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Abstract—The use of supervised learning for Human Activity
Recognition (HAR) on mobile devices leads to strong classifica-
tion performances. Such an approach, however, requires large
amounts of labeled data, both for the initial training of the
models and for their customization on specific clients (whose
data often differ greatly from the training data). This is actually
impractical to obtain due to the costs, intrusiveness, and time-
consuming nature of data annotation. Moreover, even with the
help of a significant amount of labeled data, model deployment
on heterogeneous clients faces difficulties in generalizing well on
unseen data. Other domains, like Computer Vision or Natural
Language Processing, have proposed the notion of pre-trained
models, leveraging large corpora, to reduce the need for an-
notated data and better manage heterogeneity. This promising
approach has not been implemented in the HAR domain so far
because of the lack of public datasets of sufficient size. In this
paper, we propose a novel strategy to combine publicly available
datasets with the goal of learning a generalized HAR model that
can be fine-tuned using a limited amount of labeled data on
an unseen target domain. Our experimental evaluation, which
includes experimenting with different state-of-the-art neural
network architectures, shows that combining public datasets can
significantly reduce the number of labeled samples required to
achieve satisfactory performance on an unseen target domain.

Index Terms—human activity recognition; mobile/wearable
computing; transfer learning

I. INTRODUCTION

Despite years of research and progress [1], the field of

sensor-based Human Activity Recognition (HAR) on mobile

or wearable devices remains a hot research topic. This is due to

several reasons. First, the field has major social importance in

the sense that it is necessary for the development of value-

added services in the fields of health, well-being, or task

monitoring in industry. Secondly, although constant progress

can be reported, the problem is far from being solved and today

solutions are difficult to be deployed in real-world scenar-

ios [2]. Most recent approaches are based on machine learning

techniques. More precisely, supervised learning leads to strong

classification performances for HAR. This, however, requires

large amounts of labeled data, both for the initial training

of the models and for their customization on specific clients

(whose data often differ greatly from the training data). This

is actually a problem because of the costs, intrusiveness, and

time-consuming nature of data collection and annotation. Even

with the help of a number of labeled data, models deployed

on heterogeneous clients face difficulties to generalize well on

unseen data.

In other domains, such as Computer Vision or Natural Lan-

guage Processing, learning a model on one large dataset [3],

[4] makes it possible to transfer knowledge to new domains

using only a limited amount of specific data [5]. However,

in the HAR domain, transferring knowledge from a single

dataset is not effective because of the lack of publicly available

large and heterogeneous datasets, due to the above-mentioned

problems. We call this the labeled data scarcity problem.

Ideally, a pre-trained model should be able to cope with

the variability of devices [6], the variability of applications,

and also the behavioral differences of users [7]. In fact,

there are a number of public datasets but they are generally

small and acquired in scripted scenarios (e.g. Mobiact [8],

MotionSense [9], PAMAP2 [10]). The few ones that are

relatively large and acquired in the wild often include noisy

data and incorrect annotations (e.g. ExtraSensory [11]).

Transfer learning from one dataset to another has been

already attempted but existing works showed that such ap-

proaches lead to low recognition rates [12]. To further demon-

strate the problem, Figure 1 presents the result of an ex-

periment showing the challenge of training a model on one

dataset and expecting it to perform well on a different dataset.

This cross-dataset evaluation was performed using some of the

most commonly used publicly available datasets for HAR and

using a state-of-the-art model [13]. The figure clearly shows

that the model performs well when trained and tested on the

same dataset, but its performance drastically deteriorates in

cross-dataset scenarios. These results highlight the challenges

associated with developing models that can generalize well

across diverse datasets and underscore the need for developing

more robust approaches that can effectively leverage knowl-

edge from pre-training on large, diverse, and representative
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Fig. 1: Cross-dataset evaluation by using a state-of-the-art

classifier [13]. A cell at coordinates i, j shows the F1 score

obtained by training the model with 70% of dataset i on 30%
of dataset j.

datasets.

In this paper, we hypothesize that, by combining several

public HAR datasets that are often used as benchmarks by

the HAR community, it is possible to pre-train models that

can be fine-tuned on target clients with a limited amount of

labeled data. Specifically, we propose a novel approach to

combining datasets and we report our experience considering

6 public datasets to generate a pre-trained model. Also, we

propose an evaluation strategy called Leave-One-Dataset-Out

that effectively assesses the generalization capabilities of our

approach.

