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Abstract. For a category B with finite products, we first characterize
pseudofunctors from B to Cat whose associated opfibration is Cartesian
monoidal. Among those, we then characterize the ones which extend to
pseudofunctors from internal groups to 2-groups. If B is additive, this is
the case precisely when the associated opfibration has groupoidal fibres.
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1. Introduction

Let B be a category with finite products, and let F : B → Set be a finite
product preserving functor.

It is well known that if (M,m : M × M → M, e : IB → M) is a monoid
in B, then F (M) is a monoid (in Set) with multiplication F (m) and identity
F (e). In fact, the assignment determines a functor Mon(B) → Mon. In the
same way, and with the same hypotheses, one gets functors Gp(B) → Gp
and Ab(B) → Ab. All of them fit the commutative diagram below, where the
vertical arrows are the usual forgetful functors.

Ab(B)
��

Ab(F ) �� Ab

��
Gp(B)

��

Gp(F ) �� Gp

��
Mon(B)

��

Mon(F ) �� Mon

��
B

F
�� Set

Though elementary, the previous observation has relevant consequences, e.g.
when the forgetful functor Ab(B) → B is an isomorphism. If this is the case,
then F factors through the category Ab of abelian groups. This happens, for
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instance, when B is the category of C-modules, for a fixed group C, and F
is a cohomology functor Hn(C,−). For a given C-module B, thanks to the
fact that Hn(C,−) factors through Ab, the set Hn(C,B) gains the usual
abelian group structure (see [4], where the Baer sum of abelian extensions in
a protomodular category is introduced in this way).

A natural question arises, whether similar results hold true when we
consider a two-categorical setting rather than the one-categorical one de-
scribed above. In fact, the previous situation may be regarded as a monoidal
functor F : (B,×, IB) → (Set,×, {∗}). As a generalization, we can consider a
lax monoidal pseudofunctor F : B → Cat, where B is regarded as a locally
discrete 2-category (i.e. a 2-category whose 2-cells are identities), and both
B and Cat are endowed with their Cartesian 2-monoidal structure. Then F
sends monoids in B to pseudomonoids in Cat, i.e. to monoidal categories ([9],
see also [14]). However, in general, a lax monoidal pseudofunctor fails to send
(abelian) groups in B to their two-dimensional counterpart, namely (symmet-
ric) 2-groups: (symmetric) monoidal groupoids where every object is weakly
invertible with respect to the tensor product. As an example, one can consider
the pseudofunctor Sub(−) : Ab → Cat that assigns to every abelian group A
the lattice of its subobjects. This pseudofunctor is indeed lax monoidal with
respect to the Cartesian structures and its fibres inherit a monoidal structure
which is given by the joining of subobjects, but they are clearly not 2-groups.

In the present paper, we first observe that pseudofunctors F : B → Cat
are always endowed with an oplax monoidal structure (L,L1) with respect
to the Cartesian monoidal structures (see Proposition 3.4). Among those,
in Theorem 4.7, we characterize the ones whose corresponding opfibration
(obtained via the Grothendieck construction) is a Cartesian monoidal opfi-
bration. This happens precisely when L and L1 have right adjoints R and
R1, respectively.

At this point, our goal is to understand under which conditions such
pseudofunctors lift to pseudofunctors from internal groups to 2-groups. We
call the latter groupal pseudofunctors (see Definition 5.3) and fully answer this
question in Theorem 5.4: F is groupal if and only if the unit η1 : 1 ⇒ R1L1

is an isomorphism as well as the units ηA,A : 1 ⇒ RA,ALA,A, for each group
object A in B. This can be rephrased in terms of the opfibration P : thanks to
Lemma 5.1 and Lemma 5.2, the previous conditions hold as soon as, for each
object X with P (X) a group object in B, the terminal map τX : X → IX and
the diagonal map ΔX : X → X×X are cocartesian. In particular, in Corollary
5.7, we prove that a Cartesian monoidal opfibration with groupoidal fibres
always satisfies these properties, and then the corresponding pseudofunctor
is groupal.

As a special case of interest, we apply the previous results to a Cartesian
monoidal opfibration P with additive base. The corresponding pseudofunctor
factors through Sym2Gp if and only if diagonal and terminal maps are P -
cocartesian (Theorem 5.8). This happens precisely when the fibres of P are
groupoids (Theorem 5.9).

In Sect. 6.1, we consider the pseudofunctor OPEXT(C,−) : Mod(C) →
Cat, associating with any C-module (B, ξ) (where C is a group) the groupoid
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OPEXT(C,B, ξ) of abelian extensions of C, with kernel B and induced ac-
tion ξ. We can apply Theorem 5.9, so that each such groupoid gets a sym-
metric 2-group structure, whose connected components give rise to a group
π0(OPEXT(C,B, ξ)) isomorphic to H2(C,B, ξ) (and π1(OPEXT(C,B, ξ)) iso-
morphic to Z1(C,B, ξ)). In this way, we recover the result achieved by Vitale
in [16] in terms of cocycles. Another viewpoint can be found in Section 6.2
of [8].

As a further application, in Sect. 6.2, we consider the category LMSet
of monoid left actions, taking into account the fact that the forgetful func-
tor V : LMSet → Mon turns out to be a Cartesian monoidal opfibration.
By Proposition 6.2, its associated pseudofunctor lifts to a lax symmetric
monoidal pseudofunctor ACT : CMon → SymMonCat, where the tensor prod-
uct in any fibre ACT(M) can be obtained by means of the so-called contracted
product [5] (see Proposition 6.3).

ACT(M) fails to be a groupoid, even when M is an (abelian) group.
Thanks to Proposition 6.4, it turns out that the largest possible restriction
of V over Ab with groupoidal fibres is given by V : ATors → Ab, where ATors
is the full subcategory of LMSet given by abelian torsors. Then, thanks to
Theorem 5.9, the corresponding pseudofunctor TORS factors through sym-
metric 2-groups. Notice that, for an abelian group B, the structure we obtain
on TORS(B) is a special case of the one studied for bitorsors by Breen in [5].

2. Preliminaries

We use unadorned capital letters for categories (A,B etc.), and thick ones
for 2-categories (A, B etc.). CAT is the 3-category of 2-categories, pseudo-
functors, pseudonatural transformations and modifications. We denote by Cat
the 2-category of locally small categories. Actually, we will avoid dealing with
size issues, which can be resolved with suitable Grothendieck universes. To fix
this point, we declare that the category of small categories Cat is an object of
Cat, which is in turn an object of CAT. The composition of arrows (1-cells)
f, g is denoted g ◦ f , or just gf , and the same notation is adopted for the
whiskering of a 1-cell with a 2-cell. Horizontal composition of 2-cells is always
denoted β ◦ α, since the juxtaposition is reserved to vertical composition of
2-cells.

