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Abstract: The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infec-
tions is one of the most crucial challenges currently faced by the scientific community. Developments
in the fundamental understanding of their underlying mechanisms may open new perspectives
in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web
of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition
in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism
pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering
with their function. The mechanism of action of each drug candidate was also reviewed, together with
its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge
of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able
to effectively tackle the antimicrobial resistance issue.
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1. Introduction

The evolution and spread of antimicrobial resistance (AMR) have become major issues
for global health and healthcare systems, causing almost 700,000 deaths/year. This number
is expected to rise to 10 million by 2050, with an estimated cost for the global economy of
100 trillion dollars if no action is taken [1,2]. Furthermore, although several efforts have
been made to increase global awareness and encourage best practices, AMR continues to
rapidly emerge and spread, sometimes shortly after the introduction of a novel drug in
clinical practice [3]. The AMR crisis has also been accelerated by the COVID-19 pandemic,
mainly due to the increased use of antimicrobials in SARS-CoV-2 co-treatment. Moreover,
the disruptions in healthcare systems and the slowdown of monitoring and treatment
programs have contributed to worsening the situation [4].

There are several and different causes for the development of AMR, but the main
determinant is most likely the misuse or overuse of antimicrobials, not only in healthcare,
but also in agriculture and livestock. Bacteria have evolved different mechanisms that allow
to develop drug resistance [5–7]. Moreover, many of the AMR mechanisms are probably
“innate” to microorganisms and independent of contact with the antimicrobial agent [8].
This would explain the rapid emergence of resistance to new antibiotics, which would
merely arise from pre-existing resistance factors within the microbial genome [9]. In this
context, it is noteworthy that several genetic determinants for AMR are mobile and can be
subjected to intra- and inter-species horizontal transfer [10]. This, together with the fact
that antimicrobials usually target essential pathways, imposing a selective pressure that
favors resistance, further promotes the spread of antibiotic resistance genes (ARGs) [11].
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Another issue of AMR refers to the dissemination and transmission of ARGs from
hotspots to the environment. These hotspots are not limited to medical settings, but include
several other anthropogenic sources, such as wastewater systems, manufacturing plants,
aquaculture, and breeding facilities [12], leading to the need of reliable surveillance and
risk assessment procedures [13,14].

Therefore, several approaches are needed to fight AMR, including the development
of novel antibiotics or vaccines, and the design of alternative strategies [15]. A promising
option among these innovative solutions is the anti-virulence therapy, which is the use of
compounds targeting pathways that are non-essential for microbial growth, but required
for pathogenesis [16]. Most notably, because this approach aims to prevent the attack of a
pathogen rather than kill it, anti-virulence compounds do not exert a selective pressure,
thus preventing resistance phenomena [17].

Within this review, we will focus our attention on strategies aimed at targeting bacterial
iron metabolism or iron uptake mechanisms, which represent promising targets for the
development of innovative anti-virulence and antimicrobial agents.

2. Bacterial Mechanisms of Iron Uptake

Being an important cofactor for enzymes involved in fundamental cellular processes,
iron is essential for bacteria; however, despite its relative abundance, it has a relatively low
bioavailability. In detail, iron is usually present in its oxidized form (Fe3+), which is quite
insoluble at neutral or slightly basic pHs. Moreover, in humans iron is prevalently bound to
iron-storage or -transport proteins, such as ferritin, lactoferrin and transferrin, or complexed
with hemoproteins or enzymes [18]. As a result, bacteria, and particularly pathogenic
bacteria, have evolved several mechanisms for its acquisition from the environment [19].
Indeed, one of the first host defense strategies is the limitation of iron and other essential
nutrients, an innate process known as nutritional immunity [20].

The most common iron acquisition strategies include the uptake of organic compounds
binding iron, such as heme or citrate, and the production of siderophores or hemophores.
Siderophores are secondary metabolites secreted into the external environment, where they bind
Fe3+, forming soluble complexes that are then internalized through specific receptors [21]. Some
bacteria can also scavenge heme iron from the host through the production of hemophores
and/or specific transport systems for both heme-binding proteins and free heme [22].

