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Abstract

To evaluate the association between radiomic features (RFs) extracted from 18F‐
FDG PET/CT (18F‐FDG‐PET) with progression‐free survival (PFS) and overall sur-

vival (OS) in diffuse large‐B‐cell lymphoma (DLBCL) patients eligible to first‐line

chemotherapy. DLBCL patients who underwent 18F‐FDG‐PET prior to first‐line

chemotherapy were retrospectively analyzed. RFs were extracted from the lesion

showing the highest uptake. A radiomic score to predict PFS and OS was obtained

by multivariable Elastic Net Cox model. Radiomic univariate model, clinical and

combined clinical‐radiomic multivariable models to predict PFS and OS were ob-

tained. 112 patients were analyzed. Median follow‐up was 34.7 months (Inter‐
Quartile Range (IQR) 11.3–66.3 months) for PFS and 41.1 (IQR 18.4–68.9) for OS.

Radiomic score resulted associated with PFS and OS (p < 0.001), outperforming

conventional PET parameters. C‐index (95% CI) for PFS prediction were 0.67 (0.58–

0.76), 0.81 (0.75–0.88) and 0.84 (0.77–0.91) for clinical, radiomic and combined

clinical‐radiomic model, respectively. C‐index for OS were 0.77 (0.66–0.89), 0.84

(0.76–0.91) and 0.90 (0.81–0.98). In the Kaplan‐Meier analysis (low‐IPI vs. high‐IPI),

the radiomic score was significant predictor of PFS (p < 0.001). The radiomic score

was an independent prognostic biomarker of survival in DLBCL patients. The

extraction of RFs from baseline 18F‐FDG‐PET might be proposed in DLBCL to

stratify high‐risk versus low‐risk patients of relapse after first‐line therapy, espe-

cially in low‐IPI patients.
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1 | INTRODUCTION

Diffuse large B‐cell lymphoma (DLBCL) represents the most frequent

non‐Hodgkin's lymphoma subtype (30%–58% of all cases) with an

incidence of 3.8/100 000/year in Europe.1 Standard first‐line therapy

is based on the combination of the anti CD20 monoclonal antibody

Rituximab with CHOP chemotherapy (R‐CHOP regimen: Rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone). Based

on a recent survey, the 5‐year overall survival (OS) rate is 65%,

indicating that 30%–40% of all patients will progress or relapse after

primary treatment.2 These high‐risk patients may be partially iden-

tified by the current clinical prognostic scoring systems, such as the

International Prognostic Index (IPI), which is based on 5 clinical

variables (age, stage, performance status, number of extranodal sites,

serum levels of lactate dehydrogenase).3 In general, these models do

not consider the biology of the disease, and for this reason still hold

some limitations, especially in early stage disease, where treatment is

often de‐escalated.4 Although in the last 20 years several studies

identified biomarkers and gene expression profiling (GEP) based‐
signatures with prognostic potential, these progresses did not

translate yet in improved prognostic stratification or in precision

therapy strategies available in clinical practice. For example, GEP and

genomic studies produced a series of prognostic models, such as the

cell of origin classification5 and algorithms based on complex inte-

gration of diverse molecular profiling studies.6,7 However, most of

these models are difficult to reproduce, technically challenging and

applicable only in academic centers. Currently, the only biological

parameter with clinical implication is the presence or absence of

concurrent rearrangements of the MYC and BCL‐2 and/or BCL‐6
oncogenes, which defines a subset of high‐grade B‐cell lymphoma

patients eligible for intensive chemoimmunotherapy regimens.8,9

Current evidence suggests that MYC‐positive tumors, presenting

increased glucose metabolism, are characterized by metabolic het-

erogeneity.10,11 DLBCL is a [18F]Fluorodeoxyglucose (FDG) avid

neoplasm and [18F]FDG‐Positron Emission Tomography ([18F]FDG‐
PET) is recommended for initial staging, assessment of response to

therapy and re‐staging in case of relapse clinically suspected.12

Furthermore, through the assessment of metabolic tumor volume

(MTV)13 or Standardized Uptake Value (SUV) parameters14,15 [18F]

FDG‐PET can be used as prognostic biomarker to identify those

patients at worst prognosis.16 Recently, radiomics, a novel high

throughput quantitative analysis, gained interest allowing to char-

acterize tumor biology and intra‐tumor heterogeneity through the

identification of quantitative imaging biomarkers named radiomic

features (RFs).17–19

2 | MATERIALS AND METHODS

2.1 | Objectives

The primary objective of this analysis was to evaluate the association

between the radiomic score, derived from the RFs extracted from

[18F]FDG‐PET images, and progression free survival (PFS) and overall

survival (OS), in DLBCL patients eligible for standard‐of‐care first line

chemotherapy.