Binary products in a category B are denoted as usual, with projections
π1, π2, and the terminal map from an object A is τB

A : A → IB, with su-
perscripts and subscripts omitted when clear from the context. We adopt
similar conventions for finite products in Cat, where the terminal category
with unique object � is denoted by I. In fact, finite products in Cat are also
2-limits, in that they also satisfy a universal property with respect to 2-cells.
We will refer to it as the two-dimensional universal property of products, to
make a distinction from the usual (one-dimensional) universal property of
products. In the case of binary products, for two categories A and B, their
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product A A × B
π1�� π2 �� B satisfies: for any pair of natural transforma-

tions α : a ⇒ a′ : C → A and β : b ⇒ b′ : C → B, there exists a unique natural
transformation γ : c ⇒ c′ : C → A × B such that π1 ◦ γ = α and π2 ◦ γ = β.

Let B be a category. A pseudofunctor F = (F, φ, φ1) : B → Cat is a
weak 2-functor, where B is regarded as a locally discrete 2-category, and
φf,g : F (g) ◦ F (f) ∼−→F (g ◦ f), φ1

B : 1F (B)
∼−→F (1B) are natural isomorphisms,

for f, g composable arrows and B object of B, satisfying coherence conditions.

Example 2.1. The following is classical. Let P : X → B be a (Grothendieck)
cloven opfibration. Then it is possible to associate with P the pseudofunctor
F : B → Cat defined as follows. For any object A of B, the image F (A) is the
fibre of P over A. For an arrow f : A → B of B, F (f) = f∗ : F (A) → F (B)
is the change of base functor (determined by the cleavage), where for any
X ∈ F (A), f̂ : X → f∗(X) is a cocartesian lifting of f at the object X. The
natural isomorphisms (φ, φ1) are consequences of the universal properties of
cocartesian liftings.

Notation: in the case of composable arrows f, g, for the codomain of a
composition of liftings, we write g∗f∗(X) rather than g∗(f∗(X)).

Monoidal bicategories are the bicategorical version of monoidal cate-
gories, and they can be described as one-object tricategories ( [10], see also
[9]). They can be defined according to different levels of strictness, concern-
ing the underlying bicategory and the tensor product. For instance, we say
that (B,⊗, I) is a monoidal 2-category if the underlying bicategory B is in
fact a 2-category. The interested reader can also consult [13], where monoidal
2-categories and their variations are described in detail. However, we do not
need to recall the definitions in full generality, since in this paper we will stick
to the two evident examples described below.

Example 2.2. Let (B,⊗, IB) be a symmetric monoidal category. Then, when
B is regarded as a locally discrete 2-category, it can be likewise considered as
a symmetric monoidal 2-category.

Example 2.3. The 2-category Cat can be endowed with a Cartesian monoidal
structure given by the Cartesian product and the terminal category, which
makes it a symmetric monoidal 2-category.

Morphisms between monoidal bicategories are homomorphisms of bi-
categories that preserve the structures up to coherent pseudonatural trans-
formations. Once again, we describe explicitly only the case of interest in our
context. We start by fixing the notation for an oplax monoidal pseudofunctor
B → Cat, where the monoidal structure on B is the Cartesian one.

Let B be a category with finite products. The associator is induced by
the universal property of products, and it is written αA,B,C : (A × B) × C →
A × (B × C), left and right unitors are the projections π1 : A × IB → A and
π2 : IB ×A → A. The same conventions are adopted for the constraints of the
Cartesian monoidal structure of Cat.

An oplax monoidal pseudofunctor

F = (F,L,L1, ω, ζ, ξ) : (B,×, IB) −→ (Cat,×, I)
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is given by a pseudofunctor F : B → Cat, together with pseudonatural trans-
formations

B × B

F×F

��

× �� B

F

��L�� ���
�

���
�

Cat × Cat ×
�� Cat

I
IB ��

I ����
���

���
���

B

F
��

L1�� ������

Cat

(1)

(where I is the terminal 2-category) with components the functors

LA,B : F (A × B) → F (A) × F (B) L1 : F (IB) → I (2)

and invertible modifications with components

F ((A × B) × C)

LA×B,C

��

F (αA,B,C) �� F (A × (B × C))

LA,B×C

��
ωA,B,C

∼=
�� ���

���
��

���
���

��
F (A × B) × F (C)

LA,B×1

��

F (A) × F (B × C)

1×LB,C

��
(F (A) × F (B)) × F (C)

αF (A),F (B),F (C)
�� F (A) × (F (B) × F (C))

(3)

F (A × IB)

LA,IB

��

F (π1) �� F (A)

1

��
ζA

∼=
�� ������

������
��

F (A) × F (IB)
1×L1

�� F (A) × I
π1

�� F (A)

(4)

F (IB × A)

LIB,A

��

F (π2) �� F (A)

1

��
ξA

∼=
�� ������

������
��

F (IB) × F (A)
L1×1

�� I × F (A)
π2

�� F (A)

(5)

satisfying suitable coherence conditions.
If we write σA,B : A×B → B×A for the braiding induced by a Cartesian

monoidal structure, the oplax monoidal pseudofunctor F is oplax symmetric
monoidal if it is endowed with an invertible modification θ with components

F (A × B)
F (σA,B) ��

LA,B

��

F (B × A)

LB,A

��
θA,B

∼=
�	 ���������

�

F (A) × F (B)
σF (A),F (B)

�� F (B) × F (A)

(6)

satisfying suitable coherence conditions.
Dually, a lax monoidal pseudofunctor

F = (F,R,R1, ω′, ζ ′, ξ′) : (B,×, IB) −→ (Cat,×, I)
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is given by a pseudofunctor F : B → Cat, together with pseudonatural trans-
formations

B × B

F×F

��

× �� B

F

��R

	
����
����

Cat × Cat ×
�� Cat

I
IB ��

I ����
���

���
���

B

F
��

R1

	
��� ���

Cat

(7)

with components the functors

RA,B : F (A) × F (B) → F (A × B) R1 : I → F (IB) (8)

and invertible modifications ω′, ζ ′, ξ′ whose components can be easily guessed
from those of the oplax case. Similarly, one defines a lax symmetric monoidal
pseudofunctor.

Pseudomonoids in a monoidal bicategory are introduced in Section 3 of
[9] (see also [13] for a more contemporary and slightly more general account).
However, we will need some details just for the case of pseudomonoids in a
monoidal 2-category. A pseudomonoid in a monoidal 2-category (B,⊗, I) is
an internal monoid object in B, such that the monoid axioms hold only up
to invertible 2-cells. This means that it is an object M of B, together with
1-cells m : M ⊗ M → M and e : I → M and invertible 2-cells

(M ⊗ M) ⊗ M ∼= M ⊗ (M ⊗ M)

m⊗1

��

1⊗m �� M ⊗ M

m

��
α

∼=

� ���������

�

M ⊗ M
m

�� M

(9)

M ∼= I ⊗ M
1⊗e ��

1
����

���
���

���
� M ⊗ M

m

��
λ

∼=
� 						 ρ

∼=
��

�� ���
M ⊗ I ∼= M

e⊗1��

1
��			

			
			

			

M

(10)

satisfying coherence conditions. A (op)lax morphism between pseudomonoids
M and N is a 1-cell f : M → N together with 2-cells that express the (op)lax
preservation of the internal multiplication and unit.