The biosynthesis of siderophores occurs mainly through non-ribosomal peptide syn-
thetases and/or polyketide synthase domains that work in concert, although there are
few cases of molecules synthesized by other pathways [19]. To maintain cellular iron
homeostasis, the synthesis of siderophores, as well as their release and uptake mechanisms,
are tightly regulated. The most common control element is the ferric uptake regulator Fur.
This transcriptional repressor forms a complex with cytosolic Fe2+ in non-limiting iron
conditions, and then binds to the promoter of genes associated to siderophore biosynthesis
or regulatory activators, repressing their transcription. In iron starvation, the repression by
Fur is removed, thus allowing for the synthesis of siderophores [23].

According to their chemical nature, siderophores can be classified into catecholates, hy-
droxamates, and mixed-type siderophores, which can have different chemical groups including,
among others, carboxylates, quinones, oxazolines, and imidazoles (Figure 1) [24,25]. These
molecules show a higher affinity for ferric (Fe3+) iron compared to ferrous (Fe2+) iron or
other bivalent and trivalent metal ions. In detail, iron in siderophores is usually coordi-
nated by oxygen atoms, in an octahedral geometry, which allows for the arrangement of six
ligands around the Fe center. In some cases, the octahedral conformation is distorted, in oth-
ers, the coordinating groups contain nitrogen or sulfur atoms; however, these derivatives
generally show lower affinity for Fe3+ [24].

Siderophores are produced by both Gram-positive and Gram-negative bacteria, which
possess different mechanisms for its uptake. In Gram-positive bacteria, the internaliza-
tion of the siderophore–iron complexes is achieved by a membrane anchored protein
and an ATP-binding cassette (ABC) transporter. The transport system in Gram-negative
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bacteria usually consists of an outer membrane receptor, the TonB system, which shut-
tles the siderophore–iron complex into the periplasmic space. Here, it binds to a specific
periplasmic-binding protein and is moved to the cytoplasm through an inner membrane
ABC transporter [24].

Figure 1. Chemical structures of representative siderophores: (A) catecholate enterobactin (PubChem
CID:34231); (B) hydroxamate mycobactin (PubChem CID: 3083702); (C) mixed-type pyoverdine
(PubChem CID: 57012495). The moieties involved in iron chelation are represented in red.

Mycobacteria are peculiar because they possess two siderophores, the relatively solu-
ble carboxymycobactin and the insoluble mycobactin [25]. These molecules are exported
across the inner membrane through MmpL4/MmpS4 and MmpL5/MmpS5 proteins. Then,
mycobactins remain anchored to the outer membrane or into the cell wall, while carboxymy-
cobactins are exported extracellularly to scavenge iron from the host iron-containing pro-
teins. Carboxymycobactins can transfer iron to mycobactins, which transport it across
the cell wall. Subsequently, thanks to periplasmic-binding proteins, the metal is shuttled
through the periplasmic space to the inner membrane, and finally transferred into the
cytoplasm by the IrtA/IrtB ABC-transporter [25].

Therefore, given the essentiality of iron for pathogenic bacteria, and the peculiarity
of the mechanisms evolved for its uptake, which usually involves enzymes and proteins
absent in humans, its metabolism has been considered for the development of novel
antimicrobial and anti-virulence compounds.

3. Antimicrobial Strategies Involving Iron Metabolism

Different strategies, directly or indirectly, involving iron metabolism can be exploited
to develop antimicrobial compounds. These approaches are based on the depletion of
the environmental iron, the use of mimetic metals iron competitors, such as gallium, the
inhibition of enzymes involved in siderophore biosynthesis and/or environmental iron-
sensing mechanisms, and the exploitation of iron uptake systems for delivering drugs into
the cell.
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3.1. Depleting Environmental Iron

An effective strategy to inhibit bacterial growth could be the limitation of iron avail-
ability using chelators. The first evidence of the possibility of inhibiting microbial growth
through this approach arose from the studies by Snow on mycobactins [26]. In detail, it
was found that the mycobactins produced by a mycobacterium can antagonize the growth
of other mycobacterial species. For instance, mycobactin S, produced by M. smegmatis, can
inhibit M. tuberculosis, which instead produces mycobactin T [26]. Interestingly, the two
siderophores differ only for one stereogenic center [27].

There are several iron chelators, such as deferoxamine, deferiprone, and deferasirox,
which are currently used for the treatment of iron overload in patients with thalassemia.
Therefore, these drugs have been investigated for a potential repurposing as antimicrobials,
but without significant results [28]. Moreover, these chelators present toxicity issues,
mainly due to their lack of selectivity for extracellular iron. As a result, they can also access
the intracellular iron pool of the host, causing side effects [28]. Other small molecules
able to chelate iron with high affinity were synthesized, but all of them showed only a
low-to-moderate antimicrobial activity [29–31].

