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Abstract

Cornelia de Lange syndrome (CdLS) is a rare multisystem congenital neurodevelopmen-

tal disorder (NDD) characterized by distinctive facial anomalies, short stature, develop-

mental delay, hirsutism, gastrointestinal abnormalities and upper limb reduction defects.

CdLS syndrome is associated with causative variants in genes encoding for the cohesin

complex, a cellular machinery involved in chromatid pairing, DNA repair and gene-

expression regulation. In this report, we describe a familial case of a syndromic presenta-

tion in a 4-year-old patient (P1) and in his mother (P2). Trio-based Whole Exome

Sequencing (WES) performed on P1 was first negative. Since his phenotypic evolution

during the follow-up was reminiscent of the CdLS spectrum, a reanalysis of WES data,

focused on CdLS-related genes, was requested. Although no alterations in those genes

was detected, we identified the likely pathogenetic variant c.40G > A (p.Glu14Lys) in

the PHIP gene, in the meanwhile associated with Chung-Jansen syndrome. Reverse phe-

notyping carried out in both patients confirmed the molecular diagnosis. CHUJANS

belongs to NDDs, featuring developmental delay, mild-to-moderate intellectual disabil-

ity, behavioral problems, obesity and facial dysmorphisms. Moreover, as here described,

CHUJANS shows a significant overlap with the CdLS spectrum, with specific regard to

facial gestalt. On the basis of our findings, we suggest to include PHIP among genes rou-

tinely analyzed in patients belonging to the CdLS spectrum.

K E YWORD S

CdLS, CHUJANS, Chung–Jansen syndrome, Cornelia de Lange syndrome, PHIP, whole exome
sequencing

1 | INTRODUCTION

Cornelia de Lange syndrome (CdLS, OMIM #122470) is a rare and

genetically heterogeneous condition with multisystemic involvement

and considerable phenotypic variability. The estimated prevalence

varies between 1/10,000 and 1/30,000 individuals (Kline et al., 2007).

CdLS is further characterized by prenatal and/or postnatal growth

retardation, distinctive facial anomalies, short stature, developmental

delay (DD) and intellectual disability (ID), behavioral problems, possi-

ble major malformations, upper limb defects and hirsutism (Deardorff
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et al., 1993; Kline et al., 2018). In particular, craniofacial features of

CdLS include micro-brachycephaly, synophrys, arched eyebrows, long

eyelashes, depressed nasal bridge, anteverted nares, long philtrum,

thin upper lip, high arched palate, late eruption of small widely spaced

teeth, micrognathia (Beck & Fenger, 1985).

The genetic basis of CdLS was firstly recognized in genes encond-

ing the cohesin complex, a cellular machinery involved in chromatid

pairing, DNA repair and gene-expression regulation. In fact, most indi-

viduals affected from the CdLS spectrum carries de novo pathogenic var-

iants in cohesin-complex coding genes like NIPBL, RAD21, SMC3, BRD4,

MAU2, with autosomal dominant inheritance, and SMC1A and HDAC8

which present an X-linked inheritance. Less than 1% of individuals with

autosomal dominant CdLS inherit the variant from an affected parent

while X-linked variants are usually de novo (Huisman et al., 2017).

Besides classic CdLS presentation, other nonclassic and overlapping phe-

notypes have been outlined. With the widespread application of whole

exome sequencing (WES), subjects within the CdLS spectrum have been

diagnosed with pathogenic variants in morbid genes already acknowl-

edged for partially overlapping conditions, such as KBG, Kabuki,

Rubinstein-Taybi and Coffin-Siris syndromes (Avagliano et al., 2020).

Chung–Jansen Syndrome is a recently identified condition

(CHUJANS OMIM #617991), featuring global DD, ID, behavioral prob-

lems, obesity and facial dysmorphisms. To date, about 50 cases of CHU-

JANS have been described, with variable clinical expressivity and

severity. ID is reported in most affected individuals and can vary from

mild to severe. Behavioral problems may include ADHD (Attention-Def-

icit/Hyperactivity Disorder), autistic features, mood and/or anxiety dis-

orders (Craddock et al., 2019; Jansen et al., 2018; Webster et al., 2016).

