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Abstract

Human studies employing intracerebral and transcranial perturbations suggest that the input-output properties of
cortical circuits are dramatically affected during sleep in healthy subjects as well as in awake patients with multifocal
and focal brain injury. In all these conditions, cortical circuits react to direct stimulation with an initial activation fol-
lowed by suppression of activity (Off-period) that disrupts the build-up of sustained causal interactions typically ob-
served in healthy wakefulness. The transition to this stereotypical response has important clinical implications, being
associated with loss of consciousness or loss of functions. Here, we provide a mechanistic explanation of these find-
ings by means of simulations of a cortical-like module endowed with activity-dependent adaptation and mean-field
theory. First, we show that fundamental aspects of the local responses elicited in humans by direct cortical stimula-
tion can be replicated by systematically varying the relationships between adaptation strength and excitation level in
the network. Then, we reveal a region in the adaptation-excitation parameter space of crucial relevance for both
physiological and pathologic conditions, where spontaneous activity and responses to perturbation diverge in their
ability to reveal Off-periods. Finally, we substantiate through simulations of connected cortical-like modules the role
of adaptation mechanisms in preventing cortical neurons from engaging in reciprocal causal interactions, as sug-
gested by empirical studies. These modeling results provide a general theoretical framework and a mechanistic inter-
pretation for a body of neurophysiological measurements that bears critical relevance for physiological states as well
as for the assessment and rehabilitation of brain-injured patients.
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Significance Statement

Suppression of cortical activity following an initial activation is a defining feature of deep sleep in healthy subjects
and wakefulness in patients affected by focal and multifocal brain injuries. Experimental findings suggest that
these bimodal responses disrupt the emergence of complex interactions among cortical regions, leading to loss of
consciousness or functional impairments. Given their practical implications, studying the mechanisms involved
within a general theoretical framework is essential. Using a neuronal network model, we provide evidence for the
key role of activity-dependent adaptation mechanisms in shaping the responses to perturbation and affecting
the build-up of complex cortical interactions. Overall, this work provides a mechanistic interpretation relevant to
the stratification, follow-up, and rehabilitation of brain-injured patients.
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Introduction
Studies combining transcranial magnetic stimulation

(TMS) with electroencephalographic (EEG) recordings
have demonstrated a dramatic impairment of the capacity
of cortical networks to engage in large-scale interactions
during sleep and anesthesia (Massimini et al., 2005;
Ferrarelli et al., 2010; Sarasso et al., 2015): while during
wakefulness the initial cortical activation triggers a chain
of recurrent waves of activity and a long-range, complex
pattern of interactions (Casali et al., 2013; Comolatti et al.,
2019), during both non-rapid eye movement (NREM) sleep
and anesthesia such distributed, rich spatiotemporal ac-
tivity is lost and replaced by a response that is simple and
stereotypical. Intracranial explorations employing single-
pulse intracortical electrical stimulations and local field po-
tential recordings in humans (Pigorini et al., 2015; Usami et
al., 2015) showed that this stereotypical response consists
of an initial activation rapidly followed by silencing of neuro-
nal firing (Off-period), as assessed by a significant suppres-
sion of high-frequency activity (Mukovski et al., 2007; Cash
et al., 2009). This tendency for cortical circuits to fall into an
Off-period after initial activation during sleep and anesthe-
sia, also known as cortical bistability (Tononi and Massimini,
2008; Nir et al., 2011), is in a key position to prevent the
emergence of the complex interactions observed during
wakefulness. Indeed, Off-periods not only do temporarily in-
terrupt but also disrupt neuronal activity: as demonstrated
by phase locking analysis, when neuronal activity resumes
after each Off-period, it does so in a stochastic manner re-
taining no causal relationship with the initial input.
Crucially, this dramatic change in the input-output

properties of cortical circuits is not only typical of physio-
logical sleep and anesthesia but can also occur during
wakefulness in pathologic conditions. Accumulating evi-
dence shows that cortical circuits react to perturbations
with an Off-period also in awake unresponsive wakeful-
ness syndrome patients (UWS) (Rosanova et al., 2018),
previously known as vegetative state patients, as well as
in the perilesional area surrounding focal cortical lesions

in awake stroke patients (Sarasso et al., 2020; Tscherpel
et al., 2020) with profound clinical implications. When
cortical bistability involves most of the cortex, such as in
the UWS, large-scale brain interaction collapse leading to
loss of consciousness (Rosanova et al., 2018). When cort-
ical bistability is local, such as that found in the perilesion-
al areas of stroke patients, it leads to regional circuit
impairment and selective functional deficits (Sarasso et al.,
2020; Tscherpel et al., 2020).
Given the clinical relevance of these findings, it is crucial

to understand the nature of evoked Off-periods and their
impact on cortical responsiveness within a mechanistic
framework. An interesting hypothesis is that adaptation
mechanisms play an important role in generating the Off-
periods observed after cortical stimulation. Activity-de-
pendent adaptation accounts for local fatigue mecha-
nisms, i.e., self-inhibition, which lowers the firing rate of
neuronal populations. At the level of cortical circuits, ad-
aptation can be induced by several microscopic biophysi-
cal mechanisms involving calcium-dependent potassium
channels, short-term synaptic depression (Gerstner et al.,
2014) and/or GABAergic synaptic transmission (Sanchez-
Vives et al., 2021). As suggested by mean-field theories,
activity-dependent adaptation is involved in the genera-
tion of the rhythmic alternation between On-periods (high-
activity up state) and Off-periods (low-activity down state)
spontaneously occurring during slow-wave sleep (Latham
et al., 2000; Gigante et al., 2007).
Here, we ask whether activity-dependent adaptation

can reproduce and explain the fundamental features of
the alteration of cortical responsiveness observed empiri-
cally during physiological sleep and during wakefulness in
pathologic conditions. We address this question within a
general formal framework resting on bifurcation analysis
and in-silico simulations of cortical modules endowed
with activity-dependent adaptation (Mattia and Sanchez-
Vives, 2012). We show how such a model can provide a
parsimonious explanation for the three key features char-
acterizing the alteration of cortical reactivity observed in
humans. First, using bifurcation analysis of the model we
classify its dynamical regimes and reproduce parametri-
cally both spontaneous and stimulus-evoked dynamics
empirically observed during sleep and pathologic wake-
fulness. Second, using the same framework, we explain
the empirical finding that direct cortical stimulation is
more effective than the observation of ongoing dynamics
in revealing Off-periods in both physiological and patho-
logic conditions. Third, by considering two linked mod-
ules we show how changing the adaptation level alone
results in a break-off of reciprocal corticocortical interac-
tions as observed in vivo.

