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ABSTRACT

We present a Bayesian calibration algorithm for cosmic microwave background (CMB) observations as implemented within the
global end-to-end BeyondPlanck framework and applied to the Planck Low Frequency Instrument (LFI) data. Following the most
recent Planck analysis, we decomposed the full time-dependent gain into a sum of three nearly orthogonal components: one absolute
calibration term, common to all detectors, one time-independent term that can vary between detectors, and one time-dependent
component that was allowed to vary between one-hour pointing periods. Each term was then sampled conditionally on all other
parameters in the global signal model through Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as
a reference source, while the two relative gain components were sampled using the full sky signal, including the orbital and Solar
CMB dipoles, CMB fluctuations, and foreground contributions. We discuss various aspects of the data that influence gain estimation,
including the dipole-polarization quadrupole degeneracy and processing masks. Comparing our solution to previous pipelines, we
find good agreement in general, with relative deviations of −0.67% (−0.84%) for 30 GHz, 0.12% (−0.04%) for 44 GHz and −0.03%
(−0.64%) for 70 GHz, compared to Planck PR4 and Planck 2018, respectively. We note that the BeyondPlanck calibration was
performed globally, which results in better inter-frequency consistency than previous estimates. Additionally, WMAP observations
were used actively in the BeyondPlanck analysis, which both breaks internal degeneracies in the Planck data set and results in an
overall better agreement with WMAP. Finally, we used a Wiener filtering approach to smoothing the gain estimates. We show that
this method avoids artifacts in the correlated noise maps as a result of oversmoothing the gain solution, which is difficult to avoid with
methods like boxcar smoothing, as Wiener filtering by construction maintains a balance between data fidelity and prior knowledge.
Although our presentation and algorithm are currently oriented toward LFI processing, the general procedure is fully generalizable to
other experiments, as long as the Solar dipole signal is available to be used for calibration.

Key words. cosmic background radiation – cosmology: observations – early Universe – inflation – methods: data analysis –
methods: statistical

1. Introduction

Cosmic microwave background (CMB) anisotropies are among
the most important observables that have been made available
to cosmologists, and accurate determinations of their statistical
properties has been a main goal for a multitude of collaborations
and experiments over the last three decades (e.g., Smoot et al.

1992; de Bernardis et al. 2000; Kovac et al. 2002; Bennett et al.
2013; Planck Collaboration I 2020, and references therein). The
BeyondPlanck project (BeyondPlanck Collaboration 2023) is
an initiative aimed at establishing a common multi-experiment
analysis platform that supports global end-to-end Bayesian anal-
ysis of raw time-ordered data (TOD) produced by such experi-
ments, as well as seamless propagation of low-level uncertainties
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into all high-level products, including frequency and component
maps, the CMB angular power spectra, and cosmological param-
eters. As a first demonstration, we applied this framework to the
Planck LFI data, as presented in this and a suite of companion
papers.

A fundamentally important step in any CMB analysis pipeline
is photometric calibration – the process of mapping the instrument
readout to the incoming physical signal. In general, this proce-
dure involves comparing some specific feature in the measured
data with a known calibration model, for instance, the CMB dipole
or astrophysical foreground signal (or both), or by comparing the
total measured power with a reference load with a known physical
temperature (e.g., Planck Collaboration V 2016).

The multiplicative factor that processes the conversion
between the sky signal and detector readout is called the gain.
This factor typically depends on the local environment of the
detectors, such as the ambient temperature, and is therefore in
principle different for each sample. However, as long as the
detectors are thermally stable on reasonably long timescales, it is
usually a good approximation to assume that the gain is constant
over some short period of time or at least that it is smoothly vary-
ing in time. For instance, the WMAP team adopted and fitted a
six-parameter model for the gain, using housekeeping data such
as focal plane temperature measurements to interpolate over time
(Jarosik et al. 2007; Hinshaw et al. 2009; Greason et al. 2012).
For LFI, we assume that the gain factor is constant throughout
each Planck pointing period (PID) – the timescale over which
the satellite scans a given “circle” on the sky; these last roughly
an hour each. We also assume that the gain is varying smoothly
between neighboring PIDs, except during a small set of events
during which the instrument was actively modified by the mis-
sion control center, for instance, during cooler maintenance.

The Planck LFI Data Processing Centre (DPC; Planck
Collaboration II 2014; Planck Collaboration V 2016; Planck
Collaboration II 2020) used an onboard 4 K reference load to
support the 30 GHz calibration for the early results, while for the
other channels, and for all channels in later releases, they relied
primarily on the CMB dipole signal. Gain fluctuations and corre-
lations were modeled and suppressed by boxcar averaging over
a signal-to-noise dependent window size. The Planck HFI DPC
(Planck Collaboration VIII 2014, 2016; Planck Collaboration III
2020) also used the CMB dipole signal for gain estimation,
but in this case they assumed a constant gain factor through-
out the whole mission, relying on the excellent thermal stability
of the Planck instrument. Apparent gain variations were instead
assumed to arise from non-linearities in the analog-to-digital
conversion module, which then allowed for a deterministic cor-
rection. A similar approach has also been adopted by the recent
SROLL2 re-analysis initiative (Delouis et al. 2019). We refer to
the latest DPC maps as Planck 2018.

In the most recent official analysis (Planck PR41;
Planck Collaboration Int. LVII 2020), the Planck team adopted
the LFI gain model for all channels up to and including the
857 GHz channel. A novelty introduced in that analysis, how-
ever, was a decomposition of the gain factor into two nearly
orthogonal components: an absolute (or baseline) gain factor,
which was assumed to be constant for the entire mission, and
a detector-specific gain mismatch factor that could vary both in
time and between detectors. This approach allowed estimation
of each component separately, using calibrators that are better
suited to each component. For example, the low signal-to-noise
(but well-understood) orbital dipole was used to calibrate the

1 Sometimes referred to as NPIPE.

absolute gain factor due to the long integration time involved
in estimating this particular component. Solving for all relevant
factors was then performed jointly with other relevant quantities.

In this paper, we adopt the Planck PR4 approach, decompos-
ing the full gain into the above-mentioned components, and we
estimate these jointly with all other parameters in the full model.
Thus, the main novel feature presented in this paper is the inte-
gration of the gain estimation procedure within a larger Gibbs
framework, as summarized by BeyondPlanck Collaboration
(2023), which performs a joint estimation of all relevant param-
eters in a statistically consistent manner, including the CMB and
astrophysical foreground sky signal.

The rest of the paper is structured as follows: in sect. 2, we
aim to build intuition regarding gain estimation, presenting the
general data model that we use and highlighting various impor-
tant features of this model, as applied to real-world LFI obser-
vations. Next, in Sect. 3 we describe our main gain estimation
procedure, which is validated through simulations in Sect. 4,
before showing our results in Sect. 5 and making a comparison
with those derived by other pipelines. Finally, we present our
summary in Sect. 6, with a view toward future experiments and
applications.

2. Data and modeling considerations

We start our presentation with a general discussion of the gain-
related data model and how to account for various complications
that arise when fitting it to real-world data.

2.1. Data model

As described by BeyondPlanck Collaboration (2023), the main
goal of the BeyondPlanck analysis framework is to develop
an end-to-end Bayesian analysis platform for CMB data, starting
from raw time-ordered data. In this context, Bayesian analysis
implies mapping out the posterior distribution; that is, given a
set of observed data, d, and a theoretical model parameterized
by a set of parameters, θ, the posterior distribution is given by:

P(θ | d) =
P(d | θ)P(θ)

P(d)
, (1)

where P(d | θ) is referred to as the likelihood function, which
quantifies the probability of observing the actual data for a given
set of parameters, while P(θ) is the so-called prior distribution,
which encodes whatever we believe about the parameters prior to
any observations. Although informative priors are used in other
parts of the BeyondPlanck pipeline, in this paper the prior is
mostly be used as an explicitly Bayesian approach for incorpo-
rating smoothing of the raw gain solutions (see Sect. 3.5). The
denominator, P(d), is called the evidence and is only important
when comparing different models. In our case, it is a normaliza-
tion factor with respect to the model parameter θ and we neglect
it in the following.

