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a b s t r a c t 

Here we introduce the Min-Max Close-Enough Arc Routing Problem, where a fleet of vehicles must serve 

a set of customers while trying to balance the length of the routes. The vehicles do not need to visit the 

customers, since they can serve them from a distance by traversing arcs that are “close enough” to the 

customers. We present two formulations of the problem and propose a branch-and-cut and a branch-and- 

price algorithm based on the respective formulations. A heuristic algorithm used to provide good upper 

bounds to the exact procedures is also presented. Extensive computational experiments to compare the 

performance of the algorithms are carried out. 
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. Introduction 

In this article we introduce an arc routing problem where a 

eet of homogeneous vehicles has to serve a set of customers 

n such a way that the lengths of the routes are balanced. Each 

ustomer is associated with a subset of “close-enough” arcs and 

y traversing any of these arcs the vehicle serves the customer. 

he problem, called the Min-Max Close Enough Arc Routing Prob- 

em (MM-CEARP), consists of finding a set of vehicle routes, all of 

hem starting and ending at the depot, jointly servicing all the cus- 

omers, and such that the length of the longest route is minimized. 

The MM-CEARP is NP-hard as it generalizes the Close Enough 

rc Routing Problem (CEARP), the single-vehicle version of the 

roblem in which the total distance traveled is minimized. The 

EARP was first introduced as the Generalized Directed Rural Post- 

an Problem (GDRPP) by Drexl (2007) , who proved it to be NP- 

ard by showing that any Directed Rural Postman Problem (DRPP) 

nstance can be solved by transforming it into a GDRPP one that 

as one customer containing one single arc for each required arc 

f the DRPP instance. The CEARP was also studied by Shuttleworth, 

olden, Smith, & Wasil (2008) , Drexl (2014) , Hà, Bostel, Langevin, 

 Rousseau (2012, 2014) , Ávila, Corberán, Plana, & Sanchis (2016) , 

nd Cerrone, Cerulli, Golden, & Pentangelo (2017) . The exact algo- 
∗ Corresponding author. 
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ithms proposed in the last three references are the most success- 

ul methods for the CEARP. They are capable of solving to opti- 

ality instances with up to 500 vertices, 1500 arcs, and between 

00 and 15,000 customers. A stochastic version of the CEARP was 

tudied by Renaud, Absi, & Feillet (2017) , while Aráoz, Fernández, 

 Franquesa (2017) considered the special case in which the cus- 

omers are associated with clusters of edges that define pairwise- 

isjoint connected subgraphs. A real-life application of the CEARP 

rises in automated meter reading of water or gas consumption. 

nstead of visiting customers one by one, the vehicles only need 

o traverse a street that is close enough to the meters in order 

o receive the consumption data via radio frequency identification 

RFID). This application was first described in Gulczynski, Heath, 

 Price (2006) , although in the context of node routing problems. 

he papers by Shuttleworth et al. (2008) and Hà et al. (2012, 

014) were the first that studied the automated meter reading 

roblem in the context of a street network. The paper by Eglese, 

olden, & Wasil (2014) is an interesting summary of the mod- 

ls and solution methods proposed since the late 1970s in meter 

eading. Another application of the CEARP can be found in inven- 

ory management in large companies. In Duric, Jovanovic, & Sibalija 

2018) a system that allows aerial drones to read RFID tags from 

ens of meters away and identify the location of the tags with a 

mall average error is described. Therefore, to carry out the in- 

entory, the drone does not need to traverse all the aisles of the 

arehouse to collect data. Drones with RFID receivers or integrated 

ameras are identified by Aráoz et al. (2017) as the most suitable 
 under the CC BY-NC-ND license 
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evices to perform network maintenance and surveillance tasks. 

he drones do not need to fly over the nodes or lines to be mon-

tored, but only to approach the target at a certain distance. The 

uthors noted that only a subset of the edges of a network should 

e traversed in network maintenance quality control. They also ar- 

ued that CEARP is the most appropriate problem for modeling lo- 

ation arc routing problems in which facilities need to be located 

n some given areas and connected between them via a route. 

More recently, the CEARP with several vehicles has been sub- 

ect of investigation in Ávila, Corberán, Plana, & Sanchis (2017) and 

orberán, Plana, Reula, & Sanchis (2019, 2021a) . These articles deal 

ith the Distance-Constrained Close Enough Arc Routing Problem 

DC-CEARP). This problem consists of finding a set of routes of to- 

al minimum cost, leaving from and entering at the depot and ser- 

icing all the customers, while ensuring that the length of each 

oute does not exceeds a given maximum distance. In Ávila et al. 

2017) , the authors present and compare four formulations for the 

roblem and four branch-and-cut algorithms based on them. The 

est method is able to optimally solve instances with up to five 

ehicles, 196 vertices, 450 arcs, and 150 customers. In Corberán, 

lana, Reula, & Sanchis (2021a) , a new formulation that combines 

he best features of the previous ones is presented and its asso- 

iated polyhedron is studied. Based on that study, an exact algo- 

ithm improving the existing ones is also proposed. In Corberán 

t al. (2019) a matheuristic providing good feasible solutions for 

he DC-CEARP is described. 

In the context of the meter-reading application, most real in- 

tances are so large that a vehicle is not capable of servicing all 

he customers within the working time period. Then, several routes 

or a vehicle or for a fleet of vehicles need to be designed and

heir working times balanced. For example, Shuttleworth et al. 

2008) report the solution of a real instance with 150,0 0 0 cus- 

omers and 16,500 street segments that were partitioned into 18 

outes. Min-max objectives are quite common in routing problems 

ecause they lead to more realistic models, since minimizing the 

ength of the longest route tends to balance the length or cost of 

he planned routes. Moreover, if the travel times are proportional 

o the travel distance, this objective tries to minimize the time at 

hich the last customer is served. As Ahr noted in Ahr (2004) , 

this kind of objective is preferable when the aim is to serve each 

ustomer as early as possible”. The min-max objective for several 

rc routing problems was first proposed in Frederickson, Hecht, 

 Kim (1978) . These authors introduced the Min-Max K-Chinese 

ostman Problem (Min-Max K-CPP) and proved that it is NP-hard 

nd proposed a (2-1/ K)-approximation algorithm. More recently 

hr & Reinelt (2002) presented several lower bounds and heuris- 

ics for this problem and a Tabu Search procedure that produces 

ery good solutions ( Ahr & Reinelt, 2006 ). In Ahr (2004) some 

ore results on the Min-Max K-CPP, including an exact solution 

ethod based on a branch-and-cut approach, are presented. Fur- 

hermore, Applegate, Cook, Dash, & Rohe (2002) considered a min- 

ax problem in a newspaper delivery context. The chapter by 

enavent, Corberán, Plana, & Sanchis (2014) summarizes the re- 

ults obtained for some important min-max arc routing problems. 

The main contribution of the paper at hand is to introduce in 

he literature the MM-CEARP, focusing on its modeling and its ex- 

ct solution. More precisely, we propose two different models for 

he problem: an arc-based formulation making use of arc and ser- 

icing variables, and a route-based set covering formulation. Then, 

n the basis of the proposed models, we present a branch-and-cut 

BC) algorithm as well as a branch-and-price (BP) algorithm. As for 

he BP algorithm, an additional contribution comes from the defi- 

ition of the first-level rule used in the branching scheme. In the 

oute-based formulation, the sets of feasible routes associated with 

he vehicles are identical. The proposed branching scheme allows 

o recover integer solutions at the expenses of a diversification of 
838 
he sets of feasible routes. Nevertheless, the first-level rule does 

ot introduce symmetries in the solution space, does not alter the 

tructure of the pricing problems, and, finally, allows the pricing 

roblems to continue sharing the same feasible region. In turn, as 

ong as only this rule is applied, this allows to design the sequen- 

ial solution of the pricing problems (at each the column genera- 

ion iteration) to potentially avoid solving some of them. Further- 

ore, the first-level rule consists of an application of the Ryan and 

oster’s branching rule (see Ryan & Foster, 1981 ), which is itself 

omething not typical when (i) columns of the master program re- 

er to elements of distinct sets and/or (ii) the BP algorithm is ad- 

ressing a routing problem. In particular, as for (ii), we have been 

ble to efficiently handle the implications arising from the applica- 

ion of such a kind of rule thanks to the BC algorithm used to solve

he pricing problems to optimality. Again something not typical 

or BP algorithms addressing routing problems, where the leading 

echnique used to solve the pricing problems consists of dynamic 

rogramming algorithms. 

The rest of the paper is organized as follows. In Section 2 , we

ormally define the MM-CEARP and present for the problem an 

rc-based and a route-based formulation. Solution algorithms to 

ddress the problem are then presented. In Section 3 we present 

 BC algorithm addressing the arc-based formulation, whereas in 

ection 4 we describe a BP algorithm based on the set covering 

ormulation. A heuristic used to compute solutions with which ini- 

ializing the exact algorithms is described in Section 5 . To com- 

are the exact algorithms, extensive computational experiments on 

enchmark instances are reported in Section 6 . Conclusions are 

rawn in Section 7 . In order to ease the reading, a list of the main

ets, parameters, and variables used along this work is reported in 

able 7 at the end of the paper. 