Our experiments show that our pre-trained model can be

effectively transferred to an unseen target HAR domain using

a limited amount of labeled data for fine-tuning. To the best

of our knowledge, this is the first work proposing to combine

several heterogeneous HAR datasets to mitigate the labeled

data scarcity problem. Precisely, the contributions of this paper

are the following:

• We pre-trained models using a combination of diverse

publicly available HAR datasets. We show that such mod-

els can be effectively fine-tuned efficiently with limited

data of unseen target domains.

• We then propose a novel realistic and challenging

evaluation methodology termed Leave-One-Dataset-Out

(LODO), and we use it to extensively assess the effective-

ness of our approach on different state-of-the-art neural

network architectures.

• The pre-trained model, the corresponding training data,

and the code are publicly available to make this research

reproducible1.

II. RELATED WORK

Human activity recognition (HAR) using machine learning

has traditionally relied on supervised learning approaches,

which require a significant amount of labeled data for training

to achieve high accuracy [14]. However, obtaining labeled

1https://github.com/getalp/SmartComp2023-HAR-Supervised-Pretraining

activity data is often time-consuming, intrusive, costly, and

hence unfeasible on a large scale [15]. To overcome the

scarcity of labeled samples in the target domain, domain

adaptation (DA) techniques have emerged to leverage labeled

samples that are available from a different source domain [16].

Among the many DA techniques, transfer learning has shown

valuable results in various domains, including natural language

processing [17], [18]. However, adapting transfer learning

to HAR is challenging due to device variability, body dis-

placement, and behavioral differences among users, making

it difficult to generate a generic model that can quickly

adapt to diverse datasets [19], [20]. Several researchers have

investigated how to apply transfer learning methods to solve

cross-domain HAR problems, including cross-device [21],

[22], cross-sensor-installation-position [20], [23], and cross-

persons [17], [24]. However, publicly available datasets for

HAR have limited labeled samples and classes, which restricts

the effectiveness of cross-domain adaptation works in this

area [25]. For instance, effective deep CNN frameworks have

been proposed to enable the generation of a model that

can efficiently adapt across diverse datasets [26], but they

require that the classes between the source and the target

domain overlap, hence limiting their effectiveness in real-

world scenarios. Moreover, most of the studies in this field

have been conducted by transferring knowledge from one

single dataset to another, resulting in performance variations

depending on the compatibility among the data across the

considered dataset pairs [25]. Furthermore, due to the data

scarcity problem in HAR, using only the data from one dataset

to generate the model that needs to be transferred to another

domain may not be sufficient. A possible solution to mitigate

this problem is to pre-train the model on a different source

domain before fine-tuning on the data-scarce target domain

[12], [25]–[28]. The obtained results are promising even in

the case very few data are used for fine-tuning the model

in the target domain. However, this approach suffers from

generalization across domains that differ from the target one.

We argue that utilizing only a single dataset for the pre-training

HAR models is not sufficient to find common features in the

target domain, especially with the highly heterogeneous nature

of smartphone data. Another approach to expand the dataset

available for training may consist of using data augmentation

techniques like GANs [29], [30]. GANs have been also used to

facilitate cross-subject transfer learning [31]. However, GANs

still require a significant amount of labeled samples to be

trained.

In recent years, self-supervised learning (SSL) approaches

have gained attention as a general framework for learning

from unlabeled data through a pretext task [5], [32]. SSL has

also been applied to sensor-based HAR, leading to promising

results [33], [34]. However, even a good unsupervised or SSL

model that permits adaptation using a short amount of data

still requires a significant amount of data, as exemplified in

other domains such as vision and speech [35]. In the HAR

domain, even non-annotated data is difficult to obtain.
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III. COMBINING DATASETS FOR MODEL PRE-TRAINING

In this section, we outline our strategy for combining

datasets to create a pre-trained model that can generalize well

across all datasets. We begin by providing an overview of the

datasets we considered for this task. Next, we describe our

proposed approach for combining these datasets to generate

the pre-trained model.

A. Datasets

In the following, we describe the datasets we considered in

this work. We note here that we explicitly seek datasets with

both Accelerometer and Gyroscope data, as utilizing the two

sensors together gave the best performance [36]. Information

on the datasets is summarized in Table I.

1) Heterogeneity Human Activity Recognition (HHAR) [6]
: The HHAR dataset consists of 4.5 hours of recorded

activities from 9 participants. Each participant wore 8 Android

smartphones in a tight pouch carried around on the waist, and

4 Android smartwatches while performing 6 different activities

(Biking, Sitting, Standing, Walking, Upstairs, and Downstairs).