Most of the pseudomonoids considered in this paper are symmetric.
To define symmetric pseudomonoids, the ambient 2-category cannot be only
monoidal, but must be sylleptic monoidal. We do not enter into details, since
in the Cartesian monoidal cases we consider the sylleptic structure is the
canonical symmetric one, as determined by universal property of products.
However, the only case we shall need to make explicit calculations are de-
scribed in the following two examples.

Example 2.4. Let B be a category with finite products, considered as a monoidal
2-category with its Cartesian symmetric monoidal structure. A (symmetric)
pseudomonoid in (B,×, IB) is nothing but a (commutative) monoid object in
B, a (op)lax morphism is just a morphism of internal monoids.
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Example 2.5. A (symmetric) pseudomonoid in the Cartesian monoidal 2-
category (Cat,×, I) is precisely a (symmetric) monoidal category. In this case,
a (op)lax morphism is a (op)lax monoidal functor.

In [14], the authors characterize monoidal fibrations (defined in [15]) as
pseudomonoids internal to the 2-category of fibrations (in fact, they define
monoidal fibrations in this way, and we follow such convention) and then show
how the well-known biequivalence between fibrations and indexed categories
extends to internal pseudomonoids in such monoidal 2-categories. Here, we
recall their definition/characterization, but spelled out in the opfibration case,
which is more suitable for our purposes.

Proposition 2.6. (see Proposition 3.2 of [14]) The following statements are
equivalent:

i. The functor P : X → B is a monoidal opfibration, i.e. it is a pseu-
domonoid in the 2-category opFib of opfibrations.

ii. The categories X and B are monoidal, the opfibration P is a strict
monoidal functor, and the tensor product of cocartesian maps is co-
cartesian.

Furthermore, all of this can be translated in terms of pseudofunctors (see
Proposition 3.7 of [14]): the pseudofunctor F canonically associated with an
opfibration P satisfying the equivalent conditions above is endowed with a
lax monoidal structure

F = (F,R,R1, . . . ) : (B,⊗, IB) −→ (Cat,×, I).

We recall from [14] that this correspondence extends to an equivalence of
2-categories.

Starting with a lax monoidal pseudofunctor F as above, it is easy to
see that it sends (commutative) monoids in B to (symmetric) monoidal cat-
egories. To fix the notation, we recall such a procedure. Let (M,m, e) be a
monoid in B. Then, F (M) becomes a monoidal category with tensor product
and unit object

⊗ : F (M) × F (M) RM,M
�� F (M ⊗ M)

F (m) �� F (M) (11)

I
R1

�� F (IB)
F (e) �� F (M). (12)

Also, for a morphism of (commutative) monoids f : (M,m, e) → (M ′,m′, e′)
in B, F (f) is a strong (symmetric) monoidal functor F (M) → F (M ′).

3. When Oplax Monoidal Is for Free

Let B be a category with finite products, P : X → B an opfibration and
F : B → Cat its associated pseudofunctor.

Lemma 3.1. The trivial functor L1 : F (IB) → I defines a pseudonatural trans-
formation L1 as in the diagram on the right of (1).

Proof. Trivial. �
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Lemma 3.2. Let A,B be objects of B. The assignment

X

f

��
Y

	→

⎛
⎜⎜⎜⎝

π1∗(X)

π1∗(f)

��
π1∗(Y )

,

π2∗(X)

π2∗(f)

��
π2∗(Y )

⎞
⎟⎟⎟⎠

defines a functor LA,B : F (A × B) → F (A) × F (B).

Proof. The functor LA,B is in fact defined by the (one-dimensional) universal
property of products in Cat, as the following diagram illustrates:

F (A × B)
F (π1)

��















LA,B

���
�
�

F (π1)

����
���

���
��

F (A) F (A) × F (B)
π1

��
π2

�� F (B)

In the language of opfibrations, F (πi) = πi∗ and LA,B = 〈π1∗, π2∗〉. �

Lemma 3.3. The functor LA,B defines a pseudonatural transformation L as
in the diagram on the left of (1).

Proof. Pseudonaturality is given by the two-dimensional property of products
in Cat. More precisely, for arrows a : A → A′ and b : B → B′, by composing
the (not necessarily commutative) square

F (A × B)

LA,B

��

F (a×b) �� F (A′ × B′)

LA′,B′

��L(a,b)

∼=

�     

F (A) × F (B)
F (a)×F (b)

�� F (A′) × F (B′)

(13)

with product projections, one obtains the squares

F (A × B)

F (π1)

��

F (a×b) �� F (A′ × B′)

F (π1)

��
ι1

∼=
�� ��������

F (A)
F (a)

�� F (A′)

F (A × B)

F (π2)

��

F (a×b) �� F (A′ × B′)

F (π2)

��
ι2

∼=
�� ��������

F (B)
F (b)

�� F (B′)

Due to the pseudofunctoriality of F , these are filled with natural isomor-
phisms ι1 and ι2. The universal property produces the natural isomorphism
L(a,b) which fills diagram (13), such that πi ◦ L(a,b) = ιi. �

It is useful to spell out the definition of L(a,b) on the components. For
an object Z of F (A×B), if we write L

(a,b)
Z = (L(a,b)

Z,1 , L
(a,b)
Z,2 ), then the isomor-

phism L
(a,b)
Z,1 : a∗π1∗(Z) → π1∗(a × b)∗(Z) is the vertical comparison between

two different cocartesian liftings at Z of a ◦ π1 = π1 ◦ (a × b) : A × B → A′.
Similarly for the isomorphism L

(a,b)
Z,2 : b∗π2∗(Z) → π2∗(a × b)∗(Z).
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Proposition 3.4. Let B be a category with finite products, and F : B → Cat
be a pseudofunctor. Then F is canonically endowed with an oplax symmetric
monoidal structure

(F,L,L1, ω, ζ, ξ, θ) : (B,×, IB) −→ (Cat,×, I).

Proof. Oplax preservation of unit object is given by Lemma 3.1, while oplax
preservation of products are given by Lemma 3.2 and by Lemma 3.3. It is
tedious, but essentially straightforward, to obtain the invertible modifications
ω, ζ, ξ and θ of diagrams (3)–(6): a careful application of the two-dimensional
property of products in Cat will do the job. In the same way, one proves that
coherence conditions are satisfied. �

4. Adjoints Make Products

Lemma 4.1. Let B be a category with terminal object IB and P : X → B be an
opfibration, and F : B → Cat its associated pseudofunctor. Then the following
statements are equivalent.

i. The category X has a terminal object IX, and P strictly preserves it.
ii. The functor L1 defined in Lemma 3.1 has a right adjoint R1.

Proof. (i. ⇒ ii.) Since P (IX) = IB by hypothesis, we can define R1 by R1(�) =
IX. R1 is trivially right adjoint to L1: the unique component of the counit is
ε1� = 1� : L1R1(�) = � → �. For X ∈ F (IB), η1

X : X → R1L1(X) = IX is the
terminal map τX .

