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Here we introduce the Min-Max Close-Enough Arc Routing Problem, where a fleet of vehicles must serve
a set of customers while trying to balance the length of the routes. The vehicles do not need to visit the
customers, since they can serve them from a distance by traversing arcs that are “close enough” to the
customers. We present two formulations of the problem and propose a branch-and-cut and a branch-and-
price algorithm based on the respective formulations. A heuristic algorithm used to provide good upper
bounds to the exact procedures is also presented. Extensive computational experiments to compare the
performance of the algorithms are carried out.
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1. Introduction

In this article we introduce an arc routing problem where a
fleet of homogeneous vehicles has to serve a set of customers
in such a way that the lengths of the routes are balanced. Each
customer is associated with a subset of “close-enough” arcs and
by traversing any of these arcs the vehicle serves the customer.
The problem, called the Min-Max Close Enough Arc Routing Prob-
lem (MM-CEARP), consists of finding a set of vehicle routes, all of
them starting and ending at the depot, jointly servicing all the cus-
tomers, and such that the length of the longest route is minimized.

The MM-CEARP is NP-hard as it generalizes the Close Enough
Arc Routing Problem (CEARP), the single-vehicle version of the
problem in which the total distance traveled is minimized. The
CEARP was first introduced as the Generalized Directed Rural Post-
man Problem (GDRPP) by Drexl (2007), who proved it to be NP-
hard by showing that any Directed Rural Postman Problem (DRPP)
instance can be solved by transforming it into a GDRPP one that
has one customer containing one single arc for each required arc
of the DRPP instance. The CEARP was also studied by Shuttleworth,
Golden, Smith, & Wasil (2008), Drexl (2014), Ha, Bostel, Langevin,
& Rousseau (2012, 2014), Avila, Corberan, Plana, & Sanchis (2016),
and Cerrone, Cerulli, Golden, & Pentangelo (2017). The exact algo-
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rithms proposed in the last three references are the most success-
ful methods for the CEARP. They are capable of solving to opti-
mality instances with up to 500 vertices, 1500 arcs, and between
500 and 15,000 customers. A stochastic version of the CEARP was
studied by Renaud, Absi, & Feillet (2017), while Ardoz, Fernandez,
& Franquesa (2017) considered the special case in which the cus-
tomers are associated with clusters of edges that define pairwise-
disjoint connected subgraphs. A real-life application of the CEARP
arises in automated meter reading of water or gas consumption.
Instead of visiting customers one by one, the vehicles only need
to traverse a street that is close enough to the meters in order
to receive the consumption data via radio frequency identification
(RFID). This application was first described in Gulczynski, Heath,
& Price (2006), although in the context of node routing problems.
The papers by Shuttleworth et al. (2008) and Ha et al. (2012,
2014) were the first that studied the automated meter reading
problem in the context of a street network. The paper by Eglese,
Golden, & Wasil (2014) is an interesting summary of the mod-
els and solution methods proposed since the late 1970s in meter
reading. Another application of the CEARP can be found in inven-
tory management in large companies. In Duric, Jovanovic, & Sibalija
(2018) a system that allows aerial drones to read RFID tags from
tens of meters away and identify the location of the tags with a
small average error is described. Therefore, to carry out the in-
ventory, the drone does not need to traverse all the aisles of the
warehouse to collect data. Drones with RFID receivers or integrated
cameras are identified by Ardoz et al. (2017) as the most suitable
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devices to perform network maintenance and surveillance tasks.
The drones do not need to fly over the nodes or lines to be mon-
itored, but only to approach the target at a certain distance. The
authors noted that only a subset of the edges of a network should
be traversed in network maintenance quality control. They also ar-
gued that CEARP is the most appropriate problem for modeling lo-
cation arc routing problems in which facilities need to be located
in some given areas and connected between them via a route.

More recently, the CEARP with several vehicles has been sub-
ject of investigation in Avila, Corberan, Plana, & Sanchis (2017) and
Corberan, Plana, Reula, & Sanchis (2019, 2021a). These articles deal
with the Distance-Constrained Close Enough Arc Routing Problem
(DC-CEARP). This problem consists of finding a set of routes of to-
tal minimum cost, leaving from and entering at the depot and ser-
vicing all the customers, while ensuring that the length of each
route does not exceeds a given maximum distance. In Avila et al.
(2017), the authors present and compare four formulations for the
problem and four branch-and-cut algorithms based on them. The
best method is able to optimally solve instances with up to five
vehicles, 196 vertices, 450 arcs, and 150 customers. In Corberan,
Plana, Reula, & Sanchis (2021a), a new formulation that combines
the best features of the previous ones is presented and its asso-
ciated polyhedron is studied. Based on that study, an exact algo-
rithm improving the existing ones is also proposed. In Corberan
et al. (2019) a matheuristic providing good feasible solutions for
the DC-CEARP is described.

In the context of the meter-reading application, most real in-
stances are so large that a vehicle is not capable of servicing all
the customers within the working time period. Then, several routes
for a vehicle or for a fleet of vehicles need to be designed and
their working times balanced. For example, Shuttleworth et al.
(2008) report the solution of a real instance with 150,000 cus-
tomers and 16,500 street segments that were partitioned into 18
routes. Min-max objectives are quite common in routing problems
because they lead to more realistic models, since minimizing the
length of the longest route tends to balance the length or cost of
the planned routes. Moreover, if the travel times are proportional
to the travel distance, this objective tries to minimize the time at
which the last customer is served. As Ahr noted in Ahr (2004),
“this kind of objective is preferable when the aim is to serve each
customer as early as possible”. The min-max objective for several
arc routing problems was first proposed in Frederickson, Hecht,
& Kim (1978). These authors introduced the Min-Max K-Chinese
Postman Problem (Min-Max K-CPP) and proved that it is NP-hard
and proposed a (2-1/K)-approximation algorithm. More recently
Ahr & Reinelt (2002) presented several lower bounds and heuris-
tics for this problem and a Tabu Search procedure that produces
very good solutions (Ahr & Reinelt, 2006). In Ahr (2004) some
more results on the Min-Max K-CPP, including an exact solution
method based on a branch-and-cut approach, are presented. Fur-
thermore, Applegate, Cook, Dash, & Rohe (2002) considered a min-
max problem in a newspaper delivery context. The chapter by
Benavent, Corberan, Plana, & Sanchis (2014) summarizes the re-
sults obtained for some important min-max arc routing problems.

The main contribution of the paper at hand is to introduce in
the literature the MM-CEARP, focusing on its modeling and its ex-
act solution. More precisely, we propose two different models for
the problem: an arc-based formulation making use of arc and ser-
vicing variables, and a route-based set covering formulation. Then,
on the basis of the proposed models, we present a branch-and-cut
(BC) algorithm as well as a branch-and-price (BP) algorithm. As for
the BP algorithm, an additional contribution comes from the defi-
nition of the first-level rule used in the branching scheme. In the
route-based formulation, the sets of feasible routes associated with
the vehicles are identical. The proposed branching scheme allows
to recover integer solutions at the expenses of a diversification of
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the sets of feasible routes. Nevertheless, the first-level rule does
not introduce symmetries in the solution space, does not alter the
structure of the pricing problems, and, finally, allows the pricing
problems to continue sharing the same feasible region. In turn, as
long as only this rule is applied, this allows to design the sequen-
tial solution of the pricing problems (at each the column genera-
tion iteration) to potentially avoid solving some of them. Further-
more, the first-level rule consists of an application of the Ryan and
Foster’s branching rule (see Ryan & Foster, 1981), which is itself
something not typical when (i) columns of the master program re-
fer to elements of distinct sets and/or (ii) the BP algorithm is ad-
dressing a routing problem. In particular, as for (ii), we have been
able to efficiently handle the implications arising from the applica-
tion of such a kind of rule thanks to the BC algorithm used to solve
the pricing problems to optimality. Again something not typical
for BP algorithms addressing routing problems, where the leading
technique used to solve the pricing problems consists of dynamic
programming algorithms.

The rest of the paper is organized as follows. In Section 2, we
formally define the MM-CEARP and present for the problem an
arc-based and a route-based formulation. Solution algorithms to
address the problem are then presented. In Section 3 we present
a BC algorithm addressing the arc-based formulation, whereas in
Section 4 we describe a BP algorithm based on the set covering
formulation. A heuristic used to compute solutions with which ini-
tializing the exact algorithms is described in Section 5. To com-
pare the exact algorithms, extensive computational experiments on
benchmark instances are reported in Section 6. Conclusions are
drawn in Section 7. In order to ease the reading, a list of the main
sets, parameters, and variables used along this work is reported in
Table 7 at the end of the paper.