To overcome these issues, Ang and co-workers designed a 9 kDa 3-hydroxypyridin-
4-one polymer, named DIBI (Figure 2) [32]. The idea was that a high-molecular-weight
polymer could be conceivably less internalized in host cells, thus limiting the toxic effects.
Moreover, the large polymeric chelator around Fe3+ ion would create a spatial barrier,
reducing the accessibility of iron to bacterial siderophores.

Figure 2. Chemical structure of the 3-hydroxypyridin-4-one of DIBI.

DIBI was synthesized to selectively coordinate three Fe3+ ions. It was highly soluble
in water and showed good antimicrobial activity against different Gram-positive bacteria,
such as Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains, [33–35] and
against the Gram-negative Acinetobacter baumanii [36].

Following a similar approach, Abbina and co-workers synthesized a series of very-
high-molecular-weight Fe3+ chelators, by conjugating the hexadentate chelator, N,N-bis(2-
hydroxybenzyl)ethylenediamine-N,N-diacetic acid (HBED), with high-molecular-weight
polyglycerol (HPG) [37]. Exploiting the characteristics of HPG (high water solubility, bio-
compatibility, and numerous functional end-moieties), they obtained different 100–200 kDa
HPG-HBED conjugates, bearing a high number of chelating groups, ranging from 25 to 244.
This characteristic led to an improved solubility of the macrochelator and to a significantly
lower toxicity, with respect to the native HBED. Despite HBED-HPGs not showing any ac-
tivity against Pseudomonas aeruginosa, a promising bacteriostatic activity was found against
Staphylococcus aureus [37].

3.2. Gallium as an Iron Mimetic

Another interesting strategy to deprive bacteria of iron is the use of a metal that
can act as an iron competitor. In this context, a good candidate is gallium. The physico-
chemical properties of Ga3+ are very similar to those of Fe3+. As a result, it shows a good
affinity for iron-dependent enzymes, but it cannot be reduced in physiological conditions.
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Therefore, being unable to participate in redox reactions, Ga3+ leads to the inhibition of
several enzymes, interfering with essential bacterial pathways [38].

Gallium compounds can be divided into three groups: first, second, and third gen-
eration (Figure 3) [39]. Gallium nitrate (GaN, Figure 3A), the first Ga3+ compound that
entered clinical trials, is a representative of the first generation. In second-generation
compounds, Ga salts were attached to specific ligands, such as maltolate (GaM, Figure 3B),
to increase their bioavailability. Finally, in third-generation compounds, gallium was
complexed with different ligands, such as pyridine, hydrazones, thiosemicarbazones, and
protoporphyrins [39].

Figure 3. Chemical structures of gallium compounds belonging to the three different groups:
(A) first-generation gallium nitrate; (B) second-generation gallium maltolate; (C) third-generation
gallium protoporphyrin IX.

In particular, Ga-(III)-protoporphyrin IX (GaPPIX, Figure 3C) has been deeply studied
as a heme mimetic for the development of antimicrobial molecules. This complex was
conceived to be internalized by the pathogen and interfere with the pathways involving
heme. Interestingly, these derivatives proved to be particularly effective as antimicrobial
compounds [40,41].

As previously mentioned, the repurposing of gallium compounds as antimicrobials
exploits the fact that iron is required by most pathogenic bacteria. For instance, gallium
can compete with iron for siderophores, thus inhibiting iron uptake and/or internalization.
Moreover, gallium could interfere with the regulation of iron acquisition, repressing the
transcriptional regulators for the biosynthesis of siderophores [42,43].

Several studies have recently demonstrated the activity of gallium compounds against
different Gram-negative and Gram-positive bacteria, including ESKAPE species (Enterococ-
cus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species), the most common nosocomial-infection-causing bac-
teria [41,44–47]. These molecules have also proved to be effective against opportunistic
pathogens that cause lung infections in patients with cystic fibrosis or chronic obstructive
pulmonary disease [41,42,44–51], including mycobacteria [40,52].