Materials and Methods
Spiking neuron network
The neuronal network model is adapted from (Torao-

Angosto et al., 2021), which has been proven to quantita-
tively reproduce the statistical features of the spontaneous
up-down slow oscillations recorded in Layer 5 of the visual
cortex of sleeping and anesthetized rats. Briefly, the network
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is composed of 6300 excitatory (E) and 2580 inhibitory leaky
integrate-and-fire (LIF) neurons. The membrane potential Vi
of the i-th neuron evolves as

_V i ¼ �Vi

t
1 Ii � gaai (1)

_ai ¼ � ai

t a
1

X
k

d ðt� tikÞ;

emitting its k-th spike at time tik if Vi tikð Þ � Vthr for the first
time from the emission of its previous action potential.
Following the spike emission, Vi ¼ Vres for a refractory ab-
solute period t0 [2ms (1ms) for E (I) neurons] before re-
starting its time evolution (Eq. 1). Reset potential Vres ¼ 15
mV and the emission threshold Vthr ¼ 20 mV are the same
for both neuron types, while decay constant t is 20 and
10ms for E and I neurons, respectively. The synaptic cur-

rent Ii tð Þ ¼
XN

j¼1
Jij
X

k
d t� tjk � dij
� �

1 Jext
X

k
d ðt� text;kÞ

results from the spiking activity of the presynaptic neu-
rons mediated by recurrent synaptic efficacies Jij ran-
domly selected to be different from zero with connection
probability cEE; cEI; cIE; cII ¼ f0:6;5; 0:2;1:7g%. Jij takes
positive or negative values according to the type of the
j-th presynaptic neuron, and it is randomly extracted
from a truncated Gaussian distribution with mean
JEE; JEI; JIE; JII ¼ 1:9;�1:1;2:2;�1:1f g mV and a relative
standard deviation of 25%. Presynaptic spikes are deliv-
ered with an axonal delay dij randomly sampled from an
exponential distribution with an average of 22.6 and 5.7ms
for E and I presynaptic neurons, respectively, modeling
noninstantaneous synaptic transmission (Mattia et al.,
2019). External neurons contribute to Ii tð Þ at baseline as a
Poissonian spike train made of Cext independent sources
each with an average firing rate of �ext ¼ 0:25 Hz. Here, for
E neurons, Cext range from 3200 and 3350 in the bifurca-
tion diagram of Figure 1, while Cext ¼ 733 for I neurons.
The external stimulations consist of increasing the fre-
quency �ext by a factor 4 (i.e., the stimulation intensity) for a
short period of 2ms. The external k-th spike occurring at
text;k affects Ii tð Þ with efficacy Jext ¼ 0.48 and 2.2mV for E
and I neurons, respectively.
The second equation in Equation 1 provides the descrip-

tion of the activity-dependent fatigue mechanism modeling
the spike-frequency adaptation (Benda and Herz, 2003;
Gigante et al., 2007; Mattia and Sanchez-Vives, 2012) that
affects the excitatory neurons. Specifically, the dynamics of
the variable ai tð Þ is defined by the spiking activity of the exci-
tatory neurons: at each spike, the adaptation ai tð Þ under-
goes a unitary increase and relaxes exponentially until the
next spike is emitted. Thus, the higher the excitatory popula-
tion firing rate, the higher the variable ai tð Þ. However, how
much the ai tð Þ dynamic modulates the excitatory population
firing rate is also determined by the adaptation level ga rang-
ing from 20 to 100mV/s and the relaxation time constant for
the adaptation level set at ta ¼ 150 ms. In general, the high-
er the ai tð Þ because of the spikes emitted by the i-th neuron
and adaptation level ga, the higher the excitatory popula-
tion self-inhibition (eventually reducing its firing rate).
This fatigue mechanism mimics the extracellular ionic

concentrations (calcium and/or sodium) that drive a hyper-
polarizing potassium current. The choice to model only the
activity-dependent adaptation associated with the calcium-
dependent potassium currents described above does not
affect the generality of the result we presented. Indeed,
under themean-field approximation detailed in the next sec-
tion, the nonlinear dynamics of the network firing rate gov-
erned by other forms of activity adaptation are qualitatively
similar. More specifically, the phase-plane analysis of spik-
ing neuron networks incorporating adaptation mechanisms
like short-term synaptic depression (Holcman and Tsodyks,
2006) and slow GABAergic inhibition (Parga and Abbott,
2007) are known to display similar nullclines and equilibrium
states.
We also performed simulations of a network made of

two identical modules. Each module is made by E-neurons
and I-neurons described by Equation 1 with all the parame-
ters set as in the single module, with the exception of the
relative standard deviation for synaptic efficacies. Since
the relative standard deviation for synaptic efficacies is set
to zero in the two-module case, synaptic efficacies are
JEE; JEI; JIE; JII ¼ 1:9;�1:1;2:2;�1:1f g mV. Furthermore,
the two modules interact with each other through connec-
tions established between excitatory neurons only, with
synaptic efficacy J12 ¼ J21 set to 1:18 mV, where 1 and 2
identify the two modules. The probability of connection
c12; c21 for each excitatory neuron is 0.1%, and average
axonal delays are set to d12 ¼ 55 ms for connections from
the first to the second module, and d21 ¼ 50 ms from the
second to the first module. Furthermore, we considered
the modules in a low adaptation regime, where both the
modules are characterized by ga ¼ 48 mV/s, and high ad-
aptation regime, where ga ¼ 78 mV/s.
Simulations of the spiking neuron network were per-

formed with an open-source program relying on an event-
driven numerical integration described in (Mattia and Del
Giudice, 2000). To run this software with the appropriate
parameters, we used a MATLAB code available at https://
github.com/annacatt/Adaptation_and_cortical_responses
and available as Extended Data 1.

