaluation of the
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(mean) boundary measure of a (random) set, via the covariogram notion and via the outer Minkowski
content notion.

2. Preliminaries and notation

Throughout the paper we work in the Euclidean space R𝑑 , 𝑑 ≥ 2, equipped with the Borel 𝜎-algebra
BR𝑑 . Given a subset 𝐴 of R𝑑 , 𝜕𝐴 := cl𝐴 \ int𝐴 will be its topological boundary, 𝐴𝑐 the complement
set of 𝐴, diam(𝐴) the diameter of 𝐴, int𝐴 and cl𝐴 the interior and the closure of 𝐴, respectively. For
𝑟 ≥ 0 and 𝑥 ∈ R𝑑 , 𝐵𝑟 (𝑥) is the closed ball with center 𝑥 and radius 𝑟; finally, 𝑏𝑛 :=H𝑛 (𝐵1 (0)) denotes
the volume of the unit ball in R𝑛.
We also recall the notion of Minkowski addition 𝐴 ⊕ 𝐵 (also named dilation), and the notion of
Minkowski difference 𝐴 	 𝐵 (also named erosion) between two subsets 𝐴 and 𝐵 of R𝑑 (we refer to
Heijmans (1995) for further insights):

𝐴 ⊕ 𝐵 := {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} =
⋃
𝑎∈𝐴

𝑎 + 𝐵,

𝐴 	 𝐵 := {𝑥 ∈ R𝑑 : 𝐵 + 𝑥 ⊆ 𝐴} =
⋂
𝑏∈𝐵

𝐴 − 𝑏 = (𝐴𝑐 ⊕ (−𝐵))𝑐 .

To lighten the notation, in what follows we set 𝐴⊕𝑟 := 𝐴 ⊕ 𝐵𝑟 (0) for any 𝑟 > 0; 𝐴⊕𝑟 is also named the
parallel set of 𝐴 at distance 𝑟, or Minkowski enlargement of size 𝑟 .

2.1. Sets with finite perimeter and related notions

In this section, we mainly refer to Ambrosio et al. (2000), Evans and Gariepy (1992) with regard to the
theory of functions of bounded variations and sets with finite perimeter.

There exist several ways to measure and define the boundary of a subset of R𝑑; one of them is given
by the notion of perimeter, due to De Giorgi, which gives the measure of the so-called essential bound-
ary of the set, a subset of the topological boundary defined in terms of the 𝑑-dimensional densities of
the set. Let 𝐴 be a 𝜈𝑑-measurable subset of R𝑑 . The 𝑑-dimensional density of 𝐴 at 𝑥 is defined by

𝛿𝑑 (𝐴, 𝑥) := lim
𝑟↓0

𝜈𝑑 (𝐴 ∩ 𝐵𝑟 (𝑥))
𝑏𝑑𝑟

𝑑
,

provided that the limit exists. It is clear that 𝛿𝑑 (𝐴, 𝑥) equals 1 for all 𝑥 ∈ int𝐴, and 0 for all 𝑥 ∈ int(𝐴𝑐),
while different values can be assumed at the boundary points of 𝐴. The set of points where the density
is neither 0 nor 1 is called essential boundary. Namely, for every 𝑡 ∈ [0,1] and every 𝜈𝑑-measurable
set 𝐴 ⊂ R𝑑 , let 𝐴𝑡 := {𝑥 ∈ R𝑑 : 𝛿𝑑 (𝐴, 𝑥) = 𝑡}; all the sets 𝐴𝑡 are Borel sets, and in particular the set
𝜕∗𝐴 := R𝑑 \ (𝐴0 ∪ 𝐴1) is called essential boundary of 𝐴.

A way to introduce a set of finite perimeter is through the definition of functions of bounded vari-
ations; in particular, a measurable set 𝐴 ⊂ R𝑑 is said to have finite perimeter in an open set 𝑈 ⊆ R𝑑 ,
denoted by 𝑃(𝐴,𝑈), if its characteristic function 1𝐴 has bounded variation in𝑈:

𝑃(𝐴,𝑈) := sup
{ ∫
𝑈

1𝐴(𝑥)div𝜙(𝑥)d𝑥 : 𝜙 ∈ 𝐶1
𝑐 (𝑈,R𝑑), ‖𝜙‖∞ ≤ 1

}
<∞, (2.1)
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where 𝐶1
𝑐 (𝑈,R𝑑) is the set of continuously differentiable functions 𝜙 :𝑈→ R𝑑 with compact support.

It follows that the distributional derivative in 𝑈 of 1𝐴 is representable by a R𝑑-valued Radon measure
in𝑈, that we denote by 𝐷1𝐴, such that∫

𝐴

div𝜙 d𝑥 = −
𝑑∑︁
𝑖=1

∫
𝑈

𝜙𝑖 d𝐷𝑖1𝐴 ∀𝜙 ∈ 𝐶1
𝑐 (𝑈,R𝑑).

The perimeter of 𝐴 in𝑈 may be equivalently defined as the total variation |𝐷1𝐴| in𝑈, that is 𝑃(𝐴,𝑈) :=
|𝐷1𝐴| (𝑈). More generally, if 𝐴 has finite perimeter in𝑈, we define 𝑃(𝐴, 𝐵) := |𝐷1𝐴| (𝐵) for any Borel
set 𝐵 ⊆𝑈. General theorems on sets with finite perimeter (see (Ambrosio et al., 2000, §3.5)) guarantee
that, if 𝐴 has finite perimeter in an open set 𝑈 ⊆ R𝑑 , then the measures |𝐷1𝐴| and H 𝑑−1 (𝜕∗𝐴 ∩ · )
coincide on the Borel subsets of𝑈; as a consequence, the perimeter measure can be computed in terms
of the H𝑑−1 measure, and in particular the following equalities can be proved:

𝑃(𝐴, 𝐵) =H𝑑−1 (𝜕∗𝐴 ∩ 𝐵) =H𝑑−1 (𝐴1/2 ∩ 𝐵).

It follows in particular that the perimeter of 𝐴 is invariant under modification of a set of Lebesgue
measure zero. For sets with finite perimeter in𝑈 = R𝑑 we will write 𝑃(𝐴) instead of 𝑃(𝐴,R𝑑), and we
will say that 𝐴 has finite perimeter.
Finally, noticing that 𝜕∗𝐴 ⊆ 𝜕𝐴, it holds 𝑃(𝐴) ≤ H 𝑑−1 (𝜕𝐴); such an inequality holds without any
regularity or topological assumption on 𝐴. More generally, Theorem 3.61 in Ambrosio et al. (2000)
states that any subset of R𝑑 of finite perimeter has 𝑑-dimensional density either 0 or 1 or 1/2 at H 𝑑−1-
almost every point of its boundary; therefore

H𝑑−1 (𝜕𝐴) = 𝑃(𝐴) +H𝑑−1 (𝜕𝐴 ∩ 𝐴0) +H𝑑−1 (𝜕𝐴 ∩ 𝐴1). (2.2)

Similarly to (2.1), for any unit vector 𝑢 ∈ 𝑆𝑑−1 one may define the directional variation in 𝑈 in the
direction 𝑢 of 1𝐴:

𝑉𝑢 (𝐴,𝑈) := sup
{ ∫
𝑈

1𝐴(𝑥)〈∇𝜙(𝑥), 𝑢〉d𝑥 : 𝜙 ∈ 𝐶1
𝑐 (𝑈,R), ‖𝜙‖∞ ≤ 1

}
,

where 〈∇𝜙(𝑥), 𝑢〉 is the classical directional derivative of 𝜙 in the direction 𝑢.
The directional distributional derivative in 𝑈 of 1𝐴 in the direction 𝑢 ∈ 𝑆𝑑−1 is representable by a
signed Radon measure in𝑈, that we denote by 𝐷𝑢1𝐴, such that∫

𝐴

〈∇𝜙(𝑥), 𝑢〉d𝑥 = −
∫
𝑈

𝜙 d𝐷𝑢1𝐴 ∀𝜙 ∈ 𝐶1
𝑐 (𝑈,R);

if 𝑃(𝐴,𝑈) <∞, then 𝑉𝑢 (𝐴,𝑈) = |𝐷𝑢1𝐴| (𝑈) <∞.
As above, we write 𝑉𝑢 (𝐴) for 𝑉𝑢 (𝐴,R𝑑). We refer to Galerne (2011, 2016), Kiderlen and Rataj (2018)
for further insights; in particular, by (Galerne, 2011, Prop. 8) and Eq.s (3) and (4) in Galerne (2016), we
recall here that 𝑃(𝐴, · ) is finite if and only if 𝑉𝑢 (𝐴, · ) is finite for all 𝑢 ∈ 𝑆𝑑−1, and that

𝑃(𝐴, 𝐵) = 1
2𝑏𝑑−1

∫
𝑆𝑑−1

𝑉𝑢 (𝐴, 𝐵)H 𝑑−1 (d𝑢) ∀ Borel B ⊆𝑈, (2.3)

with

sup
𝑢∈𝑆𝑑−1

𝑉𝑢 (𝐴, 𝐵) ≤ 𝑃(𝐴, 𝐵). (2.4)
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Hence, we may interpret the directional variation 𝑉𝑢 (𝐴) as the projection of the perimeter of 𝐴 along
the direction 𝑢, and, vice versa, the perimeter as half the average of the directional variation along all
the possible directions (half just because opposite unit vectors 𝑢 ∈ 𝑆𝑑−1 give the same contribution).
A useful approximation of the directional variation of any measurable set 𝐴 ⊂ R𝑑 with 𝜈𝑑 (𝐴) <∞ can
be given in terms of the so-called covariogram 𝑔𝐴 : R𝑑 → [0,+∞), defined as 𝑔𝐴(𝑦) := 𝜈𝑑 (𝐴∩(𝑦+𝐴)).
We refer to Galerne (2011) for a more detailed discussion and nice properties; here we recall that if 𝐴
has finite perimeter, then

𝑉𝑢 (𝐴) = 2 lim
𝑟→0

𝑔𝐴(0) − 𝑔𝐴(𝑟𝑢)
|𝑟 | = lim

𝑟→0

∫
R𝑑

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥 (2.5)

exists and is finite for all 𝑢 ∈ 𝑆𝑑−1 (see (Galerne, 2011, Th. 13), and also Galerne (2016) for generaliza-
tions to functions with locally bounded variation).

In what follows, we shall also deal with sets with H𝑑−1-rectifiable topological boundary. Namely,
we say that a compact set 𝑆 ⊂ R𝑑 is 𝑑 − 1-rectifiable if it is representable as the image 𝑓 (𝐾) of a
compact set 𝐾 ⊂ R𝑑−1, with 𝑓 : R𝑑−1 → R𝑑 Lipschitz; 𝑆 is called countably H𝑑−1-rectifiable if there
exist countably many 𝑑 − 1-dimensional Lipschitz maps 𝑓𝑖 : R𝑑−1 → R𝑑 such that 𝑆 \⋃𝑖 𝑓𝑖 (R𝑑−1) is
H𝑑−1-negligible; if, furthermore, H𝑑−1 (𝑆) <∞, then 𝑆 is called H 𝑑−1-rectifiable.
Moreover, in our terminology, a compact set 𝐴 has Lipschitz boundary if for every boundary point 𝑎
there exists a neighborhood U of 𝑎, a rotation 𝑅 in R𝑑 and a Lipschitz function 𝑓 : R𝑑−1 → R such
that 𝑅(𝐴 ∩U) = {(𝑥, 𝑦) ∈ (R𝑑−1× R) ∩ 𝑅(U) : 𝑦 ≥ 𝑓 (𝑥)}, i.e. 𝐴 ∩U is the epigraph of a Lipschitz
function; in particular, 𝐴 is 𝑑-dimensional, and 𝜕𝐴 is 𝑑 − 1-rectifiable.