In detail, a pilot human study demonstrated the efficacy of intravenous gallium nitrate
in patients with cystic fibrosis suffering from a chronic P. aeruginosa infection [49]. However,
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in an in vivo rat model, intravenously-administered GaN, showed poor pharmacokinetic
properties and was associated with side effects, such as nephrotoxicity [53]. Hence, the
possibility of intratracheal administration was suggested to directly deliver gallium into
the lungs [53]. To this end, different methods to formulate inhaled gallium have been de-
veloped, such as the use of β-cyclodextrin/Ga(III) nanocarriers, obtained by encapsulating
Ga-protoporphyrins into β-cyclodextrin [45,54], or the encapsulation Ga3+ in hyaluronic
acid/chitosan nanoparticles [51], which were very promising in terms of bioavailability,
efficacy, and tolerability.

The antimicrobial potential of gallium-containing compounds has also been exploited
to develop hydrogels for the treatment of infected wounds [55–57]. Hydrogels are increas-
ingly considered as attractive wound dressings materials for their ability to provide an
adequate porosity for tissue repair, as well as a high biocompatibility and degradability.
In this context, hydrogels can be useful for the topical delivery of antimicrobials, even at
high dosages, directly to the infection site, increasing their efficacy [55]. A first example
was the incorporation of Ga-protoporphyrins in a surgical hydrogel, together with the
iron chelator, defeniprone [55]. This hydrogel showed a significant antimicrobial activity,
as well as an antibiofilm effect against different bacteria, including S. aureus and MRSA
clinical isolates, Staphylococcus epidermidis, P. aeruginosa, and Acinetobacter johnsonii. [55].
Different types of hydrogels and gallium compounds have been combined, with the aim to
improve the efficacy of these antibacterial wound dressings. For instance, the combination
of Ga(NO3)3 and silk fibroin hydrogel showed a good efficacy in an in vivo P. aeruginosa
murine infection model [56], while another group demonstrated the in vivo efficacy of
alginate-Ga3+ hydrogels against E. coli and S. aureus infections [57].

3.3. Inhibiting Siderophore Biosynthesis

Another efficient way to inhibit bacterial iron uptake is to block the production and
export of siderophores by interfering directly with their biosynthesis or regulation systems.

This approach has been particularly applied for the development of antimycobacterial
compounds, particularly against M. tuberculosis, targeting the peculiar biosynthetic pathway
of mycobactins [58].

The first enzyme involved in the biosynthesis of mycobactins is a salicylate synthase
(MbtI in M. tuberculosis) that converts chorismic acid into salicylic acid, which then becomes
the substrate of the mixed non-ribosomal peptide synthase-polyketide synthase MbtA-N.
MbtA activates salicylic acid via an acyl adenylate intermediate, catalyzing its transfer to
the N-terminal thiolation domain of MbtB (Figure 4). MbtB and MbtE attach the serine and
lysine residues and then, together with MbtC and MbtD, the two malonyl CoA residues.
Finally, the terminal lysine is incorporated by MbtF, and further modified by MbtK and
MbtG, to give the final mycobactin scaffold [25,58]. The first two enzymes of this path-
way, MbtI and MbtA, are the most investigated, with to the aim of developing specific
inhibitors [25,58].

The majority of mycobactin biosynthesis inhibitors target MbtA. This bifunctional
enzyme converts salicylate to Sal-AMP, which is subsequently loaded on the phosphopan-
tetheinylation domain of MbtB [59].

Most of the known MbtA inhibitors are designed to mimic the structure of Sal-AMP,
with the aim to block the adenylation activity. The first reported analog was 5′-O-N-
salicylsulfamoyl adenosine (Sal-AMS), in which a sulfonamide linkage replaced the phos-
phate ester group [60] (Figure 5A). Sal-AMS displayed a potent inhibition of MbtA and
a promising activity against M. tuberculosis in iron-limiting conditions. Moreover, this
compound showed good efficacy in a murine model, but its pharmacokinetic profile
demonstrated a poor oral bioavailability [61]. Nevertheless, based on the good in vivo
activity, several drug discovery campaigns were launched to improve the pharmacokinetic
profile of Sal-AMS. In detail, the salicylate residue [62–65], the sugar moiety [52,66], and
the purine group [67,68] were investigated through different analogs.
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Figure 4. The first two reactions of the biosynthesis of mycobactins, namely the conversion of
chorismate to salicylate (catalyzed by MbtI), and the activation of salicylate by adenylation and its
subsequent transfer to MbtB (catalyzed by MbtA), are the most exploited for the development of
inhibitors of this pathway.

