
ar
X

iv
:2

30
8.

06
84

7v
1 

 [
m

at
h.

PR
] 

 1
3 

A
ug

 2
02

3

Well-posedness of a reaction-diffusion model with stochastic dynamical

boundary conditions

Mario Maurelli∗, Daniela Morale†, Stefania Ugolini‡

August 15, 2023

Abstract

We study the well-posedness of a nonlinear reaction diffusion partial differential equation system on the
half-line coupled with a stochastic dynamical boundary condition, a random system arising in the description
of the evolution of the chemical reaction of sulphur dioxide with the surface of calcium carbonate stones. The
boundary condition is given by a Jacobi process, solution to a Brownian motion-driven stochastic differential
equation with a mean reverting drift and a bounded diffusion coefficient. The main result is the global existence
and the pathwise uniqueness of mild solutions. The proof relies on a splitting strategy, which allows to deal with
the low regularity of the dynamical boundary condition.
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Keywords: stochastic dynamical boundary conditions, nonlinear reaction-diffusion PDEs, application to

sulphation.

1 Introduction

This paper concerns the study of the well-posedness and regularity of the solution of the following random
system:

∂

∂t
(ϕs) = ∇ · (ϕ∇s)− λϕsc, (0,∞)× (0, T )

∂tc = −λϕsc,
(1)

with λ ∈ R+, coupled with initial conditions s(x, 0) = s0(x), c(x, 0) = c0(x) for x ∈ R+, ϕ = ϕ(c), where
randomness is due to the coupling of (1) with a stochastic dynamical boundary condition for s, given by

s(t, 0) = ψt, t ∈ [0, T ].

More precisely, the idea is to consider as boundary condition the stochastic process ψt given by the unique
bounded solution of the following stochastic differential equation of Itô type

dψt = α(γ − ψt)dt+ σ
√
ψt (η − ψt)dWt, (2)

where α, γ, σ and η are positive parameters and W ≡ {Wt}t∈[0,T ] is a Wiener process.

The deterministic system (1), endowed with a constant boundary condition, has been introduced in [2] as an
adimensionless model providing a quantitative description of the diffusion and the chemical action of sulphur
dioxide (SO2) on the porosity of calcium carbonate stones (CaCO3); it is assumed that polluted air (and so the
sulphur dioxide) diffuses through the pores of the stones and interacts with the surface of the pores. In (1) s
stands for the porous concentration of SO2, namely the concentration taken with respect to the volume of the
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pores, and c for the local density of CaCO3. The function ϕ(c) is the porosity (volume of pores/total volume),
which is supposed to depend only on the density of calcite

ϕ(c) = A+Bc.

The porosity is related to the concentration ρs of SO2 (fraction of total volume occupied by SO2) by the
relation ρs = ϕ(c)s. For a detailed derivation of the system (1), the interested reader may refer to [2], where
the authors investigate the qualitative behavior of the solution on the half-line. To the best of our knowledge,
all the dynamical systems considered so far describing the degradation of calcium carbonate due to the attack
of sulphur dioxide are deterministic ones, with the exception of [7], where a new nonlinear differential system
for marble sulphation including the surface rugosity, a function obeying a damage-like equation which describes
the microscopic variation of a surface with respect to a flat configuration, is introduced. During the numerical
simulations of the deterministic system a random surface rugosity on the boundary based on Weibull’statistics
is considered, while here a dynamical model for the boundary condition is proposed.

The mathematical properties of the system (1) on the real line R, again with a constant boundary condition,
have been studied in [18, 20]. In [21] the well-posedness of the model is faced in the case x ∈ (0,∞), as in
the present paper, with a boundary condition ψ for s given by a non negative function with W 1,1 regularity
in time; in the same paper the fast reaction limit and the large time behavior is also discussed. See also [2]
for the mathematical study of a generalization of the deterministic model, with Dirichlet boundary conditions
for the unknown s expressed in terms of an assigned space-time function. In [2, 18] the boundary condition for
s is assumed to be constant, even tough, at least as far as numerical analysis is concerned, the authors state
that the same analysis may be performed in the case where s(0, t) is a given pre-selected bounded measurable
positive function. They prove existence and uniqueness results and some regularity properties of global solutions,
extending existence and uniqueness results of local solutions, at least for smooth initial data as in [11].

Similar evolution problems with stochastic dynamical boundary conditions has been studied with particular
attention to the case in which at the boundary the solution acts as a white noise; see, for example, [1,5,8,10,12,13]
and the literature therein. Particular attention has been devoted to the case where, at the boundary, the solution
acts as a white noise. For example, in [8,12] the framework for the analysis of Poisson and heat equations excited
by the white in time and/or space noise on the boundary is considered, and existence and uniqueness of weak
solutions in the space of distributions are proven. Closer to our setting are the works in [1,10], where the solution
satisfies a stochastic differential equation at the boundary; these works use an approach via semigroup theory
to show existence and uniqueness of mild solutions; see also [5]. The difference of the present work with respect
to [1, 10] is the presence of the equation for c, which makes the system (1) not strongly parabolic.

In this paper, we introduce the stochastic boundary condition (2) with the aim to study the existence,
uniqueness and regularity of the solution of the random system (1)-(2). The motivation of the choice of equation
(2) derives from a statistical study of the source term ψ giving the concentration of sulfur dioxide in the air.
Indeed, as observed in [3] for the time series of the SO2 concentration (in air) in the Milano area, it is clearly not
realistic to consider such concentration as a constant; evidence of a random evolution can be easily recognized.
Within a preliminary study, the authors propose the same Pearson process, solution of a mean reverting equation
with bounded Jacobi noise as a model for the boundary function ψt, taking advantage of an estimation procedure
based on the time series of real data, combined with a numerical simulation of the system (1)-(2). This class of
diffusion processes (2) is well-studied both in the biological literature, where they are known as Wright-Fisher
processes, and in the mathematical one known as Jacoby processes. See, e.g.[19] for a recent approach to these
processes via Dirichlet forms. The Pearson processes are interesting both for the modeling and theoretical point
of view, since they share the feature that under certain conditions upon the process parameters α, γ, σ, η it can
be proved that, when it starts within [0, η], η > 0, it remains positive and bounded in the finite region [0, η].
Furthermore one can establish that (2) admits an invariant probability distribution, which is a generalized Beta
distribution. It is a suitable way to introduce a bounded noise, in spite of the fact that it is driven by a Wiener
process W , which is a very important issue in the applications [15, 16].

The main mathematical problem with the stochastic boundary condition (2) is the fact that this condition
is no longer in W 1,1 (P -a.s.), even tough it is more regular than the white noise. More precisely, the diffusion
process at the boundary inherits the same regularity of the Wiener process W , that is ψ has almost surely
trajectories in Cβ , for every β ∈ (0, 1/2), i.e. the class of Hölder continous functions of order less than one
half. So the well-posedness of the PDE needs a carefully investigation. Indeed, randomness at the boundary is
coupled with a system of nonlinear parabolic equations which is not strongly parabolic and only some energy
estimates are available for analysing it, as noticed in [2, 18]. We stress that the strategy of the proof using in
[21] cannot be adopted here, essentially because of the non differentiability of the boundary function ψt (see
Remark 34).
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Our approach is based on a splitting strategy, in which the solution (s, c) of the system (1)-(2) is seen as
(u+v, c), where from one side u is solution to the heat equation coupled with the stochastic boundary condition
(2), not depending upon the less regular function c; on the other side (v, c) is a solution of a non linear system,
depending upon u (in a functional way), but endowed with a deterministic constant boundary condition. This
strategy allows us to compensate the irregularity of the stochastic boundary path with the regularity of u,
coming from the heat equation. In particular, concerning u, the W 1,q norm of u can be controlled, in a pathwise
sense, by the Cβ norm of ψ, for q < 1/(1− 2β) (see Proposition 13); this is a rather classical result but we give
here a self-contained proof based on fractional Sobolev spaces and interpolation theory.

As far as concerns the couple of variables (v, c), the equation satisfied by v is nonlinear and nonlocal, due to
the dependence of c on v itself, involving also u and ∂xu. The assumptions of classical existence theorems for
nonlinear scalar parabolic equations are not verified because of the lack of L∞ estimate of the quantity ∂xc, as
mentioned in [2, 18, 21], where the authors prove a global existence result for suitable weak solutions, based on
the control of ∂xc in L

2. We partially use their results, but in our case we cannot apply the same strategy, due
to the terms containing u and ∂xu. To control these terms, we use the W 1,q bound on u in Proposition 13. With
this argument, we get the L2 bound on a linearized system, Proposition 33, and the a priori L2 estimate on s,
Proposition 37, which represent the main novelty of our proof. Our principal result states the well-posedness
for the nonlinear system (1) under the hypothesis ψ ∈ Cβ([0, T ]) with β ∈ (1/4, 1/2). The lower bound β > 1/4
on the Hölder exponent for ψ comes from the L2 integrability condition required for ∂xc, which in turn forces
the solution to the heat equation u to be in W 1,2.

To sum up, we extend the well-posedness result in [21] by adding a random dynamical boundary condition,
given by the solution to an SDE with non Lipschitz diffusion coefficient. In particular, from the analytical point
of view, we allow the boundary condition to have lower regularity with respect to the case in [21], and precisely
to be only β-Hölder continuous, with β > 1/4. It would be interesting to investigate the role of an intermediate
irregularity between the one typical of Brownian motion and the one of white noise. We plan to work on this
direction in a future paper.

The paper is organized as follows. In Section 2 we introduce the PDE-ODEmodel with a stochastic dynamical
boundary condition. We discuss and prove the principal properties of the boundary process, as boundness and
Hölder continuity. The splitting strategy and our definition of mild solution are specified. The solution of the
heat equation with the stochastic boundary condition above described is analysed in Section 3 with the aim to
establish for it continuity results in terms of the Cβ norm of the stochastic boundary function. In Section 4 a
study of a version of a linear equation for s̃ = ũ+ ṽ with prescribed regularity upon the coefficient is described.
In particular the existence of a mild solution ṽ, and of s̃ in L∞([0, T ],W 1,p(R+)) is established. Such results are
used in Section 5, where the main well-posedness achievements are illustrated.

Notations. Throught the paper, for sake of simplicity we have introduced in the proofs the following notations
for the involved Banach spaces Lpx := Lp(R+) in space and Lpt (L

q
x) := Lp([0, T ], Lq(R+)) in time and space.

Similar notation is considered for the fractional Sobolev spaces. Furthermore, given a function f defined on
[0, T ]× R+, we define the marginals as ft := f(t, ·), for t ∈ [0, T ] and fx := f(·, x), for x ∈ R+.

Acknowledgements. We acknowledge support from Università degli Studi di Milano through the SEED
grant ‘SciCult: Modellizzazione matematica e analisi SCIentifica per i beni CULTurali: previsione e prevenzione
del degrado chimico e meccanico di pietre monumentali in ambienti outdoor’. Part of the work was done while
M.M. was at Università degli Studi di Milano. We thank Marco Alessandro Fuhrman for proposing this class of
problems, Stefano Bonaccorsi, Cecilia Cavaterra and Roberto Natalini for relevant discussions on the topic.

2 A PDE - ODE model with a stochastic boundary condition

Let us introduce and describe the initial boundary value problem under study. Hence, let us consider the
following reaction diffusion system for the couple (s, c)

∂

∂t
(ϕs) = ∇ · (ϕ∇s)− λϕsc, (0,∞)× (0, T ) (3)

∂tc = −λϕsc, (4)

where λ ∈ R+. The initial conditions
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s(x, 0) = s0(x), x ∈ (0,∞)

c(x, 0) = c0(x), x ∈ (0,∞)

are such that s0, c0 ∈ C0(R) ∩ C∞(R), where C0(R) is the class of the continuous function with exponential
decay to infinity. We suppose that 0 ≤ s0 ≤M, 0 < m ≤ c0 ≤ C0.