As for most Bayesian problems, the key step in our approach
is therefore to write down an explicit parametric model for the
observed data from a given detector, dt,i, where t is the index
denoting the sample2, and i is the index denoting the detector in

2 Here, a “sample” means the detector readout at every 1/ fsamp sec-
onds, where fsamp is the sampling frequency of the instrument. The
whole set of these samples is called the time-ordered data (TOD).
The sampling frequency for the three LFI instruments are 32.5 Hz,
46.5 Hz, and 78.8 Hz for the 30 GHz, 44 GHz, and 70 GHz instrument,
respectively.
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question. In the current analysis, we adopt the following high-
level model:

dt,i = gt,istot
t,i + ncorr

t,i + nwn
t,i , (2)

where ncorr
t,i and nwn

t,i are correlated and white noise, respectively,
gt,i is the gain factor, and stot

t,i denotes the total signal. Here, stot
t,i

is given in kelvin, while dt,i is the instrument readout, which is
measured in volts, meaning that the unit for gt,i becomes [V/K].
The total signal can further be decomposed into:

stot
t,i = ssky

t,i + sorb
t,i + sfsl

t,i

= Ptp,iB
symm
pp′,i ssky

p′ + Ptp,iB4π
pp′,is

orb
p′ + Ptp,iB

asymm
pp′,i ssky

p′ . (3)

In this expression, P is the pointing matrix, which contains the
mapping between the pointing direction the instrument, p and
the sample index t; Bsymm, Basymm, and B4π denote convolution
with the symmetric, asymmetric, and full 4π beams, respectively,
which quantify the fraction of the total signal coming from direc-
tion p′ when the instrument is pointing towards p; ssky is the sky
signal (including the solar dipole); sorb is the orbital dipole (to
be discussed below); and sfsl represents signal leakage through
the far-sidelobes. Solar System objects are either flagged at the
TOD level (e.g., planets) or neglected (e.g., zodiacal light emis-
sion), following the same procedure as the official Planck LFI
processing (Planck Collaboration II 2020). For further details
regarding any of these objects, we refer the interested reader to
BeyondPlanck Collaboration (2023) and references therein.

The main topic of the current paper is estimating gt,i. In this
respect, it is important to note that all other free parameters in
the data model, including ssky

t,i and ncorr
t,i , are also unknown, and

must be estimated jointly with gt,i. Casting this statement into
Bayesian terms, we wish to sample from the posterior distribu-
tion given by3

P(g, stot, sorb, ncorr, . . . | d). (4)

Specifically, the aim is to model the “global” state of the instru-
ment and data and to map out the probability of various points
in parameter space by sampling from this distribution. This may
at first glance seem like a intractable problem. However, a cen-
tral component of the BeyondPlanck framework is parame-
ter estimation through Gibbs sampling. According to the theory
of Gibbs sampling, samples from a joint posterior distribution
may be drawn by iteratively sampling from all conditional dis-
tributions. In other words, the process of instrumental calibra-
tion in the BeyondPlanck framework is reduced to sampling
from P(g | stot, sorb ncorr, . . . , d), meaning that when sampling
the gain, we may assume that the sky signal and correlated noise
parameters are perfectly known. And likewise, when sampling
the sky signal or correlated noise parameters, we may assume
that the gain is perfectly known. The correlations between these
various parameters are then probed by performing hundreds or
thousands of iterations of this type.

Thus, for the purposes of calibration alone, we do not
need to be concerned with many aspects that indirectly affect
the gain, such as CMB dipole or correlated noise estimation
(Planck Collaboration II 2014; Planck Collaboration V 2016;
Planck Collaboration II 2020). Instead, we are only concerned
with defining an adequate model for g, and expressing this in a

3 Here, and elsewhere, boldface quantities generally mean vectors. The
particular vector spaces they belong to will (to a broad extent) be evident
from the subscripts. In this case, there are no subscripts, meaning that
the vectors contain all samples from all detectors.

way that minimizes degeneracies with parameters in the Gibbs
chain.

As discussed above, the gain is generally not constant
in time. A very conservative (and somewhat naïve) model
would therefore be to assume that the gain is in fact dif-
ferent for every sample t. However, this model clearly does
not take into account our full knowledge about the instrument
(Planck Collaboration XXVIII 2014). In particular, we do know
that the gain is expected to correlate with the detector tem-
perature, and this temperature does not change significantly on
timescales of just one sample. Instead, based on available house-
keeping data, a good assumption is that the gain is constant
within a given pointing period (PID or “scan”) – which is defined
as a collection of samples measured over a period of about an
hour, during which the instrument spins about its axis once per
minute while keeping the spin axis vector stationary. Between
each scan, the instrument performs a slight adjustment of the
satellite spin axis, ensuring that new sky areas are covered in
consecutive pointing periods.

To reflect the assumption of constant gain within each scan,
we rewrite our data model as follows:

dt,i = gq,istot
t,i + ncorr

t,i + nwn
t,i , (5)

where q now denotes PID. Thus, t is used to indicate a specific
sample, while q represents a collection of samples.

From Eq. (5), we immediately note the presence of two
important degeneracies, involving the sky signal and noise,
respectively. If we attempt to fit for g, stot, and ncorr simulta-
neously, without knowing anything about any of them, we see
that a given solution, say, {g0, stot

0 , n
corr
0 }, results in an identical

goodness-of-fit as another solution {g1, stot
1 , n

corr
1 }, as long as we

have either:

g1 = g0
stot

0

stot
1
, (6)

or

ncorr
1 = ncorr

0 + g0stot
0 − g1stot

1 . (7)

In other words, the gain is multiplicatively degenerate with the
signal and additively degenerate with the correlated noise. Such
degeneracies are mainly a computational problem, since with
two degenerate parameters in a Gibbs chain, exploring the result-
ing distributions takes a much larger number of samples than
for uncorrelated parameters. A main topic of this paper is how
to break these degeneracies in a statistically self-consistent and
computationally efficient manner.

2.2. Absolute versus relative gain calibration

So far, we have been talking about the calibration of a given
detector in isolation, which relates to what we call “absolute”
calibration. Absolute calibration refers to correctly determining
the “true” value of the gain and is important for accurately deter-
mining the emitted intensity of astrophysical components, such
as the CMB.

Another closely related concept is “relative” calibration4,
which quantifies calibration differences between radiometers.
Because of Planck ’s scanning strategy, which only provides

4 Our definition differs slightly from the Planck 2018 definition of rela-
tive calibration. In their nomenclature, relative calibration refers to tem-
poral fluctuations of the gain around the mean within a given detector.
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Fig. 1. Comparison of different contributions to the time-ordered data
seen by Planck at 30 GHz, for a PID whose spin orientation is close
to perpendicular to the dipole axis. The blue and black curves show
the orbital and Solar CMB dipoles, respectively. The red and grey lines
show the Solar CMB dipole with galactic foregrounds and instrumental
noise added, respectively.

weak cross-linking5 (Planck Collaboration I 2011), it is impos-
sible to estimate the three relevant Stokes parameters (the
intensity, I, and two linear polarization parameters: Q and U)
independently for each detector. Rather, the polarization sig-
nal is effectively determined by considering pairwise differences
between detector measurements, while properly accounting for
their relative polarization angle differences at any given time.
Therefore, any instrument characterization error that induces
spurious detector differences will be partially interpreted by the
analysis pipeline as a polarization signal. If our relative gain cal-
ibration is wrong, such differences will be introduced.

Given the high sensitivity of current and future CMB experi-
ments, the gain must be estimated to a fractional precision better
than O(10−3) for robust CMB temperature analysis and better
than O(10−4) for a robust polarization analysis. Accurate relative
calibration is thus even more important than accurate absolute
calibration and this does (as discussed in the next section) indeed
inform the choices we make on how to estimate these two types
of calibration.

2.3. The solar and orbital CMB dipoles

One of the most powerful ways to break the signal-gain degen-
eracy mentioned in the previous section is to observe a source
of known brightness. If that source happens to be significantly
stronger than other sources in the same area of the sky, we could
fix stot

t,i in Eq. (5) and the gain would essentially be determined
by the ratio of the data to the known source brightness.

Unfortunately, the number of available astrophysical calibra-
tion sources that may be useful for CMB calibration purposes
is very limited, given the stringent requirements discussed in
Sect. 2.2. For instance, the brightness temperature of individ-
ual planets within the Solar system is only known to about 5%

5 The scanning strategy adopted by Planck means that the time interval
between successive measurements of the same point on the sky with the
same detector from a different angle can be as much as six months (if
the point lies along the ecliptic). During this time, several environmental
parameters of the detector may have changed.

(Planck Collaboration VIII 2016), while only a few other local
sources are known with a precision better than 1%.