Figure 5. Chemical structures of MbtA inhibitors with antitubercular activity: (A) 5′-O-N-
salicylsulfamoyl adenosine, with the salicylate moiety in blue, the sugar in green, and the nucleobase
in red; (B) 5-hydroxy-indol-3-ethylamino-(2-nitro-4-trifluoromethyl)benzene obtained by whole-cell
screening, combined with a target-based approach; (C) 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines
derived from the mycobactin structure by rational design.

These studies led to several derivatives with improved features, both in terms of
antitubercular activity and oral bioavailability. Among the attempted substitutions, the re-
placement of the aromatic hydroxyl group of the salicylate residue with a fluoro-substituted
cinnolone moiety [65], the difluorination of the ribose group [66], and the incorporation
of bulky phenyl rings at the adenine unit [68], led to the greatest improvement of the
pharmacokinetic profile.



Int. J. Mol. Sci. 2023, 24, 6181 8 of 19

However, because most of Sal-AMS analogs showed poor drug-like properties, further
studies were focused on the identification of non-nucleoside-based MbtA inhibitors. For
this purpose, different approaches were adopted. For instance, by combining phenotypic
screening and target-based drug discovery, Ferguson and co-workers identified 5-hydroxy-
indol-3-ethylamino-(2-nitro-4-trifluoromethyl)benzene (Figure 5B) as a high-affinity ligand
of MbtA, having a good antimycobacterial activity [69]. Another study, which exploited
a rational design based on the mycobactin structure, led to the disclosure of novel 3-(2-
hydroxyphenyl)-5-(aryl)-pyrazolines (Figure 5C), active against M. tuberculosis and non-
tuberculous mycobacteria (NTM), and with very good pharmacokinetic properties [58].

The other most studied enzyme involved in mycobactin biosynthesis is the magnesium-
dependent salicylate synthase MbtI, which catalyzes the conversion of chorismate to sal-
icylate (Figure 4). The first inhibitor that was developed was the transition-state analog,
5-(2-carboxyallyl)-4,6-dihydroxycyclohex-1-ene-1-carboxylic acid (Figure 6A), which ex-
hibited a promising activity against the isochorismate synthase [70]. On this basis, several
efforts were dedicated to the synthesis of different transition-state analogs bearing the
same scaffold (Figure 6B,C) [71,72], or the trihydroxybenzoate (gallate) (Figure 6D) [73–75],
3-phenylacrylate (Figure 6E) [74], or chromane (Figure 6F) [76] moieties. However, none of
them displayed improved activity against MbtI.

Figure 6. Chemical structures of the most active inhibitors of MbtI: transition-state analogs (A–F) and
non-transition-state derivatives, namely benzimidazole-2-thione (G) and phenylfuran carboxylate
(H) compounds.

Contextually, several non-transition-state inhibitors were disclosed by different approaches.
For instance, using a high-throughput screening, based on the enzymatic activity of MbtI, Vasan
and colleagues identified several benzisothiazolones, diaryl sulfones, and benzimidazole-2-
thiones, with the latter being the most active class of compounds (Figure 6G) [77]. Similarly,
an in silico virtual screening of a commercially available library led to the identification
of a 5-phenylfuran-2-carboxylate compound, highly active against MbtI, and showing a
moderate antitubercular activity in iron-depleted conditions, associated to a reduction
in siderophore production [78]. Subsequent structure–activity relationship investigations
were performed on this structure [79–83], leading to the identification of a series of 3-
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cyanophenyl derivatives with improved antimycobacterial properties. Most notably, some
of them were also active against the homolog enzyme of the non-tuberculous opportunistic
pathogen, M. abscessus (Figure 6H) [82,83].

Chorismic acid is also the precursor of other siderophores, produced by different bacte-
rial pathogens through non-ribosomal peptide synthetases. A notable example is pyochelin,
a siderophore produced by P. aeruginosa and by several members of the Burkholderia cepacia
complex (Bcc) [84,85]. Differently from mycobacteria, the first step, namely the conversion
of chorismate to salicylate is catalyzed by two different enzymes, the isochorismate syn-
thase PchA and the isochorismate pyruvate lyase PchB. Then, PchD activates the salicylate
by adenylation and transfers it to the thiol moiety of the phosphopantetheinyl group of
PchE, the first enzyme of the non-ribosomal peptide synthetase complex [84]. PchD belongs
to the same family of the adenylating enzyme MbtA. Very recently, its crystal structure
in complex with salicyl-AMS has been solved, paving the way for the design of novel
inhibitors [86].

