
Eur. Phys. J. C (2022) 82:976
https://doi.org/10.1140/epjc/s10052-022-10878-w

Special Article - Tools for Experiment and Theory

EKO: evolution kernel operators

Alessandro Candido1,a, Felix Hekhorn1,b, Giacomo Magni2,3,c

1 Tif Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
2 Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
3 Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands

Received: 14 February 2022 / Accepted: 6 October 2022 / Published online: 31 October 2022
© The Author(s) 2022

Abstract We present a new QCD evolution library for unpo-
larized parton distribution functions: EKO. The program
solves DGLAP equations up to next-to-next-to-leading order.
The unique feature of EKO is the computation of solution
operators, which are independent of the boundary condition,
can be stored and quickly applied to evolve several initial
PDFs. The EKO approach combines the power of N -space
solutions with the flexibility of a x-space delivery, that allows
for an easy interface with existing codes. The code is fully
open source and written in Python, with a modular structure
in order to facilitate usage, readability and possible exten-
sions. We provide a set of benchmarks with similar available
tools, finding good agreement.

1 Introduction

As we are entering the era of high-energy precision physics,
theorists strive to keep up with the experimental precision [1].
The determination of parton distribution functions (PDFs) is
becoming a major limiting factor and theory groups come
up with more and more involved procedures to improve the
extraction [2–4] eventually aiming for a one percent accu-
racy [5]. In order to achieve this goal a thorough treatment of
theoretical uncertainties is required [6], that so far was chal-
lenging with the current state-of-the-art codes. In this paper,
we present EKO a new QCD evolution library that matches
the requirements and desiderata of this new era.

EKO solves the evolution equations [7–9] in Mellin space
(see Sect. 2.1) to allow for simpler solution algorithms (both
iterative and approximated). Yet, it provides result in momen-
tum fraction space (see Sect. 2.2) to allow an easy interface
with existing codes.
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EKO computes evolution kernel operators (EKO) which
are independent of the initial boundary conditions but only
depend on the given theory settings. The operators can thus
be computed once, stored on disk and then reused in the
actual application. This method can lead to a significant
speed-up when PDFs are repeatedly being evolved, as it is
customary in PDF fits. This approach has been introduced by
FastKernel [10–12] and it is further developed here.

EKO is open-source, allowing easy interaction with users
and developers. The project comes with a clean, modular,
and maintainable codebase that guarantees easy inspection
and ensures it is future-proof. We provide both a user and
a developer documentation. So, not only a user manual, but
even the internal documentation is published, with an effort
to make it as clear as possible.

EKO currently implements the leading order (LO), next-
to-leading order (NLO) and next-to-next-to-leading order
(NNLO) solutions [13–15]. However, it is organized in such
a way that the addition of higher order corrections, such as
the next-to-next-to-next-to-leading order (N3LO) [16], can be
achieved with relative ease. This accuracy is needed to match
the precision in the determination of the matrix elements
for several processes at LHC (see e.g. [17] and references
therein). We also expose the associated variations of the var-
ious scales.

EKO correctly treats intrinsic heavy quark distributions,
required for studies of the heavy quark content of the
nucleon [18]. While the treatment of intrinsic distributions
in the evolution equations is mathematically simple, as they
decouple in a specific basis, their integration into the full
solution, including matching conditions, is non-trivial. We
also implement backward evolution, again including the non-
trivial handling of matching conditions.

EKO is another corner stone in a suite of tools that aims
to provide new handles to the theory predictions in the PDF

fitting procedure. To obtain the theory predictions in a typical
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fitting procedure, first, one needs to evolve a candidate PDF up
to the process scale, and then convolute it with the respective
coefficient function. The process specific coefficient function
can be stored in the PineAPPL format [19,20]. EKO is inter-
faced withPineAPPL to produce interpolation grids that can
be directly used in a PDF fit, avoiding to do the evolution on
the fly, but beforehand. EKO is also powering yadism [21]
a new DIS coefficient function library.

EKO adopts Python as a programming language opting
for a high-level language which is easy to understand for
newcomers. In particular, with the advent of Data Science
and Machine Learning, Python has become the language of
choice for many scientific applications, mainly driven by the
large availability of packages and frameworks. We decided
to write a code that can be used by everyone who needs QCD

evolution, and to make it possible for applications that are
not supported yet to be built on top of the provided tools and
ingredients. For this reason the code is developed mainly as
a library, that contains physics, math, and algorithmic tools,
such as those needed for managing or storing the computed
operators. As an example we also expose a runner, making
use of the built library to deliver an actual evolution applica-
tion. We apply modern best practices for software develop-
ment, such as automated tests, Continuous Integration (CI),
and Continuous Deployment (CD), to ensure a high quality
of coding standard and a routinely checked code basis.
References The open-source repository is available at:
https://github.com/N3PDF/eko

In the following we do not attempt to give a complete
overview over all provided features and options, but limit
ourselves to a brief review. The full documentation instead
can be accessed at: https://eko.readthedocs.io/en/latest/

This document is also regularly updated and extended
upon the implementation of new features.

2 Theory overview

We do not attempt to give a full review of the underlying
theory here as it is known since a long time and discussed
extensive elsewhere (see e.g. [22,23] and references therein).
We refer the interested reader to the specific references given
in the following and to the accompanying online documenta-
tion where instead we give a detailed overview. All sections
in the following have an equivalent section in the online doc-
umentation. Also the respective code implementations of the
various ingredients contain relevant information and are also
accessible in the documentation via the API section.

The central equations thatEKO is solving are the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equa-
tions [7–9] given by

μ2
F

df

dμ2
F

(x, μ2
F ) = P(as(μ

2
R), μ2

F ) ⊗ f(μ2
F ) (1)

where f(x, μ2
F ) is a vector of PDFs over flavor space with x

the momentum fraction and μ2
F the factorization scale. The

main ingredients to Eq. (1) are the Altarelli-Parisi splitting
functionsP(as(μ2

R), x, μ2
F ) [13,14], which are matrices over

the flavor space. Finally, ⊗ denotes the multiplicative (or
Mellin) convolution.

The splitting functions P(as(μ2
R), x, μ2

F ) expose a pertur-
bative expansion in the strong coupling as(μ2

R):

P(as(μ
2
R), x, μ2

F ) = as(μ
2
R)P(0)(x, μ2

F )

+
[
as(μ

2
R)

]2
P(1)(x, μ2

F ) +
[
as(μ

2
R)

]3
P(2)(x, μ2

F ) + . . .