The key exception is the CMB dipole. The peculiar velocity
of the Planck satellite relative to the CMB rest frame induces
a strong apparent dipole on the sky due to the Doppler effect.
Specifically, photons having an anti-parallel velocity relative to
the satellite motion are effectively blue-shifted, while photons
with a parallel velocity are redshifted.

It is useful to decompose the peculiar spacecraft velocity
into two components; the motion of the Solar system relative to
the CMB rest frame, usolar, and the orbital motion of the Planck
satellite relative to the Solar system barycenter, uorbital. Thus, the
total velocity of the satellite relative to the CMB rest frame is
utot = usolar + uorbital. Taking into account the full expression for
the relativistic Doppler effect, the induced dipole is expressed as:

sdip(x, t) = TCMB

(
1

γ(t)(1 − β(t) · x)
− 1

)
, (8)

where β = utot/c, and γ = (1 − |β|2)−1/2. The total dipole is time
dependent because of the motion of the satellite over the course
of the mission. We can similarly define a Solar dipole, ssolar(x)
and an orbital dipole, sorb(x, t), which are induced by only the
Solar and orbital velocities alone, respectively.

Both dipoles play crucial roles in CMB calibration; the
orbital dipole for absolute calibration and the Solar dipole for
relative calibration.

Starting with the orbital dipole, we note that this depends only
on the satellite’s velocity with respect to the Sun. This is exceed-
ingly well measured through radar observations, and known with
a precision better than 1 cm s−1 (Godard et al. 2009). For an orbital
speed of 30 km s−1, this results in an overall relative precision
better than O(10−6). However, Eq. (8) also depends on the CMB
monopole, which is measured by COBE-FIRAS to 2.72548 K ±
0.57 mK (Fixsen 2009), corresponding to a relative uncertainty of
0.02% or O(10−4). Thus, the absolute calibration of any current
and future CMB experiment cannot be determined with a higher
absolute precision than O(10−4) until a next-generation CMB
spectral distortion experiment, for instance PIXIE (Kogut et al.
2011), is launched. Still, this precision is more than sufficient for
Planck calibration purposes.

The second CMB dipole component corresponds to the Sun’s
motion with respect to the CMB rest frame. While this velocity
is intrinsically unknown, one may estimate this from the relative
amplitude of the Solar and orbital dipoles. This is illustrated in
Fig. 1, which compares the orbital and Solar dipole signals (blue
and black curves) with contributions from Galactic foreground
emission and instrumental noise at 30 GHz for about three min-
utes of time-ordered observations. The Solar dipole is effectively
determined by the relative amplitude ratio between the black and
blue curves in this figure.

Based on this approach, the most recent Planck analyses
have determined that the Solar CMB dipole amplitude is about
3.36 mK, corresponding to Solar velocity of about 370 km s−1

(Planck Collaboration I 2020; Planck Collaboration Int. LVII
2020). For comparison, large-scale CMB polarization fluc-
tuations typically exhibit variations smaller than O(1 µK)
(Planck Collaboration IV 2020) and, consequently, the relative
calibration of different detectors must be better than O(10−4)
to avoid significant contamination of the polarization signal by
the Solar CMB dipole. Achieving this level of precision in the
presence of correlated noise, Galactic foregrounds, far sidelobe
contamination, and other sources of systematic uncertainties is
the single most difficult challenge associated with large-scale
CMB polarization science.
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Fig. 2. Comparison of the CMB temperature dipole (thick black line)
observed through the Planck scanning strategy with three random polar-
ization quadrupole simulations (thin colored lines); the latter have been
scaled by a factor of 104 for visualization purposes.

2.4. Degeneracy between the CMB temperature dipole and
polarization quadrupole

In Sect. 2.1 we noted that the gain is multiplicatively degenerate
with the signal, and additively degenerate with the noise. Within
this broad categorization, there are also some particularly impor-
tant gain-signal degeneracies that are worth highlighting and
perhaps the most prominent example is that with respect to the
CMB polarization quadrupole. To illustrate this, we consider the
case in which two detectors report different CMB dipole ampli-
tude signals and we attempt to explain how such a difference
might be explained. One possibility is a calibration mismatch,
namely, that the absolute calibration of one or both detectors is
misestimated.

Another possible explanation could be a large polarization
CMB quadrupole signal. Due to the scanning strategy adopted
by Planck, in which the same ring is observed repeatedly for one
hour, a polarization quadrupole can easily appear with a dipo-
lar signature, depending on the particular phase orientation of
the mode in question. This is illustrated in Fig. 2. The black
thick line shows the CMB temperature dipole as a function of
time, while the colored thin lines show three random polariza-
tion quadrupole simulations, all observed with the Planck scan-
ning strategy. Out of the three random quadrupole simulations,
two have a time-domain behaviour that very closely mimics the
CMB temperature dipole, and in the presence of noise and instru-
mental effects, it would be exceedingly difficult to distinguish
between the two models.

This is a perfect recipe for a degenerate system, and one
that carries the potential of contaminating any large-scale polar-
ization reconstruction. It is, however, important to note that
this particular degeneracy appears with a very specific mor-
phology, and affects only a handful of spatial polarization
modes, as defined by projecting the CMB Solar dipole onto
the Planck scanning strategy. Recognizing the importance of
this degeneracy, previous Planck analyses have adopted dif-
ferent strategies of resolving the issue. For instance, both
the Planck 2018 and Planck PR4 analyses have opted to
disregard the CMB polarization component completely dur-
ing the calibration phase (Planck Collaboration II 2016, 2020;
Planck Collaboration Int. LVII 2020). This may be at least par-

tially justified for LFI on theoretical grounds by noting that
the CMB polarization variance on large angular scales pre-
dicted by current best-fit ΛCDM models is .0.1 µK2, which
is comparable to, or below, the overall noise. For the signif-
icantly more sensitive HFI instrument, this assumption is not
adequate, and the recent Planck PR4 analysis therefore explic-
itly estimates a transfer function to account for this effect
(Planck Collaboration Int. LVII 2020).

In the following, we adopt a slightly different strategy:
We include the CMB polarization component in the calibra-
tion procedure, using the current sample in the Gibbs chain.
In order to break the above-mentioned degeneracy, we replace
the polarization quadrupole of the CMB map with a random
value drawn from the best-fit ΛCDM model, using a value of
DEE

2 = 0.0308827 µK2. Thus, we marginalize over this compo-
nent and propagate the uncertainties introduced by this naturally
into the Gibbs samples. We expect the combined effect of this
addition to be negligible, because of the low value of the ΛCDM
prediction, and as shown in Brilenkov et al. (2023) the gain esti-
mation is unaffected by this marginalization.

2.5. Processing masks and PID selection

The Gibbs sampling framework used by BeyondPlanck
requires an explicit parametric model that describes CMB, fore-
grounds, and the instrument. If this model turns out to be an
insufficient representation of the actual data, the Gibbs sampling
framework will attempt to fit eventual modeling errors using the
parameters that are at its disposal. Ideally, such unexplained con-
tributions should end up as an excess residual in r = d−gstot−ntot,
but in practice they often also contaminate the other model param-
eters, such as the CMB. The correlated noise, ncorr, represents
a set of such parameters that, because of their relatively uncon-
strained and global structure, end up absorbing a wide range of
modeling errors, as discussed by Ihle et al. (2023). Furthermore,
as already noted in Sect. 2.1, there is a tight degeneracy between
the correlated noise and the gain, and ncorr is therefore a sen-
sitive monitor for gain errors. Figure 3 illustrates this in terms
of one arbitrarily selected 30 GHz ncorr sample from the main
BeyondPlanck analysis (BeyondPlanck Collaboration 2023).
The left column shows such a sample in the default model, in
which the gain is allowed to vary from PID to PID, while the right
column shows the same when enforcing a time-independent gain.
While the maps in the left column are visually dominated by scan-
aligned random stripes, as expected for ncorr, the maps in the right
column (in particular the top row) show large excesses with a dipo-
lar pattern along each Planck scanning ring. This is the archetypal
signature of gain modeling errors, and this clearly demonstrates
the need for a time-variable gain model. At the same time, there
is also a clear quadrupolar pattern in the default configuration,
with a positive excess along the Galactic plane and a negative
excess near the Galactic poles. This structure is visually consis-
tent with a near sidelobe modeling residual, in the sense that the
Galactic foreground signal is slightly over-smoothed compared
to the prediction of the nominal beam model, and the resulting
residual is picked up by the correlated noise component. This is
not surprising, considering that about 1% of the full LFI 30 GHz
beam solid angle is unaccounted for in the GRASP beam model
(Planck Collaboration II 2020), and some of this missing power
may be in the near sidelobes. Fortunately, we also see from the
same plot that the impact of this effect is modest and accounts for
only about 1 µK at 30 GHz.