Population rate model
Under mean-field approximations requiring many pre-

synaptic contacts cabN and limited firing rates �a (Amit
and Tsodyks, 1991; Amit and Brunel, 1997), where a and
b identify different interacting populations, the evolution of
the instantaneous firing rate �aðtÞ of an infinite-size network
is described by t � _�a ¼ ��a1Uð�aÞ (Treves, 1993; Brunel
and Hakim, 1999; Mattia and Del Giudice, 2002). Here, the
current-to-rate gain function U is the Siegert–Ricciardi one
(Siegert, 1951; Capocelli and Ricciardi, 1971):

U m;sð Þ ¼ t 0 1 t
ffiffiffiffi
p

p ððVthr�mtÞ=
ffiffiffiffiffiffi
s2t

p

ðVres�mtÞ=
ffiffiffiffiffiffi
s2t

p
11 erf zð Þ½ �ez2dz

2
664

3
775

�1

;

where m and s2 are, respectively, the infinitesimal mean
and variance of the input current (Amit and Tsodyks,
1991; Amit and Brunel, 1997) whose form is shown below,
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Figure 1. Dynamical regimes of the spiking neuron network accompanied by the bifurcation analysis of the population rate model. A,
Dynamical regimes of the spiking neuron network in the excitation-adaptation parameter space, namely (Cext;ga), classified according to its
spontaneous activity (for details, see Materials and Methods, Analysis of the dynamical regimes of the spiking neuron network) superim-
posed to the codimension-two bifurcation diagram of the population rate model. The codimension-one bifurcations encompass the subcriti-
cal Andronov–Hopf bifurcation curves (dashed magenta lines), the supercritical Andronov–Hopf bifurcation curves (solid magenta line), the
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and erf is the error function. The first-order dynamical equa-
tion t � _�a ¼ ��a1Uð�aÞ can be seen as the simplest relaxa-
tion dynamics leading to the asymptotic firing rates given by
Uð�aÞ. Here, 1=Uð�aÞ is the mean of the interspike intervals
(ISI) expected for the leaky integrate-and-fire neuron driven
by a stochastic current with infinitesimal meanm and variance
s2. The ISI in this model is the time when the membrane po-
tential VðtÞ crosses the emission threshold Vthr for the first
time starting from the reset potential Vres at time t ¼ 0. This
interval also includes the absolute refractory period (t0). The
above dynamics for �aðtÞ is obtained by resorting to a spec-
tral expansion of the Fokker–Planck equation and determin-
ing the evolution of the probability density of the membrane
potential. The first-order ordinary differential equation results
from taking into account only the slowest eigenmode, i.e., the
eigenfunctions of the Fokker–Planck operator with the high-
est eigenvalue (Treves, 1993; Mattia and Del Giudice, 2002).
This first-order ODE recovers the phenomenological dynam-
ics for the firing rate introduced by Wilson and Cowan (1972).
Since the cortical module we are considering includes two in-
teracting populations of excitatory and inhibitory neurons, the
mean-field dynamics is:

tE _�E ¼ ��E 1UE mE;sEð Þ
t I _� I ¼ ��I 1UIðmI;s IÞ (2)

_a ¼ �a=t a 1 �E;

where a 2 fE; Ig; Uaðma;saÞ is the above gain function com-
puted with the single-neuron parameters of type a and ta is
the decay constant of the LIF membrane potential. The infini-
tesimal mean and variance of the input current are defined as:

ma ¼ caENEJaE�E 1 ca INIJa I�I 1Ca;extJa;ext�ext � gaa

s 2
a ¼ caENEJ2

aEð11D2
aEÞ�E 1 ca INIJ2

a Ið11D2
a IÞ�I

1Ca;extJ2
a;extð11D2

a;extÞ�ext;

with a; b 2 E; If g and Dab are the relative standard devia-
tions of the synaptic efficacies Jij for the different neuronal

types. This mean-field approximation effectively describes
the collective dynamics of networks of LIF neurons with
spike-frequency adaptation even far from the equilibrium
(Gigante et al., 2007; Mattia and Sanchez-Vives, 2012).
Here, only excitatory neurons have adaptation: gE � ga and
gI ¼ 0.
Finally, because of the breaking of the diffusion approx-

imation valid only in the limit Jab ! 0, we shifted horizon-
tally the critical point of this bifurcation diagram by an
appropriate amount (DCE;ext ¼ �310) of excitation level.
Indeed, in the diffusion limit the currents received by the
neurons are continuous stochastic processes determined
by the continuous barrage of the synaptic input arriving at
high rates and inducing small jumps in the membrane po-
tential (Tuckwell, 1988). However, in the model network
we simulated, synaptic efficacies are not negligible and
the membrane potentials have a jump-like evolution in
time. In this shot-noise regime, firing rates are lower com-
pared with the ones predicted under the diffusion approx-
imation (Richardson and Swarbrick, 2010), and this
explains why we need to incorporate this effect by reduc-
ing the excitation level in our mean-field theory, eventually
leading to a rightward shift of the theoretical bifurcation
diagram. Furthermore, we also shifted vertically the criti-
cal points of the bifurcation diagram by an appropriate
amount (Dga ¼ �7 mV/s) of adaptation. Besides the
breaking of the diffusion approximation, the shifts DCE;ext
and Dga are expected to be theoretically justified by the
fact that the simulated networks are composed of a finite
number of spiking neurons challenging the infinite-size
limit on which extended mean-field approximation relies
on (Mattia and Del Giudice, 2002).

Simulated data and data preprocessing
Simulations consist of N trials (N¼ 50 for the single

cortical module and N¼ 250 for the case of two interact-
ing modules). The external stimulus in each trial was deliv-
ered at time t¼ 0, with a prestimulus interval lasting
randomly between 5000 and 5300ms and poststimulus
interval lasting 5000ms. Stimulation artifact was reduced

continued
saddle-node bifurcation curve (blue curves), and the limit point of cycles (green lines, also known as saddle nodes of periodic orbits) that
turn the periodic orbits originating from Andronov–Hopf stable. The codimension-two bifurcation Bogdanov–Takens (BT) is the contact
point between the saddle-node bifurcation curve and Andronov–Hopf bifurcation curves. The saddle-node curve shows a cusp bifurcation
(CP). The areas among the curves have been color-coded according to the regime shown by the spontaneous dynamics of the spiking neu-
ron network. The five different dynamical regimes are characterized by HAS (high-asynchronous state; blue area), HAS/SO (high-asynchro-
nous state with incursions of slow oscillations, namely with incursions of Off-periods because of finite-size effects; orange area), SO (slow
oscillations; purple area), LAS/SO (low-asynchronous state with incursions of slow oscillations; green area), and, finally, LAS (low-asynchro-
nous state; green area). A sixth region (gray area), not of interest in the present work, is characterized by HAS and LAS alternating at an ir-
regular pace. B, Spontaneous and stimulus-evoked signals with the same color-coding used for the dynamical regimes of the spiking
neuron network (panel A) for a fixed excitation (Cext ¼ 3297:5Þ and several adaptation levels [Case 1: 30; Case 2: 40; Case 3: 45; Case 4:
57.5; Case 5: 90 (mV/s)]. Left column, Time series encompassing both spontaneous activity (up to 6000 time steps) and stimulus-evoked
activity (remaining interval). Black triangles indicate the occurrence of the stimulation. Central column, Spontaneous activity as a function of
fatigue (ga � a mV/s). Right column, Three superimposed orbits because of perturbations as a function of the fatigue. In both the central and
right columns, the spontaneous and stimulus-evoked dynamics are superimposed to the nullclines of the population rate model. The inter-
section of the nullclines represents the equilibrium point of the corresponding population rate model. The equilibria of the spiking neuron
network and the population rate model show a close albeit not complete overlap. The dynamics of the spiking neuron network for a fixed
excitation and different adaptation levels are provided in Extended Data Figure 1-1. C, Probability to evoke Off-periods in wakefulness
(Case 1) and deep sleep (Case 3) as a function of several stimulation intensities spanning from 2 to 6 ([a.u.]). The probability to evoke Off-pe-
riods is computed as the number of trials, lasting 2 s each, showing at least one Off-period divided by the total number of trials (50).
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by applying a Tukey-windowed median filtering, as in (Chang
et al., 2012), between�5 and 5ms (Pigorini et al., 2015).

