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Finite automata whose computations can be reversed, at any point, by knowing the
last k symbols read from the input, for a fixed k, are considered. These devices and
their accepted languages are called k-reversible automata and k-reversible languages,
respectively. The existence of k-reversible languages which are not (k − 1)-reversible is
known, for each k > 1. This gives an infinite hierarchy of weakly irreversible languages,
i.e., languages which are k-reversible for some k. Conditions characterizing the class of k-
reversible languages, for each fixed k, and the class of weakly irreversible languages are
obtained. From these conditions, a procedure that given a finite automaton decides if
the accepted language is weakly or strongly (i.e., not weakly) irreversible is described.
Furthermore, a construction which allows to transform any finite automaton which is
not k-reversible, but which accepts a k-reversible language, into an equivalent k-reversible
finite automaton, is presented.

Keywords: Finite automata; Reversibility; Descriptional Complexity.

1. Introduction

The principle of reversibility, which is fundamental in thermodynamics, has been
widely investigated for computational devices. The first works on this topic already
appeared half a century ago and are due to Landauer and Bennet [2, 9]. More
recently, several papers presenting investigations on reversibility in space bounded
Turing machines, finite automata, and other devices appeared in the literature (see,
e.g., [1, 3, 6, 10,11,13,15]).

A process is said to be reversible if its reversal causes no changes in the orig-
inal state of the system. In a similar way, a computational device is said to be
reversible when each configuration has at most one predecessor and one successor,
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thus implying that there is no loss of information during the computation. As ob-
served by Landauer, logical irreversibility is associated with physical irreversibility
and implies a certain amount of heat generation [9]. Hence, in order to avoid power
dissipation and to reduce the overall power consumption of computational devices,
it can be interesting to realize reversible devices.

In this paper we focus on finite automata. While each two-way finite automaton
can be converted into an equivalent one which is reversible [6], in the case of one-
way finite automata (that, from now on, will be simply called finite automata) this
is not always possible, namely there are regular languages as, for instance, the lan-
guage a∗b∗, that are recognized only by finite automata that are not reversible [15].

In [3], the authors gave an automata characterization of the class of reversible
languages, i.e., the class of regular languages which are accepted by reversible au-
tomata: a language is reversible if and only if the minimum deterministic automaton
accepting it does not contain a certain forbidden pattern. Furthermore, they provide
a construction to transform a deterministic automaton not containing such forbid-
den pattern into an equivalent reversible automaton. This construction is based on
the replication of some strongly connected components in the transition graph of
the minimum automaton. Unfortunately, this can lead to an exponential increase
in the number of the states, which, in the worst case, cannot be avoided. To over-
come this problem, two techniques for representing reversible automata, without
explicitly describing replicated parts, have been obtained in [12].

In this paper, we deepen these investigations, by introducing the notions of
weakly and strongly irreversible language. By definition, a reversible automaton
during a computation is able to move back from a configuration (state and input
head position) to the previous one by knowing the last symbol which has been read
from the input tape. This is equivalent to saying that all transitions entering the
same state are on different input symbols. Now, suppose to give the possibility to
the automata to see back more than one symbol on the input tape, in order to
move from a configuration to the previous one. Does this possibility enlarge the
class of languages accepted by reversible (in this extended sense) automata? It is
not difficult to give a positive answer to this question.

Considering this idea, we recall the notion of k-reversibility: a regular language
is k-reversible if it is accepted by a finite automaton whose computations can be
reversed by knowing the sequence of the last k symbols that have been read from the
input tape. This notion was previously introduced in [8] by proving the existence
of an infinite hierarchy of degrees of irreversibility: for each k > 1 there exists a
language which is k-reversible but not (k − 1)-reversible. Here we prove that there
are regular languages which are not k-reversible for any k. Such languages are
called strongly irreversible, in contrast with the other regular languages which are
called weakly irreversible.

As in the case of “standard” reversibility (or 1-reversibility), we provide an
automata characterization of the classes of weakly and strongly irreversible lan-
guages. Indeed, generalizing the notion of forbidden pattern presented in [3], we
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show that a language is k-reversible if and only if the minimum automaton accept-
ing it does not contain a certain k-forbidden pattern. We also give a construction
to transform each automaton which does not contain the k-forbidden pattern, into
an equivalent automaton which is k-reversible. Furthermore, using a pumping ar-
gument, we prove that if an n-state automaton contains an N -forbidden pattern,
for a constant N = O(n2), then it contains a k-forbidden pattern for each k > 0
or equivalently, a certain strong forbidden pattern. Hence, applying this condition
to the minimum automaton accepting a language L, we are able to decide if L is
weakly or strongly irreversible. We finally present a decision procedure for such
problem.

We point out that, according to the approach in [3], in this paper we refer to the
classical model of deterministic automata, namely automata with a unique initial
state, a set of final states and deterministic transitions. Different approaches have
been considered in the literature. The notion of reversibility in [1] is introduced
by considering deterministic devices with one initial state and one final state, while
automata with a set of initial states, a set of final states and deterministic transitions
have been considered in [15]. In particular, the notion of reversibility in [1] is more
restrictive than the one studied in [3] and in this paper. Hence, also the notion of k-
reversibility, introduced and studied here, is different from a notion of k-reversibility
studied in [1].

Outline. The paper is organized as follows. In Section 2, we recall the basic defini-
tions and we introduce the main concepts under consideration (mainly, the notions
of k-reversibility, weak and strong irreversibility). In Section 3, we prove our main
result which characterizes the class of k-reversible languages, for each positive inte-
ger k, by using the notion of k-forbidden pattern. To prove this characterization, in
Subsection 3.1 we present a construction to transform an automaton into an equiv-
alent k-reversible one, when this is possible. The above-mentioned characterization
is then extended to weakly irreversible languages (i.e., k-reversible languages, for
some k) in Section 4. In Section 5 we consider the degree of irreversibility on both
automata and their accepted languages, and we show the existence of arbitrarily
large (and even infinite) gaps between these degrees. In Section 6, we discuss and
we present a decision procedure that allows to check whether a minimum automa-
ton accepts a weakly or a strongly irreversible language. The same procedure also
allows to compute the degree of irreversibility of a language. We prove the NL-
completeness of such decision problem. Finally, we make concluding comments in
Section 7.