Overweight and obesity have been suggested as core clinical features,

although their prevalence vary among case series (Craddock

et al., 2019). Facial dysmorphisms may include full eyebrows, synophrys,

upturned nose, large ears, tapering fingers and bilateral clinodactyly of

the fifth finger. CHUJANS has been related to missense or presumably

loss-of-function (nonsense, frameshift, splice site, translocation, gene

deletion) heterozygous variants in the gene PHIP (Craddock et al., 2019;

Jansen et al., 2018; Webster et al., 2016), mapping to chromosome

6q14 and encoding a Pleckstrin homology domain-interacting protein

(PHIP). PHIP is involved in insulin signaling pathway (Farhang-Fallah

et al., 2002), neuronal differentiation, E3 ubiquitination and histone

binding (Han et al., 2013; Lee & Zhou, 2007; Morgan et al., 2017). All

the reported variants occurred de novo, with the exception of one sin-

gle case, in which the pathogenic variant was inherited from an affected

parent (Craddock et al., 2019; Jansen et al., 2018).

In addition to some nonspecific features such as DD and ID,

CHUJANS shares prominent features of CdLS facial gestalt, which are

also enlisted in its clinical score (Table S1). Based on the CHUJANS

individuals described so far, the two conditions seem to differentiate

mostly on growth parameters (pre-natal and post-natal growth delay

being characteristic only for CdLS), and the overall malformative pat-

tern; contrary to CdLS, CHUJANS does not appear to be associated

with major malformations. Furthermore, the obesity/overweight that

currently seems to characterize the clinical picture of CHUJANS is not

a typical feature of CdLS.

In this report, we describe a familial case of a syndromic presenta-

tion initially framed within the CdLS spectrum and subsequently diag-

nosed with CHUJANS.

2 | METHODS

The patients received standard healthcare services. All genetics tests

were performed after counseling and written consent. Array-CGH

analysis was performed using a 60-mer oligonucleotide probes tech-

nology (SurePrint G3 Human CGH 8x60K, Agilent Technologies, Santa

Clara, CA, USA) according to manufacturer's protocol. Trio-based

WES was performed as previously described (Pezzani et al., 2018).

The exonic and flanking splice junctions regions of the genome were

captured using the Clinical Research Exome v.2 kit (Agilent Technolo-

gies, Santa Clara, CA). Sequencing was performed on a NextSeq500

Illumina system with 150 bp paired-end reads. Reads were aligned to

human genome build GRCh37/UCSC hg19 and analyzed for sequence

variants using a custom-developed analysis tool. On average, cover-

age on target was ≥10X for 97.6% with a mean coverage of 250X.

Two pipelines were used to identify the copy number variants

(CNVs) based on ExomeDepth and one created in-house, as previ-

ously described (Pezzoli et al., 2021). All the CNVs detected by both

pipelines were annotated by matching every call with the genes

involved and related diseases and classified according to ACMG and

ClinGen guidelines (Riggs et al., 2020).

3 | RESULTS

3.1 | Patient 1 (P1)

P1 is a firstborn to nonconsanguineous parents of Italian origin (indi-

vidual III.1 in Figure 1a). He was born at term from elective C-section,

birth weight was 2450 g (SGA 10� percentile). At birth, the child expe-

rienced neonatal distress and needed resuscitation with intubation

and cardiac massage.

The clinical evaluation showed the presence of minor anomalies

of the face such as triangle shaped face, synophrys, long eyelashes,

short nose, thin upper lip vermilion. An esophageal atresia with fistula

was identified and surgically corrected. Echocardiography showed

biventricular nonobstructive cardiac hypertrophy, with asymmetric

hypertrophy (left > right) of the ventricular septum. Cerebral MRI

revealed the presence of a thinned corpus callosum, malrotation of

the hippocampi and a thinning of the olfactory bulbs. The abdomen

ultrasound found horseshoe kidneys with differentiated parenchyma.