Bifurcation analysis of the population rate model
A detailed analysis of local bifurcations of Equation 2

was performed through MatCont (Dhooge et al., 2003), a
MATLAB Toolbox that allows computing curves of equilibria
and bifurcation points through a prediction-correction contin-
uation algorithm, as described previously (Kuznetsov, 2004).

Analysis of the dynamical regimes of the spiking
neuron network
The dynamical regimes of the spiking neuron network

(Eq. 1) were determined according to the frequency of
On-periods and Off-periods (up and down states, respec-
tively) detected across 50 trials of spontaneous activity
lasting 2 s each. The detection of the On-periods and Off-
periods was conducted by looking at the firing rate in
each trial. If the firing rate exceeded 20Hz, the trial con-
tained at least one On-period. On the contrary, if the firing
rate fell under 5Hz, the trial contained at least one Off-pe-
riod. Once we collected the probability of On-periods and
Off-periods across 50 trials for each value of excitation
and adaptation level, we classified five dynamical regimes
of interest. Following nomenclature previously published
(Gigante et al., 2007; Mattia and Sanchez-Vives, 2012),
high-asynchronous state (HAS) is characterized by a proba-
bility of On-periods equal to 1 (i.e., sustained high firing rate
in every trial) and absence of Off-periods. Low-asynchro-
nous state (LAS) presents a probability of Off-periods equal
to 1 (i.e., persistent low firing rates in every trial) and absent
On-periods. Slow oscillations state (SO) is characterized by
both probabilities of On-periods and Off-periods equal to 1
since each trial sees On-periods and Off-periods alternating
at a regular pace. Furthermore, on the border between LAS
and SO, there is a region where the probability of Off-peri-
ods is equal to 1 with incursions of On-periods states (non-
zero probability of On-periods, 1). Vice versa, the region
between HAS and SO is characterized by On-periods in all
the trials with incursions of Off-periods (non-zero probability
of Off-periods ,1). Finally, a sixth region, which is not the
focus of this work, encompasses both HAS and LAS with
non-zero probability of On-periods and Off-periods lower
than 1. This is the case of heterogeneous trials, some con-
taining only On-periods, some only Off-periods, and some
exhibiting both On-periods and Off-periods alternating at an
irregular pace.

Simulated data analysis in the power and phase
domain
Data analysis was performed using MATLAB R2020b

(The MathWorks Inc.). We used the timef function imple-
mented in EEGLAB (Delorme and Makeig, 2004) to detect
transient event-related spectral perturbation (ERSP) and
event-related phase-locking, i.e., inter-trial coherence (ITC)
events, in the simulated data. More in detail, single trials
were time-frequency decomposed between 5Hz and 45Hz
using Wavelet transform (Morlet, window span: 3.5 cycles).
The resulting ERSPs and ITCs were averaged across trials

and normalized by subtracting the mean spectral activity of
the prestimulus baseline from �1000 to �400ms (from
�5000 to �400ms in the two-module network). To de-
tect statistically significant activation with respect to
the prestimulus baseline, we applied bootstrap statis-
tics to both ERSP and ITC with significance level a ¼
0.005 and 1000 permutations. Nonsignificant bins were
zeroed out. Furthermore, to discard the spurious inter-
trial coherent events associated with the absence of fir-
ing rate activity underlying the ERSP suppression, we
retained only the ITC points associated with a signifi-
cant increase in the ERSP power with respect to the
prestimulus baseline. Finally, we averaged the ITC val-
ues across frequencies for each time point. The result-
ing average ITC provides an indication of the duration
of the deterministic effect in a wide frequency window
of a given external input. The code for the analysis
is available at https://github.com/annacatt/Adaptation_
and_cortical_responses and as Extended Data 1.
Methods and results related to human data are presented

in published articles (Massimini et al., 2007; Pigorini et al.,
2015; Rosanova et al., 2018; Sarasso et al., 2020) cited
throughout this work and derive from analysis in the power
and phase domains similar to the ones used for the simu-
lated data presented here.

Code accessibility
The code created for this paper is freely available online

at https://github.com/annacatt/Adaptation_and_cortical_
responses and is available as Extended Data 1.

Data availability
All the simulated data that support the findings of this study

are available online at https://figshare.com/articles/dataset/
Simulated_data/21112603.

Results
We employ a spiking network model to investigate to what

extent varying the strength of adaptation and excitation can
explain fundamental dynamics of cortical responsiveness
empirically observed in healthy humans and brain-injured
patients. Specifically, we aim to replicate and provide a
mechanistic explanation of experimental data encompassing
TMS-EEG recordings in healthy subjects during NREM sleep
stage 2 (N2) (Massimini et al., 2007), in UWS patients with se-
vere brain injury (Rosanova et al., 2018), in stroke patients
(Sarasso et al., 2020; Tscherpel et al., 2020), as well as intra-
cranially-evoked potentials in wakefulness/sleep (Pigorini et
al., 2015).