Secondary objectives were: a) to evaluate the association of

standard [18F]FDG‐PET metabolic parameters (SUV derivates, MTV

and TLG [total lesion glycolysis]) with PFS and OS; b) to compare the

performance of the radiomic score with IPI and conventional PET‐
parameters model.

2.2 | Study design and patients selection

This is a retrospective, single‐center, single‐arm, open‐label study on

DLBCL patients treated and followed‐up at our institution. Clinical

records of patients from September 2008 to October 2019 (study

cut‐off date) were evaluated. Inclusion criteria were: (1) biopsy or

histologically proven DLBCL; (2) [18F]FDG‐PET as baseline procedure

prior to first‐line chemotherapy; (3) availability of all clinical, pa-

thology and imaging data (no lost follow‐up); (4) at least 24 months of

follow‐up. Exclusion criteria were: (1) [18F]FDG‐PET performed

outside our institution; (2) low quality PET images (e.g., wrong input

of PET parameters, glycemia >200 mg/dl, para‐vein injection, 2D

scanners). The study was approved by the local ethical committee

and institutional scientific review board (IEO Trial‐ID: 2863).

2.3 | PET acquisition protocol

[18F]FDG‐PET was performed with standard procedure according to

the European guidelines.20 PET images were acquired on Discov-

eryST or Discovery600 PET/CT scanner (GE Healthcare, Waukesha,

WI). Patients were injected with 3.3 (range 2.3–4.7) MBq/kg of [18F]

FDG, and images were acquired 66 � 11 min (median � standard

deviation SD) after injection, at 2.5 � 0.5 min/bed. PET images were

reconstructed with OSEM algorithm VUE point (2 iterations, 30

subset, 4.5 mm Gaussian post‐filter) for DiscoveryST, and with OSEM

algorithm VUE point HD (2 iterations, 16 subset, 5 mm Gaussian

post‐filter) for Discovery600. A low‐dose CT scan was performed for

attenuation correction of PET emission data and anatomical location.

2.4 | Image analysis and radiomic features
extraction

Quantitative PET images analysis was performed with LifeX 6.32

package.21 A pilot study was performed22 comparing six different

segmentation methods among those most widely used in the litera-

ture for lymphoma,23 to select the most suitable method for the

subsequent radiomic analysis. The main points of this study are

summarized in the Supplementary Materials (Pilot study on Pet

segmentation paragraph). Based on those results, an experienced

nuclear medicine physician (LLT) drew a Region of Interest (ROI) for

each lesion applying a SUV threshold equal to 25% of the maximum
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SUV (SUVmax) in the lesion (Figure 1). Total MTV (TMTV) was

calculated summing all the lesions' volumes for each patient. Whole‐
body TLG (WTLG) was calculated as the sum of TLG values in each

lesion. For each patient, radiomic analysis was performed on the

target lesion, selected as the lesion with highest SUVmax (“SUVmax

lesion”). Fifty‐three (n = 53) RFs were calculated for each lesion; RFs

list and description are reported in Supplementary Material Table S5,

with the settings adopted for calculation [18F]FDG‐PET quantitative

data included in the main analysis were: SUVmax, TMTV, volume of

the representative lesion (Vol (SUVmax lesion)), WTLG, and 53 RFs.

Image acquisition and clinical parameters which might affect PET

image signal and texture (scanner model, frame duration, injected

activity/body weight, time between injection and acquisition, glucose

level) were collected to evaluate RFs reproducibility. After RFs log

transformation, an ANOVA model was fitted for each RFs and

parameter, to identify RFs affected by any parameter. RFs with False

Discovery Rate (FDR)‐adjusted p‐values <0.05 were excluded by the

analysis.