All 12 devices recorded the activities using accelerometer and

gyroscope measurements at their maximum sampling rates,

which ranged from 50 Hz to 200 Hz. The HHAR dataset

represents a heterogeneous learning environment due to the

variety of devices used in the data collection process.

2) MobiAct [8] : This dataset includes labeled data from

61 different subjects with high variance in age and physical

characteristics. The dataset contains data from a triaxial ac-

celerometer, gyroscope, and magnetometer embedded into a

Samsung Galaxy S3 smartphone carried by users while per-

forming 9 physical activities. During the acquisition process,

the users were left free to position the smartphone with a

random orientation into one of their trousers’ pockets. The

physical activities included in this dataset are the following:

Standing, Walking, Jogging, Jumping, Upstairs, Downstairs,

Sitting, Car step in, Car step out. The adopted data acquisition

frequency is the highest enabled by the sensors of the selected

smartphone (i.e., at most 200Hz).

3) MotionSense [9]: This dataset includes data from 24
subjects very heterogeneous in terms of gender, age, weight,

and height. The six activities performed were Downstairs,

Upstairs, Sitting, Standing, Walking, and Jogging/Running.

The tests were conducted using an Apple iPhone 6s that was

kept in the subject’s front pocket and recorded data from

accelerometer, attitude, and gyroscope sensors at a 50 Hz

sampling rate.

4) RealWorld [37]: This dataset consists of 18 hours of

recorded accelerometer and gyroscope data collected in 2016

from 15 subjects using a Samsung Galaxy S4 smartphone

and an LG G Watch R placed at 7 different body positions:

head, chest, upper arm, waist, forearm, thigh, and shin. The

sampling rate was 50 Hz. The subjects performed various

activities outdoors without any restrictions, and the data was

labeled into 8 activities: Downstairs, Upstairs, Lying, Sitting,

Standing, Walking, Jumping, and Running. This dataset aims

to simulate the class imbalance that resembles the ones of re-

alistic datasets. For instance, the ”standing” activity represents

14% of the data while the ”jumping” activity only accounts

for 2%.

5) UCI Human Activity Recognition [38] : This dataset

was collected using a Samsung Galaxy S II placed on the

participant’s waist, with a sampling rate of 50 Hz. The dataset

comprises 3.6 hours of recorded activities from 30 participants

with an age range of 19 to 48 years old. The six activities

recorded are Walking, Upstairs, Downstairs, Sitting, Standing,

and Lying, and the experiments were conducted in a controlled

indoor lab environment.

6) PAMAP2 [10]: This dataset was recorded in a con-

trolled setting where 9 participants carried out 12 activities of

daily living, including domestic tasks and physical exercises.

The activity data were recorded using three Colibri wireless

IMUs (inertial measurement units) consisting of triaxial ac-

celerometers, gyroscopes, and magnetometers attached to the

participants’ ankle, chest, and wrist. The activities monitored

were: rope jumping, lying, sitting, standing, walking, running,

cycling, nordic walking, ascending stairs, descending stairs,

vacuum cleaning, and ironing. The sampling rate adopted for

data acquisition was set to 100Hz.

B. Datasets combination strategy

In the following, we describe how we pre-processed and put

together the above-mentioned datasets. First, each dataset was

downsampled to 50 Hz to align with the optimal frequency for

HAR on smartphones as suggested by a recent survey [39].

Indeed, this survey suggests that a sampling rate between

20 Hz and 50 Hz is ideal for this task, and accelerometers

and gyroscopes are the most suitable sensors. Using higher

frequencies beyond 50 Hz would result in increased compu-

tation and memory costs with only marginal improvement in

performance.

After downsampling, each dataset was standardized indi-

vidually using sensor-wise z-normalization to center the data.

We avoid standardizing all datasets together as a whole to

avoid datasets with lower samples being under-presented when

combined with many of the larger datasets (e.g. the large

HHAR vs the small UCI dataset). In order to focus on the

data scarcity problem and to limit influences on the results

caused by domain shifts from different positions [36], from

each dataset we use data only from the ‘waist’ position, which

is usually the most common one and it is included in all of

the datasets studied in this work.