Another useful notion from Geometric Measure theory related to the perimeter of a compact 𝐴 ⊂ R𝑑
is the so-called outer Minkowski content SM(𝐴) of 𝐴, introduced in Ambrosio et al. (2008) and further
investigated in Villa (2009). It is the quantity defined by

SM(𝐴) := lim
𝑟↓0

𝜈𝑑 (𝐴⊕𝑟 \ 𝐴)
𝑟

, (2.6)

provided that the limit exists and is finite. A class of sets stable under finite unions, for which the outer
Minkowski content exists and equals the perimeter of the involved sets, is provided in Ambrosio et al.
(2008); such a class contains, for instance, all sets with Lipschitz boundary. More generally, it is proved
in Villa (2009) that, if 𝜕𝐴 satisfies certain general regularity assumptions (satisfied, for instance, if 𝜕𝐴
is (𝑑 − 1)-rectifiable and bounded), then

SM(𝐴) = 𝑃(𝐴) + 2H 𝑑−1 (𝜕𝐴 ∩ 𝐴0). (2.7)

2.2. Point processes and random sets

For an exhaustive treatment of point processes, and for a unified theory on germ-grain models, we refer
to Daley and Vere-Jones (2003, 2008), and to Matheron (1975), Molchanov (2005), Schneider and Weil
(2008), respectively. Here we only recall some basic facts and definitions.

A point process in R𝑑 , say Φ̃, is a locally finite collection {𝑋𝑖}𝑖∈N of random points; more formally
Φ̃ is a random counting measure, that is a measurable map from a probability space (Ω,F ,P) into
the space of locally finite counting measures on R𝑑 . The measure Λ̃(𝐴) := E[Φ̃(𝐴)] on BR𝑑 is called
intensity measure of Φ̃. A marked point process in R𝑑 with marks in a complete and separable metric
space K is a collection Φ = {(𝑋𝑖 , 𝐾𝑖)}𝑖∈N of random points 𝑋𝑖 in R𝑑 , each one associated with a mark
𝐾𝑖 ∈ K, with the property that the unmarked process {Φ̃(𝐵) : 𝐵 ∈ BR𝑑 } := {Φ(𝐵 × K) : 𝐵 ∈ BR𝑑 } is
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a point process in R𝑑 . The intensity measure of Φ, say Λ, is a 𝜎-finite measure on BR𝑑×K defined as
Λ(𝐵 × 𝐿) := E[Φ(𝐵 × 𝐿)]. A common assumption (e.g., see Hug and Last (2000) and (Schneider and
Weil, 2008, Sec. 11.1)) is the existence of a measurable function 𝑓 : R𝑑 × K → R+ and of a probability
measure 𝑄 on K, such that Λ(d(𝑥, 𝑘)) = 𝑓 (𝑥, 𝑘)d𝑥𝑄(d𝑘). Another important measure associated to Φ

is the second factorial moment measure, say 𝜈 [2] ; it is the measure on B(R𝑑×K)2 defined by∫
𝑓 (𝑥1, 𝑘1, 𝑥2, 𝑘2)𝜈 [2] (d(𝑥1, 𝑘1, 𝑥2, 𝑘2)) = E

[ ∑︁
(𝑋𝑖 , 𝐾𝑖 ) , (𝑋 𝑗 , 𝐾 𝑗 ) ∈Φ,

𝑋𝑖 ≠ 𝑋 𝑗

𝑓 (𝑋𝑖 , 𝐾𝑖 , 𝑋 𝑗 , 𝐾 𝑗 )
]
,

for any non-negative measurable function 𝑓 on (R𝑑 × K)2 (e.g., see Stoyan et al. (1995)). Similarly
to Λ, we shall assume that there exist a measurable function 𝑔 : (R𝑑 × K)2 → R+ and a probability
measure 𝑄 [2] on K2 such that

𝜈 [2] (d(𝑥1, 𝑘1, 𝑥2, 𝑘2)) = 𝑔(𝑥1, 𝑘1, 𝑥2, 𝑘2)d𝑥1d𝑥2𝑄 [2] (d(𝑘1, 𝑘2)). (2.8)

A random closed set Θ in R𝑑 is a measurable map Θ : (Ω,𝔉,P) −→ (F, 𝜎F). Here F denotes the
class of the closed subsets in R𝑑 , and 𝜎F is the 𝜎-algebra generated by the so-called Fell topology, or
hit-or-miss topology, that is the topology generated by the set system {F𝐺 : 𝐺 ∈ G} ∪ {F𝐶 : 𝐶 ∈ C},
where G and C are the system of the open and compact subsets of R𝑑 , respectively, while F𝐺 := {𝐹 ∈
F : 𝐹 ∩𝐺 ≠ ∅} and F𝐶 := {𝐹 ∈ F : 𝐹 ∩𝐶 = ∅} (e.g., see Matheron (1975)).
For the measurability of H𝑑−1 (𝜕Θ) under rectifiability assumptions on 𝜕Θ we refer to Zähle (1982);
for the measurability of 𝑃(Θ) and of 𝑉𝑢 (Θ) we refer to (Galerne, 2011, p. 47). Whenever Θ is a random
set with locally finite boundary measure, such that the measures E[H 𝑑−1 (𝜕Θ ∩ · )], E[𝑃(Θ, · )] and
E[𝑉𝑢 (Θ, · )] are well defined and absolutely continuous w.r.t. 𝜈𝑑 , we denote by 𝜆𝜕Θ (𝑥), 𝜆𝜕∗Θ (𝑥) and
𝜆𝑉𝑢 ,Θ (𝑥) their respective (Radon-Nikodym) densities.
The random set Θ is said to be stationary if its probability law is invariant under translation; in such a
case 𝜆𝜕∗Θ (𝑥), 𝜆𝑉𝑢 ,Θ (𝑥) and 𝜆𝜕Θ (𝑥) are constant and named specific variation (or specific perimeter),
specific directional variation and specific surface, respectively.

Any random closed set Θ in R𝑑 given by a random union of compact random sets (particles) can
be represented as a germ-grain model driven by a marked point process in R𝑑 with marks in the space
C𝑑 \ {∅} of non-empty compact subsets of R𝑑 . As a matter of fact, chosen a suitable center map
𝑐 : C𝑑 \ {∅} → R𝑑 , each particle 𝐶 can be associated with a pair (𝑥,𝐶 ′) such that 𝐶 = 𝑥 +𝐶 ′; 𝑥 := 𝑐(𝐶)
can be interpreted as the “centre” of 𝐶 (germ), and 𝐶 ′ :=𝐶 − 𝑥 the “shape” (grain).
For instance, 𝑐(𝐶) might be choosen to be the circumcenter of 𝐶 (e.g., see (Baddeley et al., 2007,
p. 192) and (Schneider and Weil, 2008, Sec. 4.1)); as a consequence Θ may be described by a suitable
marked point process Φ in R𝑑 with marks in K := {𝐶 ∈ C𝑑 \ {∅} : 𝑐(𝐶) = 0}, so that

Θ =
⋃

(𝑋𝑖 ,𝑍𝑖) ∈Φ
𝑋𝑖 + 𝑍𝑖 . (2.9)

The intensity measure Λ of Φ is commonly assumed to be such that the mean number of grains hitting
any compact subset of R𝑑 is finite; this is equivalent to say that the mean number of grains hitting the
ball 𝐵𝑅 (0) is finite for any 𝑅 > 0 :

E
[ ∑︁
(𝑋𝑖 ,𝑍𝑖) ∈Φ

1(−𝑍𝑖)⊕𝑅 (𝑋𝑖)
]
=

∫
R𝑑×K

1(−𝑧)⊕𝑅 (𝑥)Λ(d(𝑥, 𝑧)) <∞ ∀𝑅 > 0. (2.10)

Such a condition guarantees that Θ is closed (see Schneider and Weil (2008)). The equality in the above
equation follows by the well known Campbell formula for marked point processes (e.g., see Baddeley
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et al. (2007)).
Whenever Φ is a marked Poisson point process, Θ is called Boolean model; whenever the grains 𝑍𝑖 are
independent of the point process {𝑋𝑖} and i.i.d. as 𝑍0, the latter is called typical grain, the intensity
measure Λ of Φ is then of the type Λ(d(𝑥, 𝑧)) = 𝑓 (𝑥)d𝑥𝑄(d𝑧), and 𝑄 is called mark distribution.
Moreover, disc 𝑓 will denote the set of all the points of discontinuity of 𝑓 , whereas E𝑄 the expectation
with respect to 𝑄.

All the results concerning the covariogram of deterministic measurable sets can be adapted to ran-
dom closed sets (e.g., see (Galerne, 2011, Prop. 16), and (Galerne, 2016, Prop. 1) for the more general
case of random fields with bounded variation); in particular, the mean covariogram of Θ is defined as
𝛾Θ (𝑦) := E[𝑔Θ (𝑦)], and the mean version of (2.3) and of (2.5) hold:

E[𝑃(Θ, 𝐵)] = 1
2𝑏𝑑−1

∫
𝑆𝑑−1
E[𝑉𝑢 (Θ, 𝐵)]H𝑑−1 (d𝑢) ∀𝐵 ∈ BR𝑑 , (2.11)

and

E[𝑉𝑢 (Θ)] = 2 lim
𝑟→0

𝛾Θ (0) − 𝛾Θ (𝑟𝑢)
|𝑟 | . (2.12)

3. Generalization to the non-stationary case

As stated in the Introduction, the main aim of this paper is to generalize some results proved in Galerne
(2011) for Boolean models to the non-stationary case. More precisely, from (Galerne, 2011, Th. 17) we
know that, if Θ is a stationary random closed set with locally finite perimeter almost surely, then

𝜆𝜕∗Θ ≡ 1
2𝑏𝑑−1

∫
𝑆𝑑−1

𝜆𝑉𝑢 ;ΘH 𝑑−1 (d𝑢) ∈ R,

with

𝜆𝑉𝑢 ;Θ ≡ 2 lim
𝑟→0

P(𝑟𝑢 ∈ Θ,0 ∉ Θ)
|𝑟 | ∈ R ∀𝑢 ∈ 𝑆𝑑−1.

In particular, if Θ is a stationary Boolean model with intensity 𝛼 and typical grain 𝑍0 with distribution
𝑄, from (Galerne, 2011, Prop. 19) we know that

𝜆𝑉𝑢 ;Θ ≡ 𝛼E𝑄 [𝑉𝑢 (𝑍0)]𝑒−𝛼E𝑄 [𝜈𝑑 (𝑍0) ] (3.1)

and

𝜆𝜕∗Θ ≡ 𝛼E𝑄 [𝑃(𝑍0)]𝑒−𝛼E𝑄 [𝜈𝑑 (𝑍0) ] . (3.2)

Assumptions. Let Θ be a germ-grain model in R𝑑 as in (2.9), where Φ has intensity measure
Λ(d(𝑥, 𝑧)) = 𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧) satisfying (2.10), and such that

(A1) E𝑄 [𝑃(𝑍)] :=
∫

K 𝑃(𝑧)𝑄(d𝑧) <∞;
(A2) for any 𝑧 ∈ K, H𝑑−1 (disc( 𝑓 (·, 𝑧))) = 0, and 𝑓 (·, 𝑧) is locally bounded such that for any rela-

tively compact 𝐵 ⊂ R𝑑

sup
𝑥∈𝐵⊕diam(𝑧)

𝑓 (𝑥, 𝑧) ≤ 𝜉𝐵 (𝑧) (3.3)

for some 𝜉𝐵 (𝑧) with
∫

K 𝜉𝐵 (𝑧)𝑃(𝑧)𝑄(d𝑧) = 𝑐𝐵 <∞.
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Note that the assumption (A1) says, in particular, that any grain of Θ has finite perimeter 𝑄-almost
surely. By remembering that 𝑃(𝐴) ≤ H 𝑑−1 (𝜕𝐴), a sufficient condition for (A1), sometimes easier to
handle in practice, is E𝑄 [H 𝑑−1 (𝜕𝑍)] <∞.
The assumption (3.3) is a technical condition on 𝑓 which will guarantee some uniformity results useful
in the sequel. It is worth noting that it is trivially satisfied by (A1), whenever 𝑓 is bounded, or 𝑓 ( · 𝑧) is
locally bounded and diam(𝑧) ≤ 𝐷 ∈ R+ for 𝑄-a.e. 𝑧 ∈ K.
Finally, by noticing that 1−𝑧⊕𝑅 (𝑥) ≤ 1𝐵𝑅+diam(𝑧) (0) (𝑥), a sufficient condition for the validity of (2.10) is∫

K 𝜉𝐵𝑅 (0) (𝑧) (𝑅 + diam(𝑧))𝑑𝑄(d𝑧) < ∞; in particular, (2.10) is trivially satisfied if 𝑓 is bounded and∫
K diam(𝑧)𝑑𝑄(d𝑧) <∞.