2. Problem definition and formulation

Let G= (V,A) be a strongly connected directed graph with
set of vertices V, where vertex 1 denotes the depot, and set of
arcs A, and let d;; > 0 be the an integer value representing the
length/distance associated with the traversal of arc (i, j) € A. There
is a fleet of K identical vehicles based at the depot and a set of
L customers. Each customer c € {1,...,L} has associated a set of
arcs H. € A from which it can be served. We consider that a cus-
tomer c is served if there is a vehicle k that traverses at least one
arc in H¢. Note that the subsets H. do not need to be disjoint nor
induce connected subgraphs. The Min-Max Close-Enough Arc Rout-
ing Problem consists of finding a set of K routes, starting and end-
ing at the depot, servicing all the customers and minimizing the
length of the largest route.

In what follows, K = {1,...,K} will represent the set of vehi-
cles and H = {1,...,L} the set of customers. Given sets S, 51,5, C
V, we define (51,5;)={(,j)eA:ieSjeS}, 7)) =@GV\
S), 7(S) =(V\S,S), §(S) =867(S)ud=(S), and A(S) ={(i,j) eA:
i, j € S}. Finally, given a vector x indexed on the arcs, and given a
set F of arcs, x(F) = 3" jer Xij-

>

2.1. Arc-based formulation

In this section we present an ILP formulation for the MM-
CEARP, very similar to one of the four proposed by Avila et al.
(2017) for the DC-CEARP, which uses an artificial variable w to
model the minimization of the maximum length route and the fol-
lowing two sets of variables:

x{‘l = number of times that the vehicle k traverses arc (i, j) € A,

Zk = {]’

0,

if customer c is served by vehicle k
otherwise.
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Table 1
Characteristics of the MM-CEARP instances.
|A| |Ag| |Ang| i
# Inst  Max K V] Min  Max Min  Max Min  Max Min  Max
Albaida 81 8 116 259 305 124 172 109 162 18 33
Madrigueras 105 11 196 453 544 224 305 197 281 22 47
Random50 24 5 50 296 300 105 292 7 193 10 100
Random75 48 8 75 448 450 143 438 10 305 15 150
The first MM-CEARP formulation is: e Hynd(S) #0 Vie(l.....q}
min w (1a) The following inequality is called disaggregate z-parity inequal-
ity, because is associated with a single vehicle k, and is valid for
K the MM-CEARP
s.t. kch =1 YceH (1b) .
K X(S(S)) = Z(zz’; —1— 2xk(H,, \5(5))) 41, (2a)
i=1
D dixfi <w Vk e K (1c) T . . o
(i JeA Basically, the inequality establish that if vehicle k serves cus-
tomer ¢; and does not traverse any edge in He, \ 6(S), then k serves
Kyst s kys— /s . ¢; by traversing at least an arc in Hc, N 8(S). If this is true for the
X481 () =x(6( VieV, YkeK 1d . - i .
CRO) CRO) v € (1d) q customers in F®, vehicle k has to traverse §(S) at least g times,
and, since g is odd, k has to traverse the cutset at least one more
doxk=zt VYceH, VkeK (le) ~ tme.

(i.j)eHc

XK1 (S)) = 2K —x*(H. nA(V\S)) VScV\{1}, YceH, VkeK

(1)
xf; >0 and integer Y(@i,j) eA VkeK (1g)
zk e {0,1} VceH, VkeK (1h)

Eq. (1b) forces the service of all customers while inequalities
(1c) imply that the length of any route is less than or equal to
w, and, together to the objective function, that the length of the
longest route is minimized. Constraints (1d) are the well known
symmetry equations for each vertex in V. Inequalities (1e) ensure
that if a vehicle serves a customer c, at least one arc in H. must
be traversed. The connectivity of each route is guaranteed by in-
equalities (1f). If vehicle k does not serve customer ¢, zK = 0 and
the inequality is trivially satisfied. Otherwise, if vehicle k serves
customer ¢ by traversing an arc in H-NA(V '\ S), then it does not
need to traverse the cut-set §(S) and the inequality is also triv-
ially satisfied. Only when vehicle k serves customer c by traversing
an arc not in H-.NA(V \ S) (hence, traversing an arc in §(S) or in
A(S)), the vehicle has to traverse §(S) and, therefore, the inequality
is satisfied. Note that there is an exponential number of such in-
equalities. Finally, (1g) and (1h) define the domain of the variables

In what follows we present the parity inequalities proposed in
Avila et al. (2017) and Corberan et al. (2021a) for the DC-CEARP.
They are also valid for our problem and will be used to strengthen
the linear relaxation of the above formulation.

Parity inequalities

Parity inequalities are implied by the fact that any cutset has
to be traversed by each vehicle an even, or zero, number of times.
Note that symmetry Eq. (1d) guarantee that every node has even
degree in the graph induced by any integer solution x € Z!l. How-
ever, if x is fractional, this is not necessarily true and, therefore,
parity inequalities can help to cut this kind of “solutions”.

Let ScV\ {1} and F® = {cq,cy, ..., cq}, where ¢ >3 and odd,
satisfying

* He NH Né(S) =¥ and

839

Parity inequalities can be generalized to any subset of vehicles
as follows. Given a subset of vehicles € = {kq, ..., k,}, the associ-
ated Q2-aggregate z-parity inequality is

q
SHEGES) = Z(Zzzg S 1 - 23 W (H 5(5))) +1. (2b)
keQ i=1 keQ keQ
If Q =K, we have the aggregate parity inequality
q
YOO = 3o(1- 23 He \ 6(SD) + 1. (20)

kek i=1 keK

2.2. Route-based formulation

As illustrated in Barnhart, Johnson, Nemhauser, Savelsbergh, &
Vance (1998), most routing problems can be formulated in a natu-
ral way as set partitioning problems where the columns (of the co-
efficient matrix) correspond to feasible routes for the vehicles and
each row (of the coefficient matrix) corresponds to the require-
ment that a customer must be served exactly once. Alternatively,
the problem can be formulated as a set covering problem in which
it is required that each customer is served at least once. Note that,
if a subcolumn of a feasible column defines another feasible col-
umn with lower cost, an optimal solution to the set covering prob-
lem will define an optimal set partitioning solution and, hence, it
is possible to work with any of the two formulations. However the
set covering formulation has the following advantages:

e its linear programming relaxation is numerically more stable
and thus easier to solve, and

e it is trivial to construct a feasible integer solution from a solu-
tion to the linear programming relaxation.

According to these insights, we modeled the MM-CEARP by
means of a route-based set covering formulation that leads the
bases for the BP algorithm discussed in Section 4.

Let R¥ be the set of feasible routes for vehicle k € K. Feasibility
takes into account constraints (1c)-(1h) for each vehicle k € K. For
each r € R¥, let d*" be the length of the route. Moreover, for each
customer c € H and each r e R¥, let sk" be a binary parameter equal
to 1 if the route r serves customer ¢ and 0 otherwise. Then, let’s
consider a set of variables associated with the use of the routes:
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1, if the route r € R¥ is assigned to the vehicle k € K,
0, otherwise,
and another set of variables modeling the length of the route as-
signed to each vehicle:

wk = length of route assigned to vehicle k € K.

Using this notation, the MM-CEARP can be formulated as fol-
lows:

Ak —

min w! (3a)

sty Y S =1 YceH (3b)
keK  reRk
Y oakr=1 Vk e K (3¢c)
reRk
> odak—wk <0 Vk e K (3d)
reRk
wk —wkt1 >0 Vk=1,...,K-1 (3e)
A e 0,1} Vk e K, VreR¥ (3f)

The objective function (3a) minimizes the length of the longest
route. This is ensured by constraints (3d) together with (3e). Ac-
tually, constraints (3d) define the lengths of the routes assigned
to the vehicles. Then, constraints (3e) impose the lengths of the
routes associated with vehicles from 1 to K to be sorted in non-
increasing order. The mandatory service of the customers is es-
tablished in inequalities (3b). The convexity constraints (3c) imply
that a single route r € R¥ is assigned to each vehicle k € K. Finally,
constraints (3f) define the domain for the A¥" variables. Constraints
wk > 0 are implied by inequalities (3d).