2. Preliminaries

2.1. Automata, words and languages

In this section we recall some basic definitions and results useful in the paper. For
more details on automata and formal languages, we refer the reader to a standard
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textbook as, e.g., [4].
Given a set S, let us denote by #S its cardinality, by 2S the family of all its

subsets, and by S<k (Sk, respectively), for a fixed integer k ≥ 0, the set of sequences
of less than (exactly, resp.) k elements from S, where ε is the empty sequence. Given
an alphabet Σ, |w| denotes the length of a string w ∈ Σ∗.

A deterministic finite automaton (dfa) is a tuple A = (Q,Σ, δ, qI , F ), where Q
is the finite set of states, Σ is the input alphabet, qI ∈ Q is the initial state, F ⊆ Q is
the set of final states, and δ : Q×Σ→ Q is the partial transition function, that can
be extended, in the usual way, as a function δ : Q×Σ∗ → Q applying to strings. We
say that two states p, q ∈ Q are equivalent if and only if for all w ∈ Σ∗, δ(p, w) ∈ F
exactly when δ(q, w) ∈ F . Let A = (Q,Σ, δ, qI , F ) be a dfa. A state p ∈ Q is useful
if it is reachable, i.e., there exists w ∈ Σ∗ such that δ(qI , w) = p, and productive,
i.e., if there is w ∈ Σ∗ such that δ(p, w) ∈ F . In this paper we only consider dfas
in which all the states are useful.

Nondeterministic finite automata (nfas) are defined by extending the transition
function to δ : Q×Σ→ 2Q and by admitting several initial states (the initial state
component is replaced by a subset I ⊆ Q of initial states). In this way, an nfa can
reach multiple states at the same time.

The language accepted by a dfa or an nfa A is defined in the classical way as
the set L(A) of all strings that define a path from one initial state to one of the
final states. Two automata A and A′ are said to be equivalent if they accept the
same language, i.e., if L(A) = L(A′).

A strongly connected component (scc) C of an nfa or a dfa A is a maximal
subset of Q such that, for every two states p and q of C, there exists a path from
p to q and a path from q to p in the transition graph of A. Let us denote by Cq

the scc containing the state q ∈ Q. We consider the partial order � on the set of
sccs of A, defined by C1 � C2 when a state in C2 is reachable from a state in C1.
We write C1 ≺ C2 when C1 � C2 and C1 6= C2.

2.2. Reversibility

In this section we introduce the main notions we consider in this paper, by defining
different degree of reversibility of automata or of languages.

Given a dfa A = (Q,Σ, δ, qI , F ), the reverse transition function of A is the
function δr : Q × Σ → 2Q such that δr(p, a) = {q ∈ Q | δ(q, a) = p}. The reverse
automaton of A is the nfa Ar = (Q,Σ, δr, F, {qI}) obtained by reversing the tran-
sition function δ and in which the set of initial states coincides with the set of final
states of A and the unique final state is qI .

A state r ∈ Q is said to be irreversible when #δr(r, a) > 1 for some a ∈ Σ,
i.e., there are at least two transitions on the same letter entering r, otherwise r
is said to be reversible. The dfa A is said to be irreversible if it contains at least
one irreversible state, otherwise A is reversible (rev-dfa). As pointed out in [7],
the notion of reversibility for a language is related to the computational model
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under consideration. In this paper we only consider dfas. Hence, by saying that a
language L is reversible, we refer to this model, namely we mean that there exists
a rev-dfa accepting L. The class of reversible languages is denoted by rev.

We now relax the notion of reversibility, by allowing irreversibility whenever it
can be resolved by accessing to a suffix of fixed length of the portion of the input
read so far. This yields the notions of k-reversibility and weak-irreversibility.

Definition 1. Let k be a positive integer, A = (Q,Σ, δ, qI , F ) be a dfa, and L ⊆ Σ∗
be a regular language.

• A state r ∈ Q is k-irreversible if there exist two states p and q in Q, a
string x ∈ Σk−1 and a symbol σ ∈ Σ, such that δ(p, x) 6= δ(q, x) and
δ(p, xσ) = δ(q, xσ) = r, as depicted here:

p

6= r
q

x
σ

x
σ

Otherwise, r is k-reversible.
• The automaton A is k-reversible if each of its states is k-reversible.
• The language L is k-reversible if it is accepted by a k-reversible dfa.
• The language L is weakly irreversible if it is k-reversible for some k > 0.

By definition, a state r is 1-reversible if and only if it is reversible. As a consequence,
1-reversibility (of automata or of languages) coincides with reversibility.

In the case of a k-reversible state r, with k > 1, we could have more than one
transition on the same symbol σ entering r. However, by knowing the suffix of
length k of the part of the input already inspected, i.e., a suffix xσ with |x| = k−1,
we can uniquely identify which transition on σ has been used to enter r in the
current computation. In other terms, while a reversible automaton is a device which
is able to move the computation one state back, by knowing the last symbol that
has been read, a k-reversible automaton can do the same, having access to the suffix
of length k of the part of the input already inspected (when the length of that part
is less than k, the automaton can see all the input inspected so far).

Let us denote by revk the class of k-reversible languages. As observed previously,
rev = rev1. Furthermore k-reversible dfas are denoted revkdfas, for short.

From Definition 1, we can immediately prove the following facts:

Remark 2. If a state (resp., an automaton or a language) is k-reversible for some
positive integer k, then it is k′-reversible for every k′ ≥ k.

As observed by Pin, not all regular languages are reversible [15]. This result
extends to k-reversibility for each k > 0 [8]. In particular there exists an infinite
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qI q1 qk−1 qk

a b
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Figure 1: The minimum automaton accepting the language a∗bkb∗

hierarchy of languages, with respect to k-reversibility, as described in the next
example.

Example 3 (introduced in [8]) For each integer k > 0, consider the language
Lk = a∗bkb∗, which is accepted by the minimum automaton depicted in Figure 1.
The only irreversible state is qk.

Suppose that, after reading a string w, the automaton is in qk. If we know a suffix
of w of length i, with i ≤ k, (this suffix can only be bi) then we cannot determine
the previous state in the computation, namely, the state entered before reading the
last symbol of w. In fact, this state could be either qk−1 or qk. Hence, the automaton
is not k-reversible. However, if we know the suffix of length k + 1, then it could be
either bk+1, and in this case the previous state is qk, or abk, and in this case the
previous state is qk−1. It could be also possible that only k input symbols have been
read, i.e., |w| = k. In that case, all w = bk can be seen back and the previous state
is qk−1. Hence, the automaton is (k + 1)-reversible. As shown in [8, Theorem 4]
we cannot do better for this language, i.e., Lk ∈ revk+1 \ revk. This can be also
obtained as a consequence of results in Section 5.