Finally, based on past studies [40], the data was then seg-

mented into instances using a window length of 128 samples

(2.56 seconds) with a 50% overlap over all 6 channels from

the accelerometer and gyroscope readings. In order to combine

the datasets together, we performed a union of the physical

activities involved. This combination led to a dataset with

147 subjects, 10 unique activities (‘Downstairs’, ‘Upstairs’,

‘Running’, ‘Sitting’, ‘Standing’, ‘Walking’,‘ Lying’,‘ Cycling’,

‘Nordic Walking’, ‘Jumping’), and 213,289 data samples

(≈ 151 hours of usable data), and 12 different devices for data
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TABLE I: Summary of datasets characteristics

Dataset # of
samples

# of
users Adopted Devices Sampling rate Device position Activities

HHAR 85,567 9

Smartphones: Samsung Galaxy S3 mini,
Samsung Galaxy S3, LG Nexus 4,

Samsung Galaxy S+

Smartwatches: LG watches,
Samsung Galaxy Gears

from 50 Hz
to 200 Hz

Smartphones: Waist

Smartwatches: Wrist

Biking, Sitting, Standing,
Walking, Upstairs, Downstairs

MobiAct 18,634 61 Samsung Galaxy S3
from 50 Hz
to 200 Hz

Waist
Standing, Walking, Jogging,

Jumping, Upstairs, Downstairs,
Sitting, Car step in, Car step out

MotionSense 17,231 24 Apple iPhone 6s 50 Hz Waist
Downstairs, Upstairs, Sitting,
Standing, Walking, Running

RealWorld 356,427 15
Samsung Galaxy S4

LG G Watch R
50 Hz

Smartphones: Head, Chest, Upper arm,
Waist, Thigh, Shin

Smartwatches: Forearm

Downstairs, Upstairs, Lying,
Sitting, Standing, Jumping,

Walking, Running

UCI 10,299 30 Samsung Galaxy S II 50 Hz Waist
Walking, Upstairs, Downstairs,

Sitting, Standing, Lying

PAMAP2 15,177 8 Colibri wireless IMU sensors 100 Hz Waist, Chest, Wrist

Rope Jumping, Lying, Sitting,
Standing, Walking, Running,

Cycling, Nordic walking,
Upstairs, Downstairs,

Vacuum cleaning, Ironing

acquisition. Despite considering only one on-body position, we

believe that the wide variety of subjects and devices presents

a challenging learning problem due to the heterogeneity of the

combined data.

C. Pre-training

The set of labeled datasets can then be used to train a deep

neural network model in a fully supervised learning fashion.

Specifically, we consider the neural network as composed of

two parts: the feature extractor and the classification head.

During the pre-training phase, we train the whole network (i.e.

feature extractor and classification head). We will refer to the

feature extractor trained on several joint datasets as the pre-
training model. By doing so, we aim to leverage the diversity

and heterogeneity of the joint datasets to extract high-level and

general-purpose features. These features should be applicable

to a wide range of unseen domains considering various users,

devices, and sensors. In other words, the pre-trained model

is designed to capture the common underlying patterns and

characteristics of the human activities that are invariant across

datasets, so that it provides a robust feature extractor.

D. Considered Models

In this paper, we consider four alternative state-of-the-art

neural networks which we use with their default parameters

and implementation from their official source code reposi-

tories. For each model, we consider the last layer (softmax

classification layer) as classification head, while the remaining

layers as feature extractor.

1) ISPL Inception [13] This network has been designed

by adapting the Inception-ResNet architecture proposed

[41] to the HAR domain. This architecture represents a

strong CNN architecture baseline for our study.

2) DeepConvLSTM [42] is a combination of convolutional

and LSTM recurrent layers. The network architecture

has been frequently used as a baseline for state-of-the-

art studies in the wearable HAR domain community.

3) HART [36] A sensor-wise HAR Transformer (HART)

architecture adapted from the successful transformer

TABLE II: Fine-tuning ratios and the corresponding samples

of training data for the considered datasets

ratio of training data used for fine-tuning

Dataset 1% 5% 10% 70% (All Train Data)

HHAR 733 3,680 7,366 51,581

MobiAct 385 1,987 3,991 28,028

MotionSense 153 1,067 2,148 15,092

RealWorld 520 2,634 5,274 36,953

UCI 180 506 1,026 7,241

PAMAP2 148 751 1,504 10,545

model from the vision domain [43]. The model incor-

porates lightweight components, able to be deployed on

small devices capable of real-time performance.

4) MobileHART [36] An extension of HART that incor-

porates convolutional layers to learn spatial/temporal in-

ductive biases that conventional transformers do not. The

architecture reports state-of-the-art results on multiple

benchmark datasets.