. Problem definition and formulation 

Let G = (V, A ) be a strongly connected directed graph with 

et of vertices V , where vertex 1 denotes the depot, and set of 

rcs A , and let d i j ≥ 0 be the an integer value representing the 

ength/distance associated with the traversal of arc (i, j) ∈ A . There 

s a fleet of K identical vehicles based at the depot and a set of 

 customers. Each customer c ∈ { 1 , . . . , L } has associated a set of

rcs H c ⊆ A from which it can be served. We consider that a cus- 

omer c is served if there is a vehicle k that traverses at least one 

rc in H c . Note that the subsets H c do not need to be disjoint nor

nduce connected subgraphs. The Min-Max Close-Enough Arc Rout- 

ng Problem consists of finding a set of K routes, starting and end- 

ng at the depot, servicing all the customers and minimizing the 

ength of the largest route. 

In what follows, K = { 1 , . . . , K} will represent the set of vehi-

les and H = { 1 , . . . , L } the set of customers. Given sets S, S 1 , S 2 ⊂
 , we define (S 1 , S 2 ) = { (i, j) ∈ A : i ∈ S 1 j ∈ S 2 } , δ+ (S) = (S, V \
) , δ−(S) = (V \ S, S) , δ(S) = δ+ (S) ∪ δ−(S) , and A (S) = { (i, j) ∈ A :

, j ∈ S} . Finally, given a vector x indexed on the arcs, and given a

et F of arcs, x (F ) = 

∑ 

(i, j) ∈ F x i j . 

.1. Arc-based formulation 

In this section we present an ILP formulation for the MM- 

EARP, very similar to one of the four proposed by Ávila et al. 

2017) for the DC-CEARP, which uses an artificial variable w to 

odel the minimization of the maximum length route and the fol- 

owing two sets of variables: 

x k 
i j 

= number of times that the vehicle k traverses arc (i, j) ∈ A , 

z k c = 

{
1 , if customer c is served by vehicle k 

0 , otherwise. 
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Table 1 

Characteristics of the MM-CEARP instances. 

| A | | A R | | A NR | | H | 
# Inst Max K | V | Min Max Min Max Min Max Min Max 

Albaida 81 8 116 259 305 124 172 109 162 18 33 

Madrigueras 105 11 196 453 544 224 305 197 281 22 47 

Random50 24 5 50 296 300 105 292 7 193 10 100 

Random75 48 8 75 448 450 143 438 10 305 15 150 
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The first MM-CEARP formulation is: 

in w (1a) 

.t. 
∑ 

k ∈ K 
z k c = 1 ∀ c ∈ H (1b) 

∑ 

i, j) ∈ A 
d i j x 

k 
i j ≤ w ∀ k ∈ K (1c) 

 

k (δ+ (i ) ) = x k (δ−(i ) ) ∀ i ∈ V, ∀ k ∈ K (1d) 

∑ 

i, j) ∈ H c 
x k i j ≥ z k c ∀ c ∈ H , ∀ k ∈ K (1e) 

 

k (δ+ (S) ) ≥ z k c − x k (H c ∩ A (V \ S)) ∀ S ⊂ V \ { 1 } , ∀ c ∈ H , ∀ k ∈ K 

(1f) 

 

k 
i j ≥ 0 and integer ∀ (i, j) ∈ A, ∀ k ∈ K (1g) 

 

k 
c ∈ { 0 , 1 } ∀ c ∈ H , ∀ k ∈ K (1h) 

Eq. (1b) forces the service of all customers while inequalities 

1c) imply that the length of any route is less than or equal to 

 , and, together to the objective function, that the length of the 

ongest route is minimized. Constraints (1d) are the well known 

ymmetry equations for each vertex in V . Inequalities (1e) ensure 

hat if a vehicle serves a customer c, at least one arc in H c must

e traversed. The connectivity of each route is guaranteed by in- 

qualities (1f) . If vehicle k does not serve customer c, z k c = 0 and

he inequality is trivially satisfied. Otherwise, if vehicle k serves 

ustomer c by traversing an arc in H c ∩ A (V \ S) , then it does not

eed to traverse the cut-set δ(S) and the inequality is also triv- 

ally satisfied. Only when vehicle k serves customer c by traversing 

n arc not in H c ∩ A (V \ S) (hence, traversing an arc in δ(S) or in

 (S) ), the vehicle has to traverse δ(S) and, therefore, the inequality 

s satisfied. Note that there is an exponential number of such in- 

qualities. Finally, (1g) and (1h) define the domain of the variables 

In what follows we present the parity inequalities proposed in 

vila et al. (2017) and Corberán et al. (2021a) for the DC-CEARP. 

hey are also valid for our problem and will be used to strengthen 

he linear relaxation of the above formulation. 

arity inequalities 

Parity inequalities are implied by the fact that any cutset has 

o be traversed by each vehicle an even, or zero, number of times. 

ote that symmetry Eq. (1d) guarantee that every node has even 

egree in the graph induced by any integer solution x ∈ Z 

| A | . How-

ver, if x is fractional, this is not necessarily true and, therefore, 

arity inequalities can help to cut this kind of “solutions”. 

Let S ⊆ V \ { 1 } and F H = { c 1 , c 2 , . . . , c q } , where q ≥ 3 and odd,

atisfying 

• H c i ∩ H c j ∩ δ(S) = ∅ and 
839 
• H c i ∩ δ(S) � = ∅ ∀ i ∈ { 1 , . . . , q } 
The following inequality is called disaggregate z-parity inequal- 

ty , because is associated with a single vehicle k , and is valid for

he MM-CEARP 

 

k (δ(S)) ≥
q ∑ 

i =1 

(
2 z k c i 

− 1 − 2 x k ( H c i \ δ(S) ) 

)
+ 1 . (2a) 

Basically, the inequality establish that if vehicle k serves cus- 

omer c i and does not traverse any edge in H c i \ δ(S) , then k serves

 i by traversing at least an arc in H c i ∩ δ(S) . If this is true for the

 customers in F H , vehicle k has to traverse δ(S) at least q times,

nd, since q is odd, k has to traverse the cutset at least one more

ime. 

Parity inequalities can be generalized to any subset of vehicles 

s follows. Given a subset of vehicles � = { k 1 , . . . , k p } , the associ-

ted �-aggregate z-parity inequality is 

 

 ∈ �
x k (δ(S)) ≥

q ∑ 

i =1 

(∑ 

k ∈ �
2 z k c i 

− 1 − 2 

∑ 

k ∈ �
x k ( H c i \ δ(S) ) 

)
+ 1 . (2b) 

If � = K , we have the aggregate parity inequality 

 

 ∈ K 
x k (δ(S)) ≥

q ∑ 

i =1 

(
1 − 2 

∑ 

k ∈ K 
x k ( H c i \ δ(S) ) 

)
+ 1 . (2c) 

.2. Route-based formulation 

As illustrated in Barnhart, Johnson, Nemhauser, Savelsbergh, & 

ance (1998) , most routing problems can be formulated in a natu- 

al way as set partitioning problems where the columns (of the co- 

fficient matrix) correspond to feasible routes for the vehicles and 

ach row (of the coefficient matrix) corresponds to the require- 

ent that a customer must be served exactly once. Alternatively, 

he problem can be formulated as a set covering problem in which 

t is required that each customer is served at least once. Note that, 

f a subcolumn of a feasible column defines another feasible col- 

mn with lower cost, an optimal solution to the set covering prob- 

em will define an optimal set partitioning solution and, hence, it 

s possible to work with any of the two formulations. However the 

et covering formulation has the following advantages: 

• its linear programming relaxation is numerically more stable 

and thus easier to solve, and 

• it is trivial to construct a feasible integer solution from a solu- 

tion to the linear programming relaxation. 

According to these insights, we modeled the MM-CEARP by 

eans of a route-based set covering formulation that leads the 

ases for the BP algorithm discussed in Section 4 . 

Let R k be the set of feasible routes for vehicle k ∈ K . Feasibility

akes into account constraints (1c) –(1h) for each vehicle k ∈ K . For 

ach r ∈ R k , let d kr be the length of the route. Moreover, for each

ustomer c ∈ H and each r ∈ R k , let s kr 
c be a binary parameter equal

o 1 if the route r serves customer c and 0 otherwise. Then, let’s 

onsider a set of variables associated with the use of the routes: 
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λkr = 

{
1 , if the route r ∈ R k is assigned to the vehicle k ∈ K , 

0 , otherwise, 

nd another set of variables modeling the length of the route as- 

igned to each vehicle: 

w 

k = length of route assigned to vehicle k ∈ K . 

Using this notation, the MM-CEARP can be formulated as fol- 

ows: 

in w 

1 (3a) 

.t. 
∑ 

k ∈ K 

∑ 

r∈ R k 
s kr 

c λ
kr ≥ 1 ∀ c ∈ H (3b) 

 

∈ R k 
λkr = 1 ∀ k ∈ K (3c) 

 

∈ R k 
d kr λkr − w 

k ≤ 0 ∀ k ∈ K (3d) 

 

k − w 

k +1 ≥ 0 ∀ k = 1 , . . . , K − 1 (3e) 

kr ∈ { 0 , 1 } ∀ k ∈ K , ∀ r ∈ R 

k (3f) 

The objective function (3a) minimizes the length of the longest 

oute. This is ensured by constraints (3d) together with (3e) . Ac- 

ually, constraints (3d) define the lengths of the routes assigned 

o the vehicles. Then, constraints (3e) impose the lengths of the 

outes associated with vehicles from 1 to K to be sorted in non- 

ncreasing order. The mandatory service of the customers is es- 

ablished in inequalities (3b) . The convexity constraints (3c) imply 

hat a single route r ∈ R k is assigned to each vehicle k ∈ K . Finally,

onstraints (3f) define the domain for the λkr variables. Constraints 

 

k ≥ 0 are implied by inequalities (3d) . 