(ii. ⇒ i.) Since R1 is a right adjoint, R1(�) is terminal in F (IB). We
claim it is also terminal in X. Indeed, let X be any object of X. We can lift
the terminal map τP (X) : P (X) → IB at X, and then compose this lifting
τ̂P (X) with the terminal map t : τP (X)∗(X) → IX = R1(�) in F (IB). By the
property of cocartesian liftings, this is the unique arrow X → IX. �

Lemma 4.2. Let B be a category with binary products and P : X → B be an
opfibration, and F : B → Cat its associated pseudofunctor. For A and B
objects of B, the following statements are equivalent.

i. For X and Y in X such that P (X) = A and P (Y ) = B, there exists a
product X × Y in X such that P (X × Y ) = A × B.

ii. The functor LA,B defined in Lemma 3.2 has a right adjoint RA,B.

If this is the case, we have X × Y = RA,B(X,Y ).

Proof. (i. ⇒ ii.) Let X,Y be objects of X, and A = P (X) and B = P (Y ).
We can define RA,B(X,Y ) = X × Y , and this easily extends to a functor

RA,B : F (A) × F (B) −→ F (A × B)

by the universal property of products in X. To prove that RA,B is right adjoint
to LA,B , let us define the counit εA,B : LA,BRA,B ⇒ 1F (A)×F (B) and show
that it satisfies the expected universal property.
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The counit is obtained with the help of the universal property of co-
cartesian liftings of product projections in B. For X,Y in X, the component

εA,B
(X,Y ) = (ε1, ε2) : LA,BRA,B(X,Y ) = (π1∗(X × Y ), π2∗(X × Y )) −→ (X,Y )

of the counit is defined as follows: εi (i = 1, 2) are the unique arrows such that
εi ◦ π̂i = πi and P (εi) are identities—the reader may find it helpful to look
at the lower part of diagram (14). Moreover, (ε1, ε2) satisfies the universal
property of the counit. Actually, given the arrow

(g1, g2) : LA,B(Z) = (π1∗(Z), π2∗(Z)) −→ (X,Y )

in F (A)×F (B), there exists a unique h such that πi ◦h = gi ◦ π̂i (see diagram
(14) below, where the dotted lines help to identify the fibres):

π1∗(Z)

π1∗(h)

���
�
�

g1

��

Z
π̂1�� π̂2 ��

h

���
�
� π2∗(Z)

π2∗(h)

���
�
�

g2

�	

π1∗(X × Y )

ε1

��

X × Y
π̂1�� π̂2 ��

π1

�����
���

���
���

���

π2

����
���

���
���

���
� π2∗(X × Y )

ε2

��
X Y

A A × B
π1

��
π2

�� B

(14)

Then, we can apply LA,B to h, and obtain the pair (π1∗(h), π2∗(h)). Finally,
gi = εi ◦ πi∗(h), since they are P -vertical, and precomposing with the co-
cartesian arrow π̂i gives the same result.

Notice that the corresponding unit component in Z is given by

ηA,B
Z = 〈π̂1, π̂2〉 : Z −→ π1∗(Z) × π2∗(Z),

where π̂i is the cocartesian lifting at Z of the product projection πi.
(ii. ⇒ i.) Let X,Y be objects of X, and let A = P (X) and B = P (Y ).

We want to prove that RA,B(X,Y ) gives rise to a product X × Y in X, with
projections πi = εi ◦ π̂i, where εA,B

(X,Y ) = (ε1, ε2) is the counit of the adjunction
LA,B � RA,B , and π̂i is the cocartesian lifting of the product projection
πi. To prove that we actually define a product, let us consider two arrows
g1 : Z → X and g2 : Z → Y in X and their images P (g1) = f1 : C → A and
P (g2) = f2 : C → B in B. By taking the cocartesian lifting of 〈f1, f2〉 : C →
A × B at Z, we obtain that gi = g′

i ◦ ̂〈f1, f2〉, where g′
i is the unique factor

such that P (g′
i) = πi:
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π1∗(X × Y )

ε1

��

X × Y
π̂1�� π̂2 �� π2∗(X × Y )

ε2

��

W1

k1

��

π1∗(k)

���
�
�

〈f1, f2〉∗(Z)
g′
1

��� � � � � � � � �
g′
2

������������

k

���
�
�

π̂1�� π̂2 �� W2

k2

��

π2∗(k)

���
�
�

X Y

Z

g1

����������������������������������

̂〈f1,f2〉

������������������ g2

�������������

A A × B
π1�� π2 �� B

C

f1

�����������������������������������

〈f1,f2〉
������������ f2

�������������

Then there exists a unique ki such that P (ki) = 1 and ki ◦ π̂i = g′
i, where

π̂i is the cocartesian lifting at 〈f1, f2〉∗(Z) of πi. So we get a morphism
(k1, k2) : (W1,W2) = LA,B(〈f1, f2〉∗(Z)) → (X,Y ). Then, by the universal
property of counits, there exists a unique k : 〈f1, f2〉∗(Z) → X × Y such
that εi ◦ πi∗(k) = ki. By precomposing, we eventually find the unique arrow
k ◦ ̂〈f1, f2〉 : Z → X × Y such that

εi ◦ π̂i ◦ k ◦ 〈f1, f2〉 = εi ◦ πi∗(k) ◦ π̂i ◦ 〈f1, f2〉 = ki ◦ π̂i ◦ 〈f1, f2〉
= g′

i ◦ 〈f1, f2〉 = gi.

�

Corollary 4.3. Let B be a category with binary products and P : X → B be an
opfibration, and F : B → Cat its associated pseudofunctor. Then the following
statements are equivalent.

i. The category X has binary products, and P strictly preserves them.
ii. For every pair of objects A and B in B, the functor LA,B defined in

Lemma 3.2 has a right adjoint RA,B.

If this is the case, we have X × Y = RP (X),P (Y )(X,Y ).

Proof. Just apply Lemma 4.2 for all A,B in B. �

Remark 4.4. Put together, Lemma 4.1 and Corollary 4.3 say that requiring
4.1.i. plus 4.3.i. to hold is the same as requiring X to have finite products, and
P to be a strict monoidal functor with respect to the Cartesian structures.

For a pair (a, b) of arrows in B, let us consider the natural isomorphism
L(a,b) described in diagram (13). If LA,B has a right adjoint RA,B and LA′,B′
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has right adjoint RA′,B′
, then the pasting

F (A)×F (B) RA,B
��

1

���
��

��
��

��
��

��
��

�
F (A×B)

LA,B

��

F (a×b) ��

εA,B

�� ��
���
�

F (A′×B′)

LA′,B′

��

L(a,b)

∼=

�� ��
��
��
��
��

��
��
��
��
��

1

���
��

��
��

��
��

��
��

�

ηA′,B′�� ��
���
�

F (A)×F (B)
F (a)×F (b)

�� F (A′)×F (B′)
RA′,B′

�� F (A′×B′)

(15)

is called the mate of L(a,b). A pseudo-commutative square with opposite sides
admitting right adjoints, such as the one of diagram (13), is sometimes said
to satisfy the Beck-Chevalley condition if its mate is a natural isomorphism.