The neurofunctional examination was characterized by axial hypoto-

nia and rigidity of the limbs. During the follow-up his clinical picture

was enriched with new features suggestive for the CdLS spectrum,

such as small widely spaced teeth, short fifth finger with clinodactyly

and hypertrichosis, while some facial anomalies became coarser and a

global delay in psychomotor development and a failure to thrive

emerged (Figure 1b,c). Using the CdLS Clinical score he scored
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11 points, consistent with a classical CdLS phenotype. At the last eval-

uation (3 years old), his weight was 11.690 g (<3th percentile), length

89.5 cm (3–5th percentile), CC 47 cm (3–10th percentile). He was

able to use some words of complete meaning, even combining them

in short sentences, and he has not toilet-trained yet. He started crawl-

ing at 30 months of age, walking with support at 34 months. The

developmental Griffiths scale was performed at the age of 36 months

and revealed a General Quotient (GQ) of 44 (corresponding to

17 months of developmental age), consistent with a moderate psy-

chomotor delay (according to ICD 10). His profile is asymmetric,

showing as points of strength the Language/Communication scale,

(QS of 86, corresponding to 27 months), and the Personal Social scale,

(QS of 67, corresponding to 23 months) and, as weak areas, Gross

Motor scale (QS 31 corresponding to 12 months), Eye and Hand

Coordination scale (QS 47 corresponding to 19 months), and practical

reasoning scale (QS 60 corresponding to 17 months).

3.2 | Patient 2 (P2)

P2 (individual II.2 in Figure 1a) is the mother of P1. She is a firstborn

to unrelated parents. She is affected from insulin-dependent diabetes,

hypothyroidism and hypertrophic cardiomyopathy (HCM) of the left

ventricle. Treated with orthopedic corset during adolescence for dor-

sal kyphosis. She was diagnosed for the first time at the age of 11 with

psychomotor delay and intellectual disability. At the age of 18 she had

an IQ evaluation (2001) with Wechsler-Bellevue intelligence scale

with FISQ score of 48, with disharmonic profile (QIV = 59, QIP = 48)

F IGURE 1 Panel a represents the pedigree of P1 and P2; Panel b reports the CdLS clinical score of P1 and P2 according to ref. 2, scoring
11 points (classic CdLS) and 9 points (nonclassic CdLS), respectively; panel c shows the evolution of the facial gestalt of P1 (upper row) and P2
(lower row) together with the gestalt bar graph for CdLS provided by Face2Gene. CdLS, Cornelia de Lange syndrome.
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consistent with moderate intellectual disability. She also presents

synophrys, arched and thick eyebrows, long eyelashes, long philtrum,

thin upper lip, high arched palate, proximal thumb implantation, clino-

dactyly of the II finger, slight shortening of the IV-V metacarpus bilat-

erally. Her CdLS clinical score is 9 points, consistent with a Cornelia-

like phenotype.

The set of clinical features of both patients pointed toward a con-

stitutional basis, subsequently a CGH-array analysis and Whole

Exome Sequencing analysis were performed.