Note that sets R k , k ∈ K , are all identical. Nevertheless, we de-

ided to index them (by vehicle index) to have a notation allowing 

s to better explain the BP algorithm (see Section 4 ). In particular, 

he reason for using such a notation will be clarified in Section 4.2 .

. Branch-and-cut algorithm 

In this section, we describe the branch-and-cut algorithm for 

olving the MM-CEARP, which relies on the arc-based formulation 

resented in Section 2.1 and the use of mixed-integer program- 

ing (MIP) solver. 

.1. Separation algorithms 

Here we describe the separation algorithms that have been 

sed to identify inequalities that are violated by the current LP so- 

ution at any iteration of the cutting-plane phase of the branch- 

nd-cut algorithm, which includes separation methods for identi- 

ying violated connectivity (1f) and aggregated parity inequalities 

2c) . 

onnectivity inequalities 

To identify violated connectivity inequalities (1f) we have used 

 heuristic procedure proposed in Ávila et al. (2017) for the DC- 

EARP. Given a solution (x k ∗, z k ∗) of the linear relaxation corre- 

ponding to a vehicle k , we first build the graph induced by the 

rcs a ∈ A such that x k ∗a ≥ ε , where ε is a given parameter. If the

upport graph is not weakly connected, let C 1 , . . . , C q be its weakly

onnected components. For each C i , let S be its associated set of 

ertices. We look for the customer c ∈ H such that z k ∗c − x k ∗(H c ∩
 (V \ S) is maximized. If x k ∗(δ+ (S)) < z k ∗c − x k ∗(H c ∩ A (V \ S) the
840 
orresponding connectivity constraint (1f) is violated. This proce- 

ure has a computational complexity O (K| A || H | ) . 
A second heuristic (described in Corberán et al. (2021a) ) based 

n the Gomory–Hu algorithm and working in O (| V | 3 | A | ) time is

lso applied. 

arity inequalities 

To separate parity inequalities (2c) we have implemented the 

ollowing heuristic algorithm with complexity O (| A | 2 ) . Note that 

hese inequalities can be written as 

 

 ∈ K 
x k (δ(S)) ≥

∑ 

k ∈ K 

q ∑ 

i =1 

(
z k c i 

− 2 x k 
(
H c i \ δ(S) 

))
+ 1 . 

If (x k ∗, z k ∗) are the values of the variables associated with ve-

icle k in the solution of the linear relaxation, let ( ̄x ∗, ̄z ∗) be the

ggregated solution, that is, x̄ ∗a = 

∑ 

k ∈ K x k ∗a and z̄ ∗c = 

∑ 

k ∈ K z k ∗c = 1 . 

irst, we create the graph induced by the arcs a ∈ A R = H 1 ∪ . . . ∪ H L 

ith x̄ ∗a ≥ 1 + ε and by the arcs a / ∈ A R with x̄ ∗a > ε , where ε is a

iven parameter. Let C 1 , . . . , C k be the weakly connected compo- 

ents of this graph. Then, given a connected component C i and its 

ssociated set of vertices S, we compute x̄ ∗(δ(S) ∩ A R ) and check if

his value is close to an odd number, that is, 2 n + 0 . 75 ≤ x̄ ∗(δ(S) ∩
 R ) ≤ 2 n + 1 . 25 . If so, the heuristic tries to select q = 2 n + 1 cus-

omers among those having arcs in the cutset in order to form set 

 

H as described in Section 2.1 . To do so, we iteratively add cus- 

omers to F H in decreasing order of the z̄ ∗c − 2 ̄x ∗(H c \ δ(S)) values, 

uch that the sets H c ∩ δ(S) are disjoint with those associated with 

he previously selected customers, until we reach the desired num- 

er q of customers. If there are not enough customers that can 

e selected, we choose another component. Otherwise, we check 

f the inequality (2c) is violated. 

.2. Initial relaxation and cutting-plane algorithm 

The initial LP relaxation contains all the inequalities in the for- 

ulation except for the connectivity inequalities, which are expo- 

ential in number. At each cutting plane iteration, the separation 

lgorithms are applied in the following order: 

1. Connectivity inequalities separation algorithm based on con- 

nected components with ε = 0 , 0 . 25 , 0 . 5 , 0 . 75 . 

2. Connectivity inequalities separation algorithm based on 

Gomory–Hu. 

3. Only at the root node, parity inequalities separation algorithm 

with ε = 0 , 0 . 25 , 0 . 5 , 0 . 75 . 

This cutting-plane algorithm is applied at each node of the tree 

ntil no new violated inequalities are found. When this happens, 

e branch using the strong branching strategy provided by the MIP 

olver. This strategy branches on variables and allows to assign dif- 

erent priorities to them. Variables with higher priority are the first 

nes used for branching. We have assigned a higher priority to the 

 

k 
c variables. 

. Branch-and-price algorithm 

When a set covering problem is addressed by means of a BP 

lgorithm, its formulation, in our case formulation (3) , is usually 

eferred as master program (MP). In the BP algorithm, at each 

ode of the branch-and-bound tree, the linear relaxation of the MP 

LMP), eventually augmented by branching constraints, is solved it- 

ratively by means of column generation. The starting point is to 

efine the LMP over a subset ˜ R ⊆ ⋃ 

k ∈ K R k of the feasible routes 

or the vehicles. This restricted version of LMP is usually called 

educed linear master program (RLMP). At each iteration, column 

eneration alternates between the optimization of the RLMP and 
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he solution of pricing problems (PPs). The former allows to re- 

rieve optimal dual variable values with respect to set ˜ R . The lat- 

er, on the bases of the dual variable values, generates negative 

educed cost route variables λkr to be included in the RLMP, if 

ny. When no negative reduced cost variable is found, the opti- 

al solution of the RLMP is also the optimal solution of the LMP 

esaulniers, Desrosiers, & Solomon (2005) . Branching is finally re- 

uired to ensure the integrality of the solution. 

.1. Column generation 

Let us consider the linear relaxation of (3) at the root node of 

he branch-and-bound tree. The dual variables associated with the 

onstraints (3b), (3c), (3d) , and (3e) are respectively: 

• μc ∈ R 

+ , for each customer c ∈ H , 
• θk ∈ R , for each vehicle k ∈ K , 
• ρk ∈ R 

−, for each vehicle k ∈ K , 
• σk ∈ R 

+ , for each k = 1 , . . . , K − 1 . 

Using these dual variables in their respective domain, we are 

ble to express the formulation of the dual of LMP as follows: 

ax 
∑ 

c∈ H 
1 · μc + 

∑ 

k ∈ K 
1 · θk + 

∑ 

k ∈ K 
0 · ρk + 

K−1 ∑ 

k =1 

0 · σk (4a) 

.t. 
∑ 

c∈ H 
s kr 

c μc + θk + d kr ρk ≤ 0 ∀ k ∈ K , ∀ r ∈ R 

k (4b) 

− ρ1 + σ1 ≤ 1 (4c) 

− ρk + σk − σk −1 ≤ 0 ∀ k = 2 , . . . , K − 2 (4d) 

− ρK − σK−1 ≤ 0 (4e) 

here there is a constraint (4b) for each variable λkr of the pri- 

al formulation, and constraints (4c) –(4e) are related with each 

 

k variable, k ∈ K . 

Thus, based on the dual formulation (4) , we can see that there 

s one distinct PP for each vehicle k ∈ K . In particular, given the du-

ls ( μ, θ, ρ, σ) , the PP for vehicle k ∈ K consists of finding a min-

mum reduced cost route to be assigned to the vehicle, where the 

educed cost c̄ kr ( μ, θ, ρ) of route r ∈ R k to be assigned to the ve-

icle is defined as: 

 

kr 
( μ, θ, ρ) = −

∑ 

c∈ H 
s kr 

c μc − θk − d kr ρk (5) 

A solution (a route) corresponds to a negative reduced cost λkr 

ariable if its value (reduced cost) is less than 0. 

.1.1. Pricing problem modeling 

In order to define the pricing problem, we consider the same 

ariables (with the same meaning) as those used in formulation 

1) . The PP associated with vehicle k ∈ K can then be formulated 

s follows: 

in −
∑ 

c∈ H 
μc z 

k 
c −

∑ 

(i, j) ∈ A 
d i j x 

k 
i j ρk (6a) 

.t. x k (δ+ (i ) ) = x k (δ−(i ) ) ∀ i ∈ V (6b) 

 

k (δ+ (S) ) ≥ z k c − x k (H c ∩ A (V \ S)) ∀ S ⊂ V \ { 1 } , ∀ c ∈ H (6c) 
b

841 
∑ 

i, j) ∈ H c 
x k i j ≥ z k c ∀ c ∈ H (6d) 

 

k 
i j ≥ 0 and integer ∀ (i, j) ∈ A (6e) 

 

k 
c ∈ { 0 , 1 } c ∈ H (6f) 

here μc ≥ 0 , θk ∈ R , ρk ≤ 0 and, hence, −d i j ρk ≥ 0 for each 

i, j) ∈ A . The objective function (6a) aims at minimizing the re- 

uced cost of the route. Constraints (6b) are the symmetry equa- 

ions for each vertex, while constraints (6c) are used to ensure the 

onnectivity of the optimal solution. Consistency between the x k 
i j 

nd z k c variables is imposed through constraints (6d) . 

An optimal solution to (6) corresponds to a negative reduced 

ost variable if its value is less than θk . 