2.5 | Outcome measurements and statistical
analysis

PFS was calculated from the date of diagnosis to the date of pro-

gression after first‐line chemotherapy or death for any cause or last

follow‐up, while OS was calculated from the date of diagnosis to the

date of death for any cause or last follow‐up. PFS and OS were

investigated using three statistical models, defined as clinical model,

radiomic model and clinical‐radiomic model. The clinical model

included IPI and conventional not‐radiomic PET imaging variables

(SUVmax, TMTV, Vol [SUVmax lesion] and WTLG). The radiomic model

included a radiomic score obtained considering only the reproducible

RFs after ANOVA analysis. The radiomic score was obtained by a Cox‐
Elastic Net model regression with regularization parameters, α and λ,

chosen by means of a 10‐folds cross‐validation as the combination

maximizing the C‐index. The final Elastic Net model was fitted using

the optimal values of α and λ, providing—for each RF retained in the

model—the corresponding coefficient ß for the calculation of the

radiomic score. Then, the radiomic score was calculated as a linear

combination of the selected RFs weighted by the coefficients of the

Elastic Net model on the original data as here detailed: indicating with

β1, β2, …, βp the Elastic Net coefficients for each of the p RFs in the

model, and xi1, xi2, …, xip the observed values of the features for the ith

patient, the radiomic score was calculated for each patient as follows:

radiomic scorei = β1xi1 + β2xi2 + …. + βpxip. The clinical‐radiomic model

merged the clinical variables and the radiomic score.

First, the univariate association of each variable included in the

clinical‐radiomic model with PFS and OS was evaluated by Log‐Rank

rank test, after dichotomizing the continuous variables using the

median value, and IPI as low: ≤2 and high: >2.

Then, clinical and clinical‐radiomic models were calculated with

multivariable proportional‐hazard Cox models including only vari-

ables showing significance at univariate Cox analysis (p < 0.05). The

Cox univariate model obtained with the radiomic score as continuous

variable was referred to as radiomic model.

PFS and OS were also explored stratifying the population by IPI

(low vs. high). Univariate (Log‐Rank) and multivariable proportional‐
hazard Cox models were performed in each sub‐group to identify

the risk of progression and death according to radiomic score only

(univariate) and radiomic score together with the clinical variables

F I GUR E 1 Select axial slice (B) and maximum intensity projection (MIP) (C) from an FDG PET/CT study from a newly diagnosed DLBCL

patient, prior to first‐line chemotherapy, demonstrating three different contouring methods (pink = 25% SUVmax; blue = 41% SUVmax;
green = 70% SUVmax) performed with LifeX package. Select axial slice of fused [18F]‐FDG PET/CT images with the contouring method (25%
SUVmax) superimposed (A).
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used to define IPI: sex, age, serum LDH, number of extranodal site,

stage (multivariable). The performances of the models were quanti-

fied and compared using the Harrell's C‐index, with C = 1 indicating

optimal performance. 95% Confidence Intervals (CI) were obtained

using the R package survcomp. Model evaluation by Harrell's C‐index

is recommended for survival analysis24,25 and is commonly used for

radiomic survival studies.26–28 Statistical analysis was performed

with R software, version 4.1.0.

3 | RESULTS

3.1 | Patient population

One hundred and twelve patients (n = 112) fulfilled the inclusion

criteria (Figure 2). Population characteristics are summarized in

Table 1. All patients were treated at our Institution with first‐line R‐
CHOP/R‐CHOP‐like chemo immunotherapy and followed‐up ac-

cording to the best standard‐of‐care clinical practice. All 112 patients

were evaluable for OS, and all but one (n = 111) for PFS. In fact, for

one patient we could not retrieve information on disease status at

last follow‐up, but only on OS status. Therefore, this patient was

excluded from PFS analysis. The median follow‐up was 34.7 months

(Inter‐Quartile Range (IQR) 11.3–66.3 months) for PFS and 41.1 (IQR

18.4–68.9) for OS. At the end of follow‐up, 17% (19/112) relapsed

and died with disease (median time to relapse 6.2 months): of these,

14 patients received second‐line therapy and 5 received palliative/

supportive care. One‐year and 5‐year survival rates were 83% and

73% for PFS, and 95% and 82% for OS.

3.2 | Conventional parameters and radiomic
analysis

Fifty‐two (n = 52) RFs were reproducible according to imaging and/or

clinical parameters. Only one feature (GLCM_2_Correlation) was

F I GUR E 2 Patient selection flow chart.

TAB L E 1 Baseline characteristics of study population.