A stochastic dynamical boundary condition We study the case in which the boundary function for
the solution s is random and it is given by a stochastic process

s(0, t) = ψt, ψt ∈ Cβ , 1/4 < β < 1/2. (5)

The specific process we have in mind is a specific Pearson process {ψt}t∈[0,T ], solution to the following mean
reverting generalized Jacobi stochastic differential equation

dψt = α(γ − ψt)dt+ σ
√
ψt (η − ψt)dWt,

ψ0 ∈ (0, η)
(6)

with α, σ, γ, η ∈ R+, and γ ≤ η. Overall we have a PDE problem with a boundary condition which is not only
stochastic but with less regularity. Indeed, the following properties hold.

Proposition 1. Let us consider equation (6), with α, σ, γ, η ∈ R+ and γ ≤ η. Assume ψ0 ∈ [0, η]. The solution
of equation (6) exists (globally on [0, T ]) and is pathwise unique for any ψ0 ∈ [0, η]. Furthermore, let us suppose
that the following conditions upon the parameters hold

αγ ≥ σ2η

2
; α(η − γ) ≥ σ2η

2
. (7)

Then for any t ∈ (0, T ],
0 ≤ ψt ≤ η, (8)

in particular we have ψt ∈ L∞(R+).

Proof. We give a sketch of the proof. See, for example, [22]. We notice that the drift coefficient α1(x) = α(γ−x)
is Lipschitz continuous for any x ∈ R, while the diffusion coefficient σ1(x) = σ

√
x(η − x) is only continuous for

any x ∈ [0, η]. Furthermore, for any x ∈ [0, η],

|α1(x)|2 = |αγ − αx|2 ≤ α2(|γ|2 + |2γx|+ |x|2) ≤ C1(α, γ)

(
1 + |x|2

)

|σ1(x)|2 = |σ
√
x(η − x)|2 ≤ |σ|2(|ηx| + |x|2) ≤ C2(σ, η)(1 + |x|2)

By classical results due to Skorokhod, we get that the solution exists [28]. The pathwise uniqueness can be
proven by applying the Yamada-Watanabe uniqueness criterion in [27], since

|σ1(x) − σ1(y)| ≤ ρ(|x− y|), ∀x, y ∈ R, i = 1, 2, . . . ,

with ρ(x) =
√
x. Indeed,

|σ1(x) − σ1(y)| ≤ σ
√

|ηx− x2 − ηy + y2|
≤ σ

√
|x− y|

√
|η − x− y|

≤ C3(η) · |x− y|1/2.

Hence, the diffusion coefficient σ2(x) is Hölder continuous with index 1/2, for any x ∈ [0, η].

In order to obtain the bound (8) for the solution, we consider the well-known Feller classification of the
boundaries [17,22]. In the case under study, given a little generalization of the Jacobi process case, we have that
the scale function scale(x) and the speed density m(x) are defined as

scale(x) =
1

xp(η − x)q
, m(x) =

1

σ2
xp−1(η − x)q−1,

4



with

p =
2αγ

σ2η
, q =

2α(η − γ)

σ2η
.

The boundary x = 0 is an entrance boundary if and only if p ≥ 1 while x = η is an entrance boundary if and
only if q ≥ 1 and these two condition are satisfied whenever (7) hold (see [22],[4]).

We also recall the classical Hölder regularity property of solutions to the SDE:

Proposition 2. The solution of equation (6) has trajectories almost surely in Cβ([0, T ]), β ∈ (0, 1/2).

Proof. If ψ is a solution to (6), then, for any s, t ∈ [0, T ], one may write, for p > 2

|ψt − ψs|p ≤
∣∣∣∣
∫ t

s

α(γ − ψτ )dτ

∣∣∣∣
p

+

∣∣∣∣
∫ t

s

σ
√
ψτ (η − ψτ )dWτ

∣∣∣∣
p

. (9)

By Burkholder-Davis-Gundy inequality [26](IV,42), and by the bound (8) one obtained for every 2 < p < ∞,
there exists C > 0 such that, for every s < t,

E

[∣∣∣∣
∫ t

s

σ
√
ψτ (η − ψτ )dWτ

∣∣∣∣
p
]
≤ CE

[(∫ t

s

∣∣∣σ
√
ψτ (η − ψτ )

∣∣∣
2

dr

)p/2]
≤ C(η) |t− s|p/2 .

Then from (9), we have

E [|ψt − ψs|p] ≤ C(α, γ)|t− s|p + C(η) |t− s|p/2 ≤ C(α, γ, η) |t− s|p/2

By Kolmogorov continuity criterion, with r1 = p and 1 + r2 = p/2, the solution ψt is C
β-Hölder continuous for

any β ∈ (0, r2/r1) = (0, 1/2− 1/p) and p > 2, that is β ∈ (0, 1/2).

Remark 3. By the previous results, the equation (6) is a good model for a process with the regularity required
by (5).

A model for the porosity The function ϕ in system (3)-(4) refers to the porosity, which is the fraction
of void volume with respect to the total one. Considering the literature on the subject, we assume (see, for
example, [2])

ϕ(c) = A+Bc. (10)

with B = ±1. In the specific case of marble sulphation the value B = −1 is more appropriate.

Proposition 4. If equation (10) holds, the system (3)-(5) becomes

∂ts = ∂2xs+ bc(t, x)∂xs+ γc(t, x)s(Bs− 1) (11)

∂tc = −λs(A+Bc)c (12)

with

bc(t, x) = B
∂xc

(A+Bc)
(13)

γc(t, x) = λc (14)

Proof. Equation (11) is derived in the following simple way

∂t((A+Bc)s) = ∇ · ((A+Bc)∇s)− λ(A +Bc)sc

A∂ts+ sB∂tc+Bc∂ts = A∂2xs+B∇(c∇s)− λ(A +Bc)cs

(A+Bc)∂ts = A∂2xs+B∂xc∂xs+Bc∂2xs− λc(A+Bc)s+Bλc(A+Bc)s2

(A+Bc)∂ts = (A+Bc)∂2xs+B∂xc∂xs+ λcs(A +Bc)(Bs− 1)

By dividing by (A+Bc) we have the result.

We want to prove an existence and uniqueness result for system (11),(12)-(14).

Let us introduce the heat kernel G(t, x) on the full line

G(t, x) = t−1/2G1(t
−1/2x) =

1√
4πt

e−x
2/4t, (15)

with G1(x) is the heat kernel G(t, x) evaluated at t = 1.
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Definition 5 (Bounded positive mild solution). We say that a couple (s, c), with s ∈ L∞([0, T ],W 1,2(R+)) ∩
L∞ ([0, T ]× R+) and c ∈ Bb ([0, T ]× R+), the space of bounded Borel functions, is a bounded positive mild
solution of the nonlinear PDE (11),(12)-(14) if, for every x ∈ R+, the function c(·, x) solves (12)-(14), that is c
is explicitly given by

c(t, x) =
c0(x)

ϕ(c0(x))e
λ
∫

t

0
s(x,τ)dτ −Bc0(x)

, (16)

and the function s satisfies

0 ≤ s(t, x) ≤ η for every (t, x) ∈ [0, T ]× R+,

and it is a L∞([0, T ],W 1,2(R+))-mild solution of (11), that is

s(t, ·) = −2

∫ t

0

∂xG(t− τ, ·)ψ(τ)dτ +G(t, ·) ∗ s0

+

∫ t

0

G(t− τ, ·) ∗ (bc(τ, ·)∂xs(τ, ·) + γc(τ, ·)s(τ, ·)) (Bs(τ, ·) − 1))ds.

(17)

In equation (17) bc and γc are defined as (13) and (14), respectively and G(t, ·) ∗ f denotes the convolution-type
operator with the heat kernel (15), defined by (50),

The idea to show well-posedness of (11),(12)-(14) is to consider a splitting strategy in order to divide the
problem into two sub-problems: in the first one we consider the heat equation with the stochastic, Hölder
continuous boundary condition, in the second problem we consider a non linear PDE with zero boundary
condition. The initial conditions of the original problems are inherited by the latter system.

A splitting strategy Let us consider the following splitting of the solution s of Equation (11)

s = u+ v,

where the function u is the solution of the following heat equation with a stochastic boundary condition

∂tu = ∂2xu (18)

u(x, 0) = 0, x ∈ (0,∞) (19)

u(0, t) = ψt, ψt ∈ Cβ([0, T ]), β < 1/2 (20)

and the function v is the solution of the following deterministic reaction diffusion problem

∂

∂t
v = ∂2xv + b(t, x)∂xv − γ(t, x)v + b(t, x)∂xu− γ(t, x)u + γ(t, x)B(u+ v)2 (21)

∂tc = −λs(A+Bc)c (22)

with

b(t, x) = B
∂xc

(A+Bc)
, (23)

γ(t, x) = λc. (24)

The system (21)-(22) has the following initial and boundary conditions

c(x, 0) = c0(x), x ∈ (0,∞);

v(x, 0) = s0(x), x ∈ (0,∞);

v(0, t) = 0, t ∈ (0, T ].

Remark 6. Let us note that the system for u (18)-(20) is completely autonomous: it does not depend on the
function c of the original system (11)-(14). Differently, the system for v is coupled with that of (18)-(20).
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3 Bounds on the solution of the heat equation with stochastic bound-

ary condition

We first study the regularity of the system (18)-(20); though the regularity result for this system is rather
classical, we give a self-contained argument. Let us recall that equation (18) admits an explicit solution given
in term of the fundamental heat solution. Indeed, by recalling that G is the heat kernel as in 15, we have (see,
e.g. [9]):

u(t, x) = −2

∫ t

0

∂xG(t− τ, x)ψ(τ)dτ, (25)

From (15), the space derivatives of the heat kernel G are given by

∂xG(t, x) = t−1G′
1(t

−1/2x) = − 1

4
√
π
t−3/2xe−x

2/4t, (26)

∂2xG(t, x) = t−3/2G′′
1 (t

−1/2x) =
1

4
√
π

(
1

2
t−1x2 − 1

)
t−3/2e−x

2/4t. (27)

Hence, for p ∈ [1,∞), there exist some constant cp, c
′
p ∈ R+ such that, for any t ∈ [0, T ]

‖G(t, ·)‖Lp(R+) = cp t
−(1−1/p)/2,

‖∂xG(t, ·)‖Lp(R+) = c′p t
−(2−1/p)/2.

(28)

Proposition 7. For any ψ bounded Borel function, the solution u given by (25) is such that u ∈ C∞[(0, T )×
(0,∞)] and u and its derivatives admit continuous extensions to [0, T )× (0,∞).

Proof. The statement follows from the fact that the kernel G in (15) is C∞ on (0, T ) × (0,∞) and G and its
derivatives admit continuous extensions to [0, T )× (0,∞).

The first step is to establish a bound for the norm of u in a fractional Sobolev space, uniformly in time.
Hence we recall here the definition of such spaces.