In order to improve the readability of the proofs of our main theorems, we first state some preliminary
results; among these, Theorem 3.1 below will provide the first step in finding out an explicit formula in
the Boolean model case, and in treating more general germ-grain models.

3.1. Some preliminary results

In this section, we state some preliminary results useful for the sequel, referring to the Appendix for
the proofs of some analytical statements.

First of all, let us remind that a local version of (2.5) is provided in (Galerne, 2016, Th. 1); in partic-
ular, together with (Galerne, 2016, Lemma 1), if 𝐴 is a set of finite perimeter in an open set 𝑈 ⊆ R𝑑 , it
holds∫

𝑈 	[0,𝑟𝑢 ]

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥 ≤ 𝑉𝑢 (𝐴,𝑈) = lim

𝑟→0

∫
𝑈 	[0,𝑟𝑢 ]

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥 (3.4)

for all 𝑢 ∈ 𝑆𝑑−1.
Note that the above integral is taken over 𝑈 	 [0, 𝑟𝑢] in order to guarantee the well-posedness in case
1𝐴 has bounded variation in𝑈, and not in𝑈𝑐 . We also point out that if 𝐵1 ⊇ 𝐵2, then 𝐴	 𝐵1 ⊆ 𝐴	 𝐵2;
moreover, if 0 ∈ 𝐵, then 𝐴 	 𝐵 = {𝑎 ∈ 𝐴 : 𝑎 + 𝐵 ⊆ 𝐴} ⊆ 𝐴. In particular, 𝐴 	 [0, 𝑟𝑢] = {𝑎 ∈ 𝐴 :
[𝑎, 𝑎 + 𝑟𝑢] ⊆ 𝐴}.
The role of 𝐴 here, will be played by the grains 𝑍𝑖 (𝜔) in the sequel. Thus, let 𝐴 be a compact set in R𝑑

with finite perimeter; then it is easy to prove (see Lemma A.6 in the Appendix) that, for any compact
𝐴 ∈ BR𝑑 and 𝑢 ∈ 𝑆𝑑−1,

lim
𝑟→0

1𝐴	[0,𝑟𝑢 ] (𝑥) = 1𝐴(𝑥) ∀𝑥 ∉ 𝜕𝐴, (3.5)

and

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) | ≤ 1(𝜕𝐴)⊕|𝑟 | (𝑥) ∀𝑥 ∈ R𝑑 . (3.6)

Furthermore, for any 𝑓 : R𝑑 → R+ locally bounded with H 𝑑−1 (disc 𝑓 ) = 0, it holds (see Proposition
A.8 in the Appendix)∫

R𝑑
𝑓 (𝑥)𝑉𝑢 (𝐴,d𝑥) = lim

𝑟→0

∫
R𝑑

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | 𝑓 (𝑥)d𝑥. (3.7)

(Note that, here, we require H 𝑑−1 (disc 𝑓 ) = 0, so that𝑉𝑢 (𝐴,disc 𝑓 ) = 0 for any 𝐴 with finite perimeter).
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Theorem 3.1. Let Θ be a germ-grain model inR𝑑 as in the above assumptions. Then, for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑
the densities 𝜆𝜕∗Θ (𝑥) and 𝜆𝑉𝑢 ,Θ (𝑥) exist for any 𝑢 ∈ 𝑆𝑑−1, and it holds

𝜆𝜕∗Θ (𝑥) =
1

2𝑏𝑑−1

∫
𝑆𝑑−1

𝜆𝑉𝑢 ,Θ (𝑥)H 𝑑−1 (d𝑢), 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 . (3.8)

Moreover, by denoting 𝑣Θ;𝑥 (𝑦) := P(𝑥 + 𝑦 ∈ Θ, 𝑥 ∉ Θ) + P(𝑥 + 𝑦 ∉ Θ, 𝑥 ∈ Θ), for all 𝑢 ∈ 𝑆𝑑−1 it holds

lim inf
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | ≤ 𝜆𝑉𝑢 ;Θ (𝑥) ≤ lim sup

𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 . (3.9)

Proof. By the subadditivity property of the perimeter (e.g see (Ambrosio et al., 2000, p. 144)), for all
𝐵 ∈ BR𝑑 , we have

E[𝑃(Θ, 𝐵)] ≤ E
[ ∑︁
(𝑋𝑖 ,𝑍𝑖) ∈Φ

𝑃(𝑋𝑖 + 𝑍𝑖 , 𝐵)
]

=

∫
R𝑑×K

𝑃(𝑥 + 𝑧, 𝐵)Λ(d(𝑥, 𝑧))

≤
∫
R𝑑×K

H𝑑−1 (𝜕 (𝑥 + 𝑧) ∩ 𝐵)Λ(d(𝑥, 𝑧))

=

∫
R𝑑×K

( ∫
𝑥+𝜕𝑧

1𝐵 (𝑦)H 𝑑−1 (d𝑦)
)
𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧)

=

∫
𝐵

( ∫
K

∫
𝜕𝑧

𝑓 (𝜉 − 𝑢, 𝑧)H 𝑑−1 (d𝑢)𝑄(d𝑧)
)
d𝜉,

where the last equality follows along the same lines as in the proof of (Villa, 2014, Prop. 5), by suitable
changes of variables: 𝑦→ 𝑢 = 𝑦 − 𝑥 first, and 𝑥→ 𝜉 = 𝑥 + 𝑢 then. Therefore, E[𝑃(Θ, · )] is absolutely
continuous with respect to the Lebesgue measure, being E[𝑃(Θ, 𝐵)] = 0 for any 𝐵 such that 𝜈𝑑 (𝐵) = 0.
By (2.4) we have 𝑉𝑢 (Θ, · ) ≤ sup𝑢∈𝑆𝑑−1 𝑉𝑢 (Θ, · ) ≤ 𝑃(Θ, · ), and so, for any 𝑢 ∈ 𝑆𝑑−1, the measures
E[𝑉𝑢 (Θ, · )] are absolutely continuous w.r.t. 𝜈𝑑 as well.
Let us denote the density of E[𝑃(Θ, · )] and of E[𝑉𝑢 (Θ, · )] w.r.t 𝜈𝑑 by 𝜆𝜕∗Θ and by 𝜆𝑉𝑢 ,Θ, respectively.
Hence, the following chain of equalities holds for all 𝐵 ∈ BR𝑑 :∫

𝐵

𝜆𝜕∗Θ (𝑥)d𝑥 = E[𝑃(Θ, 𝐵)]
(2.11)
=

1
2𝑏𝑑−1

∫
𝑆𝑑−1
E[𝑉𝑢 (Θ, 𝐵)]H𝑑−1 (d𝑢)

=
1

2𝑏𝑑−1

∫
𝑆𝑑−1

( ∫
𝐵

𝜆𝑉𝑢 ,Θ (𝑥)d𝑥
)
H𝑑−1 (d𝑢) =

∫
𝐵

( 1
2𝑏𝑑−1

∫
𝑆𝑑−1

𝜆𝑉𝑢 ,Θ (𝑥)H 𝑑−1 (d𝑢)
)
d𝑥,

and so the Eq. (3.8).
Without loss of generality, let us consider 𝐵 ⊂ R𝑑 open and bounded; we get∫

𝐵

𝜆𝑉𝑢 ,Θ (𝑥)d𝑥 = E[𝑉𝑢 (Θ, 𝐵)]
(3.4)
= E

[
lim
𝑟→0

∫
𝐵	[0,𝑟𝑢 ]

|1Θ (𝑥 + 𝑟𝑢) − 1Θ (𝑥) |
|𝑟 | d𝑥

]
.

Thanks to the left hand side of (3.4), we can apply the dominated convergence theorem in order to
exchange limit and expectation; then, by Fubini’s theorem and the very definition of 𝑣Θ;𝑥 (𝑟𝑢), we get
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𝐵

𝜆𝑉𝑢 ,Θ (𝑥)d𝑥 = lim
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
E[|1Θ (𝑥 + 𝑟𝑢) − 1Θ (𝑥) |]

|𝑟 | d𝑥

= lim
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
P(𝑥 ∈ Θ − 𝑟𝑢, 𝑥 ∉ Θ) + P(𝑥 ∉ Θ − 𝑟𝑢, 𝑥 ∈ Θ)

|𝑟 | d𝑥

= lim
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | d𝑥. (3.10)

By Fatou lemma and by (3.5), we easily get

lim
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | d𝑥 ≥
∫
𝐵

lim inf
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | d𝑥;

therefore, the assertion (3.9) follows if we show that

lim
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | d𝑥 ≤
∫
𝐵

lim sup
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | d𝑥

holds as well.
To this aim, let us observe that Θ − 𝑟𝑢 =⋃

(𝑌𝑖 ,𝑍𝑖) ∈Φ (𝑌𝑖 + 𝑍𝑖 − 𝑟𝑢), and

P(𝑥 ∈ Θ − 𝑟𝑢, 𝑥 ∉ Θ) ≤ P
( ∑︁
(𝑌𝑖 ,𝑍𝑖) ∈Φ

1(𝑌𝑖+𝑍𝑖−𝑟𝑢)\(𝑌𝑖+𝑍𝑖) (𝑥) ≥ 1
)

≤ E
[ ∑︁
(𝑌𝑖 ,𝑍𝑖) ∈Φ

1(𝑌𝑖+𝑍𝑖−𝑟𝑢)\(𝑌𝑖+𝑍𝑖) (𝑥)
]
=

∫
R𝑑×K

1(𝑦+𝑧−𝑟𝑢)\(𝑦+𝑧) (𝑥)Λ(d(𝑦, 𝑧)).

Similary, we have P(𝑥 ∉ Θ − 𝑟𝑢, 𝑥 ∈ Θ) ≤
∫
R𝑑×K

1(𝑦+𝑧)\(𝑦+𝑧−𝑟𝑢) (𝑥)Λ(d(𝑦, 𝑧)).
Hence, by noticing that

1(𝑦+𝑧−𝑟𝑢)\(𝑦+𝑧) (𝑥) + 1(𝑦+𝑧)\(𝑦+𝑧−𝑟𝑢) (𝑥) = |1𝑦+𝑧−𝑟𝑢 (𝑥) − 1𝑦+𝑧 (𝑥) | = |1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |,

and that for any 𝑥 ∈ 𝐵 and |𝑟 | < 1

sup
𝑦∈(𝑥−𝜕𝑧)⊕|𝑟 |

𝑓 (𝑦, 𝑧) ≤ sup
𝑦∈(𝐵⊕𝐵1 (0))⊕diam(𝑧)

𝑓 (𝑦, 𝑧)
(3.3)
≤ 𝜉𝐵⊕1 (𝑧),

we get

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | ≤

∫
K

( ∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦

)
𝑄(d𝑧)

(3.6)
≤

∫
K

( ∫
R𝑑

(
sup

𝑦∈(𝑥−𝜕𝑧)⊕|𝑟 |
𝑓 (𝑦, 𝑧)

) |1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | d𝑦

)
𝑄(d𝑧)

≤
∫

K
𝜉𝐵⊕1 (𝑧)

( ∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | d𝑦

)
𝑄(d𝑧)

(3.4)
≤

∫
K
𝜉𝐵⊕1 (𝑧)𝑉𝑢 (𝑥 − 𝑧)𝑄(d𝑧)
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≤
∫

K
𝜉𝐵⊕1 (𝑧)𝑃(𝑧)𝑄(d𝑧) (𝐴2)

= 𝑐𝐵⊕1 <∞.