Population characteristics (n = 112) Median (IQR*)

Age at diagnosis (years) 62.3 (46.7–69.8)

Gender n (%)

Males 57 (51%)

Females 55 (49%)

Tumor stage n (%)

I 9 (8%)

II 31 (28%)

III 8 (7%)

IV 64 (57%)

IPI n (%)

0 9 (8%)

1 33 (29%)

2 28 (25%)

3 29 (26%)

4 12 (11%)

5 1 (1%)

Abbreviation: IQR, Interquartile range.

4 - TRAVAINI ET AL.
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non‐reproducible at ANOVA due to significant dependence from

scanner type, and was excluded from the analysis. The median (IQR)

values of conventional PET imaging variables included in the clinical

model were: SUVmax 19.9 (11.3–26.0); TMTV 131.0 (45.2–371.8) ml;

Vol (SUVmax lesion) 71.3 (19.8–219.7) ml; WTLG 1076.0 (264.9–

3834.2) SUV∙ml.

Patients with high IPI (3–5) presented less favorable PFS and OS

compared to patients with low IPI (0–2) at Log‐Rank univariate

analysis (p‐values ≤0.01, Figure S1). Demographic and clinical char-

acteristics of the low/high IPI groups are reported in Supplemen-

tary materials Table S6. None among conventional PET variables

(SUVmax, TMTV, Vol (SUVmax lesion), WTLG) was significantly asso-

ciated with either PFS or OS at univariate Log‐Rank test (all p > 0.05).

The relevant features significantly associated with both PFS and

OS were mainly texture features: NGLDM_Coarseness, GLZLM_Low

Gray‐level Zone Emphasis (LGZE), GLZLM_Short‐Zone Low Gray‐
level Emphasis (SZLGE), GLRLM_ Short‐Run Low Gray‐level

Emphasis (SRLGE), GLCM_1_Energy, GLRLM_ Low Gray Level Run

Emphasis (LGRE), GLZLM_Short‐Zone Emphasis (SZE), Sphericity,

and HISTO_Uniformity. The RFs selected by the model as mostly

associated with PFS and OS were used to build the corresponding

PFS and OS radiomic scores (Tables S7 and S8). Kaplan‐Meier anal-

ysis yielded significant association of the dichotomized radiomic

score (low = below median value; high = above median value) with

PFS (Figure 3A) and OS (Figure 3B) (all p < 0.001). Demographic and

clinical characteristics of the low/high radiomic score groups are

reported in Supplementary Material (Table S9 and S10).

3.3 | Clinical, radiomic and clinical‐radiomic models

The associations of the variables included in the clinical model and

radiomic score with PFS and OS (Cox models) are reported in

Tables 2 and 3. IPI score (0–2 vs. 3–5), TMTV and the radiomic score

were significantly associated with PFS and OS in univariate analysis.

Only radiomic score and IPI score remained independent PFS and OS

predictors in the multivariate models (all p < 0.01). Clinical models'

accuracy (C‐index) was 0.68 for PFS and 0.78 for OS; C‐index

increased up to 0.81 (PFS) and 0.84 (OS) for radiomic models, and

0.83 for PFS and 0.90 for OS when considering the clinical‐radiomic

models. Stratifying the population according to IPI score (low‐IPI vs.

high‐IPI), the radiomic score remained a significant independent

predictor of PFS and OS (Figure 4). Demographic and clinical char-

acteristics for the low versus high radiomic score patients within the

low‐IPI/high‐IPI groups are reported in Supplementary Materials

(Tables S11 for PFS and Table S12 for OS). The radiomic score

confirmed its prognostic significance also after adjusting the model

according to the clinical variables used to calculate IPI score (Ta-

bles S13 and S14). Specifically, patients with low radiomic score had a

significantly more favorable PFS than patients with high radiomic

score both in high‐IPI group (Log‐rank test p < 0.001, Figure 4A;

multivariable Cox p = 0.004, Table S13) and in low‐IPI group (Log‐
rank test p = 0.02, Figure 4C; multivariable Cox p = 0.02, Table S13).

Conversely, the radiomic score was an independent predictor of OS

in high‐IPI group (Log‐rank test p < 0.001, Figure 4B; multivariable

Cox p = 0.001, Table S14), while it was not associated with OS in low‐
IPI group (Log‐rank test p = 0.49, Figure 4D; multivariable Cox

p = 0.51, Table S14).