3.3 | Genetic analysis

Array-CGH detected in P1 a deletion of about 384 Kb in the region

p12.1 of chromosome 20 containing the FLRT3 gene and part of

MACROD2 gene. The same deletion was inherited from his mother

and was also found in the nonsymptomatic maternal grandfather. As

array-CGH results were not conclusive, when P1 was 3-month-old,

we proceeded with a trio-based WES. This analysis was first focused

on the likely syndromic presentation and did not highlight any patho-

genic variant. During the follow-up, due to the evolution of the facial

gestalt of P1 and the novel diagnosis of HCM also in P2, WES results

were reanalyzed, identifying two heterozygous variants of maternal

origin: the c.2167C > T (p.Arg723Cys) variant in the MYH7 gene and

the c.40G > A (p.Glu14Lys) variant in the PHIP gene. The variant

c.2167C > T (GRCh37:g.23895023; NM_000257.3) in exon 20 of the

MYH7 gene (OMIM * 160760) leads to the replacement of the amino

acid arginine with a cysteine in position 723 of the protein, is a rare

sequence change (gnomAD MAF: 3/251214), bioinformatics predic-

tion tools indicate that the change is deleterious to protein function,

is described and classified as pathogenic on ClinVar database (ClinVar

Variation ID 14095 accession VCV000014095.28) (Landrum

et al., 2018). In consideration of the familiar presentation of the HCM,

its echocardiographic features, overlapping what currently known

about MYH7-related HCM, and the segregation of the variant, we

retained the MYH7 variant as causative of the familiar HCM. P1, P2

and the maternal grandfather (I.1 in Figure 1a) are on cardiological

follow-up for monitoring their cardiomyopathy.

The variant c.40G > A (GRCh37:g.79787746; NM_017934.6) in

exon 1 of the PHIP gene (OMIM * 612870) leads to the substitution

of a glutamic acid with a lysine at the residue 14. This variant is not

reported in the literature and neither in population database (gnomAD

MAF 0). According to current ACMG criteria, since the variant has

never been described before and it is of the missense type, consider-

ing its presence in both patients and its absence in the maternal

grandparents, it was classified as likely pathogenetic. No additional

pathogenic variant in chromatinopathy-related genes associated with

CdLS-related conditions has been identified.

4 | DISCUSSION

As defined in the International Consensus published in 2018, the

CdLS spectrum includes both classic and nonclassic CdLS individuals

on the basis of their clinical presentation and the presence of causa-

tive variants in genes belonging to chromatin regulators, among which

the cohesin family (Kline et al., 2018). Importantly, the clinical diagno-

sis of CdLS can be equally retained if the CdLS score is equal or higher

than 11 points. The availability of genotype-driven analysis has

recently broadened the list of genes functionally related to the cohe-

sin machinery and whose haploinsufficiency leads to conditions either

belonging to or overlapping with the CdLS spectrum (Avagliano

et al., 2020; Cucco et al., 2020).

In our case, the proband (P1) was initially evaluated during his

hospitalization in the neonatal intensive care unit. Due to the pres-

ence of multiple congenital malformations, a Whole Exome Sequenc-

ing (WES) was performed but, at that time, did not reveal any

pathogenic variant. During the follow-up the appearance of develop-

mental delay, hirsutism and the evolution of his facial gestalt led to a

strong clinical suspicion of CdLS (Figure 1c), corroborated by a clinical

CdLS score of 11 points. His clinical picture was partially shared with

the mother (P2), who had a CdLS score of 9 points, thus falling within

the nonclassic CdLS (Figure 1b). When the proband was 2.5 years old,

WES data were reanalyzed and disclosed the maternal c.40G > A vari-

ant in the PHIP gene, which in the meantime had been associated to

CHUJANS. Reverse phenotyping verified the significant overlap of

both subjects with CHUJANS (Table S1), also considering that P2 has

shown a significant weight gain from 2018 to 2021 and currently has

a BMI of 31, which is consistent with obesity I, expected in CHU-

JANS. To our knowledge, this is the second report of a CdLS-like phe-

notype associated with a pathogenic PHIP variant (Aoi et al., 2019).

The strong resemblance of the facial gestalt of P1 to CdLS was

also objectified by means of the Face2Gene software (FDNA Inc.,

Boston, MA, USA; https://www.face2gene.com), already employed to

support the facial recognition of cohesinopathies (Basel-Vanagaite

et al., 2016; Latorre-Pellicer et al., 2020). Face2Gene showed signifi-

cant scores in the facial gestalt bar graph, being CdLS the first diag-

nostic suggestions in all the five pictures of P1 and in 3/5 pictures of

P2 shown in Figure 1. Notably, the CdLS score of our proband was

sufficient to retain a clinical diagnosis of CdLS in case no causative

variant was identified although, retrospectively, the occurrence of

esophageal atresia and horseshoe kidney is not strongly associated

with CdLS and the presence of hypotonia, usually not described in

CdLS, could have made us lean toward a differential diagnosis.