Hence, for any |𝑟 | < 1, we have 1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | ≤ 1𝐵	[0,𝑟𝑢 ] (𝑥)𝑐𝐵⊕1 ≤ 𝑐𝐵⊕1 ∈ R, which is triv-

ially integrable on 𝐵. Therefore we may apply the reverse Fatou lemma:

lim sup
𝑟→0

∫
𝐵

1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | d𝑥 ≤
∫
𝐵

lim sup
𝑟→0

1𝐵	[0,𝑟𝑢 ] (𝑥)
𝑣Θ;𝑥 (𝑟𝑢)

|𝑟 | d𝑥 =
∫
𝐵

lim sup
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | d𝑥,

which establishes the assertion (3.9).

We thus obtain easily the following result:

Corollary 3.2. Under the assumptions of the above theorem, if the limit lim𝑟→0 𝑣Θ;𝑥 (𝑟𝑢)/|𝑟 | exists and
is finite for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 , then it equals 𝜆𝑉𝑢 ;Θ (𝑥).

Remark 3.3 (Stationary case). The stationary case is much easier to handle, and so it deserves a
discussion in order to point out the main difference with respect to the general case. If Θ is stationary,
then Λ(d(𝑥, 𝑧)) = 𝑐𝑄(d𝑧) for some 𝑐 > 0, and so the assumption (A2) is trivially satisfied. By the proof
of the above theorem and by the subsequent corollary, it is evident that, in the general non-stationary
case, the main problem is the existence of the lim𝑟→0 𝑣Θ;𝑥 (𝑟𝑢)/|𝑟 |. Indeed, if it exists and is finite,
Theorem 3.1 guarantees that we may exchange limit and integral in (3.10), and we may state that it
equals 𝜆𝑉𝑢 ;Θ (𝑥) 𝜈𝑑-a.e. In the stationary case such problem vanishes, in accordance with the results in
Galerne (2011); indeed, the stationarity of Θ implies that Θ + 𝑥 has the same distribution as Θ for any
𝑥 ∈ R𝑑 , and E[𝑉𝑢 (Θ, 𝐵)] = 𝑐𝜈𝑑 (𝐵) with 𝑐 = 𝑐(𝑢) > 0 for any 𝐵 ∈ BR𝑑 . Therefore 𝜆𝑉𝑢 ,Θ (𝑥) ≡ 𝑐 and
𝑣Θ;𝑥 (𝑟𝑢) = 𝑣Θ;0 (𝑟𝑢) for all 𝑥 ∈ R𝑑; by this we get

𝑐𝜈𝑑 (𝐵) (3.10)
= lim

𝑟→0

𝑣Θ;0 (𝑟𝑢)
|𝑟 | 𝜈𝑑 (𝐵 	 [0, 𝑟𝑢]) = lim

𝑟→0

𝑣Θ;0 (𝑟𝑢)
|𝑟 | 𝜈𝑑 (𝐵).

Hence, we conclude that lim𝑟→0 𝑣Θ;0 (𝑟𝑢)/|𝑟 | exists and is equal to 𝜆𝑉𝑢 ,Θ (𝑥), and, in particular, by
observing that

P(𝑟𝑢 ∉ Θ,0 ∈ Θ) = P(𝑟𝑢 ∉ Θ) − P(𝑟𝑢 ∉ Θ,0 ∉ Θ) = P(0 ∉ Θ) − P(𝑟𝑢 ∉ Θ,0 ∉ Θ) = P(0 ∉ Θ, 𝑟𝑢 ∈ Θ),

it holds

𝜆𝑉𝑢 ,Θ (𝑥) ≡ lim
𝑟→0

𝑣Θ;0 (𝑟𝑢)
|𝑟 | = 2 lim

𝑟→0

P(𝑟𝑢 ∈ Θ,0 ∉ Θ)
|𝑟 | ∈ R+ ∀𝑥 ∈ R𝑑 . (3.11)

Actually, (3.11) coincides with Eq. (12) in Galerne (2016), where the variation intensity of more general
stationary random fields is considered.

3.2. The Boolean model case

Let us pass to consider the Boolean model case. Such a particular germ-grain model plays a central role
in Stochastic Geometry because it is the most tractable model, being its capacity functional 𝑇Θ (𝐾) :=
P(Θ∩𝐾 ≠ ∅) explicitly known. This, together with the independence property of the grains, will allow
us to compute explicitly 𝑣Θ;𝑥 (𝑟𝑢) in order to apply Corollary 3.2.
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Theorem 3.4. Let Θ be a Boolean model satisfying the assumptions above. Then, for all 𝑢 ∈ 𝑆𝑑−1 and
𝜈𝑑-a.e. 𝑥 ∈ R𝑑 ,

𝜆𝑉𝑢 ;Θ (𝑥) = lim
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | = exp

{
−
∫

K

∫
𝑥−𝑧

𝑓 (𝑦, 𝑧)d𝑦𝑄(d𝑧)
} ∫

K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)𝑄(d𝑧),
(3.12)

and

𝜆𝜕∗Θ (𝑥) = exp
{
−
∫

K

∫
𝑥−𝑧

𝑓 (𝑦, 𝑧)d𝑦𝑄(d𝑧)
}
·

·
∫

K

( 1
2𝑏𝑑−1

∫
𝑆𝑑−1

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)H 𝑑−1 (d𝑢)
)
𝑄(d𝑧). (3.13)

Proof. For any 𝑥 ∈ R𝑑 , 𝑢 ∈ 𝑆𝑑−1, and 𝑟 ≥ 0, let Z𝑥,𝑟𝑢 be the subset of R𝑑 × K defined by

Z𝑥,𝑟𝑢 := {(𝑦, 𝑧) ∈ R𝑑 × K : 𝑥 ∈ 𝑦 + 𝑧 − 𝑟𝑢} = {(𝑦, 𝑧) ∈ R𝑑 × K : 𝑦 ∈ 𝑥 − 𝑧 + 𝑟𝑢}.

Note that, by the independent increments property of Φ,

P(𝑥 ∈ Θ − 𝑟𝑢, 𝑥 ∉ Θ) = P(Φ(Z𝑥,𝑟𝑢) > 0,Φ(Z𝑥,0) = 0)

= P(Φ(Z𝑥,𝑟𝑢 \Z𝑥,0) > 0,Φ(Z𝑥,0) = 0) = 𝑒−Λ(Z𝑥,0) (1 − 𝑒−Λ(Z𝑥,𝑟𝑢\Z𝑥,0) ),

so that we have

𝑣Θ;𝑥 (𝑟𝑢) = P(Φ(Z𝑥,𝑟𝑢) > 0,Φ(Z𝑥,0) = 0) + P(Φ(Z𝑥,𝑟𝑢) = 0,Φ(Z𝑥,0) > 0)

= 𝑒−Λ(Z𝑥,0) (1 − 𝑒−Λ(Z𝑥,𝑟𝑢\Z𝑥,0) ) + 𝑒−Λ(Z𝑥,𝑟𝑢) (1 − 𝑒−Λ(Z𝑥,0\Z𝑥,𝑟𝑢) ).

Let us observe that

𝑒−Λ(Z𝑥,0) = exp
{
−
∫

K

∫
𝑥−𝑧

𝑓 (𝑦, 𝑧)d𝑦𝑄(d𝑧)
}
,

and

lim
𝑟→0

𝑒−Λ(Z𝑥,𝑟𝑢) = exp
{
− lim
𝑟→0

∫
K

∫
𝑥−𝑧+𝑟𝑢

𝑓 (𝑦, 𝑧)d𝑦𝑄(d𝑧)
}
= 𝑒−Λ(Z𝑥,0) .

If we prove that

lim
𝑟→0

Λ(Z𝑥,𝑟𝑢 \Z𝑥,0) +Λ(Z𝑥,0 \Z𝑥,𝑟𝑢)
|𝑟 | =

∫
K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)𝑄(d𝑧), (3.14)

then we may conclude that

lim
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | = 𝑒−Λ(Z𝑥,0) lim

𝑟→0

(1 − 𝑒−Λ(Z𝑥,𝑟𝑢\Z𝑥,0) ) + (1 − 𝑒−Λ(Z𝑥,0\Z𝑥,𝑟𝑢) )
|𝑟 |

= 𝑒−Λ(Z𝑥,0)
∫

K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)𝑄(d𝑧),
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which would provide (3.12) by Corollary 3.2.
In order to prove the limit in (3.14), let us notice that Z𝑥,𝑟𝑢 \ Z𝑥,0 = {(𝑦, 𝑧) ∈ R𝑑 × K : 𝑦 ∈ (𝑥 − 𝑧 +
𝑟𝑢) \ (𝑥 − 𝑧)} (and similarly for Z𝑥,0 \Z𝑥,𝑟𝑢); therefore,

Λ(Z𝑥,𝑟𝑢 \Z𝑥,0) +Λ(Z𝑥,0 \Z𝑥,𝑟𝑢)
|𝑟 |

=
1
|𝑟 |

∫
K

( ∫
(𝑥−𝑧+𝑟𝑢)\(𝑥−𝑧)

𝑓 (𝑦, 𝑧)d𝑦 +
∫
(𝑥−𝑧)\(𝑥−𝑧+𝑟𝑢)

𝑓 (𝑦, 𝑧)d𝑦
)
𝑄(d𝑧)

=

∫
K

( ∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦

)
𝑄(d𝑧). (3.15)

By the assumption (A2) we have that 𝑓 ( · , 𝑧) is locally bounded with H 𝑑−1 (disc( 𝑓 (·, 𝑧))) = 0, therefore

lim
𝑟→0

∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦 (3.7)

=

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦). (3.16)

Along the same lines as in the end of the proof of Theorem 3.1, we may claim that∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦 ≤ 𝜉𝐵1 (𝑥) (𝑧)𝑃(𝑧) ∀|𝑟 | < 1,

which is 𝑄-integrable on K thanks to the assumption (A2). Therefore, by the dominated convergence
theorem, we can exchange limit and integral below and conclude

lim
𝑟→0

Λ(Z𝑥,𝑟𝑢 \Z𝑥,0) +Λ(Z𝑥,0 \Z𝑥,𝑟𝑢)
|𝑟 |

(3.15)
= lim

𝑟→0

∫
K

( ∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦

)
𝑄(d𝑧)

=

∫
K

(
lim
𝑟→0

∫
R𝑑

|1𝑥−𝑧+𝑟𝑢 (𝑦) − 1𝑥−𝑧 (𝑦) |
|𝑟 | 𝑓 (𝑦, 𝑧)d𝑦

)
𝑄(d𝑧)

(3.16)
=

∫
K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦),

that is the limit in (3.14), which proves (3.12).
Finally, Eq. (3.13) easily follows by (3.8).