Bifurcation analysis and characterization of the
dynamical regimes
Activity-dependent adaptation and excitation level shape

the ongoing and stimulus-evoked activity of the simulated
cortical module (Eq. 1). To fully characterize the dynamical
regimes the model accounts for, we first performed a bifur-
cation analysis of its continuous counterpart (Eq. 2) exploit-
ing a numerical continuation technique (Dhooge et al., 2003;
Kuznetsov, 2004). This analysis expands on previous studies
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(Gigante et al., 2007; Mattia and Sanchez-Vives, 2012), pro-
viding a complete characterization of the bifurcations of the
mean-field dynamics of the network. Taking into account
only two key parameters, i.e., the level of excitation (Cext) and
adaptation (ga; see Materials and Methods), the bifurcation
diagram in Figure 1A shows critical points such as saddle
nodes (blue traces) and subcritical Hopf bifurcations (dashed
magenta traces). Subcritical Hopf bifurcations lie near the
saddle nodes of periodic orbits (green traces), also known as
limit points of cycles, where stable limit cycles arise. Thus, in
the region limited by these two curves, stable slow oscilla-
tions are generated, corresponding to the cortical bistability
observed in neurophysiological recordings performed in
anesthetized rats (Tort-Colet et al., 2021). On the contrary,
the region enclosed by the limit point curve (blue trace) is
characterized by two stable and one unstable equilibrium sol-
utions. The coexisting stable equilibria are characterized by
high and low asynchronous firing states. In order to disambig-
uate, it is worth noting that this regime, which is not the focus
of the present work, is also indicated with the term “bistable”
as classically understood in the field of dynamical systems
(Gerstner et al., 2014).
To check the effectiveness of this bifurcation diagram,

we characterized the spontaneous dynamical regimes of
equivalent networks of spiking (adaptive leaky integrate-
and-fire) neurons in Equation 1. The leftmost part of the
traces in Figure 1B, left column, shows 6 s of spontane-
ous activity for a given excitation value and five different
adaptation levels. By taking into account the probability
of Off-periods and On-periods during spontaneous activ-
ity (for details, see Materials and Methods), we identified
different regions. The light blue region displays HAS
(high-asynchronous state), i.e., relatively high firing rate
and absence of Off-periods, which is typical of wakeful-
ness. The light red region is characterized by LAS (low-
asynchronous state), i.e., low asynchronous firing rate
distinctive of Off-periods and absence of On-periods, a
pattern resembling burst-suppression. The purple region
features a regular alternation between HAS and LAS at a
regular pace generating slow oscillations (SOs), as usually
observed under anesthesia. The transition between these
regimes is not as sudden as in the population rate model
while varying one or both parameters. Indeed, finite-size
effects make a state dominant, with incursions of the
state of the nearby region (Gigante et al., 2007; Mattia and
Sanchez-Vives, 2012). This is the case of the orange and
green regions characterized by HAS and LAS, respec-
tively, with incursions of SO. Specifically, HAS sparsely in-
terspacing SO well describes deep sleep recordings.

Perturbations reveal cortical bistability beyond
spontaneous activity
Crucially, we further characterized the dynamical regimes

of the spiking neuron model (Eq. 1) by exploring its re-
sponses to perturbations, which consist of an external cur-
rent lasting 2ms with intensity 4 ([a.u.]) injected into the
excitatory neurons resembling the effects of direct magnetic
and electrical stimulation. The role of the perturbation is to
transiently alter the spontaneous population firing rate, po-
tentially unveiling interesting activity-dependent properties

of the system. The rightmost part of the traces in Figure 1B,
left column (presenting Cases 1–5) shows 6 s of the stimu-
lus-evoked activity for a given excitation value and five dif-
ferent adaptation levels. In the middle and right columns,
the firing rate traces have been represented as a function of
the average fatigue determining the adaptation of spike
rates for both the spontaneous and the stimulus-evoked ac-
tivity. The external stimulus applied to the network (defined
by duration and intensity) increases themagnitude of the ex-
ternal Poisson spike trains. We fixed the duration to 2ms
and checked for the presence of Off-periods in the evoked
activity for several stimulus intensities. As shown in Figure
1C, the stimulus intensity was finally set to never (always)
evoke Off-periods in Case 1 (Case 3), which describes
wakefulness (deep sleep).
In Case 1, the stimulus-evoked activity and spontane-

ous activity do not show relevant dissociations, as both
are characterized by the absence of Off-periods, as em-
pirically observed during wakefulness in human data.
Higher adaptation levels, corresponding to Cases 3–5,
are all characterized by the presence of Off-periods in
both the spontaneous and evoked activity. The overall
time the system spends in the Off-periods increases with
the adaptation level: (1) Case 3 shows Off-periods inter-
spersed with up states, thus resembling NREM sleep
stage 3 (N3); (2) Case 4 displays regular alternation be-
tween On-periods and Off-periods, thus mirroring the ef-
fect of anesthesia on brain activity; (3) Case 5 reminds of
burst suppression characterized by prolonged Off-peri-
ods. Crucially, Case 2 in Figure 1B reveals a clear-cut dis-
sociation between the dynamical features observed in the
spontaneous activity and the stimulus-evoked response.
Here, while Off-periods are extremely rare (one every ;16 s
on average) in spontaneous activity, they can be reliably
triggered by 76% of the stimulations. Hence, the model
shows the existence of a particular regime whereby an in-
terventional approach manifests a substantial sensitivity
in revealing the underlying state of the system and its
position in the bifurcation graph compared with an obser-
vational approach. In other words, it provides a crucial
tool to detect cortical bistability with a few stimulations in-
stead of relying on long spontaneous recordings. Such
dissociation between observable dynamics and responses
to perturbations is important because it reproduces a key
feature reported by empirical works. This is illustrated in
Figure 2 where the results of simulations are directly com-
pared with the results of TMS-EEG experiments both in the
time domain and frequency domain to detect the presence
of cortical bistability (slow waves and Off-periods). This
analysis shows a fundamental qualitative correspondence
between Case 2 of the model (Fig. 2A) and spontaneous as
well as evoked patterns of electrophysiological activity
found in humans across different conditions encompassing
N2 sleep (Massimini et al., 2007; Fig. 2B), UWS patients
(Rosanova et al., 2018; Fig. 2C), and perilesional area of
stroke patients (Sarasso et al., 2020; Fig. 2D). In all these
cases, TMS-evoked slow waves and Off-periods, as de-
tected by a significant high-frequency (.20Hz) power sup-
pression, are reliably revealed by cortical perturbations,
whereas they are rare in the spontaneous prestimulus activity.
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As a note, Figure 2 shows a qualitative agreement between
Case 2 in the model and the experimental data. By choosing
the model in Equation 1, we aimed to unveil the mechanisms
behind cortical bistability through an extensive exploration of
the model phenomenology. Given that the model describes
the firing rates of a local neuronal population, which differ
from the experimental data in both the kind of signal and the
spatial scale involved, a quantitative comparison between si-
mulated and experimental data were beyond the aim of the
present work.
Considering its prevalence in real data across differ-

ent physiological and pathologic conditions, we asked

whether such dissociation between spontaneous and
stimulus-evoked activity is a peculiar feature of the spe-
cific level of excitation, or whether it can be generalized
to a large interval of excitation levels. Figure 3 shows
the difference in the frequency of Off-periods detected
by analyzing the spontaneous and evoked activity for
each excitation-adaptation pair. We found an area sur-
rounding the low Hopf bifurcation curve, extending to
;10% of the analyzed excitation-adaptation plane, char-
acterized by a pronounced difference between evoked
and spontaneous Off-periods. More specifically, despite
a marked difference being present for all the excitation