Regarding PchA, to our knowledge, no inhibitors have been reported so far. By
contrast, a high-throughput screening against PchB disclosed three compounds inhibiting
the isochorismate pyruvate lyase activity in the sub-micromolar range (Figure 7). However,
its efficacy against P. aeruginosa, in iron-limiting conditions, was only in the millimolar
range [86]. Interestingly, some of these compounds were also active against the salicylate
synthase, Irp9 from Yersinia enterocolitica, and against the chorismate mutase, EcCM from E.
coli, suggesting the potential suitability of these scaffolds for the development of specific
antimicrobials [87].

Figure 7. Chemical structures of compounds active against P. aeruginosa isochorismate pyruvate lyase
PchB. Compound (A) was also active against E. coli chorismate mutase EcCM, compound (B) against
the Yersinia enterocolitica salicylate synthase Irp9, and compound (C) against all these enzymes.

Another important siderophore from the Pseudomonas species is pyoverdine, which
consists of a dihydroquinoline-type chromophore, with a variable peptide tail. Besides
being a siderophore, pyoverdine is a key virulence determinant involved in the regulation
of several virulence factors important for infection, such as exotoxin A, a translational
inhibitor, and the protease PrpL [88]. Interestingly, it has been demonstrated that the
inhibition of pyoverdine production strongly diminishes the virulence of P. aeruginosa in
animal models of infection [89,90]. In this context, one of the first successful examples was
a drug-repurposing approach that exploited a specific biosensor for pyoverdine inhibitors
to screen a library of marketed drugs. In this study, 5-fluorocytosine (Figure 8A) was
shown to repress the production of pyoverdine, leading to a significant reduction of the
pathogenicity [90].
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Figure 8. Chemical structures of the principal pyoverdine inhibitors: (A) the biosynthesis inhibitor
5-fluorocytosine; (B–D) n-alkylboronic acid, biaryl nitrile and quinazolamide PvdQ inhibitors; (E,F)
pyoverdine quenchers.

The biosynthetic pathway of pyoverdine is very complex, involving at least four non-
ribosomal peptide synthetases and 10 other enzymes, either cytoplasmic or periplasmic [91].
In detail, the precursor ferribactin is produced in the cytoplasm, acylated and exported
to the periplasm. Here, acylated ferribactin is deacylated by the hydrolase PvdQ, and
then converted into dihydropyoverdine through an oxidative cyclization, catalyzed by
PvdP [91]. These two enzymes are of particular interest because they represent the two
main targets of pyoverdine biosynthesis inhibitors [92–96]. For instance, a rational design
of transition-state analogs led to the identification of potent n-alkylboronic acid inhibitors
of PvdQ (Figure 8B), active in the nanomolar range on the enzyme, and showing good
activity against P. aeruginosa in iron-limiting conditions [94].

Other interesting PvdQ inhibitors with different scaffolds were identified through high-
throughput screening studies (Figure 8C,D), although their efficacy against the enzyme
was lower than that of n-alkylboronic acids [95,96]. Moreover, they exhibited a decreased
antimicrobial activity due to them being substrates of efflux pumps [96].

Interestingly, pyoverdine itself was found to be druggable; hence, several small
molecules have been developed to directly target this siderophore. Interestingly, its chro-
mophore core has a characteristic fluorescence at 460 nm, upon excitation at 405 nm, which
is rapidly quenched when pyoverdine binds iron. This feature has thus been exploited
for the high-throughput screening of potential binders, leading to the identification of
molecules able to significantly reduce the virulence of P. aeruginosa in in vivo models, and
showing synergistic effects with other antimicrobials (Figure 8E,F) [97–99]. In another
study, to better understand how the quencher bound the siderophore, NMR spectroscopy
was employed to identify the ligand-binding site [99]. Through molecular docking and
molecular dynamic simulations, this investigation allowed for constructing a structural
model of pyoverdine in complex with a ligand, useful for the development of more potent
and specific inhibitors [98].

Most notably, it was recently reported that the inhibition of pyoverdine biosynthesis
has synergistic effects with gallium nitrate, further confirming the efficacy of interfering
with iron metabolism at different levels to reduce virulence and pathogenicity [99].