Remark 3.5 (Stationary case). If Θ is a stationary Boolean model with typical grain 𝑍0 satisfying
the assumption (A1), then Theorem 3.4 applies with 𝑓 (𝑥, 𝑧) ≡ 𝛼 > 0; thus Eq. (3.1) may be seen as a
particular case of (3.12), whereas we recover Eq. (3.2) by (3.13) as follows:

𝜆𝜕∗Θ (𝑥) = 𝑒−𝛼E𝑄 [𝜈𝑑 (𝑍0) ]
∫

K

( 1
2𝑏𝑑−1

∫
𝑆𝑑−1

𝛼𝑉𝑢 (𝑧)H 𝑑−1 (d𝑢)
)
𝑄(d𝑧)

(2.3)
= 𝛼𝑒−𝛼E𝑄 [𝜈𝑑 (𝑍0) ]E𝑄 [𝑃(𝑍0)] .
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3.3. General germ-grain model

Before stating the main result of this section, we recall the notion of reduced Palm version, and of
generating functional of a point process, which will appear in Theorem 3.6 below. (We refer to Daley
and Vere-Jones (2008) and Coeurjolly et al. (2017) for further insights).
Let Ψ be a point process on a complete separable metric space (𝐸,B𝐸 ) with 𝜎-finite intensity measure
ΛΨ, and (N𝐸 ,N𝐸 ) be the measurable space of the locally finite counting measures on 𝐸 . There exists
a unique 𝜎-finite measure CΨ on 𝐸 × N𝐸 characterized by CΨ (𝐵 × 𝐿) = E[Ψ(𝐵)1𝐿 (Ψ)] for any 𝐵 ∈
B𝐸 and 𝐿 ∈ N𝐸 . CΨ is called Campbell measure of Ψ, and it can be disintegrated as CΨ (d(𝑥, 𝜑)) =
P𝑥 (d𝜑)ΛΨ (d𝑥), where P· ( · ) is a probability kernel from 𝐸 to N𝐸 . Thus, in particular, P𝑥 ( · ) is a
probability measure on N𝐸 , called Palm distribution of Ψ at 𝑥, and so it can be seen as the probability
distribution of a point process, say Ψ𝑥 , often called the Palm version of Ψ at 𝑥. It can be shown that the
point process Ψ𝑥 has almost surely an atom in 𝑥; then, the point process Ψ!

𝑥 := Ψ𝑥 − 𝜀𝑥 (where 𝜀𝑥 is
the Dirac measure at point 𝑥), equivalently denoted also by Ψ𝑥 \ {𝑥}, is called reduced Palm version of
Ψ at 𝑥. The probability law of Ψ!

𝑥 is denoted by P!
𝑥 , and it is called reduced Palm distribution of Ψ at

𝑥. It can be shown that

E
[ ∑︁
𝑋 ∈Ψ

ℎ(𝑋,Ψ \ {𝑋})
]
=

∫
𝐸×N𝐸

ℎ(𝑥, 𝜑)P!
𝑥 (d𝜑)ΛΨ (d𝑥) (3.17)

for any measurable function ℎ : 𝐸 × N𝐸 → R+.
Finally, we recall that the generating functional 𝐺Ψ of Ψ is defined by 𝐺Ψ [𝑣] := E[∏𝑋 ∈Ψ 𝑣(𝑋)] for
any measurable function 𝑣 : 𝐸 → [0,1].
It is well known that 𝐺Ψ [𝑣] = exp{

∫
𝐸
(𝑣(𝑥) − 1)Λ(d𝑥)}, whenever Ψ is a Poisson point process.

With the aim of dealing with germ-grain models more general than the Boolean model, we are going
to introduce a further assumption on the second moment density (2.8) of Φ; in order to avoid a too
technical condition on 𝑔, analogous to (A2) on 𝑓 (see Remark 3.8 below), we shall assume that 𝑔 is
bounded and the grains are uniformly bounded in R𝑑 (that is diam(𝑋 + 𝑍) ≤ 𝐷 ∀(𝑋, 𝑍) ∈ Φ). Such
assumption is analogous to the assumption (A3) in Villa (2014), where the mean density of lower
dimensional general germ-grain models is studied. (Note that in Villa (2014) the grains are assumed to
be identified by some parameters in a suitable space, so that the role of 𝑍 (𝑠) there, is played by 𝑧 here.)

In the following, N denotes the space of locally finite counting measures in R𝑑 × K; furthermore, to
simplify the notation, we denote 𝑥 := (𝑥, 𝑧) ∈ R𝑑 × K and 𝑦 := (𝑦, 𝑤) ∈ R𝑑 × K.

Theorem 3.6. Let Θ be a germ-grain model satisfying the assumptions above and the following further
condition:

(A3) diam(𝑋 + 𝑍) ≤ 𝐷 ∈ R for all (𝑋, 𝑍) ∈ Φ, and the second factorial moment measure of Φ is of
the type

𝜈 [2] (d(𝑥1, 𝑧1, 𝑥2, 𝑧2)) = 𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)d𝑥1d𝑥2𝑄 [2] (d(𝑧1, 𝑧2)),

with 𝑔 bounded, H𝑑−1 (disc(𝑔( · , 𝑧1, 𝑥2, 𝑧2))) = 0 for any (𝑧1, 𝑥2, 𝑧2) ∈ K ×R𝑑 × K, and∫
K2 𝑃(𝑧1)𝑄 [2] (d(𝑧1, 𝑧2)) <∞.

Let 𝐺Φ!
𝑥

be the generating functional of the reduced Palm version Φ!
𝑥 of Φ, and let 𝜂𝑟 , 𝜉 ,𝑢 : R𝑑 ×K →

{0,1} be the function defined, for any (𝑟, 𝜉) ∈ R ×R𝑑 , 𝑢 ∈ 𝑆𝑑−1, by

𝜂𝑟 , 𝜉 ,𝑢 (𝑦, 𝑤) := 1( 𝜉−𝑤+𝑟𝑢)𝑐 (𝑦)1( 𝜉−𝑤)𝑐 (𝑦).
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If there exists

lim
𝑟→0

∫
R𝑑

|1𝜉−𝑧+𝑟𝑢 (𝑥) − 1𝜉−𝑧 (𝑥) |
|𝑟 | 𝐺Φ!

𝑥
[𝜂𝑟 , 𝜉 ,𝑢] 𝑓 (𝑥, 𝑧)d𝑥 =: 𝐹𝜉 ,𝑢 (𝑧) for 𝑄-a.e. 𝑧 ∈ K,

then

lim
𝑟→0

𝑣Θ;𝜉 (𝑟𝑢)
|𝑟 | =

∫
K
𝐹𝜉 ,𝑢 (𝑧)𝑄(d𝑧). (3.18)

Remark 3.7. Let us notice that 𝜂𝑟 , 𝜉 ,𝑢 (𝑦) → 𝜂0, 𝜉 (𝑦) as 𝑟 → 0, and that
∏
𝑌 ∈Φ!

𝑥
𝜂𝑟 , 𝜉 ,𝑢 (𝑌 ) ≤ 1; then

𝐺Φ!
𝑥
[𝜂𝑟 , 𝜉 ,𝑢] → 𝐺Φ!

𝑥
[𝜂0, 𝜉 ] as 𝑟 → 0. Therefore, if the reduced Palm distribution P!

𝑥 of Φ does not

depend on the point 𝑥, say P!
𝑥 = 𝑃 for some probability measure 𝑃 on N, then

𝐹𝜉 ,𝑢 (𝑧) =𝐺𝑃 [𝜂0, 𝜉 ] lim
𝑟→0

∫
R𝑑

|1𝜉−𝑧+𝑟𝑢 (𝑥) − 1𝜉−𝑧 (𝑥) |
|𝑟 | 𝑓 (𝑥, 𝑧)d𝑥 =𝐺𝑃 [𝜂0, 𝜉 ]

∫
R𝑑

𝑓 (𝑥, 𝑧)𝑉𝑢 (𝜉 − 𝑧,d𝑥),

where 𝐺𝑃 is the generating function associated to the point process with distribution 𝑃.
It is well known by the celebrated Slivnyak’s theorem, that Φ!

𝑥 = Φ for Λ-a.e. 𝑥 ∈ R𝑑 × K if Φ is a
Poisson point process. Therefore, if Θ is a Boolean model, we get

𝐺Φ!
𝑥
[𝜂0, 𝜉 ] =𝐺Φ [𝜂0, 𝜉 ] = 𝑒

∫
(𝜂0, 𝜉−1)dΛ = exp

{
−
∫
R𝑑×K

1𝑦+𝑤 (𝜉) 𝑓 (𝑦, 𝑤)d𝑦𝑄(d𝑤)
}
,

and so 𝐹𝜉 ,𝑢 (𝑧) above exists and is finite; then, by (3.18), we recover

lim
𝑟→0

𝑣Θ;𝜉 (𝑟𝑢)
|𝑟 | = exp

{
−
∫

K

∫
𝜉−𝑤

𝑓 (𝑦, 𝑤)d𝑦𝑄(d𝑤)
} ∫

K

∫
R𝑑

𝑓 (𝑥, 𝑧)𝑉𝑢 (𝜉 − 𝑧,d𝑥),

in accordance with the equation (3.12) in Theorem 3.4. (About this, we recall that 𝜈 [2] = Λ ×Λ when-
ever Φ is a Poisson point process, and so

𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)d𝑥1d𝑥2𝑄 [2] (d(𝑧1, 𝑧2)) = 𝑓 (𝑥1, 𝑧1) 𝑓 (𝑥2, 𝑧2)d𝑥1d𝑥2𝑄(d𝑧1)𝑄(d𝑧2);

therefore the assumption (A3) is equivalent to the assumption (A2) if, for sake of simplificity, we
assume 𝑓 bounded and diam(𝑋 + 𝑍) ≤ 𝐷 ∈ R for all (𝑋, 𝑍) ∈Φ.)

Among the processes whose Palm reduced distribution P!
𝑥 does not depend on 𝑥, we mention the

Binomial point process and the mixed Poisson point process (e.g., see (Baddeley et al., 2007, p. 47).
Further examples of point processes with known reduced Palm distribution can be found in (Coeurjolly
et al., 2017, Sec. 5).

Proof of Theorem 3.6. Let 𝜉 ∈ R𝑑 and 𝑢 ∈ 𝑆𝑑−1.
First of all, let us prove that

E
[ ∑︁
(𝑋𝑖 , 𝑍𝑖 ) , (𝑋 𝑗 , 𝑍 𝑗 ) ∈Φ,

𝑋𝑖 ≠ 𝑋 𝑗

|1𝑋𝑖+𝑍𝑖−𝑟𝑢 (𝜉) − 1𝑋𝑖+𝑍𝑖 (𝜉) | |1𝑋 𝑗+𝑍 𝑗−𝑟𝑢 (𝜉) − 1𝑋 𝑗+𝑍 𝑗
(𝜉) |

]
= 𝑜( |𝑟 |), (3.19)

from which we shall deduce that the probability that the point 𝜉 ∈ R𝑑 \ Θ belongs to more than one
translated grain 𝑋 + 𝑍 + 𝑟𝑢 goes to 0 faster that |𝑟 | for any 𝑢 ∈ 𝑆𝑑−1.
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To this aim, let us notice that

1
|𝑟 |E

[ ∑︁
(𝑋𝑖 , 𝑍𝑖 ) , (𝑋 𝑗 , 𝑍 𝑗 ) ∈Φ,

𝑋𝑖 ≠ 𝑋 𝑗

|1𝑋𝑖+𝑍𝑖−𝑟𝑢 (𝜉) − 1𝑋𝑖+𝑍𝑖 (𝜉) | |1𝑋 𝑗+𝑍 𝑗−𝑟𝑢 (𝜉) − 1𝑋 𝑗+𝑍 𝑗
(𝜉) |

]

=
1
|𝑟 |

∫
(R𝑑×K)2

|1𝑥1+𝑧1−𝑟𝑢 (𝜉) − 1𝑥1+𝑧1 (𝜉) | |1𝑥2+𝑧2−𝑟𝑢 (𝜉) − 1𝑥2+𝑧2 (𝜉) |𝜈 [2] (d(𝑥1, 𝑧1, 𝑥2, 𝑧2))

=

∫
R𝑑×K×K

|1𝑥2+𝑧2−𝑟𝑢 (𝜉) − 1𝑥2+𝑧2 (𝜉) |( ∫
R𝑑
𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)

|1𝑥1+𝑧1−𝑟𝑢 (𝜉) − 1𝑥1+𝑧1 (𝜉) |
|𝑟 | d𝑥1

)
d𝑥2𝑄 [2] (d(𝑧1, 𝑧2)).