More generally, because we have an incomplete understand-
ing of both the instrument and the microwave sky, modeling
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Fig. 3. Correlated noise maps for the 30 GHz channel in a Gibbs chain that includes (left panel) or neglects (right panel) gain time-dependencies.
All maps are smoothed to a common resolution of 2.5◦ FWHM.

errors will, at some level, always be a concern when estimat-
ing both gain and correlated noise. Furthermore, these modeling
errors will typically be stronger near the Galactic plane or bright
compact sources, where foreground uncertainties are large. For
this reason, it is customary to apply a processing mask while esti-
mating these quantities, omitting the parts of the sky that are least
understood from the analysis. In BeyondPlanck, we define
processing masks based on data-minus-signal residual maps for
each frequency (Ihle et al. 2023), which are shown in Fig. 4.

In addition, as discussed by Basyrov et al. (2023), we also
exclude a number of PIDs from the main analysis, for similar
reasons as for applying processing masks. Most of these PIDs,
however, do not correspond to particularly problematic areas of
the sky, but rather to unmodeled instrumental changes or system-
atic errors, such as cooler maintenance or major satellite maneu-
vers. Excluded PIDs will show up as gaps in all PID plots in
this paper.

2.6. Breaking degeneracies through multi-experiment
analysis

As described in BeyondPlanck Collaboration (2023), Beyond-
Planck includes as part of its data selection several external

Fig. 4. Processing masks used in gain and correlated noise estimation
for each frequency channel. The allowed 30 GHz sky fraction (blue)
is 0.73, the 44 GHz sky fraction (green) is 0.81, and the 70 GHz sky
fraction (red) is 0.77.

data sets that are necessary to break fundamental degeneracies
within the model. One particularly important example in this
respect is the inclusion of low-resolution WMAP polarization
data. In the same way that the WMAP experiment was unable
to measure a few specific polarization modes on the sky due to
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peculiarities in its scanning strategy (Jarosik et al. 2007), Planck
is also unable constrain some modes as defined by its scanning
strategy (Planck Collaboration II 2020). However, because the
WMAP and Planck scanning strategies are intrinsically very dif-
ferent, their degenerate modes are not the same, and, therefore all
sky modes may be measured to high precision when analyzing
both data sets jointly.

This is explicitly demonstrated in Sect. 5.4, where we
compare the BeyondPlanck sky maps to those derived indi-
vidually from each experiment. The morphology of these fre-
quency difference maps correspond very closely to the correc-
tion templates produced respectively by the WMAP and Planck
teams (Jarosik et al. 2007; Planck Collaboration II 2020), and
BeyondPlanck is statistically consistent with both data sets.
Agreement is a direct and natural consequence of performing a
joint fit, and there is no need for additional explicit template cor-
rections for BeyondPlanck.

At the same time, it is also important to note that only
the Planck LFI data are currently modeled in terms of time-
ordered data, whereas the WMAP sky maps and noise covari-
ance matrices are analyzed as provided by the WMAP team.
Therefore, if there should be unknown systematics present in
WMAP, those errors will necessarily also propagate into the var-
ious BeyondPlanck products. An important near-future goal
is therefore to integrate also the WMAP time-ordered data into
this framework. This work is already on-going, as discussed by
Watts et al. (2023), but a full WMAP TOD-based analysis lies
beyond the scope of the current work.

3. Methodology

As discussed in Sect. 2.1, our main goal in this paper is to draw
samples from P(g | stot, ncorr, d, . . .), the conditional distribution
of g given all other parameters. In this section, we describe each
of the various steps involved in this process.

3.1. Correlated noise degeneracies and computational
speed-up

Before we present our main sampling algorithms for g, we recall
from Sect. 2.1 that g is additively degenerate with ncorr. In a
Gibbs sampling context, strong degeneracies lead to very long
Markov correlation lengths as the Gibbs sampler attempts to
explore the degenerate space between the two parameters. In
order to save computing power and time, it is therefore bet-
ter to sample g and ncorr jointly, such that for a given itera-
tion of the main Gibbs chain, we instead sample directly from
P(g, ncorr | stot, d, . . .)6. It is important to note that this does
not break the degeneracy between the gain and correlated noise,
which, for instance, a strict prior on the correlated noise might
achieve; rather, this process simply makes use of the fact that
the sampling efficiency for two degenerate parameters is much
better when sampling them jointly rather than conditionally.

A joint sample may be produced by means of uni-variate dis-
tributions through the definition of a conditional distribution:

P(x1 | x2) ≡
P(x1, x2)

P(x2)
⇒ P(x1, x2) = P(x1 | x2)P(x2). (9)

Thus, sampling from the joint distribution P(g, ncorr | stot, d, . . .)
is equivalent to first sampling g from its marginal distribution

6 Although this might seem somewhat counter-intuitive in the con-
text of Gibbs sampling, joint sampling formally corresponds to
reparametrizing {g, ncorr} into one parameter in the Gibbs chain.

with respect to ncorr, P(g | stot, d, . . .), and then subsequently
sampling ncorr from its conditional distribution with respect to g,
P(ncorr | g, stot, d, . . .). These two steps must be performed imme-
diately after one another or else we would introduce an inconsis-
tency in the Gibbs chain with respect to the other parameters.

We note that P(ncorr | g, stot, d, . . .) is unchanged com-
pared to the original Gibbs prescription, and no changes
are required to sample from that particular distribution (see
Ihle et al. 2023, for more details on this sampling process).
When it comes to P(g | stot, d, . . .), we refer to Appendix A.2 of
BeyondPlanck Collaboration (2023), whose sampling equations
we use throughout this paper. We note that the data model used
in that appendix is the same general form as Eq. (5), and that
sampling from P(g | stot, d, . . .) is exactly analogous to what is
shown in that appendix, as long as we make the identification
n→ ncorr + nwn. As the covariance matrix of a sum of indepen-
dent Gaussian variables (ncorr and nwn) is also Gaussian, with a
covariance matrix given by the sum of the individual covariance
matrices, we can in what follows use the results of the above-
mentioned appendix to sample from P(g | stot, d, . . .) as long as
we let N→ Ncorr + Nwn.

Computationally speaking, sampling from P(g | stot, d, . . .)
instead of P(g | stot, ncorr, d, . . .) is numerically equivalent to a
more expensive noise covariance matrix evaluation7. To mitigate
this additional cost, we note that the gain is assumed to be slowly
varying in time, and, in particular, constant within each PID. All
time-domain operations may therefore be carried out using co-
added low-resolution data with negligible loss of precision. In
practice, all TOD operations are in the following carried out at
a sample rate of 1 Hz, leading to a computational speed-up of
about two orders of magnitude.

3.2. Absolute gain calibration with the orbital dipole

Next, we recall (see Sect. 2.1) that the gain is multiplicatively
degenerate with the total sky signal. At the same time, we note
that the orbital CMB dipole is known to exquisite precision and
this particular component is therefore the ideal calibrator for
CMB satellite experiments. However, its relatively low ampli-
tude as compared with instrumental noise renders it incapable
of tracking short-term gain variations, and when fit jointly with
astrophysical foregrounds, it is also not sufficiently strong to
determine relative calibration differences between detectors at
the precision required for large-scale polarization reconstruction.
Therefore, to minimize sensitivity to potential residual system-
atic and modeling errors, it is advantageous to estimate the abso-
lute calibration using the orbital dipole alone, but use the full
signal model (including the bright Solar CMB dipole) when esti-
mating relative and time-dependent gain variations.

This motivates splitting the gain into two components:

gq,i = g0 + γq,i, (10)

where g0 is now independent of both time and detectors, fol-
lowing Planck Collaboration Int. LVII (2020). Our goal is then
to use only the orbital CMB dipole to estimate g0, and later use
the full sky signal to estimate γq,i. Thus, with this reparametriza-
tion, we go from sampling from P(g | stot, d, . . .) to sampling

7 Although not shown here, sampling from P(g | stot, ncorr, d, . . .)
would follow the exact same procedure, but with a noise covariance
matrix given by Nwn instead of Nwn + Ncorr. Nwn is a diagonal matrix,
while Ncorr is not, and since most operations are less heavy, computa-
tionally speaking, when diagonal matrices are involved, the resulting
sampling process would also be lighter in that case.
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from P(g0,γ | stot, d, . . .). As usual, drawing samples from
this joint distribution can be done by Gibbs sampling, so that
we first sample g0 from P(g0 | γ, stot, d, . . .) and then γ from
P(γ | g0, stot, d, . . .).