Note that sets R¥, k € K, are all identical. Nevertheless, we de-
cided to index them (by vehicle index) to have a notation allowing
us to better explain the BP algorithm (see Section 4). In particular,
the reason for using such a notation will be clarified in Section 4.2.

3. Branch-and-cut algorithm

In this section, we describe the branch-and-cut algorithm for
solving the MM-CEARP, which relies on the arc-based formulation
presented in Section 2.1 and the use of mixed-integer program-
ming (MIP) solver.

3.1. Separation algorithms

Here we describe the separation algorithms that have been
used to identify inequalities that are violated by the current LP so-
lution at any iteration of the cutting-plane phase of the branch-
and-cut algorithm, which includes separation methods for identi-
fying violated connectivity (1f) and aggregated parity inequalities
(20).

Connectivity inequalities

To identify violated connectivity inequalities (1f) we have used
a heuristic procedure proposed in Avila et al. (2017) for the DC-
CEARP. Given a solution (x**,zk*) of the linear relaxation corre-
sponding to a vehicle k, we first build the graph induced by the
arcs a € A such that x¥* > ¢, where ¢ is a given parameter. If the
support graph is not weakly connected, let Cy, ..., Cq be its weakly
connected components. For each G, let S be its associated set of
vertices. We look for the customer c¢ € H such that z& — xk*(H. n
A(V\S) is maximized. If x**(§+(S)) < z& —x**(H.nA(V \S) the
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corresponding connectivity constraint (1f) is violated. This proce-
dure has a computational complexity O(K|A||H]|).

A second heuristic (described in Corberan et al. (2021a)) based
on the Gomory-Hu algorithm and working in O(|V|3|A|) time is
also applied.

Parity inequalities

To separate parity inequalities (2c) we have implemented the
following heuristic algorithm with complexity O(|A|?). Note that
these inequalities can be written as

q
Y X)) = D> (2 - 2x%(H, \ 8(5))) + 1.

keK keK i=1

If (xk*, z**) are the values of the variables associated with ve-
hicle k in the solution of the linear relaxation, let (x*,z*) be the
aggregated solution, that is, ¥ = Y & and Zt = ¥ 28 = 1.
First, we create the graph induced by the arcs a e Ay = HU...UH]
with X} > 1+ ¢ and by the arcs a ¢ Az with X} > ¢, where ¢ is a
given parameter. Let Cq,...,C, be the weakly connected compo-
nents of this graph. Then, given a connected component C; and its
associated set of vertices S, we compute x*(6(S) NAg) and check if
this value is close to an odd number, that is, 2n 4+ 0.75 < x*(§(S) N
Ag) <2n+ 1.25. If so, the heuristic tries to select g =2n+1 cus-
tomers among those having arcs in the cutset in order to form set
F® as described in Section 2.1. To do so, we iteratively add cus-
tomers to F¥ in decreasing order of the z: — 2x*(H. \ §(S)) values,
such that the sets H. N §(S) are disjoint with those associated with
the previously selected customers, until we reach the desired num-
ber g of customers. If there are not enough customers that can
be selected, we choose another component. Otherwise, we check
if the inequality (2c) is violated.

3.2. Initial relaxation and cutting-plane algorithm

The initial LP relaxation contains all the inequalities in the for-
mulation except for the connectivity inequalities, which are expo-
nential in number. At each cutting plane iteration, the separation
algorithms are applied in the following order:

1. Connectivity inequalities separation algorithm based on con-
nected components with € =0, 0.25, 0.5, 0.75.

2. Connectivity inequalities separation algorithm based on
Gomory-Hu.

3. Only at the root node, parity inequalities separation algorithm
with € =0,0.25,0.5,0.75.

This cutting-plane algorithm is applied at each node of the tree
until no new violated inequalities are found. When this happens,
we branch using the strong branching strategy provided by the MIP
solver. This strategy branches on variables and allows to assign dif-
ferent priorities to them. Variables with higher priority are the first
ones used for branching. We have assigned a higher priority to the
ZK variables.

4. Branch-and-price algorithm

When a set covering problem is addressed by means of a BP
algorithm, its formulation, in our case formulation (3), is usually
referred as master program (MP). In the BP algorithm, at each
node of the branch-and-bound tree, the linear relaxation of the MP
(LMP), eventually augmented by branching constraints, is solved it-
eratively by means of column generation. The starting point is to
define the LMP over a subset R C | J, i R¥ of the feasible routes
for the vehicles. This restricted version of LMP is usually called
reduced linear master program (RLMP). At each iteration, column
generation alternates between the optimization of the RLMP and
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the solution of pricing problems (PPs). The former allows to re-
trieve optimal dual variable values with respect to set R. The lat-
ter, on the bases of the dual variable values, generates negative
reduced cost route variables A¥" to be included in the RLMP, if
any. When no negative reduced cost variable is found, the opti-
mal solution of the RLMP is also the optimal solution of the LMP
Desaulniers, Desrosiers, & Solomon (2005). Branching is finally re-
quired to ensure the integrality of the solution.

4.1. Column generation

Let us consider the linear relaxation of (3) at the root node of
the branch-and-bound tree. The dual variables associated with the
constraints (3b), (3¢), (3d), and (3e) are respectively:

e /e € RT, for each customer ¢ € H,
e O € R, for each vehicle k € K,

e p € R, for each vehicle k € K,

e 0, € R, for each k=1 K-1.

.....

Using these dual variables in their respective domain, we are
able to express the formulation of the dual of LMP as follows:

K-1
max Y 1-phe+Y 1:6+Y 0-pc+Y 00y (4a)
ceH keK keK k=1
st. > st e+ 6O +d"p <0 Vk e K, VreRk (4b)
ceH
—pr1+or =1 (4c)
—Pk+0r—0k1 <0 Vk=2,...,K-2 (4d)
—pxk—0k-1=0 (4e)

where there is a constraint (4b) for each variable A" of the pri-
mal formulation, and constraints (4c)-(4e) are related with each
wk variable, k € K.

Thus, based on the dual formulation (4), we can see that there
is one distinct PP for each vehicle k € K. In particular, given the du-
als (i, 0, p, o), the PP for vehicle k € K consists of finding a min-
imum reduced cost route to be assigned to the vehicle, where the
reduced cost ¢ (i, 0, p) of route r € R to be assigned to the ve-
hicle is defined as:

(. 0.p) = =D s e — O — d¥ py

ceH

(5)

A solution (a route) corresponds to a negative reduced cost A
variable if its value (reduced cost) is less than 0.

4.1.1. Pricing problem modeling

In order to define the pricing problem, we consider the same
variables (with the same meaning) as those used in formulation
(1). The PP associated with vehicle k € K can then be formulated
as follows:

min =Y uezf - Y dixlipy (6a)
ceH (i,j)eA

s.t. x5t (1)) = x5~ (1)) VieV (6b)

X(8%(S)) = 2K —x*(H.nA(V\S)) VScV\{1}, VceH (6¢c)
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X =zt YceH (6d)
(i, j)eHc
xf; >0 and integer V(@ j)eA (6e)
Zk e {0,1} ceH (6f)

where pc>0, Oy €R, pr<0 and, hence, —d;jo, >0 for each
(i, j) € A. The objective function (6a) aims at minimizing the re-
duced cost of the route. Constraints (6b) are the symmetry equa-
tions for each vertex, while constraints (6¢) are used to ensure the
connectivity of the optimal solution. Consistency between the xffj

and zK variables is imposed through constraints (6d).

An optimal solution to (6) corresponds to a negative reduced
cost variable if its value is less than 6;.

Moreover, when an upper bound W is available for w!, R¥ can
be restricted to include feasible routes such that d <W —1 (djj is
an integer value for each (i, j) € A), and we can include in formu-
lation (6) the following constraint:

Z d,’jxﬁ- <W-1
(i,j)eA
Note that the valid inequalities (6b)-(6f), which defines the fea-
sible region of the PP associated with vehicle k € K, are the same
as the inequalities (1d)-(1h) appearing in formulation (1) for each
vehicle k € K. Thus, the disaggregate z-parity inequalities (2a) are
also valid for model (6).