Definition 8 (The fractional Sobolev spaces). We consider the fractional Sobolev space Wα,p upon R for
1 ≤ p ≤ ∞ and 0 < α < 1 as follows [14, 29]

Wα,p(R) =

{
f ∈ Lp(R) :

|f(x)− f(y)|
|x− y|1/p+α ∈ Lp(R)

}
, (29)

an intermediate Banach space between Lp(R) and W 1,p(R), endowed with the natural norm

‖f‖pWα,p(R) = ‖f‖pLp + [f ]pWα,p(R),

where

[f ]pWα,p(R) =

∫∫ |f(x)− f(y)|p
|x− y|1+αp dxdy

is the so-called Gagliardo (semi)norm of f . Furthermore, one can define the fractional Sobolev space with
exponent k + α, with k ∈ N

W k+α,p(R) =
{
f ∈W k,p(R) : ∂kf ∈Wα,p(R)

}
, (30)

endowed with the norm
‖f‖p

Wk+α,p(R)
= ‖f‖pLp + ‖∂kf‖pLp + [∂kf ]pWα,p(R). (31)

In the case α = 0 the previous space is the classical Sobolev space. The previous definitions are extended also
to R+.

Proposition 9. Let u be the solution of the system (18)-(20), with the boundary condition such that ψ ∈
L∞([0, T ]). Then, for any 0 < α < 1 and 1 < p < 1/α, and for a constant C not depending upon ψ, we have
P -a.s.

sup
t∈[0,T ]

‖u(t, ·)‖Wα,p(R+) ≤ C‖ψ‖L∞([0,T ]). (32)
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Proof. By Proposition 7 we already have some continuous properties out from the boundary. Now we study the
behavior of the solution near the boundary x = 0.

From (26), by considering the self similarity rescaling ξ = x/
√
t− τ , we analize carefully the behavior of u

both close and far from the origin. For some c > 0 and a constant C, that may be different from line to line,
one may obtain from (25) the following bound for u, for any (t, x) ∈ [0, T ]× R+

|u(t, x)| ≤ 2‖ψ‖L∞([0,T ])

∫ t

0

|∂xG(t− τ, x)| dτ

= C‖ψ‖L∞([0,T ])

∫ ∞

x/
√
t

ξ2

x2
G′

1(ξ)
x2

ξ3
dξ

≤ C
(
1x≤1 + e−cx1x>1

)
‖ψ‖L∞([0,T ])

∫ ∞

0

ξ−1G′
1(ξ)dξ

= C
(
1x≤1 + e−cx1x>1

)
‖ψ‖L∞([0,T ])

∫ ∞

0

e−ξ
2

dξ

= C
(
1x≤1 + e−cx1x>1

)
‖ψ‖L∞([0,T ]). (33)

Hence, for any t ∈ [0, T ], we have

‖u(t, ·)‖L∞(R+) , ‖u(t, ·)‖Lp(R+) ≤ C ‖ψ‖L∞([0,T ]), for any 1 ≤ p <∞. (34)

In a similar way, taking the spatial derivative of (25), we get the following bound for the spatial derivative of u,
for any (t, x) ∈ [0, T ]× R+

|∂xu(t, x)| ≤ 2‖ψ‖L∞([0,T ])

∫ t

0

∣∣∂2xG(t− τ, x)
∣∣ dτ

= C‖ψ‖L∞([0,T ])

∫ ∞

x/
√
t

ξ3

x3
G′′

1 (ξ)
x2

ξ3
dξ

≤ C‖ψ‖L∞([0, T ])

(
1

x
1x≤1 + e−cx1x>1

)∫ ∞

0

G′′
1(ξ)dξ

= C

(
1

x
1x≤1 + e−cx1x>1

)
‖ψ‖L∞([0,T ]).

(35)

We can estimate the Wα,p(R+) seminorm of u(t, ·), for any t ∈ [0, T ]; indeed, we may write

[u(t, ·)]pWα,p(R+) =

∫∫

|x−y|<1

|u(t, x)− u(t, y)|p
|x− y|1+αp dxdy +

∫∫

|x−y|>1

|u(t, x)− u(t, y)|p
|x− y|1+αp dxdy

≤ 2

∫∫

x<y<x+1

|u(t, x)− u(t, y)|p
|x− y|1+αp dxdy + 2p

∫∫

|x−y|>1

|u(t, x)|p
|x− y|1+αp dxdy

≤ 2

∫∫

x<y<x+1

|u(t, x)− u(t, y)|p
|x− y|1+αp dxdy + C‖u‖pLp(R+),

where the last line is due to the equation (34) and the fact that the function x−1−αp is integrable at infinity. By
using the inequality e−cz ≤ Cz−1 and by (34) and (35), we have that, for any t ∈ [0, T ],

[u(t, ·)]pWα,p(R+) ≤ C‖ψ‖pL∞([0,T ]) + 2

∫∫

x<y<x+1

|x− y|−1−αp
(∫ y

x

|∂zu(t, z)|dz
)p

dxdy

≤ C‖ψ‖pL∞([0,T ]) + 2

∫∫

x<y<x+1

|x− y|−1−αp
(∫ y

x

C(z−11z≤1 + e−cz1z>1)‖ψ‖L∞([0,T ])dz

)p
dxdy

≤ C‖ψ‖pL∞([0,T ])

(
1 +

∫∫

x<y<x+1

|x− y|−1−αp (| log(y/x)|p1x≤1 + |x− y|pe−cpx1x>1

)
dxdy

)

≤ C‖ψ‖pL∞([0,T ])

(
1 +

∫ 1

0

dx

∫ ∞

x

|x|−1−αp|1− y/x|−1−αp| log(y/x)|pdy
)

+ C‖ψ‖pL∞([0,T ])

∫ ∞

1

dx

∫ x+1

x

|x− y|−1+(1−α)pe−cpxdy.
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By the changes of variable w = y/x and v = y − x, in the first and second integral, respectively, we obtain,for
any t ∈ [0, T ],

[u(t, ·)]pWα,p(R+) ≤ C‖ψ‖pL∞([0,T ]) + C‖ψ‖pL∞([0,T ])

∫ 1

0

dx |x|−αp
∫ ∞

1

|1− w|−1−αp| logw|pdu

+ C‖ψ‖pL∞([0,T ])

∫ ∞

1

dx

∫ 1

0

v−1+(1−α)pe−cpxdv.

The second integral in the above expression is clearly finite. Concerning the first integral, note that, for w
large, |1− uw|−1−αp| logw|p is integrable, while for w close to 1,

|1− w|−1−αp| logw|p ≈ |1− w|−αp.

Hence, the first integral is finite if and only if αp < 1. Hence, if 0 < α < 1 and 1 < p < 1/α, we reach the
conclusion.

Given more regularity on the boundary condition, we get a bound on the norm of u in a 2 + α fractional
Sobolev space, uniformly in time, with α ∈ (0, 1).

Proposition 10. Let u be the solution of the system (18)-(20), with the boundary condition such that ψ is
Lipschitz and ψ(0) = 0. Then, for any 0 < α < 1 and 1 < p < 1/α, and for a constant C not depending upon
ψ, we have P -a.s.

sup
t∈[0,T ]

‖u(t, ·)‖W 2+α,p(R+) ≤ C‖ψ‖W 1,∞([0,T ]). (36)

Proof. Note that ∂2xG = ∂tG,due to (15) and (27); furthermore from (19) it follows that G(0, x) = 0 for x > 0.
By an integration by parts in time, we get, for any (t, x) ∈ [0, T ]× R+

∂xu(t, x) = −2

∫ t

0

∂2xG(τ, x)ψ(t − τ)dτ

= −2

∫ t

0

∂τG(τ, x)ψ(t − τ)dτ

= −2G(τ, x)ψ(t− τ) |tτ=0 −2

∫ t

0

G(τ, x)ψ̇(t− τ)dτ

= −2

∫ t

0

G(τ, x)ψ̇(t− τ)dτ.

Differentiating (25) with respect to x, we get

∂2xu(t, x) = −2

∫ t

0

∂xG(τ, x)ψ̇(t− τ)dτ. (37)

Hence, by comparing (15) and (37), one can deduce that for any (t, x) ∈ [0, T ]×R+, ∂
2
xu(t, x) is the solution to

the heat equation (18), with boundary condition at x = 0 given by ψ̇. Hence, applying the bound (32) to ∂2xu,
with ψ̇ replacing ψ, we get

sup
t∈[0,T ]

‖∂2xu(t, ·)‖Wα,p(R+) ≤ C‖ψ̇‖L∞([0,T ]). (38)

By (32) and (38) we finally obtain the bound of the norm (31) with k = 2, that is the statement (36).

The next step is to give the main result of the section, i.e a continuous result for the solution u of the
system (18)-(20) in W 1,p(R+), uniformly in time, with respect to the boundary condition. In order to obtain
the result we consider compatible Banach spaces in Propositions (9) and (10). Let us just recall the definition of
interpolation pair of Banach spaces. The interest reader may refer to [6,23]. Here, for the interpolation methods
and results, we mainly refer to [25, 29].
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Definition 11. If (X0, X1) is a compatible couple of Banach spaces, we have that

X0 ∩X1 ⊂ X0, X1 ⊂ X0 +X1,

where both X0 ∩X1, X0 +X1 are Banach space with the norms

‖x‖X0∩X1 := max
(
‖x‖X0

, ‖x‖X1

)
,

‖x‖X0+X1 := inf
{
‖x0‖X0

+ ‖x1‖X1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
.

An interpolation space is a space X that is an intermediate space between X0 and X1 in the sense that

X0 ∩X1 ⊂ X ⊂ X0 +X1,

where the two inclusions maps are continuous. Given two compatible couples (X0, X1) and (Y0, Y1), an interpo-
lation pair is a couple (X,Y ) of Banach spaces with the two following properties:

i) The space X is intermediate between X0 and X1, and Y is intermediate between Y0 and Y1.

ii) If L is any linear operator from X0+X1 to Y0+Y1, which maps continuously X0 to Y0 and X1 to Y1, then
it also maps continuously X to Y .

Definition 12. Let (X0, X1) a compatible couple of Banach spaces , if 0 < θ < 1 and 1 ≤ q ≤ ∞ with
(X0, X1)θ,q one denotes the Banach space obtained by the real interpolation K method with parameters θ and
q. To be more precise, for t > 0 and any x ∈ X0 +X1, let

K(x, t;X0, X1) = inf
{
‖x0‖X0

+ t ‖x1‖X1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
.

Let

‖x‖θ,q =
(∫ ∞

0

(
t−θK(x, t;X0, X1)

)q dt
t

) 1
q

= ‖K(x, t;X0, X1)‖Lq
∗(R+), 0 < θ < 1, 1 ≤ q <∞,

‖x‖θ,∞ = sup
t>0

t−θK(x, t;X0, X1), 0 ≤ θ ≤ 1,

where Lq∗(R) denotes the Lq space with respect to the measure dt/t. Then (X0, X1)θ,q is the following Banach
space

(X0, X1)θ,q = {x ∈ X0 +X1 : ‖x‖θ,q <∞}.

Proposition 13. Assume that 0 < β < 1/2 and take

1 ≤ q <
1

1− 2β
. (39)

Let u be the solution of the system (18)-(20). Then, for every ψ ∈ Cβ [0, T ] with ψ(0) = 0, and for a constant C
not depending upon ψ, we have P -a.s.

‖u‖L∞([0,T ],W 1,q(R+)) = sup
t∈[0,T ]

‖u(t, ·)‖W 1,q(R+) ≤ C‖ψ‖Cβ([0,T ]). (40)

Proof. Given the two compatible couples
(
C([0, T ]), C1([0, T ])

)
and

(
Wα,p(R+),W

2+α,p(R+)
)
we seek for an

interpolation couple where the first component is the space to which the initial condition belongs and the second
gives the regularity of the solution of the system (18)-(20).

Let us denote by A the solution operator given, where defined, by (25), that is

Aψ = u.