As a consequence of Remark 2 and Example 3, we have the proper infinite
hierarchy of classes:

rev = rev1 ⊂ rev2 ⊂ . . . ⊂ revk ⊂ . . .

3. Characterization of k-reversible languages

In [3], the authors proved that a regular language is irreversible if and only if
the minimum dfa accepting it contains a forbidden pattern, which consists of two
different transitions on the same letter entering in the same state r, where one of
them arrives from a state p which belongs to the same strongly connected component
of r (see Figure 2a).

We now refine this definition in order to consider strings of the same length that
lead to the same state.

Definition 4. Given a dfa A = (Q,Σ, δ, qI , F ) and an integer k > 0, the k-
forbidden pattern is formed by three states p, q, r ∈ Q, with a symbol σ ∈ Σ, two
strings x ∈ Σk−1 and w ∈ Σ∗, such that δ(p, x) 6= δ(q, x), δ(p, xσ) = δ(q, xσ) = r,
and δ(r, w) = q (see Figure 2b).
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q
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σ

σ

w

(a)

r6=

p

q

x

x

σ

σ

w

(b)

Figure 2: The forbidden pattern (a) and the k-forbidden pattern (b), in which σ ∈ Σ,
w ∈ Σ∗, and x ∈ Σk−1

Without the condition δ(r, w) = q, the definition says exactly that r is a k-
irreversible state (see first item of Definition 1). With the additional condition, we
require that one of the state that “witnesses” the k-irreversibility of r (named q)
belongs to same strongly connected component as r, namely Cq = Cr.

From Definition 4, we can observe that if a dfa A contains a k-forbidden pattern,
for some k > 0, then it contains a k′-forbidden pattern for each integer k′ ≤ k.

We will use the notion of k-forbidden pattern to obtain a characterization of
the class revk. In fact, we will prove that a regular language is k-reversible if and
only if the minimum dfa accepting it does not contain the k-forbidden pattern.
In Subsection 3.1, we present an algorithm that transforms any dfa in which does
not occur the k-forbidden pattern into an equivalent k-reversible dfa, while in
Subsection 3.2, we show that the absence of the k-forbidden pattern in the minimum
dfa is a necessary condition for the accepted language to be k-reversible.

3.1. k-reversible simulation

In this section we present a construction to build, given a dfa A = (Q,Σ, δ, qI , F )
and an integer k > 0, an equivalent dfa A′ = (Q′,Σ, δ′, sI , F

′), which is k-reversible
if A does not contain the k-forbidden pattern.

Let us start by presenting an informal outline of the construction. First of all,
we discuss the case k = 1, namely the case of “standard” reversibility.

If A does not contain the 1-forbidden pattern, to make it reversible we can
extend its control to remember the sequence of the states from which, during the
computation, irreversible transitions have been executed, i.e., all states q ∈ Q such
that A executed a transition on a symbol σ from q to a state r with #δr(r, σ) > 1.
With the information saved in this sequence and looking at the previous input
symbol, the automaton is able to reverse its computation. Since A does not contain
the 1-forbidden pattern, each time it executes an irreversible transition, it moves
from an scc to a different one. This implies that the length of the sequence saved in
the control is bounded. Actually, our construction will be slightly redundant: each
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time A will move from a state q in an scc to a state in a different scc we will
add q to the sequence, even if the used transition is not irreversible.

The case k > 1 is more complicated. Since an irreversible state r could also be
entered by an irreversible transition arriving from a state in the scc Cr, the previ-
ous technique would require to remember arbitrarily long sequences of states. We
proceed in a different way, still using the previous technique, after the preliminary
change in the automaton A that we now illustrate.

For any k-irreversible state r we have the situation in the following picture, for
some p0, p, q0, q ∈ Q, a ∈ Σ, x ∈ Σk−1:

p0 p

6= r
q0 q

x
a

x
a

Since A does not contain the k-forbidden pattern, the states p0 and q0 cannot belong
to Cr. Hence, along each path from p0 and q0 to r on xa, there is a transition which,
from another scc, enters Cr. In order to know where those transitions are located, we
introduce a counter modulo k in the finite control of A. In the initial configuration
the counter contains 0. It is incremented by 1 during the execution of each transition
that does not change scc, while it is set to 0 when the transition reaches a different
scc. In this way, if the state r is reached with 0 in the counter, then both transitions
from p and q should arrive from sccs different than Cr (otherwise, due to the
increment policy of the counter, either p0 or q0 should be in Cr). In a similar way, if
the counter contains a value `, 0 < ` < k, in both paths the transition entering the
component Cr is the one reading the symbol which precedes the suffix of length `
of xa, i.e., the one entering the configuration with 0 in the counter.

In this way, if the automaton is in the state r with ` in the counter, and it knows
the suffix xa of length k of the input read so far and the state which was reached
immediately before entering Cr, then it can decide if the state before entering r
was p or q and, so, it can reverse the last computation step.

Using these ideas, we now define the dfa A′. The finite control stores three
elements:

• The current state q of A.
• An integer j ∈ {0, . . . , k − 1} which is used to count modulo k the visits to
states in the current scc of A, namely in the scc Cq.

• A sequence of pairs from Q×{0, . . . , k − 1}. This is the sequence of the first
two components of the states in Q′ which have been reached before simulat-
ing a transition that in A changes scc. Since the number of possible sccs is
bounded by #Q, we consider sequences of length less than #Q. It is conve-
nient to view these sequences as words over the alphabetQ× {0, . . . , k − 1},
using the symbol · to denote concatenation.
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Formally, we give the following definition:

• Q′ = Q× {0, . . . , k − 1} × (Q× {0, . . . , k − 1})<#Q;
• for 〈q, j, α〉 ∈ Q′, if δ(q, a) = p then

δ′(〈q, j, α〉, a) =
{
〈p, (j + 1) mod k, α〉 if Cp = Cq

〈p, 0, α · (q, j)〉 otherwise,

while δ′(〈q, j, α〉, a) is left undefined when δ(q, a) is not defined;
• sI = 〈qI , 0, ε〉 is the initial state;
• F ′ = F ×{0, . . . , k − 1}× (Q× {0, . . . , k − 1})<#Q is the set of final states.