Figure 2. Perturbations trigger an Off-period regardless of spontaneous baseline activity in both simulated data, with adaptation
level sets as in Case 2 of Figure 1, and in TMS-EEG data (during physiological N2 sleep, UWS patients, and in the perilesional area of
stroke patients). First column, Time series with a few stimulations. Second column, Trials without Off-periods in the baseline aligned to
the stimulation onset. Third column, Event-related spectral perturbation (ERSP). Blue color indicates a significant reduction compared
with the baseline, while red indicates a significant increase. Black triangles and red lines indicate the occurrence of the stimulation. A,
Simulated firing rate data. B, Re-edited from Massimini et al. (2007). EEG signal recorded from a channel (Cz) located under the stimula-
tor during one TMS-ON block over a background of spontaneous NREM sleep (single-subject data). The TMS-ON block consisted of 40
stimuli at 0.8Hz. The red dashed section shows the slow waves triggered at the beginning of the block. C, Re-edited from (Rosanova et
al., 2018). EEG recordings during TMS stimulations in a UWS patient. EEG activity of one representative electrode, Cz, while TMS was
delivered with an interstimulus interval randomly jittering between 5000 and 5300ms. Middle panel, Trials aligned to the stimulation dis-
playing baseline activity without spontaneous slow waves. Panel D is derived from published data presented in Table 1 and Figure 2 in
Sarasso et al. (2020). EEG recordings during perilesional TMS stimulations in a middle cerebral artery ischemia patient (patient 4). EEG
activity recorded from a channel (Fc3) located over the perilesional area while TMS was delivered with an interstimulus interval randomly
jittering between 2000 and 2300ms. ERSPs in B–D were computed as by Rosanova et al. (2018).
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levels higher than CE;ext ¼ 3250, a near-complete dissoci-
ation (;84% of evoked trials detect Off-periods where the
spontaneous trials do not show any) can be shown for
very high excitation levels.
Given the shallow slope of the lower branch of the Hopf

bifurcation, changes in adaptation are expected to have
more profound effects on cortical bistability than shifts in
the excitation level. However, substantial changes in excita-
tion levels for a given adaptation (i.e., horizontal shifts to-
ward the left in the bifurcation diagram) still result in changes
in spontaneous and stimulus-evoked dynamics similar to
those reported in Figure 1. Extended Data Figure 1-1 illus-
trates such cases, including the interesting instance (Case
2) characterized by an intermediate excitation level, showing
the dissociation between spontaneous and stimulus-evoked
dynamics.

High adaptation level is associated with early
breakdown of the causal interactions compared with
low adaptation
Empirical studies employing perturbations in humans

(Pigorini et al., 2015; Usami et al., 2015; Rosanova et al.,
2018), rodents (Arena et al., 2021), and cortical slices
(D’Andola et al., 2018) suggest that cortical bistability and
the associated Off-periods can disrupt the emergence of
sustained patterns of causal interactions among cortical
neurons. We thus used the model to test whether changes
in adaptation level can also affect casual interaction among
groups of cortical neurons. To do that, we considered two
cortical modules, instead of one as in previous sections,

connected through reciprocal bidirectional connections. As
in this new model composed of two interacting modules, a
complete characterization of the bifurcations would require
exceedingly high computational cost, we here focused on a
representative scenario characterized by two extreme adap-
tation levels (Fig. 4A). Specifically, the low adaptation level
parallels the case of wakefulness as seen in the previous
section (Case 1; Fig. 1B), as opposed to the high adaptation
level characterizing N3 sleep or deep anesthesia (Case 4;
Fig. 1B). Under conditions of low adaptation, cortical pertur-
bations elicited reverberant interactions between the two
modules as reflected by multiple, recurrent and coherent os-
cillations of evoked activity. Conversely, under conditions of
high adaptation, the interplay between the two simulated
groups of cortical neurons was short-lasting resulting in only
a few oscillations followed by a prominent Off-period, as
marked by the suppression of high-frequency power, similar
to that observed in sleeping and brain-injured humans.
In real-life experiments, the impact of the Off-period on

the ability of cortical circuits to sustain causal interactions
is assessed by quantifying the duration of the determinis-
tic effects of the perturbation in the phase domain. A key
empirical finding is that Off-periods not only disrupt deter-
ministic interaction because of the associated suppres-
sion of power but that they also scramble the subsequent
phase of the signal when neurons resume firing. Such sto-
chastic reboot is characterized by oscillations with high
power but low phase-locking or intertrial coherence fol-
lowing the Off-period. We thus performed the same analy-
sis in the model by computing the intertrial coherence
(ITC) averaged across frequencies between 5 and 30Hz.
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Figure 3. Off-periods can be better revealed by looking at stimulus-evoked activity than at spontaneous activity. Panel A shows the differen-
ces between the probability of evoking Off-periods compared with observing spontaneous Off-periods for each excitation-adaptation pair,
superimposed on the bifurcation diagram of the population rate model shown in Figure 1. The differences between the probability of evoked
Off-periods and spontaneous Off-periods for Cases 1–5 are as follows: Case 1: 0; Case 2: 0.7; case 3: 0.24; Case 4: 0; Case 5: 0. Panel B
shows the fraction of stimulus-evoked Off-periods (Case 1: 0; Case 2: 0.76; Case 3: 1). Panel C presents the probability of Off-periods de-
tected in the spontaneous dynamics (Case 1: 0; Case 2: 0.06; Case 3: 0.76). Panel A shows results for adaptation values spanning from 20
to 100mV/s, while panels B and C focus on adaptation values between 20 and 60mV/s. In all the panels, the probability of Off-periods has
been computed by counting the number of trials, lasting 2 s each, that show Off-periods divided by the total number of trials (50).
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Figure 4. High adaptation level results in early breakdown of causal interactions compared with low adaptation level. A, Simulated
data of two coupled modules for low (ga ¼ 48 mV/s) and high (ga ¼ 78 mV/s) adaptation levels. First row, Firing rate activity aver-
aged over 250 trials. A dashed vertical line (at t¼ 0) marks the occurrence of the external stimulus injected into module 1. Second
row, Event-related spectral perturbation (ERSP) for module 2. Significance for bootstrap statistics is set at a, 0.005: absence of
significant activation is colored in green, significant increases of power compared with baseline are represented in red, while
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As shown in Figure 4A, the Off-period occurring under
conditions of high adaptation was followed by a broad-
band resumption of power which was however nondeter-
ministic as indicated by a concomitant absence of signifi-
cant ITC. The primary sources of such stochasticity are (1)
the variable level of fatigue accumulated by the network at
the stimulation time and (2) the activity fluctuations because
of the finite-size of the neuronal population determining the
escape time from the metastable inactive state (Off-period).
Notably, in the case of low adaptation, significant determinis-
tic interactions were not curtailed by the Off-period and were
longer-lasting. As illustrated in Figure 4B, thesemodel predic-
tions resulting from the manipulation of the adaptation levels
match the power and phase modulations observed in experi-
ments in which TMS or intracranial electrical stimulations are
applied in different global brain states, such as during wake-
fulness, deep NREM sleep and in UWS patients.