(6g)

4.1.2. A branch-and-cut algorithm for the pricing problem

In Bianchessi, Corberan, Plana, Reula, & Sanchis (2021), the
authors introduce the Profitable Close Enough Arc Routing Prob-
lem (PCEARP). Let G = (V,A) be a directed and strongly connected
graph with a cost ¢;; > 0 associated with each arc (i, j) €A and a
distinguished vertex 1 as the depot. Let H be the set of customers,
each of them has an associated set of arcs H- C A in such a way
a customer c is served when at least one of the arcs in H. is tra-
versed. Associated with each customer c there is a profit p. >0
that is collected (only once) if the customer is served. The PCEARP
consists of finding a tour starting and ending at the depot and
maximizing the difference between the total profit collected and
the cost of the route. Therefore, for each vehicle k € K, the pricing
problem can be seen as a PCEARP with the additional constraint
(6g). In fact, it is possible to rewrite the objective function as a
maximization problem with

* Pc= =0,
s Cij = —d;jpx = 0.

Finally, it is worth observing that all the PPs share the same
feasible region at the root node of the branch-and-bound tree.
However, as will be explained in Section 4.2, branching rules may
differentiate the pricing problem feasible regions in the subtree
arising from their application.

We solve the pricing problem by using a branch-and-cut algo-
rithm similar to the one described in Bianchessi et al. (2021) for
solving the PCEARP.

When solving the pricing problem, it may be advantageous to
save as many routes (columns) as we can find. Therefore, every
time that the branch-and-cut algorithm finds an integer solution
with negative reduced cost, we store it in order to add it to the
restricted master problem. Furthermore, for each stored route, we
study if it traverses any arc a € H. associated with a customer ¢
having . = 0. If this happens, we mark this customer as served
by the route.
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v

(b) subtour traversing a served customer

Fig. 1. Solutions of the PP with subtours that satisfy connectivity inequalities (6c).

Initial relaxation The initial relaxation considered in order to
apply the BC includes constraints (6b)-(6g) (minus the integrality
conditions). In particular, let S¢ be the set of vertices incident with
the arcs in H, ¢ € H. The initial relaxation includes only connectiv-
ity constraints (6¢) associated with sets S such that 1 ¢ S.

Moreover, in order to obtain routes useful for the LMP, inequal-
ities (6h) and (6i) are also included in the initial relaxation. In-
equality (6h) forces the vehicle to leave the depot, while inequal-
ity (6i) ensures that at least one customer will be served by the
vehicle.

X(@ET (1) =1

Yoz
c=1,...L

Separation algorithms In the branch-and-cut algorithm for the
pricing problem we separate connectivity (6¢) and parity (2a) in-
equalities. The separation algorithm used for parity inequalities is
similar as the one described in Section 3.1 but without aggregating
the solution.

For the connectivity inequalities we apply the first separation
heuristic described in Section 3.1 with a modification that will be
described in what follows.

Note that constraints (6¢) do not guarantee that all solutions of
the formulation will be connected, since there are still two situ-
ations in which disconnected subtours may appear. The first one
is if p, =0. In this case, a solution can contain cycles with arcs
that do not belong to any served customer (see Fig. 1a, where the
triangle represents the depot and the solid lines represent arcs of
a served customer), but these cycles can be removed without af-
fecting the reduced cost of the solution. The other situation may
occur when there is a cycle disconnected from the depot, but for
any customer with z’g =1 there is at least one arc in H. traversed
and connected to the depot (see Fig. 1b). But this solution will
not be optimal, since this cycle can be removed from the solution
while still servicing the same customers, thus decreasing the re-
duced cost of the route.

However, as will be explained in Section 4.2, the branching
rules of the branch-and-price procedure may introduce some lower
bound on the use of some arcs, that is, on some xi‘] variables. If
there is a disconnected subtour containing one of these arcs with
a lower bound greater than 0, it is not possible to remove this cy-
cle from the solution. For this reason, for each connected compo-
nent G, if it does not contain the depot, we check if there is an
arc incident with vertices in C; having a lower bound greater than
0. If such an arc is found, the inequality x¥(§(C;)) > 1 is a valid
inequality that is violated by this solution.

(6h)

(61)
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Cutting-plane algorithm The cutting-plane algorithm applies the
following separation algorithms in the order in which are listed:

1. Heuristic separation algorithm for connectivity inequalities with
e=0, 0.25, 0.5, 0.75.

2. Heuristic separation algorithm for parity inequalities with ¢ =
0, 0.25, 0.5 (only at the root node).

The cutting-plane algorithm is applied at each node of the tree
until no new violated inequalities are found. Again, we branch us-
ing the MIP-solver implementation of the strong branching strat-
egy by giving higher priority to the z¥ variables.

Primal heuristic To obtain a higher number of columns and good
lower bounds that can help reducing the size of the branch-and-
cut search tree, we have implemented a heuristic algorithm, whose
pseudocode is shown in Algorithm 1, using the fractional solutions

Algorithm 1: Primal heuristic.

Input: G, H, (x*,z*)

Output: A feasible route R
1 A<~0;
2 H <~ H;
3 Al « {aeAg: xt>09});
4 A2 —{aeAg: 0.7 <x: <0.9};
5 A3 —{aeAg: 05<xt<0.7});
6 for i=1to 3 do
7 | (@) < ey qen Me Yae Al
s | while A’ £ ¢ AND max{p(a) : aeA}>0do
9 @ < argmax,_,i{p(a)};
10 A« Au{a};
AT AT\ {a};
12 Remove from # all the customers served by arc a;
13 Recalculate p(a) Va € Af;
4 Apply an insertion heuristic to construct a route R with the
arcs in A;
if the value of R is better than the current lower bound of
the branch-and-cut and R satisfies (6g) then

1

-

16 | Stop;

17 else

18 Solve the DGRP on G with required arcs A, the depot as
required vertex, and costs d;;0y;

19 if the solution of DGRP satisfies (6g) then

20 | R <« Optimal solution of the DGRP;

of the LPs at the nodes of the tree.
Let (x*,z*) be a fractional solution. The subset of arcs Ag =
HyU...UH; is split into four different subsets according to their
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x* value. The first subset includes arcs a with x} > 0.9. The second,
those with x €[0.7,0.9), the third the arcs with x} € [0.5,0.7),
and the last subset includes the arcs a € Ag with x} < 0.5, which
will not be considered in the procedure.

We start by building a solution by iteratively selecting arcs from
the first subset. For each arc a of this subset, we calculate the profit
obtained from traversing it, given by the sum of the profit . of
the customers ¢ not yet served such that a € H.. Then, the arc with
the maximum profit is added to .4 and removed from its corre-
sponding subset. Moreover, the customers served by traversing this
arc are labeled as served. This procedure is repeated until the first
subset is empty or there are no new customers that can be served
traversing the remaining arcs. Then, we repeat the procedure with
the second subset and, if necessary, with the third one.

Once the set 4 has been obtained, a route traversing this sub-
set of arcs is built. The route is initialized by randomly selecting
an arc in A. Then, all the remaining arcs are allocated using a de-
terministic completion procedure. For each unassigned arc a € A,
we compute the cost of inserting the arc in the route in the best
possible position and add the one with the minimum insertion
cost. We proceed until all the arcs in A are allocated. Once the
route is complete, we check which customers are served. If the re-
sulting solution improves the current lower bound, we stop. Oth-
erwise, we solve a Directed General Routing Problem (DGRP) in
which all the arcs in A are marked as “required” and the depot is
a “required vertex”, using the exact procedure described in Avila,
Corberan, Plana, & Sanchis (2015). The DGRP consists of finding a
minimum cost route that traverses all the required arcs and visits
all the required nodes at least once. As before, we study the cus-
tomers served by the obtained route and check if it improves the
current lower bound.

This algorithm is executed at every 100 iterations of the
cutting-plane procedure at the root node. Once the root node has
been studied, it is executed once every 20 nodes up to node num-
ber 200, once every 50 nodes between nodes 201 and 501, and
once every 200 nodes beyond that number.