Notice that by dropping the second and the third components off the states of A′,
we get exactly the automaton A. Hence, A and A′ are equivalent. Furthermore,
if δ′(〈p, h, α〉, a) = 〈r, `, γ〉 for some a ∈ Σ and 〈p, h, α〉, 〈r, `, γ〉 ∈ Q′ with 0 < ` < k,
then the states p and r are in the same scc of A and h = ` − 1. This fact will be
used in the following proof of the main property of A′.

Lemma 5. If A does not contain the k-forbidden pattern, then A′ is k-reversible.

Proof. Assume that A does not contain the k-forbidden pattern and, by contra-
diction, suppose that A′ contains a k-irreversible state 〈r, `, γ〉 ∈ Q′. Then there
exist a string x ∈ Σk−1, a symbol a ∈ Σ and four states 〈p0, h0, α0〉, 〈p, h, α〉,
〈q0, j0 β0〉 and 〈q, j, β〉 in Q′, such that x defines a path from state 〈p0, h0, α0〉
(resp., 〈q0, j0, β0〉) to state 〈p, h, α〉 (resp., 〈q, j, β〉), there are transitions on a from
both states 〈p, h, α〉 and 〈q, j, β〉 to state 〈r, `, γ〉, and 〈p, h, α〉 6= 〈q, j, β〉. The situ-
ation is summarized in the following picture:

〈p0, h0, α0〉 〈p, h, α〉

6= 〈r, `, γ〉

〈q0, j0, β0〉 〈q, j, β〉

x
a

x
a

First, suppose ` = 0. We divide the proof in the following cases:

Case α = β = γ.
From the definition of δ′, Cp = Cq = Cr. Furthermore h = j = k − 1.
Hence p 6= q. Since |x| = k − 1, in the states of A′ along the path
from 〈q0, j0, β0〉 on x, the second component is 0 only at the beginning
of the path. This implies that Cq0 = Cq = Cr. Hence, the automaton A

should contain the k-forbidden pattern.
Case α 6= γ and β = γ (and, symmetrically, Case α = γ and β 6= γ).

In this case Cq = Cr, while Cp 6= Cr, which gives p 6= q. By the same
argument as in the previous case, we obtain Cq0 = Cq = Cr. So, A should
contain the k-forbidden pattern.
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Case α 6= γ and β 6= γ.
In this case Cp 6= Cr, Cq 6= Cr, and γ = α · (p, h) = β · (q, j). Hence, α = β,
p = q, and h = j, which contradicts the hypothesis 〈p, h, α〉 6= 〈q, j, β〉.

To complete the proof, we are now going to prove that in the case ` > 0 we
always obtain a contradiction. By the definition of δ′, h = j = `−1 and α = β = γ.
Hence p 6= q. We decompose x as x′bx′′, where x′, x′′ ∈ Σ∗, b ∈ Σ, |x′| = k − `− 1,
and |x′′| = `−1. Then, for suitable 〈p1, h1, α1〉, 〈q1, j1, β1〉 ∈ Q′, p2, q2 ∈ Q, we have
the following situation:

〈p0, h0, α0〉 〈p1, h1, α1〉 〈p2, 0, γ〉 〈p, `− 1, γ〉
〈r, `, γ〉

〈q0, j0, β0〉 〈q1, j1, β1〉 〈q2, 0, γ〉 〈q, `− 1, γ〉

x′ b x′′
a

x′ b x′′
a

Notice that in the two paths on the string x from 〈p0, h0, α0〉 to 〈p, ` − 1, γ〉
and from 〈q0, j0, β0〉 to 〈q, ` − 1, γ〉, the last transitions that could change
scc in A are those on the symbol b, immediately after the prefix x′. Sup-
pose that one of these transitions does not change scc in A, without loss of
generality the one from 〈q1, j1, β1〉 to 〈q2, 0, γ〉. Then, by the definition of δ′,
j1 = k − 1, and, since |x′| < k, none of the second components of the states
on the path from 〈q0, j0, β0〉 to 〈q1, j1, β1〉 on x′ can be 0. This implies that
Cq0 = Cq1 = Cq2 = Cq = Cr. Therefore, A should contain the k-forbidden pattern,
which is a contradiction. Thus, in A both transitions on b from p1 to p2 and from q1
to q2 should change scc. Considering the corresponding transitions in the two paths
under consideration, we get that γ = α1 · (p1, h1) = β1 · (q1, j1) and, hence, p1 = q1.
Since A is deterministic, this implies p2 = q2 and, finally, p = q, namely another
contradiction.

We now evaluate the size of the automaton obtained by using the previous
construction.

Theorem 6. Each n-state dfa which does not contain the k-forbidden pattern can
be simulated by an equivalent k-reversible dfa with no more than (k+ 1)n−1 states.

Proof. Let A be an n-state dfa not containing the k-forbidden pattern. Accord-
ing to Lemma 5, the automaton A′ obtained from A with the above presented
construction is k-reversible. We now estimate the number of its reachable states.

First, notice that if a state 〈q, `, α〉 with α = (p1, j1)(p2, j2) · · · (ph, jh) is reach-
able, then Cp1 ≺ Cp2 ≺ . . . ≺ Cph

≺ Cq. Hence, since the ordering of the pairs
appearing in α (i.e., the letters of α) is given by the ordering of sccs in A, we could
represent α as a set. This also allows to interpret the state 〈q, `, α〉 as the function
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f : Q→ {−, 0, 1, . . . , k − 1}, such that for r ∈ Q:

f(r) =


` if r = q,
ji if r = pi, 1 ≤ i ≤ h,
− otherwise.

By counting the number of possible functions, we obtain a (k + 1)n upper bound
for the number of reachable states in A′.