Moreover, when an upper bound W is available for w 

1 , R k can 

e restricted to include feasible routes such that d kr ≤ W − 1 ( d i j is

n integer value for each (i, j) ∈ A ), and we can include in formu-

ation (6) the following constraint: ∑ 

i, j) ∈ A 
d i j x 

k 
i j ≤ W − 1 (6g) 

Note that the valid inequalities (6b) –(6f) , which defines the fea- 

ible region of the PP associated with vehicle k ∈ K , are the same

s the inequalities (1d) –(1h) appearing in formulation (1) for each 

ehicle k ∈ K . Thus, the disaggregate z-parity inequalities (2a) are 

lso valid for model (6) . 

.1.2. A branch-and-cut algorithm for the pricing problem 

In Bianchessi, Corberán, Plana, Reula, & Sanchis (2021) , the 

uthors introduce the Profitable Close Enough Arc Routing Prob- 

em (PCEARP). Let G = (V, A ) be a directed and strongly connected 

raph with a cost c i j ≥ 0 associated with each arc (i, j) ∈ A and a

istinguished vertex 1 as the depot. Let H be the set of customers, 

ach of them has an associated set of arcs H c ⊆ A in such a way

 customer c is served when at least one of the arcs in H c is tra-

ersed. Associated with each customer c there is a profit p c ≥ 0 

hat is collected (only once) if the customer is served. The PCEARP 

onsists of finding a tour starting and ending at the depot and 

aximizing the difference between the total profit collected and 

he cost of the route. Therefore, for each vehicle k ∈ K , the pricing

roblem can be seen as a PCEARP with the additional constraint 

6g) . In fact, it is possible to rewrite the objective function as a 

aximization problem with 

• p c = μc ≥ 0 , 
• c i j = −d i j ρk ≥ 0 . 

Finally, it is worth observing that all the PPs share the same 

easible region at the root node of the branch-and-bound tree. 

owever, as will be explained in Section 4.2 , branching rules may 

ifferentiate the pricing problem feasible regions in the subtree 

rising from their application. 

We solve the pricing problem by using a branch-and-cut algo- 

ithm similar to the one described in Bianchessi et al. (2021) for 

olving the PCEARP. 

When solving the pricing problem, it may be advantageous to 

ave as many routes (columns) as we can find. Therefore, every 

ime that the branch-and-cut algorithm finds an integer solution 

ith negative reduced cost, we store it in order to add it to the 

estricted master problem. Furthermore, for each stored route, we 

tudy if it traverses any arc a ∈ H c associated with a customer c

aving μc = 0 . If this happens, we mark this customer as served 

y the route. 



N. Bianchessi, Á. Corberán, I. Plana et al. European Journal of Operational Research 300 (2022) 837–851 

Fig. 1. Solutions of the PP with subtours that satisfy connectivity inequalities (6c) . 

a

c

t  

i

i

e

i

v

x

c

p

e

s

t

h

d

t

a

i  

t  

t

a

f

o

a  

a

n

w

d

r

b  

t

a

c

n  

a

0  

i

f

u

i

e

l

c

p

o

 

H

Initial relaxation The initial relaxation considered in order to 

pply the BC includes constraints (6b) –(6g) (minus the integrality 

onditions). In particular, let S c be the set of vertices incident with 

he arcs in H c , c ∈ H . The initial relaxation includes only connectiv-

ty constraints (6c) associated with sets S c such that 1 / ∈ S c . 

Moreover, in order to obtain routes useful for the LMP, inequal- 

ties (6h) and (6i) are also included in the initial relaxation. In- 

quality (6h) forces the vehicle to leave the depot, while inequal- 

ty (6i) ensures that at least one customer will be served by the 

ehicle. 

 

k (δ+ (1)) ≥ 1 (6h) 

∑ 

=1 , ... ,L 

z k c ≥ 1 . (6i) 

Separation algorithms In the branch-and-cut algorithm for the 

ricing problem we separate connectivity (6c) and parity (2a) in- 

qualities. The separation algorithm used for parity inequalities is 

imilar as the one described in Section 3.1 but without aggregating 

he solution. 

For the connectivity inequalities we apply the first separation 

euristic described in Section 3.1 with a modification that will be 

escribed in what follows. 

Note that constraints (6c) do not guarantee that all solutions of 

he formulation will be connected, since there are still two situ- 

tions in which disconnected subtours may appear. The first one 

s if ρk = 0 . In this case, a solution can contain cycles with arcs

hat do not belong to any served customer (see Fig. 1 a, where the

riangle represents the depot and the solid lines represent arcs of 

 served customer), but these cycles can be removed without af- 

ecting the reduced cost of the solution. The other situation may 

ccur when there is a cycle disconnected from the depot, but for 

ny customer with z k c = 1 there is at least one arc in H c traversed

nd connected to the depot (see Fig. 1 b). But this solution will 

ot be optimal, since this cycle can be removed from the solution 

hile still servicing the same customers, thus decreasing the re- 

uced cost of the route. 

However, as will be explained in Section 4.2 , the branching 

ules of the branch-and-price procedure may introduce some lower 

ound on the use of some arcs, that is, on some x k 
i j 

variables. If

here is a disconnected subtour containing one of these arcs with 

 lower bound greater than 0, it is not possible to remove this cy- 

le from the solution. For this reason, for each connected compo- 

ent C i , if it does not contain the depot, we check if there is an

rc incident with vertices in C i having a lower bound greater than 

. If such an arc is found, the inequality x k (δ(C i )) ≥ 1 is a valid

nequality that is violated by this solution. 
842 
Cutting-plane algorithm The cutting-plane algorithm applies the 

ollowing separation algorithms in the order in which are listed: 

1. Heuristic separation algorithm for connectivity inequalities with 

ε = 0 , 0 . 25 , 0 . 5 , 0 . 75 . 

2. Heuristic separation algorithm for parity inequalities with ε = 

0 , 0 . 25 , 0 . 5 (only at the root node). 

The cutting-plane algorithm is applied at each node of the tree 

ntil no new violated inequalities are found. Again, we branch us- 

ng the MIP-solver implementation of the strong branching strat- 

gy by giving higher priority to the z k c variables. 

Primal heuristic To obtain a higher number of columns and good 

ower bounds that can help reducing the size of the branch-and- 

ut search tree, we have implemented a heuristic algorithm, whose 

seudocode is shown in Algorithm 1 , using the fractional solutions 

Algorithm 1: Primal heuristic. 

Input : G , H , (x ∗, z ∗) 
Output : A feasible route R 

1 A ← ∅ ; 
2 H ← H ; 

3 A 

1 ← { a ∈ A R : x ∗a ≥ 0 . 9 } ; 
4 A 

2 ← { a ∈ A R : 0 . 7 ≤ x ∗a < 0 . 9 } ; 
5 A 

3 ← { a ∈ A R : 0 . 5 ≤ x ∗a < 0 . 7 } ; 
6 for i=1 to 3 do 

7 p(a ) ← 

∑ 

c∈H: a ∈ H c μc ∀ a ∈ A 

i ; 

8 while A 

i � = ∅ AND max { p(a ) : a ∈ A 

i } > 0 do 

9 a ← argmax a ∈ A i { p(a ) } ; 
10 A ← A ∪ { a } ; 
11 A 

i ← A 

i \ { a } ; 
12 Remove from H all the customers served by arc a ; 

13 Recalculate p(a ) ∀ a ∈ A 

i ; 

14 Apply an insertion heuristic to construct a route R with the 

arcs in A ; 

15 if the value of R is better than the current lower bound of 

the branch-and-cut and R satisfies (6g) then 

16 Stop; 

17 else 

18 Solve the DGRP on G with required arcs A , the depot as 

required vertex, and costs d i j ρk ; 

19 if the solution of DGRP satisfies (6g) then 

20 R ← Optimal solution of the DGRP; 

f the LPs at the nodes of the tree. 

Let (x ∗, z ∗) be a fractional solution. The subset of arcs A R =
 ∪ . . . ∪ H is split into four different subsets according to their 
1 L 
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∗ value. The first subset includes arcs a with x ∗a ≥ 0 . 9 . The second,

hose with x ∗a ∈ [0 . 7 , 0 . 9) , the third the arcs with x ∗a ∈ [0 . 5 , 0 . 7) ,

nd the last subset includes the arcs a ∈ A R with x ∗a < 0 . 5 , which

ill not be considered in the procedure. 

We start by building a solution by iteratively selecting arcs from 

he first subset. For each arc a of this subset, we calculate the profit

btained from traversing it, given by the sum of the profit μc of 

he customers c not yet served such that a ∈ H c . Then, the arc with

he maximum profit is added to A and removed from its corre- 

ponding subset. Moreover, the customers served by traversing this 

rc are labeled as served. This procedure is repeated until the first 

ubset is empty or there are no new customers that can be served 

raversing the remaining arcs. Then, we repeat the procedure with 

he second subset and, if necessary, with the third one. 

Once the set A has been obtained, a route traversing this sub- 

et of arcs is built. The route is initialized by randomly selecting 

n arc in A . Then, all the remaining arcs are allocated using a de-

erministic completion procedure. For each unassigned arc a ∈ A , 

e compute the cost of inserting the arc in the route in the best 

ossible position and add the one with the minimum insertion 

ost. We proceed until all the arcs in A are allocated. Once the 

oute is complete, we check which customers are served. If the re- 

ulting solution improves the current lower bound, we stop. Oth- 

rwise, we solve a Directed General Routing Problem (DGRP) in 

hich all the arcs in A are marked as “required” and the depot is 

 “required vertex”, using the exact procedure described in Ávila, 

orberán, Plana, & Sanchis (2015) . The DGRP consists of finding a 

inimum cost route that traverses all the required arcs and visits 

ll the required nodes at least once. As before, we study the cus- 

omers served by the obtained route and check if it improves the 

urrent lower bound. 