We should note that estimating g0 using only the orbital
dipole formally represents a violation of the Gibbs formalism,
as we no longer draw this particular parameter from its exact
conditional distribution. This is one of many examples for which
we “buy” stability with respect to systematic errors at the price
of increased statistical uncertainties. This is similar to the appli-
cation of a processing mask when estimating the zero-levels of
a CMB sky map (e.g., Planck Collaboration Int. XLVI 2016) or
fitting correlated noise parameters using only a sub-range of
all available temporal frequencies (e.g., Ihle et al. 2023). In all
such cases, parts of the data are disregarded in order to prevent
potential systematic errors from contaminating the parameter in
question.

For the split in Eq. (10) to be valid, we must ensure that∑
q,i γq,i = 0, such that γq,i represents only deviations from the

absolute calibration. For technical reasons, it turns out that this
is easier to do if we also reparametrize γq,i,

γq,i = ∆gi + δgq,i, (11)

where ∆gi represents the detector-specific constant gain, and
δgq,i denotes deviations from ∆gi per scan. We can then sepa-
rately enforce

∑
i ∆gi = 0 and

∑
q δgq,i = 0 for each detector

i, which is computationally cheaper than enforcing both con-
straints simultaneously.

Thus, we split the gain into three nearly independent vari-
ables and we explore their joint distribution by Gibbs sampling.
The overarching goal for this section is thus to derive sam-
pling algorithms for each of the three associated conditional
distributions:

P(g0 | ∆gi, δgq,i, di, stot
i ,Ni, . . .), (12)

P(∆gi | g0, δgq,i, di, stot
i ,Ni, . . .), (13)

P(δgq,i | g0,∆gi, di, stot
i ,Ni, . . .). (14)

We then consider each of these in turn.

3.3. Sampling the absolute calibration, g0

To sample the absolute calibration using the orbital dipole alone,
we need to define a data model that depends only on g0 and sorb.
We do this by first subtracting the full signal model as defined
by the current joint parameter state, and then add back only the
orbital dipole term:

rt,i ≡ dt,i − (gcurr
0 + ∆gi + δgq,i)stot

t,i + gcurr
0 sorb

t,i

= g0sorb
t,i + ntot

t,i . (15)

Here gcurr
0 denotes the absolute gain at the current iteration in the

Gibbs chain, i.e., before drawing a new value for g0.
As noted earlier, working with this residual and using the

previous sample of g0 to estimate the current sample does rep-
resent a breaking of the Gibbs formalism, since the statistically
exact residual for g0 would be

dt,i − (∆gi + δgq,i)stot
t,i = g0stot

t,i + ntot
t,i . (16)

However, in this case we would also be calibrating g0 on the total
sky signal instead of just the orbital dipole. Thus, we trade math-
ematical rigour and statistical uncertainties for stronger robust-
ness with respect to systematic effects.

As discussed in Sect. 3.1, the noise term in Eq. (15) includes
both correlated and white noise, and the appropriate covariance
matrix is therefore N = Ncorr + Nwn. Given this fact, Eq. (15)
corresponds to a simple univariate Gaussian model as a func-
tion of g0, and the appropriate sampling algorithm is discussed
in Appendix A.2 of BeyondPlanck Collaboration (2023). Apply-
ing that general procedure to our special case, we may write the
following sampling equation for ĝ0

8

ĝ0 =

∑
i(sorb

i )T N−1
i ri∑

i(sorb
i )T N−1

i sorb
i

+
η√∑

i(sorb
i )T N−1

i sorb
i

, (17)

where η ∼ N(0, 1) is a random number drawn from a standard
normal distribution. Here (and elsewhere) a T superscript indi-
cates the matrix transpose operator. The first term in this equa-
tion is the mean of the distribution P(g0 | ri,Ni), while the
second term ensures that g0 has the correct variance.

3.4. Sampling detector-dependent calibration

For ∆gi, we proceed similarly as with g0, with two exceptions.
First, ∆gi now represents the relative calibration between detec-
tors, and, as discussed in Sect. 2.1, we need to use a stronger
calibration signal than the orbital dipole to avoid significant
polarization leakage. Secondly, we have to impose the constraint∑

i ∆gi = 0.
We start by defining the following residual,

rt,i ≡ dt,i − (g0 + δgq,i)stot
t = ∆gistot

t + ntot
t (18)

for each detector. This equation is structurally similar to Eq. (15),
with the main difference being that the total sky signal, which is
dominated by the Solar dipole, is retained on the right-hand side.
Otherwise, Eq. (18) still represents a Gaussian model, and we
should be able to proceed similarly as for g0 when drawing from
the conditional distribution. We do, however, need to ensure that∑

i ∆gi = 0, and this significantly impact the form of the tar-
get distribution. The numerically most convenient method for
imposing such a constraint is through the method of Lagrange
multipliers.

In general, the method of Lagrange multipliers allows the
user to minimize a function f (x) under some set of constraints
that may be formulated as g(x) = 0. Without these constraints,
one would of course determine x by solving d f /dx = 0.
With additional external constraints, however, it is convenient
to instead define the so-called Lagrangian,

L(x, λ) = f (x) + λg(x), (19)

and set the corresponding partial derivatives with respect to x
and λ equal to zero. It is readily seen that ∂L/∂λ = 0 corresponds
directly to g(x) = 0, which is precisely the desired constraint.

Our primary target distribution is

P(∆g | r, stot,N) ∝ P(r | ∆g, stot,N)P(∆g)

∝ exp

∑
i

(
ri − ∆gistot

)T
N−1

i

(
ri − ∆gistot

)
(20)

8 Note that we do not apply any priors on g0 in this paper, which corre-
sponds to S−1 = 0, adopting the notation of BeyondPlanck Collaboration
(2023), where S is the prior covariance of g0. The remaining notational
differences between Eqs. (17) and (A.10) in that paper arise from our
organizing all vectors and matrices in terms of independent detectors,
using the fact that ntot is assumed to be independent between detectors;
this may not be strictly true in practice, as discussed by Ihle et al. (2023),
and future analyses may prefer to account for the full joint matrix.
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where the first line follows from Bayes’ theorem, and the sec-
ond follows from the fact that we assume vanishing covariance
between detectors, and that ri is Gaussian distributed with a
mean of ∆gistot

i and covariance Ni. We are of course free to min-
imize the logarithm of this function instead of the function itself,
which makes things easier as it takes the exponential away. We
may therefore define the following Lagrangian,

L(∆gi, λ) =
∑

i

(
ri − ∆gistot)T N−1

i
(
ri − ∆gistot) + λ

∑
i

∆gi, (21)

where λ is the Lagrange multiplier.
To optimize this function, we take the derivative with respect

to ∆gi and λ to obtain two coupled equations. The first equation
takes the form

∂L

∂∆gi
= 0

⇒ −2
(
ri − ∆gistot

i
)T N−1

i stot
i + λ = 0

⇒ ∆gi(stot
i )T N−1

i stot
i +

1
2
λ = (ri)T N−1

i stot
i , (22)

while the second simply reads

∂L

∂λ
= 0

⇒
∑

i

∆gi = 0. (23)

Jointly solving these linear equations for ∆gi provides esti-
mates with the correct mean. What we require, however, is a
sample from the appropriate distribution, and not mean esti-
mates. We must therefore add a fluctuation term, as in Eq. (17).
To do so, we note that if it were not for λ, Eq. (22) would have the
exact same form as Eq. (17), with stot substituted for sorb. Com-
paring Eq. (22) with Eq. (17), we then see that the final equation
for the desired sample must be

∆ĝi(stot
i )T N−1

i stot
i +

1
2
λ = (ri)T N−1

i stot
i + η

√
(stot

i )T N−1
i stot

i , (24)

where, as usual, η ∼ N(0, 1).
Casting this in terms of a linear system with ndetector + 1

unknowns, this may be solved straightforwardly with standard
numerical libraries. For a two-detector example, the resulting
system of equations takes the form(stot)T N−1

1 stot 0 1
2

0 (stot)T N−1
2 stot 1

2
1 1 0


∆ĝ1
∆ĝ2
λ

 = (25)