(2)

which is currently known at NNLO [13–15] and is under inves-
tigation for N3LO [16]. In a first step, the renormalization
scale μR and the factorization scale μF can be assumed to
be equal μR = μF and the renormalization scale dependence
can be restored later on. The variation of the ratio μR/μF

can be considered as an estimated to missing higher order
uncertainties (MHOU) [6].

In order to solve Eq. (1) a series of steps has to be taken,
and we highlight these steps in the following sections.

2.1 Mellin space

The presence of the derivative on the left-hand-side and the
convolution on the right-hand-side turns Eq. (1) into a set of
coupled integro-differential equations which are non-trivial
to solve.

A possible strategy in solving Eq. (1) is by tackling the
problem head-on and iteratively solve the integrals and the
derivative by taking small steps: we refer to this as “x-space
solution”, as the solution uses directly momentum space and
this approach is adopted, e.g., byAPFEL [24],HOPPET [25],
and QCDNUM [26]. However, this approach becomes quite
cumbersome when dealing with higher-order corrections, as
the solutions becomes more and more involved.

We follow a different strategy and apply the Mellin trans-
formation M

g̃(N ) = M[g(x)] (N ) =
1∫

0

dx xN−1g(x) (3)

where, as well here as in the following, we denote objects
in Mellin space by a tilde. This approach is also adopted by
PEGASUS [27] andFastKernel [10–12]. The numerically
challenging step is then shifted to the treatment of the Mellin
inverse M−1, as we eventually seek for results in x-space
(see Sect. 2.2).
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2.2 Interpolation

Mellin space has the theoretical advantage that the ana-
lytical solution of the equations becomes simpler, but the
practical disadvantage that it requires PDFs in Mellin space.
This constraint is in practice a serious limitation since most
matrix element generators [28] as well as the various gen-
erated coefficient function grids (e.g. PineAPPL [19,20],
APPLgrid [29] and FastNLO [30]) are not using Mellin
space, but rather x-space.

This is bypassed in PEGASUS by parametrizing the initial
boundary condition with up to six parameters in terms of the
Euler beta function. However, this is not sufficiently flexi-
ble to accommodate more complex analytic forms, or even
parametrizations in form of neural networks.

We are bypassing this limitation by introducing a Lagrange-
interpolation [31,32] of the PDFs in x-space on arbitrarily
user-chosen grids G:

f (x) ∼ f̄ (x) =
∑
j

f (x j )p j (x), with x j ∈ G (4)

For the usage inside the library we do an analytic Mellin
transformation of the polynomials p̃ j (N ) = M[

p j (x)
]
(N ).

For the interpolation polynomials p j we are choosing a sub-
set with Ndegree+1 points of the interpolation grid G to avoid
Runge’s phenomenon [32,33] and to avoid large cancellation
in the Mellin transform.

2.3 Strong coupling

The evolution of the strong couplingas(μ2
R) = αs(μ

2
R)/(4π)

is given by its renormalization group equation (RGE):

β(as) = μ2
R

das(μ2
R)

dμ2
R

= −
∑
n=0

βn

[
as(μ

2
R)

]2+n
(5)

and is currently known at 5-loop (β4) accuracy [34–38].
This is crucial for DGLAP solution, indeed, since the strong

coupling as is a monotonic function of the renormalization
scale in the perturbative regime, we can actually consider a
transformation of Eq. (1)

df̃
das

(N , as) = −γ (N , as)

β(as)
f̃(N , as) (6)

with γ = −P̃ the anomalous dimension and β(as) the
QCD beta function, where the multiplicative convolution is
reduced to an ordinary product.

2.4 Flavor space

Next, we address the separation in flavor space: formally
we can define the flavor space F as the linear span over all
partons (which we consider to be the canonical one):

F = F f l = span
(
g, u, ū, d, d̄, s, s̄, c, c̄, b, b̄, t, t̄

)
(7)

The splitting functions P become block-diagonal in the
“Evolution Basis”, a suitable decomposition of the fla-
vor space: the singlet sector PS remains the only cou-
pled sector over {�, g}, while the full valence combina-
tion Pns,v decouples completely (i.e. it is only coupling to
V ), and the non-singlet singlet-like sector Pns,+ is diago-
nal over {T3, T8, T15, T24, T35}, and the non-singlet valence-
like sector Pns,− is diagonal over {V3, V8, V15, V24, V35}. The
respective distributions are given by their usual definition.

This Evolution Basis is isomorphic to our canonical choice

F ∼ Fev = span(g, �, V, T3, T8, T15, T24,

T35, V3, V8, V15, V24, V35) (8)

but, it is not a normalized basis. When dealing with intrinsic
evolution, i.e. the evolution of PDFs below their respective
mass scale, the Evolution Basis is not sufficient. In fact, for
example, T15 = u+ + d+ + s+ − 3c+ below the charm
threshold μ2

c contains both running and static distributions
which need to be further disentangled.

We are thus considering a set of “Intrinsic Evolution
Bases” Fiev,n f , where we retain the intrinsic flavor distri-
butions as basis vectors. The basis definition depends on the
number of light flavors n f and, e.g. for n f = 4, we find

F ∼ Fiev,4 = span(g, �(4), V(4), T3, T8, T15, V3,

V8, V15, b
+, b−, t+, t−) (9)

with �(4) = ∑4
j=1 q

+
j and V(4) = ∑4

j=1 q
−
j .

2.5 Solution strategies

The formal solution of Eq. (6) in terms of evolution kernel
operators Ẽ is given by

Ẽ(as ← a0
s ) = P exp

⎡
⎢⎣−

as∫

a0
s

γ (a′
s)

β(a′
s)

da′
s

⎤
⎥⎦ (10)

with P the path-ordering operator. If the anomalous dimen-
sion γ is diagonal in flavor space, i.e. it is in the non-singlet
sector, it is always possible to find an analytical solution to
Eq. (10). In the singlet sector sector, however, this is only
true at LO and to obtain a solution beyond, we need to apply
different approximations and solution strategies, on which
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EKO offers currently eight implementations. For an actual
comparison of selected strategies, see Sect. 3.2.