Discussion
By exploiting a spiking network model endowed with

activity-dependent adaptation, the present work provides
a principled mechanistic explanation for empirical results
revealing common alterations of cortical responsiveness
in sleeping healthy subjects, and in awake patients with
multifocal and focal brain injuries. Specifically, (1) we link
changes in cortical reactivity to the presence of underlying
activity-dependent adaptation mechanisms, above and
beyond spontaneous dynamics, (2) we explain the role of
perturbations in revealing adaptation mechanisms, and
(3) we expound on the impact of adaptation in disrupting
causal interactions among cortical modules.
The first implication of this work is that systematically

varying the relationships between excitation and adapta-
tion levels within a formal bifurcation analysis reproduces
basic patterns of cortical reactivity to direct perturbations
observed in humans. As shown in Figure 1A,B, increasing
levels of adaptation and/or decreasing the excitation en-
genders a condition whereby cortical circuits react to a di-
rect perturbation with an initial activation followed by an
Off-period, yielding responses similar to those found dur-
ing sleep and in awake brain-injured patients. This finding
offers important elements for interpreting macroscale em-
pirical data in terms of neuronal mechanisms.
In this framework, the Off-periods observed after corti-

cal stimulation in sleeping humans can be ascribed to
adaptation mechanisms because of slow negative (i.e.,
inhibitory) feedback produced by calcium-gated and
sodium-gated potassium currents (Sanchez-Vives and
McCormick, 2000; Sanchez-Vives et al., 2010), which

are enhanced by decreased levels of neuromodulation
from brainstem activating systems (McCormick, 1992).
Notably, the present simulation results closely match the
changes in reactivity to electrical stimulation observed in
cortical slices when modulating potassium currents by
applying carbachol and norepinephrine (D’Andola et al.,
2018). Recent studies have also pointed to a putative role of
active inhibition in conditioning the onset and duration of the
Off-period (Funk et al., 2017; Zucca et al., 2017). As adapta-
tion in the present model encompasses self-inhibition, the
role of local inhibitory neurons in shaping the changes in
cortical responses observed during sleep is not incompati-
ble with the present results.
Interpreting the empirical results obtained in brain-injured

and stroke patients within the theoretical framework of the
bifurcation diagram discloses a more complex and interest-
ing landscape. Indeed, brain lesions can cause global or
local alterations of adaptation and excitation through differ-
ent mechanisms, even in the context of preserved arousal,
as assessed by eyes opening. For example, in some UWS
patients, lesions, compressions, or displacements of brain-
stem activating systems as well as a critical load of damage
to ascending fibers in subcortical white matter may enhance
potassium currents (Steriade et al., 1993; Edlow et al.,
2012), which corresponds to an upward shift in the bifur-
cation diagram. In other cases, cortical injuries and white
matter lesions can engender a state of corticocortical dis-
facilitation by affecting the excitation term (Takahashi et
al., 1981; Lemieux et al., 2014; Rocchi et al., 2022). In this
case, the resulting loss of lateral and long-range excitatory
input would act by producing shifts on the horizontal axis
toward the left, to a point where the probability of evoking
an Off-period in an awake patient becomes higher. An in-
teresting implication of the diagram, especially consider-
ing the slope of the lower branch of the bifurcation (Figs. 1A,
3), is that changes in adaptation are expected to have more
dramatic effects on cortical bistability as compared with
changes in the excitation level. This prediction finds empirical
confirmation in cortical slices, an extrememodel of cortical in-
jury, whereby reducing adaptation by application of carba-
chol and norepinephrine is more effective in recovering wake-
like responses than increasing excitation by application of
kainate (D’Andola et al., 2018). In real-life conditions, how-
ever, the two mechanisms (adaptation and excitation) are not
mutually exclusive and may have different relative weights
depending on the type/combination of injuries. In fact, they
may both concur in bringing residual cortical circuits into a
state in which cortical sleep-like Off-periods are generated
during wakefulness, as observed in stroke (Sarasso et al.,
2020) and UWS (Rosanova et al., 2018) patients.