The condition (A3) guarantees that the assumptions of Proposition A.8 are fulfilled; therefore,

lim
𝑟→0

∫
R𝑑
𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)

|1𝑥1+𝑧1−𝑟𝑢 (𝜉) − 1𝑥1+𝑧1 (𝜉) |
|𝑟 | d𝑥1

= lim
𝑟→0

∫
R𝑑
𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)

|1𝜉−𝑧1+𝑟𝑢 (𝑥1) − 1𝜉−𝑧1 (𝑥1) |
|𝑟 | d𝑥1

=

∫
R𝑑
𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)𝑉𝑢 (𝜉 − 𝑧1,d𝑥1),

where the last integral is finite being 𝑔 bounded, say 𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2) ≤ 𝐾 . Moreover, we have that

lim
𝑟→0

|1𝑥2+𝑧2−𝑟𝑢 (𝜉) − 1𝑥2+𝑧2 (𝜉) |
(3.6)
≤ lim

𝑟→0
1𝜉−(𝜕𝑧2)⊕|𝑟 | (𝑥2) = 0 for 𝜈𝑑-a.e. 𝑥2 ∈ R𝑑 , ∀𝑧2 ∈ K,

being 𝜕𝑧2 lower dimensional. Finally, for any |𝑟 | < 1,

|1𝑥2+𝑧2−𝑟𝑢 (𝜉) − 1𝑥2+𝑧2 (𝜉) |
( ∫
R𝑑
𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)

|1𝑥1+𝑧1−𝑟𝑢 (𝜉) − 1𝑥1+𝑧1 (𝜉) |
|𝑟 | d𝑥1

)
≤ 𝐾1𝜉−(𝜕𝑧2)⊕1 (𝑥2)

∫
R𝑑

|1𝜉−𝑧1+𝑟𝑢 (𝑥1) − 1𝜉−𝑧1 (𝑥1) |
|𝑟 | d𝑥1 ≤ 𝐾1𝐵1+𝐷 ( 𝜉 ) (𝑥2)𝑃(𝑧1), (3.20)

with
∫
R𝑑×K×K 𝐾1𝐵1+𝐷 ( 𝜉 ) (𝑥2)𝑃(𝑧1)d𝑥2𝑄 [2] (d(𝑧1, 𝑧2)) <∞ by the assumption (A3).

The dominated converge theorem allows us to exchange limit and integral in

lim
𝑟→0

∫
(R𝑑×K)2

|1𝑥1+𝑧1−𝑟𝑢 (𝜉) − 1𝑥1+𝑧1 (𝜉) |
|1𝑥2+𝑧2−𝑟𝑢 (𝜉) − 1𝑥2+𝑧2 (𝜉) |

|𝑟 | 𝜈 [2] (d(𝑥1, 𝑧1, 𝑥2, 𝑧2)),

and then we get (3.19).
From this we may state that P

(∑
𝑋 ∈Φ 1𝑋+𝑍−𝑟𝑢 (𝜉) ≥ 2, 𝜉 ∉ Θ

)
= 𝑜( |𝑟 |); then,

P(𝜉 ∈ Θ − 𝑟𝑢, 𝜉 ∉ Θ) = P
( ∑︁
𝑋 ∈Φ

1𝑋+𝑍−𝑟𝑢 (𝜉) ≥ 1,
∏
𝑋 ∈Φ

1(𝑋+𝑍 )𝑐 (𝜉) = 1
)
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= P
( ∑︁
𝑋 ∈Φ

1𝑋+𝑍−𝑟𝑢 (𝜉) = 1,
∏
𝑋 ∈Φ

1(𝑋+𝑍 )𝑐 (𝜉) = 1
)
+ 𝑜( |𝑟 |) = P(𝑌𝑟 (𝜉) = 1) + 𝑜( |𝑟 |),

where

𝑌𝑟 (𝜉) :=
∑︁
𝑋 ∈Φ

[
1𝑋+𝑍−𝑟𝑢 (𝜉)1(𝑋+𝑍 )𝑐 (𝜉)

∏
𝑌 ∈Φ\{𝑋 }

1(𝑌+𝑊−𝑟𝑢)𝑐 (𝜉)1(𝑌+𝑊 )𝑐 (𝜉)
]
.

Let ℎ : R𝑑 × K × N → {0,1} be the function defined by

ℎ(𝑥, 𝜑) := 1(𝑥+𝑧−𝑟𝑢)\(𝑥+𝑧) (𝜉)
∏
𝑦∈𝜑

1(𝑦+𝑤−𝑟𝑢)𝑐 (𝜉)1(𝑦+𝑤)𝑐 (𝜉);

by noticing that 𝑌𝑟 (𝜉) ∈ {0,1}, the following chain of equalities holds:

P(𝑌𝑟 (𝜉) = 1) = E[(𝑌𝑟 (𝜉)] = E
[ ∑︁
𝑋 ∈Φ

ℎ(𝑋,Φ \ {𝑌 })
]

(3.17)
=

∫
R𝑑×K

∫
N
ℎ(𝑥, 𝜑)P!

𝑥 (d𝜑)Λ(d𝑥)

=

∫
R𝑑×K

1(𝑥+𝑧−𝑟𝑢)\(𝑥+𝑧) (𝜉)
( ∫

N

∏
𝑦∈𝜑

1(𝑦+𝑤−𝑟𝑢)𝑐 (𝜉)1(𝑦+𝑤)𝑐 (𝜉))P!
𝑥 (d𝜑)

)
Λ(d𝑥)

=

∫
R𝑑×K

1(𝑥+𝑧−𝑟𝑢)\(𝑥+𝑧) (𝜉)𝐺Φ!
𝑥
[𝜂𝑟 , 𝜉 ,𝑢]Λ(d𝑥).

In analogous way one gets

P(𝜉 ∈ Θ, 𝜉 ∉ Θ − 𝑟𝑢) =
∫
R𝑑×K

1(𝑥+𝑧)\(𝑥+𝑧−𝑟𝑢) (𝜉)𝐺Φ!
𝑥
[𝜂𝑟 , 𝜉 ,𝑢]Λ(d𝑥) + 𝑜( |𝑟 |),

so that

lim
𝑟→0

𝑣Θ;𝜉 (𝑟𝑢)
|𝑟 | = lim

𝑟→0

P(𝜉 ∈ Θ − 𝑟𝑢, 𝜉 ∉ Θ) + P(𝜉 ∈ Θ, 𝜉 ∉ Θ − 𝑟𝑢)
|𝑟 | =

lim
𝑟→0

∫
K

∫
R𝑑

|1𝜉−𝑧+𝑟𝑢 (𝑥) − 1𝜉−𝑧 (𝑥) |
|𝑟 | 𝐺Φ!

𝑥
[𝜂𝑟 , 𝜉 ,𝑢] 𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧).

Note that 𝐺Φ!
𝑥
[𝜂𝑟 , 𝜉 ,𝑢] ≤ 1; then by proceeding along the same lines as in the final part of the proof of

Theorem 3.1, we have that∫
R𝑑

|1𝜉−𝑧+𝑟𝑢 (𝑥) − 1𝜉−𝑧 (𝑥) |
|𝑟 | 𝐺Φ!

𝑥
[𝜂𝑟 , 𝜉 ,𝑢] 𝑓 (𝑥, 𝑧)d𝑥 ≤ 𝜉𝐵1 ( 𝜉 ) (𝑧)𝑃(𝑧) ∀|𝑟 | < 1,

which is 𝑄-integrable on K thanks to the assumption (A2), hence establishes the result.

Remark 3.8. In the assumption (A3) above, we assumed 𝑔 bounded, and the grain uniformly bounded
in R𝑑 . Such assumption might be weakened by requiring a similar condition to (3.3), in order to get an
integrability condition in (3.20), and to apply the dominated converge theorem subsequently.
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4. Remarks

4.1. “One-grain” random set

As widely discussed in Villa (2014) for the computation of the mean boundary density of a full dimen-
sional germ-grain model, it seems to be hard to find explicit expressions for 𝜆𝑉𝑢 ;Θ and for 𝜆𝜕∗Θ when Θ

is a general germ-grain model (i.e., non-Boolean) in terms of its grains. This is evident in Theorem 3.6,
unless the reduced Palm version of Φ is explicitly known and sufficiently tractable. The dependence
between the grains is the main reason. Intuitively, such a problem might be addressed by considering
Θ as an “one-grain” random set; namely, with the same argument that allows to describe particle pro-
cesses as germ-grain processes, whenever Θ is compact (this is a reasonable assumption in practice) it
can be written as Θ = 𝑋 + 𝑍 , where 𝑋 := 𝑐(Θ) is the circumcenter of Θ, and 𝑍 := Θ − 𝑋 is its random
“shape”. In such a case, the marked point process Φ in (2.9) is a very particular case of point process,
given by the unique random point (𝑋, 𝑍) in R𝑑 × K; as a consequence 𝑔 ≡ 0 in (2.8), and so only the
Assumptions (A1) and (A2) have to be satisfied for the validity of Theorem 3.1 and its corollary. We
refer the reader to (Villa, 2014, remark 10) and (Villa, 2014, Sec 4.2) for a more exhaustive discussion
on the one-grain representation. We remind here that, still denoting by Λ the intensity measure of Φ,
Λ(d(𝑥, 𝑧)) represents the probability that the unique point of Φ is in the infinitesimal region d𝑥 with
mark in d𝑧, that is Λ(d(𝑥, 𝑧)) is the joint probability law of (𝑋, 𝑍). Moreover, being Θ = 𝑋 + 𝑍 , of
course 𝜕Θ = 𝑋 + 𝜕𝑍 , so that the regularity properties of 𝜕Θ and the perimeter of Θ coincide with the
regularity properties of 𝜕𝑍 and the perimeter of 𝑍 , respectively.

Proposition 4.1. Let Θ = 𝑋 +𝑍 be a random closed set described by the random point (𝑋, 𝑍) ∈ R𝑑×K,
and let (𝑋, 𝑍) have joint probability law Λ(d(𝑥, 𝑧)) = 𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧) satisfying the assumptions (A1)
and (A2). Then Eq. (3.8) holds with

𝜆𝑉𝑢 ;Θ (𝑥) = lim
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | =

∫
K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)𝑄(d𝑧) for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 . (4.1)

Proof. Notice that Θ satisfies the hypotheses of Theorem 3.1; therefore, by Corollary 3.2, the assertion
follows if we prove that

lim
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | =

∫
K

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)𝑄(d𝑧).

In order to do this, it is sufficient to notice that (with the same notation used in the proof of Theorem
3.4)

P(𝑥 ∈ Θ − 𝑟𝑢, 𝑥 ∉ Θ) + P(𝑥 ∉ Θ − 𝑟𝑢, 𝑥 ∈ Θ)

= P((𝑋, 𝑍) ∈ Z𝑥,𝑟𝑢 \Z𝑥,0) + P((𝑋, 𝑍) ∈ Z𝑥,0 \Z𝑥,𝑟𝑢)

= Λ(Z𝑥,𝑟𝑢 \Z𝑥,0) +Λ(Z𝑥,0 \Z𝑥,𝑟𝑢),

and then we conclude by (3.14).

It is quite intuitive that it might be hard to determine the joint probability distribution of (𝑋, 𝑍) in
order to evaluate the integral in Eq. (4.1); actually, the importance of the above proposition lies in the
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equality

𝜆𝑉𝑢 ;Θ (𝑥) = lim
𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | ,

because it is quite simple to estimate 𝑣Θ;𝑥 (𝑟𝑢) given a random sample Θ1, . . . ,Θ𝑛 for Θ. Indeed, in
many real applications, the possible realizations of Θ vary continuously in space, so that it is reason-
able to suppose that the assumptions of Proposition 4.1 are fulfilled. Hence, a consistent and unbiased
estimator of 𝑣Θ;𝑥 (𝑟𝑢) based on the random sample might be given by

𝑊 (𝑥, 𝑟) :=
∑𝑛
𝑖=1 1(Θ𝑖−𝑟𝑢)\Θ𝑖

(𝑥) +∑𝑛
𝑖=1 1Θ𝑖\(Θ𝑖−𝑟𝑢) (𝑥)

𝑛
,

and so𝑊 (𝑥, 𝑟)/|𝑟 | would provide an approximate estimate of 𝜆𝑉𝑢 ;Θ (𝑥) for 𝑟 “sufficiently small”. From
a statistical point of view, it would be then of interest to investigate on the optimal bandwidth 𝑟 which,
for instance, minimizes the mean squared error, in the spirit of what has been done in Camerlenghi and
Villa (2015) for an analogous estimator. We leave this as an open problem for future works.