Now, we show how to reduce this bound to the one claimed in the statement of
the theorem. The above presented simulation can be slightly refined by observing
that in A all the transitions entering any state in the scc of the initial state qI can
arrive only from states in the same scc. Thus, if some state in CqI

is k-irreversible,
then A should contain the k-forbidden pattern, which is a contradiction. This al-
lows to directly simulate all the states in CqI

, without using the counter. As a
consequence, in each state 〈q, `, α〉 of Q′, with q /∈ CqI

, the first element of α,
which should represent a state in CqI

, is stored without the counter. Hence, such
a state can be seen as a pair whose first component is a state in CqI

(the first
element of α) and the second component is the above function f restricted to
the set Q \ CqI

(representing both the current state q with its counter ` and the
other pairs in α). Since f(q) = ` ∈ {0, . . . , k − 1}, f cannot be the constant func-
tion f(r) = − for r ∈ Q \ CqI

. Hence, the number of possible functions is bounded
by (k + 1)n−s − 1, where s = #CqI

. Considering also the states which are used
in Q′ to simulate the states in CqI

, this gives at most s + s ((k + 1)n−s − 1) many
reachable states. For k > 0 this amount is bounded by (k + 1)n−1.

We point out that for k = 1, Theorem 6 gives a 2n−1 upper bound, which
matches with the bound for the conversion of dfas into equivalent rev-dfas,
claimed in [3]. In the same paper, a lower bound very close to such an upper bound
was presented.

3.2. The characterization

In this section we present a characterization of k-reversible languages based on the
notion of k-forbidden pattern. This characterization will be obtained by combining
Theorem 6 with the following result.

Lemma 7. Let L be a regular language and k be a positive integer. If the minimum
dfa accepting L contains the k-forbidden pattern, then L /∈ revk.

Proof. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting L. By hypothesis
there exist three states p, q, r ∈ Q, a symbol σ ∈ Σ, and two strings x ∈ Σk−1 and
w ∈ Σ∗ such that δ(p, x) 6= δ(q, x), δ(p, xσ) = δ(q, xσ) = r and δ(r, w) = q (see
Figure 2b). Let A′ = (Q′,Σ, δ′, sI , F

′) be a dfa accepting L. We are going to prove
that A′ contains a k-irreversible state.
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Let q0 ∈ Q′ be a state equivalent to p. Because A′ is equivalent to M , for every
n ∈ N, the state qn = δ′(q0, (xσw)n) is equivalent to q. Since Q′ is finite, sooner or
later, some repetition occur in the so-defined sequence of qi’s. Let i and j be the
first two indices such that qi = qj with 1 ≤ i < j (i cannot be equal to 0, because qj

is equivalent to q while q0 is equivalent to p). Now, consider the two paths from
qi−1 and qj−1 to qi on string xσw. By minimality of i and j, qi−1 6= qj−1. Hence,
we can decompose the string xσw as uτv for some u, v ∈ Σ∗ and τ ∈ Σ, such that
δ′(qi−1, u) 6= δ′(qj−1, u) and δ′(qi−1, uτ) = δ′(qj−1, uτ) = s for some state s ∈ Q′.
The situation is depicted here:

qi−1

6= s qi

qj−1

u
τ

u
τ

v

In order to show that s is k-irreversible we proceed in two cases.

Case i = 1. Since qi−1 = q0 is equivalent to p and qj−1 is equivalent to q, we get that
δ′(qi−1, x) is equivalent to δ(p, x) which is different from δ(q, x). It follows
that δ′(qi−1, x) 6= δ′(qj−1, x) and, since x is a prefix of u, |u| ≥ |x| = k− 1.
Thus, s is k-irreversible by Remark 2.

Case i > 1. We directly obtain that δ(qi−2, xσwu) 6= δ(qj−2, xσwu), while
δ(qi−2, xσwuτ) = δ(qj−2, xσwuτ) = s. Hence, s is |xσwu|-irreversible and
finally k-irreversible by Remark 2.

An immediate consequence of Lemma 7 and Theorem 6, which strengthens the
statement of Lemma 7, is that whenever a minimum automaton contains the k-
forbidden pattern, so does any equivalent dfa. However, the converse is not true in
general. The condition in Lemma 7 is indeed on the minimum dfa accepting the
language under consideration. If we remove the requirement that the considered
dfa has to be minimum, the statement becomes false. For instance, the language
L = a∗ is reversible even though for each k > 0 we can build a dfa accepting it,
which contains the k-forbidden pattern (see Figure 3).

qI

a

qI
a a a

a

Figure 3: The minimum dfa accepting the reversible language a∗, and an equivalent
dfa containing the 3-forbidden pattern

We are now able to characterize k-reversible languages in terms of the structure
of minimum dfas:
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Let L be a regular language. Given k > 0, L ∈ revk if and only if the minimum
dfa accepting L does not contain the k-forbidden pattern.

Proof. The if part is a consequence of Theorem 6, while the only-if part derives
from Lemma 7.

From Theorem 8, we observe that to transform each dfa A accepting a k-
reversible language into an equivalent revkdfa, firstly we can transform A into the
equivalent minimum dfa M and then we can apply toM the construction presented
in Subsection 3.1.

As a consequence of Theorem 8, we also obtain:

Corollary 9. L ∈ revk+1 \ revk if and only if the maximum h such that the
minimum dfa accepting L contains the h-forbidden pattern is k.

4. Weakly and Strongly Irreversible Languages

By Definition 1, a language is weakly irreversible if it is k-reversible for some k > 0,
namely if it is in the class

⋃
k>0 revk. A natural question is whether or not the class

of weakly irreversible languages coincides with the class of regular languages. In this
section we will give a negative answer to this question, thus proving the existence
of strongly irreversible languages, which we define now.

Definition 10. Let k be a positive integer, A = (Q,Σ, δ, qI , F ) be a dfa, and L ⊆
Σ∗ be a regular language.

• A state r ∈ Q is strongly irreversible if it is k-irreversible for each k > 0.
• The automaton A is strongly irreversible if it contains at least one strongly
irreversible state.

• The language L is strongly irreversible if it is k-irreversible for each k > 0,
i.e., if L is not weakly irreversible.

First of all, we observe that, by Theorem 8, a regular language is strongly irre-
versible if and only if the minimum dfa accepting it contains a k-forbidden pattern
for each k > 0. Using a combinatorial argument, we prove that in order to decide if
a language is strongly or weakly irreversible, it is enough to consider only a value
of k which depends on the size of the minimum dfa. This “large enough” forbidden
pattern will actually be proved to be equivalent to the strong forbidden pattern that
we introduce now.