4.1.3. Solution of the PPs

Let K ={vq,...,vk} be the set of vehicles sorted in non-
ascending order with respect to their corresponding py, values. At
each column generation iteration, the PPs are considered sequen-
tially starting from the problem associated with vehicle v;. Let RV
be the set of routes found by solving the PP for vehicle v, € K.
For each route r € RV, we check if it corresponds to a negative
reduced cost AV" variable (column), meaning that we check if its
cost is less than ka. Additionally, we check if the route r corre-
sponds to a negative reduced cost column for any of the other
vehicles. In this way, as long as all the PPs share the same fea-
sible region, we avoid to solve subsequent PPs corresponding to
vehicles v, t > k, such that | oy, — oy, | < €, with € — 0*. This does
not hold anymore once a branching rule which diversifies the pric-
ing problem feasible regions is applied (see Section 4.2). When this
happens, in each node of the subtree arising from the application
of such a branching rule, all the PPs have to be eventually solved
at each column generation iteration. The sequential solution of the
PPs terminates as soon as negative reduced cost columns are found
after solving one of them, or when all the PPs have been solved
and no negative reduced cost column has been generated.

4.14. Heuristic column generation

In many iterations of the column generation algorithm (espe-
cially in the initial ones), there are many routes with negative re-
duced cost that can be efficiently found by means of an heuristic
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algorithm. Hence, at each column generation iteration, the solu-
tion mechanism outlined in Section 4.1.3 is first applied consider-
ing a Greedy Randomized Adaptive Search Procedure (GRASP) as
solver for the PPs. In case no negative reduced cost column is gen-
erated by means of the heuristic, the mechanism is reapplied by
solving the PPs to optimality through the BC algorithm described
in Section 4.1.2. It is worth noting that in the construction and lo-
cal search phases, we do not keep only the route with the lowest
reduced cost, but also all those routes generated by the algorithm
that have a negative reduced cost, which will be stored in set R,.

The heuristic, the pseudocode of which can be seen in
Algorithm 2 , is initialized by computing an initial value v(a) for

Algorithm 2: Heuristic column generation.
Input: t;, m_iter_LS, o, n
Output: Ry

1 iter < 0;

2 Ry <0,

31« 1;

4 Generate set Ajp;;

5 while ¢; is not reached AND i < | A4;,;| do

6 | @< Ap(D);

7 (Re, Riter) < Construction (a, «);

8 Rh <~ Rh U Rc;

9 | Ry < IteratedLocalSearch (R, n, m_iter_LS);

10 Rh < Ry URy;

1 i<i+1;

each arc a € Ag as the cost of going from the depot to the arc
and back minus the profit of serving all customers traversed in
this trip. Out of all these arcs, we build a subset A;,;; with the
min{50, @} arcs of minimum value v(a), and we sort them ran-
domly. At each iteration of the GRASP, a route is initialized by se-
lecting an arc in A;;,; and then, completed and improved, respec-
tively, by using the Construction and IteratedLocalSearch subroutines
described in the following.

Construction Initial solutions are built using an adaptation of the
path-scanning procedure, which selects the subset of customers
associated with the smallest v(a). For each customer not yet as-
signed, the corresponding profit ¥ is computed as the difference
in the reduced cost of the route if c is served through the route.
A restricted candidate list (RCL) is built including the customers
candidates associated with the smallest profits and taking into ac-
count a threshold parameter «. Given ¥, and ¥max, a customer
is included in the RCL if

wc = Of(wmax - wmin) + Wmin-

As usual, parameter « controls the greediness of the selection
(¢ = 0 pure greedy; o =1 pure random). Looking for a tiny ran-
domization component within a greedy procedure, our algorithm
has been implemented with a fixed « = 0.1. Construction runs un-
til it is verified that, with the remaining unassigned customers, it
is not possible to achieve a route with negative reduced cost. Note
also that all the negative reduced cost routes generated during the
construction phase are kept as solutions of the current PP.
IteratedLocalSearch With the best solution built in the construc-
tive phase (route Rj,), a local search procedure tries to improve
it by exploring neighbor solutions. It consists of a Destroy and Re-
pair method based on the one described in Corberan et al. (2019).
Here, in the destruction phase of the algorithm, n (n € {1, 3}) arcs
are removed from the route but always keeping at least one arc
in it. Then, in the repair phase, a best improvement strategy was
adopted, according to which the customer associated with the
minimum profit u. is inserted in the route. The reconstruction



N. Bianchessi, A. Corberdn, 1. Plana et al.

phase uses the same stopping criteria as Construction. Let ¢, be the
set of arcs in Ag in the current route (Ry,,), the IteratedLocalSearch
procedure stops when m_iter_LS = min{%, “g—“‘} iterations without
improving the solution are performed.

GRASP is repeated until a maximum computing time (t; =
2 seconds) is exceeded or a route for each arc in A;; has been
built.

4.1.5. Restricted master heuristic

In order to speed up the BP algorithm, and also improve the
convergence speed of the column generation, we implemented a
restricted master heuristic as defined in Joncour, Michel, Sadykov,
Sverdlov, & Vanderbeck (2010). The basic idea behind restricted
master heuristics is to solve, by means of a general mixed integer
linear programming (MILP) solver, the MP (in our case model (3))
defined over a subset of the available columns. When the heuristic
succeeds in solving the MP defined over a given set of columns, a
feasible solution to the problem becomes available.

We run the restricted master heuristic every A column genera-
tion iterations and whenever an optimal solution for the RLMP has
been computed.

The heuristic is immediately terminated when it is triggered
and the current (optimal) solution is not feasible, i.e., the current
base includes an active dummy column (see Section 4.1.6). Other-
wise, let R be the set of the routes associated with the A¥" vari-
ables that are active w.r.t. the current (optimal) feasible solution to
the RLMP. The routes in R are used to initialize an integer program
similar to (3) to be solved by means of a general MILP solver. In
the new integer program, A variables are no more indexed by ve-
hicle. The program considers binary variables A" assuming value
1 if route r is selected to be assigned to one of the vehicles. Ac-
cording to the new definition of the A variables, coefficients s.. and
d" play respectively the role of coefficients sk and d* in (3). The
program reads as follows:

W =min w (7a)
st. Y siA =1 YceH (7b)
reR

Y A<k (7¢)
reR

dAT—w<0 VreR (7d)
AT e 0,1} VreR (7e)
w>0 (71)

The new A variables allow to aggregate constraints (3c) in
(3) and formulate them as (7c), to disregard constraints (3e), and,
in general, to avoid symmetries in the solution space. This comes
at the expense of an increase in the number of constraints (7d) re-
quired to define the maximum length.

Whenever an optimal solution to (7) is found, a new upper
bound W (for w') becomes available. Hence, column generation
is restarted to solve the RLMP by considering only vehicle routes
with length smaller than, or equal to, W — 1.

4.1.6. Overall algorithm overview

The RLMP is initialized by means of set of columns CUC. Set
C includes a high cost dummy column for each customer c € H,

844

European Journal of Operational Research 300 (2022) 837-851

by means of which constraints (3b) are satisfied. In particular,
the column for a given customer c € H has a coefficient 1 on the
row corresponding to the constraint associated with the customer,
whereas all the other coefficients of the column are 0. Similarly, a
high cost dummy column is further included in € for each vehi-
cle k € K to satisfy constraints (3c). All dummy columns have null
length. At the root node of the branch-and-bound tree, C is empty.
In any other node of the tree, C includes the columns that were in
the optimal basis of the RLMP at the father node, and that corre-
spond to routes that are feasible with respect to the active branch-
ing constraints and the current value of W.

Then, iteratively, the RLMP is solved to optimality or proved to
be infeasible.

First, at each iteration, the RLMP is solved and the dual variable
values retrieved. If no dummy column appears in the current basis,
all columns in ¢ are extracted from (the constraint matrix of) the
RLMP.

Let PC be the set of columns generated so far during the exe-
cution of the whole BP algorithm (the so called pool of columns).
Columns in PC correspond to routes that are feasible with respect
to the current value of W. Before solving the PPs, negative reduced
cost columns are searched for among those included in PC. PC is
scanned sequentially and at most K negative reduced cost columns
are selected to be inserted into the RLMP. A column in PC is el-
igible for selection if (i) the corresponding route is feasible with
respect to the active branching constraints, (ii) none of the pre-
vious selected columns is associated with the same PP associated
with it, and (iii) the corresponding route services at least one cus-
tomer not serviced by any of the routes corresponding to previous
selected columns. Let PC be the subset of columns selected and
extracted from PC. If |PC| > 0, columns in PC are inserted into the
RLMP and a new iteration is started, otherwise the PPs are solved
in order to eventually find new negative reduced cost columns.