This algorithm is executed at every 100 iterations of the 

utting-plane procedure at the root node. Once the root node has 

een studied, it is executed once every 20 nodes up to node num- 

er 200, once every 50 nodes between nodes 201 and 501, and 

nce every 200 nodes beyond that number. 

.1.3. Solution of the PPs 

Let K = { v 1 , . . . , v K } be the set of vehicles sorted in non-

scending order with respect to their corresponding ρv k values. At 

ach column generation iteration, the PPs are considered sequen- 

ially starting from the problem associated with vehicle v 1 . Let R 

v k 

e the set of routes found by solving the PP for vehicle v k ∈ K.

or each route r ∈ R 

v k , we check if it corresponds to a negative

educed cost λv k r variable (column), meaning that we check if its 

ost is less than θv k . Additionally, we check if the route r corre- 

ponds to a negative reduced cost column for any of the other 

ehicles. In this way, as long as all the PPs share the same fea-

ible region, we avoid to solve subsequent PPs corresponding to 

ehicles v t , t > k , such that | ρv k − ρv t | < ε, with ε → 0 + . This does

ot hold anymore once a branching rule which diversifies the pric- 

ng problem feasible regions is applied (see Section 4.2 ). When this 

appens, in each node of the subtree arising from the application 

f such a branching rule, all the PPs have to be eventually solved 

t each column generation iteration. The sequential solution of the 

Ps terminates as soon as negative reduced cost columns are found 

fter solving one of them, or when all the PPs have been solved 

nd no negative reduced cost column has been generated. 

.1.4. Heuristic column generation 

In many iterations of the column generation algorithm (espe- 

ially in the initial ones), there are many routes with negative re- 

uced cost that can be efficiently found by means of an heuristic 
843 
lgorithm. Hence, at each column generation iteration, the solu- 

ion mechanism outlined in Section 4.1.3 is first applied consider- 

ng a Greedy Randomized Adaptive Search Procedure (GRASP) as 

olver for the PPs. In case no negative reduced cost column is gen- 

rated by means of the heuristic, the mechanism is reapplied by 

olving the PPs to optimality through the BC algorithm described 

n Section 4.1.2 . It is worth noting that in the construction and lo- 

al search phases, we do not keep only the route with the lowest 

educed cost, but also all those routes generated by the algorithm 

hat have a negative reduced cost, which will be stored in set R h . 

The heuristic, the pseudocode of which can be seen in 

lgorithm 2 , is initialized by computing an initial value v (a ) for 

Algorithm 2: Heuristic column generation. 

Input : t l , m _ iter _ LS, α, η
Output : R h 

1 iter ← 0; 

2 R h ← ∅ ; 
3 i ← 1 ; 

4 Generate set A ini ; 

5 while t l is not reached AND i ≤ |A ini | do 

6 a ← A ini (i ) ; 

7 (R c , R iter ) ← Construction (a, α) ; 

8 R h ← R h ∪ R c ; 

9 R ls ← IteratedLocalSearch (R iter , η, m _ iter _ LS) ; 

10 R h ← R h ∪ R ls ; 

11 i ← i + 1 ; 

ach arc a ∈ A R as the cost of going from the depot to the arc

nd back minus the profit of serving all customers traversed in 

his trip. Out of all these arcs, we build a subset A ini with the

in { 50 , 
| A R | 

2 } arcs of minimum value v (a ) , and we sort them ran-

omly. At each iteration of the GRASP, a route is initialized by se- 

ecting an arc in A ini and then, completed and improved, respec- 

ively, by using the Construction and IteratedLocalSearch subroutines 

escribed in the following. 

Construction Initial solutions are built using an adaptation of the 

ath-scanning procedure, which selects the subset of customers 

ssociated with the smallest v (a ) . For each customer not yet as- 

igned, the corresponding profit ψ c is computed as the difference 

n the reduced cost of the route if c is served through the route. 

 restricted candidate list (RCL) is built including the customers 

andidates associated with the smallest profits and taking into ac- 

ount a threshold parameter α. Given ψ min and ψ max , a customer 

s included in the RCL if 

 c ≥ α(ψ max − ψ min ) + ψ min . 

s usual, parameter α controls the greediness of the selection 

 α = 0 pure greedy; α = 1 pure random). Looking for a tiny ran- 

omization component within a greedy procedure, our algorithm 

as been implemented with a fixed α = 0 . 1 . Construction runs un- 

il it is verified that, with the remaining unassigned customers, it 

s not possible to achieve a route with negative reduced cost. Note 

lso that all the negative reduced cost routes generated during the 

onstruction phase are kept as solutions of the current PP. 

IteratedLocalSearch With the best solution built in the construc- 

ive phase (route R iter ), a local search procedure tries to improve 

t by exploring neighbor solutions. It consists of a Destroy and Re- 

air method based on the one described in Corberán et al. (2019) . 

ere, in the destruction phase of the algorithm, η ( η ∈ { 1 , 3 } ) arcs

re removed from the route but always keeping at least one arc 

n it. Then, in the repair phase, a best improvement strategy was 

dopted, according to which the customer associated with the 

inimum profit μc is inserted in the route. The reconstruction 
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hase uses the same stopping criteria as Construction . Let φa be the 

et of arcs in A R in the current route ( R iter ), the IteratedLocalSearch

rocedure stops when m _ iter _ LS = min { L 2 , 
| φa | 

2 } iterations without 

mproving the solution are performed. 

GRASP is repeated until a maximum computing time ( t l = 

 seconds) is exceeded or a route for each arc in A ini has been

uilt. 

.1.5. Restricted master heuristic 

In order to speed up the BP algorithm, and also improve the 

onvergence speed of the column generation, we implemented a 

estricted master heuristic as defined in Joncour, Michel, Sadykov, 

verdlov, & Vanderbeck (2010) . The basic idea behind restricted 

aster heuristics is to solve, by means of a general mixed integer 

inear programming (MILP) solver, the MP (in our case model (3) ) 

efined over a subset of the available columns. When the heuristic 

ucceeds in solving the MP defined over a given set of columns, a 

easible solution to the problem becomes available. 

We run the restricted master heuristic every � column genera- 

ion iterations and whenever an optimal solution for the RLMP has 

een computed. 

The heuristic is immediately terminated when it is triggered 

nd the current (optimal) solution is not feasible, i.e., the current 

ase includes an active dummy column (see Section 4.1.6 ). Other- 

ise, let R̄ be the set of the routes associated with the λ̄kr vari- 

bles that are active w.r.t. the current (optimal) feasible solution to 

he RLMP. The routes in R̄ are used to initialize an integer program 

imilar to (3) to be solved by means of a general MILP solver. In

he new integer program, λ variables are no more indexed by ve- 

icle. The program considers binary variables λr assuming value 

 if route r is selected to be assigned to one of the vehicles. Ac- 

ording to the new definition of the λ variables, coefficients s r c and 

 

r play respectively the role of coefficients s kr 
c and d kr in (3) . The

rogram reads as follows: 

¯
 = min w (7a) 

.t. 
∑ 

r∈ ̄R 
s r c λ

r ≥ 1 ∀ c ∈ H (7b) 

 

r∈ ̄R 
λr ≤ K (7c) 

 

r λr − w ≤ 0 ∀ r ∈ R̄ (7d) 

r ∈ { 0 , 1 } ∀ r ∈ R̄ (7e) 

 ≥ 0 (7f) 

The new λ variables allow to aggregate constraints (3c) in 

3) and formulate them as (7c) , to disregard constraints (3e) , and, 

n general, to avoid symmetries in the solution space. This comes 

t the expense of an increase in the number of constraints (7d) re- 

uired to define the maximum length. 

Whenever an optimal solution to (7) is found, a new upper 

ound W̄ (for w 

1 ) becomes available. Hence, column generation 

s restarted to solve the RLMP by considering only vehicle routes 

ith length smaller than, or equal to, W̄ − 1 . 

.1.6. Overall algorithm overview 

The RLMP is initialized by means of set of columns ˆ C ∪ C. Set 
ˆ 
 includes a high cost dummy column for each customer c ∈ H , 
844 
y means of which constraints (3b) are satisfied. In particular, 

he column for a given customer c ∈ H has a coefficient 1 on the

ow corresponding to the constraint associated with the customer, 

hereas all the other coefficients of the column are 0. Similarly, a 

igh cost dummy column is further included in 

ˆ C for each vehi- 

le k ∈ K to satisfy constraints (3c) . All dummy columns have null 

ength. At the root node of the branch-and-bound tree, C is empty. 

n any other node of the tree, C includes the columns that were in 

he optimal basis of the RLMP at the father node, and that corre- 

pond to routes that are feasible with respect to the active branch- 

ng constraints and the current value of W . 

Then, iteratively, the RLMP is solved to optimality or proved to 

e infeasible. 

First, at each iteration, the RLMP is solved and the dual variable 

alues retrieved. If no dummy column appears in the current basis, 

ll columns in 

ˆ C are extracted from (the constraint matrix of) the 

LMP. 

Let PC be the set of columns generated so far during the exe- 

ution of the whole BP algorithm (the so called pool of columns). 

olumns in PC correspond to routes that are feasible with respect 

o the current value of W. Before solving the PPs, negative reduced 

ost columns are searched for among those included in PC . PC is 

canned sequentially and at most K negative reduced cost columns 

re selected to be inserted into the RLMP. A column in PC is el- 

gible for selection if (i) the corresponding route is feasible with 

espect to the active branching constraints, (ii) none of the pre- 

ious selected columns is associated with the same PP associated 

ith it, and (iii) the corresponding route services at least one cus- 

omer not serviced by any of the routes corresponding to previous 

elected columns. Let ˆ PC be the subset of columns selected and 

xtracted from PC . If | ˆ PC | > 0 , columns in 

ˆ PC are inserted into the

LMP and a new iteration is started, otherwise the PPs are solved 

n order to eventually find new negative reduced cost columns. 