(r1)totN−1

1 stot
1 + η1

√
(stot

1 )T N−1
1 stot

1

(r2)totN−1
2 stot

2 + η2

√
(stot

2 )T N−1
2 stot

2
0

 . (26)

3.5. Sampling temporal gain variations with Wiener filter
smoothing

Finally, we consider the temporal gain variations, δgq,i. As
before, we write down the following residual,

rt,i ≡ dt,i − (g0 + ∆gi)stot
t,i = δgq,istot

t,i + ntot
t,i , (27)

where we again employ the total signal as a calibrator. The only
difference with respect to Eq. (18) is that δgq,i now contains mul-
tiple elements per detector, and is now a vector in PID space. We
can make this point more explicit by writing

ri ≡ di − (g0 + ∆gi)stot
i = Tiδgi + ntot

i , (28)

where T is an nsamp × nscan-matrix that contains stot
t,i in ele-

ment (t, q) for all values of t in scan q. All other elements are
zero. Thus, T projects δgi into the nsamp-dimensional space of ri
and ntot

i .
Once again following the procedure in Eq. (A.3) in

BeyondPlanck Collaboration (2023), we may write down the
following sampling equation,

TT
i N−1

i Ti δĝi = TT
i N−1

i ri + (TT
i N−1

i Ti)
1
2 η, (29)

where η ∼ N(0, I) is a random Gaussian vector of length nscan.
In its current form, Eq. (29) assumes that δgq,i is uncorre-

lated between scans. As discussed by Planck Collaboration VIII
(2014), Planck Collaboration VIII (2016), Planck Collaboration
III (2020), and Planck Collaboration Int. LVII (2020), this is not
an efficient model for the Planck LFI data, because the gain is pri-
marily determined by the thermal environment of the instrument,
which is quite stable in time. It is therefore advantageous, and in
practice necessary, to enforce some form of smoothing between
δgq,i to obtain robust results.

The smoothing approach we adopt in this work is Wiener fil-
tering. Although this approach has been applied to other parts of
the CMB analysis pipeline, such as CMB and noise estimation,
it has never before been applied to the gain estimation process.
In Bayesian terms, we have so far been drawing samples from
the likelihood function,L(δgi), which, since our actual goal is to
draw samples from the posterior distribution of δgi, means that
we are implicitly assuming a uniform prior on this parameter,
which, in turn, means that we let the estimates of δgi be com-
pletely determined by the data alone.

In addition, this means we assume no correlations between
the elements in the δgi vector, as the likelihood function is sep-
arable into independent probability distribution functions – an
effect of this is that Eq. (29) is really a set of independent equa-
tions that can be solved sequentially.

Wiener filtering the data essentially amounts to applying a
Gaussian prior to the estimation process, meaning that instead
of drawing samples from L(δgi) alone, we draw samples from
L(δgi)P(δgi), where P(δgi) is the Gaussian prior we want to
apply, which, in turn, will depend on how we a priori expect
the gain fluctuations to behave. This process (by construction)
ensures that for scans with high signal-to-noise, the gain esti-
mates are mainly to be set by the observed data, whereas in
periods of lower signal-to-noise (such as for dipole minima) the
estimates will be prior-dominated (and thus less fluctuating than
without any prior). In addition, this prior explicitly introduces
(physically motivated) correlations between the gain fluctuations
of different scans which are taken into account during the sam-
pling process rather than being artificially applied after the fact.

In order to sample from the posterior, we need to draw
a sample from the product of two Gaussians, L(δgq,i) and
P(δgq,i):

P(δgi | di) ∝ L(δgi)P(δgi). (30)

The proper way to sample from such a distribution is given by
Eq. (A.10) in BeyondPlanck Collaboration (2023). In this case,
the procedure amounts to replacing Eq. (29) via:

(G−1 + TT
i N−1

i Ti)δĝi = TT
i N−1

i ri + TT
i N−1/2

i η1 + G−1/2η2, (31)
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where G is the covariance matrix of the Gaussian prior on δgq,i,
and where η1 and η2 are two independent vectors drawn from a
normal distribution with unity variance.

Equation (31) – in contrast to Eq. (29) – is no longer solv-
able using a scan-by-scan method, as the covariance matrix
G introduces cross-scan correlations. To invert this system,
we use the conjugate gradient solver procedure described in
BeyondPlanck Collaboration (2023).

Our prior should reflect our knowledge about the gain fluctu-
ations - namely, that such fluctuations are related to fluctuations
in the detector electronics. Such fluctuations are generally mod-
eled as having a so-called “pink noise” or 1/ f spectrum, which
means that the gain fluctuation covariance matrix G can be writ-
ten as

G( f ) = σ2
0

(
f
f0

)α
. (32)

Here, α and σ0 are parameters to be determined, while f0 is
just an arbitrary reference frequency. In principle, these addi-
tional degrees of freedom can be made part of the general Gibbs
chain by inserting an additional sampling step for these param-
eters after the gain sampling step. This is similar to the process
described in Ihle et al. (2023) for correlated noise. However, it
is important to note that the above 1/ f model describes a sta-
tionary system, while the actual Planck measurements exhibit
clear non-stationary behaviour in the form of sharp jumps, as dis-
cussed above. In the current analysis we therefore adopt values
that correspond to a "looser" smoother than the strictly best-fit
values, precisely to accommodate these non-stationary features.
Specifically, we first set the reference frequency to the PID sam-
pling rate, f0 = 1 h−1. Secondly, we choose a white noise level
that roughly matches the minimum gain rms as a function of
time, σ0 = 3 × 10−4 V2/K2, that is, to the observed rms when
the CMB Solar dipole is observed most strongly. Finally, we
choose a value of α = −2.5, which is significantly steeper than
the canonical value of α = −1. Combined, these choices ensure
that the gain prior spectrum corresponds to a smoothing ker-
nel that is significantly more flexible than the statistically opti-
mal maximum-likelihood solution to allow for non-stationary
behaviour.

4. Validation by controlled simulations

As described by Brilenkov et al. (2023), the BeyondPlanck
analysis framework includes a simulation tool that allows us
to input a controlled simulation whose aspects are all perfectly
known, and we can use this to validate the reconstructed poste-
rior distributions. The main results from a simulation that con-
siders only one year of LFI 30 GHz observations are presented
by Brilenkov et al. (2023). Here, we reproduce some of those
results that pertain to the gain estimation results. This simulation
includes only CMB (fluctuations and Solar and orbital dipole),
correlated and white noise and gain fluctuations. We then per-
form an end-to-end Commander analysis in which we sample
aCMB, ncorr, and g, with no other ancillary data; this is thus a
test of the core gain estimation, correlated noise estimation, and
mapmaking routines, but not of, for instance, component separa-
tion or sidelobe estimation; those are validated through separate
means. The analysis comprises 3000 samples and the first 1000
are discarded as burn-in (although these are still included in the
trace-plots below).
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Fig. 5. Trace plots of samples of the total gain for randomly selected
PIDs for each of the four 30 GHz detectors for our simulation run. The
PIDs are, respectively, 349, 9847, 4298, and 1993. The red lines signify
the input gain values.

First, we show in Fig. 5, the total gain samples as a func-
tion of Gibbs iteration for one randomly chosen PID for each
of the four 30 GHz detectors and the horizontal line shows the
true input. These trace-plots show both that the chains fluctuate
around the input gain values, and that their scatter provides a
meaningful estimate of the uncertainties. However, we also see
that the correlation lengths are significant. This is due to a strong
degeneracy between the absolute gain and the CMB Solar dipole
when analyzing only a small subset of the data, in this case only
one year of 30 GHz observations. When analyzing jointly all data
from all channels, the CMB Solar dipole signal-to-noise ratio
increases dramatically, and the correlation length goes down, as
shown in Sect. 5.

To validate all scans and detectors, Fig. 6 shows the relative
reconstruction bias measured in units of standard deviations, that
is:

ε ≡
gin

q,i − gq,i

σq,i
, (33)

where gin
q,i is the true input total gain, gq,i is the mean sample total

gain estimated over all the samples for a given PID and detector,
and σq,i is the sample standard deviation. Thus, the figure shows
the deviation of the output gain solution from the input in units
of standard deviation. Overall, most samples lies within ±2σ,
although there are a few notable outliers. It is also worth noting
that the gains are intrinsically correlated in time, and this causes
the apparent correlation in this figure.