By (32) and (36), A is a bounded linear operator from C([0, T ]) + C1([0, T ]) to Wα,p(R+) +W 2+α,p(R+),
which maps continuously C([0, T ]) to Wα,p(R+) and C

1([0, T ]) to W 2+α,p(R+). To be precise, A is only defined
on subspaces of C([0, T ]) and C1([0, T ]) of functions ψ such that ψ(0) = 0. However, we can easily extend A to
the full spaces by composing it with the operator ψ 7→ ψ − ψ(0).

By Theorem 1.1.6 and Proposition 1.1.4 in [25], for any 0 < β < 1 and ǫ > 0 small, A is a bounded operator
such that

(C([0, T ]), C1([0, T ]))β+ǫ,∞ →֒ (C([0, T ]), C1([0, T ]))β,p
A−→ (Wα,p(R+),W

2+α,p(R+))β,p. (41)
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By [29] (Section 4.4.1) and [25] (Examples 1.1.8 and 1.3.7), for any 0 < β < 1 and ǫ > 0 small the interpolation
space at the left side of the map (41) is

(C([0, T ]), C1([0, T ]))β+ǫ,∞ = Cβ+ǫ([0, T ]).. (42)

By [29](Sections, 4.3.1. and 4.5.2.) and [25] (Examples 1.3.8 and 1.3.10.), whenever 2β + α is not an integer,
the interpolation space at the right hand side of the map (41) is

(Wα,p(R+),W
2+α,p(R+))β,p =W (1−β)α+β(2+α),p(R+) =W 2β+α,p(R+). (43)

Hence, by (41)-(43) we obtain, for 0 < α < 1, 1 < p < 1/α, 0 < β < 1 with 2β + α /∈ N,

sup
t∈[0,T ]

‖u(t, ·)‖W 2β+α,p(R+) ≤ C‖ψ‖Cβ+ǫ([0,T ]). (44)

Now, by hypothesis 0 < β < 1/2. By the Sobolev embeddings [25, 29], we may apply Proposition 40. We
consider s = 2β + α ∈ R+ \ N and s > 1, s′ = 1, and q such that

1

q
=

1

p
+ 1− (2β + α) > 1− 2β, (45)

so that 1 ≤ q < 1/(1− 2β). Hence, condition (80) is satisfied and from (81), we get

W 2β+α,p(R+) ⊆W 1,q(R+). (46)

In conclusion, from (44) and (46) we can state that for given 0 < β < 1/2, and 1 ≤ q < 1/(1 − 2β), one can
always find 0 < α < 1 and 1 < p < 1/α satisfying (45), such that

sup
t∈[0,T ]

‖u(t, ·)‖W 1,q(R+) ≤ C‖ψ‖Cβ+ǫ(0,T ).

For the arbitrary of ǫ > 0, the statement is proven.

4 A priori estimates upon a linear equation

Let f be a function on [0, T ]× R+ such that 0 ≤ f ≤ η, with η positive constant. First we study the following
linear model for (s, c), where the unknown are (s̃, c̃)

∂

∂t
s̃ = ∂2xs̃+ bc̃(t, x)∂xs̃+ γ̃c̃(t, x)s̃,

∂tc̃ = −λf(A+Bc̃)c̃,

with function bc̃ given by (13) and
γ̃c̃ = −λ(1−Bf)c̃. (47)

Under more restrictive hypothesis upon f , that we will consider in Section 5, by the properties of the solution
c̃ of the second equation, in [2, 20] it is shown that

bc̃ ∈ L∞([0, T ], L2(R+)), γ̃c̃ ∈ L∞([0, T ]× R+).

Hence, in this section the idea is to study the well posedness of the linear PDE

∂ts̃ = ∂2xs̃+ b(t, x)∂xs̃+ γ̃(t, x)s̃,

s̃(0, x) = s0

s̃(t, 0) = ψ(t),

(48)

under the previous hypothesis of regularity for the functions b, γ̃ : [0, T ]×(0,∞) → R and the boundary condition
ψ : [0, T ] → R given by a Borel function in Cβ . The solution s̃ : [0, T ]× [0,∞) → R is meant as a mild solution
[9, 24] according with the following definition.
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Definition 14 (Mild solution for s̃). A function s̃ : [0, T ]× [0,∞) → R is a L∞([0, T ],W 1,p(R+)) mild solution
of the equation (48) if s̃ ∈ L∞([0, T ],W 1,p(R+)) and it is such that, for every t ∈ [0, T ],

s̃(t, ·) = −2

∫ t

0

∂xG(t− τ, ·)ψ(τ)dτ +Gt ∗ s0 +
∫ t

0

Gt−τ ∗ (b(τ, ·)∂xs̃(τ, ·) + γ̃(τ, ·)s̃(τ, ·)) dτ, (49)

where G is the heat kernel (15) and Gt ∗ f(x) denotes the following function

Gt ∗ f(x) =
∫ ∞

0

(G(t, x − y)−G(t, x+ y))f(y)dy =

∫

R

G(t, x− y)fodd(y)dy, (50)

where fodd(x) = 1x>0f(x)− 1x<0f(−x) is the odd extension of f .

Remark 15. Let us consider some useful facts on G ∗ f , as defined in (50). The interest reader may refer to [9]
for more details. First, although G ∗ f is not the convolution with f in the strict sense, the Young inequality
still holds for G ∗ f , i.e. for 1 ≤ p′, q′, r′ ≤ ∞ with

1

p′
=

1

r′
+

1

q′
− 1, (51)

for any f ∈ Lq
′

(R+), since by (28) G ∈ Lp
′

(R+), then

‖G ∗ f‖Lp′ ≤ ‖G‖Lr′‖f‖Lq′ . (52)

Concerning derivatives, we have that for f ∈ Lr(R+), 1 ≤ r ≤ ∞, ∂x(Gt ∗ f) = (∂xGt) ∗ f. Furthermore,
whenever f ∈W 1,r(R+), with 1 ≤ r ≤ ∞ and f(0) = 0, we have also

∂x(Gt ∗ f) =
∫

R

G(t, · − y)(∂xf)
even(y)dy := Gt ∗ (∂xf)even(y), (53)

where (∂xf)
even(x) = 1x>0∂xf(x) + 1x<0∂xf(−x) is the even extension of ∂xf .

Now let us go back to the problem (48).

We split the solution s̃ as s̃ = ũ + ṽ with ũ again is the solution of the initial boundary problem for the
homogeneous heat equation (18)-(20) and ṽ solution of the following non-homogeneous problem

∂tṽ = ∂2xṽ + b∂xṽ + γ̃ṽ + b∂xũ+ γ̃ũ, (t, x) ∈ (0, T ]× R+;

ṽ(t, 0) = 0, t ∈ (0, T ];

ṽ(0, x) = v0(x) = s0(x), x ∈ R+.

(54)

Definition 16 (Mild solution for ṽ). Let 2 ≤ p ≤ ∞. A function ṽ : [0, T ]×[0,∞)→ R is a L∞([0, T ],W 1,p(R+))
mild solution of (48) if it belongs to L∞([0, T ],W 1,p(R+)) and satisfies, for any t ∈ [0, T ],

ṽ(t, ·) = Gt ∗ v0 +
∫ t

0

Gt−τ ∗ (b(τ, ·)∂xṽ(τ, ·) + γ̃(τ, ·)ṽ(τ, ·))dτ

+

∫ t

0

Gt−τ ∗ (b(τ, ·)∂xũ(τ, ·) + γ̃(τ, ·)ũ(τ, ·)) dτ,
(55)

where G is the heat kernel (15) and the operator Gt ∗ f is defined by (50).

Our aim is to show that under regularity conditions upon the coefficient functions, the boundary function
and initial condition, the equation (54) is well-posed in L∞([0, T ],W 1,p(R+)) as a mild solution.

Assumption 17. Let us assume the following hypothesis upon the functions in (54) and the boundary condition
ψ.

A1. The boundary condition ψ ∈ Cβ([0, T ]), for some β ∈ (1/4, 1/2) and it is such that ψ(0) = 0.
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A2. The functions b and γ̃ satisfy the following regularity conditions

b ∈ L∞([0, T ], L2(R+)), γ̃ ∈ L∞([0, T ]× R+).

A3. The initial condition v0 ∈W 1,p(R+) for some 2 ≤ p ≤ ∞ and it is such that v0(0) = 0.

First we provide some a priori bounds for ṽ.

Proposition 18. Under Assumption 17, for p ≥ q ≥ 2 such that condition (39) is fulfilled and r > 0 such that

1

r
=

1

2
+

1

p
− 1

q
, (56)

for the function ṽ mild solution to (55) the following bounds hold, for any t ∈ [0, T ]

‖ṽ(t, ·)‖Lp(R+) ≤ ‖v0‖Lp(R+) + CT 3/4
(
‖b‖L∞([0,T ],L2(R+)) + ‖γ‖L∞([0,T ],L∞(R+))

)
‖ṽ‖L∞([0,T ],W 1,p(R+))

+ T (1+1/r)/2
(
‖b‖L∞([0,T ],L2(R+)) + ‖γ‖L∞

t (L∞

x )

)
‖ψ‖Cβ([0,T ])

(57)

‖∂xṽ(t, ·)‖Lp(R+) ≤ ‖∂xv0‖Lp(R+) + CT 1/4
(
‖b‖L∞([0,T ],Lp(R+)) + ‖γ‖L∞

t (L∞

x )

)
‖ṽ‖L∞([0,T ],W 1,p(R+))

+ CT 1/(2r)
(
‖b‖L∞([0,T ],L2(R+)) + ‖γ‖L∞([0,T ],L∞(R+))

)
‖ψ‖Cβ([0,T ])

(58)

Proof. In the following, for any a, b ≥ 2, we denote by h(a, b) the positive parameter such that 1/h(a, b) =
1/a+ 1/b; hence

1

b
=

1

h(a, b)
+

1

a/(a− 1)
− 1,

so that (51) is satisfied. In particular, from the previous relation and by hypothesis (56) upon the parameters,
one have with (a = 2, b = p)

1

p
=

1

h(2, p)
+

1

2
− 1,

1

p
=

1

q
+

1

r
− 1

2
=

1

h(2, q)
+

1

r
− 1.

Hence, for the set of parameters (p, h(2, p), 2) and (p, r, h(2, q)) condition (56) is satisfied and we may apply the
Young inequality (52). For simplicity we introduce here the following notations for the involved Banach spaces
Lpx = Lp(R+) in space and Lpt (L

q
x) = Lp([0, T ], Lq(R+)) in time and space.