4 | DISCUSSION

In this study, the IPI score was a significant predictor of patients'

outcome in univariate and multivariate analyses, as expected,3 while

the standard PET parameter TMTV showed a significant association

with PFS and OS at univariate analysis only (Table 2 and Table 3). The

other PET conventional parameters (SUVmax, WTLG and the volume

of the highest uptake lesion) were not associated with PFS or OS in

our population. These results are partially in contrast with those

reported previously. Other studies,14–16,29 reported the role for PET

F I GUR E 3 Univariate association (Log‐Rank rank test) between
dichotomized radiomic score (0 = low; 1 = high) and (A) Progression
Free Survival (PFS); (B) Overall Survival (OS).
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standard parameters as predictors of patient survival, in some cases

outperforming IPI.15,30,31 These discordant results might be related

to the heterogenous populations enrolled, discrepancies in follow‐up

lengths, and to the different methodologies applied to extract PET

parameters.

The radiomic score was an independent predictor of PFS and OS,

alone and in association with IPI score (Figure 3, Table 2 and Table 3).

Second‐order features (quantifying different properties of image

texture) were the main contributors for PFS and OS prediction.

Notably, most RFs were associated with both endpoints. This result

suggests the robustness of the RFs included in the radiomic score,

supporting the hypothesis that relevant and novel prognostic infor-

mation can be obtained by RFs. The most relevant features (Coarse-

ness from Neighboring Gray Level Dependence Matrix, Low Gray‐level
Zone Emphasis [LGZE] and Short‐Zone Low Gray‐level Emphasis

[SZLGE] from Gray Level Zone Length Matrix and Short‐Run Low

Gray‐level Emphasis [SRLGE] from Gray Level Run Length Matrix)

were related to the presence and distribution of low intensity zones,

in particular small zones with homogeneous low uptake, and to the

distribution of short runs (consecutive voxels along a defined direc-

tion) with homogeneous low uptake. Interestingly, the RFs associated

with outcomes in our series were previously shown to be represen-

tative of a heterogeneous microenvironment (i.e., hypoxia and ne-

crosis) where malignant clones, extracellular microenvironment and

fibroblast coexist.32,33 Parvez et al17 described a prognostic role of

RFs derived by Gray Level Zone Length Matrix associated with Dis-

ease Free Survival, while Aide et al34 observed the association of

these RFs with the 2‐year event‐free survival, and Kun‐Han‐Lue

et al35 found a significant association of RFs extracted from Gray

Level Run Length Matrix with both PFS and OS. Accordingly, our

results confirmed the hypothesis that novel prognostic biomarkers

derived by quantitative analysis of PET image, combined with clinical

parameters, might be reliable predictors of survival.

The identification of low‐IPI patients at higher risk of relapse

after primary therapy could be clinically relevant, given that current

treatment guidelines recommend therapy de‐escalation in early stage

TAB L E 2 Univariate and multivariable Hazard Ratio (HR) with 95% Confidence Intervals (CI) for the association of continuous clinical
variables and radiomic score with progression free survival.

Univariate Multivariable (clinical) Multivariable (clinical‐radiomic)

Variable HR (95% CI) p‐value HR (95% CI) p‐value HR (95% CI) p‐value

SUVmax 0.98 (0.94–1.01) 0.15 ‐ ‐ ‐ ‐

TMTV* 1.07 (1.01‐1.13) 0.02 1.04 (0.98–1.10) 0.16 0.99 (0.93–1.05) 0.66

Vol(SUVmax lesion)* 1.04 (0.98–1.10) 0.17 ‐ ‐ ‐ ‐

WTLG** 1.02 (0.96–1.07) 0.55 ‐ ‐ ‐ ‐

IPI Low 1.00 (Ref) ‐ 1.00 (Ref) ‐ 1.00 (Ref) ‐

High 2.60 (1.25‐5.48) 0.01 2.23 (1.02‐4.91) 0.05 2.68 (1.22‐5.86) 0.01

Radiomic score 3.56 (2.29‐5.54) <0.0001 ‐ ‐ 3.65 (2.26‐5.89) <0.0001

Note: Statistically significant variables are reported in bold.

*100 units increase (from mL to dL).

**1000 units increase (from SUV*mL to SUV*L).

TAB L E 3 Univariate and multivariable Hazard Ratio with 95% Confidence Intervals (CI) for the association of clinical variables and
radiomic score with overall survival.