2.6 Matching at thresholds

EKO can perform calculation in a fixed flavor number scheme
(FFNS) where the number of active or light flavors n f is con-
stant. This means that both the beta function β(n f )(as) and
the anomalous dimension γ (n f )(as) in Eq. (6) are constant
with respect to n f . However, this approximation is likely to
fail either in the high energy region μ2

F → ∞ for a small
number of active flavors, or to fail in the low energy region
μ2
F → �2

QCD for a large number of active flavors.
This can be overcome by using a variable flavor number

scheme (VFNS) that changes the number of active flavors
when the scale μ2

F crosses a threshold μ2
h . This then requires

a matching procedure when changing the number of active
flavors, and for the PDFs we find

f̃ (n f +1)(μ2
F,1) = Ẽ(n f +1)(μ2

F,1 ← μ2
h)R

(n f )Ã(n f )(μ2
h)

×Ẽ
(n f )

(μ2
h ← μ2

F,0)f̃
(n f )(μ2

F,0) (11)

where the superscript refers to the number of active flavors
and we split the matching into two parts: the perturbative
operator matrix elements (OME) Ã(n f )(μ2

h), currently imple-
mented at NNLO [39], and an algebraic rotation R(n f ) acting
only in the flavor space F .

For backward evolution this matching has to be applied in
the reversed order. The inversion of the basis rotation matri-
cesR(n f ) is simple, whereas this is not true for the OME Ã

(n f )

especially in case of NNLO or higher order evolution. In EKO
we have implemented two different strategies to perform the
inverse matching: the first one is a numerical inversion, where
the OMEs are inverted exactly in Mellin space, while in the
second method, called expanded, the matching matrices
are inverted through a perturbative expansion in as , given
by:

(
Ã

(n f )
)−1

exp
(μ2

h) = I − as(μ
2
h) Ã

(n f ),(1)

+ a2
s (μ2

h)

[
Ã

(n f ),(2) −
(
Ã

(n f ),(1)
)2

]
+ O(a3

s )

(12)

with I the identity matrix in flavor space.

2.7 Running quark masses

In the context of PDF evolution, the most used treatment of
heavy quarks masses are the pole masses, where the physical
values are specified as input and do not depend on any scale.
However for specific applications, such as the determination
of MHOU due to heavy quarks contribution inside the pro-
ton [40], MS masses can also be used. In particular, in [41] it

is found that higher order corrections on heavy quark produc-
tion in DIS are more stable upon scale variation when using
the MS scheme. EKO allows for this option as it is discussed
briefly in the following paragraphs.

Whenever the initial condition for the mass is not given
at a scale coinciding with the mass itself (i.e. μh,0 	= mh,0,
being mh,0 the given initial condition at the scale μh,0), EKO
computes the scale at which the running mass mh(μ

2
h) inter-

sects the identity function. Thus for each heavy quark h we
solve:

mMS,h(m
2
h) = mh (13)

The value mh(mh) is then used as a reference to define the
evolution thresholds.

The evolution of the MS mass is given by:

mMS,h(μ
2
h) = mh,0 exp

⎡
⎢⎢⎣−

as (μ2
h)∫

as (μ2
h,0)

γm(a′
s)

β(a′
s)

da′
s

⎤
⎥⎥⎦ (14)

with γm(as) the QCD anomalous mass dimension available
up to N3LO [42–44].

Note that to solve Eq. (14) as(μ2
R) must be evaluated in a

FFNS until the threshold scales are known. Thus it is important
to start computing the MS masses of the quarks which are
closer to the the scale μR,0 at which the initial reference value
as(μ2

R,0) is given.
Furthermore, to find consistent solutions the boundary

condition of the MS masses must satisfy mh(μh) ≥ μh for
heavy quarks involving a number of active flavors greater
than the number of quark flavors n f,0 at μR,0, implying that
we find the intercept between the RGE and the identity in
the forward direction (mMS,h ≥ μh). The opposite holds for
scales related to fewer active flavors.

3 Benchmarking and validation

Although EKO is totally PDF independent, for the sake of
plotting we choose NNPDF4.0 [5] as a default choice for our
plots, but for Sect. 3.1 where we choose the toy PDF of the Les
Houches Benchmarks [45,46]. We show the gluon distribu-
tion g(x) as a representative member of the singlet sector and
the valence distribution V (x) as a representative member of
the non-singlet sector. Note that PDFs in the same sector have
mostly the same behavior, apart from some specific regions
(e.g. the T15 distribution right after charm matching).
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3.1 Benchmarks

In this section we present the outcome of the benchmarks
between EKO and similar available tools assuming different
theoretical settings.

3.1.1 Les Houches benchmarks

EKO has been compared with the benchmark tables given in
[45,46]. We find a good match except for a list of typos which
we list here:

• in table head in [45] should be 2xL+ = 2x(ū + d̄)

• in the head of table 1: the value for αs in FFNS is wrong
(as pointed out and corrected in [46])

• in table 3, part 3 of [45]: xL−(x = 10−4, μ2
F =

104 GeV2) = 1.0121 · 10−4 (wrong exponent) and
xL−(x = 0.1, μ2

F = 104 GeV2) = 9.8435 · 10−3

(wrong exponent)
• in table 15, part 1 of [46]: xdv(x = 10−4, μ2

F =
104 GeV2) = 1.0699 · 10−4 (wrong exponent) and
xg(x = 10−4, μ2

F = 104 GeV2) = 9.9694 · 102 (wrong
exponent)

Some of these typos have been already reported in [47].
In Fig. 1 we present the results of the VFNS benchmark

at NNLO, where a toy PDF is evolved from μ2
F,0 = 2 GeV2

up to μ2
F = 104 GeV2 with equal values of the factoriza-

tion and renormalization scales μF = μR . For complete-
ness, we display the singlet S(x) and gluon g(x) distribution
(top), the singlet-like T3,8,15,24(x) (middle) and the valence
V (x), valence-like V3(x) (bottom) along with the results
from APFEL and PEGASUS. We find an overall agreement
at the level of O(10−3).

3.1.2 APFEL

APFEL [24] is one of the most extensive tool aimed to PDF

evolution and DIS observables’ calculation. It is provided
as a Fortran library, and it has been used by the NNPDF
collaboration up to NNPDF4.0 [5].

APFEL solves DGLAP numerically in x-space, sampling
the evolution kernels on a grid of points up to NNLO in QCD,
with QED evolution also available at LO. By construction this
method is PDF dependent and the code is automatically inter-
faced with LHAPDF [48]. For specific application, the code
offers also the possibility to retrieve the evolution operators
with a dedicated function.

The program supplies three different solution strategies,
with various theory setups, including scale variations and MS
masses.