Note that by Sobolev embedding (e.g. [29] Eq. 4.6.1-(e)])

‖ũ‖L∞

x
≤ C‖ũ‖W 1,q

x
, (59)

and by Hölder inequality (since q ≤ p)

‖ũ‖Lp
x
≤ ‖ũ‖q/p

Lq
x
‖ũ‖1−q/pL∞

x
,

we obtain
‖ũ‖Lp

x
≤ C‖ũ‖W 1,q

x
. (60)

In order to estimate the Lp(R+) norm of ṽ, we apply recursively Young inequality for functions in Lp spaces
and their convolution with the kernel G (52) and Hölder inequality (with p, q ≥ 2). Hence, by considering also
the Lp norm of G in (28) and (60), we get from (55)
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‖ṽ(t, ·)‖Lp
x
≤ ‖Gt ∗ v0‖Lp

x
+

∫ t

0

[
‖Gt−τ ∗ (b(τ, ·)∂xṽ(τ, ·)) ‖Lp

x
+ ‖Gt−τ ∗ (γ̃(τ, ·)ṽ(τ, ·))‖Lp

x

+ ‖Gt−τ ∗ (b(τ, ·)∂xũ(τ, ·))‖Lp
x
+ ‖Gt−τ ∗ (γ̃(τ, ·)ũ(τ, ·))‖Lp

x

]
dτ

≤ ‖Gt‖L1
x
‖v0‖Lp

x
+

∫ t

0

[
‖Gt−τ‖L2

x
‖b(τ, ·)∂xṽ(τ, ·)‖Lh(2,p)

x
+ ‖Gt−τ‖L1

x
‖γ̃(τ, ·)ṽ(τ, ·)‖Lp

x

+‖Gt−τ‖Lr
x
‖b(τ, ·)∂xũ(τ, ·)‖Lh(2,q)

x
+ ‖Gt−τ‖L1

x
‖γ̃(τ, ·)ũ(τ, ·)‖Lp

x

]
dτ

≤ c1‖v0‖Lp
x
+ C

∫ t

0

[
(t− τ)−1/4‖b(τ, ·)‖L2

x
‖∂xṽ(τ, ·)‖Lp

x
+ ‖γ̃(τ, ·)‖L∞

x
‖ṽ(τ, ·)‖Lp

x

+(t− τ)−(1−1/r)/2‖b(τ, ·)‖L2
x
‖∂xũ(τ, ·)‖Lq

x
+ ‖γ̃s‖L∞

x
‖ũ(τ, ·)‖Lp

x

]
dτ

≤ c1‖v0‖Lp
x
+ (CT 3/4‖b‖L∞

t (L2
x)

+ CT ‖γ̃‖L∞

t (L∞

x ))‖ṽ(τ, ·)‖L∞

t (W 1,p
x )

+ (CT (1+1/r)/2‖b‖L∞

t (L2
x)

+ CT ‖γ̃‖L∞

t (L∞

x ))‖ũ(τ, ·)‖L∞

t (W 1,q
x )

The conclusion (57) follows from the last inequality and Proposition 13, because of Assumption 17-A1.

For obtaining the estimate for the Lpx norm of ∂xṽ, we write the equation for ∂xṽ, using the expressions for
∂x(Gt ∗ f) given in (53) and the fact that v0(0) = 0:

∂xṽ(t, ·) = Gt ∗ (∂xv0)even +

∫ t

0

∂xGt−τ ∗ (b(τ, ·)∂xṽ(τ, ·) + γ̃(τ, ·)ṽ(τ, ·)) dτ

+

∫ t

0

∂xGt−τ ∗ (b(τ, ·)∂xũ(τ, ·) + γ̃(τ, ·)ũ(τ, ·)) dτ.

In a similar way as for inequality (57), we prove the bound (58). Hence, by (51)-(53) ,(56) and (60), we obtain

‖∂xṽ(t, ·)‖Lp
x
≤ ‖Gt ∗ (∂xv0)even‖Lp

x
+

∫ t

0

[
‖∂xGt−τ ∗ (b(τ, ·)∂xṽ(τ, ·))‖Lp

x
+ ‖∂xGt−τ ∗ (γ̃(τ, ·)ṽ(τ, ·))‖Lp

x

+ ‖∂xGt−τ ∗ (b(τ, ·)∂xũ(τ, ·))‖Lp
x
+ ‖∂xGt−τ ∗ (γ̃(τ, ·)ũ(τ, ·))‖Lp

x

]
dτ

≤ ‖Gt‖L1
x
‖∂xv0‖Lp

x
+

∫ t

0

[
‖∂xGt−τ‖L2

x
‖b(τ, ·)∂xṽ(τ, ·)‖Lh(2,p)

x
+ ‖∂xGt−τ‖L1

x
‖γ̃(τ, ·)ṽ(τ, ·)‖Lp

x

+‖∂xGt−τ‖Lr
x
‖b(τ, ·)∂xũ(τ, ·)‖Lh(2,q)

x
+ ‖∂xGt−τ‖L1

x
‖γ̃(τ, ·)ũ(τ, ·)‖Lp

x

]
dτ

≤ c′1‖∂xv0‖Lp
x
+ C

∫ t

0

[
(t− τ)−3/4‖b(τ, ·)‖L2

x
‖∂xṽ(τ, ·)‖Lp

x
+ (t− τ)−1/2‖γ̃(τ, ·)‖L∞

x
‖ṽ(τ, ·)‖Lp

x

+(t− τ)−(2−1/r)/2‖b(τ, ·)‖L2
x
‖∂xũ(τ, ·)‖Lq

x
+ (t− τ)−1/2‖γ̃s‖L∞

x
‖ũ(τ, ·)‖Lp

x

]
dτ

≤ c′1‖∂xv0‖Lp
x
+
(
CT 1/4‖b‖L∞

t (L2
x)

+ CT 1/2‖γ̃‖L∞

t (L∞

x )

)
‖ṽ(τ, ·)‖L∞

t (W 1,p
x )

+
(
CT 1/(2r)‖b‖L∞

t (L2
x)

+ CT 1/2‖γ̃‖L∞

t (L∞

x )

)
‖ũ(τ, ·)‖L∞

t (W 1,q
x )

By Proposition 13 and Assumption 17-A1, we obtain the bound (58).

Now we are ready to give a result of existence of a mild solution ṽ in L∞([0, T ],W 1,p(R+)), where mild has
to be meant as in (55).

Proposition 19. Under Assumption 17, with 2 ≤ p < 1/(1− 2β), the PDE (54) admits a unique mild solution
ṽ in L∞([0, T ],W 1,p(R+)). Furthermore, for some constant CT > 0, the solution ṽ satisfies the following bound

sup
t∈[0,T ]

‖ṽ(t, ·)‖W 1,p(R+) ≤CT (‖b‖L∞

t (L2
x)

+ ‖γ̃‖L∞

t,x
)4‖v0‖W 1,p(R+)

+ CT
(
‖b‖L∞([0,T ]L2(R+)) + ‖γ̃‖L∞([0,T ]×(R+))

)
‖ψ‖Cβ .

(61)
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Proof. To show the existence and uniqueness of ṽ satisfying (55), we define a map F : L∞([0, T ],W 1,p(R+)) →
L∞([0, T ],W 1,p(R+)) such that, for any h ∈ L∞([0, T ],W 1,p(R+)),

F (h) = Gt ∗ v0 +
∫ t

0

Gt−τ ∗ (b(τ, ·)∂xh(τ, ·) + γ̃(τ, ·)h(τ, ·))dτ +
∫ t

0

Gt−τ ∗ (b(τ, ·)∂xũ(τ, ·) + γ̃(τ, ·)ũ(τ, ·)dτ.

We note that ṽ ∈ L∞([0, T ],W 1,p(R+)) satisfies (55) if and only if ṽ is a fixed point for F . By proceeding as for
the bounds (57)-(58), we obtain that F is well-defined and, for T sufficiently small, such that

CT 3/4 + CT 1/4 ≤ 1/2,

F is a contraction on the time interval [0, T ]. Therefore, by the fixed point theorem, for small T > 0, there
exists a unique fixed point ṽ of the map F and hence a unique mild solution ṽ in L∞([0, T ],W 1,p(R+)). The
existence and uniqueness for every T > 0 follows by a standard iteration argument.

Finally, the bound (61) follows by a Gronwall-type inequality [30](Theorem 3.2.) applied to the bounds (57)
on ‖ṽt‖Lp(R+) and (58) on ‖∂xṽt‖Lp(R+), together with Proposition 13.

Corollary 20. Under Assumption 17, with 2 ≤ p < 1/(1 − 2β), the linear PDE (48) admits a unique
L∞([0, T ],W 1,p(R+)) mild solution s̃, i.e. satisfying (49). This solution can be decomposed as s̃ = ũ + ṽ,
where ũ is the unique L∞([0, T ],W 1,p(R+)) mild solution of the system (18)-(20) and ṽ is the unique mild
solution in L∞([0, T ],W 1,p(R+)) of (54).

Proof. If ũ is the unique L∞([0, T ],W 1,p(R+)) mild solution of the system (18)-(20), then from Proposition 19
ṽ is a L∞([0, T ],W 1,p(R+)) mild solution of (55) if and only if s̃ = ũ+ ṽ is a L∞([0, T ],W 1,p(R+)) mild solution
of (49). Hence, well-posedness for s̃ follows from well-posedness of ṽ.

Remark 21. If ψ ∈ C1
t , then well-posedness for mild solutions s̃ to (48) holds also for p = ∞, that is it is a

L∞([0, T ],W 1,∞(R+)), with initial condition v0 in W 1,∞(R+): indeed well-posedness in L∞([0, T ],W 1,∞(R+))
holds not only for ṽ solution to (54) but also for ũ solution to the heat equation (18)-(20), by Proposition 9.

Remark 22. Assume 2 ≤ p < 1/(1− 2β). The mild solution v to (54) satisfies, for every s < t,

ṽt − ṽs =

∫ s

0

(Gt−r −Gs−r) ∗Ardr +
∫ t

s

Gt−r ∗Ardr

where Ar = br∂xṽr + γ̃r ṽr + br∂xũr + γrũr. Now we take the limit for t − s → 0. For a.e. r < s, the term
(Gt−r−Gs−r)∗Ar tends to 0 in Lp and, proceeding as in (57), one can show that the Lp norm of (Gt−r−Gs−r)∗Ar
is bounded by a time-integrable function, uniformly in s and t, hence

∫ s
0 (Gt−r −Gs−r) ∗Ardr tends to 0 in Lp.

Proceeding again as in (57), one can also show that the
∫ t
s Gt−r ∗Ardr tends to 0 in Lp. Hence t 7→ vt is actually

continuous with values in Lp. With a similar argument, one gets that t 7→ ũt is continuous in Lp. Hence also
t 7→ st is continuous in L

p, for 2 ≤ p < 1/(1− 2β).

We conclude the study of the linearized system solution with some stability bounds for both the components
of the splitting, which will be useful later.

Proposition 23. Let bi, γ̃i, vi0, ψ
i, i = 1, 2 satisfy Assumption 17 with p = 2 and let us denote by ũi and

ṽi, i = 1, 2, the corresponding L∞([0, T ],W 1,2(R+)) solutions of (25) and (55), respectively. Let us assume in
addition that γ̃1, γ̃2 are in C([0, T ], L2(R+)). Then we have

sup
t∈[0,T ]

‖ũ1 − ũ2‖W 1,2(R+) ≤ C‖ψ1 − ψ2‖Cβ
t
,

sup
t∈[0,T ]

‖ṽ1 − ṽ2‖W 1,2(R+) ≤ ρ1,b,γ̃‖v10 − v20‖W 1,2(R+) + ρ2,b,γ̃‖ψ1 − ψ2‖Cβ([0,T ])

+ ρ3,b,γ̃,v0,ψ
(
‖b1 − b2‖L∞([0,T ],L2(R+)) + ‖γ̃1 − γ̃2‖C([0,T ],L2(R+))

)

where ρ· are Borel locally bounded function such that ρi,b,γ̃ = ρi
(
‖b∗‖L∞([0,T ],L2(R+)), ‖γ̃∗‖L∞([0,T ]×R+)

)
, for

i = 1, 2 and ρ3,b,γ̃,v0,ψ = ρ3
(
|ṽi0‖W 1,2(R+), ‖ψi‖Cβ([0,T ]), ‖b∗‖L∞([0,T ],L2(R+)), ‖γ̃∗‖L∞([0,T ]×R+)

)
. (We have used

the notation ρ·(a∗) for ρ·(a1, a2).)