3.4. Exploiting Siderophore Uptake Systems to Deliver Antimicrobials

Common issues of antimicrobials are their low permeability across bacterial mem-
branes and potential cytotoxicity against human cells. In this context, the use of suitable
delivery vectors could significantly help in optimizing the efficacy of antibiotics [100].
Since human cells do not use siderophores, the specific bacterial uptake systems could be
exploited to selectively internalize antibiotics inside the pathogens, by conjugating them
to specific siderophores [100]. This strategy is naturally exploited by some microorgan-
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isms, such as Streptomyces and Actinomyces, that produce sideromycins, i.e., siderophores
conjugated with an antimicrobial moiety, to compete with other species.

On this basis, different siderophore–drug conjugates (SDGs), targeting different bac-
teria, have been synthesized [101]. The most exploited drugs are β-lactams, particularly
cephalosporins, but other classes of compounds have also been considered. For instance,
several groups synthesized siderophores conjugated with fluoroquinolones [102–104] or
macrolides [105] active against Pseudomonas and Burkholderia spp., as well as with gly-
copeptides [106] and lipopeptides [106,107], displaying good antimicrobial activity against
Acinetobacter baumanii.

SDG may have either a non-cleavable or a cleavable linker between the drug and
the siderophore, which can confer advantages, but also lead to some disadvantages. For
example, a non-cleavable linker is resistant to the activity of β-lactamases, which, in some
cases, may be unwanted; at the same time, the bulky molecules could have difficulties
crossing the cell membrane. By contrast, a cleavable linker is useful to release the drug in
situ, but may suffer from a premature cleavage before reaching the target site [108].

Among the siderophore-β-lactam conjugates, the most promising is the catecholate
siderophore–cephalosporin Cefiderocol (Figure 9A), which showed a significant antibacte-
rial activity against different Gram-negative bacteria (P. aeruginosa, Acinetobacter baumannii,
Klebsiella pneumoniae, E. coli) in vitro, [109] multi- and extensively drug-resistant E. coli
strains [110], carbapenem-resistant Enterobacterales [111], and Burkholderia pseudomallei
clinical isolates [112]. Most notably, Cefiderocol exhibited a significant in vivo efficacy
against MDR P. aeruginosa in a mouse infection model [109], and displayed good safety
and pharmacokinetic profiles [113]. Cefiderocol has been recently authorized by the FDA
and is currently undergoing phase 3 clinical trials for the treatment of severe infections
(pneumonia, bloodstream infections, complicated urinary tract infections, and sepsis),
caused by carbapenem-resistant Gram-negative pathogens [114]. Moreover, a phase 3 trial
(APEKS-NP) demonstrated that Cefiderocol was non-inferior to high-dose meropenem
for the outcome of day-14 all-cause of mortality in patients with Gram-negative pneu-
monia, suggesting its potential efficacy for the treatment of nosocomial infections [115].
However, the (CREDIBLE-CR) phase 3 trial evidenced a higher number of deaths in pa-
tients with Acinetobacter spp. infections, limiting the treatment options of Cefiderocol [116].
Different studies are ongoing to explore the efficacy of possible combinations with other
antimicrobials [117,118].

Other cephalosporin–siderophore conjugates are currently under investigation. Among
them, GT-1, a novel siderophore-dihydroxypyridone conjugated to a modified aminothia-
zolylglycyl cephalosporin (Figure 9B), showed a strong potency towards different Gram-
negative pathogens, including MDR E. coli, K. pneumoniae, and Acinetobacter spp. isolate
strains [119]. Furthermore, GT-1 proved to be resistant to the hydrolytic activity of differ-
ent bacterial β-lactamases and carbapenemases. Moreover, the combination of CT1 with
GT-055, a β-lactamase inhibitor, enhanced the efficacy of the compound against the tested
strains, including those that were resistant to GT-1 [119].

Artificial siderophores have also been implemented to exploit iron uptake systems
as delivery tools for drugs [109,120,121]. The 1,3,5-N,N′,N”-Tris-(2,3-dihydroxybenzoyl)-
triaminomethylbenzene (MECAM) siderophore, for example, has been conjugated through
cleavable and non-cleavable linkers to different molecules (ampicillin, daptomycin, amoxi-
cillin), potentiating their effect on different bacteria, such as E. coli, S. aureus, A. baumanii,
and E. faecium [122], with the best compound showing MIC values in the nanomolar range
against the considered strains. Interestingly, a study on E. coli showed that MECAM may
exploit three different catechol receptors to reach the periplasm, namely FepA, CirA, and
Fiu, and that only a triple mutant of the three proteins may confer resistance to the con-
jugate. This observation further highlighted the suitability of artificial siderophores to
develop a Trojan Horses strategy to fight AMR [122].