Lemma 4.5. Let B be a category with binary products and P : X → B be an
opfibration, and F : B → Cat its associated pseudofunctor. Moreover, given
a pair of arrows a : A → A′ and b : B → B′ in B, suppose LA,B and LA′,B′

have right adjoints RA,B and RA′,B′
respectively. Then, for an object (X,Y )

of F (A) × F (B), the component R
(a,b)
(X,Y ) of the mate of L(a,b) is the unique

P -vertical (dashed) arrow such that the following diagram commutes

a∗(X) × b∗(Y )

X × Y
â×b

��

â×b̂
	���������������

(a × b)∗(X × Y )

R
(a,b)
(X,Y )

���
�
� (16)

Proof. The mate of L(a,b) of diagram (15) consists in the following vertical
composition of the three horizontal whiskerings:

(RA′,B′ ◦ F (a)×F (b) ◦ εA,B)(RA′,B′ ◦ L(a,b) ◦ RA,B)(ηA′,B′ ◦ F (a×b) ◦ RA,B).

To determine its component at an object (X,Y ) of F (A) × F (B), we can
calculate: first

(ηA′,B′ ◦ F (a×b) ◦ RA,B)(X,Y ) = ηA′,B′

F (a×b)◦RA,B(X,Y )
= ηA′,B′

(a×b)∗(X×Y ) = 〈π̂1, π̂2〉,
where the last equality follows from the definition of the unit of the adjunction
given in the proof of Lemma 4.2, then

(RA′,B′ ◦ L(a,b) ◦ RA,B)(X,Y ) = RA′,B′(
L

(a,b)
X×Y

)
= L

(a,b)
X×Y,1 × L

(a,b)
X×Y,2

and last:

(RA′,B′ ◦ F (a)×F (b) ◦ εA,B)(X,Y ) = (RA′,B′ ◦ F (a)×F (b))(ε1, ε2)

= RA′,B′
(a∗(ε1), b∗(ε2)) = a∗(ε1) × b∗(ε2),

where (ε1, ε2) = εA,B
(X,Y ) is the component of the counit of the adjunction.

Hence, we can conclude:

R
(a,b)
(X,Y ) =

(
a∗(ε1) × b∗(ε2)

) ◦ (
L

(a,b)
X×Y,1 × L

(a,b)
X×Y,2

) ◦ 〈π̂1, π̂2〉.
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Now, let us consider the following diagram.

a∗(X) × b∗(Y )
π2 �� b∗(Y )

a∗π1∗(X×Y ) × b∗π2∗(X×Y )
π2 ��

a∗(ε1)×b∗(ε2)

��

b∗π2∗(X×Y )

b∗(ε2)

��

π1∗(a×b)∗(X×Y ) × π2∗(a×b)∗(X×Y )
π2 ��

L
(a,b)
X×Y,1×L

(a,b)
X×Y,2

��

π2∗(a×b)∗(X×Y )

L
(a,b)
X×Y,2

��

X × Y
â×b

��
〈π̂1â×b,π̂2â×b〉

��

〈âπ̂1,b̂π̂2〉 ��

â×b̂

� 

(a × b)∗(X × Y )

〈π̂1,π̂2〉
��

π̂2

�� π2∗(a×b)∗(X×Y )

1

��

A × B
a×b

�� A′ × B′
π2

�� B′

The central vertical composite is precisely the component R
(a,b)
(X,Y ) computed

above, therefore, since â × b is cocartesian, the proof will be completed after
showing that all triangles on the left are commutative. This is easily done by
composing such triangles with the product projections (for the sake of clarity,
only the second projections are shown in the diagram). �

Proposition 4.6. Let B be a category with binary products and P : X → B
be an opfibration, and F : B → Cat its associated pseudofunctor. Then the
following statements are equivalent.

i. The pseudonatural transformation L of Lemma 3.3 has a right adjoint
R in the hom-2-category CAT(B × B, Cat).

ii. For every pair of objects A,B in B, LA,B has right adjoint RA,B, and
for every pair of arrows a, b in B, L(a,b) satisfies the Beck–Chevalley
condition.

iii. For every pair of objects A,B in B, LA,B has right adjoint RA,B, and for
every pair of arrows a, b as in Lemma 4.5, R

(a,b)
(X,Y ) is an isomorphism.

iv. The category X has binary products, P strictly preserves them and prod-
ucts of cocartesian arrows are cocartesian.

Proof. (i. ⇔ ii.) This is a general fact concerning fibred adjunctions; see
for instance [2, Proposition 8.4.2]. (ii. ⇔ iii.) This follows directly from
Lemma 4.5. (iii. ⇔ iv.) Let us notice that the product of two cocarte-
sian arrows â, b̂ in X is cocartesian if, and only if, the comparison R

(a,b)
X,Y

of diagram (16) is an isomorphism. Then the result is a consequence of
Corollary 4.3. �

Theorem 4.7. Let B be a category with finite products and P : X → B be an
opfibration, and F : B → Cat its associated pseudofunctor. Then the following
statements are equivalent.
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i. The category X has finite products and

P : (X,×, IX) −→ (B,×, IB)

is a monoidal opfibration, i.e. P is a cartesian monoidal opfibration.
ii. The pseudonatural transformation L1 of Lemma 3.1 has a right adjoint

R1 in the hom-2-category CAT(I, Cat) and the pseudonatural transfor-
mation L of Lemma 3.3 has a right adjoint R in the hom-2-category
CAT(B × B, Cat).

iii. F is endowed with a lax symmetric monoidal structure

(F,R,R1, ω′, ζ ′, ξ′, θ′) : (B,×, IB) −→ (Cat,×, I)

where, for X,Y in X, RP (X),P (Y )(X,Y ) = X × Y and R1(�) = IX.

Proof. (i. ⇔ ii.) By Proposition 2.6, we can invoke the double implications
iv. ⇔ ii. of Proposition 4.6 and i. ⇔ ii. of Lemma 4.1. (i. ⇔ iii.) By the
symmetric version of the 2-equivalence of [14, Theorem 3.13], condition i. on
P is equivalent to F being a symmetric monoidal opindexed category, and in
turn, by [14, Proposition 3.7], a lax symmetric monoidal pseudofunctor.

For the reader’s convenience, in the following we describe how to obtain
the pseudonatural transformations ω′, ζ ′, ξ, θ′.

As far as ω′ is concerned, we can consider the pasting diagram

(F (A)×F (B))×F (C)

RA,B×1

��
1

����
���

���
���

���
���

���
���

���
���

���
���

���
���

��

εA×B,C  !					
					

εA,B×1

 !					
					

(F (A×B))×F (C)

RA×B,C

��

1

����
���

���
���

���
���

�

F ((A×B)×C)
LA×B,C

��

F (αA,B,C)

��

(F (A×B))×F (C)
LA,B×1

�� (F (A)×F (B))×F (C)

αF (A),F (B),F (C)

��
F (A×(B×C)) LA×B,C

��

1

����
���

���
���

���
���

���
���

���
���

���
���

���
���

��
F (A)×F (B×C)

LA,B×1��

1

����
���

���
���

���
���

�
F (A)×(F (B)×F (C))

1×RB,C

��
F (A)×F (B×C)

RA,B×C

��

1×ηB,C  !					
					

ηA,B×C

 !					
					