As for other syndromes presenting with a broad clinical spectrum,

the boundaries between genic heterogeneity and overlapping differ-

ential diagnosis may be thin. Only nontargeted approaches can iden-

tify new causative genes and contribute to increase the molecular

diagnostic yield in subjects with a clinical diagnosis. Based on our find-

ings, we suggest that PHIP should be included among genes routinely

analyzed in patients belonging to the CdLS spectrum and underline

how gene panels may be inconclusive even following patients' selec-

tion based on validated clinical criteria. Further studies will clarify the

extent of the overlap between PHIP and CdLS, as well as possible

genotype–phenotype correlations. The gene PHIP encodes a protein,

termed PH-interacting protein or PHIP, involved in insulin and insulin-

like signaling (Farhang-Fallah et al., 2002), cytoskeletal organization

(Bai et al., 2011) but also binding to methylated H3K4 in

4 CONTI ET AL.
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correspondence of enhancers and promoters, by means of its Crypto-

Tudor domain (Morgan et al., 2017). It is not surprising that PHIP is

not part of the cohesin machinery, as several lines of evidence now

support the biological and clinical overlap among cohesinopathies and

chromatinopathies/disorders of the epigenetic machinery (García-

Gutiérrez & García-Domínguez, 2021; Parenti & Kaiser, 2021):

(i) molecular findings demonstrate the increasing and substantial role

of the cohesin complex in transcriptional regulation (Dorsett, 2011;

Maya-Miles et al., 2019; Schwarzer et al., 2017; Wang et al., 2021);

(ii) CdLS cellular models do not show an impaired sister chromatid

cohesion but a global transcriptomic perturbance (Castronovo

et al., 2009; Liu et al., 2009); (iii) several chromatinopathies represent

differential diagnosis of CdLS and pathogenic variants in some of their

causative genes (AFF4, ANKRD11, EP300, KMT2A, SETD5, SWI/SNF

complex genes) are found in individuals with suspected CdLS

(Avagliano et al., 2020; Cucco et al., 2020); (iv) a genome-wide meth-

ylation signature has been described also for CdLS, as for many chro-

matinopathies (Aref-Eshghi et al., 2020). Finally, regarding the

complex clinical presentation of our patients, we want to stress that

the presence of HCM has been related to the pathogenic variant

c.2167C > T in the gene MYH7. With regards to the 20p12.1 deletion,

it encompasses the gene FLRT3 and, partially, the gene MACROD2.

FLRT3 is causative of an autosomal dominant form of hypogonadotro-

pic hypogonadism with anosmia (OMIM #615271) (Miraoui

et al., 2013) whereas MACROD2 has been suggested as a susceptibil-

ity gene for neurodevelopmental disorders (Kushima et al., 2018) or

other malformative phenotypes (Lombardo et al., 2019; Ruaud

et al., 2020). Considering the published cases for the FLRT3-related

hypogonadotropic hypogonadism (Firth et al., 2009), haploinsuffi-

ciency does not seem to be the pathogenic mechanism. Regarding

MACROD2, its two isolated deletions gathered in the DECIPHER data-

base are annotated as likely pathogenic for developmental delay

(patients 301,497 and 331,363). In our case, the familial 20p12.1 dele-

tion has been transmitted by the unaffected maternal grandfather.

Although it is not possible to exclude that the presence of this dele-

tion might have exerted a contributive role in some traits of the famil-

ial phenotype (thinning of the olfactory bulbs in the proband, severity

of ID), we do not have clear evidence of its expression in this family.

In conclusion, even though CHUJANS has been only recently

described, we confirm that this condition may result in CdLS-like/

chromatinopathy-related appearance, particularly regarding the facial

gestalt. In our opinion CHUJANS should be included among CdLS dif-

ferential diagnosis and PHIP should be likewise added to (virtual) gene

panels applied for molecular diagnostics. Further delineation of CHU-

JANS will improve the definition of this overlap, clarify possible allelic-

specific correlations and ascertain the presence of an associated DNA

methylation episignatures.
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