An attempt is made to solve the PPs, as described in 

ection 4.1.3 , by means of the MS-GRASP heuristic ( Section 4.1.4 ). 

n case no negative reduced cost column is generated, the solu- 

ion mechanism described in Section 4.1.3 is reapplied by solving 

he PPs to optimality through the BC algorithm ( Section 4.1.2 ). If, 

gain, no negative reduced cost column is found, it means that ei- 

her the optimal solution of the current RLMP is also optimal for 

he LMP, or the LMP is infeasible (some dummy columns are in 

he basis corresponding to the dual variable values for the current 

teration). In both cases the column generation algorithm termi- 

ates. Otherwise, the negative reduced cost columns generated are 

nserted into the RLMP and a new iteration is started. When the 

olumn generation algorithm ends, all the non-dummy columns 

efining RLMP are (re)inserted in PC . 
Finally, as mentioned in Section 4.1.5 , the column generation al- 

orithm takes advantage of a restricted master heuristic. This helps 

n speeding up its convergence as well as the convergence of the 

hole BP algorithm. Actually, the cardinality of the set 
⋃ 

k ∈ K R k de- 

ends on the value of W . The lesser the value of W , the smaller

he cardinality of the set, and this eventually allows to solve faster 

he PPs with both the MS-GRASP heuristic and the BC algorithm. 

n turn, the smaller the cardinality of the set 
⋃ 

k ∈ K R k , the greater 

he dual bound generated by solving to optimality the RLMP, and, 

n general, tighter dual bounds associated with the nodes of the 

ree imply a faster convergence of the BP algorithm. The restricted 

aster heuristic is run every � column generation iterations, be- 

ore solving the RLMP and retrieving the dual variable values, and 

henever an optimal solution for the RLMP has been computed. 

ach time a new improving feasible solution is found, a new up- 

er bound W̄ (for w 

1 ) becomes available. The value of W is up- 

ated accordingly. All the columns in the RLMP corresponding to 

outes that do not satisfy constraint (6g) with the updated value 

f W are removed from its constraint matrix. Similarly, columns in 
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Fig. 2. Flow chart of the branch-and-price algorithm. 
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C corresponding to routes which are no more feasible with re- 

pect to the updated value of W are deleted from the set. Columns 

n 

ˆ C are reinserted into the RLMP. The solution process of the 

LMP is then restarted. In particular, when the improving feasi- 

le solution is found after having computed the optimal solution 

or the current RLMP, the whole column generation algorithm is 

estarted. 

Fig. 2 depicts the flow chart of the branch-and-price algorithm. 

.2. Branching rules 

Let ( λ, w ) be the optimal solution of the current RMP. When 

 λ, w ) is fractional, we apply a two-level hierarchical branching 

cheme. Branching rules are presented in the following in order 

f priority. 

First, we consider an application of the Ryan and Foster’s 

ranching rule (see Ryan & Foster, 1981 ). For each pair of cus- 

omers c ′ and c ′′ , we define αc ′ c ′′ = 

∑ 

k ∈ K 
∑ 

r∈ R k s 
kr 
c ′ s 

kr 
c ′′ λ

kr as the sum 

f the λkr variable values associated with routes that serve both 

ustomers c ′ and c ′′ . We select the fractional value α∗
c ′ c ′′ closest 

o 0.5 such that 0 < α∗
c ′ c ′′ < 1 . On one branch, we set α∗

c ′ c ′′ = 0 ,

eaning that the customers c ′ and c ′′ must be served in differ- 

nt routes (and hence by different vehicles). Whereas, on the other 

ranch, we set α∗
c ′ c ′′ = 1 , meaning that the two customers have to 

e served in the same route by the same vehicle. When α∗
c ′ c ′′ is 

et to 0, the constraint z k 
c ′ + z k 

c ′′ ≤ 1 is inserted in the formulation

6) associated with each vehicle k ∈ K . For the case α∗
c ′ c ′′ = 1 , the

ormulation (6) associated with each vehicle k ∈ K is modified by 

nserting constraint z k 
c ′ − z k 

c ′′ = 0 . This rule does not introduce sym- 

etries in the solution space, does not alter the structure of the 

Ps, and, finally, allows the PPs to continue sharing the same fea- 

ible region. Thus, as long as only this rule is applied, at each col- 

mn generation iteration it is possible to design the sequential so- 
845 
ution of the PPs to potentially avoid solving some of them (see 

ection 4.1.3 ). 

When the solution is fractional and no pair of customers c ′ 
nd c ′′ exists such that 0 < α∗

c ′ c ′′ < 1 , we branch on the fractional

se of an arc by vehicle k ∈ K . For each r ∈ R k , let b kr 
i j 

be an in-

eger parameter equal to the number of times the vehicle k tra- 

erses arc (i, j) while traveling along route r. We consider values 
k 
i j 

= 

∑ 

r∈ R k b 
kr 
i j 
λkr and select βk ∗

i j 
such that βk ∗

i j 
− � βk ∗

i j 
� is the clos- 

st to 0.5. On one branch, the formulation (6) associated with ve- 

icle k is modified by considering an upper bound � βk ∗
i j 

� on the 

se of arc (i, j) and constraint 
∑ 

r∈ R k b 
kr 
i j 
λkr ≤ � βk ∗

i j 
� is inserted in 

he LMP. Then, on the other branch, a lower bound � βk ∗
i j 

� + 1 on

he use of arc (i, j) is considered in the formulation (6) for vehi-

le k , and the additional constraint 
∑ 

r∈ R k b 
kr 
i j 
λkr ≥ � βk ∗

i j 
� + 1 is in-

erted in the LMP. The new constraints inserted in the LMPs of the 

wo branches give rise to additional dual variables, γ UB k 

i j 
≤ 0 and 

LB k 

i j 
≥ 0 , respectively, that have to be considered in the definition 

f the reduced cost of the routes in R k . Let A 

UB k ( A 

LB k ) be the sub-

et of arcs for which dual variables γ UB k 

i j 
( γ LB k 

i j 
) exist. The objective 

unction (6a) of the PP associated with vehicle k becomes: 

in −
∑ 

c∈ H 
μc z 

k 
c −

∑ 

(i, j) ∈ A 
d i j x 

k 
i j ρk − θk −

∑ 

(i, j) ∈ A UB k 

γ UB k 

i j x k i j −
∑ 

(i, j) ∈ A LB k 

γ LB k 

i j x k i j 

his branching rule is sufficient to guarantee the integrality of the 

olutions. In fact, integer flows on arcs for each vehicle guarantee 

hat the λ variables are integer (see Barnhart et al., 1998 ). How- 

ver, the application of this type of rule differentiates the pricing 

roblem feasible regions. Thus, in each node of the subtree arising 

rom their applications, all the PPs have to be eventually solved 

t each column generation iteration (see Section 4.1.3 ). This is also 
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Fig. 3. Instances per vehicle solved optimally. 
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he reason why we decided from the beginning to index sets R k by 

ehicle index (see Section 2.2 ). 

The search tree is explored according to a best-first search strat- 

gy. 

It is worth mentioning that, even if the optimal solution ( λ, w ) 

s fractional, it may happen that at most K distinct routes are se- 

ected and fractionally assigned to the different vehicles. Since ev- 

ry λkr variable in the current RMP represents a route r ∈ R k which 

as to be feasible w.r.t. the current upper bound W for w 

1 (i.e., 

 

kr < W ), the optimal solution ( λ, w ) can be converted into an

nteger feasible solution to (3) whose value improves the current 

pper bound W . Whenever this happens, we convert the optimal 

ractional solution into the corresponding integer solution and up- 

ate W accordingly. 

. Primal bound heuristic 

In the branch-and-cut and branch-and-price algorithms de- 

cribed in the previous sections, we use the upper bounds pro- 

ided by the following heuristic, which is based on the multi-start 

terated local search matheuristic for the DC-CEARP described in 

orberán et al. (2019) . The pseudocode of this heuristic can be 

ound in Algorithm 3 . 

Algorithm 3: Primal bound heuristic. 

Input : G , H , i max , t l 
Output : S best 

1 i ← 0; 

2 S best ← ∅ ; 
3 while t l is not reached AND i ≤ i max do 

4 for each initialization strategy do 

5 S ← ∅ ; 
6 Add the first customer to S according to the 

initialization strategy; 

7 for each unassigned customer c ∈ H do 

8 Let k 0 ∈ K be the longest route of S; 

9 Calculate the cost of inserting c in all the possible 

routes in K \ { k 0 } and insert c in the cheapest 

position; 

10 Apply ILS using 2-Exchange and Destroy-Repair to S; 

11 if S is better than S best then 

12 S best ← S; 

13 i ← 0 ; 

14 i ← i + 1 ; 

In Corberán et al. (2019) , three different criteria for initializ- 

ng the routes are proposed: random initialization , random selec- 

ion among the best applicants , and weighted selection among the 
846 
est applicants . The random initialization criterion chooses the first 

ustomer of each route completely at random, weighted selection 

mong the best applicants chooses the first customer randomly 

mong a set of customers closest to the depot, and weighted se- 

ection among the best applicants assigns weights to the customers 

ccording to their distance to the depot and chooses the initial 

ustomer for each route with probability proportional to these 

eights. We generate one solution with each different initializa- 

ion criterion. 