Proof. The bound on ũ1 − ũ2 follows immediately from (40) by linearity. Concerning the bound on ṽ1 − ṽ2, by
proceeding as in the a priori bounds (57) and (58), we get

‖ṽ1t − ṽ2t ‖W 1,2
x

≤ ‖v10 − v20‖W 1,2
x

+A+B,
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where the term A, resp. B, takes into account the contribution of bi, resp. γ̃i, i = 1, 2. Precisely, for A we have

A = C

∫ t

0

(t− s)−3/4
[
‖b1s‖L2

x
‖ṽ1s − ṽ2s‖W 1,2

x
+ ‖b1s − b2s‖L2

x
‖ṽ2s‖W 1,2

x

+‖b1s‖L2
x
‖ũ1s − ũ2s‖W 1,2

x
+ ‖b1s − b2s‖L2

x
‖ũ2s‖W 1,2

x

]
ds.

For B we have, by (59)

B = C

∫ t

0

(t− s)−1/2
[
‖γ̃1s‖L∞

x
‖ṽ1s − ṽ2s‖L2

x
+ ‖γ̃1s − γ̃2s‖L2

x
‖ṽ2‖L∞

x

‖γ̃1s‖L∞

x
‖ũ1s − ũ2s‖L2

x
+ ‖γ̃1s − γ̃2s‖L2

x
‖ũ2‖L∞

x

]
ds

≤ C

∫ t

0

(t− s)−1/2
[
‖γ̃1s‖L∞

x
‖ṽ1s − ṽ2s‖L2

x
+ ‖γ̃1s − γ̃2s‖L2

x
‖ṽ2‖W 1,2

x

‖γ̃1s‖L∞

x
‖ũ1s − ũ2s‖L2

x
+ ‖γ̃1s − γ̃2s‖L2

x
‖ũ2‖W 1,2

x

]
ds.

The conclusion derives from a Gronwall-type inequality [30](Theorem 3.2), from the bound (61) on ṽ1 and ṽ2,
the bound (40) on ũ1, ũ2 and ũ1 − ũ2.

5 Existence, uniqueness and regularity for the nonlinear system

This section contains the main result of this paper, that is the well-posedness for the nonlinear system (3)-(5).
The local well-posedness is proven by a fixed point argument, while the global one by an a priori bound. We
follow the proof line in [18], but considering v instead of s, for the energy bound. In the following, we may let
the time horizon T vary in a compact interval [0, Tfin].

Let us gather together all the assumptions upon the initial and boundary conditions of the dynamical system
(3)-(5).

Assumption 24. In the following, η, m, c0 are non negative constants and C0 ≥ m > 0.

B1. The boundary condition ψ satisfies

ψ ∈ Cβ([0, T ]) for some 1/4 < β < 1/2,

ψ(0) = 0,

0 ≤ ψ ≤ η.

B2. The initial conditions s0 and c0 satisfy

0 ≤ s0(x) ≤ η, 0 < m ≤ c0(x) ≤ C0, ∀x ∈ [0,∞),

ϕm := min
c∈[m,C0]

ϕ(c) > 0,

s0 ∈ W 1,2
x , C0 − c0 ∈W 1,2

x ,

s0(0) = ψ(0) = 0.

B3. If B = 1, then η < 1.

The linear system. The first step of the analysis is to consider the linear system as in Section 4. In the
following we collect all the assumptions on the function f , that help us to decouple the ODE from the solution
of the PDE in the system (3)-(4).

Assumption 25. Let us consider the class of Borel function f : [0, T ]× [0,∞) → R which satisfy the following
conditions:

f ∈ C
(
[0, T ], L2(R+)

)
∩ L2

(
[0, T ],W 1,2(R+)

)
;

‖f‖2C([0,T ],L2(R+)) + ‖∂xf‖2L2([0,T ]×R+) ≤ K, for some K > 0;

‖f‖L∞([0,T ]×R+) ≤ η;

f(t, 0) = ψ(t) for a.e. t ∈ [0, T ];

f ≥ 0.

(62)
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Let us consider the following linear PDE-ODE system for (s, g), given a positive Borel function f satisfying
Assumption 25

∂t(ϕ(g)s) = ∂x(ϕ(g)∂xs)− λϕ(g)sg, (63)

∂tg = −λϕ(g)fg. (64)

In (63)-(64) the function ϕ is given by (10), the boundary condition φ is (5) and the initial conditions are, for
any x ∈ (0,∞),

s(x, 0) = s0(x), g(x, 0) = c0(x),

where s0, c0 and ψ satisfy Assumption (24). Equation (63) for s reads as

∂ts = ∂2xs+ bg∂xs+ γ̃gs, (65)

where bg and γ̃g are defined as in (13) and (47). Note that the solution g of equation (64) admits an explicit
form, that is

g(x, t) =
c0(x)

ϕ(c0(x))e
λ
∫

t

0
f(x,τ)dτ −Bc0(x)

. (66)

We seek a solution (s, g) which is a mild solution.

Definition 26 (Mild solution for (s, g)). The couple (s, g), with s ∈ L∞([0, T ],W 1,2(R+)) ∩ L∞ ([0, T ]× R+)
and g ∈ Bb ([0, T ]× R+), the space of bounded Borel functions, is a mild solution of PDE system (63)-(64) if,
for every x ∈ R+, g(·, x) solves (64), that is g is given by (66) and s is a L∞([0, T ],W 1,2(R+)) mild solution of
(65).

Remark 27. If s is a mild solution of equation (65) and s ∈ C1,2 ([0, T ]× R+), the space of function C
1 in time

and C2 in space, then s satisfies (63) for every (t, x) ∈ (0, T )× (0,∞); we say in this case that s is a classical
solution of equation (63).

As in Section 4, we split the linear solution s of (65) as s = ũ+ ṽ, where ũ solves the heat equation (18)-(20)
and ṽ is a L∞([0, T ],W 1,2(R+)) mild solution of the equation (54) with b = bg and γ̃ = γ̃g.

First of all, we consider some regularity and stability properties for the function g which has an explicit
formula given by (66), given the function f satisfying Assumption 62.

Definition 28 (Good Data). We say that s0, c0, f, ψ are good data if they satisfy Assumption 24 and 25 and
if the following regularities are satisfied: there exists an 0 < α < 1 such that f ∈ C1+α/2,2+α([0, T ]× [0,+∞)),
s0 ∈ C2+α([0,+∞)), c0 ∈ C1+α([0,+∞)), ψ ∈ C1+α/2([0, T ]) and

ψ̇(0) = ∂2xs0(0) +
∂xc0(0)∂xs0(0)

ϕ(c0(0))
+ λc0(0)s0(0)(f(0, 0)− 1).

We have introduced the definition of good data since the results in [18] and in [21] are obtained under such
assumptions of good data and then extended to a more general setting, by density arguments. Furthermore, in
the case of good data, we get a higher regularity of the solutions, which is useful in some proofs.

The following proposition proposes time uniform bounds for g and its spatial derivative.

Proposition 29. Let us assume that f satisfies Assumption (25). Then 0 ≤ g ≤ C0 and

g ∈ C([0, T ], L2(R+)). (67)

Moreover there exists κ > 0, depending on m, C0, ϕm, λ, η, Tfin, but not on K, such that, for every T ∈ [0, Tfin],
for every f satisfying Assumption (25), the following bounds hold P -a.s.:

sup
t∈[0,T ]

‖C0 − g‖L2(R+) ≤ κ‖C0 − c0‖L2(R+) + κ‖f‖C([0,T ],L2(R+)), (68)

sup
t∈[0,T ]

‖∂xg‖2L2(R+) ≤ κ‖∂xc0‖2L2(R+) + κ‖∂xf‖2L2([0,T ]×R+). (69)
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Proof. As far as condition (67) concerns, we first note that by (10) and by Assumptions 24 on c0 and ϕ, the
denominator in (66) is bounded from below, hence g is bounded from above. Since f satisfies (62), we have, for
any 0 ≤ s < t ≤ T ,

|g(t, x)− g(s, x)| ≤ C
∣∣∣eλ

∫
t

0
f(r,x)dr − eλ

∫
s

0
f(r,x)dr

∣∣∣

≤ C

∫ t

s

f(r, x)dr ·max{eλ
∫

t

0
f(r,x)dr, eλ

∫
s

0
f(r,x)dr}

≤ C

∫ t

s

f(r, x)dr.

The constant C, changing from line to line depends only upon f . We get

‖g(t, ·)− g(s, ·)‖2L2(R+) ≤ C

∫ ∞

0

(
C

∫ t

s

f(r, x)dr

)2

dx ≤ (t− s)‖f‖L2
[0,T ]×(R+)

,

in particular g is in C([0, T ], L2(R+)).

If f and c0 which are good data, in the sense of Definition 28, inequalities (68) and (69) hold true, as shown
in [21](Proposition 2.1) and [18](Proposition 3.1), respectively. These bounds can be extended to the general
case by a density argument. The proof is complete.

It is possible to establish also some stability results for g.

Proposition 30. Let us suppose that f1, f2 satisfy Assumption (25) and that c0,1, c0,2 satisfy Assumption 24;

let g1, g2 be the corresponding solutions to (64). Then we have, for some K̃ > 0 (depending on m, C0, ϕm, λ,
η, Tfin, K), for every T ∈ [0, Tfin], P -a.s.,

sup
t∈[0,T ]

‖g1 − g2‖L∞(R+) ≤ K̃T ‖f1 − f2‖C([0,T ],L2(R+))∩L2([0,T ],W 1,2(R+)) + K̃‖c0,1 − c0,2‖L∞(R+), (70)

sup
t∈[0,T ]

‖g1 − g2‖W 1,2(R+) ≤ K̃T ‖f1 − f2‖C([0,T ],L2(R+))∩L2([0,T ],W 1,2(R+)) (71)

+ K̃(1 + ‖∂xc0,1‖L2(R+))‖c0,1 − c0,2‖W 1,2(R+).

Proof. It is enough to show the above bounds separately in the case when c0,1 = c0,2 and in the case when
f1 = f2. In the case when c0,1 = c0,2, the bound follows from [21](Proposition 2.5) and [18](Proposition 3.4) for
f1, f2 and c0,1 good data and a density argument for general f1, f2 and c0,1 = c0,2. We consider now the case
when f1 = f2 =: f . In the following, C > 0 may denote different constants (depending on m, C0, ϕm, λ, T , η,
K). We write, for any solution g to (64),

g(t, x) = ρ(t, x, c0(x)), ρ(t, x, c) =
c

ϕ(c)h(t, x) −Bc
, h(t, x) = eλ

∫
t

0
f(r,x)dr.

In view of bounding g1 − g2 and ∂xg1 − ∂xg2, we compute (recall ϕ(c) = A+Bc, B = ±1.

∂cρ(t, x, c) =
1

ϕ(c)h(t, x) −Bc
− (B(h(t, x) − 1)c

(ϕ(c)h(t, x) −Bc)2
,

∂xρ(t, x, c) = − cϕ(c)∂xh(t, x)

(ϕ(c)h(t, x) −Bc)2
,

∂c∂xρ(t, x, c) = ∂xh(t, x)

(
− ϕ(c) +Bc

(ϕ(c)h(t, x) −Bc)2
+

2cϕ(c)B(h(t, x) − 1)

(ϕ(c)h(t, x) −Bc)3

)
,

∂2cρ(t, x, c) = − 2B(h(t, x)− 1)

(ϕ(c)h(t, x) −Bc)2
+

2c(h(t, x)− 1)2

(ϕ(c)h(t, x) −Bc)3
.