Siderophore-conjugated compounds have also proven to be quite promising in drug-
repositioning efforts [123]. Good examples are siderophore–methotrexate conjugates [124].
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Methotrexate is an anticancer drug that inhibits human dihydrofolate reductase (DHFR),
an essential enzyme in nucleotide biosynthesis. This compound was also found to be
active against several bacterial DHFR, sometimes with an even higher affinity compared to
the human isoform. However, its low permeability across bacterial membranes, as well
as its cytotoxicity against human cells, prevented its use as an antimicrobial agent. To
overcome this issue, methotrexate was conjugated with an analog of the hydroxamate
siderophore, ferrichrome, using different non-cleavable linkers. The best conjugate ex-
hibited considerable activity against Streptococcus pneumoniae and Y. enterocolitica, with an
MIC in the nanomolar range. Moreover, it did not show toxicity against mammalian cells.
Interestingly, the compound was not active against other Gram-negative and Gram-positive
bacteria, such as Acinetobacter baumannii, Staphylococcus epidermidis or Salmonella enterica,
suggesting the possibility of developing narrow-spectrum antibiotics targeting a specific
bacterium [124].

Figure 9. Chemical structures of the siderophore–cephalosporin conjugates, Cefiderocol (A) and GT-1 (B).

4. Conclusions and Future Outlook

Virulence factors play important roles in the pathogenic process of microorganisms,
mediating bacterial adhesion and colonization, host immune suppression, and immune
escape. Hence, anti-virulence treatments, aimed at reducing the pathogenicity, while
sparing the bacterium for its eventual elimination by the immune system or other therapies,
may have significant advantages over traditional approaches. Most notably, the reduced
selective pressure on bacteria would limit the emergence of AMR. Therefore, considering
the ever-increasing spread of drug-resistant strains, anti-virulence therapy is expected to
become a crucial tool to fight infections and, as such, worthy of extensive research. In this
review, we focused on new potential pharmacological targets involved in the pathways of
iron acquisition and metabolism. For each class, we reported the most interesting molecules
that have been developed to interfere with these mechanisms, highlighting their biological
activity and pharmacokinetic/toxicological profile.

Among the different strategies, the ability of gallium to act as an iron competitor has
emerged as a particularly promising option. Ga(III)-based treatments have shown effec-
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tive antimicrobic properties against different Gram-negative and Gram-positive bacteria,
including ESKAPE species. Most notably, they have also exhibited antibacterial action
against resistant strains. However, some limitations to their use still exist, including the
low bioavailability and uncontrolled release. Hence, current research is focused on the
optimization of the delivery. In this context, nanomaterials have yielded very promising
results so far.

Another very effective approach is to hinder iron acquisition by interfering with the
production of siderophores. Considering that these molecules are absent in humans, they
are ideal targets for the design of safe antimicrobial drugs. In M. tuberculosis, this strategy
has produced interesting results, with several effective compounds being developed as
inhibitors of MbtA and MbtI. In detail, furan-based inhibitors of MbtI have proven to be
particularly attractive for their activity in both M. tuberculosis and M. abscessus, an emerging
NTM. In Pseudomonas spp., the investigation of the siderophore pyoverdine has allowed
the discovery of various inhibitors acting by different mechanisms, able to significantly
reduce the bacterial virulence. Moreover, siderophores may also be exploited to enhance
the internalization of antibiotics inside bacteria by the development of conjugates. Of
note, the catecholate siderophore–cephalosporin, Cefiderocol, has recently obtained the
FDA approval and is currently undergoing phase 3 clinical trials for the treatment of
severe infections caused by carbapenem-resistant Gram-negative pathogens. Artificial
siderophores have also been implemented to design more effective conjugates, exploiting
this Trojan Horse strategy.

Overall, this review demonstrates that iron homeostasis is a very promising source of
innovative molecular targets for the development of anti-virulence compounds against a
variety of bacterial species. Although there are still many gaps in our knowledge of these
systems, the fundamental understanding of iron acquisition and metabolism in bacteria
should enable new, well-reasoned approaches to develop better therapeutic strategies to
fight AMR.
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