IV. FINE-TUNING AND EVALUATION

In this section, we outline our methodology for evaluating

the pre-trained model that was learned from the data obtained

by combining the considered datasets.

A. Fine-tuning Methodologies

A small amount of labeled data acquired on the target

domain is used to fine-tune the pre-trained model. For the

sake of this work, in this phase, we consider three strategies

for using this small amount of data with the different models

composed of the pre-trained feature extractor augmented with

a randomly initialized classification head: a) using an unfrozen

and randomly initialized feature extractor (denoted as Rd) as

a baseline, b) using a frozen pre-trained feature extractor (PF )

to assess generalization capabilities on new tasks and c) using

a pre-trained feature extractor with all layers unfrozen (PU )

to assess the impact of fine-tuning data on feature extraction.
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Fig. 2: Overview of LODO

B. Leave-One-Dataset-Out

In order to evaluate the effectiveness of our pre-trained

models on unseen data, we introduce a new evaluation strategy

called ”Leave-One-Dataset-Out” (LODO). The data flow of

this approach is depicted in Figure 2. This strategy takes

into account our multi-dataset setting and provides a better

assessment of the model’s ability to transfer knowledge to an

unseen target domain. At each fold, one dataset is considered

as left-out dataset, while the remaining ones are used to

create a pre-trained model. Specifically, the pre-training phase

includes the pre-processing steps depicted in Section III-B For

the partitioning, these datasets are class-stratified partitioned

in a subject-wise manner, with 90% of the data used for

training and 10% for validation. The training data from all

remaining datasets are then merged (we will refer to this

as the source/pre-training dataset), to learn the pre-trained

the model. Similarly, the validation data from all remaining

datasets are used as the validation set during the pre-training

process. The left-out dataset (which we will refer to as the

target dataset) is partitioned subject-wise with 20% set aside

for testing and 10% for validation. The remaining data is used

to create various training partitions simulating different labeled

data scarcity scenarios for fine-tuning. Six ratios of fine-tuning

data are considered: 0%, 1%, 5%, 10%, and 70%. The 0% ratio

depicts a scenario where there is no data for fine-tuning, and

it is useful to assess the capability of the pre-trained model to

transfer knowledge to the target dataset. The 1% ratio assesses

the model’s performance when there is minimal training data.

The 5% and 10% ratios demonstrate learning scenarios with

limited data availability, while the full 70% ratio represents a

conventional training pipeline. Table II shows the approximate

amount of samples regarding each fine-tuning ratio for each of

the considered datasets. We observed that, in extreme cases,

the PAMAP2 and UCI datasets will have respectively less than

3 and 6 minutes of training data considering the 1% ratio.

C. Experimental Setup

Our experiments were conducted on a high-performance

computing cluster with Intel Cascade Lake 6248 processors,

192GB of memory, and Nvidia Tesla V100 SXM2 16GB

GPUs. All models were developed using TensorFlow [44].

For each experiment, we learn the pre-trained model by

using 200 epochs with a batch size of 128 on the com-

bined datasets mentioned in the previous section. We saved

checkpoints of the pre-trained model during training, and then

selected the one that achieved the highest accuracy on the

validation set as the final pre-trained model. In the fine-tuning

phase, we adopted 200 epochs with a batch size of 64 on

the left-out datasets with their representative training scenarios

mentioned in the previous section. The evaluation of the test

set was performed on the fine-tuned model that achieved the

highest accuracy on the validation set. We adopted Adam as

the optimizer with a learning rate of 0.0005 for all experi-

ments. The hyper-parameters of each specific network follow

the standard configuration proposed by the authors of the

corresponding papers. We used the macro F1 score metric to

measure the performance of the classification task.

V. RESULTS

In this section, we present the results of our evaluation using

the evaluation methodology proposed in IV-B.

A. Main results

We first considered the worst-case labeled data scarcity

scenario, where only 1% of fine-tuning data is available in the

target domain. Figure 3 shows the F1 score obtained on each

model with the different fine-tuning strategies, by averaging

the recognition rate at each fold.

We observe that pre-training is particular effective for

transformers-based architectures. For example, the F1 score

of the randomly initialised HART model Rd is only 61%,

whereas PU achieves 74% of F1 score. With MobileHART,

the benefits of pre-training are even more noticeable, with

a 37% F1 score improvement when using PU compared to

Rd. These results suggest that the complexity of transformers-

based networks requires a large amount of training data to ex-

tract meaningful features, leading to inadequate classification

rates with randomly initialised models and limited labeled data

in the target domain. Thus, our pre-training method enables

transformers to learn high-level and general-purpose features
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Fig. 3: The average F1-score obtained with the considered

model architectures by using 1% of fine-tuning data

that work well on unseen data, which explains why they reach

a high F1 score.