Since f safisfies (62), we have (with a constant C > 0 independent of (t, x))

sup
c∈[0,C0]

|∂cρ(t, x, c)| ≤ C,

sup
c∈[0,C0]

|∂c∂xρ(t, x, c)| ≤ C

∫ t

0

|∂xf(r, x)|dr,

sup
c∈[0,C0]

|∂2cρ(t, x, c)| ≤ C.
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Now we can bound g1 − g2: since 0 ≤ c0,i ≤ C0, i = 1, 2, we have

|g1(t, x)− g2(t, x)| ≤ sup
c∈[0,C0]

|∂cρ(t, x, c)||c0,1(x)− c0,2(x)| ≤ C|c0,1(x) − c0,2(x)|,

which implies, for every 2 ≤ q ≤ ∞,

sup
t∈[0,T ]

‖g1 − g2‖Lq
x
≤ C‖c0,1 − c0,2‖Lq

x
.

Concerning ∂xg1 − ∂xg2, we have, for i = 1, 2,

∂xgi(t, x) = ∂xρ(t, x, c0,i(x)) + ∂cρ(t, x, c0,i(x))∂xc0,i(x)

and hence

|∂xg1(t, x)− ∂xg2(t, x)| ≤ |∂xρ(t, x, c0,1(x)) − ∂xρ(t, x, c0,2(x))|
+ |∂cρ(t, x, c0,1(x))− ∂cρ(t, x, c0,2(x))||∂xc0,1(x)|
+ |∂cρ(t, x, c0,2(x))||∂xc0,1(x)− ∂xc0,2(x)|

≤ sup
c∈[0,C0]

|∂c∂xρ(t, x, c)||c0,1(x)− c0,2(x)|

+ sup
c∈[0,C0]

|∂2cρ(t, x, c)||c0,1(x)− c0,2(x)||∂xc0,1(x)|

+ sup
c∈[0,C0]

|∂cρ(t, x, c)||∂xc0,1(x)− ∂xc0,2(x)|

≤ C

(∫ T

0

|∂xf(r, x)|dr + |∂xc0,1(x)|
)
|c0,1(x) − c0,2(x)|

+ C|∂xc0,1(x) − ∂xc0,2(x)|.

Therefore we obtain (by Assumption 25 on f)

sup
t∈[0,T ]

‖∂xg1 − ∂xg2‖2L2
x
≤ C(‖∂xf‖2L2

t(L
2
x)

+ ‖∂xc0,1‖2L2
x
)‖c0,1 − c0,2‖2L∞

x
+ C‖∂xc0,1 − ∂xc0,2‖2L2

x

≤ C(1 + ‖∂xc0,1‖2L2
x
)‖c0,1 − c0,2‖2W 1,2

x
,

where in the last line we have used the Sobolev embedding of W 1,2
x into L∞

x . The proof is complete.

Next we show that any function s, mild solution of the linear equation (65), exists in [0, T ], it is pathwise
unique and it can be approximated by a sequence of solutions of the same system given good data approximating
the initial conditions, the boundary conditions and the function f . The latter property is useful to apply the
results proven in [18, 21].

Proposition 31. Let us consider equation (64), where g is the solution of the equation (64), with f satisfying
Assumption 25.

i) There exists a pathwise unique L∞([0, T ],W 1,2(R+)) mild solution s of the equation (65).

ii) If s0, c0, f, ψ are good data as in Definition 28, then the corresponding solution s ∈ C1,2 ([0, T ]× R+);
hence, it is a classical solution to (63).

iii) For any mild solution s of the equation (65), there exists a sequence of good data sn0 , c
n
0 , f

n, ψn, with fn

converging to f in C([0, T ], L2(R+))∩L2([0, T ],W 1,2(R+)), with corresponding classical solutions sn of the
equation (65), such that (sn)n converges to s in L∞([0, T ],W 1,2(R+)), more precisely

lim
n→∞

sup
t∈[0,T ]

‖sn(t, ·)− s(t, ·)‖W 1,2(R+) = 0. (72)

In particular, sn converges to s uniformly on [0, T ]× (0,∞).

Proof. Condition i) is a consequence of Corollary (20), applied with p = 2, and inequality (68). Moreover, if ψ
is in C1, then well-posedness holds also in L∞

t (W 1,∞
x ), by Remark 21.

The regularity of the solution, stated in condition ii) in the case of good data, i.e. well-posedness of clas-

sical solutions in the class C
1+α/2,2+α
t,x is given in [21](Proposition 2.2). Since the classical solution is also in

L∞
t (W 1,∞

x ), it must coincide with the mild solution.
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Let us prove the approximating result iii). Let s be a mild solution of the equation (65). We take a sequence
of good data sn0 , c

n
0 , f

n, ψn approximating s0, c0, f, ψ in the following sense: (sn0 )n converges to s0 in W 1,2
x ,

(C0 − cn)n converges to C0 − c in W 1,2
x and hence in L∞

x by Sobolev embedding, (fn)n converges to f in

Ct(L
2
x) ∩ L2

t (W
1,2
x ) and (fn)n is uniformly bounded in L∞

t,x, (ψ
n)n converges to ψ in Cβ−ǫt , for ǫ > 0 given and

sufficiently small such that β − ǫ > 1/4.
Let gn be the solution to (64) with data cn0 , f

n. By (71), (gn)n converges to g in L∞
t (W 1,2

x ) (and in Ct(L
2
x)).

For any n ∈ N, we consider the functions bn = bgn and γ̃n = γ̃gn as in (13) and (47). Therefore, by Assumption
24 and Proposition 29, the family of drifts (bn)n converges to b = bg in L∞

t (L2
x) and the family of coefficients

(γ̃n)n is uniformly bounded in L∞
t,x and converges to γ̃ = γ̃g in Ct(L

2
x), where γ is given by (47). Hence, we can

apply the stability bound given in Proposition 23: calling sn the solution to (64) with good data sn0 , c
n
0 , f

n, ψn,
the family (sn)n converges to s in the sense of (72). By Sobolev embedding W 1,2

x → Cx, the convergence is also
uniform on [0, T ]× (0,∞). The proof is complete.

Proposition 32. Let us assume that f satisfies Assumption (25). Then, for any mild solution s of the equation
(65), we have P -a.s.

0 ≤ s(t, x) ≤ η, ∀(t, x) ∈ [0, T ]× [0,+∞), (73)

lim
x→+∞

s(t, x) = 0, ∀t ∈ (0, T ]. (74)

Moreover, let consider the splitted representation s = ũ+ ṽ. Then, for some constant C > 0 (depending only on
Tfin) we have P -a.s.

0 ≤ ũ(t, x) ≤ C‖ψ‖C([0,T ]) ≤ Cη, ∀(t, x) ∈ [0, T ]× [0,+∞), (75)

|ṽ(t, x)| ≤ Cη, ∀(t, x) ∈ [0, T ]× [0,+∞), (76)

lim
x→+∞

ũ(t, x) = lim
x→+∞

ṽ(t, x) = 0, ∀ t ∈ (0, T ]. (77)

Proof. If f , s0, c0 and ψ are good data, (73) and (74) are given in [21](Proposition 2.3). The general case
follows by the approximation result in Proposition 31, namely approximation via solutions with good data. The
positivity of u follows from the positivity of ψ, by the representation formula (25) since ∂xG ≤ 0. The uniform
bound (75) and the limit of u in (77) follow from the bound (33). The uniform bound (76) follows from (73)
and (75), while the limit of v in (77) follows from (74) and the first of (77).

Our main original contribution is given by the following proposition and its corollary 37; the crucial bound
on the splitting variable ṽ that, together with the analogous bound for the splitting variable ũ , (Proposition 13),
gives the final bound for the solution s of the linear equation. The corollary that follows states the generalization
of this bound to the nonlinear equation.

Proposition 33 (Estimate for the linear system). For every f satisfying Assumption (25) with a generic
K > 0, let s be the solution of the equation (63), coupled with equation (64). Then, there exists a constant
µ ≥ 0, depending on m, C0, ϕm, λ, η, Tfin but not on K, such that, for every T ∈ [0, Tfin], satisfies the
following bound P -a.s.

sup
t∈[0,T ]

‖s(t, ·)‖2L2(R+) +

∫ T

0

‖∂xs(t, ·)‖2L2(R+)dt ≤ µ+
1

2

∫ T

0

‖∂xf(t, ·)‖2L2(R+)dt. (78)

In particular, for any f satisfying Assumption (25) with K ≥ 2µ, for any T ∈ [0, Tfin], we have

sup
t∈[0,T ]

‖s(t, ·)‖2L2(R+) +

∫ T

0

‖∂xs(t, ·)‖2L2(R+)dt ≤ K. (79)

Proof. By the approximation result in Proposition 31, it is enough to show the two bounds (78) and (79) for
classical solutions arising from good data f, s0, c0, ψ. Hence we will now consider such classical solutions.

Let us remind that we may consider the splitting s = ũ+ ṽ, where ũ is solution of (18)-(20) and ṽ is solution
of (54) We first obtain an equation for the pore concentration for ϕ(g)ṽ2, where ϕ is given by (10). By the chain
rule, equations (54) and (64), we get the following

∂t(ϕ(g)ṽ
2) = 2ϕ(g)ṽ∂tṽ + ṽ2∂tg

= 2ṽϕ(g)∂2xṽ + 2ṽ∂x(ϕ(g))∂xṽ − 2λϕ(g)g(1−Bf)ṽ2 + 2∂xg∂xũṽ − 2λϕ(g)gũ(1−Bf)ṽ − λϕ(g)gf ṽ2

= 2ṽ∂x(ϕ(g)∂xṽ)− λϕ(g)g(2 + (1− 2B)f)ṽ2 + 2∂xg∂xũṽ − 2λϕ(g)gũ(1−Bf)ṽ.
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Let us integrate over (0, t) × (0,+∞). By means of the integration by parts in x in the first term at the right
hand side, since by Proposition 32 v(t, 0) = 0 and v(t,+∞) = 0), we get

∫ ∞

0

ϕ(gt)ṽ
2
t dx−

∫ ∞

0

ϕ(g0)v
2
0dx + 2

∫ t

0

∫ ∞

0

ϕ(g)(∂xṽ)
2dxdr

= −
∫ t

0

∫ ∞

0

λϕ(g)g(2 + (1− 2B)f)ṽ2dxdr +

∫ t

0

∫ ∞

0

2ṽ∂xg∂xũdxdr +

∫ t

0

∫ ∞

0

−2λϕ(g)g(1−Bf)ũṽdxdr

=: R1 +R2 +R3.

By Proposition 32 and Assumption 24, we have ũ ≥ 0, f ≥ 0 and, for B = 1, f ≤ η < 1 and, for B = −1
2 + 3f > 0. Hence

R1 ≤ 0.

As the R2 term concerns, Proposition 32 gives the L∞ uniform bound on ṽ, inequality (68) gives the L2 bound
on ∂xg, while the L2 bound on ∂xu derives by Proposition 13, since β > 1/4; hence, for ǫ > 0 to be determined
later and the constants Cǫ and C, depending only on ǫ and only on Tfin, respectively, we get what follows

R2 =

∫ t

0

∫ ∞

0

2∂xg∂xũṽdxdr

≤ Cǫ

∫ T

0

‖v∂xũ‖2L2
x
dr + ǫ

∫ T

0

‖∂xg‖2L2
x
dr

≤ CǫT ‖ṽ‖2L∞

t,x
‖∂xũ‖2L∞

t (L2
x)

+ ǫ T ‖∂xg‖2L∞

t (L2
x)

≤ CCǫTη
2‖ψ‖2Cβ + ǫ κT

(
‖∂xc0‖2L2

x
+ ‖∂xf‖2L2

t(L
2
x)

)
.