The stability of our benchmark at different perturbative
orders is presented in Fig. 2, using the settings of the Les
Houches PDF evolution benchmarks [45,46]. The accuracy of
our comparison is not affected by the increasing complexity
of the calculation.

3.1.3 PEGASUS

PEGASUS [27] is a Fortran program aimed for PDF evolution.
The program solves DGLAP numerically in N -space up to
NNLO. PEGASUS can only deal with PDFs given as a fixed
functional form and is not interfaced with LHAPDF.

As shown in Fig. 1, the agreement of EKO with this tool is
better than with APFEL, especially for valence-like quanti-
ties, for which an exact solution is possible, where we reach
O(10−6) relative accuracy. This is expected and can be traced
back to the same DGLAP solution strategy in Mellin space.

Similarly to the APFEL benchmark, we assert that the
precision of our benchmark withPEGASUS is not affected by
the different QCD perturbative orders, as visible in Fig. 3. As
both,APFEL andPEGASUS, have been benchmarked against
HOPPET [25] and QCDNUM [26] we conclude to agree also
with these programs.

3.2 Solution strategies

As already mentioned in Sect. 2.5, due to the coupled integro-
differential structure of Eq. (1), solving the equations requires
in practice some approximations to which we refer as differ-
ent solution strategies. EKO currently implements 8 different
strategies, corresponding to different approximations. Note
that they may differ only by the strategy in a specific sector,
such as the singlet or non-singlet sector. All provided strate-
gies agree at fixed order, but differ by higher order terms.

In Fig. 4 we show a comparison of a selected list of solution
strategies1:

• iterate-exact: In the non-singlet sector we take the
analytical solution of Eq. (6) up to the order specified. In
the singlet sector we split the evolution path into segments
and linearize the exponential in each segment [49]. This
provides effectively a straight numerical solution of Eq.
(6). In Fig. 4 we adopt this strategy as a reference.

• perturbative-exact: In the non-singlet sector it
coincides with iterate-exact. In the singlet sector
we make an ansatz to determine the solution as a transfor-
mation U(as) of the LO solution [27]. We then iteratively
determine the perturbative coefficients of U.

• iterate-expanded: In the singlet sector we follow
the strategy of iterate-exact. In the non-singlet

1 For the full list of available solutions and a detailed descriptions see
the online documentation.
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Fig. 1 Relative differences between the outcome of NNLO QCD evolution as implemented in EKO and the corresponding results from [46],
APFEL [24] and PEGASUS [27]. We adopt the settings of the Les Houches PDF evolution benchmarks [45,46]
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Fig. 2 Relative differences between the outcome of evolution as implemented in EKO and the corresponding results from APFEL at different
perturbative orders. We adopt the same settings of Fig. 1

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

x

−10−3

−10−4

−10−5

−10−6

0

10−6

10−5

10−4

10−3

re
l.
di
st
an

ce
to

EK
O

xg(x)

Pegasus LO
Pegasus NLO
Pegasus NNLO

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

x

−10−3

−10−4

−10−5

−10−6

0

10−6

10−5

10−4

10−3
xV (x)

Pegasus LO
Pegasus NLO
Pegasus NNLO

Fig. 3 Same of Fig. 2, now comparing to PEGASUS [27]

sector we expand Eq. (6) first to the order specified, before
solving the equations.

• truncated: In both sectors, singlet and non-singlet,
we make an ansatz to determine the solution as a trans-
formation U(as) of the LO solution and then expand the
transformation U up to the order specified. Note that for
programs using x-space this strategy is difficult to pursue
as the LO solution is kept exact and only the transforma-
tion U is expanded.

The strategies differ most in the small-x region where the
PDF evolution is enhanced and the treatment of sub-leading
corrections become relevant. This feature is seen most promi-
nently in the singlet sector between iterate-exact (the
reference strategy) and truncated. In the non-singlet sec-

tor the distributions also vanish for small-x and so the differ-
ence gets artificially enhanced. This is eventually the source
of the spread for the valence distributionV (x) making it more
sensitive to the initial PDF.
PDF plots The PDF plot shown in Fig. 4 contains multiple
elements, and its layout is in common with Figs. 5 and 7.

All the different entries corresponds to different theory
settings, and they are normalized with respect to a reference
theory setup (e.g. in Fig. 4 the iterative-exact strat-
egy) and the lines correspond to the relative difference.

Furthermore, an envelope and dashed lines are displayed.
To obtain them, the full PDF set is evolved, replica by replica,
for each configuration (corresponding to a single evolution
operator, that is applied to each replica in turn). Then ratios
are taken between corresponding evolved replicas, to high-
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Fig. 4 Compare selected solutions strategies, with respect to the
iterated-exact (called exa in label) one. In particular:
perturbative-exact (pexa) (matching the reference in the non-

singlet sector), iterated-expanded (exp), and truncated
(trn). The distributions are evolved in μ2

F = 1.652 → 104 GeV2
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Fig. 5 Relative differences between the outcome of NNLO QCD evolution as implemented in EKO with 20, 30, and 60 points to 120 interpolation
points respectively

light the PDF independence of EKO rather then any specific
set-related features. The upper and lower borders of the enve-
lope correspond respectively to the 0.16 and 0.84 quantiles
of the replicas set, while the dashed lines correspond to one
standard deviation.

3.3 Interpolation

To bridge between the desired x-space input/output and
the internal Mellin representation, we do a Lagrange-
Interpolation as sketched in Sect. 2.2 (and detailed in the
online documentation). We recommend a grid of at least 50
points with linear scaling in the large-x region (x � 0.1)

and with logarithmic scaling in the small-x region and an
interpolation of degree four. Also the grids determined by
aMCfast [50] perform sufficiently well for specific pro-
cesses.

For a first qualitative study we show in Fig. 5 a compar-
ison between an increasing number of interpolation points
distributed according to [19, Eq. 2.12]. The separate configu-
rations are converging to the solution with the largest number
of points. Using 60 interpolation points is almost indistin-
guishable from using 120 points (the reference configuration
in the plot). In the singlet sector (gluon) the convergence is
significantly slower due to the more involved solution strate-
gies and, specifically, the oscillating behavior is caused due
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Fig. 6 Strong coupling evolution as(μ2
R) at LO, NLO and NNLO respectively with the bottom matching μ2

b at 1/2, 1, and 2 times the bottom
mass m2

b indicated by the band. In the left panel we show the absolute value, while on the right we show the ratio towards the central scale choice

to these difficulties. The spikes for x → 1 are not relevant
since the PDFs are intrinsically small in this region (f → 0)
and thus small numerical differences are enhanced.