Finally, in Fig. 7, we show corresponding histograms of the
same quantity, but this time aggregated over all PIDs for a given
detector. Ideally, these should be Gaussian distributed with zero
mean and unit standard deviation. Overall, we see that gain val-
ues are generally well-recovered with small biases and reason-
able uncertainties. The non-Gaussian features are due to the long
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Fig. 6. Deviation of the mean output gain solution from the input gain
for each PID and 30 GHz detector in our simulation run. The deviations
are measured in sample standard deviations.
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in our simulation run. Each histogram represents the aggregation of the
10 000 PIDs included in the simulation validation.

correlation lengths seen in Fig. 6, which implies that the number
of independent samples in these functions is limited.

5. Results

We are now ready to present gain estimates for each Planck
LFI radiometer, as estimated within the end-to-end Bayesian
BeyondPlanck analysis framework.
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Fig. 8. Gibbs chains of the total gain for selected detectors and PIDs.

5.1. Gain posterior distributions

We start by considering the sampling efficiency of the Monte
Carlo chains produced with the above algorithm in terms of
mixing and Markov chain correlation lengths. Figure 8 shows
total gain as a function of Gibbs iteration for some representa-
tive radiometers and PIDs. We see that, overall, the chains are
stable and mix well.

A more quantitative confirmation of the good mixing of
the chains can be seen in Fig. 9, which shows the correlation
lengths across all PIDs (black line is the estimated mean correla-
tion length, whereas the blue bands show the estimated standard
deviation). All detectors exhibit correlation coefficients less than
10% after only a few samples.

In Fig. 10, we show relative differences between the last sam-
ple of the chain and the first drawn sample (red line) and we
compare that to the similar relative difference with the second-
to-last sample in the chain (blue line), as well as an in-between
chain comparison (green line). We see that even the first sample
of the chain is as close to the final solution as the next-to-last
sample and the conditional burn-in period with respect to the
gain does not significantly affect our results. Long-term burn-in
is caused indirectly through correlations with other parameters
in the system. Because of these external correlations, we fol-
low BeyondPlanck Collaboration (2023) in omitting the first 200
samples when presenting the final gain estimates.

In Figs. 11–13, we compare the gain factors derived by
BeyondPlanck, Planck PR4 and Planck 2018 for each detec-
tor. For BeyondPlanck, the widths of each curve represent 1σ
posterior confidence regions as evaluated directly from the Gibbs
chains (after omitting 200 samples for burn-in), while for the
other two solutions we only show final best-fit estimates.

Overall, the largest differences between BeyondPlanck
and the other two pipelines are observed in the 30 GHz chan-
nel. In particular, we find that the BeyondPlanck gain model
is systematically lower than the 2018 model by about 0.84% and
than PR4 by about 0.67% for this channel, which translates into
frequency maps that are about 0.84% (or 0.67%) brighter. We
also see that the PR4 and 2018 models agree very well for three
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Fig. 9. Correlation coefficients as a function of distance between Gibbs
samples for 30 (top panel), 44 (middle panel), and 70 GHz (bottom
panel) detectors. The black thick line shows the mean value for all PIDs,
while the blue band shows the 1σ error bars.

of the radiometers, while 28S is an outlier, for which PR4 is close
to BeyondPlanck.
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last sample in another chain (green line), for selected detectors.

The 30 GHz channel is the most difficult to calibrate among
all three LFI channels because of its brighter foreground sig-
nal, and the different ways in which the three pipelines handle
this fact makes the above-mentioned gain solution differences
less surprising: the PR4 process treats this channel separately,
in that this channel is analyzed without priors on polarized
foregrounds. The resulting map is then subsequently used as
a spatial polarization prior for the 44 and 70 GHz channels
(Planck Collaboration Int. LVII 2020). In comparison, the 2018
approach also assumes vanishing CMB polarization during cal-
ibration, but this approach make no distinction between the
orbital and Solar dipole with respect to absolute gain calibration
(as both PR4 and BeyondPlanck do), but rather assumes that
the fitted foreground model is sufficiently accurate. In contrast,
the BeyondPlanck pipeline does not treat the 30 GHz channel
differently in any way and it also does not assume that the CMB
polarization signal vanishes (except for the single quadrupole
mode, as discussed in Sect. 2.4). Instead, it uses WMAP infor-
mation to support the foreground modeling, and to constrain the
poorly measured modes in LFI. Overall, these algorithmic dif-
ferences lead to the observed deviations between the various
solutions.

The relative differences are smaller for 44 and 70 GHz:
−0.04% (44 GHz) and −0.64% (70 GHz) between Beyond
Planck and the Planck 2018 model, and 0.12% (44 GHz) and
−0.03% (70 GHz) between BeyondPlanck and Planck PR4.
There is generally good agreement between the three pipelines
for these two channels, although Planck 2018 is generally a
higher absolute calibration than for the two others. Differ-
ences between BeyondPlanck and the two other pipelines
are expected due to the joint nature of the BeyondPlanck
approach and the different ways in which the smoothing of the
solutions are performed – BeyondPlanck uses the Wiener fil-
ter smoothing method, Planck 2018 uses boxcar averaging, and
PR4 does not smooth the solution after estimation at all.
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BeyondPlanck line is given by the Monte Carlo uncertainty of the chains. The top x-axis ticks show the date of January 1 of the year marked.

5.2. Effects of different gain smoothing approaches on
correlated noise stripes

Since the Wiener filtering approach used in this paper has not
previously been used for smoothing gain estimates, we com-
pared it with a more conventional boxcar smoothing approach
with similar smoothing windows as used by Planck PR4, that
is, smoothing windows that dynamically change with the dipole
amplitude so as to make the smoothing length shorter in areas of
higher signal-to-noise (i.e., dipole maxima).

When comparing the results of these two approaches, we
found that with boxcar averaging, the gain solutions behave more
like the original Planck 2018 solutions than is the case with
Wiener filtering. However, we also found that boxcar smooth-
ing results in correlated noise solutions with strong “stripes”

in the binned polarization maps, especially Stokes Q. Reducing
the window sizes would mitigate this to some degree (although
it introduced other issues, e.g., gain spikes in the low signal-
to-noise regime) and we therefore find it likely that the corre-
lated noise stripes are related to an “oversmoothing” of the gain
solution.

With the Wiener filter process, we are, modulo the exact form
of the prior covariance matrix, smoothing the data in an opti-
mal way – in high signal-to-noise areas, the signal is allowed
to determine the solution and in low signal-to-noise areas, the
prior ensures that the solution does not become nonphysical.
In Fig. 14, we show a comparison of the effect of these two
approaches on the Stokes Q map. In this figure, the only dif-
ference in the underlying sampling algorithm is the choice of
boxcar smoothing and Wiener filtering. Thus, it is reassuring to
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Fig. 12. Comparison of gain estimates for the 44 GHz detectors. See Fig. 11 for details.

find that Wiener filtering (in line with the expectations) is appar-
ently able to find smooth gain solutions that avoid the problem
of oversmoothing.

5.3. Gain jumps

As noted from the beginning of the Planck experiment (see,
e.g., Planck Collaboration XXVIII 2014), the physical gain of
the instrument exhibits several sharp jumps. These jumps are
related to changes in the thermal environment of the instrument
– an example of such an event is the turning off of the 20 K sorp-
tion cooler. Not all of the events are well understood and can
mainly be traced after an initial gain estimation.

Such jumps must be accounted for in any gain estimation
approach that isn’t purely data-driven; namely, if we are apply-
ing priors in any way that set up expected correlated behaviors

between the gain factors over the mission. We find that indeed
the Wiener filter approach is able to account for such jumps with-
out any extra hard-coding (see Fig. 15, where a Wiener filter
solution applied globally to the whole PID range is shown along
with two jumps), another advantage of this smoothing method
compared to the boxcar approach, where such jumps must be
specified in the code and explicitly excluded from the averaging.

5.4. Comparison with external data

To understand the combined impact of the various gain model
differences discussed above, it is useful to compare the final
BeyondPlanck frequency maps with externally processed
observations, both from WMAP and Planck. In this respect,
we note that both the Planck 2018 and WMAP data sets are
associated with sets of correction templates that track known
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Fig. 13. Comparison of gain estimates for the 70 GHz detectors. See Fig. 11 for details.

systematic effects (or poorly measured modes) in the respective
sky maps. For the Planck 2018 30 GHz channel, this template
is shown in Fig. 16. As discussed by Planck Collaboration II
(2020), this template was produced by iterating between cali-
bration and component separation and it therefore traces uncer-
tainties in the gain model due to foreground uncertainties.
Furthermore, due to limited time, only four full iterations of this
type were completed for the Planck 2018 analysis and we must
therefore expect that there are still residuals of this type present
in the final sky maps at some level.