continued
significant power decreases are colored in blue. Third row, Eight firing rate traces of module 2. Fourth row, Averaged intertrial coher-
ence (ITC) for frequencies between 5 and 30Hz. B, Data recorded in human. The first column shows results related to stereo-EEG
with SPES during wakefulness (W-red) and NREM sleep (NREM-blue) re-edited from Pigorini et al. (2015). From top to bottom,
average responses of a representative contact, event-related spectral perturbation (ERSP), and phase-locking factor (PLF) for fre-
quencies higher than 8Hz (details can be found in Pigorini et al., 2015). Second and third columns show results related to TMS-EEG
re-edited from Rosanova et al. (2018), encompassing healthy wakefulness (W-red), healthy NREM sleep (NREM-blue), and UWS pa-
tients during wakefulness (gray W). As for stereo-EEG-SPES data, from top to bottom, average responses of the channel under the
stimulator, event-related spectral perturbation (ERSP), and phase-locking factor (PLF) for frequencies higher than 8Hz (details can
be found in Rosanova et al., 2018).
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The second implication of this work lies in the dissocia-
tion between observational and perturbational approaches
in their ability to unveil the presence of cortical bistability
and Off-periods, and bears relevance for the assessment
of the aftermath of brain injury. Such dissociation is repre-
sented by the area in the excitation-adaptation bifurcation
diagram identified in Figure 3, in which the responses to
perturbations more reliably show Off-periods as compared
with spontaneous activity. This portion of the diagram en-
compasses a relatively small space of the overall dynamics
(ranging from wake-like activity to patterns resembling
burst suppression) but is extremely relevant in real-life con-
ditions. Indeed, cortical perturbations, either electrical or
magnetic, are often capable of evoking clear-cut Off-peri-
ods, which are not otherwise present in spontaneous activ-
ity not only during N2 sleep but also in many stroke and
traumatic brain-injury patients (Rosanova et al., 2018;
Sarasso et al., 2020). This is a critical working point along
with the sleep-wake transition, in which cortical dynamics
are intrinsically unstable as two global activity modes com-
pete (Parrino et al., 2012; Tort-Colet et al., 2021). From a
therapeutic perspective, this offers a window of opportu-
nity as small physical or pharmacological perturbation of
the network parameters can induce dramatic changes in
the brain global behavior (Deco et al., 2019). Thus, relating
empirical findings to this region of the bifurcation diagram
is important for two reasons. First, it suggests that a signifi-
cant number of patients may lay in a state where the input-
output properties of cortical circuits are altered because of
a critical, albeit potentially reversible, shift in adaptation
(and/or excitation). Second, it shows that, because of its in-
herent activity-dependent nature, this state of affairs can
be better revealed, above and beyond the observation of
spontaneous dynamics, by challenging cortical circuits
with direct stimulation.
The third result of this theoretical and computational

work is that altered levels of adaptation can have pro-
found effects on the capability of cortical neurons to
engage in reciprocal interactions, as indicated by the
complex set of effects observed when changing adap-
tation in two reciprocally connected cortical modules
without modulating their connectivity strength. Under
conditions of low adaptation, the two simulated mod-
ules engage in a long-lasting series of feed-forward
and feed-back interactions leading to multiple waves
of activity time-locked to the stimulus, resembling the
general pattern of responsiveness found in cortical sli-
ces under carbachol and norepinephrine (D’Andola et
al., 2018) and in healthy awake subjects (Massimini et
al., 2005). For high adaptation, this deterministic pat-
tern of interaction is drastically curtailed; not only Off-
periods temporarily obliterate activity, but they also
disrupt phase-locking to the stimulus once activity re-
sumes. This peculiar condition, whereby high power is
associated with minimal levels of phase-locking to the
stimulus, is strikingly similar to the pattern found in
multiscale empirical measurements ranging from corti-
cal slices (D’Andola et al., 2018) and anesthetized ro-
dents (Arena et al., 2021) to human intracranial and
extracranial measurements during NREM sleep and

after severe brain injury (Pigorini et al., 2015; Rosanova et
al., 2018). Notably, in the brain of patients, Off-periods and
the ensuing disruption of causal interactions are empirically
associated with low values of whole-brain complexity and
with loss of consciousness (Rosanova et al., 2018). Perhaps
more importantly, the progressive disappearance of
evoked Off-periods is associated with recovery from
disorders of consciousness (Rosanova et al., 2018) and
stroke (Tscherpel et al., 2020). In light of the present theo-
retical framework, this clinical evolution would correspond
to the descending trajectory represented in the bifurcation
diagram of Figure 1A, with potential implications for stratifi-
cation, follow-up, and rehabilitation in the aftermath of
brain injury. For example, detecting cortical bistability by
perturbations in a stroke patient points to the presence of
functional disruption, adding to the structural damage, and
suggests that neuromodulation or pharmacological treat-
ment should aim at reducing adaptation mechanisms and/
or strengthening local excitation until the occurrence of
evoked Off-period is minimized.
Clearly, the present theoretical framework only repre-

sents a first stepping stone on which more realistic and
complex models can be built, such as those incorporating
the topological organization of cortical networks (Capone
et al., 2019; Barbero-Castillo et al., 2021; Pazienti et al.,
2022). To be comprehensive such models should also in-
clude other subcortical structures like the thalamus,
whose input is known to play an important role in shaping
Off-periods (van Wijngaarden et al., 2016; Zucca et al.,
2019). Besides, the present work only provides a minimal
account, limited to the proof of principle of two connected
modules of the effects of adaptation on corticocortical in-
teractions. Hence, a fundamental development will consist
in embedding the present framework within a large-scale,
connectome-based simulation, such as the “The Virtual
Brain,” encompassing a multitude of interacting modules
(Sanz Leon et al., 2013; Kringelbach et al., 2020; Goldman
et al., 2022; Schirner et al., 2022). This would offer a tool to
better understand the effects of local intrusions of cortical
bistability within the awake brain, such as those occurring
after sleep deprivation (local sleep; Hung et al., 2013;
Sarasso et al., 2014; Bernardi et al., 2015; Nir et al., 2017)
as well as those occurring when adaptation and excitation
are altered in a regional-specific manner by focal and multi-
focal structural lesions.
Several computational models have been proposed in

the last years to describe in detail the effect of electrical
stimulations on brain circuits (Bai et al., 2013; McIntyre
and Foutz, 2013; Seo and Jun, 2017; Farokhniaee and
McIntyre, 2019; Komarov et al., 2019). Despite some lack
of biophysical details in our model network, we imple-
mented a parsimonious description of the general effect
of physical (magnetic or electric) cortical perturbations.
Indeed, we considered both electrical and magnetic stim-
ulations as capable of inducing intraparenchymal electric
fields (Nieminen et al., 2015; Rahman et al., 2015; Laakso
et al., 2018). Such local and exogenous fields are known
to modulate neuronal excitability inducing a polarization
of the membrane potential of pyramidal cells with orienta-
tion parallel to the field vector (Bikson et al., 2004; Radman
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et al., 2009). Based on this experimental and theoretical
evidence, we eventually modeled TMS and electrical stim-
ulations as a transient change in the input currents received
by excitatory (i.e., pyramidal) cells in our spiking neuron
network, leading in turn to a depolarization of their mem-
brane potential. Remarkably, such a simple model allowed
us to qualitatively reproduce the evoked responses shown
in experimental works and to reveal that the adaptation level
in the network strongly shapes those evoked responses. In
the future, our network will benefit from increased biophysi-
cal details to differentiate between electrical and magnetic
stimulations, and to explore the fine grained, intracolumnar
events underlying activity-dependent adaptation.
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