Also note that the results of Sect. 3.1 (i.e. Figs. 1, 2 and
3) confirm that the interpolation error can be kept below the
benchmark accuracy.

3.4 Matching

We refer to the specific value of the factorization scale at
which the number of active flavors is changing from n f to
n f +1 (or vice-versa) as the thresholdμh . Although this value
usually coincides with the respective quark mass mh , EKO
implements the explicit expressions when the two scales do
not match. This variation can be used to estimate MHOU [6].

In Fig. 6 we show the strong coupling evolution as(μ2
R)

around the bottom mass with the bottom threshold μ2
b even-

tually not coinciding with the respective bottom quark mass
m2

b. The dependency on the LO evolution is only due to the
change of active flavor in the beta function (β0 = β0(n f )),
which can be seen in the ratio plot by the continuous connec-
tions of the lines. At NLO evolution the matching condition
already becomes discontinuous for μ2

h 	= m2
h , represented

in the ratio plot by the offset for the matched evolution. The
matching for the NNLO evolution [43,44] is intrinsically dis-
continuous, which is indicated in the ratio plot by the discrete
jump at the central scale μ2

R = m2
b. For μ2

R > 2m2
b the evo-

lution is only determined by the reference value as(m2
Z ) and

the perturbative evolution order. For μ2
R < m2

b/2 we can

observe the perturbative convergence as the relative differ-
ence shrinks with increasing orders. Since it is converging,
the effect of the matching condition should cancel more and
more exactly with the difference in running, but the magni-
tude of both is increasing with the order, since the perturbative
expansion of the beta function β(as) is a same sign series.

In Fig. 7 we show the relative difference for the PDF evo-
lution with threshold values μ2

h that do not coincide with
the respective heavy quark masses m2

h . When matching at a
lower scale the difference is significantly more pronounced
as the evolution includes a region where the strong coupling
varies faster. When dealing with μ2

h 	= m2
h the PDF match-

ing conditions become discontinuous already at NLO [39].
These contributions are also available in APFEL [24], but
not in PEGASUS [27] and although they are present in the
code of QCDNUM [26] they can not be accessed there. For
the study in [18] we also implemented the PDF matching at
N3LO [51–59].

3.5 Backward

As a consistency check we have performed a closure test
verifying that after applying two opposite EKOs to a custom
initial condition we are able to recover the initial PDF. Specif-
ically, the product of the two kernels is an identity both in
flavor and momentum space up to the numerical precision.
The results are shown in Fig. 8 in case of NNLO evolution
crossing the bottom threshold scale μF = mb. The differ-
ences between the two inversion methods are more visible
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Fig. 7 Difference of PDF evolution with the bottom matching μ2
b at 1/2, 2, and 5 times the bottom mass m2

b relative to μ2
b = m2

b. Note the different
scale for the two distributions. All evolved in μ2

F = 1.652 → 104 GeV2
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Fig. 8 Relative distance of the product of two opposite NNLO EKOs
and the identity matrix, in case of exact inverse and expanded match-
ing (see Eq. (12)) when crossing the bottom threshold scale μ2

b =

4.922 GeV2. In particular the lower scale is chosen μ2
F = 4.902 GeV2,

while the upper is equal to μ2
F = 4.942 GeV2,

for singlet-like quantities, because of the non-commutativity

of the matching matrix Ã
(n f )

S .
Special attention must be given to the heavy quark distri-

butions which are always treated as intrinsic, when perform-
ing backward evolution. In fact, if the initial PDF (above the
mass threshold) contains an intrinsic contribution, this has to
be evolved below the threshold otherwise momentum sum
rules can be violated. This intrinsic component is then scale
independent and fully decoupled from the evolving (light)
PDFs. On the other hand, if the initial PDF is purely pertur-
bative, it vanishes naturally below the mass threshold scale
after having applied the inverse matching. In this context,
EKO has been used in a recent study to determine, for the
first time, the intrinsic charm content of the proton [18].

3.6 MS masses

In Fig. 9 we investigate the effect of adopting a running mass
scheme onto the respective PDF sets. The left panel shows
the T15(x) distribution obtained from the NNPDF4.0 pertur-
bative charm determination [5] using the pole mass scheme
and the MS scheme, respectively. The distributions have been
evolved on μ2

F = 1 → 104 GeV2. The mass reference val-
ues are taken from [60], with the MS boundary condition on
the charm mass given as mc(μm = 3 GeV) = 0.986 GeV,
leading to mc(mc) = 1.265 GeV, while the charm pole mass
ismpole

c � 1.51 GeV [5]. The major differences are visible in
the low-x region where the DGLAP evolution is faster and the
differences between the charm mass treatment are enhanced:
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Fig. 9 (left) The NNPDF4.0 perturbative charm distribution T15(x) [5] with MS and pole masses NNLO evolution when running on μ2
F = 1 →

104 GeV2. (right) Relative difference to EKO for the same run with APFEL [24]

Fig. 10 Running of the bottom quark mass mb(μ
2
m) for different

threshold ratios, similar to Fig. 6. The plot shows how the different
choices of matching scales affect the running in the matching region

(and slightly beyond) at LO, NLO, and NNLO. The border condition
for the running has been chosen at mb(mb) = 4.92 GeV, as it is clear
from the plot, since it is the intersection point of all the curves shown

an higher value of the charm mass increases the singlet like
distribution T15(x). For the sake of comparison, in the right
panel, we plot the relative distance to our result when com-
paring with the APFEL [24] implementation. As expected
the pole mass results are closer due to the same value of
the charm mass, while the MS results have a slightly bigger
discrepancy which remains in all the x-range around 10/00

accuracy.
In Fig. 10 we show the evolution of the MS bottom mass

mb(μ
2
m) using different matching scales μ2

b equal to 1/2, 1

and 2 times the mass m2
b, for each perturbative order (LO,

NLO, and NNLO). The curve for μ2
b = m2

b has been plotted
as the central one (bold), while the other two are used as the
upper and lower borders of the shaded area (according to their
value, point by point). The reference value mb(μ

2
b,0), has

been chosen equal for the three curves, and it has been chosen
at mb(mb) = 4.92 GeV. For this reason, above the central
matching point μ2

m ≥ m2
b two curves coincide (μ2

b = m2
b

and μ2
b = m2

b/2) since they are both running with the same
number of flavors (n f = 5) and they have the same border
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condition. The curve using μ2
b = 2m2

b, however, still runs
with a smaller number of flavors (n f = 4) and so does not
match the former two. In the lower region μ2

m < m2
b this is

not happening, because even if the number of flavors is now
the same, the border condition is specified above matching
for μ2

b = m2
b (in n f = 5). So, starting from m2

b and going
downward, the central choice μ2

b = m2
b is matched first and

then evolved, while the higher scale choice μ2
b = 2m2

b imme-
diately runs with four light flavors at m2

b. Thus the difference
consists just in the matching.