An attempt is made to solve the PPs, as described in
Section 4.1.3, by means of the MS-GRASP heuristic (Section 4.1.4).
In case no negative reduced cost column is generated, the solu-
tion mechanism described in Section 4.1.3 is reapplied by solving
the PPs to optimality through the BC algorithm (Section 4.1.2). If,
again, no negative reduced cost column is found, it means that ei-
ther the optimal solution of the current RLMP is also optimal for
the LMP, or the LMP is infeasible (some dummy columns are in
the basis corresponding to the dual variable values for the current
iteration). In both cases the column generation algorithm termi-
nates. Otherwise, the negative reduced cost columns generated are
inserted into the RLMP and a new iteration is started. When the
column generation algorithm ends, all the non-dummy columns
defining RLMP are (re)inserted in PC.

Finally, as mentioned in Section 4.1.5, the column generation al-
gorithm takes advantage of a restricted master heuristic. This helps
in speeding up its convergence as well as the convergence of the
whole BP algorithm. Actually, the cardinality of the set |y R* de-
pends on the value of W. The lesser the value of W, the smaller
the cardinality of the set, and this eventually allows to solve faster
the PPs with both the MS-GRASP heuristic and the BC algorithm.
In turn, the smaller the cardinality of the set |Jy R¥, the greater
the dual bound generated by solving to optimality the RLMP, and,
in general, tighter dual bounds associated with the nodes of the
tree imply a faster convergence of the BP algorithm. The restricted
master heuristic is run every A column generation iterations, be-
fore solving the RLMP and retrieving the dual variable values, and
whenever an optimal solution for the RLMP has been computed.
Each time a new improving feasible solution is found, a new up-
per bound W (for w!) becomes available. The value of W is up-
dated accordingly. All the columns in the RLMP corresponding to
routes that do not satisfy constraint (6g) with the updated value
of W are removed from its constraint matrix. Similarly, columns in
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Fig. 2. Flow chart of the branch-and-price algorithm.

PC corresponding to routes which are no more feasible with re-
spect to the updated value of W are deleted from the set. Columns
in ¢ are reinserted into the RLMP. The solution process of the
RLMP is then restarted. In particular, when the improving feasi-
ble solution is found after having computed the optimal solution
for the current RLMP, the whole column generation algorithm is
restarted.

Fig. 2 depicts the flow chart of the branch-and-price algorithm.

4.2. Branching rules

Let (A, W) be the optimal solution of the current RMP. When
(A, W) is fractional, we apply a two-level hierarchical branching
scheme. Branching rules are presented in the following in order
of priority.

First, we consider an application of the Ryan and Foster's
branching rule (see Ryan & Foster, 1981). For each pair of cus-
tomers ¢’ and ¢, we define & = Ycg 3 cpe SK K AKT as the sum
of the AK" variable values associated with routes that serve both
customers ¢ and ¢”. We select the fractional value a%, ., closest
to 0.5 such that 0 < a%., <1. On one branch, we set o =0,
meaning that the customers ¢’ and ¢’ must be served in differ-
ent routes (and hence by different vehicles). Whereas, on the other
branch, we set a;‘,c,, =1, meaning that the two customers have to
be served in the same route by the same vehicle. When of is
set to 0, the constraint z¥ +z, < 1 is inserted in the formulation
(6) associated with each vehicle k € K. For the case by =1, the
formulation (6) associated with each vehicle k € K is modified by
inserting constraint z’g, — z’c‘,, = 0. This rule does not introduce sym-
metries in the solution space, does not alter the structure of the
PPs, and, finally, allows the PPs to continue sharing the same fea-
sible region. Thus, as long as only this rule is applied, at each col-
umn generation iteration it is possible to design the sequential so-
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lution of the PPs to potentially avoid solving some of them (see
Section 4.1.3).

When the solution is fractional and no pair of customers ¢’
and ¢” exists such that 0 < oy, <1, we branch on the fractional
use of an arc by vehicle k € K. For each r e R, let b’ be an in-
teger parameter equal to the number of times the vehicle k tra-
verses arc (i, j) while traveling along route r. We consider values
ﬂi’j. = 3Rk b{.‘jm’“ and select /3;]3 such that /3;]3 - Lﬂi";J is the clos-
est to 0.5. On one branch, the formulation (6) associated with ve-
hicle k is modified by considering an upper bound L,Bi’;.*J on the

use of arc (i, j) and constraint Y, _p bi.‘jrkkr < Lﬂi’fj is inserted in
the LMP. Then, on the other branch, a lower bound Lﬂi";J +1 on
the use of arc (i, j) is considered in the formulation (6) for vehi-
cle k, and the additional constraint Y, _p b{-‘jr)»’“ > Iﬁ,—kj | +1isin-
serted in the LMP. The new constraints inserted in the LMPs of the
two branches give rise to additional dual variables, yl.lj}Bk <0 and
yiSBk > 0, respectively, that have to be considered in the definition

of the reduced cost of the routes in R¥. Let AUB* (AL5“) be the sub-
set of arcs for which dual variables yig.’Bk (yigBk) exist. The objective
function (6a) of the PP associated with vehicle k becomes:

min =Y pczé— ) dixfipe— O — Y > vl

ceHl (i.j)eA (i, j)eAUB* (i, j)eAts:

UB* Jk
Vij Xij—

This branching rule is sufficient to guarantee the integrality of the
solutions. In fact, integer flows on arcs for each vehicle guarantee
that the A variables are integer (see Barnhart et al., 1998). How-
ever, the application of this type of rule differentiates the pricing
problem feasible regions. Thus, in each node of the subtree arising
from their applications, all the PPs have to be eventually solved
at each column generation iteration (see Section 4.1.3). This is also
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Fig. 3. Instances per vehicle solved optimally.

the reason why we decided from the beginning to index sets R by
vehicle index (see Section 2.2).

The search tree is explored according to a best-first search strat-
egy. _

It is worth mentioning that, even if the optimal solution (A, w)
is fractional, it may happen that at most K distinct routes are se-
lected and fractionally assigned to the different vehicles. Since ev-
ery AK variable in the current RMP represents a route r € RK which
has to be feasible w.r.t. the current upper bound W for w! (i.e.,
d*" < W), the optimal solution (A, W) can be converted into an
integer feasible solution to (3) whose value improves the current
upper bound W. Whenever this happens, we convert the optimal
fractional solution into the corresponding integer solution and up-
date W accordingly.

5. Primal bound heuristic

In the branch-and-cut and branch-and-price algorithms de-
scribed in the previous sections, we use the upper bounds pro-
vided by the following heuristic, which is based on the multi-start
iterated local search matheuristic for the DC-CEARP described in
Corberan et al. (2019). The pseudocode of this heuristic can be
found in Algorithm 3 .

Algorithm 3: Primal bound heuristic.
Input: G, H, imax, t
Output: Sy,

11« 0;

2 SbESt <~ @;

3 while ¢, is not reached AND i < ipax do

4 for each initialization strategy do

5 S <~

6 Add the first customer to S according to the

initialization strategy;

7 for each unassigned customer ¢ € H do

8 Let ko € K be the longest route of S;

9 Calculate the cost of inserting c in all the possible
routes in K \ {kg} and insert c in the cheapest
position;

10 Apply ILS using 2-Exchange and Destroy-Repair to S;

1 if S is better than Sy, then

12 Sbest <~ S;

13 i< 0;

14 i<i+1;

In Corberan et al. (2019), three different criteria for initializ-
ing the routes are proposed: random initialization, random selec-
tion among the best applicants, and weighted selection among the

best applicants. The random initialization criterion chooses the first
customer of each route completely at random, weighted selection
among the best applicants chooses the first customer randomly
among a set of customers closest to the depot, and weighted se-
lection among the best applicants assigns weights to the customers
according to their distance to the depot and chooses the initial
customer for each route with probability proportional to these
weights. We generate one solution with each different initializa-
tion criterion.

Since the goal in the MM-CEARP is to minimize the length of
the largest route, and there is no maximum length for the routes,
we complete the routes by following the parallel completion strat-
egy described in Corberan et al. (2019) with some modifications.
Let ko be the longest route among those partially constructed. For
all the arcs serving customers that have not been assigned yet, we
calculate their insertion cost in all the possible positions of all the
routes except kg, and insert the arc according to the cheapest inser-
tion. The customers served by this arc are marked as served. These
steps are repeated until all the customers have been assigned to a
route.