F (A×(B×C))

ωA,B,C

∼= �"���������
���������
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which is nothing but the mate of ωA,B,C . It is possible to prove that, for
X,Y,Z in X such that P (X) = A, P (Y ) = B and P (Z) = C, the compo-
nent (ω′

A,B,C)X,Y,Z is the unique P -vertical (dashed) arrow that makes the
following diagram commute

X×(Y ×Z)

(X×Y )×Z
α̂A,B,C

��

αX,Y,Z

!#����������������
αA,B,C ∗((X×Y )×Z)

���
�
�

It is an isomorphism since both α̂A,B,C and αX,Y,Z are also isomorphisms.
As far as ζ ′ is concerned (the construction of ξ′ is similar), we can

consider the pasting diagram

F (A)×I

1×R1

��
1

$�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

εA,IB "%����
����

1×ε1

"%����
����

F (A)×F (IB)

RA,IB

��

1

#&�
��

��
��

��
��

��
��

�

F (A×IB)
LA×IB

��

F (π1)

��

F (A)×F (IB)
1×L1

�� F (A)×I

π1

��
F (A)

1
��

ζA

∼= $��������
�������

F (A)

which is nothing but the mate of ζA. It is possible to prove that, for X in X
such that P (X) = A, the component (ζ ′

A)X is the unique P -vertical (dashed)
arrow that makes the following diagram commute:

X

X×IX
π̂1

��

π1

����������������
π1∗(X×IX)

���
�
�

.

It is an isomorphism since both π̂1 and π1 are also isomorphisms. Finally, for
all A,B in B, θ′

A,B is obtained as the mate of θA,B , which is an isomorphism
for the same argument as above. �

Remark 4.8. Notice that, under the hypothesis of point iii. of Theorem 4.7, F
sends commutative monoids in (B,×, IB) to symmetric monoidal categories.
The following diagram displays how the braiding τX,Y is constructed for given
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objects X and Y over a commutative monoid A.

X × Y

1X×Y

��

σ

%'�
��

��
��

��
��

��
��

��
σ̂

����
���

���
��

m̂ �� X ⊗ Y

φ−1
σ,m ∼

��
τX,Y

��

σ∗(X × Y )

∼ θ′
X,Y

��

m̂ �� m∗σ∗(X × Y )

m∗(θ′) ∼
��

Y × X

σ̂

����
���

���
���

σ

&(�
��

��
��

��
��

��
��

��
�

m̂ �� Y ⊗ X

φ−1
σ,m ∼

��
τY,X

��

σ∗(Y × X)

∼ θ′
Y,X

��

m̂ �� m∗σ∗(Y × X)

��
m∗(θ′) ∼

��
X × Y

m̂ �� X ⊗ Y

A × A
σ ��

m

��A × A
σ ��

m

!#A × A
m �� A

5. When Groups are Sent to 2-Groups

Lemma 5.1. Let the equivalent conditions of Lemma 4.1 hold. The following
statements are equivalent.

i. The unit of the adjunction η1 : 1F (IB) ⇒ R1 ◦ L1 is a natural isomor-
phism.

ii. For all X in F (IB), the terminal map τX : X → IX is P -cocartesian.
iii. For all X in X, the terminal map τX : X → IX is P -cocartesian.

Proof. (i. ⇒ ii.) This is obvious, since, as we saw in Lemma 4.1, for X in
F (IB), η1

X = τX
X .

(ii. ⇒ iii.) For X in X, the terminal map τX is the composite of a co-
cartesian lifting followed by a terminal map in F (IB), which is P -cocartesian
by ii.

(iii. ⇒ i.) For all X in F (IB), the P -vertical map η1
X = τX is P -

cocartesian, hence an isomorphism. �

Lemma 5.2. Let P : X → B be a cartesian monoidal opfibration, and F : B →
Cat its associated pseudofunctor. The following statements are equivalent.

i. For all A in B, the unit of the adjunction ηA,A : 1F (A×A) ⇒ RA,A ◦LA,A

is a natural isomorphism.
ii. For all X in X, the diagonal map ΔX : X → X × X is P -cocartesian.
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Proof. (i. ⇒ ii.) Given an object X in X, let A = P (X).

X×X
πi �� X

X
Δ̂A

��

ΔX

')������������
ΔA∗(X)

π̂i

��

φ

��

πi∗ΔA∗(X)

φi

��

A
ΔA ��

1A

	�A×A
πi �� A

Since π̂i ◦ Δ̂A is cocartesian (for i = 1, 2), then there exists a P -vertical φi

(necessarily isomorphism) such that φi ◦ π̂i ◦ Δ̂A = πi ◦ ΔX = 1X . Similarly,
because Δ̂A is cocartesian, there exists a P -vertical φ such that φ◦Δ̂A = ΔX

and πi ◦ φ = φi ◦ π̂i. Then, φ = φ1×φ2 ◦ 〈π̂1, π̂2〉 = φ1×φ2 ◦ ηA,A
ΔA∗(X), hence

an isomorphism. Consequently, ΔX is P -cocartesian.
(ii. ⇒ i.) Let Z be an object of F (A × A). Then, since both ΔZ and

π̂1× π̂2 are cocartesian, also their composite 〈π̂1, π̂2〉 = ηA,A
Z is. But the latter

is also P -vertical, hence an isomorphism.

Z
ΔZ

��

ηA,A
Z

��
Z×Z

π̂1×π̂2

�� π1∗(Z)×π2∗(Z)

A2
ΔA2 ��

1A2

	�A2×A2 π1×π2 �� A2

.

�

Let B be a category with finite products. Recall that a group object in
B is a monoid object (A,m, e) endowed with an arrow i : A → A such that
the following diagram commutes:

A

τA

��

〈1,i〉 �� A × A

m

��
IB e

�� A

(17)

Definition 5.3. A lax monoidal pseudofunctor F : (B,×, IB) → (Cat,×, I) is
called groupal when it sends internal groups in B to 2-groups, namely, it
determines the pseudofunctor 2Gp(F ) that makes the diagram
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Gp(B)

U

��

2Gp(F ) �� 2Gp

U

��
B

F
�� Cat

(18)

commute, where the vertical arrows are the forgetful functors.

The following theorem provides a full characterization of groupal pseudo-
functors.

Theorem 5.4. Let P : X → B be a Cartesian monoidal opfibration, and F : B →
Cat its associated pseudofunctor. The following statements are equivalent.

i. The equivalent conditions of Lemma 5.1 hold, and condition i. of Lemma
5.2 holds for every object A in B endowed with an internal group struc-
ture (A,m, e, i).

ii. The lax monoidal pseudofunctor F is groupal.

Proof. (i. ⇒ ii.) By the equivalent conditions of Theorem 4.7, F is lax
monoidal with respect to the cartesian monoidal structure of B. As we recalled
at the end of Sect. 2, such an F endows F (A) with a tensor product given
by ⊗ = F (m) ◦ RA,A, and a unit object E = (F (e) ◦ R1)(�).