4 Conclusions

In this paper we presented a new QCD tool to perform pertur-
bative DGLAP evolution. In Sect. 2 we reviewed some theory
aspects that are relevant for this paper. In Sect. 3 we presented
a few applications of the implemented EKO features.

Most of the work done to developEKO has been devoted to
reproduce known results from other programs (and slightly
extending or amending them to have a consistent behavior), in
order to have a more flexible framework where to implement
new essential features for physics study (more on this in the
Outlook at the end of this section). Benchmarks with already
existing and widely used codes are shown in Sect. 3.1, and
demonstrated to be successful. Further, the multiple options
and configurations available are presented in subsequent sec-
tions and discussed, all leading to known and understood
behaviors.

This does not mean that the current status of EKO does not
expose any novelty. Table 1 summarizes a general compari-
son on specific features between several evolution programs;
we list only tools targeting the same scope of EKO, that is

unpolarized PDF fitting. It is exactly for this target (PDF fit-
ting) that EKO is optimized, and among the others three spe-
cific features are outstanding: the solution in N -space, the
backward VFNS evolution, and the operator-oriented nature.

EKO is the first code to solve DGLAP in Mellin space that
has been explicitly designed to be used for PDF fitting, and
while this may seem irrelevant, it has been explicitly picked
as an improvement for EKO over the similar codes. There
are multiple solutions that are only available in x-space by
applying numerical approximated procedures, making the
exact solution the most reliable one. In N -space this is not
required, and the choice of the solution is left completely
up to the user, with no numerical deterioration among the
alternatives (as it was already for PEGASUS), and thus it can
be based on theory considerations. Moreover, the perturba-
tive QCD ingredients used in the evolution (like anomalous
dimensions) are often first computed in N -space, making
them available for EKO immediately, while a further com-
plex transformation is needed for usage in the other codes.

All the programs listed are able to preform backward evo-
lution in FFNS, that consists in swapping the integral evolu-
tion bounds, but the VFNS backward evolution is a unique
feature of EKO, which involves the non-trivial inversion of
the matching matrix, as outlined in Sect. 2.6.

The reason why EKO is an operator-first framework is
discussed in detail in Appendix A.1, but essentially it makes
EKO particularly suited for our target: repeated evaluation
of evolution for PDF fitting. Producing only operators makes
EKO less competitive for single one-shot applications, but
the optimal scaling with the size of the task (practically con-
stant, since the time consumed is dominated by the operator
calculation) makes it extremely good for massive evolution
(and already good when evolving O(10) elements).

Table 1 Comparison between several evolution programs. The upper
part of refers to some physical features: by x we mean the momentum
fraction, N the Mellin variables, x∗ denotes that PEGASUS is able to
deal with x-space input, but only for fixed PDF parametrization (see

[27]). E and f stands for evolution operators and PDFs respectively.
The lower part refers to program aspects, such as program language
and interface with LHAPDF

Feature EKO APFEL [24] PEGASUS [27] HOPPET [25] QCDNUM [26]

Input space x x N , x∗ x x

Solution space N x N x x

Delivery space x x N , x x x

Delivery E fa f̃, f fa f

Backward FFNS � � � � �
Backward VFNS � (�)b

Intrinsic evolution �
Prog. language Python Fortran 77 Fortran 77 Fortran 95 Fortran 77

Produce LHAPDF grids � �
Interpolation grids � �

a Both, APFEL and HOPPET, have an interface to access an evolution operator, but no one of the two can be used to store it and reuse it later on
(this would require a dedicated interface).
b HOPPET is able by default to do backward VFNS, but is not implementing intrinsic matching conditions (i.e. the contributions associated with
the presence of an heavy flavor PDF) nor the shifted matching scale

123



Eur. Phys. J. C (2022) 82 :976 Page 13 of 18 976

It should be observed that while the choice of Python
as programming language particularly stands out among the
other programs (all written in Fortran, either 77 or 95), this is
only a benefit from the point of view of project management
(being Python much expressive) and third parties contribu-
tions (since its syntax is familiar to many). Indeed, we make
sure not to experience Python infamous performances, when
it comes to the most demanding tasks (like complex kernels
evaluation, or Mellin inverse integration) as they either use
compiled extensions (e.g. those available in scipy [61]) or
they are compiled Just In Time (JIT), using the numba [62]
package.

While the main purpose of EKO is to evolve PDFs, other
QCD ingredients are required to perform the main task, like
evolving the strong coupling αs , running quark masses, or
dealing with different flavor bases: they are all provided to
the end user, and for this reason actual results are shown in
this paper.

We remark that EKO is an open and living framework,
providing all ingredients as a public library, and accepting
community contributions, bug reports and feature requests,
available through the public EKO repository.
Outlook As outlined above EKO implements mostly well-
known physics, but we expect a series of upcoming project
to build on the provided framework that will extend the cur-
rent knowledge on PDFs. Several features are already sched-
uled to be implemented, and a few of them are already at an
advanced stage: the N3LO solution will be included as soon
as it becomes available [16], while N3LO matching condi-
tions and strong coupling are already implemented and used
in the recent determination of the intrinsic charm content of
the proton [18].

Another main goal of EKO is to provide a backbone in
the determination of MHOU, in the first place by allowing the
variation of the various scales used in the determination of
evolved PDFs, that can be considered as an approximation to
higher orders, implementing the strategies described in [6].
The variation of matching scales involved in VFNS is already
implemented and available.

Other planned features include: polarized evolution [63–
65], evolution of fragmentation functions [66–68], and
the QED⊗QCD evolution of the photon-in-hadron distribu-
tion [69–71], to estimate the impact of electro-weak correc-
tions onto precision predictions.
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A Technical overview

An EKO is effectively a rank 5 tensor Eμ,iα jβ , that evolves a
PDF set from one given scale to a user specified list of final
scales μ:

fμ,iα = Eμ,iα jβ f (0)
jβ (A.1)

where i and j are indices on flavor, and α and β are indices
on the x-grid.