Definition 11. Given a dfa A = (Q,Σ, δ, qI , F ), the strong forbidden pattern is
formed by three states p, q and r in Q, three strings v ∈ Σ+, x,w ∈ Σ∗ and a symbol
σ ∈ Σ such that δ(q, v) = q, δ(p, v) = p, i.e., v defines self-loops over both p and q,
δ(p, x) 6= δ(q, x), δ(p, xσ) = δ(q, xσ) = r and δ(r, w) = p (see Figure 4).

The next result states the equivalence of three conditions that allows us to test
whether an automaton contains the k-forbidden pattern for each k > 0.
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r6=

p

q

x

x

σ

σ

w

v

v

Figure 4: The strong forbidden pattern: v ∈ Σ+, x ∈ Σ∗, σ ∈ Σ, w ∈ Σ∗

Theorem 12. Let A be an n-state dfa and N = n2−n
2 . The three following state-

ments are equivalent:

(1) A contains the (N + 1)-forbidden pattern;
(2) A contains the strong forbidden pattern;
(3) A contains the k-forbidden pattern for each k > 0.

Proof.

(1) =⇒ (2) Suppose now that A contains the (N + 1)-forbidden pattern. Then,
there exist p, q, r ∈ Q, σ ∈ Σ, and x ∈ ΣN , such that δ(p, x) 6= δ(q, x) while
δ(p, xσ) = δ(q, xσ) = r and Cr = Cq. Let x = σ1σ2 · · ·σN with σi ∈ Σ for
i = 1, . . . , N and let p0, . . . , pN (resp., q0, . . . , qN ) be the sequence of states
entered from p (resp., q) when successively reading the symbols σi’s, i.e., p = p0
(resp., q = q0) and pi = δ(pi−1, σi) (resp., qi = δ(qi−1, σi)) for i = 1, . . . , N . We
furthermore have δ(pN , σ) = δ(qN , σ) = r. Because Cq0 = Cr, we have Cqi

= Cr

for i = 0, . . . , N . Moreover, since pN 6= qN and A is deterministic, we get pi 6= qi

for i = 0, . . . , N . We consider the pairs (p0, q0), . . . , (pN , qN ). Notice that there
are n2−n possible pairs of different states. Thus, there exist two indices i and
j, 0 ≤ i < j ≤ N , such that either (pi, qi) = (pj , qj) or (pi, qi) = (qj , pj). In
both cases, δ(pi, (σi+1 · · ·σj)2) = pi and δ(qi, (σi+1 · · ·σj)2) = qi. This directly
gives a strong forbidden pattern with states pi, qi and r and self-loops around
pi and qi on the nonempty string (σi+1 · · ·σj)2.

(2) =⇒ (3) Suppose that A contains the strong forbidden pattern, and fix a pos-
itive integer k. By definition, there exist p, q, r ∈ Q, v ∈ Σ+, x ∈ Σ∗ and
σ ∈ Σ such that v defines self-loops around both p and q, δ(p, x) 6= δ(q, x)
while δ(p, xσ) = δ(q, xσ) = r and Cr = Cq. Then, by setting x′ = vkx we obtain
a |x′|-forbidden pattern using the same states p, q and r, the string x′ and the
symbol σ. Since |x′| ≥ k, we conclude using Remark 2 that A contains the
k-forbidden pattern.

(3) =⇒ (1) Immediate.
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Combining Theorem 8 with Theorem 12 we obtain:

Corollary 13. Let L be a regular language whose minimum dfa has n states.
Then L is strongly irreversible if and only if it is not ( n2−n

2 + 1)-reversible.

We now present an example of strongly irreversible language.

Example 14. The language L = a∗b(a+ b)∗ is strongly irreversible. The minimum
automaton accepting it has 2 states (see Figure 5). We notice that δ(qI , a) 6= δ(p, a),
while δ(qI , ab) = δ(p, ab) = p. This defines a 2-forbidden pattern. According to
Corollary 13, this implies that L is strongly irreversible. Observe that since the
string a defines two self-loops around both qI and p, we actually have a strong
forbidden pattern, and therefore a k-forbidden pattern for any k > 0 using the
string akb.

qI p

a a,b

b

Figure 5: The minimum automaton accepting the language L = a∗b(a+ b)∗

5. Degree of Reversibility: Automata versus Languages

In the following result we present further families of languages, besides that in
Example 3, which witness the existence of the proper infinite hierarchy

rev = rev1 ⊂ rev2 ⊂ . . . ⊂ revk ⊂ . . .

Furthermore, we show that the difference between the “amount” of irreversibility
in a minimum dfa and in the accepted language can be arbitrarily large, or even
infinite. For k ∈ N, we say that an automaton A (resp., a language L) has degree
of irreversibility k if it is (k + 1)-reversible but not k-reversible, namely, if k is
the maximum integer such that A is not a revkdfa (resp., L does not belong
to revk). If A (resp., L) is strongly irreversible, then we say that it has degree of
irreversibility ∞.

Theorem 15. For all k, j ∈ N ∪ {∞} with 0 < k ≤ j, there exists a regular
language Lk,j such that:

• the minimum dfa accepting Lk,j has degree of irreversibility j;
• Lk,j has degree of irreversibility k.
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Proof. We first consider the case k, j ∈ N. When k = j it is enough to consider
the minimum dfa accepting the language a∗bkb∗ (cf. Example 3), which is (k+ 1)-
reversible but contains the k-forbidden pattern.

From now on, we suppose k < j.
Let Lk,j be the language accepted by the automaton Ak,j = (Q,Σ, δ, qI , F )

where Σ = {a, b}, Q = {qI , r, qF }∪ {s1, . . . , sj}∪ {t1, . . . , tj}, F = {tj , qF }, and the
transition function is defined as follows (see Figure 6 for an example):

• δ(qI , a) = s1 and δ(qI , b) = t1
• δ(si, a) = si+1 and δ(ti, a) = ti+1 for 1 ≤ i ≤ j − k
• δ(si, b) = si+1 and δ(ti, b) = ti+1 for j − k < i < j

• δ(sj−1, b) = δ(tj−1, b) = δ(r, b) = r

• δ(r, a) = qF

qI

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

r qF

b

b

a

bbbaa

b

bbbaa

b

a

Figure 6: The minimum automaton A4,6 accepting the language L4,6

Firstly, we can observe that Ak,j is a minimum dfa. It contains only one irreversible
state, namely r, with δr(r, b) = {r, sj , tj}. We also notice that δ(s1, a

j−kbk−1) = sj

is different from δ(t1, aj−kbk−1) = tj , while δ(s1, a
j−kbk) = δ(t1, aj−kbk) = r.