Since the goal in the MM-CEARP is to minimize the length of 

he largest route, and there is no maximum length for the routes, 

e complete the routes by following the parallel completion strat- 

gy described in Corberán et al. (2019) with some modifications. 

et k 0 be the longest route among those partially constructed. For 

ll the arcs serving customers that have not been assigned yet, we 

alculate their insertion cost in all the possible positions of all the 

outes except k 0 , and insert the arc according to the cheapest inser- 

ion. The customers served by this arc are marked as served. These 

teps are repeated until all the customers have been assigned to a 

oute. 

The constructed solutions are used as initial solutions of an It- 

rated Local Search (ILS) heuristic. The local search operators used 

re the exchange of pairs of arcs belonging to two different routes 

he routes ( 2-Exchange ), and the reconstruction of partial solu- 

ions, Destroy-Repair . Both are well-known perturbation operators, 

nd their implementation details can be found in Corberán et al. 

2019) . 

New solutions are iteratively generated and improved using the 

bove operators until a time limit t l is reached or a certain number 

f iterations i max are performed without improving the best solu- 

ion. After some preliminary tests, we decided to set the maximum 

umber of iterations ( i max = 10 ) and the time limit ( t l = 100 sec-

nds) in order to balance the amount of time and the quality of 

he solution. 

. Computational experiments 

In this section we test the performance of the two exact algo- 

ithms proposed in this work. We have conducted all the compu- 

ational experiments on a desktop PC with an Intel(R) Core(TM) 

7 clocked at 3.4 GHz CPU, with 32 GBytes of RAM and running 

indows 10 Enterprise 64 bits. The branch-and-cut algorithms de- 

cribed in Sections 3 and 4.1.2 have been implemented in C++ us- 

ng IBM ILOG CPLEX 12.10 with Concert Technology, and compiled 

n release mode with MS Visual Studio Community 2015. Also the 

P algorithm have been implemented in C++ and compiled in re- 

ease mode with MS Visual Studio Community 2015. In particular, 

he callable library of CPLEX 12.10 was used for (re-)optimizing the 
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Table 2 

Number of instances grouped by dataset and number of vehicles. 

# Veh Albaida Madrigueras Random50 Random75 TOTAL 

2 24 24 11 12 71 

3 21 22 9 12 64 

4 17 17 3 9 46 

5 9 16 1 7 33 

6 6 12 – 4 22 

7 3 7 – 3 13 

8 1 4 – 1 6 

9 – 1 – – 1 

10 – 1 – – 1 

11 – 1 – – 1 

81 105 24 48 258 
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LMPs. Finally, all the algorithms have been compiled by allowing 

 single thread of execution. 

The experiments were carried out with a CPU time limit of two 

ours. For the BC algorithm described in Section 3 , we turned off

PLEX heuristic algorithms and activated CPLEX own cuts (includ- 

ng zero-half cuts) in automatic mode. We fixed to zero the toler- 

nce of the optimality gap and selected the best bound branching 

trategy. 

The instances used and the computational results obtained are 

escribed in what follows. 

.1. Instances 

In Ávila et al. (2017) , four different data sets for the Distance- 

onstrained CEARP (DC-CEARP) were proposed. Two of them were 

ased on the street networks of two Spanish towns, Albaida and 

adrigueras , and the other were based random graphs with 50 and 

5 vertices, Random50 and Random75 respectively. In total, 72 in- 

tances were defined. Moreover, by considering the number of ve- 

icles allowed to serve the customers, ranging between 2 and 5, 

he total number of instances addressed was 251. 

Contrary to what happens in the DC-CEARP, where there is a 

aximum distance for each route that determines the minimum 

umber of vehicles needed, in the Min-Max CEARP there is no 

uch limitation. Thus, the 72 DC-CEARP instances can be solved for 

ny number of vehicles. However, depending on the characteristics 

f the instance, it may not make sense to use a very high number

f vehicles. It may happen that a customer (or a set of customers) 

s very far from the depot, so the length of the longest route can 

e determined by the trip to serve this customer and in this case 

he optimal objective value will not decrease if we increase the 

umber of vehicles. To address this issue, given an instance, we 

ompute for each customer the length of the shortest route travel- 

ng from the depot to an arc of the customer, serving it and going

ack to the depot. Then, the longest of these routes provides a triv- 

al lower bound for the MM-CEARP associated with the instance. 

ach instance is solved iteratively with k = 2 , 3 , . . . vehicles. If for

 given value of k , the optimal solution cost is equal to the triv-

al lower bound, we set k − 1 as the maximum number of vehicles 

or this instance. A total of 258 instances have been defined with 

 minimum of 2 vehicles and a maximum of 11. 

The characteristics of these instances, grouped by sets, are 

hown in Table 1 . The number of instances per set is given in col-

mn # Inst , and the maximum number of vehicles for which the 

nstances in this set have been solved in column Max K. The re- 

aining columns report the minimum and maximum number of 

rcs, arcs in A R = H 1 ∪ . . . ∪ H L , ar cs in A NR = A \ A R , and customers,

espectively, for the instances in each set. 

Table 2 summarizes the distribution of the instances accord- 

ng to the number of vehicles. Since the number of instances with 

ore than 5 vehicles is very limited, in the analysis of the com- 
847 
utational results outlined in the next section we grouped the 44 

nstances with 6 or more vehicles and denoted the group as M6. 

All these instances, as well as their best known solutions, can 

e downloaded from Corberán, Plana, & Sanchis (2021b) . 

.2. Computational results 

This section presents the results of our computational experi- 

ents to compare the performance of the BC and BP algorithms. 

Table 3 provides the results of each exact algorithm grouped by 

he number of vehicles of the instance. Note that the BP results are 

iven only for the 230 out of the 258 instances where this method 

as able to solve the linear master problem at the root node and 

hus provide a lower bound. In this table, the columns “Gap 0”

nd “Time 0” show the average percentage gap at the end of the 

oot node and its average computing time in seconds, while “Gap”

nd “Time” provide the same information regarding the final lower 

ound and the total time. All gaps are calculated with respect to 

he upper bounds computed by each algorithm. If LB and UB de- 

ote the lower and upper bounds found by a given algorithm in 

n instance, the gap is computed as UB −LB 
UB × 100 . Column “Nodes”

hows the average number of nodes of the enumeration tree. 

The BC algorithm shows a fairly good performance in the in- 

tances with up to 4 vehicles, where it solves 117 out of the 181 

nstances to optimality and produces feasible solutions that are, 

n the worst case, 6.2% far from optimal on average in less than 

0 0 0 seconds. In particular, it achieves the best results for the in- 

tances with 2 vehicles, being able to solve 66 out of 71 instances 

n very short computing times. However, the performance of this 

lgorithm degrades when the number of vehicles increases. This 

oes not happen for the BP algorithm, which shows a more robust 

ehavior and outperforms the BC algorithm for the instances with 

 or more vehicles. This can be clearly seen in the Fig. 3 , which

hows for the BC and BP algorithms the variation of the number 

nd percentage of optima as a function of the number of vehicles. 

In order to study the behavior of the algorithms w.r.t. comput- 

ng time, we use the performance profiles described by Dolan & 

oré (2002) . Let S be the set of algorithms and P the set of in- 

tances. Let t p,s be the computing time required by algorithm s ∈ S
o solve instance p ∈ P . The performance ratio is then defined as 

 p,s = t p,s / min { t p,s : s ∈ S} . If algorithm s is not able to solve the 

nstance p within the time limit, we set r p,s = ∞ . Then, the per- 

ormance profile of each algorithm is defined as 

s (τ ) = 

|{ p ∈ P : r p,s ≤ τ }| 
|P| , 

nd represents the percentage of instances that can be solved by 

 within a factor τ of time with respect to the fastest algorithm. 

ote that, since the computing times are very different, we plot 

he results on a logarithmic scale. Note that ρs (0) is the percentage 

f optimally solved instances for which algorithm s is the fastest. 

ig. 4 depicts the performance profiles of the BC (red dotted line) 

nd the BP (solid black line) algorithms overall and for the in- 

tances grouped by number of vehicles. 

Comparing the performance profile for all the instances ( Fig. 4 a) 

n τ = 0 , we can see that the BP algorithm is the fastest in 42 . 6%

f the instances, while the BC algorithm only in 24 . 41% . It is in-

eresting how the curve for the BP algorithm increases rapidly in 

he interval [2,4], reaching almost its maximum around 60%. This 

eans that the BP algorithm solves another 15% of instances us- 

ng between 4 and 16 times the computing time used by the BC 

lgorithm. Conversely, the curve of the BC algorithm shows that 

his last is slower at reaching optimal solutions. At log 2 (τ ) = 11 

e have already reached the maximum number of optimal solu- 

ions for both algorithms. 
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Table 3 

Computational results for all the instances grouped by number of vehicles . 

# Veh # Inst # Opt Gap 0(%) Time 0 Gap(%) Time Nodes 

BC 2 71 66 8.9 9.1 0.3 839.8 3739.1 

3 64 35 14.6 6.3 2.4 3487.9 12277.4 

4 46 16 13.6 28.6 6.2 4993.8 6522.2 

5 33 5 12.9 37.5 8.0 6335.2 9263.9 

M6 44 3 10.2 207.9 7.3 6762.4 3832.4 

Overall 258 125 11.9 49.4 4.0 3950.3 7075.9 

BP 2 59 53 0.5 507.6 0.4 1083.2 1.7 

3 57 43 1.8 476.3 1.1 2074.2 5.9 

4 41 25 2.3 642.0 1.8 3020.2 22.6 

5 31 15 4.0 502.5 3.5 3822.0 10.9 

M6 42 21 3.4 162.4 2.5 4216.7 27.4 

Overall 230 157 2.2 460.1 1.7 2615.4 13.5 

Table 4 

Gap comparison on the instances with and without LB computed by the BP algorithm. 