We will show that the functor ( )∗ = F (i) : F (A) → F (A) provides
pseudoinverses for the monoidal category (F (A),⊗, E). Let us consider the
following diagram:

F (A)
ΔF (A) ��

F (ΔA)

#&�
��

��
��

��
��

��
�

F (τA)

��

∼=

F (A)×F (A)

1×F (i)
(*

F (1)×F (i)

$+

∼=L(1,i)

∼= F (A)×F (A)

RA,A

��
F (IB)

L1

��

1

#&�
��

��
��

��
��

��
�

F (A×A)

LA,A

��                

F (1×i)
��

∼=

F (A×A)

LA,A

')


















1
�� F (A×A)

F (m)

��
I

R1
�� F (IB)

F (e)
�� F (A)

(η1)−1

�,���� ����

ηA,A

)-!!!!!
!!!!!

where, since LA,A = 〈F (π1), F (π2)〉, all unlabelled natural isomorphisms are
given by the pseudofunctoriality of F . Then, since η1 and ηA,A are natural
isomorphisms by hypothesis, the pasting of the diagram gives a natural iso-
morphism γ with components γX : E → X ⊗ X∗, for X an object of F (A).
A similar construction, which uses L(i,1) instead of L(1,i), leads to the defini-
tion of a natural isomorphism δ′ with components δ′

X : X∗ ⊗ X → E. Now,
it is a standard well-known fact that, given γX , δ′

X as above, it is possible to
define a natural isomorphism δ such that the pair (γX , δX) satisfies the usual
triangle identities:

(1X ⊗ δX) ◦ αX,X∗,X ◦ (γX ⊗ 1X) = ρ−1
X ◦ λX
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(δX ⊗ 1X∗) ◦ αX∗,X,X∗ ◦ (1X∗ ⊗ γX) = λ−1
X∗ ◦ ρX∗

(see for instance the proof of [1, Theorem 5.1]). Moreover, every arrow f : X →
Y in F (A) is an isomorphism, with inverse given below:

Y
λ−1

Y �� E ⊗ Y
γX⊗1 �� (X ⊗ X∗) ⊗ Y

(1⊗f∗)⊗1�� (X ⊗ Y ∗) ⊗ Y

αX,Y ∗,Y
�.""""""

""""""
""""""

""""""
"""""

X ⊗ (Y ∗ ⊗ Y )
1⊗δY

�� X ⊗ E
ρX

�� X

(see for instance the proof of [1, Proposition 7.2]). Hence (F (A),⊗, E, ( )∗)
is a 2-group. Moreover, since for a group morphism f : A → B, F (f) is
monoidal, then F determines a pseudofunctor 2Gp(F ) such that diagram
(18) commutes.

(ii. ⇒ i.) Since B has finite products, the category of groups in B has
finite products as well. For the terminal group IB, the monoidal category
F (IB) is actually a 2-group, hence a groupoid; as a consequence, η1 must be
an isomorphism. Similarly, for a group A in B, F (A × A) is also a 2-group,
hence a groupoid; as a consequence, ηA,A must be a natural isomorphism.

�
Proposition 5.5. A groupal pseudofunctor F : (B,×, IB) → (Cat,×, I) lifts to
a pseudofunctor from Ab(B) to Sym2Gp.

Proof. Just observe that abelian groups are commutative monoids, so that
the lax monoidal pseudofunctor F sends them to 2-groups, which are sym-
metric monoidal thanks to Theorem 4.7 (see also Remark 4.8), namely to
symmetric 2-groups. �
Remark 5.6. In [3, Theorem 9] Bourn proved that, for an opfibration P : X →
B which preserves binary products and terminal object and such that cocarte-
sian maps are stable under product, if terminal maps and diagonals are co-
cartesian, then an abelian group structure on an object of B induces a closed
monoidal structure on its fibre. This result can be obtained as a consequence
of our Proposition 5.5. Actually, it suffices to assume the hypotheses con-
cerning terminal and diagonal maps only for the objects of X whose image
supports a group structure. Moreover, from our perspective, one also sees
that the fibre over any group object is a groupoid.

Corollary 5.7. Let P : X → B be a Cartesian monoidal opfibration whose
fibres are groupoids, and F : B → Cat its associated pseudofunctor. Then
F lifts to pseudofunctors from Gp(B) to 2Gp and from Ab(B) to Sym2Gp.

Proof. Since the fibres of P are groupoids, the units of the adjuntions of
Lemmas 5.1 and 5.2 are isomorphisms, and we can apply Theorem 5.4 and
Proposition 5.5. �
Theorem 5.8. Let the category B be additive, P : X → B be a Cartesian
monoidal opfibration, and F : B → Cat its associated pseudofunctor. Sup-
pose moreover that, for every X in X, the terminal map τX and the diagonal
map ΔX are P -cocartesian. Then, F factors through Sym2Gp.



   17 Page 20 of 25 A. S. Cigoli et al. MJOM

Proof. When B is additive, every object of B has a unique abelian group
structure, and all morphisms of B preserve such structures. As a consequence,
the forgetful functor U : Ab(B) → B is an isomorphism, so that the conditions
on terminal and diagonal maps apply to every object in X, and we can apply
Proposition 5.5. �

From Lemmas 5.1, 5.2 and Theorem 5.8, we finally get one of the main
results of this paper.

Theorem 5.9. Let the category B be additive, P : X → B be a Cartesian
monoidal opfibration, and F : B → Cat its associated pseudofunctor. Then,
F factors through Sym2Gp if and only if P has groupoidal fibres.

6. Examples

6.1. Abelian Extensions of Groups

Let us fix a group C and consider the category ABEXT(C) of group extensions
of C with abelian kernel, and the abelian category Mod(C) of C-modules.
Moreover, let us consider the functor P : ABEXT(C) → Mod(C) which asso-
ciates with every abelian extension the induced action of C on the kernel:

P :

B
k ��

φ

��

E
f ��

ψ

��

C

1

��
B′

k′
�� E′

f ′
�� C

	→
C × B

ξ ��

1×φ

��

B

φ

��
C × B′

ξ′
�� B′

(19)

In fact, P is an opfibration. With notation as above, a cocartesian lifting of
φ at E = (f, k) is obtained by the so-called pushforward construction:

B
k ��

φ

��

E
f ��

��

C

1

��
B′ �� φ∗E �� C

where φ∗E is a quotient of the semidirect product with the action of E on
B′ induced by f (this is classical, see for instance [12]). It is easy to check
that ABEXT(C) has terminal object and binary products, given by pullbacks
over C; moreover P preserves them, and products of cocartesian maps are
still cocartesian. Therefore we can apply Proposition 4.6 and Theorem 4.7 in
order to describe the lax monoidal structure of the pseudofunctor associated
with P :

OPEXT(C,−) : Mod(C) → Cat.

Our notation is consistent with literature (e.g. [16]), since the fibre of P over
a C-module (B, ξ) is the groupoid OPEXT(C,B, ξ) of abelian extensions of C,
with kernel B and induced action ξ. We can apply Theorem 5.9, so that each
fibre of P gets a symmetric 2-group structure, and change of base functors
are symmetric monoidal. Actually, the monoidal structure is obtained by (11)
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and (12) as follows:
given a pair of extensions (E,E′) ∈ OPEXT(C,B, ξ) × OPEXT(C,B, ξ)

• the right adjoint R(B,ξ),(B,ξ) yields the product of E and E′ over C,
• the codomain of the cocartesian lifting at R(B,ξ),(B,ξ) of the group op-

eration m : B × B → B gives the tensor product E ⊗ E′.