Hence Ak,j is not a revjdfa. However, the knowledge of one more symbol in the
suffix of the input read to enter r allows to determine the state of the automa-
ton before reading the last symbol. In particular, it is sj (resp., tj) if the suffix of
length j is aj−k+1bk (resp., baj−kbk). Hence, Ak,j is a revj+1dfa .

In order to prove that Lk,j has degree of irreversibility k, we first show that Ak,j

contains the k-forbidden pattern. Indeed, denoting by p the state sj−k+1 and
by x the string bk−1, we observe that δ(p, x) = sj is different from δ(r, x) = r,
while δ(p, xb) = δ(r, xb) = r (in this case, the states q and r from Definition 4
are equal and therefore in the same scc). Furthermore, it is possible to obtain a
revk+1dfa A′k,j equivalent to Ak,j by duplicating r and qF with their transitions
and by redistributing the incoming transitions from sj and tj , as in the case pre-
sented in Figure 7. Hence, Lk, j has degree of irreversibility k.

We now consider the case j =∞. If k =∞, it is enough to consider a strongly
irreversible language and its minimum automaton, e.g., the language a∗b(a + b)∗
given in Example 14. Otherwise, k ∈ N. Let us first consider the case k = 1. We



March 17, 2022 8:57 WSPC/INSTRUCTION FILE weakly

Weakly and Strongly Irreversible Regular Languages 17

qI

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

r

r′

qF

q′F

b

b

b a

a

bbbaa

bbbbaa

b

a

Figure 7: A rev5dfa accepting the language L4,6

define the language L1,∞ ⊆ Σ∗ by describing its minimum automaton A1,∞ (see
Figure 8). The automaton uses three states qI , which is the initial state, p and qF

which are the final states. There are transitions on b from qI to p and from p to qI ,
and transitions on a from both p and qI to r. Therefore, r is irreversible. It is in fact
strongly irreversible, since the string bna defines paths from both qI and p to r, for
any n ∈ N. However, it does not contain the forbidden pattern (see Figure 2a), and,
thus, the accepted language is reversible. To obtain the languages Lk,∞ for k > 1, it

qI p r
b

b

a

a

Figure 8: The strongly irreversible minimum dfa A1,∞ accepting the reversible
language L1,∞

is enough to consider the concatenation of the above-defined language Lk,j for some
arbitrary j > k and the language L1,∞. Indeed, the minimum automaton (consisting
of the minimum automaton accepting Lk,j presented above, in which the state qF is
replaced by the entire automaton L1,∞

a) is strongly irreversible (due to the second
part), but the language has degree of irreversibility k (due to the first part).

6. Decision Problems

In this section we provide a method to decide whether a language L is strongly or
weakly irreversible, and, in the latter case, to find the minimum k such that L is
k-reversible, namely, the degree of irreversibility of L.

The idea is to simultaneously analyze all the paths entering each irre-
versible state r ∈ Q of the minimum dfa A accepting L in order to find the

aIn this case, this “concatenation” of automata does not create additional irreversibility, since
in Ak,j , the state qF is entered only by transitions with label a, while in A1,∞, the state qI is
entered only by transitions with label b.
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longest string z that, with at least two different paths, leads to r and defines
the |z|-forbidden pattern, or to discover that there exist arbitrarily long strings
with such property. This corresponds to analyze all couples of paths starting from
two different states p, q ∈ Q that, with the same string z, lead to r. Intuitively, this
can be done by constructing the product automaton of two copies of the reversal
automaton of A, i.e., Ar×Ar, and by analyzing all paths starting from the states of
the form (r, r). Since the goal is to establish the nature of the (ir)reversibility of L
— not of A — it is useful to recall that by Definition 4 it is enough to consider only
the couples of paths in which one of them is completely included in the same scc
of r, i.e., Cr = Cq. To this aim, we are going to consider the product between Ar

and a transformation of Ar which is obtained by splitting it in sccs.
Let A = (Q,Σ, δ, qI , F ) be a dfa, Ar = (Q,Σ, δr, F, {qI}) be the reversal au-

tomaton of A, and Ar
sccs = (Q,Σ, δr

sccs, F, {qI}) be the nfa obtained by splitting Ar

in its sccs, i.e., δr
sccs(r, a) = {q | q ∈ δr(r, a) and Cr = Cq} for r ∈ Q and a ∈ Σ. Let

us define the nondeterministic automaton Â as follows: Â = (Q̂,Σ, δ̂, Î , F̂ ) where

• Q̂ = Q×Q;
• Î = {(r, r) | r ∈ Q};
• F̂ = Q̂ \ Î;
• δ̂((r′, r′′), a) = {(p, q) ∈ δr(r′, a)× δr

sccs(r′′, a) | p 6= q}.

So defined, the resulting automaton Â accepts the strings z such that zr defines
a |z|-forbidden pattern in A. Formally, this follows from the following lemma:

Lemma 16. Given a string x and a symbol σ, in the dfa A, three states p, q and r
with x, σ and Cq = Cr form a |xσ|-forbidden pattern if and only if in Â there exists
a path on σxr from the state (r, r) to the state (p, q), i.e., (p, q) ∈ δ̂ ((r, r), σxr).

Proof. (only if) Since δ(p, xσ) = δ(q, xσ) = r and Cq = Cr, we have p ∈ δr(r, σxr)
and q ∈ δr

sccs(r, σxr). Moreover, the sequences p0, p1, . . . , pk and q0, q1, . . . , qk of
states visited in A along the paths defined by xσ respectively from p = p0 to r = pk

and from q = q0 to r = qk, satisfy pi 6= qi for each i < k. Hence, by definition of δ̂,
there exists a path from (r, r) to (p, q) on σxr in Â, i.e., (p, q) ∈ δ̂ ((r, r), σxr).

(if) For the converse implication, we proceed by induction on the length of x.
(Basis) If |x| = 0, namely x = ε, then (p, q) ∈ δ̂ ((r, r), σ). By definition of δ̂, it

follows that δ(p, σ) = δ(q, σ) = r while p 6= q and Cr = Cq, namely, p, q and r form
a 1-forbidden pattern using σ.