Considering ISPL Inception, the pre-trained model PU

outperforms Rd on average by 5% of F1 score. In this case,

the advantage of pre-training is particularly evident on some

datasets (e.g., ≈ +10% when UCI and PAMAP2 are target

datasets) and negligible in others (e.g., ≈ +0.4% on MobiAct).

This is likely due to the fact that the network underlying

ISPL Inception is less complex than transformers and, in

some cases, few training samples from the target domain

are sufficient for model convergence. On the other hand, we

observed that our pre-training strategy has a negative effect on

DeepConvLSTM, where the F1 score obtained by fine-tuning

Rd outperforms the one generated with PU and PF . This is

likely due to the fact that DeepConvLSTM exhibited overfit-

ting behaviors during pre-training, with a negative impact on

generalization capabilities on unseen data.

B. More detailed results

In the following, we provide more details about these

results, discussing the pros and cons of the proposed pre-

training and fine tuning approach with each of the considered

model architectures.

1) ISPL Inception: Table III shows the outcomes obtained

by using the ISPL Inception with diverse ratios of fine-tuning

data. When fine-tuning is not performed (i.e., fine-tuning ratio

of 0%), PU achieves an average F1-score of approximately

0.16 across all target datasets. This result suggests that, despite

pre-training the model with a large number of diverse datasets,

this model generally struggles to generalize well on data

coming from unseen datasets.

Nonetheless, as we previously mentioned, the effectiveness

of pre-training varies depending on the specific of the tar-

get domain dataset. For example, the F1 score for HHAR

and MobiAct with 0% fine-tuning is below 10%, while for

RealWorld and UCI, it exceeds 20%. This observation is

confirmed by analysing the T-SNE visual representation of the

embeddings in Figure 4. Here, the embeddings from HHAR

are cluttered and poorly separated, while those for UCI exhibit

clear separations between static and dynamic activities. As

previously discussed, the ISPL Inception model has the ability

to quickly learn meaningful features from a small amount of

TABLE III: ISPL Inception evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 09.00 80.59 83.33 86.12 91.26 92.04 92.39 93.24 93.25 94.20 95.70 95.28 95.34

MobiAct 06.67 57.46 59.09 57.83 85.50 83.67 83.98 87.68 88.09 88.28 89.63 90.32 88.53

MotionSense 12.67 83.46 83.25 84.14 95.34 95.9 95.58 96.78 96.73 97.36 98.06 98.13 98.07

RealWorld 21.26 81.98 85.25 85.9 87.05 88.17 88.35 88.15 89.72 88.99 91.02 91.31 91.11

UCI 27.41 76.06 86.86 87.13 91.14 94.20 94.08 92.58 95.81 95.42 97.45 98.14 97.76

PAMAP2 19.61 54.99 58.76 64.07 72.67 72.55 71.73 76.21 74.64 74.21 74.09 74.16 74.17

AVG 16.10 72.42 76.09 77.53 87.16 87.76 87.69 89.11 89.71 89.74 90.99 91.22 90.83

target data, which leads to the recognition rate significantly

improve when only 1% of fine-tuning data is used. Similarly

to what we observed with 0%, also in this case the advantage

of pre-training is significant depending on the specific target

dataset.

As the fine-tuning ratio increases, the benefits of pre-

training decrease accordingly, confirming that pre-training is

particularly important for labeled data scarcity scenarios.

(a) HHAR (b) UCI

Fig. 4: T-SNE visualization of the pre-trained ISPL Inception

model’s embeddings on HHAR and UCI datasets. The HHAR

embeddings are mixed and cluttered, while the ones from UCI

show a coarse separation among classes.

2) Transformer-based models: Table IV shows the results

achieved with HART, while Table V illustrates the outcomes

generated by MobileHART. Overall, the results are consistent

with those obtained with the ISPL Inception network, but some

important differences should be noted.

Firstly, the F1 scores achieved with HART and Mobile-

HART by fine-tuning the randomly initialized model Rd with a

small percentage of data (i.e., 1% and 5%) are generally lower

than those obtained with the ISPL Inception network. This

can be attributed to the higher complexity of the transformer

architecture, which requires more training samples to extract

representative features from the target dataset.