With this in mind, we show in Fig. 17 BeyondPlanck–
PR4 and BeyondPlanck–Planck 2018 difference maps for
Stokes I, Q, and U (columns), for all three LFI frequencies
(rows). The first, third, and fifth rows show differences with
respect to Planck 2018, while the second, fourth, and sixth rows
show differences with respect to PR4. Several features in these

difference maps are interesting from the calibration perspec-
tive. Starting with the PR4 temperature difference maps, we
see that all three channels are dominated by a clean dipole-
like residual aligned with the Solar CMB dipole. This shows
that the BeyondPlanck and PR4 temperature maps are mor-
phologically very similar, but have different absolute calibra-
tion. We also see that the temperature map difference between
BeyondPlanck and PR4 exhibits a flip in the dipole direction
going from 30 and 44 to 70 GHz. This sign change is consistent
with the differences in the calibration factors between 44 and
70 GHz reported in Table 10 in Planck Collaboration Int. LVII
(2020), finding a difference of 0.31% between the absolute
calibration of the 44 and 70 GHz channels. Since the CMB
Solar dipole has an amplitude of about 3360 µK, this rela-
tive difference translates into an absolute temperature differ-
ence of roughly 10 µK in the observed sky signal, which is
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Wiener filter.
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the Wiener filter solution for the 27M detector, while the vertical lines
show the locations of the jumps. The jump at around PID 11000 is the
sorption cooler switch-over event, mentioned in Sect. 5.3.

fully consistent with the dipole differences we see in Fig. 17.
In comparison, the Planck 2018 versus BP difference maps in
temperature (lines 1, 3, and 5) show a more prominent quadrupo-
lar structure with a morphology that might resemble the effect
of bandpass mismatch leakage (Planck Collaboration X 2016;
Planck Collaboration Int. LVII 2020).

For the polarization, the most striking differences are seen in
the 30 GHz channel, for which variations at the 4 µK level are
seen over large fractions of the sky. Furthermore, these residu-
als correlated very closely with the Planck 2018 gain template
shown in Fig. 16, suggesting that they are indeed caused by
foreground-induced gain residuals. The same patterns are also
seen in the PR4 difference maps, but with a notably lower level.

For the 44 GHz maps, we note that the Stokes Q difference
maps show correlated noise stripes similar to those highlighted
in the top figure in Fig. 14. However, we also note that these
structures have different amplitudes in Planck PR4 and Planck
2018, and these stripes are therefore present in at least one of the
other pipelines as well, and possibly both.

Figure 18 shows a similar comparison between the var-
ious Planck 30 GHz maps and the WMAP K-band channel
(Bennett et al. 2013). In this case, all maps have been smoothed
to a common angular resolution of 3◦ FWHM, and the K-band
map has been scaled by a factor of 0.495 to account for the
different center frequencies of the two maps while adopting a
synchrotron-like spectral index of βs = −3.1. From top to bot-
tom, the first three rows show difference maps with respect to
Planck 2018, Planck PR4, and BeyondPlanck. Such a dif-
ferencing removes the expected synchrotron contribution, and
assuming the standard results for polarized microwave emission
hold (i.e., that there so far have been no measurements of polar-
ized spinning dust), only CMB and instrumental effects should
remain.

Overall, we see a clear progression in agreement with respect
to WMAP K-band, in the sense that BeyondPlanck shows
smaller residuals than Planck PR4; this, in turn, shows smaller
residuals than Planck 2018. Furthermore, we note that the strong
residuals traced by the LFI gain template in Fig. 16 are most pro-
nounced in the Planck 2018 map.

At the same time, we also observe significant coherent large-
scale features in the difference map between BeyondPlanck
and K-band. To at least partially understand these, we show
the WMAP transmission imbalance templates derived by
Jarosik et al. (2007) in the bottom row of Fig. 17. These tem-
plates trace poorly measured modes due to the differential nature
of the WMAP instrument. Although corrections for this effect
are applied to the final K-band sky maps, the uncertainty on
the template amplitudes is estimated to 20%. Considering the
tight correlation between the BeyondPlanck–WMAP differ-
ence map and the transmission imbalance template, it seems
clear that at least a significant fraction of the remaining resid-
ual may be explained in terms of this effect. Of course, this also
suggests that a future joint analysis between Planck and WMAP
in time-domain will be able to constrain the WMAP transmis-
sion imbalance parameters to much higher precision, and Planck
data can thereby be used to break an important internal degener-
acy in WMAP. As reported by Watts et al. (2023), this work has
already started, but a full exploration of time-ordered WMAP
data is outside the scope of the current analysis. We also empha-
size that the current BeyondPlanck analysis only uses low-
resolution WMAP polarization data for which a full covariance
matrix is available and these modes are appropriately down-
weighted in those matrices.

6. Conclusions

Here, we present the BeyondPlanck approach to gain cal-
ibration within the larger Commander Gibbs sampling frame-
work. This framework relies directly on the Solar and orbital
dipoles for relative and absolute calibration, respectively, and
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Fig. 16. Gain residual template for the LFI 30 GHz channel, produced in the Planck 2018 analysis through manual iteration between calibration,
mapmaking and component separation (Planck Collaboration II 2020).
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Fig. 17. Differences between BeyondPlanck and Planck 2018 or Planck PR4 frequency maps, smoothed to a common angular resolution of 2◦
FWHM. Columns show Stokes T , Q, and U parameters, respectively, while rows show pairwise differences with respect to the pipeline indicated
in the panel labels. A constant offset has been removed from the temperature maps, while all other modes are retained. The 2018 maps have been
scaled by their respective beam normalization prior to subtraction. Reproduced from Basyrov et al. (2023).

accounts for astrophysical foreground and instrumental system-
atics through global modeling.

One critically important difference with respect to previous
Planck LFI analysis efforts is the fact that we actively use exter-
nal data to break internal Planck degeneracies and, in particu-
lar, WMAP observations. This significantly alleviates the need

for imposing strong algorithmic priors during the calibration
process. Most notably, while both the Planck 2018 and Planck
PR4 pipelines have assumed CMB polarization to be negligible
on all angular scales during the calibration phase, we can only
assume that the CMB quadrupole is negligible. The reason we
still make this assumption is that the Planck scanning strategy
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Fig. 18. Difference maps between the Planck 30 GHz and WMAP K-band maps for Planck 2018 (first row), Planck PR4 (second row), and
BeyondPlanck (third row). All maps have been smoothed to a common angular resolution of 3◦ FWHM before evaluating the differences. The
WMAP K-band map has been scaled by a factor of 0.495 to account for different center frequencies, assuming a synchrotron spectral index of
βs = −3.1. Bottom row shows one of the WMAP K-band transmission imbalance templates discussed by Jarosik et al. (2007), which accounts for
known poorly measured modes in the WMAP data.

renders the CMB quadrupole very nearly perfectly degenerate
with the CMB Solar dipole coupled to subtle gain fluctuations;
a hypothetical future and well-designed satellite mission should
not require this prior, as long as its scanning strategy modulates
the CMB dipole on sufficiently short time-scales and with good
cross-linking.

Overall, we find good agreement between the Beyond
Planck and previous gain models. The biggest differences are
observed in the LFI 30 GHz channel, with gain variations of
0.84% between Planck 2018 and BeyondPlanck. These dif-
ferences result in subtle but significant temperature and polar-
ization residuals. When comparing these with external WMAP
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K-band observations, it appears clear that the BeyondPlanck
LFI maps are generally cleaner than previous renditions with
respect to gain residuals. At the same time, we emphasize that
these differences are also consistent with previously published
error estimates, as presented by the Planck 2018 and Planck
PR4 teams themselves. For instance, the morphology of the
Planck 2018 polarization residuals matches previously published
LFI DPC gain residual templates (Planck Collaboration II 2020),
and the PR4 absolute calibration differences are fully consis-
tent with internal PR4 estimates (Planck Collaboration Int. LVII
2020). These results are thus neither novel nor surprising,
but they simply highlight the inherent advantages of global
analysis, using complementary data sets to break internal
degeneracies.

Finally, we note that even though the procedures outlined
in this paper have been aimed at modeling the LFI detectors,
there is nothing about the data model or methodology that
is unique with regard to LFI. The method should be directly
applicable for other data sets and experiments as well, and,
indeed, a preliminary WMAP analysis is already underway
(Watts et al. 2023).
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