B �� E ⊗ E′ �� C

B × B

1

��

m

��

�� R(B,ξ),(B,ξ)(E,E′)

��

��

����

pullback

push forward

C

ΔC

��

1

��

B × B
k×k′

�� E × E′
f×f ′

�� C × C

Once one considers connected components, the tensor operation induces
precisely the Baer sum of isomorphism classes of extensions, which makes
π0(OPEXT(C,B, ξ)) a group (isomorphic to H2(C,B, ξ)). On the other hand,
one can compute the abelian group π1(OPEXT(C,B, ξ)) of the automor-
phisms of the identity object:

B �� B ¸ξ C �� C .

According to Proposition IV.2.1 in [12], this can be interpreted as the group
of 1-cocycles Z1(C,B, ξ), as already noticed in [7].

Remark 6.1. Section 6.1 can be easily adapted to the case of semi-abelian
categories (see [6] and also Section 4.2 of [7], where the general case of Bourn’s
direction functor is considered). The analogous result holds for associative
unitary algebras (see Section 4.3 of [7]).

6.2. From Left Monoid Actions to Torsors

Let us briefly recall the category LMSet of monoid left actions. An object of
LMSet is a set X endowed with a left action φ : M × X → X of a monoid
M , where m ∈ M operates on x ∈ X by the law m · x = φ(m,x). Given two
such objects (M,X, φ) and (N,Y, ψ), an arrow between them is a pair (f, f0)
where f : M → N is a monoid homomorphism and f0 : X → Y is a function
such that the following diagram commutes in Set:

M × X
φ ��

f×f0

��

X

f0

��
N × Y

ψ
�� Y

Such a pair (f, f0) is called equivariant.
In the following proposition, we will use a generalization of the classical

tensor product of (bi)modules (see for instance [11, VII.4, Exercise 6]). For

a right M -set X and a left M -set Y , their contracted product X
M∧ Y is
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the quotient of X × Y determined by the equivalence relation generated by
(x · m, y) ∼ (x,m · y). The term contracted product and the wedge notation
are borrowed from [5], where the special case of bitorsors is dealt with.

Proposition 6.2. The forgetful functor V : LMSet → Mon is a Cartesian
monoidal opfibration.

Proof. We only sketch the proof, which is based on well-known facts and
constructions. Let (M,X, φ) be an object of LMSet, and f : M → N a ho-
momorphism. The product in N and precomposition with f make N a right

M -set. Therefore, we can define f!(X) as the contracted product N
M∧ X. In

fact, f!(X) is a left N -set, with action defined by n · [n, x] = [nn, x], square
brackets denoting equivalence classes. Moreover, the assignment x → [1, x]
is well defined and yields a function f̂ : X → f!(X) such that (f, f̂) is an
equivariant pair. Easy calculations show that (f, f̂) is V -cocartesian over f ,
and this makes V an opfibration.

Concerning the monoidal structure of the opfibration, it is clear that V
preserves products. Let us sketch how the product of cocartesian arrows is
itself cocartesian. For objects (Mi,Xi, φi) and homomorphisms fi : Mi → Ni

as above, with i = 1, 2, the identifications

[(n1, n2), (m1 · x1,m2 · x2)] = [(n1, n2), (m1,m2) · (x1, x2)] =
= [(n1, n2) (f1 × f2)(m1,m2), (x1, x2)] = [(n1f1(m1), n2f2(m2)), (x1, x2)]

show that the assignment

([n1, x1], [n2, x2]) 	→ [(n1, n2), (x1, x2)]

is well defined. Moreover, it gives an equivariant isomorphism

(f1)!(X1) × (f2)!(X2) ∼= (f1 × f2)!(X1 × X2).

�

Thus, V translates into a lax symmetric monoidal pseudofunctor de-
noted by

ACT : Mon → Cat

with monoidal structure given as in Theorem 4.7.
Let us observe that Theorem 5.4 cannot be applied to ACT in its full

generality. We will soon deal with this matter, but first, let us briefly discuss
the monoidal structure of the fibres.

By Proposition 6.2, ACT lifts to a lax symmetric monoidal pseudo-
functor between internal pseudomonoids; indeed, pseudomonoids in the 1-
category of monoids are just commutative monoids, and then, thanks to Re-
mark 4.8, we have:

ACT : CMon → SymMonCat.

Let us fix a commutative monoid M . The tensor product in ACT(M)
is obtained by the construction (11) as follows: given a pair of left M -sets X
and Y ,

• the right adjoint yields the product of X and Y in LMSet,
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• the codomain of the cocartesian lifting of the monoid operation p :
M × M → M gives the tensor product p!(X × Y ) = X ⊗M Y .

The following straightforward result shows that it is indeed an instance of
the contracted product already mentioned before.

Proposition 6.3. The map X
M∧ Y → X ⊗M Y given by the assignment

[x, y] 	→ [1, x, y]

is an isomorphism of M -sets.

A monoid which supports an internal group structure is in fact an
abelian group. In the following statement, for each abelian group B, we char-
acterize B-torsors among B-sets. Recall that a B-set X is called a B-torsor
if it is not empty and the assignment

B × X → X × X (b, x) 	→ (x, b · x) (20)

is a bijection. We shall call such an object abelian torsor and denote by ATors
the full subcategory of LMSet with abelian torsors as objects.

Proposition 6.4. Let B be an abelian group. A B-set X is a B-torsor if and
only if it satisfies the following conditions:

1. the terminal map τX : X → I is V -cocartesian;
2. the diagonal map ΔX : X → X × X is V -cocartesian.

Proof. Let us consider a B-set X and τB : B → 0 the terminal map in Mon.

τX is V -cocartesian if and only if (τB)!(X) = 0
B∧ X ∼= I, and this is

equivalent to saying that X is not empty and the function (20) is surjective.
Now take X non-empty. ΔX is cocartesian if and only if the comparison

φ : (ΔB)!(X) = (B × B)
B∧ X → X × X

is an isomorphism, and one easily computes:

φ([b1, b2, x]) = (b1 · x, b2 · x).

Now, since for all b1, b2 ∈ B and x ∈ X [b1, b2, x] = [1, b2b
−1
1 , b1 · x], the

map ψ : B × X → (B × B)
B∧ X given by the assignment (b, x) 	→ [1, b, x] is

a bijection. So φ is an isomorphism if and only if ψ · φ : B × X → X × X,
(b, x) 	→ (x, b · x), is bijective. �

The restriction of the forgetful functor V to ATors yields a monomor-
phism of monoidal opfibrations

ATors � � ��

V
��

LMSet

V
��

Ab � � �� Mon

since contracted products of (abelian) torsors are still (abelian) torsors. More-
over, by Proposition 6.4, V is actually the largest restriction of V with base Ab
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with groupoidal fibres. Thanks to Corollary 5.7, the corresponding pseudo-
functor TORS factors through symmetric 2-groups:

Sym2Gp

U

��
Ab

TORS
��

	�����������������
Cat

In particular, for an abelian group B, one obtains a symmetric 2-group struc-
ture on TORS(B). This is a special case of the classical 2-group of bitorsors
over a (not necessarily abelian) group B, as studied by Breen in [5].
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