The computation of each rank 4 tensor is almost indepen-
dent: In a FFNS for each targetμ2

F an operator Ẽ(μ2
F,0 → μ2

F )

is computed separately. Instead, in a VFNS first a set of opera-
tors is computed, to evolve from the initial scale to any match-
ing scales (we call these threshold operators). Then, for each
target μ2

F , an operator is computed from the last intermediate
matching scale to μ2

F ; finally they are composed together.

A.1 Performance motivations and operator specificity

Before diving into the details of EKO performances there is a
fundamental point that has to be taken into account: EKO is
somehow unique as an evolution program, because its main
and only output consists in evolution operators.

For this reason, a close comparison on performances with
other evolution codes (whose main purpose is the evolution
of individual PDFs) would be rather unfair: evolving a single
PDF is comparable to the generation of the transformation of
a single direction in the PDF space, while the operator acts
on the whole function space.

The motivation to primarily look for the operator itself
relies on the specific needs of a PDF fit itself. Indeed, a fit
requires repeated usage of evolution for the χ2 evaluation for
each fit candidate, and a final evolution step for the generation
of the PDF grids to deliver, as those used by LHAPDF [48].
The first step has been automated long ago, by the genera-
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Table 2 Selected PDF sets with their respective number of members

Set name Members

CT18NNLO [3] 59

MSHT20nnlo_as118 [4] 65

NNPDF40_nnlo_as_01180 [5] 101

tion of theFastKernel tables (formerly done withAPFEL
evolution, through APFELcomb, inspired to [72]), that store
PDF evolution into the grids for predictions, while the second
was repeated at any fit, since for each fit is a one-time oper-
ation (even though it is actually repeated for the number of
Monte Carlo replicas, or Hessian eigenvectors, whose typical
sizes are reported in Table 2).

Actually, both the operations of including evolution in the-
ory grids and PDF grids generation can be further optimized,
considering that the evolution only depends on a small num-
ber of theory parameters, and so the operator does, such that
it can be generated only once, and then used over and over.

On top of replicas generation, the search towards an opti-
mal fitting methodology is an iterative process, that involves
a large number number of fits. Moreover, whatever program
supports the generation ofFastKernel tables has to create
some kind of evolution operator on its own (since the goal of
FastKernel tables is exactly to be PDF agnostic).

So, the EKO work-flow is not a complete novelty, since
it was preceded by APFEL in-memory operator generation,
but it is a further and strong improvement in that direction:
being operator-oriented from the beginning, optimizations
have been performed for this specific task2, and maintain-
ing an actual operator format, the operators reuse is possible
even across the boundary of FastKernel tables genera-
tion, and applied with benefit, e.g., for the massive replicas set
evolution (consider NNPDF40_nnlo_as_01180_1000,
that is a single set consisting of 1000 replicas, that can be
evolved with a single operator instead of running 1000 times
an evolution program, like all the other similar sets), but even
repeated fits.

While the benefit is limited for other use cases, any other
highly iterative phenomenological study, in which PDF evolu-
tion is repeatedly evaluated from different border conditions,
would benefit from being backed by EKO, since the cost of
DGLAP evaluation is paid only once (even though we are
conscious that this is mainly beneficial for PDF fitting).

A.2 Computation time

As we said above the computation almost happens indepen-
dently for each target μ2

F and the amount of time required

2 E.g. internally integrating the minimal amount of anomalous dimen-
sions required for the operator determination, while still providing a
flexible delivery on all the output dimensions (re-interpolating the x
dependencies, or rotating into different flavor bases).

Table 3 Rough estimates of times taken by EKO, with an average sized
x-grid of 50 points and single core

Patch (s) Matching (s)

LO 10 ∅

NLO 45 65

NNLO 60 75

scales almost linearly with the number of requested μ2
F ,

except for the thresholds operators in VFNS that are com-
puted only once.

We call computing an operator with a fixed number of
flavors “evolving in a single patch”, since in a VFNS the evo-
lution might span multiple patches. When more than a single
patch is involved, operators have to be joined at matching
scales μh with a non-trivial matching, that has to be com-
puted separately (these are part of the threshold operators).

Typical times required for these calculations in EKO are
presented in Table 3. As expected the complexity of the cal-
culation grows with perturbative order, and so even the time
taken increases. At LO no matching conditions are needed,
while for NLO and NNLO they are computed once for each
matching scale.

We consider these time performances satisfactory, even
though it is not straightforward to compare EKO with the
other evolution codes, as mentioned in Appendix A.1. As
an example, NNLO evolution in μ2

F = 1.652 Gev2 →
100 GeV2 crossing the bottom matching at 4.922 Gev2 takes
∼ 60 s + 135 s in EKO (135 s for the thresholds operators
initialization, 60s for the last patch). APFEL takes ∼ 25 s
on the same custom interpolation x-grid (APFEL is able to
perform significantly better on a pre-defined, built-in grid).

This comparison shows that on the evolution of a single
PDFEKO is not really competitive, but the ratio is limited to ∼
7.5. However, we already pointed out that the two programs
perform a rather different task: computing a whole operator
against a single PDF evolution (on which the benchmarking
is done, only because both programs are able to perform this
simple task, but it is a worthless task for EKO usage).

The comparison is technically possible, but we do not
encourage this kind of benchmarks, because the typical task
is actually different, and this motivates the different perfor-
mances. EKO perform bad in the case of the single task, but
with a perfect scaling (negligible work needed for repeated
evolution, practically constant), while any other program
would perform better for the atomic task, but with a linear
scaling in the number of objects to be evolved.

Each program should be selected having in mind the spe-
cific usage.EKO is recommended for PDF fitting, and repeated
evolution in general.

The time measures in Table 3 and the rest of this section
have been obtained on a regular consumer laptop:

OS: Linux 5.13 Ubuntu 21.10 21.10
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(Impish Indri) CPU: (4) x64 Intel(R)
Core(TM) i5-6267U CPU @ 2.90GHz
Memory: 7.56 GB

None one of them is a careful benchmark, i.e. repeated multi-
ple times, but is mainly meant to show an order of magnitudes
comparison.

A.3 Memory footprint

Memory usage is dominated by the size of the final object pro-
duced, since a much smaller internal representation is used
during the computation. The final object holds information
about the rank 5 operator, so it is strictly dependent on the
size of the interpolation x-grid and the amount of target μ2

F
values.