4.2. P-continuity of 𝚯

Different notions of “continuity” of a random closed set are available in the literature; in particular the
definitions of P-continuity and a.s. continuity are given in (Matheron, 1975, Sec. 2.5):

Definition 4.2. A random closed set Θ in R𝑑 is said to be

• P-continuous at a point 𝑥 ∈ R𝑑 if

lim
𝑦→𝑥
P(𝑥 ∈ Θ, 𝑦 ∉ Θ) = lim

𝑦→𝑥
P(𝑥 ∉ Θ, 𝑦 ∈ Θ) = 0;

• a.s. continuous at a point 𝑥 ∈ R𝑑 if P(𝑥 ∈ 𝜕Θ) = 0.

The a.s. continuity at a point 𝑥 implies the P-continuity (see (Matheron, 1975, Prop. 2.5.2)); if we
assume that 𝑑𝑖𝑚H (𝜕Θ) = 𝑑−1 P.a.s., having denoted by 𝑑𝑖𝑚H the Hausdorff dimension, then we have
0 = E[𝜈𝑑 (𝜕Θ)] =

∫
R𝑑
P(𝑥 ∈ 𝜕Θ)d𝑥, and so we deduce that Θ is a.s. continuous and P-continuous at 𝜈𝑑-

a.e. 𝑥 ∈ R𝑑 . Actually, among these notions of continuity, the P-continuity seems to be the most related
with 𝑣Θ;𝑥 (𝑟𝑢), and it does not involve any regularity assumption on 𝜕Θ. Indeed, Θ is P-continuous
at a point 𝑥 if 𝑣Θ;𝑥 (𝑟𝑢) = 𝑜(1) for 𝑟 → 0 (that is lim𝑟→0 𝑣Θ;𝑥 (𝑟𝑢) = 0) for any 𝑢 ∈ 𝑆𝑑−1. Actually, by
lim𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | = 𝜆𝑉𝑢 ;Θ (𝑥) ∈ R, we have 𝑣Θ;𝑥 (𝑟𝑢) =𝑂 ( |𝑟 |) for 𝑟→ 0. Thus, in particular, any Boolean

model as in our assumptions is P-continuous at 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 .

4.3. Random sets with finite perimeter and random measurable sets

The notion of random (not-necessarily closed) set with finite perimeter has been introduced and dis-
cussed in Rataj (2015). Namely, a random set with (locally) finite perimeter is a measurable map from a
probability space (Ω,F ,P) into the space of sets with (locally) finite perimeter; the latter, as subspace
of the Lebesgue space 𝐿1, is the family of equivalence classes on the family of sets with (locally) finite
perimeter, modulo symmetric difference of volume zero. Therefore, two sets whose symmetric differ-
ence has 𝜈𝑑-measure zero are indistinguishable.
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Related to the framework of random set with finite perimeter, the notion of random measurable set
(RAMS) has been introduced in Galerne and Lachièze-Rey (2015), to which we refer for further in-
sights. Roughly speaking, a RAMS is a measurable map from a probability space to the class of
Lebesgue measurable subsets of R𝑑 , endowed with the Borel 𝜎-algebra induced by the local con-
vergence in measure, which correspond to the 𝐿1

loc (R
𝑑)-topology for the indicator functions. Note that

RAMS do not necessarily have finite perimeter; thus they include random closed sets and random sets
with finite perimeter as special cases.

Even if the framework of RAMS (and so that of random sets with finite perimeter as well) seems to
be the appropriate setting when dealing with the perimeter, we point out that, as discussed in (Kiderlen
and Rataj, 2018, Sect. 5), without assuming the closure of the involved random sets, the sets of the
type {𝜔 ∈ Ω : 𝑥 ∈ Θ(𝜔)} (and similarly {𝜔 ∈ Ω : Θ(𝜔) ∩ 𝐾 ≠ ∅}, with 𝐾 ⊂ R𝑑 compact) do not make
sense if Θ is a RAMS, because {𝑥 ∈ Θ} is not a measurable subset of Ω any more (since Θ(𝜔) is given
only up to measure 0). Therefore, the main object of the present paper, 𝑣Θ;𝑥 (𝑦), would not make sense.
Furthermore, as we shall discuss in the subsequent section, considering random closed sets allows us to
compare the notion of (mean) covariogram and that of (mean) outer Minkowski content, which requires
the closure of the involved set.
However, it is worth mentioning that for stationary RAMS it might be possible to give sense to 𝑣Θ;0(𝑦)
by means of the so-called shift randomization procedure described in Kiderlen and Rataj (2018).

4.4. (Mean) covariogram and (mean) outer Minkowski content

We discuss now some similarities and differences between the notion of (mean) covariogram and the
notion of (mean) outer Minkowski content in the evaluation of the (mean) boundary measure and of
the (mean) perimeter of the involved set.

Let us consider a compact subset 𝐴 of R𝑑 with 𝜕𝐴 sufficiently regular so that its outer Minkowski
content SM(𝐴) exists; from (2.6) and (2.7) we have

lim
𝑟→0

𝜈𝑑 (𝐴⊕ |𝑟 | \ 𝐴)
|𝑟 | = 𝑃(𝐴) + 2H𝑑−1 (𝐴0 ∩ 𝜕𝐴). (4.2)

On the other hand, by means of the covariogram notion, from (2.3) and (2.5) we have

1
𝑏𝑑−1

∫
𝑆𝑑−1

lim
𝑟→0

𝜈𝑑 (𝐴 \ (𝐴 + 𝑟𝑢))
|𝑟 | H𝑑−1 (d𝑢) = 𝑃(𝐴). (4.3)

Note that 𝜈𝑑 (𝐴 \ (𝐴 + 𝑟𝑢)) = 0 for any 𝑢 ∈ 𝑆𝑑−1 if 𝜈𝑑 (𝐴) = 0; whereas 𝜈𝑑 (𝐴⊕𝑟 \ 𝐴) is always greater
than 0 for all 𝑟 > 0. Hence, the main difference is that 𝑉𝑢 (𝐴) does not “see” the boundary points of 𝐴
with 𝑑-dimensional density 0; instead, from (4.2), such points “count twice” in the computation of the
outer Minkowski content, with respect to the points of the essential boundary.
In particular:

• If 𝑃(𝐴) =H 𝑑−1 (𝜕𝐴), by taking into account (2.2), we get H 𝑑−1 (𝐴0 ∩ 𝜕𝐴) = 0, and so the above
equations provide equivalent ways to compute the boundary measure of the set; in this regard we
remind that any compact set 𝐴 ⊂ R𝑑 with Lipschitz boundary satisfies 𝑃(𝐴) =H𝑑−1 (𝜕𝐴) < ∞
(e.g., see (Ambrosio et al., 2000, p. 159)). Moreover, limit and integral can be exchanged in (4.3),
so that

lim
𝑟→0

𝜈𝑑 (𝐴⊕ |𝑟 | \ 𝐴)
|𝑟 | = lim

𝑟→0

1
𝑏𝑑−1

∫
𝑆𝑑−1

𝜈𝑑 (𝐴 \ (𝐴 + 𝑟𝑢))
|𝑟 | H𝑑−1 (d𝑢) = 𝑃(𝐴).
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• If every point of a closed subset 𝐴 of R𝑑 has 𝑑-dimensional density equal to 0, then 𝐴 = 𝜕𝐴; in
this case Eq. (4.3) equals 0, while we get the boundary measure of 𝐴 by (4.2) = 2H𝑑−1 (𝐴).

• Since the perimeter 𝑃(𝐴) of 𝐴 is invariant under modifications by a set of 𝜈𝑑-measure zero,
sometimes it is useful to consider the good representative of 𝐴, that is the set so defined

[𝐴] := 𝐴1 ∪ 𝜕∗𝐴.

Then [𝐴] may be considered the class of equivalence of sets with finite perimeter which differ
only in points 𝑥 with 𝑑-dimensional density 𝛿𝑑 (𝐴, 𝑥) = 0, and it is clear that (4.2) and (4.3) give
the same value 𝑃( [𝐴]).

Of course, the above discussion for a deterministic set 𝐴 can be rephrased also for a random set Θ
sufficiently regular, such that there exists its mean outer Minkowski content:

lim
𝑟↓0

E[𝜈𝑑 (Θ⊕𝑟 \Θ)]
𝑟

= E[𝑃(Θ)] + 2E[H 𝑑−1 (Θ0 ∩ 𝜕Θ)] .

By (2.11) and (2.12) we have

1
𝑏𝑑−1

∫
𝑆𝑑−1

lim
𝑟→0

E[𝜈𝑑 (Θ \ (Θ + 𝑟𝑢))]
|𝑟 | H 𝑑−1 (d𝑢) = E[𝑃(Θ)];

therefore, if either E[𝑃(Θ)] = E[H 𝑑−1 (𝜕Θ)] or Θ is a good representative, the above equations equal
the same value.
It is evident that the notion of good representative [Θ] of Θ might be related to the notion of RAMS
recalled in the previous section, as a RAMS a random element in the space of Lebesgue subsets of
R𝑑 modulo differences of Lebesgue measure zero. (We also refer the interested reader to Galerne and
Lachièze-Rey (2015) for further insights on stationary RAMS and their related covariogram.)

Let us now turn to the mean boundary densities associated to the random set. We point out that the
existence of the Minkowski content of a (compact) set requires rectifiability assumptions; moreover,
related results in the stochastic case require stronger assumptions than those introduced so far. Therefore
in this section we shall assume the following
Stronger Assumptions: let Θ be a germ-grain model in R𝑑 as in (2.9), where Φ has intensity measure
Λ(d(𝑥, 𝑧)) = 𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧) satisfying (2.10), and such that

(B1) for 𝑄-a.e 𝑧 ∈ K, 𝑧 is a H𝑑−1-rectifiable and compact subset of R𝑑 , such that there exists a
closed set Ξ(𝑧) ⊇ 𝜕𝑧 with

∫
K H𝑑−1 (Ξ(𝑧))𝑄(d𝑧) <∞ and

H 𝑑−1 (Ξ(𝑧) ∩ 𝐵𝑟 (𝑥)) ≥ 𝛾𝑟𝑑−1 ∀𝑥 ∈ 𝜕𝑧, ∀𝑟 ∈ (0,1)

for some 𝛾 > 0 independent of 𝑧;
(B2) for any 𝑧 ∈ K, H𝑑−1 (disc( 𝑓 (·, 𝑧))) = 0 and 𝑓 (·, 𝑧) is locally bounded such that for any rela-

tively compact 𝐵 ⊂ R𝑑

sup
𝑥∈𝐵⊕diam(𝑧)

𝑓 (𝑥, 𝑧) ≤ 𝜉𝐵 (𝑧) (4.4)

for some 𝜉𝐵 (𝑧) with
∫

K 𝜉𝐵 (𝑧)H
𝑑−1 (Ξ(𝑧))𝑄(d𝑧) <∞.

Such assumptions are basically the same as those introduced in Villa (2010) and related works on the
mean density approximation and estimation of random closed sets (see also Villa (2014)), to which
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we refer for a more exhaustive discussion. In a nutshell, we point out here that the assumption (B1)
guarantees that the grains admit mean outer Minkowski content, and it is often fulfilled with Ξ = 𝜕𝑍

or Ξ = 𝜕𝑍 ∪ 𝐴 for some sufficiently regular random closed set 𝐴; as a matter of fact, it can be seen as
the stochastic version of a common assumption in Geometric Measure theory (see (Ambrosio et al.,
2000, p. 111)) which guarantees the existence of the Minkowski content of the involved set, extending a
classical result by Federer (Federer, 1969, p. 275) to H𝑛-rectifiable sets. The condition (4.4) is trivially
satisfied by (B1) whenever 𝑓 is bounded, or 𝑓 ( · 𝑧) is locally bounded and the diam(𝑧) ≤ 𝐷 ∈ R+ for
𝑄-a.e. 𝑧 ∈ K.
It is evident that (B1) and (B2) play here the same role of the assumptions (A1) and (A2) in Section
3; actually, by remembering that 𝑃(𝑍) ≤ H 𝑑−1 (𝜕𝑍), (A1) and (A2) are fulfilled for any germ grain
model satisfying (B1) and (B2).