The constructed solutions are used as initial solutions of an It-
erated Local Search (ILS) heuristic. The local search operators used
are the exchange of pairs of arcs belonging to two different routes
the routes (2-Exchange), and the reconstruction of partial solu-
tions, Destroy-Repair. Both are well-known perturbation operators,
and their implementation details can be found in Corberan et al.
(2019).

New solutions are iteratively generated and improved using the
above operators until a time limit ¢; is reached or a certain number
of iterations imax are performed without improving the best solu-
tion. After some preliminary tests, we decided to set the maximum
number of iterations (imax = 10) and the time limit (¢, = 100 sec-
onds) in order to balance the amount of time and the quality of
the solution.

6. Computational experiments

In this section we test the performance of the two exact algo-
rithms proposed in this work. We have conducted all the compu-
tational experiments on a desktop PC with an Intel(R) Core(TM)
i7 clocked at 3.4 GHz CPU, with 32 GBytes of RAM and running
Windows 10 Enterprise 64 bits. The branch-and-cut algorithms de-
scribed in Sections 3 and 4.1.2 have been implemented in C++ us-
ing IBM ILOG CPLEX 12.10 with Concert Technology, and compiled
in release mode with MS Visual Studio Community 2015. Also the
BP algorithm have been implemented in C++ and compiled in re-
lease mode with MS Visual Studio Community 2015. In particular,
the callable library of CPLEX 12.10 was used for (re-)optimizing the
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Table 2

Number of instances grouped by dataset and number of vehicles.
# Veh  Albaida  Madrigueras Random50  Random75 TOTAL
2 24 24 11 12 71
3 21 22 9 12 64
4 17 17 3 9 46
5 9 16 1 7 33
6 12 - 4 22
7 3 7 - 3 13
8 1 4 - 1 6
9 - 1 - - 1
10 - 1 - - 1
11 - 1 - - 1

81 105 24 48 258

RLMPs. Finally, all the algorithms have been compiled by allowing
a single thread of execution.

The experiments were carried out with a CPU time limit of two
hours. For the BC algorithm described in Section 3, we turned off
CPLEX heuristic algorithms and activated CPLEX own cuts (includ-
ing zero-half cuts) in automatic mode. We fixed to zero the toler-
ance of the optimality gap and selected the best bound branching
strategy.

The instances used and the computational results obtained are
described in what follows.

6.1. Instances

In Avila et al. (2017), four different data sets for the Distance-
Constrained CEARP (DC-CEARP) were proposed. Two of them were
based on the street networks of two Spanish towns, Albaida and
Madrigueras, and the other were based random graphs with 50 and
75 vertices, Random50 and Random75 respectively. In total, 72 in-
stances were defined. Moreover, by considering the number of ve-
hicles allowed to serve the customers, ranging between 2 and 5,
the total number of instances addressed was 251.

Contrary to what happens in the DC-CEARP, where there is a
maximum distance for each route that determines the minimum
number of vehicles needed, in the Min-Max CEARP there is no
such limitation. Thus, the 72 DC-CEARP instances can be solved for
any number of vehicles. However, depending on the characteristics
of the instance, it may not make sense to use a very high number
of vehicles. It may happen that a customer (or a set of customers)
is very far from the depot, so the length of the longest route can
be determined by the trip to serve this customer and in this case
the optimal objective value will not decrease if we increase the
number of vehicles. To address this issue, given an instance, we
compute for each customer the length of the shortest route travel-
ing from the depot to an arc of the customer, serving it and going
back to the depot. Then, the longest of these routes provides a triv-
ial lower bound for the MM-CEARP associated with the instance.
Each instance is solved iteratively with k =2, 3, ... vehicles. If for
a given value of k, the optimal solution cost is equal to the triv-
ial lower bound, we set k — 1 as the maximum number of vehicles
for this instance. A total of 258 instances have been defined with
a minimum of 2 vehicles and a maximum of 11.

The characteristics of these instances, grouped by sets, are
shown in Table 1. The number of instances per set is given in col-
umn # Inst, and the maximum number of vehicles for which the
instances in this set have been solved in column Max K. The re-
maining columns report the minimum and maximum number of
arcs, arcs in Ag = Hy U...UH;j, arcs in Ayg = A \ Ag, and customers,
respectively, for the instances in each set.

Table 2 summarizes the distribution of the instances accord-
ing to the number of vehicles. Since the number of instances with
more than 5 vehicles is very limited, in the analysis of the com-
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putational results outlined in the next section we grouped the 44
instances with 6 or more vehicles and denoted the group as M6.

All these instances, as well as their best known solutions, can
be downloaded from Corberan, Plana, & Sanchis (2021b).

6.2. Computational results

This section presents the results of our computational experi-
ments to compare the performance of the BC and BP algorithms.

Table 3 provides the results of each exact algorithm grouped by
the number of vehicles of the instance. Note that the BP results are
given only for the 230 out of the 258 instances where this method
was able to solve the linear master problem at the root node and
thus provide a lower bound. In this table, the columns “Gap 0”
and “Time 0” show the average percentage gap at the end of the
root node and its average computing time in seconds, while “Gap”
and “Time” provide the same information regarding the final lower
bound and the total time. All gaps are calculated with respect to
the upper bounds computed by each algorithm. If LB and UB de-
note the lower and upper bounds found by a given algorithm in
an instance, the gap is computed as Y878 x 100. Column “Nodes”
shows the average number of nodes of the enumeration tree.

The BC algorithm shows a fairly good performance in the in-
stances with up to 4 vehicles, where it solves 117 out of the 181
instances to optimality and produces feasible solutions that are,
in the worst case, 6.2% far from optimal on average in less than
5000 seconds. In particular, it achieves the best results for the in-
stances with 2 vehicles, being able to solve 66 out of 71 instances
in very short computing times. However, the performance of this
algorithm degrades when the number of vehicles increases. This
does not happen for the BP algorithm, which shows a more robust
behavior and outperforms the BC algorithm for the instances with
3 or more vehicles. This can be clearly seen in the Fig. 3, which
shows for the BC and BP algorithms the variation of the number
and percentage of optima as a function of the number of vehicles.

In order to study the behavior of the algorithms w.r.t. comput-
ing time, we use the performance profiles described by Dolan &
Moré (2002). Let S be the set of algorithms and P the set of in-
stances. Let tp s be the computing time required by algorithm s € S
to solve instance p € P. The performance ratio is then defined as
Tps = tps/minft, s : s € S}. If algorithm s is not able to solve the
instance p within the time limit, we set rps = co. Then, the per-
formance profile of each algorithm is defined as

{peP: Tps = T}

ps(f) = |77| s

and represents the percentage of instances that can be solved by
s within a factor 7 of time with respect to the fastest algorithm.
Note that, since the computing times are very different, we plot
the results on a logarithmic scale. Note that ps(0) is the percentage
of optimally solved instances for which algorithm s is the fastest.
Fig. 4 depicts the performance profiles of the BC (red dotted line)
and the BP (solid black line) algorithms overall and for the in-
stances grouped by number of vehicles.

Comparing the performance profile for all the instances (Fig. 4a)
in T =0, we can see that the BP algorithm is the fastest in 42.6%
of the instances, while the BC algorithm only in 24.41%. It is in-
teresting how the curve for the BP algorithm increases rapidly in
the interval [2,4], reaching almost its maximum around 60%. This
means that the BP algorithm solves another 15% of instances us-
ing between 4 and 16 times the computing time used by the BC
algorithm. Conversely, the curve of the BC algorithm shows that
this last is slower at reaching optimal solutions. At log,(7) = 11
we have already reached the maximum number of optimal solu-
tions for both algorithms.
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Table 3
Computational results for all the instances grouped by number of vehicles .
# Veh #1Inst #Opt GapO(%) TimeO Gap(%) Time Nodes
BC 2 71 66 8.9 9.1 0.3 839.8 3739.1
3 64 35 14.6 6.3 2.4 34879 122774
4 46 16 13.6 28.6 6.2 4993.8  6522.2
5 33 5 12.9 375 8.0 6335.2  9263.9
M6 44 3 10.2 207.9 7.3 6762.4 38324
Overall 258 125 119 494 4.0 39503 7075.9
BP 2 59 53 0.5 507.6 0.4 1083.2 1.7
3 57 43 1.8 476.3 1.1 20742 59
4 41 25 2.3 642.0 1.8 30202 226
5 31 15 4.0 502.5 35 3822.0 109
M6 42 21 34 1624 2.5 4216.7 274
Overall 230 157 22 460.1 1.7 26154 135
Table 4
Gap comparison on the instances with and without LB computed by the BP algorithm.
Instances with LB Instances without LB
BC BP BC
# Inst #Opt Time Gap(%) #0Opt Time Gap(%) # Inst # Opt  Time Gap(%)
2 59 59 245.0 0.0 53 1081.6 0.2 12 7 3764.1 38
3 57 35 3032.0 1.0 43 2064.0 1.0 7 0 72000 9.7
4 41 16 47246 4.0 25 2996.6 1.8 5 0 7200.0 135
5 31 5 62793 5.6 15 3770.0 35 2 0 7200.0 17.9
M6 42 3 6741.5 4.7 21 41016 25 2 0 7200.0 15.6
Overall 230 118 37339 26 157 2580.2 1.5 28 7 57275 105
Table 5
Generated cuts and separation time of the BC.
# Cuts Separation time
# Veh Connectivity ~ Parity  Total Connectivity ~ Parity ~ Total
2 1866.2 92.7 1958.8 15.7 1.3 17.0
3 4307.9 100.2  4408.1 6.9 0.1 6.9
4 5173.2 107.7 5280.9 203 0.1 204
5 9155.2 132.1 9287.4 17.5 0.1 17.6
M6 11996.9 162.5 12159.5 244 0.2 24.5
Overall  5721.5 114.2  5835.7 16.0 04 16.5