Univariate Multivariable (clinical) Multivariable (clinical‐radiomic)

Variable HR (95% CI) p‐value HR (95% CI) p‐value HR (95% CI) p‐value

SUVmax 1.00 (0.96–1.04) 0.92 ‐ ‐ ‐ ‐

TMTV* 1.09 (1.03‐1.16) 0.02 1.04 (0.97–1.11) 0.24 0.98 (0.92–1.05) 0.54

Vol(SUVmax lesion)* 1.06 (0.99–1.12) 0.10 ‐ ‐ ‐ ‐

WTLG** 1.04 (0.99–1.10) 0.11 ‐ ‐ ‐ ‐

IPI Low 1.00 (Ref) ‐ 1.00 (Ref) ‐ 1.00 (Ref) ‐

High 10.20 (2.97‐35.01) 0.0002 8.83 (2.49‐31.37) 0.0008 8.12 (2.25‐29.36) 0.001

Radiomic score 3.83 (2.37‐6.20) <0.0001 ‐ ‐ 3.08 (1.94‐4.88) <0.0001

Note: Statistically significant variables are reported in bold.

*100 units increase (from mL to dL).

**1000 units increase (from SUV*mL to SUV*L).
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DLBCL.36 Interestingly, in the low‐IPI subgroup demographic and

clinical characteristics were comparable in patients with high versus

low PFS radiomic score (Supplementary Table S11). Considering the

high‐IPI patients, the association of the radiomic score with both PFS

and OS was strong (Figures 4A,B; Supplementary Table S13 and S14).

However, in this sub‐cohort, a significant age difference was

observed between patients with low versus high radiomic score

(mean age 60.1 vs. 70.9 years for PFS, 61.4 vs. 69.2 for OS, Supple-

mentary Table vS11 and S12). This result suggests the potential role

of age as confounding factor since older patients are generally

characterized by a poor outcome compared to the younger ones.37

However, in our cohort the outcome of patients with low radiomic

score was extremely favorable regardless the IPI score. These find-

ings may suggest that the radiomic might be a reliable tool to identify

a biologically distinct DLBCL subset characterized by enhanced

sensitivity to standard chemoimmunotherapy.

This study is not exempt from limitations. First, the retrospective

design of the study might have affected patient selection. Second, the

small sample size did not allow the separation between training and

validation set. In case of small cohorts, indeed, this approach is not

recommended.38 However, we applied an internal repeated k‐fold

cross validation to reduce the probability of overfitting. Neverthe-

less, before applying our model to the clinical setting, external vali-

dation is needed.

On the other side, strengths are represented by the long follow‐
up available (median 34.7 months, IQR 11.3–66.3 months), the

treatment scheme homogeneity (selected following international

guidelines), and a robust methodology for PET images analysis. The

latter included the choice of single Institute images with comparable

PET scanners, and ANOVA reproducibility analysis to avoid the in-

fluence of acquisition and reconstruction settings on RFs.39 Notably,

ANOVA did not identify significant influence, probably due to imag-

ing procedure standardization in our center. In addition, to test and

support the robustness of the methodology, a preliminary analysis

was performed to select the most reliable PET segmentation method,

including a sensitivity analysis to assess the differences in model

performance when changing segmentation method or when consid-

ering different target lesions.22 Since no significant difference was

F I GUR E 4 Survival curves for Progression‐Free Survival (PFS) and Overall Survival (OS) according to radiomic score (0 = low; 1 = high) for

patients with (A‐B) IPI = High and (C‐D) IPI = Low.
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found among the tested methodologies, the results obtained with

only one segmentation method and target lesion were included in

this study. The generalizability of the models needs to be confirmed

with external validation on independent populations, also with the

inclusion of novel parameters appearing promising for their prog-

nostic role in recent studies.18,19,40

5 | CONCLUSION

The radiomic score outperformed conventional PET parameters as

independent predictor of survival in patients affected by DLCBL who

performed baseline [18F]FDG‐PET prior to first‐line therapy.

Furthermore, the development of a clinical‐radiomic model, inte-

grating clinical parameters and the radiomic score, demonstrated the

highest prognostic accuracy among different models analyzed. While

far from being considered a replacement of the IPI score, the

radiomic score might be proposed as baseline prognostic biomarker

to refine risk stratification in DLBCL. Additional data obtained in a

multicentre setting are needed to confirm this hypothesis and to

externally validate the models.
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