Let Θ be a Boolean model satisfying the Stronger Assumptions above; then, by (Villa, 2010, Theorem
3.9) and (Villa, 2010, Prop. 3.12) (stated there for Boolean models with 𝑓 independent of 𝑧, but easily
generalizable), we have, respectively, that

• denoted by 𝜆Θ0∩𝜕Θ (𝑥) the density of the measure E[H 𝑑−1 (Θ0 ∩ 𝜕Θ∩ · )] with respect to 𝜈𝑑 ,

𝜎Θ (𝑥) = 𝜆𝜕∗Θ (𝑥) + 2𝜆Θ0∩𝜕Θ (𝑥) for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 ,

where 𝜎Θ is the specifica area of Θ defined in (1.1) and recalled in the Introduction;
• under the further assumption E𝑄 [𝑃(𝑍)] = E𝑄 [H 𝑑−1 (𝜕𝑍)],

𝜎Θ (𝑥) = 𝜆𝜕∗Θ (𝑥) = 𝜆𝜕Θ (𝑥)

= exp
{
−
∫

K

∫
𝑥−𝑧

𝑓 (𝑦, 𝑧)d𝑦𝑄(d𝑧)
} ∫

K

∫
𝑥−𝜕∗𝑧

𝑓 (𝑦, 𝑧)H 𝑑−1 (d𝑦)𝑄(d𝑧) (4.5)

for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 .
Therefore, by this and by Theorem 3.4 we can state the following result.

Proposition 4.3. Let Θ be a Boolean model satisfying the Stronger Assumptions above with E𝑄 [𝑃(𝑍)]
= E𝑄 [H 𝑑−1 (𝜕𝑍)]; then, for 𝜈𝑑-a.e. 𝑥 ∈ R𝑑 ,

lim
𝑟→0

P(𝑥 ∈ Θ⊕ |𝑟 | \Θ)
|𝑟 | = 𝜆𝜕∗Θ (𝑥) = 𝜆𝜕Θ (𝑥)

=
1

𝑏𝑑−1

∫
𝑆𝑑−1

lim
𝑟→0

P(𝑥 ∈ Θ − 𝑟𝑢,0 ∉ Θ) + P(𝑥 ∉ Θ − 𝑟𝑢,0 ∈ Θ)
2|𝑟 | H𝑑−1 (d𝑢); (4.6)

in particular, it holds∫
K

∫
𝑥−𝜕∗𝑧

𝑓 (𝑦, 𝑧)H 𝑑−1 (d𝑦)𝑄(d𝑧) =
∫

K

( 1
2𝑏𝑑−1

∫
𝑆𝑑−1

∫
R𝑑

𝑓 (𝑦, 𝑧)𝑉𝑢 (𝑥 − 𝑧,d𝑦)H 𝑑−1 (d𝑢)
)
𝑄(d𝑧).

(4.7)

Remark 4.4. As mentioned in the Introduction, several mean value formulas for inhomogeneous
Boolean models are available in the literature. We like to notice the formal similarity between Eq. (3.12)
for 𝜆𝑉𝑢 ;Θ (𝑥). and Eq. (4.5) for 𝜆𝜕∗Θ (𝑥) = 𝜆𝜕Θ (𝑥). The latter is in accordance with the formula in
(Schneider and Weil, 2008, Theorem 11.1.3) where an inhomogeneous Boolean model of convex grain
is considered; indeed, in such case, the condition E𝑄 [𝑃(𝑍)] = E𝑄 [H 𝑑−1 (𝜕𝑍)] is fulfilled because the
topological boundary of a full dimensional convex set coincides with its essential boundary.
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The same arguments apply to the case of “one-grain” random set discussed in Section 4.1, as well;
namely, by Proposition 4.1 and by (Villa, 2014, Theorem 18), we may state the following result.

Proposition 4.5. Let Θ = 𝑋 +𝑍 be a random closed set described by the random point (𝑋, 𝑍) ∈ R𝑑×K,
and let (𝑋, 𝑍) have joint probability law Λ(d(𝑥, 𝑧)) = 𝑓 (𝑥, 𝑧)d𝑥𝑄(d𝑧) satisfying the assumptions (B1)
and (B2). Then (4.6) and (4.7) are still valid, with

𝜆𝜕Θ (𝑥) = 𝜆𝜕∗Θ (𝑥) =
∫

K

∫
𝑥−𝜕∗𝑧

𝑓 (𝑦, 𝑧)H 𝑑−1 (d𝑦)𝑄(d𝑧).

To conclude, we point out that by means of the covariogram notion (in particular, by means of
the evaluation of the limit lim𝑟→0

𝑣Θ;𝑥 (𝑟𝑢)
|𝑟 | ), it is possible to get the mean density of the essential

boundary 𝜕∗Θ of Θ, disregarding any subsets of 𝜕Θ with 𝑑-dimensional density equal to 0; whereas
by means of the Minkowski content notion (in particular, by means of the evaluation of the limit
lim𝑟→0

P(𝑥∈Θ⊕|𝑟 |\Θ)
|𝑟 | ), it is possible to detect the mean density of Θ0 ∩ 𝜕Θ. Whenever 𝜕∗Θ = 𝜕Θ (for

instance, when the grains of Θ have Lipschitz boundary), the two procedures are equivalent.

Appendix

Lemma A.6. For any compact set 𝐴 ⊂ R𝑑 and 𝑢 ∈ 𝑆𝑑−1 it holds lim𝑟→0 1𝐴	[0,𝑟𝑢 ] (𝑥) = 1𝐴(𝑥) for all
𝑥 ∉ 𝜕𝐴, and |1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) | ≤ 1(𝜕𝐴)⊕|𝑟 | (𝑥) for all 𝑥 ∈ R𝑑 .

Proof. Let 𝑥 ∈ 𝐴 \ 𝜕𝐴; then 1𝐴(𝑥) = 1 and 𝑥 ∈ int(𝐴). Therefore there exists 𝑅 > 0 such that 𝐵𝑅 (𝑥) ⊂
𝐴, and so [𝑥, 𝑥 + 𝑅𝑢] ⊂ 𝐴 for all 𝑢 ∈ 𝑆𝑑−1. From this we can state that 1𝐴	[0,𝑟𝑢 ] (𝑥) = 1 for all 𝑟 < 𝑅,
and so lim𝑟→0 1𝐴	[0,𝑟𝑢 ] (𝑥) = 1.
Let 𝑥 ∈ 𝐴𝑐; then 1𝐴(𝑥) = 0. Since 𝐴 	 [0, 𝑟𝑢] ⊆ 𝐴 for all 𝑟 > 0, we have 1𝐴	[0,𝑟𝑢 ] (𝑥) ≤ 1𝐴(𝑥) = 0 for
all 𝑟 > 0, and so lim𝑟→0 1𝐴	[0,𝑟𝑢 ] (𝑥) = 0.

With reference to the second statement, it is sufficient to notice that |1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) | = 1 if and
only if 𝑥 ∈ (𝐴 − 𝑟𝑢) \ 𝐴 or 𝑥 ∈ 𝐴 \ (𝐴 − 𝑟𝑢).
Let 𝑥 ∈ 𝐴 \ (𝐴 − 𝑟𝑢). By contradiction, let us suppose that 𝑥 ∉ (𝜕𝐴)⊕ |𝑟 |; then 𝑥 is an interior point
of 𝐴 with 𝐵 |𝑟 | (𝑥) ∩ 𝜕𝐴 = ∅, so that there exist 𝑦 ∈ 𝐵 |𝑟 | (𝑥) interior point of 𝐴 such that 𝑦 = 𝑥 + 𝑟𝑢.
This is equivalent to say that 𝑥 = 𝑦 − 𝑟𝑢 ∈ 𝐴 − 𝑟𝑢, which is absurd. The case 𝑥 ∈ (𝐴 − 𝑟𝑢) \ 𝐴 follows
similarly.

From (Galerne and Lachièze-Rey, 2015, Theorem 1) it follows that the sequence of the signed mea-
sures {𝜇𝑟 }𝑟 defined by

𝜇𝑟 (d𝑥) :=
1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥)

𝑟
d𝑥, 𝑟 ≠ 0,

weakly* converges to 𝐷𝑢1𝐴, if 𝐴 is a measurable subset of R𝑑 with finite perimeter.
In particular, we have the following result.

Lemma A.7. Let 𝐴 ⊂ R𝑑 be a measurable set with finite perimeter. Then the sequence of measures

𝑀𝑟 (d𝑥) :=
|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |

|𝑟 | d𝑥, 𝑟 ≠ 0,

weakly* converge to 𝑉𝑢 (𝐴, · ) := |𝐷𝑢1𝐴| ( · ) in R𝑑 for 𝑟→ 0.
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Proof. Let us notice that, 𝐴 being of finite perimeter in R𝑑 , and so of finite perimeter in any open
𝑈 ⊂ R𝑑 , it holds

lim inf
𝑟→0

𝑀𝑟 (𝑈) ≥ lim inf
𝑟→0

∫
𝑈 	[0,𝑟𝑢 ]

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥

= lim
𝑟→0

∫
𝑈 	[0,𝑟𝑢 ]

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥

(3.4)
= 𝑉𝑢 (𝐴,𝑈)

for any open 𝑈 ⊂ R𝑑 . By (2.5), we have lim𝑟→0 𝑀𝑟 (R𝑑) = 𝑉𝑢 (𝐴). Then the weak* convergence of
{𝑀𝑟 } to 𝑉𝑢 (𝐴, · ) follows as a direct application of (Ambrosio et al., 2000, Proposition 1.80), by re-
placing 𝑋 with R𝑑 , 𝜇ℎ with 𝑀𝑟 , and 𝜇 with 𝑉𝑢 (𝐴 · ).

Thanks to the above convergence result, we get the following proposition; it may be seen as a partic-
ular generalization of Eq. (2.5), which is a result interesting in its own right.

Proposition A.8. Let 𝐴 ⊂ R𝑑 be a relatively compact set with finite perimeter; then for all 𝑢 ∈ 𝑆𝑑−1∫
R𝑑

𝑓 (𝑥)𝑉𝑢 (𝐴,d𝑥) = lim
𝑟→0

∫
R𝑑

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | 𝑓 (𝑥)d𝑥 (A.8)

for any 𝑓 : R𝑑 → R+ locally bounded with 𝑉𝑢 (𝐴,disc 𝑓 ) = 0.

We omit here the proof because it may be done by mimicking that of Theorem 35 in Villa (2010), by
taking into account that, as a byproduct of the above lemma,

𝑉𝑢 (𝐴, 𝐵) = lim
𝑟→0

∫
𝐵

|1𝐴(𝑥 + 𝑟𝑢) − 1𝐴(𝑥) |
|𝑟 | d𝑥

for any continuity set 𝐵 for 𝑉𝑢 (𝐴, · ), that is 𝑉𝑢 (𝐴, 𝜕𝐵) = 0.
Alternatively, by (Ambrosio et al., 2000, Prop. 1.62 b)) we get that (A.8) holds for any bounded Borel
function 𝑓 : R𝑑 → R with compact support, such that 𝑉𝑢 (𝐴,disc 𝑓 ) = 0. Since 𝐴 is assumed to be
relatively compact, for 𝑟 sufficiently small such condition on 𝑓 may be weakened in the integrals in
(A.8), and 𝑓 taken locally bounded.
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