Fig. 4 b shows the performance profile of both algorithms for
the instances with 2 vehicles. The BC algorithm, as expected, is
faster on this subset of instances, getting the shortest time in
77.46% of the cases, against a corresponding percentage of only
15.49% associated with the BP algorithm. However, the results are
completely different at the increase of the number of vehicles.
From Fig. 4c we can see that BP algorithm becomes the fastest in
almost 60% of the instances while the BC algorithm only in just
over 10%. Note that in this case, despite taking more time, the
BC algorithm is able to find almost 55% of the optima. Fig. 4d-
f show the performance profiles for 4, 5, and 6 or more ve-
hicles, respectively. It can be seen that the BP algorithm com-
pletely dominates the comparison since, despite being below 60%
in number of optima, it is the fastest algorithm in practically all
the instances where the optimum is found, while the BC algo-
rithm needs a lot more time to be able to obtain fewer opti-
mal solutions (at most 3 optima for instances with 6 or more
vehicles).

It is interesting to point out that, as mentioned before, in some
instances the BP algorithm was unable to finish solving the lin-
ear master problem at the root node, so no lower bound has been
computed by the algorithm for these instances. In Table 4, we first
compare the gaps between the lower bounds computed by each
algorithm with respect to the best known upper bound provided

by any method for those instances for which the BP algorithm was
able to find a lower bound.

The instances are grouped according to the number of vehicles.
For each group, the second column gives the number of instances
with a lower bound provided by both algorithms, columns three to
five, and six to eight, report the number of optima found, the aver-
age computing time, and the average gap obtained by the BC and
BP algorithms, respectively. Furthermore, the last four columns in
Table 4 provide the results obtained with the BC algorithm for the
instances in which no lower bound was computed by the BP algo-
rithm in two hours of computing time. In particular, for each num-
ber of vehicles, columns 9-12 give the number of such instances,
the number of those optimally solved, the average computing time,
and the average gap for the unsolved instances obtained with the
BC algorithm.

Again, we can see that the BC algorithm is effective on the in-
stances with 2 vehicles, where all the 59 instances with LB in BP,
and 7 out of 12 more instances, are optimally solved. Furthermore,
the average gap for the 5 unsolved instances, 3.8%, is small. The
effectiveness of the BC algorithm decreases for the instances with
3 vehicles, and it is inferior to that of the BP algorithm. Neverthe-
less, the BC algorithm is able to compute lower bounds, associated
with an average gap of 9.7%, for the 7 instances with 3 vehicles
for which the BP algorithm can not. For the instances with more
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Table 6
Results of the heuristic algorithm.

# Veh #Inst #Opt Time  Gap(%)

2 71 28 14 2.19
3 64 21 0.9 2.26
4 46 14 1.1 2.50
5 33 10 0.8 2.27
M6 44 6 1.1 2.30
Overall 258 79 1.1 2.29
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vehicles, the performance of the BP algorithm is clearly superior
to that of the BC algorithm. Note that with respect to the BC al-
gorithm, both the number of unsolved instances and the average
gap increase steadily as the number of vehicles increases, while
this behavior is not so pronounced for the BP algorithm, whose re-
ported average gaps do never exceed 3.5%. Moreover, the number
of instances in which no lower bound is computed by the BP algo-
rithm decreases as the number of vehicles grows. It is also worth
noting that the gaps reported for the BC algorithm with respect to
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Table 7
List of sets, parameters and variables.

European Journal of Operational Research 300 (2022) 837-851

K={1,....K} set of vehicles

H={1,..., L} set of customers

cef{l,..., L} a customer

H.cA set of arcs from which ¢ can be served

dij >0 length/distance associated with the traversal of arc (i, j) € A

xf.‘j number of times that the vehicle k traverses arc (i, j) € A

ZK takes value 1 if customer c is served by vehicle k

w variable used to minimise the longest route

RK set of feasible routes for vehicle k € K

R URK

dkr length of the route r e R¥

skr parameter equal to 1 if the route r € R¥ serves customer ¢

Akr takes value 1 if the route r € R¥ is assigned to the vehicle k € K
wk length of route assigned to vehicle k ¢ K

e € RY, Vc € H, dual variables associated with constraints (3b)

Ok € R, Vk € K, dual variables associated with constraints (3c)

Pr € R™ Vk € K, dual variables associated with constraints (3d)

o € R Vk=1,..., K — 1. dual variables associated with constraints (3e)
ckr(w, 8, p) reduced cost of route r € R¥

K={v,..., vk}  set of vehicles sorted in non-ascending order for p,, values

these instances are very high, which seems to indicate that they
are particularly difficult.

Finally, we present two tables with additional information
regarding the performance of the heuristic separation procedures
and the primal bound heuristic described in Section 5. Table 5
provides the average number of connectivity and parity cuts added
by the BC in all instances grouped by number of vehicles, and
the average computing time used to find them. As can be seen,
the number of added violated connectivity cuts is very large and,
as expected, increases very rapidly with the number of vehicles.
The number of added parity inequalities is much smaller, but
remember that its associated separation procedure is applied only
at the root node, while the separation of connectivity inequalities
is performed at every node of the tree search. Table 6 presents
the number of optimal solutions found by the primal bound
heuristic, the average computing time in seconds, and the average
percentage gap respect to the best solution found by the exact
procedures. The results show that this algorithm is robust and
provides similar small gaps and computing times for all types of
instances.

7. Conclusions

This paper addresses the Min-Max Close-Enough Arc Routing
Problem, where a fleet of homogeneous vehicles has to serve a set
of customers in such a way that the lengths of their routes are bal-
anced. For this problem we have proposed two different models.
The first one is an arc-based formulation, with arc and servicing
variables, that has been used to develop a branch-and-cut algo-
rithm, while the second one is a route-based set-covering formu-
lation used to design a branch-and-price algorithm in which the
pricing problems are solved by means of a branch-and-cut algo-
rithm. Moreover, a heuristic to provide the exact algorithms with
initial feasible solutions has been implemented. An extended com-
putational analysis has been carried out, where we have studied
the performance of the algorithms on 258 instances with up to
196 vertices, 544 arcs, 150 customers, and 11 vehicles. The re-
sults show that the branch-and-cut algorithm achieves the best re-
sults for the instances with 2 vehicles, while the performance of
the branch-and-price algorithm is better for the instances with 3
or more vehicles. Overall, we have been able to optimally solve
174 out of these instances in two hours of computing time. The
largest instance for which our algorithms have been able to find
the optimal solution has 7 vehicles and 140 customers, which is a
size that we think can be comparable to the size of real-life in-
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stances for some situations. If larger instances, such as the one
reported in Shuttleworth et al. (2008), needed to be solved, the
proposed heuristic algorithm, which presents a robust performance
and short computing times for all instance sizes, could be applied.

As future lines of research, we plan on studying the Pricing
Problem, because we think that it can be associated with a real-
life problem in which not all the customers need to be served, but
only those that are interesting from the economic point of view
(that is, they provide some profit).
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