Instances with LB Instances without LB 

BC BP BC 

# Inst # Opt Time Gap(%) # Opt Time Gap(%) # Inst # Opt Time Gap(%) 

2 59 59 245.0 0.0 53 1081.6 0.2 12 7 3764.1 3.8 

3 57 35 3032.0 1.0 43 2064.0 1.0 7 0 7200.0 9.7 

4 41 16 4724.6 4.0 25 2996.6 1.8 5 0 7200.0 13.5 

5 31 5 6279.3 5.6 15 3770.0 3.5 2 0 7200.0 17.9 

M6 42 3 6741.5 4.7 21 4101.6 2.5 2 0 7200.0 15.6 

Overall 230 118 3733.9 2.6 157 2580.2 1.5 28 7 5727.5 10.5 

Table 5 

Generated cuts and separation time of the BC. 

# Cuts Separation time 

# Veh Connectivity Parity Total Connectivity Parity Total 

2 1866.2 92.7 1958.8 15.7 1.3 17.0 

3 4307.9 100.2 4408.1 6.9 0.1 6.9 

4 5173.2 107.7 5280.9 20.3 0.1 20.4 

5 9155.2 132.1 9287.4 17.5 0.1 17.6 

M6 11996.9 162.5 12159.5 24.4 0.2 24.5 

Overall 5721.5 114.2 5835.7 16.0 0.4 16.5 
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Fig. 4 b shows the performance profile of both algorithms for 

he instances with 2 vehicles. The BC algorithm, as expected, is 

aster on this subset of instances, getting the shortest time in 

7.46% of the cases, against a corresponding percentage of only 

5.49% associated with the BP algorithm. However, the results are 

ompletely different at the increase of the number of vehicles. 

rom Fig. 4 c we can see that BP algorithm becomes the fastest in

lmost 60% of the instances while the BC algorithm only in just 

ver 10%. Note that in this case, despite taking more time, the 

C algorithm is able to find almost 55% of the optima. Fig. 4 d–

 show the performance profiles for 4, 5, and 6 or more ve- 

icles, respectively. It can be seen that the BP algorithm com- 

letely dominates the comparison since, despite being below 60% 

n number of optima, it is the fastest algorithm in practically all 

he instances where the optimum is found, while the BC algo- 

ithm needs a lot more time to be able to obtain fewer opti- 

al solutions (at most 3 optima for instances with 6 or more 

ehicles). 

It is interesting to point out that, as mentioned before, in some 

nstances the BP algorithm was unable to finish solving the lin- 

ar master problem at the root node, so no lower bound has been 

omputed by the algorithm for these instances. In Table 4 , we first 

ompare the gaps between the lower bounds computed by each 

lgorithm with respect to the best known upper bound provided 
848 
y any method for those instances for which the BP algorithm was 

ble to find a lower bound. 

The instances are grouped according to the number of vehicles. 

or each group, the second column gives the number of instances 

ith a lower bound provided by both algorithms, columns three to 

ve, and six to eight, report the number of optima found, the aver- 

ge computing time, and the average gap obtained by the BC and 

P algorithms, respectively. Furthermore, the last four columns in 

able 4 provide the results obtained with the BC algorithm for the 

nstances in which no lower bound was computed by the BP algo- 

ithm in two hours of computing time. In particular, for each num- 

er of vehicles, columns 9–12 give the number of such instances, 

he number of those optimally solved, the average computing time, 

nd the average gap for the unsolved instances obtained with the 

C algorithm. 

Again, we can see that the BC algorithm is effective on the in- 

tances with 2 vehicles, where all the 59 instances with LB in BP, 

nd 7 out of 12 more instances, are optimally solved. Furthermore, 

he average gap for the 5 unsolved instances, 3.8%, is small. The 

ffectiveness of the BC algorithm decreases for the instances with 

 vehicles, and it is inferior to that of the BP algorithm. Neverthe- 

ess, the BC algorithm is able to compute lower bounds, associated 

ith an average gap of 9.7%, for the 7 instances with 3 vehicles 

or which the BP algorithm can not. For the instances with more 
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Fig. 4. Performance profiles for different number of vehicles. 

Table 6 

Results of the heuristic algorithm. 

# Veh # Inst # Opt Time Gap(%) 

2 71 28 1.4 2.19 

3 64 21 0.9 2.26 

4 46 14 1.1 2.50 

5 33 10 0.8 2.27 

M6 44 6 1.1 2.30 

Overall 258 79 1.1 2.29 

v

t

g

g

t

p

o

r

n

849 
ehicles, the performance of the BP algorithm is clearly superior 

o that of the BC algorithm. Note that with respect to the BC al- 

orithm, both the number of unsolved instances and the average 

ap increase steadily as the number of vehicles increases, while 

his behavior is not so pronounced for the BP algorithm, whose re- 

orted average gaps do never exceed 3.5%. Moreover, the number 

f instances in which no lower bound is computed by the BP algo- 

ithm decreases as the number of vehicles grows. It is also worth 

oting that the gaps reported for the BC algorithm with respect to 
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Table 7 

List of sets, parameters and variables. 

K = { 1 , . . . , K} set of vehicles 

H = { 1 , . . . , L } set of customers 

c ∈ { 1 , . . . , L } a customer 

H c ⊆ A set of arcs from which c can be served 

d i j ≥ 0 length/distance associated with the traversal of arc (i, j) ∈ A 
x k 

i j 
number of times that the vehicle k traverses arc (i, j) ∈ A 

z k c takes value 1 if customer c is served by vehicle k 

w variable used to minimise the longest route 

R k set of feasible routes for vehicle k ∈ K 
R̄ ∪ R k 
d kr length of the route r ∈ R k 
s kr 

c parameter equal to 1 if the route r ∈ R k serves customer c

λkr takes value 1 if the route r ∈ R k is assigned to the vehicle k ∈ K 
w 

k length of route assigned to vehicle k ∈ K 
μc ∈ R + , ∀ c ∈ H , dual variables associated with constraints (3b) 

θk ∈ R , ∀ k ∈ K , dual variables associated with constraints (3c) 

ρk ∈ R − , ∀ k ∈ K , dual variables associated with constraints (3d) 

σk ∈ R + , ∀ k = 1 , . . . , K − 1 . dual variables associated with constraints (3e) 

c̄ kr ( μ, θ, ρ) reduced cost of route r ∈ R k 
K = { v 1 , . . . , v K } set of vehicles sorted in non-ascending order for ρv k values 

t

a

r

a

p
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t

t
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T

r
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t
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p
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hese instances are very high, which seems to indicate that they 

re particularly difficult. 

Finally, we present two tables with additional information 

egarding the performance of the heuristic separation procedures 

nd the primal bound heuristic described in Section 5 . Table 5 

rovides the average number of connectivity and parity cuts added 

y the BC in all instances grouped by number of vehicles, and 

he average computing time used to find them. As can be seen, 

he number of added violated connectivity cuts is very large and, 

s expected, increases very rapidly with the number of vehicles. 

he number of added parity inequalities is much smaller, but 

emember that its associated separation procedure is applied only 

t the root node, while the separation of connectivity inequalities 

s performed at every node of the tree search. Table 6 presents 

he number of optimal solutions found by the primal bound 

euristic, the average computing time in seconds, and the average 

ercentage gap respect to the best solution found by the exact 

rocedures. The results show that this algorithm is robust and 

rovides similar small gaps and computing times for all types of 

nstances. 

. Conclusions 

This paper addresses the Min-Max Close-Enough Arc Routing 

roblem, where a fleet of homogeneous vehicles has to serve a set 

f customers in such a way that the lengths of their routes are bal-

nced. For this problem we have proposed two different models. 

he first one is an arc-based formulation, with arc and servicing 

ariables, that has been used to develop a branch-and-cut algo- 

ithm, while the second one is a route-based set-covering formu- 

ation used to design a branch-and-price algorithm in which the 

ricing problems are solved by means of a branch-and-cut algo- 

ithm. Moreover, a heuristic to provide the exact algorithms with 

nitial feasible solutions has been implemented. An extended com- 

utational analysis has been carried out, where we have studied 

he performance of the algorithms on 258 instances with up to 

96 vertices, 544 arcs, 150 customers, and 11 vehicles. The re- 

ults show that the branch-and-cut algorithm achieves the best re- 

ults for the instances with 2 vehicles, while the performance of 

he branch-and-price algorithm is better for the instances with 3 

r more vehicles. Overall, we have been able to optimally solve 

74 out of these instances in two hours of computing time. The 

argest instance for which our algorithms have been able to find 

he optimal solution has 7 vehicles and 140 customers, which is a 

ize that we think can be comparable to the size of real-life in- 
850 
tances for some situations. If larger instances, such as the one 

eported in Shuttleworth et al. (2008) , needed to be solved, the 

roposed heuristic algorithm, which presents a robust performance 

nd short computing times for all instance sizes, could be applied. 

As future lines of research, we plan on studying the Pricing 

roblem, because we think that it can be associated with a real- 

ife problem in which not all the customers need to be served, but 

nly those that are interesting from the economic point of view 

that is, they provide some profit). 
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