On the other hand, the performances in terms of F1 score

obtained by fine-tuning PU and PF in these scenarios are

significantly better than the F1 score achieved with Rd.

Furthermore, the advantages of pre-training are noticeable

even when using 5% and 10% of the fine-tuning data.

3) DeepConvLSTM: Table VII shows that, in general,

DeepConvLSTM does not benefit from pre-training contrary
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TABLE IV: HART evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 08.11 65.28 64.72 66.55 83.48 83.69 84.66 89.82 88.16 89.42 93.30 92.75 93.86

MobiAct 07.81 43.70 50.56 67.99 77.69 80.40 80.05 83.16 82.86 83.78 87.67 87.57 87.33

MotionSense 14.04 70.91 74.23 87.93 91.66 92.80 93.17 93.56 94.88 95.49 97.45 97.92 97.84

RealWorld 32.68 77.08 75.38 85.75 85.83 87.74 87.89 87.45 88.99 89.33 91.30 91.81 91.64

UCI 26.69 61.00 70.22 84.46 88.83 79.82 93.27 90.20 95.32 95.06 96.40 96.70 96.74

PAMAP2 15.39 49.17 57.82 56.31 63.04 64.82 64.62 64.42 66.82 66.16 69.10 68.13 67.91

AVG 17.45 61.19 65.49 74.83 81.76 81.55 83.94 84.77 86.17 86.54 89.20 89.15 89.22

TABLE V: MobileHART evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 06.27 78.02 60.18 71.03 92.76 91.26 92.05 94.9 93.99 94.06 97.31 97.07 96.63

MobiAct 06.84 47.05 44.42 53.50 82.47 75.38 80.93 86.53 84.29 85.29 89.19 89.22 90.18

MotionSense 16.26 10.92 68.34 85.92 92.39 92.18 93.06 95.85 96.44 96.89 98.26 97.82 98.16

RealWorld 33.52 66.97 83.61 84.99 85.23 87.42 87.60 88.64 89.21 89.18 91.30 91.26 91.13

UCI 20.65 13.44 67.25 84.65 88.64 92.46 94.18 90.76 92.95 95.17 97.44 97.40 98.24

PAMAP2 12.58 04.25 55.7 58.53 60.03 65.73 68.48 65.01 67.70 70.34 71.10 71.89 73.98

AVG 16.02 36.78 63.25 73.10 83.59 84.07 86.05 86.95 87.43 88.49 90.77 90.78 91.39

to the other model architectures considered in this study.

Specifically, the randomly initialized model Rd outperformed

the pre-trained models PU and PF when a limited percentage

of fine-tuning data was used (i.e., 1% and 5%). This behavior

may be due to the fact that the DeepConvLSTM has signifi-

cantly fewer parameters compared to the other networks (see

Table VI for details), and therefore struggles to extract high-

level features that generalize well over heterogeneous datasets.

Nonetheless, there is only one case where our pre-training

TABLE VI: Models with their parameters and FLOPS

Model Parameters FLOPS
ISPL Inception [13] 1,327,714 338,528,096
DeepConvLSTM [42] 457,546 86,184,508
HART [36] 1,445,918 15,212,636
MobileHART [36] 2,542,942 19,809,292

strategy is effective for DeepConvLSTM, and that is when UCI

is used as a target dataset. For these reasons, DeepConvLSTM

resulted in not a particularly suitable model for the considered

transfer-learning task.

VI. DISCUSSION

The beneficial impact of the pre-training varies across

different architectures and target datasets. This show that

it is important to evaluate pre-training on different datasets

TABLE VII: DeepConvLSTM evaluated using LODO

ft ratio

0% 1% 5% 10% All Train

Target
dataset PU Rd PF PU Rd PF PU Rd PF PU Rd PF PU

HHAR 05.58 80.37 60.00 66.26 83.28 79.03 82.12 86.15 87.71 89.42 88.48 94.04 94.87

MobiAct 06.55 51.94 28.21 42.14 85.46 72.38 77.71 85.46 79.79 81.11 88.72 87.47 87.62

MotionSense 14.71 87.67 42.67 67.54 95.60 76.6 91.64 96.71 94.60 95.26 98.17 98.01 98.20

RealWorld 28.07 84.64 66.93 77.39 88.13 86.22 87.62 89.50 89.48 89.39 91.28 91.28 91.52