For an average sized x-grid of 50 points, and a single
target μ2

F the size of the object in memory is of ∼ 7.5MB,
which scales linearly with the amount of μ2

F requested. The
dependency on the size of the x-grid is roughly quadratic.

A.4 Storage

For permanent storage similar considerations applies with
respect to the memory object. The main difference is that the
object dumped by the EKO functions is always compressed,
leading to a size of ∼ 500kB for a single μ2

F , which does
not necessarily scales linearly with the amount μ2

F since the
full rank 5 tensor is compressed all-together (a linear scaling
is just the worst case). Similar considerations applies to the
dependency on the size of the x-grid.

A.5 Possible improvements

There are a few easy directions to boost the current perfor-
mances of EKO, leveraging the μ2

F splitting.
JobsTo improve the speed of the computation, all the ingredi-
ents of the final tensor (patches & matching) can be computed
by separate jobs, and dispatched to different processors. They
just need to be joined at the very end in a simple linear algebra
step.

Notice that the time measures presented in Appendix A.2
are obtained with a fully sequential computation on a single
processor, the only one available at present time.
Memory Since both the computation and the consumption
of an EKO can be done one μ2

F at a time, it is possible to store
each rank 4 tensor on disk as soon as it is computed, and to
load them in memory only while applying them.

Both of these improvements are in the process of being
implemented in EKO.

B User manual

In this section we provide an extremely brief manual about
EKO usage. We give here the instruction for the release
version associated to this paper. A more expanded and
updated manual for the current version can be found in the
on-line documentation: https://eko.readthedocs.io/en/latest/
overview/tutorials/index.html.

B.1 Installation

The installation provided to the user of the package is very
simple.

We require only:

• a working installation of Python 33 and
• the official Python package manager pip, usually bun-

dled together any distribution of Python itself.

You can check their availability on your system with:

1 python3 --version
2 python3 -m pip --version

(for a non sh based environment, e.g. Windows, check the
official Python documentation).

The actual installation of the package can be obtained with
the following command:

1 python3 -m pip install eko ==0.8.5

B.2 Usage

Using EKO as an evolution application is pretty simple,
involving the call of a single function to produce an evo-
lution operator.

Nevertheless, it has been intentionally left up to the user
the definition of all the settings required for a run. This might
be confusing for a newcomer, but it is the best approach since
the actual settings might be different for any given applica-
tion, and there is no one that can be recommended as a best
practice; in order to not suggest such an interpretation, we
decided to not provide any defaults, and to require the user
to be aware of the whole set of settings.

We present now a minimal example, in which the settings
are taken from the official benchmarking setup in [45] (which
is not worse nor better than any other choice). To be able to
access the toy PDF established in [45] you need to install in
addition our benchmarking package:

1 python3 -m pip install banana -hep
==0.6.6

3 The exact Python version support can be found on the official PyPI
(Python Package Index, the official Python registry) EKO page, see
https://pypi.org/project/eko/.
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Then you are set to run the following snippet:

1 import numpy as np
2 import eko # of course we need eko
3 from banana import toy # load the official toy PDF
4

5 # theory setting
6 th_card = {
7 "HQ": "POLE", # heavy quark mass scheme
8 "IB": 0, # allow intrinsic bottom?
9 "IC": 0, # allow intrinsic charm?

10 "MaxNfAs": 6, # max number of flavor in alpha_s evolution
11 "MaxNfPdf": 6, # max number of flavor in pdf evolution
12 "ModEv": "EXA", # evolution mode
13 "PTO": 0, # perturbation order of evolution: 0=LO , 1=NLO , 2=NNLO
14 "Q0": np.sqrt (2.0), # fitting scale [GeV]
15 "Qmb": 4.5, # MSbar reference scale for bottom mass [GeV]
16 "Qmc": np.sqrt (2.0), # MSbar reference scale for charm mass [GeV]
17 "Qmt": 175., # MSbar reference scale for top mass [GeV]
18 "Qref": np.sqrt (2.0), # reference scale for alpha_s [GeV]
19 "alphas": 0.35, # reference value for alpha_s
20 "fact_to_ren_scale_ratio": 1.0, # scale variation ratio
21 "kbThr": 1.0, # matching ratio to bottom mass
22 "kcThr": 1.0, # matching ratio to charm mass
23 "ktThr": 1.0, # matching ratio to top mass
24 "mb": 4.5, # bottom mass [GeV]
25 "mc": np.sqrt (2.0), # charm mass [GeV]
26 "mt": 175., # top mass [GeV]
27 "nf0": 3, # number of flavors at fitting scale
28 "nfref": 3, # number of flavors at alpha_s reference scale
29 }
30 # operator settings
31 op_card = {
32 "Q2grid": [10000.] , # final scale grid
33 "backward_inversion": "expanded", # backward inversion method
34 "debug_skip_non_singlet": False , # debug option
35 "debug_skip_singlet": False , # debug option
36 "ev_op_iterations": 10, # number of iterations for solver
37 "ev_op_max_order": 10, # expansion order of solver
38 "interpolation_is_log": True , # use logarithmic interpolation?
39 "interpolation_polynomial_degree": 4, # polynomial degree of

interpolation
40 "interpolation_xgrid": eko.interpolation.make_grid (30, 30),
41 # interpolation grid ranging from 1e-7 to 1
42 }
43

44 # 1. compute the eko
45 evolution_operator = eko.run_dglap(th_card , op_card)
46 # 2. load the initial PDF (only for border condition) - any lhapdf like

object will do
47 pdf = toy.mkPDF("", 0)
48 # 3. contract the given PDF with the eko
49 evolved_pdfs = evolution_operator.apply_pdf(pdf)
50 # then e.g. print the evolved gluon (pid = 21) at Q2 = 10000 GeV^2 for the

first point x=1e-7
51 print(evolved_pdfs [10000.]["pdfs"][21][0])
52 # if we multiply with x again we obtain 1.3263e3
53 # The reference value from the official benchmark is 1.3272e3
54 # This is compatible with Fig. 1
55 print(1e-7 * evolved_pdfs [10000.]["pdfs"][21][0])
56 # or we can print the value of alpha_s at this scale , which also matches

the reference value: 0.122306
57 print(evolution_operator "Q2grid"][10000.]["alphas"])
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For more information about the settings, please refer to
the online documentation.

Note, that the reference values for the gluon and the strong
coupling are taken from [45, Table 2].

Also note, that the example may not work with newer
version of the code, for which, instead, we recommend to
follow the online tutorials.
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