(Induction step) If |x| > 0, then x = τy where τ is a symbol and |y| = k − 1.
Assume that there exists a path from (r, r) to (p, q) on the string σxr = σyrτ . Then,
there is a path on σyr from (r, r) to some state (p′, q′) such that (p, q) ∈ δ̂ ((p′, q′), τ).
Again, by definition of δ̂, we obtain δ(q, τ) = q′, δ(p, τ) = p′ and Cq′ = Cq.
By the induction hypothesis, we get that p′, q′ and r with y and σ form a
|yσ|-forbidden pattern in A. Since Cr = Cq′ = Cq, we finally obtain that p, q and r
with x and σ form a |xσ|-forbidden pattern in A.
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Considering Theorem 8, this leads to state the following:

Lemma 17. Let A be a minimum n-state dfa and Â be the above-described nfa
defined from A. Then:

• The following statements are equivalent:

– L(A) is strongly irreversible;
– L(Â) is an infinite language;
– L(Â) contains a string of length n2−n

2 + 1.

• For each k > 0, L(A) ∈ revk if and only if L(Â) contains only strings of
length less than k.

Proof. The first item directly follows from Theorem 12, Corollary 13, and
Lemma 16. The second item follows from Corollary 9 and Lemma 16.

The same argument can be exploited to prove that the problem of deciding
whether L(A) is strongly or weakly irreversible is in NL, namely the class of prob-
lems accepted by nondeterministic logarithmic space bounded Turing machines.

Theorem 18. The problem of deciding whether a language is strongly or weakly
irreversible is NL-complete.

Proof. From the minimum dfa accepting the language under consideration we
derive the above described automaton Â. The problem can be reduced to testing
if the transition graph of Â contains at least one loop. In such a case, there are
arbitrarily long strings in L(Â), namely strings describing k-forbidden patterns for
arbitrarily large k, and L(A) is strongly irreversible (see first item of Lemma 17).
The problem of verifying the existence of a loop is in NL.

To prove the NL-completeness, we show a reduction from the Graph Accessibility
Problem (GAP) which is NL-complete (for further details see [5]). Let G = (V,E)
be a directed graph where V = {1, . . . , n}. Our goal is to define a dfa A such that A
is strongly irreversible if and only if there exists a path from 1 to n in G, i.e., G
belongs to GAP.

Let A = (Q,Σ, δ, qI , {]}) be a dfa where Q = V ∪{qI , ], 0}, Σ = {0, . . . , n, $, ]},
and δ is defined as follows:

i. δ(i, j) = j, for (i, j) ∈ E
ii. δ(0, 1) = δ(n, 1) = 1
iii. δ(0, $) = 0 and δ(n, $) = n

iv. δ(qI , i) = i, for i = 0, . . . , n
v. δ(i, ]) = ], for i = 1, . . . , n

Notice that the restriction of the underlying graph of A to states 1, . . . , n coin-
cides with G (transitions i), plus the edge from n to 1 (from transitions ii), if it does
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Figure 9: The automaton A obtain from a graph G. Only transitions that have been
added to G (i.e., transitions ii to v) are depicted

not already exists in Gb. Furthermore, to states 0 and n we added a self-loop on
the symbol $ (transitions iii) and a transition on symbol 1 going to state 1 (tran-
sitions ii), in order to make the state 1 strongly irreversible. Lastly, we made each
state useful (transitions iv enforce reachability while transitions v enforce produc-
tivity of each state).

By observing that, for σ 6= $, any transition labeled by σ enters the state σ, we
can prove that $1 is the unique string of length 2 that induces irreversibility, and
this 2-irreversibility occurs in state 1. Hence, there are no states other than 1 which
are strongly irreversible. Thus, we obtain that the strong forbidden pattern occurs
in A only if it is formed by the states 0, n and 1. This is possible only if the states 1
and n are in the same scc because, by construction, there is no path from 1 to 0.
Observe that transitions ii already ensures that a path from n to 1 exists. Hence,
we can conclude that L(A) is strongly irreversible if and only if there exists a path
from 1 to n in G.

This reduction can be computed in deterministic logarithmic space.

7. Conclusion

We introduced and studied the notions of strong and weak irreversibility for finite
automata and regular languages. As we have seen in Section 5 (see also [8]), there
exists an infinite hierarchy of weakly irreversible languages, which is itself strictly
included in the class of regular languages by the existence of strongly irreversible

bIt may happen that the transition from state n to state 1 on symbol 1 (from transitions ii) is
already defined as being an edge in G (transitions i); we nevertheless ensure that the transition
exists in A.
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languages as proved in Section 4. In both cases, the witness languages are defined
over a binary alphabet, so the question arises whether the same results hold in the
case of a one-letter alphabet, i.e., in the case of unary languages. We now briefly
discuss this point.

First of all, we remind the reader that the transition graph of a unary dfa
consists of an initial path, which is followed by a loop (for a recent survey on unary
automata, we address the reader to [14]). Hence, a unary dfa is reversible if and only
if the initial path is of length 0, i.e., the automaton consists only of a loop (in this
case the accepted language is said to be cyclic). We can also observe that given an
integer k > 0, a unary language is k-reversible if and only if it is accepted by a dfa
with an initial path of length less than k states. Hence, for each k, the language aka∗

is (k + 1)-reversible, but not k-reversible. This shows the existence of an infinite
hierarchy of weakly irreversible languages even in the unary case. Furthermore, from
the above discussion, we can observe that if a unary language is accepted by a dfa
with an initial path of k states, then it is (k + 1)-reversible. This implies that each
unary regular language is weakly irreversible (see also [8, Proposition 10]). Hence,
to obtain strongly irreversible languages, we need alphabets of at least two letters.

The definition of k-reversible automata and languages have been given for each
positive integer k. One could ask if it does make sense to consider a notion of 0-
reversibility. According to the interpretation we gave to k-reversibility, a state is 0-
reversible when in each computation its predecessor can be obtained by knowing
the last 0 symbols which have been read from the input, i.e., without the knowledge
of any previous input symbol. This means that a 0-irreversible state can have only
one entering transition, or no entering transitions if it is the initial state. As a
consequence, the transition graph of a 0-reversible automaton is a tree rooted in
the initial state and 0-reversible languages are exactly finite languages.
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