UCI 37.13 68.88 64.65 79.43 89.81 76.81 91.05 92.29 93.3 95.52 97.53 96.50 97.20

PAMAP2 20.16 55.47 47.81 52.35 68.69 63.54 64.56 66.36 66.93 67.21 71.84 68.95 68.91

AVG 18.70 71.50 51.71 64.19 85.16 75.76 82.45 86.08 85.30 86.32 89.34 89.38 89.72

and different types of models. Transformer-based architectures

such as HART and MobileHART benefit more from the pre-

training as opposed to smaller networks such as the Deep-

ConvLSTM, which obtained ranging benefits from little to

worsening performances when compared to starting randomly

instead. As transformer-based networks generally require more

training and data to start converging to superior performances,

we argue that model initializing on other datasets is essential

for this type of architecture. Contrarily, smaller networks are

more prone to overfitting when starting with an initialized

model that has been trained on a large amount of data.

In terms of datasets, reported performances vary. Fine-

tuning the pre-trained model using datasets such as Mo-

tionSense, RealWorld, UCI, and PAMAP2 generally showed

improved recognition rates. However, when the target dataset

is too different from the other combined datasets model,

the advantage of pre-training may be limited. For instance,

considering the HHAR and MobiAct datasets, our results show

that it is particularly challenging to build a pre-trained model

capable of generalizing on them. These results are consistent

considering all the neural networks by observing the results

of transfer without any fine-tuning. This is likely due to the

numerous devices used and the abundant number of users of

the HHAR and MobiAct datasets respectively.

Finally, the results obtained by fine-tuning the three best

model using a frozen feature extractor (PF ) are similar to the

ones obtained with an entirely fine-tuned pre-trained model

(PU ). This suggests that the pre-trained feature extractor has

learned representations that are sufficiently robust to reach

good performances simply by optimizing a classification head.

Such results are particularly relevant considering training ef-

ficiency since the frozen-feature extractor scenario drastically

lowers training costs in the fine-tuning stage.

VII. CONCLUSION

This paper introduces a novel strategy to mitigate the labeled

data scarcity problem for sensor-based HAR, that relies on

combining public datasets. By proposing a new evaluation

methodology, our results show that pre-training on multiple

datasets greatly improves performance in labeled data scarcity

scenarios. In future work, we aim at improving the pre-training

mechanism by learning more robust features. Specifically, we

intend to investigate self-supervised learning methods. Indeed,

several studies in other domains (e.g. Computer Vision, NLP)

have already shown that the trained model is able to learn

task-agnostic features [45].
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“Cross-dataset deep transfer learning for activity recognition,” in in
adjunct ACM UbiComp 2019 and ACM ISWC 2019, pp. 714–718, 2019.

[26] M. A. A. H. Khan, N. Roy, and A. Misra, “Scaling human activity
recognition via deep learning-based domain adaptation,” in 2018 IEEE
international conference on pervasive computing and communications
(PerCom), pp. 1–9, IEEE, 2018.

[27] A. R. Sanabria and J. Ye, “Unsupervised domain adaptation for activ-
ity recognition across heterogeneous datasets,” Pervasive and Mobile
Computing, vol. 64, p. 101147, 2020.

[28] Z. Zhou, Y. Zhang, X. Yu, P. Yang, X.-Y. Li, J. Zhao, and H. Zhou,
“Xhar: Deep domain adaptation for human activity recognition with
smart devices,” in 2020 17th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON), IEEE, 2020.

[29] J. Wang, Y. Chen, Y. Gu, Y. Xiao, and H. Pan, “Sensorygans: An effec-
tive generative adversarial framework for sensor-based human activity
recognition,” in 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, IEEE, 2018.

[30] M. H. Chan and M. H. M. Noor, “A unified generative model using
generative adversarial network for activity recognition,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–10, 2020.

[31] E. Soleimani and E. Nazerfard, “Cross-subject transfer learning in hu-
man activity recognition systems using generative adversarial networks,”
Neurocomputing, vol. 426, pp. 26–34, 2021.

[32] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A
survey on contrastive self-supervised learning,” Technologies, 2020.

[33] C. I. Tang, I. Perez-Pozuelo, D. Spathis, S. Brage, N. Wareham, and
C. Mascolo, “Selfhar: Improving human activity recognition through
self-training with unlabeled data,” arXiv preprint arXiv:2102.06073,
2021.

[34] H. Haresamudram, I. Essa, and T. Plötz, “Assessing the state of self-
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