For the term R3, we use the L∞ bound on g given by (68), the L1 bound (34) on u and the bound |ψ| ≤ η, the
uniform bound on v by Proposition 32 and Assumption 24 and get

R3 =

∫ t

0

∫ ∞

0

−2λϕ(g)g(1−Bf)ũṽdxdr

≤ 2λT ‖g‖L∞

x
(A+B‖g‖L∞

x
)‖ṽ‖L∞

t,x
‖ũ‖L∞

t (L1
x)

≤ CλTη2C0(A+BC0).

Hence, by means of the estimates of the terms R1−R3 and by considering the lower bound for ϕ as in condition
B2 of the Assumption 24, we get the following space estimate in L2 for ṽ and its derivative

∫ ∞

0

ṽ2t dx+ 2

∫ t

0

∫ ∞

0

(∂xṽ)
2dxdr ≤ ϕ−1

m

∫ ∞

0

ϕ(gt)ṽ
2
t dx+ 2ϕ−1

m

∫ t

0

∫ ∞

0

ϕ(g)(∂xṽ)
2dxdr

≤ ϕ−1
m C0‖s0‖2L2

x
+ CCǫϕ

−1
m Tη2‖ψ‖2Cβ + ǫϕ−1

m κT ‖∂xc0‖2L2
x

+ CλTη2C0(A+BC0) + ǫϕ−1
m κT ‖∂xf‖2L2

t(L
2
x)

=: Aǫ + ǫϕ−1
m κT ‖∂xf‖2L2

t(L
2
x)
.

If we combine the latter estimate with the inequality (40) for ũ, then, for some constant C̄ depending only on
Tfin, we get the following for s = ũ+ ṽ,

sup
t∈[0,T ]

∫ ∞

0

s2tdx +

∫ T

0

∫ ∞

0

(∂xs)
2dxdr ≤ 2 sup

t∈[0,T ]

∫ ∞

0

ũ2tdx+ 2

∫ T

0

∫ ∞

0

(∂xũ)
2dxdr + 2 sup

t∈[0,T ]

∫ ∞

0

ṽ2t dx

+ 2

∫ T

0

∫ ∞

0

(∂xṽ)
2dxdr

≤ C̄‖ψ‖2Cβ + 3Aǫ + 3ǫϕ−1
m κT ‖∂xf‖2L2

t(L
2
x)
.

Now, let us take ǫ > 0, sufficiently small that 3ǫϕ−1
m κTfin ≤ 1/2; we get

sup
t∈[0,T ]

∫ ∞

0

s2tdx+

∫ T

0

∫ ∞

0

(∂xs)
2dxdr ≤ C̄‖ψ‖2Cβ + 3Aǫ +

1

2
‖∂xf‖2L2

t(L
2
x)
.
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So, inequality (78) is proven, with µ = C̄‖ψ‖2Cβ + 3Aǫ. If we take the parameter K in (62) such that K ≥ 2µ,
we conclude that

sup
t∈[0,T ]

∫ ∞

0

s2tdx +

∫ T

0

∫ ∞

0

(∂xs)
2dxdr ≤ K

2
+
K

2
= K.

Hence, inequality (79) is proven.

Remark 34. Proposition 33 is the main point where the irregularity of the boundary condition ψ does not
let us use the results already proven in [21]. Precisely, in [21](Proposition 2.4), the estimate on s is obtained
by multiplying the equation for ϕ(g)s morally with s − ψ and integrating by parts in time and space; in this
procedure the time derivative of ψ appears, something which cannot be controlled in our context. Here instead,
in a certain sense we leave the irregularity due to ψ into the u term and consider the equation for v instead,
which has smooth (actually zero) boundary condition.

Remark 35. Note that, unlike [21](Proposition 2.4), the bound (78) in Proposition 33 on the solution s to the
linear equation (63) depends on the C([0, T ], L2(R+)) ∩ L2([0, T ],W 1,2(R+)) norm of f . The reason for this
dependence is due to the appearance of the term ∂xg, which can only be controlled by the C([0, T ], L2(R+)) ∩
L2([0, T ],W 1,2(R+)) norm of u. However, we can make this dependence small, that is, with a multiplicative
constant less or equal than one half. This is enough to get the a priori estimate in Proposition 37 in the case of
the nonlinear equation (11),(12)-(14).

The next result deals with the contraction property of the operator that maps any f in (62) into the solution
of the linear equation, for small time T .

Proposition 36. There exists µ > 0 (as in Proposition 33) such that, for every K ≥ 2µ, we have: there exist
T ∈ [0, Tfin], L < 1 (all depending on m, C0, ϕm, λ, η, Tfin and K) such, that, for every f1, f2 satisfying (62)
with K, calling s1, s2 the corresponding solutions, we have

sup
t∈[0,T ]

‖s1t − s2t‖2L2(R+) +

∫ T

0

‖∂xs1t − ∂xs
2
t‖2L2(R+)dt ≤ L

(
sup
t∈[0,T ]

‖f1
t − f2

t ‖2L2(R+) +

∫ T

0

‖∂xf1
t − ∂xf

2
t ‖2L2(R+)dt

)
.

Proof. If s1 and s2 are solutions arising from good data, then one can repeat the arguments in the proof of
[21](Proposition 2.6), by replacing the constantKλ in [21] with the constantK ≥ 2µ, where µ is as in Proposition
33. The general case follows by the approximation result in Proposition 31.

The nonlinear system Let us focus again on the nonlinear PDE (11)-(14). First of all we consider a
corollary of Proposition 33.

Proposition 37 (Estimate for the nonlinear system). If (s, c) is a mild solution to the nonlinear PDE (11),(12)-
(14). Then there exists a constant µ ≥ 0, depending on m, C0, ϕm, λ, η, Tfin but not on K, such that, for
every T ∈ [0, Tfin], if (s, c) is a mild solution to the nonlinear PDE (11),(12)-(14), we have P -a.s.

sup
t∈[0,T ]

‖s(t, ·)‖2L2(R+) +

∫ T

0

‖∂xs(t, ·)‖2L2(R+)dt ≤ 2µ.

Proof. If (s, c) solves the nonlinear PDE (11),(12)-(14), one can consider f = s and the conclusion follows from
the bound (78) of Proposition 33. .

Remark 38. We note that if (s, c) is a mild solution to (11),(12)-(14), then by Remark 22 s ∈ C([0, T ];L2(R2)).
Furthermore, we have that (s, c) is a mild solution to (11),(12)-(14) if and only if (s, c) is a mild solution to
(63)-(64) with f = s.

The global existence of a pathwise unique mild solution for the nonlinear equation is proven in the following
theorem.

Theorem 39. Let us consider system (11),(12)-(14) on [0, Tfin] × R+. For any T ∈ [0, Tfin], there exists a
pathwise unique mild solution (s, c), in the sense of Definition 5.
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Proof. Let χK,T denote the space of functions f satisfying Assumption 25, with K and T as in Proposition 33
and Proposition 36; it turns out that χK,T is a complete metric space endowed with the norm Ct(L

2
x)∩L2

t (W
1,2
x ).

We consider the solution map of the liner system

F : χK,T → χK,T , F (f) = s,

where, given a function f , s is the first component of the solution (s, g) to the linear system (63)-(64) driven
by f . By Proposition 32 and Proposition 33, the operator F is well-defined and it is a contraction on χK,T (for
small T and large K), due to Proposition 36. Hence, we get existence and uniqueness of a fixed point of F , that
is existence and uniqueness for (11),(12)-(14), for small T > 0. For general T > 0, we can use a strategy which is
similar to the one followed in [21]. We take K = 2µ, with µ as in Proposition 33 and Proposition 37 and define

T ∗ = sup {t ∈ [0, T ] | ∃! mild solution (s, c) to (11), (12)− (14)} .

First of all, we show that (s, c) can be extended as a mild solution up to T ∗ included and s is such that
it satisfies that supt∈[0,T∗] ‖st‖W 1,2

x
< ∞. In order to do this, we take f = s, extended to t = T ∗ for example

taking fT∗ = 0. With such f , c can be extended up to T ∗ included by the explicit formula (66) and the bounds
(68)-(69) still hold. By Corollary 20, there exists a unique mild solution s̃ on [0, T ∗] to (63), in particular s̃ is in
Ct(L

2
x) and satisfies supt∈[0,T∗] ‖s̃t‖W 1,2

x
<∞. By uniqueness of (63), s and s̃ must coincide on [0, T ∗). Hence s

can be extended to a solution on [0, T ∗] by setting sT∗ = s̃T∗ and it verifies supt∈[0,T∗] ‖st‖W 1,2
x

<∞.
Finally, we show that T ∗ = T . By contradiction, if T ∗ < T then we would like to take sT∗ (which is in

W 1,2
x ) and cT∗ as new initial conditions and apply the local well-posedness result to extend the unique solution

for T > T ∗. Unfortunately here we cannot use exactly this argument, because sT∗ = ψT∗ does not need to be
zero and so we are outside Assumption 24. However, we can consider a modified fixed point problem as follows.
We take the space χ̃T

∗

K,T of functions f satisfying Assumption 25 and such that f = s (the unique solution of

(11),(12)-(14) on [0, T ∗] × [0,∞) and we still consider the map F , restricted on χ̃T
∗

K,T , such that F (f) is the
solution to the (first equation of) the linear system (63)-(64) driven by f . The proof of Proposition 36 (which
is the proof of [21](Proposition 2.6)) does not use the fact that ψ(0) = 0 and so one can repeat the proof for f
in χ̃T

∗

K,T and get the following fact, for K large enough and T − T ∗ > 0 small enough, for some L < 1: for every

f1, f2 in χ̃T
∗

K,T , calling s
1 = F (f1), s2 = F (f2),

sup
t∈[T,T∗]

‖s1t − s2t‖2L2
x
+

∫ T

T∗

‖∂xs1t − ∂xs
2
t‖2L2

x
dt ≤ L

(
sup

t∈[T∗,T ]

‖f1
t − f2

t ‖2L2
x
+

∫ T

T∗

‖∂xf1
t − ∂xf

2
t ‖2L2

x
dt

)
.

Hence, for large K and small T − T ∗, F is a contraction on χ̃T
∗

K,T and therefore it has a unique fixed point, that
is there exists a unique mild solution (s, c) on [0, T ∗ + T ]. But this is in contradiction with the definition of T ∗.
Hence T ∗ = T . The proof is complete.

6 Appendix

For convenience of the reader here we recall some classical results of functional analysis related to fractional
Sobolev spaces with some embedding results [14,25,29]. Furthermore, we give the basic definition related to the
interpolation theory [6, 23, 25, 29].

Let us remark the fact that, as in the classical case with integer exponents, the spaceW k′+α′,p is continuously
embedded in W k+α,p, with k + α ≤ k′ + α′, k, k′ integers and α, α′ ∈ (0, 1). The result holds in the limit case
α = 1 [14].

Proposition 40. [14] Let p ∈ [1,∞], k, k′ ∈ N, and α, α′ ∈ (0, 1), with k + α ≤ k′ + α′. Then

‖f‖Wk+α,p(R) ≤ C‖f‖Wk′+α′,p(R).

In particular,
W k′+α′,p(R) ⊆W k+α,p(R).

The previous hold also in the case k = k′ = 0. Furthermore,

W 1,p(R) ⊆Wα,p(R).
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The Sobolev embedding results may be extended by considering different Lp spaces, for various exponents
p, provided some relations among the exponents.

Proposition 41. [25,29] Let p, q ∈ [1,∞], s, s′ ∈ R+, with p ≤ q and s′ ≤ s. If

s− 1

p
≥ s′ − 1

q
, (80)

then
W s,p(R) ⊆W s′,q(R). (81)

All the previous results are applied also to R+.
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